WorldWideScience

Sample records for early negative regulator

  1. Zebrafish foxo3b negatively regulates canonical Wnt signaling to affect early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Xun-wei Xie

    Full Text Available FOXO genes are involved in many aspects of development and vascular homeostasis by regulating cell apoptosis, proliferation, and the control of oxidative stress. In addition, FOXO genes have been showed to inhibit Wnt/β-catenin signaling by competing with T cell factor to bind to β-catenin. However, how important of this inhibition in vivo, particularly in embryogenesis is still unknown. To demonstrate the roles of FOXO genes in embryogenesis will help us to further understand their relevant physiological functions. Zebrafish foxo3b gene, an orthologue of mammalian FOXO3, was expressed maternally and distributed ubiquitously during early embryogenesis and later restricted to brain. After morpholino-mediated knockdown of foxo3b, the zebrafish embryos exhibited defects in axis and neuroectoderm formation, suggesting its critical role in early embryogenesis. The embryo-developmental marker gene staining at different stages, phenotype analysis and rescue assays revealed that foxo3b acted its role through negatively regulating both maternal and zygotic Wnt/β-catenin signaling. Moreover, we found that foxo3b could interact with zebrafish β-catenin1 and β-catenin2 to suppress their transactivation in vitro and in vivo, further confirming its role relevant to the inhibition of Wnt/β-catenin signaling. Taken together, we revealed that foxo3b played a very important role in embryogenesis and negatively regulated maternal and zygotic Wnt/β-catenin signaling by directly interacting with both β-catenin1 and β-catenin2. Our studies provide an in vivo model for illustrating function of FOXO transcription factors in embryogenesis.

  2. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

    Science.gov (United States)

    Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun

    2018-03-15

    Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

  3. The Relations Between Maternal Prenatal Anxiety or Stress and Child's Early Negative Reactivity or Self-Regulation: A Systematic Review.

    Science.gov (United States)

    Korja, Riikka; Nolvi, Saara; Grant, Kerry Ann; McMahon, Cathy

    2017-12-01

    In the present review, we examine the association between maternal prenatal stress or anxiety and children's early negative reactivity or self-regulation. The review includes 32 studies that focus on pregnancy-related anxiety, state or trait anxiety, perceived stress, and stressful life events in relation to child's crying, temperament, or behavior during the first 2 years of life. We searched four electronic databases and 32 studies were selected based on the inclusion criteria. Twenty-three studies found an association between maternal prenatal anxiety or stress and a child's negative reactivity or self-regulation, and typically the effect sizes varied from low to moderate. The association was found regardless of the form of prenatal stress or anxiety and the trimester in which the prenatal stress or anxiety was measured. In conclusion, several forms of prenatal anxiety and stress may increase the risk of emotional and self-regulatory difficulties during the first 2 years of life.

  4. Early Self-Regulation, Early Self-Regulatory Change, and Their Longitudinal Relations to Adolescents' Academic, Health, and Mental Well-Being Outcomes.

    Science.gov (United States)

    Howard, Steven J; Williams, Kate E

    2018-05-16

    To evaluate the extent to which early self-regulation and early changes in self-regulation are associated with adolescents' academic, health, and mental well-being outcomes. Data were collected from 1 of the cohorts in a large dual-cohort cross-sequential study of Australian children. This cohort consisted of a nationally representative data set of 4983 Australian children assessed at 4 to 5 years of age, who were followed longitudinally to 14 to 15 years of age. Using regression within a path analysis framework, we first sought to investigate associations of early self-regulation (at 4-5 years and 6-7 years of age) with a broad range of academic, health, and mental well-being outcomes in adolescence (at 14-15 years). We next investigated the extent to which an early change in self-regulation (from 4 to 7 years of age) predicted these adolescents' outcomes. Early self-regulation predicted the full range of adolescents' outcomes considered such that a 1-SD increase in self-regulation problems was associated with a 1.5- to 2.5-times greater risk of more-negative outcomes. An early positive change in self-regulation was associated with a reduced risk of these negative outcomes for 11 of the 13 outcomes considered. These results suggest the potential of early self-regulation interventions, in particular, in influencing long-term academic, health, and well-being trajectories.

  5. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo, E-mail: pompeo.volpe@unipd.it

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  6. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    International Nuclear Information System (INIS)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo

    2013-01-01

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α 1 -adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy

  7. Negative regulation of neuronal cell differentiation by INHAT subunit SET/TAF-Iβ.

    Science.gov (United States)

    Kim, Dong-Wook; Kim, Kee-Beom; Kim, Ji-Young; Lee, Kyu-Sun; Seo, Sang-Beom

    2010-09-24

    Epigenetic modification plays an important role in transcriptional regulation. As a subunit of the INHAT (inhibitor of histone acetyltransferases) complex, SET/TAF-Iβ evidences transcriptional repression activity. In this study, we demonstrate that SET/TAF-Iβ is abundantly expressed in neuronal tissues of Drosophila embryos. It is expressed at high levels prior to and in early stages of neuronal development, and gradually reduced as differentiation proceeds. SET/TAF-Iβ binds to the promoters of a subset of neuronal development markers and negatively regulates the transcription of these genes. The results of this study show that the knockdown of SET/TAF-Iβ by si-RNA induces neuronal cell differentiation, thus implicating SET/TAF-Iβ as a negative regulator of neuronal development. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Self-regulation as a mediator between sibling relationship quality and early adolescents' positive and negative outcomes.

    Science.gov (United States)

    Padilla-Walker, Laura M; Harper, James M; Jensen, Alexander C

    2010-08-01

    The current study examined the role of adolescents' self-regulation as a mediator between sibling relationship quality and adolescent outcomes, after controlling for the quality of the parent-child relationship. Participants were 395 families (282 two parent; 113 single parent) with an adolescent child (M age of child at Time 1 = 11.15, SD = .96, 49% female) who took part in [project name masked for blind review] at both Time 1 and Time 2. Path analysis via structural equation modeling suggested that sibling affection was longitudinally and positively related to self-regulation and prosocial behaviors, and negatively related to externalizing behaviors; while sibling hostility was positively, and having a sister was negatively related to internalizing behaviors (in general, paths were stronger for adolescents from two- vs. single-parent families). There was also evidence that adolescents' self-regulation partially mediated the relation between sibling affection and positive and negative adolescent outcomes. The discussion focuses on the importance of continued research examining the mechanisms through which the sibling relationship influences development during adolescence.

  9. ECR-MAPK regulation in liver early development.

    Science.gov (United States)

    Zhao, Xiu-Ju; Zhuo, Hexian

    2014-01-01

    Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region)-socs2 (-SH2-containing signals/receptor tyrosine kinases)-ppp2r2a/pik3c3 (MAPK signaling)-hsd3b5/cav2 (metabolism/organization) plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  10. Infant pain-related negative affect at 12 months of age: early infant and caregiver predictors.

    Science.gov (United States)

    Din Osmun, Laila; Pillai Riddell, Rebecca; Flora, David B

    2014-01-01

    To examine the predictive relationships of early infant and caregiver variables on expressed pain-related negative affect duration at the 12-month immunization. Infants and their caregivers (N = 255) were followed during immunization appointments over the first year of life. Latent growth curve modeling in a structural equation modeling context was used. Higher levels of initial infant pain reactivity at 2 months and caregiver emotional availability averaged across 2, 4, and 6 months of age were related to larger decreases in the duration of infant negative affect over the first 6 months of life. Longer duration of infant negative affect at 2 months and poorer regulation of infant negative affect over the first 6 months of life predicted longer durations of infant negative affect by 12 months. Infant negative affect at 12 months was a function of both infant factors and the quality of caregiver interactive behaviors (emotional availability) in early infancy.

  11. Neurophysiological correlates of attention behavior in early infancy: Implications for emotion regulation during early childhood

    Science.gov (United States)

    Perry, Nicole B.; Swingler, Margaret M.; Calkins, Susan D.; Bell, Martha Ann

    2015-01-01

    Current theoretical conceptualizations of regulatory development suggest that attention processes and emotion regulation processes share common neurophysiological underpinnings and behavioral antecedents such that emotion regulation abilities may build upon early attentional skills. To further elucidate this proposed relationship, we tested whether early neurophysiological processes measured during an attention task in infancy predicted in-task attention behavior, and whether infant's attention behavior was subsequently associated with their ability to regulate emotion in early childhood (N=388). Results indicated that, greater EEG power change (from baseline to task) at medial frontal locations (F3 and F4) during an attention task at 10 months were associated with concurrent observed behavioral attention. Specifically, greater change in EEG power at the right frontal location (F4) was associated with more attention, and greater EEG power at the left frontal location (F3) was associated with less attention, indicating a potential right hemisphere specialization for attention processes already present in the first year of life. In addition, after controlling for 5-month attention behavior, increased behavioral attention at 10-months was negatively associated with children's observed frustration to emotional challenge at age 3. Finally, the indirect effects from 10-month EEG power change at F3 and F4 to 3-year emotion regulation via infants' 10-month behavioral attention were significant, suggesting that infant's attention behavior is one mechanism through which early neurophysiological activity is related to emotion regulation abilities in childhood. PMID:26381926

  12. Cultural differences in hedonic emotion regulation after a negative event.

    Science.gov (United States)

    Miyamoto, Yuri; Ma, Xiaoming; Petermann, Amelia G

    2014-08-01

    Beliefs about emotions can influence how people regulate their emotions. The present research examined whether Eastern dialectical beliefs about negative emotions lead to cultural differences in how people regulate their emotions after experiencing a negative event. We hypothesized that, because of dialectical beliefs about negative emotions prevalent in Eastern culture, Easterners are less motivated than Westerners to engage in hedonic emotion regulation-up-regulation of positive emotions and down-regulation of negative emotions. By assessing online reactions to a recent negative event, Study 1 found that European Americans are more motivated to engage in hedonic emotion regulation. Furthermore, consistent with the reported motivation to regulate emotion hedonically, European Americans show a steeper decline in negative emotions 1 day later than do Asians. By examining retrospective memory of reactions to a past negative event, Study 2 further showed that cultural differences in hedonic emotion regulation are mediated by cultural differences in dialectical beliefs about motivational and cognitive utility of negative emotions, but not by personal deservingness or self-efficacy beliefs. These findings demonstrate the role of cultural beliefs in shaping emotion regulation and emotional experiences.

  13. ECR-MAPK Regulation in Liver Early Development

    Directory of Open Access Journals (Sweden)

    Xiu-Ju Zhao

    2014-01-01

    Full Text Available Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region-socs2 (-SH2-containing signals/receptor tyrosine kinases-ppp2r2a/pik3c3 (MAPK signaling-hsd3b5/cav2 (metabolism/organization plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  14. Inducible cAMP early repressor acts as a negative regulator for kindling epileptogenesis and long-term fear memory.

    Science.gov (United States)

    Kojima, Nobuhiko; Borlikova, Gilyana; Sakamoto, Toshiro; Yamada, Kazuyuki; Ikeda, Toshio; Itohara, Shigeyoshi; Niki, Hiroaki; Endo, Shogo

    2008-06-18

    Long-lasting neuronal plasticity as well as long-term memory (LTM) requires de novo synthesis of proteins through dynamic regulation of gene expression. cAMP-responsive element (CRE)-mediated gene transcription occurs in an activity-dependent manner and plays a pivotal role in neuronal plasticity and LTM in a variety of species. To study the physiological role of inducible cAMP early repressor (ICER), a CRE-mediated gene transcription repressor, in neuronal plasticity and LTM, we generated two types of ICER mutant mice: ICER-overexpressing (OE) mice and ICER-specific knock-out (KO) mice. Both ICER-OE and ICER-KO mice show no apparent abnormalities in their development and reproduction. A comprehensive battery of behavioral tests revealed no robust changes in locomotor activity, sensory and motor functions, and emotional responses in the mutant mice. However, long-term conditioned fear memory was attenuated in ICER-OE mice and enhanced in ICER-KO mice without concurrent changes in short-term fear memory. Furthermore, ICER-OE mice exhibited retardation of kindling development, whereas ICER-KO mice exhibited acceleration of kindling. These results strongly suggest that ICER negatively regulates the neuronal processes required for long-term fear memory and neuronal plasticity underlying kindling epileptogenesis, possibly through suppression of CRE-mediated gene transcription.

  15. Predictors of Behavioral Regulation in Kindergarten: Household Chaos, Parenting, and Early Executive Functions

    Science.gov (United States)

    Vernon-Feagans, Lynne; Garrett-Peters, Patricia; Willoughby, Michael

    2016-01-01

    Behavioral regulation is an important school readiness skill that has been linked to early executive function (EF) and later success in learning and school achievement. Although poverty and related risks, as well as negative parenting, have been associated with poorer EF and behavioral regulation, chaotic home environments may also play a role in…

  16. Regulation of Adult Neurogenesis and Plasticity by (Early) Stress, Glucocorticoids, and Inflammation

    NARCIS (Netherlands)

    Lucassen, P.J.; Oomen, C.A.; Naninck, E.F.G.; Fitzsimons, C.P.; van Dam, A.M.; Czeh, B.; Korosi, A.

    2015-01-01

    Exposure to stress is one of the best-known negative regulators of adult neurogenesis (AN). We discuss changes in neurogenesis in relation to exposure to stress, glucocorticoid hormones, and inflammation, with a particular focus on early development and on lasting effects of stress. Although the

  17. Early-Occurring Maternal Depression and Maternal Negativity in Predicting Young Children's Emotion Regulation and Socioemotional Difficulties

    Science.gov (United States)

    Maughan, Angeline; Cicchetti, Dante; Toth, Sheree L.; Rogosch, Fred A.

    2007-01-01

    This longitudinal investigation examined the effects of maternal depression and concomitant negative parenting behaviors on children's emotion regulation patterns and socioemotional functioning. One hundred fifty-one mothers and their children were assessed when children were approximately 1 1/2-, 3-, 4-, and 5-years of age. Ninety-three of the…

  18. Linking Self-Regulation and Risk Proneness to Risky Sexual Behavior: Pathways through Peer Pressure and Early Substance Use

    Science.gov (United States)

    Crockett, Lisa J.; Raffaelli, Marcela; Shen, Yuh-Ling

    2006-01-01

    The linkages between self-regulation in childhood, risk proneness in early adolescence, and risky sexual behavior in mid-adolescence were examined in a cohort of children (N=518) from the National Longitudinal Survey of Youth. The possible mediating role of two early adolescent variables (substance use and negative peer pressure) was also…

  19. Social anxiety and negative early life events in university students.

    Science.gov (United States)

    Binelli, Cynthia; Ortiz, Ana; Muñiz, Armando; Gelabert, Estel; Ferraz, Liliana; S Filho, Alaor; Crippa, José Alexandre S; Nardi, Antonio E; Subirà, Susana; Martín-Santos, Rocío

    2012-06-01

    There is substantial evidence regarding the impact of negative life events during childhood on the aetiology of psychiatric disorders. We examined the association between negative early life events and social anxiety in a sample of 571 Spanish University students. In a cross-sectional survey conducted in 2007, we collected data through a semistructured questionnaire of sociodemographic variables, personal and family psychiatric history, and substance abuse. We assessed the five early negative life events: (i) the loss of someone close, (ii) emotional abuse, (iii) physical abuse, (iv) family violence, and (v) sexual abuse. All participants completed the Liebowitz Social Anxiety Scale. Mean (SD) age was 21 (4.5), 75% female, LSAS score was 40 (DP = 22), 14.2% had a psychiatric family history and 50.6% had negative life events during childhood. Linear regression analyses, after controlling for age, gender, and family psychiatric history, showed a positive association between family violence and social score (p = 0.03). None of the remaining stressors produced a significant increase in LSAS score (p > 0.05). University students with high levels of social anxiety presented higher prevalence of negative early life events. Thus, childhood family violence could be a risk factor for social anxiety in such a population.

  20. The temporal deployment of emotion regulation strategies during negative emotional episodes.

    Science.gov (United States)

    Kalokerinos, Elise K; Résibois, Maxime; Verduyn, Philippe; Kuppens, Peter

    2017-04-01

    Time is given a central place in theoretical models of emotion regulation (Gross, 1998, 2015), but key questions regarding the role of time remain unanswered. We investigated 2 such unanswered questions. First, we explored when different emotion regulation strategies were used within the course of an emotional episode in daily life. Second, we investigated the association between the temporal deployment of strategies and negative emotional experience. We conducted a daily diary study in which participants (N = 74) drew an intensity profile depicting the temporal unfolding of their negative emotional experience across daily events (N = 480), and mapped their usage of emotion regulation strategies onto this intensity profile. Strategies varied in their temporal deployment, with suppression and rumination occurring more at the beginning of the episode, and reappraisal and distraction occurring more toward the end of the episode. Strategies also varied in their association with negative emotion: rumination was positively associated with negative emotion, and reappraisal and distraction were negatively associated with negative emotion. Finally, both rumination and reappraisal interacted with time to predict negative emotional experience. Rumination was more strongly positively associated with negative emotions at the end of the episode than the beginning, but reappraisal was more strongly negatively associated with negative emotion at the beginning of the episode than the end. These findings highlight the importance of accounting for timing in the study of emotion regulation, as well as the necessity of studying these temporal processes in daily life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. The Development of Self-Regulation across Early Childhood

    Science.gov (United States)

    Montroy, Janelle J.; Bowles, Ryan P.; Skibbe, Lori E.; McClelland, Megan M.; Morrison, Frederick J.

    2016-01-01

    The development of early childhood self-regulation is often considered an early life marker for later life successes. Yet little longitudinal research has evaluated whether there are different trajectories of self-regulation development across children. This study investigates the development of behavioral self-regulation between the ages of 3 and…

  2. DMPD: Negative regulation of cytoplasmic RNA-mediated antiviral signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18703349 Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Komur...Show Negative regulation of cytoplasmic RNA-mediated antiviral signaling. PubmedID 18703349 Title Negative r...egulation of cytoplasmic RNA-mediated antiviral signaling. Authors Komuro A, Bamm

  3. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.

    Science.gov (United States)

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-12-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis. © 2014 Wiley Periodicals, Inc.

  4. Expectancies for Social Support and Negative Mood Regulation Mediate the Relationship between Childhood Maltreatment and Self-Injury

    Directory of Open Access Journals (Sweden)

    Fiona Tresno

    2016-07-01

    Full Text Available Nonsuicidal self-injury (NSSI is common among young people. A majority of individuals who injure themselves do so to alleviate negative affect, as most self-injurers report difficulties with mood regulation. Trauma in childhood is an important risk factor that may cause individuals to develop poor interpersonal relations and impaired emotion-regulation, leading to the use of non-adaptive coping strategies such as NSSI. This study examined factors contributing to self-injury, focusing on the link from childhood maltreatment, through mood regulation expectancies and expectancies for social support (father, mother, and friends, to self-injury. Understanding how these variables relate to NSSI is crucial for early identification of individuals at risk of NSSI. Participants were 377 Japanese university students. Lifetime prevalence of self-injury was 20% among the sample. Results showed childhood maltreatment is a strong predictor that increases the risk for NSSI. However, expectancies for social support and mood regulation seem to be potential protective factors. Mood regulation expectancies mediate the relationship between childhood maltreatment and self-injury. In addition, expectancies for social support were indirectly linked with NSSI through negative mood regulation expectancies. It appears that perceived support from father and friends increases one's confidence in regulating difficult emotions, which in turn reduces risk for NSSI. Results suggest that strong expectancies for social support, especially from friends, increase one's confidence in regulating emotion, which contributes as a protective factor against self-injury.

  5. The power of extraverts: testing positive and negative mood regulation

    Directory of Open Access Journals (Sweden)

    Gonzalo Hervas

    Full Text Available Extraversion is a personality trait which has been systematically related to positive affect and well-being. One of the mechanisms that may account for these positive outcomes is the ability to regulate the responses to positive, as well as negative, moods. Prior research has found that extraverts' higher positive mood maintenance could explain their higher levels of positive affect. However, research exploring differences between extraverts and introverts in negative mood regulation has yielded mixed results. The aim of the current study was explore the role of different facets of mood regulation displayed by extraverts, ambiverts, and introverts. After been exposed to a sad vs. happy mood induction, participants underwent a mood regulation task. Extraverts and ambiverts exhibited higher positive mood regulation than introverts, but similar mood repair. Thus, this research highlights the importance of positive mood regulation in the psychological functioning of extraverts, and opens new conceptualizations for developing interventions for introverts to improve their positive mood regulation and, hence, overall positive affect and well-being.

  6. Sustained Expression of Negative Regulators of Myelination Protects Schwann Cells from Dysmyelination in a Charcot-Marie-Tooth 1B Mouse Model.

    Science.gov (United States)

    Florio, Francesca; Ferri, Cinzia; Scapin, Cristina; Feltri, M Laura; Wrabetz, Lawrence; D'Antonio, Maurizio

    2018-05-02

    Schwann cell differentiation and myelination in the PNS are the result of fine-tuning of positive and negative transcriptional regulators. As myelination starts, negative regulators are downregulated, whereas positive ones are upregulated. Fully differentiated Schwann cells maintain an extraordinary plasticity and can transdifferentiate into "repair" Schwann cells after nerve injury. Reactivation of negative regulators of myelination is essential to generate repair Schwann cells. Negative regulators have also been implicated in demyelinating neuropathies, although their role in disease remains elusive. Here, we used a mouse model of Charcot-Marie-Tooth neuropathy type 1B (CMT1B), the P0S63del mouse characterized by ER stress and the activation of the unfolded protein response, to show that adult Schwann cells are in a partial differentiation state because they overexpress transcription factors that are normally expressed only before myelination. We provide evidence that two of these factors, Sox2 and Id2, act as negative regulators of myelination in vivo However, their sustained expression in neuropathy is protective because ablation of Sox2 or/and Id2 from S63del mice of both sexes results in worsening of the dysmyelinating phenotype. This is accompanied by increased levels of mutant P0 expression and exacerbation of ER stress, suggesting that limited differentiation may represent a novel adaptive mechanism through which Schwann cells counter the toxic effect of a mutant terminal differentiation protein. SIGNIFICANCE STATEMENT In many neuropathies, Schwann cells express high levels of early differentiation genes, but the significance of these altered expression remained unclear. Because many of these factors may act as negative regulators of myelination, it was suggested that their misexpression could contribute to dysmyelination. Here, we show that the transcription factors Sox2 and Id2 act as negative regulators of myelination in vivo , but that their sustained

  7. Difficulties in emotion regulation mediate negative and positive affects and craving in alcoholic patients.

    Science.gov (United States)

    Khosravani, Vahid; Sharifi Bastan, Farangis; Ghorbani, Fatemeh; Kamali, Zoleikha

    2017-08-01

    The aim of this study was to assess the mediating effects of difficulties in emotion regulation (DER) on the relations of negative and positive affects to craving in alcoholic patients. 205 treatment-seeking alcoholic outpatients were included. DER, positive and negative affects as well as craving were evaluated by the Difficulties in Emotion Regulation Scale (DERS), the Positive/Negative Affect Scales, and the Obsessive Compulsive Drinking Scale (OCDS) respectively. Clinical factors including depression and severity of alcohol dependence were investigated by the Alcohol Use Disorders Identification Test (AUDIT) and the Beck Depression Inventory-II (BDI-II) respectively. Results revealed that both increased negative affect and decreased positive affect indirectly influenced craving through limited access to emotion regulation strategies. It was concluded that limited access to emotion regulation strategies may be important in predicting craving for alcoholics who experience both increased negative affect and decreased positive affect. This suggests that treatment and prevention efforts focused on increasing positive affect, decreasing negative affect and teaching effective regulation strategies may be critical in reducing craving in alcoholic patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Leukocyte-associated immunoglobulin-like receptor-1 is expressed on human megakaryocytes and negatively regulates the maturation of primary megakaryocytic progenitors and cell line

    International Nuclear Information System (INIS)

    Xue, Jiangnan; Zhang, Xiaoshu; Zhao, Haiya; Fu, Qiang; Cao, Yanning; Wang, Yuesi; Feng, Xiaoying; Fu, Aili

    2011-01-01

    Research highlights: → LAIR-1 is expressed on human megakaryocytes from an early stage. → Up-regulation of LAIR-1 negatively regulates megakaryocytic differentiation of cell line. → LAIR-1 negatively regulates the differentiation of primary megakaryocytic progenitors. -- Abstract: Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is an inhibitory collagen receptor which belongs to the immunoglobulin (Ig) superfamily. Although the inhibitory function of LAIR-1 has been extensively described in multiple leukocytes, its role in megakaryocyte (MK) has not been explored so far. Here, we show that LAIR-1 is expressed on human bone marrow CD34 + CD41a + and CD41a + CD42b + cells. LAIR-1 is also detectable in a fraction of human cord blood CD34 + cell-derived MK that has morphological characteristics of immature MK. In megakaryoblastic cell line Dami, the membrane protein expression of LAIR-1 is up-regulated significantly when cells are treated with phorbol ester phorbol 12-myristate 13-acetate (PMA). Furthermore, cross-linking of LAIR-1 in Dami cells with its natural ligand or anti-LAIR-1 antibody leads to the inhibition of cell proliferation and PMA-promoted differentiation when examined by the MK lineage-specific markers (CD41a and CD42b) and polyploidization. In addition, we also observed that cross-linking of LAIR-1 results in decreased MK generation from primary human CD34 + cells cultured in a cytokines cocktail that contains TPO. These results suggest that LAIR-1 is a likely candidate for an early marker of MK differentiation, and provide initial evidence indicating that LAIR-1 serves as a negative regulator of megakaryocytopoiesis.

  9. Children's Negative Emotionality Combined with Poor Self-Regulation Affects Allostatic Load in Adolescence

    Science.gov (United States)

    Dich, Nadya; Doan, Stacey; Evans, Gary

    2015-01-01

    The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…

  10. Emotional and attentional predictors of self-regulation in early childhood

    Directory of Open Access Journals (Sweden)

    Stępień-Nycz Małgorzata

    2015-09-01

    Full Text Available The development of self-regulation in early childhood is related to development of emotional regulation and attention, in particular executive attention (Feldman, 2009; Posner & Rothbart, 1998. As the ability to self-regulate is crucial in life (Casey et al., 2011, it is important to reveal early predictors of self-regulation. The aim of the paper is to present the results of longitudinal studies on the relationships between the functioning of attention, regulation of emotion and later self-regulatory abilities. 310 children were assessed at three time points. At 12 months of age emotional regulation in situation of frustration and attention regulation were assessed. At 18 and 24 months behavioral-emotional regulation in the Snack Delay Task was measured. Additionally parents assessed executive attention using The Early Childhood Behavior Questionnaire when children were 26 months old. Structural equation modelling revealed two different paths to development of self-regulatory abilities at 18 months: emotional (reactive system and emotionalattentional and only one emotional-attentional path at 24 months. The early ability to focus attention and later executive attention functioning revealed to be important predictors of self-regulatory abilities both at 18 and 24 months of age.

  11. DMPD: The negative regulation of Toll-like receptor and associated pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17621314 The negative regulation of Toll-like receptor and associated pathways. Lan...) Show The negative regulation of Toll-like receptor and associated pathways. PubmedID 17621314 Title The ne...gative regulation of Toll-like receptor and associated pathways. Authors Lang T,

  12. Early Puberty, Negative Peer Influence, and Problem Behaviors in Adolescent Girls

    Science.gov (United States)

    Elliott, Marc N.; Davies, Susan; Tortolero, Susan R.; Cuccaro, Paula; Schuster, Mark A.

    2014-01-01

    OBJECTIVE: To determine how early puberty and peer deviance relate to trajectories of aggressive and delinquent behavior in early adolescence and whether these relationships differ by race/ethnicity. METHODS: In this longitudinal study, 2607 girls from 3 metropolitan areas and their parents were interviewed at ages 11, 13, and 16 years. Girls reported on their age of onset of menarche, best friend’s deviant behavior, delinquency, and physical, relational, and nonphysical aggression. Parents provided information on family sociodemographic characteristics and girls’ race/ethnicity. RESULTS: Sixteen percent of girls were classified as early maturers (defined by onset of menarche before age 11 years). Overall, relational and nonphysical aggression increased from age 11 to age 16, whereas delinquency and physical aggression remained stable. Early puberty was associated with elevated delinquency and physical aggression at age 11. The relationship with early puberty diminished over time for physical aggression but not for delinquency. Best friend’s deviant behavior was linked with higher levels of all problem behaviors, but the effect lessened over time for most outcomes. Early puberty was associated with a stronger link between best friend’s deviance and delinquency, suggesting increased vulnerability to negative peer influences among early-maturing girls. A similar vulnerability was observed for relational and nonphysical aggression among girls in the “other” racial/ethnic minority group only. CONCLUSIONS: Early puberty and friends’ deviance may increase the risk of problem behavior in young adolescent girls. Although many of these associations dissipate over time, early-maturing girls are at risk of persistently higher delinquency and stronger negative peer influences. PMID:24324002

  13. Early puberty, negative peer influence, and problem behaviors in adolescent girls.

    Science.gov (United States)

    Mrug, Sylvie; Elliott, Marc N; Davies, Susan; Tortolero, Susan R; Cuccaro, Paula; Schuster, Mark A

    2014-01-01

    To determine how early puberty and peer deviance relate to trajectories of aggressive and delinquent behavior in early adolescence and whether these relationships differ by race/ethnicity. In this longitudinal study, 2607 girls from 3 metropolitan areas and their parents were interviewed at ages 11, 13, and 16 years. Girls reported on their age of onset of menarche, best friend's deviant behavior, delinquency, and physical, relational, and nonphysical aggression. Parents provided information on family sociodemographic characteristics and girls' race/ethnicity. Sixteen percent of girls were classified as early maturers (defined by onset of menarche before age 11 years). Overall, relational and nonphysical aggression increased from age 11 to age 16, whereas delinquency and physical aggression remained stable. Early puberty was associated with elevated delinquency and physical aggression at age 11. The relationship with early puberty diminished over time for physical aggression but not for delinquency. Best friend's deviant behavior was linked with higher levels of all problem behaviors, but the effect lessened over time for most outcomes. Early puberty was associated with a stronger link between best friend's deviance and delinquency, suggesting increased vulnerability to negative peer influences among early-maturing girls. A similar vulnerability was observed for relational and nonphysical aggression among girls in the "other" racial/ethnic minority group only. Early puberty and friends' deviance may increase the risk of problem behavior in young adolescent girls. Although many of these associations dissipate over time, early-maturing girls are at risk of persistently higher delinquency and stronger negative peer influences.

  14. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators.

    Science.gov (United States)

    Le Mercier, Isabelle; Lines, J Louise; Noelle, Randolph J

    2015-01-01

    In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.

  15. Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators.

    Directory of Open Access Journals (Sweden)

    Isabelle eLe Mercier

    2015-08-01

    Full Text Available In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.

  16. Regulation of positive and negative emotion: Effects of sociocultural context

    Directory of Open Access Journals (Sweden)

    Sara A. Snyder

    2013-07-01

    Full Text Available Previous research has demonstrated that the use of emotion regulation strategies can vary by sociocultural context. In a previous study, we reported changes in the use of two different emotion regulation strategies at an annual alternative cultural event, Burning Man (McRae, Heller, John, & Gross, 2011. In this sociocultural context, as compared to home, participants reported less use of expressive suppression (a strategy generally associated with maladaptive outcomes, and greater use of cognitive reappraisal (a strategy associated with adaptive outcomes. What remained unclear was whether these changes in self-reported emotion regulation strategy use were characterized by changes in the regulation of positive emotion, negative emotion, or both. We addressed this issue in the current study by asking Burning Man participants separate questions about positive and negative emotion. Using multiple datasets, we not only replicated our previous findings, but also found that the decreased use of suppression is primarily driven by reports of decreased suppression of positive emotion at Burning Man. By contrast, the reported increased use of reappraisal is not characterized by differential reappraisal of positive and negative emotion at Burning Man. Moreover, we observed novel individual differences in the magnitude of these effects. The contextual changes in self-reported suppression that we report are strongest for men and younger participants. For those who had previously attended Burning Man, we observed lower levels of self-reported suppression in both sociocultural contexts: Burning Man and home. These findings have implications for understanding the ways in which certain sociocultural contexts may decrease suppression, and possibly minimize its associated maladaptive effects.

  17. N-wasp is essential for the negative regulation of B cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Chaohong Liu

    2013-11-01

    Full Text Available Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP, which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.

  18. NLRP12 negatively regulates proinflammatory cytokine production and host defense against Brucella abortus.

    Science.gov (United States)

    Silveira, Tatiana N; Gomes, Marco Túlio R; Oliveira, Luciana S; Campos, Priscila C; Machado, Gabriela G; Oliveira, Sergio C

    2017-01-01

    Brucella abortus is the causative agent of brucellosis, which causes abortion in domestic animals and undulant fever in humans. This bacterium infects and proliferates mainly in macrophages and dendritic cells, where it is recognized by pattern recognition receptors (PRRs) including Nod-like receptors (NLRs). Our group recently demonstrated the role of AIM2 and NLRP3 in Brucella recognition. Here, we investigated the participation of NLRP12 in innate immune response to B. abortus. We show that NLRP12 inhibits the early production of IL-12 by bone marrow-derived macrophages upon B. abortus infection. We also observed that NLRP12 suppresses in vitro NF-κB and MAPK signaling in response to Brucella. Moreover, we show that NLRP12 modulates caspase-1 activation and IL-1β secretion in B. abortus infected-macrophages. Furthermore, we show that mice lacking NLRP12 are more resistant in the early stages of B. abortus infection: NLRP12 -/- infected-mice have reduced bacterial burdens in the spleens and increased production of IFN-γ and IL-1β compared with wild-type controls. In addition, NLRP12 deficiency leads to reduction in granuloma number and size in mouse livers. Altogether, our findings suggest that NLRP12 plays an important role in negatively regulating the early inflammatory responses against B. abortus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. dRYBP contributes to the negative regulation of the Drosophila Imd pathway.

    Directory of Open Access Journals (Sweden)

    Ricardo Aparicio

    Full Text Available The Drosophila humoral innate immune response fights infection by producing antimicrobial peptides (AMPs through the microbe-specific activation of the Toll or the Imd signaling pathway. Upon systemic infection, the production of AMPs is both positively and negatively regulated to reach a balanced immune response required for survival. Here, we report the function of the dRYBP (drosophila Ring and YY1 Binding Protein protein, which contains a ubiquitin-binding domain, in the Imd pathway. We have found that dRYBP contributes to the negative regulation of AMP production: upon systemic infection with Gram-negative bacteria, Diptericin expression is up-regulated in the absence of dRYBP and down-regulated in the presence of high levels of dRYBP. Epistatic analyses using gain and loss of function alleles of imd, Relish, or skpA and dRYBP suggest that dRYBP functions upstream or together with SKPA, a member of the SCF-E3-ubiquitin ligase complex, to repress the Imd signaling cascade. We propose that the role of dRYBP in the regulation of the Imd signaling pathway is to function as a ubiquitin adaptor protein together with SKPA to promote SCF-dependent proteasomal degradation of Relish. Beyond the identification of dRYBP as a novel component of Imd pathway regulation, our results also suggest that the evolutionarily conserved RYBP protein may be involved in the human innate immune response.

  20. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    Cai, Ronghao; Dai, Wei; Zhang, Congsheng; Wang, Yan; Wu, Min; Zhao, Yang; Ma, Qing; Xiang, Yan; Cheng, Beijiu

    2017-12-01

    We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.

  1. Temperament Alters Susceptibility to Negative Peer Influence in Early Adolescence

    Science.gov (United States)

    Mrug, Sylvie; Madan, Anjana; Windle, Michael

    2012-01-01

    The role of deviant peers in adolescent antisocial behavior has been well documented, but less is known about individual differences in susceptibility to negative peer influence. This study examined whether specific temperament dimensions moderate the prospective relationship between peer deviance and delinquent behavior in early adolescence.…

  2. RAGE, receptor of advanced glycation endoproducts, negatively regulates chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Tatsuya Kosaka

    Full Text Available RAGE, receptor for advanced glycation endoproducts (AGE, has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms.

  3. Financial Incentives Differentially Regulate Neural Processing of Positive and Negative Emotions during Value-Based Decision-Making

    Directory of Open Access Journals (Sweden)

    Anne M. Farrell

    2018-02-01

    Full Text Available Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI study, we evaluated how fixed wage (FW incentives and performance-based (PB financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events.

  4. Financial Incentives Differentially Regulate Neural Processing of Positive and Negative Emotions during Value-Based Decision-Making.

    Science.gov (United States)

    Farrell, Anne M; Goh, Joshua O S; White, Brian J

    2018-01-01

    Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI) study, we evaluated how fixed wage (FW) incentives and performance-based (PB) financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events.

  5. Metacognitive emotion regulation: children's awareness that changing thoughts and goals can alleviate negative emotions.

    Science.gov (United States)

    Davis, Elizabeth L; Levine, Linda J; Lench, Heather C; Quas, Jodi A

    2010-08-01

    Metacognitive emotion regulation strategies involve deliberately changing thoughts or goals to alleviate negative emotions. Adults commonly engage in this type of emotion regulation, but little is known about the developmental roots of this ability. Two studies were designed to assess whether 5- and 6-year-old children can generate such strategies and, if so, the types of metacognitive strategies they use. In Study 1, children described how story protagonists could alleviate negative emotions. In Study 2, children recalled times that they personally had felt sad, angry, and scared and described how they had regulated their emotions. In contrast to research suggesting that young children cannot use metacognitive regulation strategies, the majority of children in both studies described such strategies. Children were surprisingly sophisticated in their suggestions for how to cope with negative emotions and tailored their regulatory responses to specific emotional situations. Copyright 2010 APA

  6. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease.

    Science.gov (United States)

    Takaya, Akiko; Tabuchi, Fumiaki; Tsuchiya, Hiroko; Isogai, Emiko; Yamamoto, Tomoko

    2008-06-01

    Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS systems, LasR/LasI and RhlR/RhlI. Many reports have demonstrated that these two systems are regulated and interconnected by global regulators. We found that lon-disrupted cells overproduce pyocyanin, the biosynthesis of which depends on the RhlR/RhlI system, and show increased levels of a transcriptional regulator, RhlR. The QS systems are organized hierarchically: the RhlR/RhlI system is subordinate to LasR/LasI. To elucidate the mechanism by which Lon negatively regulates RhlR/RhlI, we examined the effect of lon disruption on the LasR/LasI system. We found that Lon represses the expression of LasR/LasI by degrading LasI, an HSL synthase, leading to negative regulation of the RhlR/RhlI system. RhlR/RhlI was also shown to be regulated by Lon independently of LasR/LasI via regulation of RhlI, an HSL synthase. In view of these findings, it is suggested that Lon protease is a powerful negative regulator of both HSL-mediated QS systems in P. aeruginosa.

  7. On the Early Left-Anterior Negativity (ELAN) in Syntax Studies

    Science.gov (United States)

    Steinhauer, Karsten; Drury, John E.

    2012-01-01

    Within the framework of Friederici's (2002) neurocognitive model of sentence processing, the early left anterior negativity (ELAN) in event-related potentials (ERPs) has been claimed to be a brain marker of syntactic first-pass parsing. As ELAN components seem to be exclusively elicited by word category violations (phrase structure violations),…

  8. Processing and regulation of negative emotions in anorexia nervosa: An fMRI study

    Directory of Open Access Journals (Sweden)

    Maria Seidel

    Full Text Available Theoretical models and recent advances in the treatment of anorexia nervosa (AN have increasingly focused on the role of alterations in the processing and regulation of emotions. To date, however, our understanding of these changes is still limited and reports of emotional dysregulation in AN have been based largely on self-report data, and there is a relative lack of objective experimental evidence or neurobiological data.The current functional magnetic resonance imaging (fMRI study investigated the hemodynamic correlates of passive viewing and voluntary downregulation of negative emotions by means of the reappraisal strategy detachment in AN patients. Detachment is regarded as adaptive regulation strategy associated with a reduction in emotion-related amygdala activity and increased recruitment of prefrontal brain regions associated with cognitive control processes. Emotion regulation efficacy was assessed via behavioral arousal ratings and fMRI activation elicited by an established experimental paradigm including negative images. Participants were instructed to either simply view emotional pictures or detach themselves from feelings triggered by the stimuli.The sample consisted of 36 predominantly adolescent female AN patients and a pairwise age-matched healthy control group. Behavioral and neuroimaging data analyses indicated a reduction of arousal and amygdala activity during the regulation condition for both patients and controls. However, compared with controls, individuals with AN showed increased activation in the amygdala as well as in the right dorsolateral prefrontal cortex (dlPFC during the passive viewing of aversive compared with neutral pictures.These results extend previous findings indicative of altered processing of salient emotional stimuli in AN, but do not point to a general deficit in the voluntary regulation of negative emotions. Increased dlPFC activation in AN during passive viewing of negative stimuli is in line with

  9. Parental reactions to children's negative emotions: relationships with emotion regulation in children with an anxiety disorder.

    Science.gov (United States)

    Hurrell, Katherine E; Hudson, Jennifer L; Schniering, Carolyn A

    2015-01-01

    Research has demonstrated that parental reactions to children's emotions play a significant role in the development of children's emotion regulation (ER) and adjustment. This study compared parent reactions to children's negative emotions between families of anxious and non-anxious children (aged 7-12) and examined associations between parent reactions and children's ER. Results indicated that children diagnosed with an anxiety disorder had significantly greater difficulty regulating a range of negative emotions and were regarded as more emotionally negative and labile by their parents. Results also suggested that mothers of anxious children espoused less supportive parental emotional styles when responding to their children's negative emotions. Supportive and non-supportive parenting reactions to children's negative emotions related to children's emotion regulation skills, with father's non-supportive parenting showing a unique relationship to children's negativity/lability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. MicroRNA-4639 Is a Regulator of DJ-1 Expression and a Potential Early Diagnostic Marker for Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Yimeng Chen

    2017-07-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disorder and has profound impacts on the daily lives of patients. However, there is a lack of effective biomarkers for early diagnosis, and the mechanisms of PD pathogenesis remain obscure. microRNAs (miRNAs are post-transcriptional gene regulators and can be easily detected in plasma, which suggests a promising role as diagnostic markers. Here, we aimed to explore a peripheral biomarker, which not only can be applied for early diagnosis of PD but also has the potential to be a therapeutic target. Through miRNA microarray screening and further validation in plasma from 169 sporadic PD patients, 170 healthy controls, and 60 essential tremor (ET patients, hsa-miR-4639-5p level was identified to be significantly up-regulated in PD patients. Also, it was able to discriminate between early PD patients (disease duration ≤2 years or Hoehn and Yahr stage 1–2.5 and healthy controls. Furthermore, hsa-miR-4639-5p was shown to negatively regulate DJ-1 (PARK7, a well-known PD-related gene, in the post-transcriptional level. Abnormal up-regulation of hsa-miR-4639-5p caused down-regulation of DJ-1 protein level, leading to severe oxidative stress and neuronal death. In conclusion, hsa-miR-4639-5p has the potential to be a peripheral diagnostic biomarker and therapeutic target for early PD.

  11. Early attentional bias for negative words when competition is induced.

    Science.gov (United States)

    Ho, Ming-Chou; Li, Shuo-Heng; Yeh, Su-Ling

    2016-05-01

    Previous research (Zeelenberg, Wagenmakers, & Rotteveel, 2006) revealed that emotionally meaningful words were identified significantly better than neutral words, with no difference between positive and negative words. Since in that study only a single target word was displayed at a time, we hypothesized that the equivalent performances for positive and negative words were due to a lack of competition. To test this, in our Experiment 1, we replicated Zeelenberg and colleagues' finding, using emotion-laden Chinese words and the identical data-limited method, which measured the accuracy of a briefly shown target. We then introduced competition in Experiment 2 by simultaneously presenting two words during the target frame, and found evidence for an early attentional bias to negative words. In Experiment 3, we confirmed that the bias in Experiment 2 was not due to the inevitable repetition of stimuli. Taken together, these results support our hypothesis that, in the presence of competition, negative words receive attentional priority and consequently have enhanced perceptual representations.

  12. Regulation of bone morphogenetic proteins in early embryonic development

    Science.gov (United States)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  13. Early prostate cancer antigen expression in predicting presence of prostate cancer in men with histologically negative biopsies.

    Science.gov (United States)

    Hansel, D E; DeMarzo, A M; Platz, E A; Jadallah, S; Hicks, J; Epstein, J I; Partin, A W; Netto, G J

    2007-05-01

    Early prostate cancer antigen is a nuclear matrix protein that was recently shown to be expressed in prostate adenocarcinoma and adjacent benign tissue. Previous studies have demonstrated early prostate cancer antigen expression in benign prostate tissue up to 5 years before a diagnosis of prostate carcinoma, suggesting that early prostate cancer antigen could be used as a potential predictive marker. We evaluated early prostate cancer antigen expression by immunohistochemistry using a polyclonal antibody (Onconome Inc., Seattle, Washington) on benign biopsies from 98 patients. Biopsies were obtained from 4 groups that included 39 patients with first time negative biopsy (group 1), 24 patients with persistently negative biopsies (group 2), 8 patients with initially negative biopsies who were subsequently diagnosed with prostate carcinoma (group 3) and negative biopsies obtained from 27 cases where other concurrent biopsies contained prostate carcinoma (group 4). Early prostate cancer antigen staining was assessed by 2 of the authors who were blind to the group of the examined sections. Staining intensity (range 0 to 3) and extent (range 1 to 3) scores were assigned. The presence of intensity 3 staining in any of the blocks of a biopsy specimen was considered as positive for early prostate cancer antigen for the primary outcome in the statistical analysis. In addition, as secondary outcomes we evaluated the data using the proportion of blocks with intensity 3 early prostate cancer antigen staining, the mean of the product of staining intensity and staining extent of all blocks within a biopsy, and the mean of the product of intensity 3 staining and extent. Primary outcome analysis revealed the proportion of early prostate cancer antigen positivity to be highest in group 3 (6 of 8, 75%) and lowest in group 2 (7 of 24, 29%, p=0.04 for differences among groups). A relatively higher than expected proportion of early prostate cancer antigen positivity was present in

  14. Facial expression primes and implicit regulation of negative emotion.

    Science.gov (United States)

    Yoon, HeungSik; Kim, Shin Ah; Kim, Sang Hee

    2015-06-17

    An individual's responses to emotional information are influenced not only by the emotional quality of the information, but also by the context in which the information is presented. We hypothesized that facial expressions of happiness and anger would serve as primes to modulate subjective and neural responses to subsequently presented negative information. To test this hypothesis, we conducted a functional MRI study in which the brains of healthy adults were scanned while they performed an emotion-rating task. During the task, participants viewed a series of negative and neutral photos, one at a time; each photo was presented after a picture showing a face expressing a happy, angry, or neutral emotion. Brain imaging results showed that compared with neutral primes, happy facial primes increased activation during negative emotion in the dorsal anterior cingulated cortex and the right ventrolateral prefrontal cortex, which are typically implicated in conflict detection and implicit emotion control, respectively. Conversely, relative to neutral primes, angry primes activated the right middle temporal gyrus and the left supramarginal gyrus during the experience of negative emotion. Activity in the amygdala in response to negative emotion was marginally reduced after exposure to happy primes compared with angry primes. Relative to neutral primes, angry facial primes increased the subjectively experienced intensity of negative emotion. The current study results suggest that prior exposure to facial expressions of emotions modulates the subsequent experience of negative emotion by implicitly activating the emotion-regulation system.

  15. Attachment's Links With Adolescents' Social Emotions: The Roles of Negative Emotionality and Emotion Regulation.

    Science.gov (United States)

    Murphy, Tia Panfile; Laible, Deborah J; Augustine, Mairin; Robeson, Lindsay

    2015-01-01

    Recent research has attempted to explain the mechanisms through which parental attachment affects social and emotional outcomes (e.g., Burnette, Taylor, Worthington, & Forsyth, 2007 ; Panfile & Laible, 2012 ). The authors' goal was to examine negative emotionality and emotion regulation as mediators of the associations that attachment has with empathy, forgiveness, guilt, and jealousy. One hundred forty-eight adolescents reported their parental attachment security, general levels of negative emotionality and abilities to regulate emotional responses, and tendencies to feel empathy, forgiveness, guilt, and jealousy. Results revealed that attachment security was associated with higher levels of empathy, forgiveness, and guilt, but lower levels of jealousy. In addition, emotion regulation mediated the links attachment shared with both empathy and guilt, such that higher levels of attachment security were linked with greater levels of emotion regulation, which led to greater levels of empathy and guilt. Alternatively, negative emotionality mediated the links attachment shared with both forgiveness and jealousy, such that higher levels of attachment security were associated with lower levels of negative emotionality, which in turn was linked to lower levels of forgiveness and higher levels of jealousy. This study provides a general picture of how attachment security may play a role in shaping an individual's levels of social emotions.

  16. Negative regulation of EGFR/MAPK pathway by Pumilio in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sung Yun Kim

    Full Text Available In Drosophila melanogaster, specification of wing vein cells and sensory organ precursor (SOP cells, which later give rise to a bristle, requires EGFR signaling. Here, we show that Pumilio (Pum, an RNA-binding translational repressor, negatively regulates EGFR signaling in wing vein and bristle development. We observed that loss of Pum function yielded extra wing veins and additional bristles. Conversely, overexpression of Pum eliminated wing veins and bristles. Heterozygotes for Pum produced no phenotype on their own, but greatly enhanced phenotypes caused by the enhancement of EGFR signaling. Conversely, over-expression of Pum suppressed the effects of ectopic EGFR signaling. Components of the EGFR signaling pathway are encoded by mRNAs that have Nanos Response Element (NRE-like sequences in their 3'UTRs; NREs are known to bind Pum to confer regulation in other mRNAs. We show that these NRE-like sequences bind Pum and confer repression on a luciferase reporter in heterologous cells. Taken together, our evidence suggests that Pum functions as a negative regulator of EGFR signaling by directly targeting components of the pathway in Drosophila.

  17. Rescripting Early Memories Linked to Negative Images in Social Phobia: A Pilot Study

    Science.gov (United States)

    Wild, Jennifer; Hackmann, Ann; Clark, David M.

    2008-01-01

    Negative self-images are a maintaining factor in social phobia. A retrospective study (Hackmann, A., Clark, D.M., McManus, F. (2000). Recurrent images and early memories in social phobia. Behaviour Research and Therapy, 38, 601-610) suggested that the images may be linked to early memories of unpleasant social experiences. This preliminary study…

  18. Problem drinking among Flemish students: beverage type, early drinking onset and negative personal & social consequences.

    Science.gov (United States)

    De Bruyn, Sara; Wouters, Edwin; Ponnet, Koen; Van Damme, Joris; Maes, Lea; Van Hal, Guido

    2018-02-12

    Although alcohol is socially accepted in most Western societies, studies are clear about its associated negative consequences, especially among university and college students. Studies on the relationship between alcohol-related consequences and both beverage type and drinking onset, however, are scarce, especially in a European context. The aim of this research was, therefore, twofold: (1) What is the relationship between beverage type and the negative consequences experienced by students? and (2) Are these consequences determined by early drinking onset? We will examine these questions within the context of a wide range of alcohol-related consequences. The analyses are based on data collected by the inter-university project 'Head in the clouds?', measuring alcohol use among students in Flanders (Belgium). In total, a large dataset consisting of information from 19,253 anonymously participating students was available. Negative consequences were measured using a shortened version of the Core Alcohol and Drug Survey (CADS_D). Data were analysed using negative binomial regression. Results vary depending on the type of alcohol-related consequences: Personal negative consequences occur frequently among daily beer drinkers. However, a high rate of social negative consequences was recorded for both daily beer drinkers and daily spirits drinkers. Finally, early drinking onset was significantly associated with both personal and social negative consequences, and this association was especially strong between beer and spirits drinking onset and social negative consequences. Numerous negative consequences, both personal and social, are related to frequent beer and spirits drinking. Our findings indicate a close association between drinking beer and personal negative consequences as well as between drinking beer and/or spirits and social negative consequences. Similarly, early drinking onset has a major influence on the rates of both personal and social negative consequences

  19. The positive and negative consequences of stressors during early life.

    Science.gov (United States)

    Monaghan, Pat; Haussmann, Mark F

    2015-11-01

    We discuss the long-term effects of stress exposure in pre- and early postnal life. We present an evolutionary framework within which such effects can be viewed, and describe how the outcomes might vary with species life histories. We focus on stressors that induce increases in glucocorticoid hormones and discuss the advantages of an experimental approach. We describe a number of studies demonstrating how exposure to these hormones in early life can influence stress responsiveness and have substantial long-term, negative consequences for adult longevity. We also describe how early life exposure to mild levels of stressors can have beneficial effects on resilience to stress in later life, and discuss how the balance of costs and benefits is likely dependent on the nature of the adult environment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Sex differences and emotion regulation: an event-related potential study.

    Directory of Open Access Journals (Sweden)

    Elyse K T Gardener

    Full Text Available Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event-related potentials (ERPs to examine sex differences in N1 and N2 components (reflecting early emotional reactivity and P3 and LPP components (reflecting emotion regulation. N1, N2, P3, and LPP were recorded from 20 men and 23 women who were instructed to "increase," "decrease," and "maintain" their emotional response during passive viewing of negative images. Results indicated that women had significantly greater N1 and N2 amplitudes (reflecting early emotional reactivity to negative stimuli than men, supporting a female negativity bias. LPP amplitudes increased to the "increase" instruction, and women displayed greater LPP amplitudes than men to the "increase" instruction. There were no differences to the "decrease" instruction in women or men. These findings confirm predictions of the female negativity bias hypothesis and suggest that women have greater up-regulation of emotional responses to negative stimuli. This finding is highly significant in light of the female vulnerability for developing anxiety disorders.

  1. Sex differences and emotion regulation: an event-related potential study.

    Science.gov (United States)

    Gardener, Elyse K T; Carr, Andrea R; Macgregor, Amy; Felmingham, Kim L

    2013-01-01

    Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event-related potentials (ERPs) to examine sex differences in N1 and N2 components (reflecting early emotional reactivity) and P3 and LPP components (reflecting emotion regulation). N1, N2, P3, and LPP were recorded from 20 men and 23 women who were instructed to "increase," "decrease," and "maintain" their emotional response during passive viewing of negative images. Results indicated that women had significantly greater N1 and N2 amplitudes (reflecting early emotional reactivity) to negative stimuli than men, supporting a female negativity bias. LPP amplitudes increased to the "increase" instruction, and women displayed greater LPP amplitudes than men to the "increase" instruction. There were no differences to the "decrease" instruction in women or men. These findings confirm predictions of the female negativity bias hypothesis and suggest that women have greater up-regulation of emotional responses to negative stimuli. This finding is highly significant in light of the female vulnerability for developing anxiety disorders.

  2. A Lexical Framework for Semantic Annotation of Positive and Negative Regulation Relations in Biomedical Pathways

    DEFF Research Database (Denmark)

    Zambach, Sine; Lassen, Tine

    presented here, we analyze 6 frequently used verbs denoting the regulation relations regulates, positively regulates and negatively regulates through corpus analysis, and propose a formal representation of the acquired knowledge as domain speci¯c semantic frames. The acquired knowledge patterns can thus...

  3. Automatic control of negative emotions: evidence that structured practice increases the efficiency of emotion regulation.

    Science.gov (United States)

    Christou-Champi, Spyros; Farrow, Tom F D; Webb, Thomas L

    2015-01-01

    Emotion regulation (ER) is vital to everyday functioning. However, the effortful nature of many forms of ER may lead to regulation being inefficient and potentially ineffective. The present research examined whether structured practice could increase the efficiency of ER. During three training sessions, comprising a total of 150 training trials, participants were presented with negatively valenced images and asked either to "attend" (control condition) or "reappraise" (ER condition). A further group of participants did not participate in training but only completed follow-up measures. Practice increased the efficiency of ER as indexed by decreased time required to regulate emotions and increased heart rate variability (HRV). Furthermore, participants in the ER condition spontaneously regulated their negative emotions two weeks later and reported being more habitual in their use of ER. These findings indicate that structured practice can facilitate the automatic control of negative emotions and that these effects persist beyond training.

  4. Physiological correlates of emotional reactivity and regulation in early adolescents.

    Science.gov (United States)

    Latham, Melissa D; Cook, Nina; Simmons, Julian G; Byrne, Michelle L; Kettle, Jonathan W L; Schwartz, Orli; Vijayakumar, Nandita; Whittle, Sarah; Allen, Nicholas B

    2017-07-01

    Few studies have examined physiological correlates of emotional reactivity and regulation in adolescents, despite the occurrence in this group of significant developmental changes in emotional functioning. The current study employed multiple physiological measures (i.e., startle-elicited eyeblink and ERP, skin conductance, facial EMG) to assess the emotional reactivity and regulation of 113 early adolescents in response to valenced images. Reactivity was measured while participants viewed images, and regulation was measured when they were asked to discontinue or maintain their emotional reactions to the images. Adolescent participants did not exhibit fear-potentiated startle blink. However, they did display affect-consistent zygomatic and corrugator activity during reactivity, as well as inhibition of some of these facial patterns during regulation. Skin conductance demonstrated arousal dependent activity during reactivity, and overall decreases during regulation. These findings suggest that early adolescents display reactivity to valenced pictures, but not to startle probes. Psychophysiological patterns during emotion regulation indicate additional effort and/or attention during the regulation process. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evolution of allosteric regulation in chorismate mutases from early plants

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Kourtney; Holland, Cynthia K.; Starks, Courtney M.; Jez, Joseph M.

    2017-09-28

    Plants, fungi, and bacteria synthesize the aromatic amino acids: l-phenylalanine, l-tyrosine, and l-tryptophan. Chorismate mutase catalyzes the branch point reaction of phenylalanine and tyrosine biosynthesis to generate prephenate. In Arabidopsis thaliana, there are two plastid-localized chorismate mutases that are allosterically regulated (AtCM1 and AtCM3) and one cytosolic isoform (AtCM2) that is unregulated. Previous analysis of plant chorismate mutases suggested that the enzymes from early plants (i.e. bryophytes/moss, lycophytes, and basal angiosperms) formed a clade distinct from the isoforms found in flowering plants; however, no biochemical information on these enzymes is available. To understand the evolution of allosteric regulation in plant chorismate mutases, we analyzed a basal lineage of plant enzymes homologous to AtCM1 based on sequence similarity. The chorismate mutases from the moss/bryophyte Physcomitrella patens (PpCM1 and PpCM2), the lycophyte Selaginella moellendorffii (SmCM), and the basal angiosperm Amborella trichopoda (AmtCM1 and AmtCM2) were characterized biochemically. Tryptophan was a positive effector for each of the five enzymes examined. Histidine was a weak positive effector for PpCM1 and AmtCM1. Neither tyrosine nor phenylalanine altered the activity of SmCM; however, tyrosine was a negative regulator of the other four enzymes. Phenylalanine down-regulates both moss enzymes and AmtCM2. The 2.0 Å X-ray crystal structure of PpCM1 in complex with the tryptophan identified the allosteric effector site and reveals structural differences between the R- (more active) and T-state (less active) forms of plant chorismate mutases. Molecular insight into the basal plant chorismate mutases guides our understanding of the evolution of allosteric regulation in these enzymes.

  6. Temperamental predictors of subjective well-being from early adolescence to mid-life: The role of temporal and energetic regulation.

    Science.gov (United States)

    Bojanowska, Agnieszka; Zalewska, Anna M

    2017-02-14

    We investigated links between temperament traits described in Strelau's Regulative Theory of Temperament (Emotional Reactivity, Briskness, Activity, Endurance, Perseveration and Sensory Sensitivity) and subjective well-being (SWB)-Positive Affect, Negative Affect and Life Satisfaction as conceptualised by Diener. Participants representing early (n = 166) and late adolescence (n = 199), early (n = 195) and mid-adulthood (n = 156) filled out Formal Characteristics of Behaviour-Temperament Inventory, Positive and Negative Affect Schedule and Satisfaction with Life Scale. Results showed that higher Briskness, Endurance, Activity, lower Perseveration and Emotional Reactivity corresponded with higher SWB. They predicted 16% of affective components' and 7% of satisfaction variance. Each well-being component had a unique set of predictors; however, predictors of affective components varied across age groups. Higher Positive Affect was predicted by traits responsible for energetic regulation (higher Endurance and Activity and lower Emotional Reactivity) and by higher Perseveration, but their role (excluding Emotional Reactivity) was age-dependent. Higher Negative Affect was predicted by higher Emotional Reactivity and dimensions expressing temporal characteristics, lower Briskness and higher Perseveration (Perseveration was not significant among younger adolescents). Higher Satisfaction was steadily predicted by lower Emotional Reactivity and higher Activity. To conclude, the functions of temperament traits are mostly in line with theoretical expectations, but more complex than indicated by previous research. © 2017 The Authors. International Journal of Psychology published by John Wiley & Sons Ltd on behalf of International Union of Psychological Science.

  7. Early Family Relationships Predict Children’s Emotion Regulation and Defense Mechanisms

    Directory of Open Access Journals (Sweden)

    Jallu Lindblom

    2016-12-01

    Full Text Available Early family relationships have been suggested to influence the development of children’s affect regulation, involving both emotion regulation and defense mechanisms. However, we lack research on the specific family predictors for these two forms of affect regulation, which have been conceptualized to differ in their functions and accessibility to consciousness. Accordingly, we examine how the (a quality and (b timing of family relationships during infancy predict child’s later emotion regulation and defense mechanisms. Parents (N = 703 reported autonomy and intimacy in marital and parenting relationships at the child’s ages of 2 and 12 months, and the child’s use of emotion regulation and immature and neurotic defenses at 7 to 8 years. As hypothesized, the results showed that functional early family relationships predicted children’s efficient emotion regulation, whereas dysfunctional relationships predicted reliance on defense mechanisms in middle childhood. Further, results showed a timing effect for neurotic defenses, partially confirming our hypothesis of early infancy being an especially important period for the development of defense mechanisms. The findings are discussed from the viewpoints of attachment and family dynamics, emotional self-awareness, and sense of security.

  8. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences

    KAUST Repository

    Frei dit Frey, Nicolas

    2014-06-30

    Background Mitogen-activated protein kinases (MAPKs) are key regulators of immune responses in animals and plants. In Arabidopsis, perception of microbe-associated molecular patterns (MAMPs) activates the MAPKs MPK3, MPK4 and MPK6. Increasing information depicts the molecular events activated by MAMPs in plants, but the specific and cooperative contributions of the MAPKs in these signalling events are largely unclear. Results In this work, we analyse the behaviour of MPK3, MPK4 and MPK6 mutants in early and late immune responses triggered by the MAMP flg22 from bacterial flagellin. A genome-wide transcriptome analysis reveals that 36% of the flg22-upregulated genes and 68% of the flg22-downregulated genes are affected in at least one MAPK mutant. So far MPK4 was considered as a negative regulator of immunity, whereas MPK3 and MPK6 were believed to play partially redundant positive functions in defence. Our work reveals that MPK4 is required for the regulation of approximately 50% of flg22-induced genes and we identify a negative role for MPK3 in regulating defence gene expression, flg22-induced salicylic acid accumulation and disease resistance to Pseudomonas syringae. Among the MAPK-dependent genes, 27% of flg22-upregulated genes and 76% of flg22-downregulated genes require two or three MAPKs for their regulation. The flg22-induced MAPK activities are differentially regulated in MPK3 and MPK6 mutants, both in amplitude and duration, revealing a highly interdependent network. Conclusions These data reveal a new set of distinct functions for MPK3, MPK4 and MPK6 and indicate that the plant immune signalling network is choreographed through the interplay of these three interwoven MAPK pathways.

  9. Regulation of Arabidopsis Early Anther Development by Putative Cell-Cell Signaling Molecules and Transcriptional Regulators

    Institute of Scientific and Technical Information of China (English)

    Yu-Jin Sun; Carey LH Hord; Chang-Bin Chen; Hong Ma

    2007-01-01

    Anther development in flowering plants involves the formation of several cell types, including the tapetal and pollen mother cells. The use of genetic and molecular tools has led to the identification and characterization of genes that are critical for normal cell division and differentiation in Arabidopsis early anther development. We review here several recent studies on these genes, including the demonstration that the putative receptor protein kinases BAM1 and BAM2 together play essential roles in the control of early cell division and differentiation. In addition, we discuss the hypothesis that BAM1/2 may form a positive-negative feedback regulatory loop with a previously identified key regulator, SPOROCYTELESS (also called NOZZLE),to control the balance between sporogenous and somatic cell types in the anther. Furthermore, we summarize the isolation and functional analysis of the DYSFUNCTIONAL TAPETUM1 (DYT1) gene in promoting proper tapetal cell differentiation. Our finding that DYT1 encodes a putative transcription factor of the bHLH family, as well as relevant expression analyses, strongly supports a model that DYT1 serves as a critical link between upstream factors and downstream target genes that are critical for normal tapetum development and function. These studies, together with other recently published works, indicate that cell-cell communication and transcriptional control are key processes essential for cell fate specification in anther development.

  10. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  11. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling.

    Science.gov (United States)

    Dai, Cheng; Xue, Hong-Wei

    2010-06-02

    The plant hormone gibberellin (GA) is crucial for multiple aspects of plant growth and development. To study the relevant regulatory mechanisms, we isolated a rice mutant earlier flowering1, el1, which is deficient in a casein kinase I that has critical roles in both plants and animals. el1 had an enhanced GA response, consistent with the suppression of EL1 expression by exogenous GA(3). Biochemical characterization showed that EL1 specifically phosphorylates the rice DELLA protein SLR1, proving a direct evidence for SLR1 phosphorylation. Overexpression of SLR1 in wild-type plants caused a severe dwarf phenotype, which was significantly suppressed by EL1 deficiency, indicating the negative effect of SLR1 on GA signalling requires the EL1 function. Further studies showed that the phosphorylation of SLR1 is important for maintaining its activity and stability, and mutation of the candidate phosphorylation site of SLR1 results in the altered GA signalling. This study shows EL1 a novel and key regulator of the GA response and provided important clues on casein kinase I activities in GA signalling and plant development.

  12. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    Science.gov (United States)

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  13. Mothers' responses to children's negative emotions and child emotion regulation: the moderating role of vagal suppression.

    Science.gov (United States)

    Perry, Nicole B; Calkins, Susan D; Nelson, Jackie A; Leerkes, Esther M; Marcovitch, Stuart

    2012-07-01

    The current study examined the moderating effect of children's cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and nonsupportive responses) and children's emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children's negative emotions and children's regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children's vagal suppression moderated the association between mothers' nonsupportive emotion socialization and children's emotion regulation behaviors such that nonsupportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children's emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against nonsupportive emotion socialization. Copyright © 2011 Wiley Periodicals, Inc.

  14. Instrumental motives in negative emotion regulation in daily life: Frequency, consistency, and predictors.

    Science.gov (United States)

    Kalokerinos, Elise K; Tamir, Maya; Kuppens, Peter

    2017-06-01

    People regulate their emotions not only for hedonic reasons but also for instrumental reasons, to attain the potential benefits of emotions beyond pleasure and pain. However, such instrumental motives have rarely been examined outside the laboratory as they naturally unfold in daily life. To assess whether and how instrumental motives operate outside the laboratory, it is necessary to examine them in response to real and personally relevant stimuli in ecologically valid contexts. In this research, we assessed the frequency, consistency, and predictors of instrumental motives in negative emotion regulation in daily life. Participants (N = 114) recalled the most negative event of their day each evening for 7 days and reported their instrumental motives and negative emotion goals in that event. Participants endorsed performance motives in approximately 1 in 3 events and social, eudaimonic, and epistemic motives in approximately 1 in 10 events. Instrumental motives had substantially higher within- than between-person variance, indicating that they were context-dependent. Indeed, although we found few associations between instrumental motives and personality traits, relationships between instrumental motives and contextual variables were more extensive. Performance, social, and epistemic motives were each predicted by a unique pattern of contextual appraisals. Our data demonstrate that instrumental motives play a role in daily negative emotion regulation as people encounter situations that pose unique regulatory demands. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. When less is more: Effects of the availability of strategic options on regulating negative emotions.

    Science.gov (United States)

    Bigman, Yochanan E; Sheppes, Gal; Tamir, Maya

    2017-09-01

    Research in several domains suggests that having strategic options is not always beneficial. In this paper, we tested whether having strategic options (vs. not) is helpful or harmful for regulating negative emotions. In 5 studies (N = 151) participants were presented with 1 or more strategic options prior to watching aversive images and using the selected strategic option. Across studies, we found that people reported less intense negative emotions when the strategy they used to regulate their emotions was presented as a single option, rather than as 1 of several options. This was regardless of whether people could choose between the options (Studies 3-5) or not (Studies 1, 2, and 4), and specific to negative (but not neutral) images (Study 5). A sixth study addressed an explanation based on demand characteristics, showing that participants expected to feel more positive when having more than 1 option. The findings indicate that having strategic options for regulating negative emotions can sometimes be costly. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Mutation analysis of the negative regulator cyclin G2 in gastric cancer

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... Key words: Cyclin G2, gastric cancer, negative regulator, mutation screen. INTRODUCTION ... cerebellum, thymus, spleen, prostate, kidney and the immune ..... and B cell antigen receptor-mediated cell cycle arrest. J. Biol.

  17. Modeling the role of negative cooperativity in metabolic regulation and homeostasis.

    Directory of Open Access Journals (Sweden)

    Eliot C Bush

    Full Text Available A significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain metabolic homeostasis. However, despite the fact that negative cooperativity is almost as common as positive, it has been harder to imagine what advantages it provides. Here we use computational models to explore the utility of negative cooperativity in one particular context: that of an inhibitor binding to an enzyme. We identify several factors which may contribute, and show that acting together they can make negative cooperativity advantageous.

  18. A Comparison of Autonomous Regulation and Negative Self-Evaluative Emotions as Predictors of Smoking Behavior Change among College Students

    Science.gov (United States)

    Lee, Hyoung S.; Catley, Delwyn; Harris, Kari Jo

    2011-01-01

    This study compared autonomous self-regulation and negative self-evaluative emotions as predictors of smoking behavior change in college student smokers (N=303) in a smoking cessation intervention study. Although the two constructs were moderately correlated, latent growth curve modeling revealed that only autonomous regulation, but not negative self-evaluative emotions, was negatively related to the number of days smoked. Results suggest that the two variables tap different aspects of motivation to change smoking behaviors, and that autonomous regulation predicts smoking behavior change better than negative self-evaluative emotions. PMID:21911436

  19. A comparison of autonomous regulation and negative self-evaluative emotions as predictors of smoking behavior change among college students.

    Science.gov (United States)

    Lee, Hyoung S; Catley, Delwyn; Harris, Kari Jo

    2012-05-01

    This study compared autonomous self-regulation and negative self-evaluative emotions as predictors of smoking behavior change in college student smokers (N = 303) in a smoking cessation intervention study. Although the two constructs were moderately correlated, latent growth curve modeling revealed that only autonomous regulation, but not negative self-evaluative emotions, was negatively related to the number of days smoked. Results suggest that the two variables tap different aspects of motivation to change smoking behaviors, and that autonomous regulation predicts smoking behavior change better than negative self-evaluative emotions.

  20. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  1. Maternal depression and anxiety, social synchrony, and infant regulation of negative and positive emotions.

    Science.gov (United States)

    Granat, Adi; Gadassi, Reuma; Gilboa-Schechtman, Eva; Feldman, Ruth

    2017-02-01

    Maternal postpartum depression (PPD) exerts long-term negative effects on infants; yet the mechanisms by which PPD disrupts emotional development are not fully clear. Utilizing an extreme-case design, 971 women reported symptoms of depression and anxiety following childbirth and 215 high and low on depressive symptomatology reported again at 6 months. Of these, mothers diagnosed with major depressive disorder (n = 22), anxiety disorders (n = 19), and controls (n = 59) were visited at 9 months. Mother-infant interaction was microcoded for maternal and infant's social behavior and synchrony. Infant negative and positive emotional expression and self-regulation were tested in 4 emotion-eliciting paradigms: anger with mother, anger with stranger, joy with mother, and joy with stranger. Infants of depressed mothers displayed less social gaze and more gaze aversion. Gaze and touch synchrony were lowest for depressed mothers, highest for anxious mothers, and midlevel among controls. Infants of control and anxious mothers expressed less negative affect with mother compared with stranger; however, maternal presence failed to buffer negative affect in the depressed group. Maternal depression chronicity predicted increased self-regulatory behavior during joy episodes, and touch synchrony moderated the effects of PPD on infant self-regulation. Findings describe subtle microlevel processes by which maternal depression across the postpartum year disrupts the development of infant emotion regulation and suggest that diminished social synchrony, low differentiation of attachment and nonattachment contexts, and increased self-regulation during positive moments may chart pathways for the cross-generational transfer of emotional maladjustment from depressed mothers to their infants. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat

    OpenAIRE

    Jin, Xia; Sun, Tao; Wang, Xiatian; Su, Peipei; Ma, Jingfei; He, Guangyuan; Yang, Guangxiao

    2016-01-01

    CBL-interacting protein kinases are involved in plant responses to abiotic stresses, including salt stress. However, the negative regulating mechanism of this gene family in response to salinity is less reported. In this study, we evaluated the role of TaCIPK25 in regulating salt response in wheat. Under conditions of high salinity, TaCIPK25 expression was markedly down-regulated in roots. Overexpression of TaCIPK25 resulted in hypersensitivity to Na+ and superfluous accumulation of Na+ in tr...

  3. Age Differences in the Influence of Induced Negative Emotion on Decision-Making: The Role of Emotion Regulation.

    Science.gov (United States)

    You, Xuqun; Ju, Chengting; Wang, Mo; Zhang, Baoshan; Liu, Pei

    2017-11-19

    In this study, we hypothesized that there is an age difference in the influence of negative emotion on decision-making and that this age difference is related to emotion regulation strategies. We carried out two studies. In the first, the older and younger adults completed the ultimatum game (UG) while in either an induced negative emotional or a neutral context. In the second, both the older and younger adults completed the UG while in an induced negative emotion while using either emotion reappraisal or expressive suppression to regulate their emotions during the task. The first study showed that, unlike younger adults, the older adults made similar choices in the neutral and negative induction groups. In addition, the older adults predominantly used a reappraisal strategy in both the negative and neutral emotional states, whereas the younger adults predominantly used a suppression strategy in the negative emotional state. In the second study, after the emotion regulation strategies were experimentally manipulated so that both age groups used the same strategy, we found no age difference in decision-making. Our findings indicated that the influence of negative emotion on decision-making differs between older and younger adults and that this age difference was associated with their different emotion regulation processes. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes.

    Science.gov (United States)

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways.

  5. Negative body experience in women with early childhood trauma : Associations with trauma severity and dissociation

    NARCIS (Netherlands)

    Scheffers, Wilhelmina; Hoek, Maike; Bosscher, Ruud J.; van Duijn, Marijtje A. J.; Schoevers, Robert A.; van Busschbach, Jooske T.

    2017-01-01

    Background:A crucial but often overlooked impact of early life exposure to trauma is its farreaching effect on a person's relationship with their body. Several domains of body experience may be negatively influenced or damaged as a result of early childhood trauma. Objective: The aim of this study

  6. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    Science.gov (United States)

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  7. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    Directory of Open Access Journals (Sweden)

    Brenden Chen

    Full Text Available Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167 or mTORC1 inhibitor (rapamycin induced AKT phosphorylation (pAKT and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2 and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  8. Childhood internalizing symptoms are negatively associated with early adolescent alcohol use

    Science.gov (United States)

    Edwards, Alexis C.; Latendresse, Shawn J.; Heron, Jon; Cho, Seung Bin; Hickman, Matt; Lewis, Glyn; Dick, Danielle M.; Kendler, Kenneth S.

    2014-01-01

    Background The relationship between childhood internalizing problems and early adolescent alcohol use has been infrequently explored and remains unclear. Methods We employed growth mixture modeling of internalizing symptoms for a large, population-based sample of UK children (the ALSPAC cohort) to identify trajectories of childhood internalizing symptoms from age 4 through age 11.5. We then examined the relationship between membership in each trajectory and alcohol use in early adolescence (reported at age 13.8). Results Overall, children experiencing elevated levels of internalizing symptoms were less likely to use alcohol in early adolescence. This finding held true across all internalizing trajectories; i.e., those exhibiting increasing levels of internalizing symptoms over time, and those whose symptoms desisted over time, were both less likely to use alcohol than their peers who did not exhibit internalizing problems. Conclusions We conclude that childhood internalizing symptoms, unlike adolescent symptoms, are negatively associated with early adolescent alcohol experimentation. Additional studies are warranted to follow up on our preliminary evidence that symptoms of phobia and separation anxiety drive this effect. PMID:24848214

  9. CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis.

    Science.gov (United States)

    Sardar, Atish; Nandi, Ashis Kumar; Chattopadhyay, Debasis

    2017-06-15

    Cytosolic calcium ion (Ca2+) is an essential mediator of the plant innate immune response. Here, we report that a calcium-regulated protein kinase Calcineurin B-like protein (CBL)-interacting protein kinase 6 (CIPK6) functions as a negative regulator of immunity against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. Arabidopsis lines with compromised expression of CIPK6 exhibited enhanced disease resistance to the bacterial pathogen and to P. syringae harboring certain but not all avirulent effectors, while restoration of CIPK6 expression resulted in abolition of resistance. Plants overexpressing CIPK6 were more susceptible to P. syringae. Enhanced resistance in the absence of CIPK6 was accompanied by increased accumulation of salicylic acid and elevated expression of defense marker genes. Salicylic acid accumulation was essential for improved immunity in the absence of CIPK6. CIPK6 negatively regulated the oxidative burst associated with perception of pathogen-associated microbial patterns (PAMPs) and bacterial effectors. Accelerated and enhanced activation of the mitogen-activated protein kinase cascade in response to bacterial and fungal elicitors was observed in the absence of CIPK6. The results of this study suggested that CIPK6 negatively regulates effector-triggered and PAMP-triggered immunity in Arabidopsis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Contemplative Practices in Early Childhood: Implications for Self-Regulation Skills and School Readiness

    Science.gov (United States)

    Willis, Elizabeth; Dinehart, Laura H.

    2014-01-01

    This article examines the development of self-regulation skills in early childhood and the possibilities of children's contemplative practices as a viable tool to facilitate this development. Current research indicates that self-regulation skills in early childhood education make a significant contribution to school readiness, and long-term…

  11. Early experience with 'new federalism' in health insurance regulation.

    Science.gov (United States)

    Pollitz, K; Tapay, N; Hadley, E; Specht, J

    2000-01-01

    The authors monitored the implementation of the Health Insurance Portability and Accountability Act (HIPAA) from 1997 to 1999. Regulators in all states and relevant federal agencies were interviewed and applicable laws and regulations studied. The authors found that HIPAA changed legal protections for consumers' health coverage in several ways. They examine how the process of regulating such coverage was affected at the state and federal levels and under an emerging partnership of the two. Despite some early implementation challenges, HIPAA's successes have been significant, although limited by the law's incremental nature.

  12. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers.

    Science.gov (United States)

    Liu, Fei; Xiao, Zhina; Yang, Li; Chen, Qian; Shao, Lu; Liu, Juanxu; Yu, Yixun

    2017-09-01

    In petunia, the production of volatile benzenoids/phenylpropanoids determines floral aroma, highly regulated by development, rhythm and ethylene. Previous studies identified several R2R3-type MYB trans-factors as positive regulators of scent biosynthesis in petunia flowers. Ethylene response factors (ERFs) have been shown to take part in the signal transduction of hormones, and regulation of metabolism and development processes in various plant species. Using virus-induced gene silencing technology, a negative regulator of volatile benzenoid biosynthesis, PhERF6, was identified by a screen for regulators of the expression of genes related to scent production. PhERF6 expression was temporally and spatially connected with scent production and was upregulated by exogenous ethylene. Up-/downregulation of the mRNA level of PhERF6 affected the expression of ODO1 and several floral scent-related genes. PhERF6 silencing led to a significant increase in the concentrations of volatiles emitted by flowers. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicated that PhERF6 interacted with the N-terminus of EOBI, which includes two DNA binding domains. Our results show that PhERF6 negatively regulates volatile production in petunia flowers by competing for the binding of the c-myb domains of the EOBI protein with the promoters of genes related to floral scent. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. [Regulation of Positive and Negative Emotions as Mediator between Maternal Emotion Socialization and Child Problem Behavior].

    Science.gov (United States)

    Fäsche, Anika; Gunzenhauser, Catherine; Friedlmeier, Wolfgang; von Suchodoletz, Antje

    2015-01-01

    The present study investigated five to six year old children's ability to regulate negative and positive emotions in relation to psychosocial problem behavior (N=53). It was explored, whether mothers' supportive and nonsupportive strategies of emotion socialization influence children's problem behavior by shaping their emotion regulation ability. Mothers reported on children's emotion regulation and internalizing and externalizing problem behavior via questionnaire, and were interviewed about their preferences for socialization strategies in response to children's expression of negative affect. Results showed that children with more adaptive expression of adequate positive emotions had less internalizing behavior problems. When children showed more control of inadequate negative emotions, children were less internalizing as well as externalizing in their behavior. Furthermore, results indicated indirect relations of mothers' socialization strategies with children's problem behavior. Control of inadequate negative emotions mediated the link between non-supportive strategies on externalizing problem behavior. Results suggest that emotion regulatory processes should be part of interventions to reduce the development of problematic behavior in young children. Parents should be trained in dealing with children's emotions in a constructive way.

  14. The effect of arousal on regulation of negative emotions using cognitive reappraisal: An ERP study.

    Science.gov (United States)

    Langeslag, Sandra J E; Surti, Kruti

    2017-08-01

    Because the effectiveness of the emotion regulation strategy cognitive reappraisal may vary with emotion intensity, we investigated how stimulus arousal affects reappraisal success. Participants up- and down-regulated emotional responses using cognitive reappraisal to low and high arousing unpleasant pictures while the electroencephalogram (EEG) was recorded. Up-regulation resulted in more negative self-reported valence, while down-regulation resulted in less negative self-reported valence regardless of stimulus arousal, suggesting that subjective reappraisal success does not vary with emotional intensity. Participants felt that down-regulation of emotional responses to low arousing unpleasant pictures was easiest, which is in line with previous findings that participants showed a greater preference for reappraisal in low than high arousing situations. The late positive potential (LPP) amplitude was enhanced by down-regulation of high arousing unpleasant pictures. Even though this effect was unexpected and is opposite to the typical effect of down-regulation on the LPP, it is in line with several previous studies. Potential explanations for LPP regulation effects in the unexpected direction, such as strategy selection and task design, are evaluated. Suggestions and recommendations for future research are discussed, including using trial-by-trial manipulation of regulation instructions and studying the effect of stimulus arousal on up- and down-regulation of positive emotions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Emotion regulation strategies mediate the associations of positive and negative affect to upper extremity physical function.

    Science.gov (United States)

    Talaei-Khoei, Mojtaba; Nemati-Rezvani, Hora; Fischerauer, Stefan F; Ring, David; Chen, Neal; Vranceanu, Ana-Maria

    2017-05-01

    The Gross process model of emotion regulation holds that emotion-eliciting situations (e.g. musculoskeletal illness) can be strategically regulated to determine the final emotional and behavioral response. Also, there is some evidence that innate emotional traits may predispose an individual to a particular regulating coping style. We enrolled 107 patients with upper extremity musculoskeletal illness in this cross-sectional study. They completed self-report measures of positive and negative affect, emotion regulation strategies (cognitive reappraisal and expressive suppression), upper extremity physical function, pain intensity, and demographics. We used Preacher and Hayes' bootstrapping approach to process analysis to infer the direct effect of positive and negative affect on physical function as well as their indirect effects through activation of emotion regulation strategies. Negative affect was associated with decreased physical function. The association was partly mediated by expressive suppression (b (SE)=-.10 (.05), 95% BCa CI [-.21, -.02]). Positive affect was associated with increased physical function. Cognitive reappraisal partially mediated this association (b (SE)=.11 (.05), 95% BCa CI [.03, .24]). After controlling for pain intensity, the ratio of the mediated effect to total effect grew even larger in controlled model comparing to uncontrolled model (33% vs. 26% for expressive suppression and 32% vs. 30% for cognitive reappraisal). The relationships between affect, emotion regulation strategies and physical function appear to be more dependent on the emotional response to an orthopedic condition rather than the intensity of the nociceptive stimulation of the pain. Findings support integration of emotion regulation training in skill-based psychotherapy in this population to mitigate the effect of negative affect and enhance the influence of positive affect on physical function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Supportive Romantic Relationships as Predictors of Resilience Against Early Adolescent Maternal Negativity.

    Science.gov (United States)

    Szwedo, David E; Hessel, Elenda T; Allen, Joseph P

    2017-02-01

    Negativity in parent-child relationships during adolescence has been viewed as a risk factor for teens' future personal and interpersonal adjustment. This study examined support from romantic partners and close friends during late adolescence as protective against maternal negativity experienced during early adolescence. A combination of observational, self-report, and peer-report measures were obtained from a community sample of 97 youth (58 % female), their mothers, closest friends, and romantic partners assessed at ages 13, 18, and 20. Moderating effects suggested a protective effect of romantic support against maternal negativity across a variety of psychosocial outcomes, including depressive symptoms, self-worth, social withdrawal, and externalizing behavior. Protective effects were found even after controlling for initial levels of outcome behavior and observed support from close friends throughout adolescence. Receiving support from a romantic partner may provide teens with new, positive ways of coping with adversity and help them avoid more serious distress that may be predicted from maternal negativity when such support is not available.

  17. TRIM45 negatively regulates NF-κB-mediated transcription and suppresses cell proliferation

    International Nuclear Information System (INIS)

    Shibata, Mio; Sato, Tomonobu; Nukiwa, Ryota; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-01

    Highlights: ► NF-κB plays an important role in cell survival and carcinogenesis. ► TRIM45 negatively regulates TNFα-induced NF-κB-mediated transcription. ► TRIM45 overexpression suppresses cell growth. ► TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth. -- Abstract: The NF-κB signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-κB is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-κB signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin–proteasome system. It has been reported that overexpression of TRIM45, one of the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNFα-induced NF-κB-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-κB signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth.

  18. Trait Affect, Emotion Regulation, and the Generation of Negative and Positive Interpersonal Events.

    Science.gov (United States)

    Hamilton, Jessica L; Burke, Taylor A; Stange, Jonathan P; Kleiman, Evan M; Rubenstein, Liza M; Scopelliti, Kate A; Abramson, Lyn Y; Alloy, Lauren B

    2017-07-01

    Positive and negative trait affect and emotion regulatory strategies have received considerable attention in the literature as predictors of psychopathology. However, it remains unclear whether individuals' trait affect is associated with responses to state positive affect (positive rumination and dampening) or negative affect (ruminative brooding), or whether these affective experiences contribute to negative or positive interpersonal event generation. Among 304 late adolescents, path analyses indicated that individuals with higher trait negative affect utilized dampening and brooding rumination responses, whereas those with higher trait positive affect engaged in rumination on positive affect. Further, there were indirect relationships between trait negative affect and fewer positive and negative interpersonal events via dampening, and between trait positive affect and greater positive and negative interpersonal events via positive rumination. These findings suggest that individuals' trait negative and positive affect may be associated with increased utilization of emotion regulation strategies for managing these affects, which may contribute to the occurrence of positive and negative events in interpersonal relationships. Copyright © 2017. Published by Elsevier Ltd.

  19. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong, E-mail: zhangqzdr@126.com

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.

  20. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B.

    Science.gov (United States)

    Tchankouo-Nguetcheu, Stéphane; Udinotti, Mario; Durand, Marjorie; Meng, Tzu-Ching; Taouis, Mohammed; Rabinow, Leonard

    2014-10-01

    PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.

  1. The Role of Depression and Negative Affect Regulation Expectancies in Tobacco Smoking among College Students

    Science.gov (United States)

    Schleicher, Holly E.; Harris, Kari Jo; Catley, Delwyn; Nazir, Niaman

    2009-01-01

    Objective: Expectancies about nicotine's ability to alleviate negative mood states may play a role in the relationship between smoking and depression. The authors examined the role of negative affect regulation expectancies as a potential mediator of depression (history of depression and depressive symptoms) and smoking among college students.…

  2. When death is not a problem: Regulating implicit negative affect under mortality salience.

    Science.gov (United States)

    Lüdecke, Christina; Baumann, Nicola

    2015-12-01

    Terror management theory assumes that death arouses existential anxiety in humans which is suppressed in focal attention. Whereas most studies provide indirect evidence for negative affect under mortality salience by showing cultural worldview defenses and self-esteem strivings, there is only little direct evidence for implicit negative affect under mortality salience. In the present study, we assume that this implicit affective reaction towards death depends on people's ability to self-regulate negative affect as assessed by the personality dimension of action versus state orientation. Consistent with our expectations, action-oriented participants judged artificial words to express less negative affect under mortality salience compared to control conditions whereas state-oriented participants showed the reversed pattern. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  3. Quorum sensing negatively regulates chitinase in Vibrio harveyi.

    Science.gov (United States)

    Defoirdt, Tom; Darshanee Ruwandeepika, H A; Karunasagar, Indrani; Boon, Nico; Bossier, Peter

    2010-02-01

    Quorum sensing, bacterial cell-to-cell communication, regulates the virulence of Vibrio harveyi towards different hosts. Chitinase can be considered as a virulence factor because it helps pathogenic bacteria to attach to the host and to penetrate its tissues (e.g. in case of shrimp). Here, we show that quorum sensing negatively regulates chitinase in V. harveyi. Chitinolytic activity towards natural chitin from crab shells, the synthetic chitin derivative chitin azure, and fluorogenic chitin oligomers was significantly higher in a mutant in which the quorum-sensing system is completely inactivated when compared with a mutant in which the system is maximally active. Furthermore, the addition of signal molecule containing cell-free culture fluids decreased chitinase activity in a Harveyi Autoinducer 1 and Autoinducer 2-deficient double mutant. Finally, chitinase A mRNA levels were fivefold lower in the mutant in which the quorum-sensing system is maximally active when compared with the mutant in which the system is completely inactivated. [Correction added on 25 September 2009, after first online publication: the preceding sentence was corrected from 'Finally, chitinase A mRNA levels were fivefold lower in the mutant in which the quorum-sensing system is completely inactivated when compared with the mutant in which the system is maximally active.'] We argue that this regulation might help the vibrios to switch between host-associated and free-living life styles. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Mothering, fathering, and the regulation of negative and positive emotions in high-functioning preschoolers with autism spectrum disorder.

    Science.gov (United States)

    Hirschler-Guttenberg, Yael; Golan, Ofer; Ostfeld-Etzion, Sharon; Feldman, Ruth

    2015-05-01

    Children with autism spectrum disorder (ASD) exhibit difficulties in regulating emotions and authors have called to study the specific processes underpinning emotion regulation (ER) in ASD. Yet, little observational research examined the strategies preschoolers with ASD use to regulate negative and positive emotions in the presence of their mothers and fathers. Forty preschoolers with ASD and 40 matched typically developing children and their mothers and fathers participated. Families were visited twice for identical battery of paradigms with mother or father. Parent-child interactions were coded for parent and child behaviors and children engaged in ER paradigms eliciting negative (fear) and positive (joy) emotions with each parent. ER paradigms were microcoded for negative and positive emotionality, ER strategies, and parent regulation facilitation. During free play, mothers' and fathers' sensitivity and warm discipline were comparable across groups; however, children with ASD displayed lower positive engagement and higher withdrawal. During ER paradigms, children with ASD expressed less positive emotionality overall and more negative emotionality during fear with father. Children with ASD used more simple self-regulatory strategies, particularly during fear, but expressed comparable levels of assistance seeking behavior toward mother and father in negative and positive contexts. Parents of children with ASD used less complex regulation facilitation strategies, including cognitive reappraisal and emotional reframing, and employed simple tactics, such as physical comforting to manage fear and social gaze to maintain joy. Findings describe general and parent- and emotion-specific processes of child ER and parent regulation facilitation in preschoolers with ASD. Results underscore the ability of such children to seek parental assistance during moments of high arousal and the parents' sensitive adaptation to their children's needs. Reduced positive emotionality

  5. Impaired down-regulation of negative emotion in self-referent social situations in bipolar disorder

    DEFF Research Database (Denmark)

    Kjærstad, Hanne L; Vinberg, Maj; Goldin, Philippe R

    2016-01-01

    naturally or dampen their emotional response to positive and negative social scenarios and associated self-beliefs. They were also given an established experimental task for comparison, involving reappraisal of negative affective picture stimuli, as well as a questionnaire of habitual ER strategies. BD...... patients showed reduced ability to down-regulate emotional responses in negative, but not positive, social scenarios relative to healthy controls and UD patients. In contrast, there were no between-group differences in the established ER task or in self-reported habitual reappraisal strategies. Findings...

  6. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    International Nuclear Information System (INIS)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-01-01

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways

  7. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling

    Science.gov (United States)

    Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.

    2016-01-01

    Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153

  8. How is emotional awareness related to emotion regulation strategies and self-reported negative affect in the general population?

    Science.gov (United States)

    Subic-Wrana, Claudia; Beutel, Manfred E; Brähler, Elmar; Stöbel-Richter, Yve; Knebel, Achim; Lane, Richard D; Wiltink, Jörg

    2014-01-01

    The Levels of Emotional Awareness Scale (LEAS) as a performance task discriminates between implicit or subconscious and explicit or conscious levels of emotional awareness. An impaired awareness of one's feeling states may influence emotion regulation strategies and self-reports of negative emotions. To determine this influence, we applied the LEAS and self-report measures for emotion regulation strategies and negative affect in a representative sample of the German general population. A short version of the LEAS, the Hospital Anxiety and Depression Scale (HADS) and the Emotion Regulation Questionnaire (ERQ), assessing reappraisal and suppression as emotion regulation strategies, were presented to N = 2524 participants of a representative German community study. The questionnaire data were analyzed with regard to the level of emotional awareness. LEAS scores were independent from depression, but related to self-reported anxiety. Although of small or medium effect size, different correlational patters between emotion regulation strategies and negative affectivity were related to implict and explict levels of emotional awareness. In participants with implicit emotional awareness, suppression was related to higher anxiety and depression, whereas in participants with explicit emotional awareness, in addition to a positive relationship of suppression and depression, we found a negative relationship of reappraisal to depression. These findings were independent of age. In women high use of suppression and little use of reappraisal were more strongly related to negative affect than in men. Our first findings suggest that conscious awareness of emotions may be a precondition for the use of reappraisal as an adaptive emotion regulation strategy. They encourage further research in the relation between subconsious and conscious emotional awareness and the prefarance of adaptive or maladaptive emotion regulation strategies The correlational trends found in a representative

  9. Physical Activity, Self-Regulation, and Early Academic Achievement in Preschool Children

    Science.gov (United States)

    Becker, Derek R.; McClelland, Megan M.; Loprinzi, Paul; Trost, Stewart G.

    2014-01-01

    Research Findings: The present study investigated whether active play during recess was associated with self-regulation and academic achievement in a prekindergarten sample. A total of 51 children in classes containing approximately half Head Start children were assessed on self-regulation, active play, and early academic achievement. Path…

  10. Impact of physical maltreatment on the regulation of negative affect and aggression.

    Science.gov (United States)

    Shackman, Jessica E; Pollak, Seth D

    2014-11-01

    Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children's allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders.

  11. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer.

    Science.gov (United States)

    Wang, Xiao-Feng; Zhang, Xiao-Wei; Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-09-27

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells.

  12. A Role for EHD4 in the Regulation of Early Endosomal Transport

    Science.gov (United States)

    Sharma, Mahak; Naslavsky, Naava; Caplan, Steve

    2009-01-01

    All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway. PMID:18331452

  13. Improved wound management by regulated negative pressure-assisted wound therapy and regulated, oxygen- enriched negative pressure-assisted wound therapy through basic science research and clinical assessment

    Directory of Open Access Journals (Sweden)

    Moris Topaz

    2012-01-01

    Full Text Available Regulated negative pressure-assisted wound therapy (RNPT should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound′s environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review.

  14. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    International Nuclear Information System (INIS)

    Ruffell, Brian; Johnson, Pauline

    2005-01-01

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding

  15. MicroRNA-212 post-transcriptionally regulates oocyte-specific basic-helix-loop-helix transcription factor, factor in the germline alpha (FIGLA, during bovine early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Swamy K Tripurani

    Full Text Available Factor in the germline alpha (FIGLA is an oocyte-specific basic helix-loop-helix transcription factor essential for primordial follicle formation and expression of many genes required for folliculogenesis, fertilization and early embryonic survival. Here we report the characterization of bovine FIGLA gene and its regulation during early embryogenesis. Bovine FIGLA mRNA expression is restricted to gonads and is detected in fetal ovaries harvested as early as 90 days of gestation. FIGLA mRNA and protein are abundant in germinal vesicle and metaphase II stage oocytes, as well as in embryos from pronuclear to eight-cell stage but barely detectable at morula and blastocyst stages, suggesting that FIGLA might be a maternal effect gene. Recent studies in zebrafish and mice have highlighted the importance of non-coding small RNAs (microRNAs as key regulatory molecules targeting maternal mRNAs for degradation during embryonic development. We hypothesized that FIGLA, as a maternal transcript, is regulated by microRNAs during early embryogenesis. Computational predictions identified a potential microRNA recognition element (MRE for miR-212 in the 3' UTR of the bovine FIGLA mRNA. Bovine miR-212 is expressed in oocytes and tends to increase in four-cell and eight-cell stage embryos followed by a decline at morula and blastocyst stages. Transient transfection and reporter assays revealed that miR-212 represses the expression of FIGLA in a MRE dependent manner. In addition, ectopic expression of miR-212 mimic in bovine early embryos dramatically reduced the expression of FIGLA protein. Collectively, our results demonstrate that FIGLA is temporally regulated during bovine early embryogenesis and miR-212 is an important negative regulator of FIGLA during the maternal to zygotic transition in bovine embryos.

  16. Early life stress predicts negative urgency through brooding, depending on 5-HTTLPR genotype: A pilot study with 6-month follow-up examining suicide ideation.

    Science.gov (United States)

    Valderrama, Jorge; Miranda, Regina

    2017-12-01

    The present study examined the interaction between early life stress and 5-HTT genotypes in predicting two risk factors for suicidal behavior - the brooding subtype of rumination and impulsivity, in the form of negative urgency - over time. Furthermore, we examined early life stress, brooding, and impulsivity as predictors of suicidal ideation over time. Participants with and without a history of early life stress were genotyped for the 5-HTTLPR polymorphism and completed assessments assessing brooding and negative urgency at baseline and 6-month follow up. Early life emotional abuse was associated with negative urgency at follow-up. We found an indirect effect of early life emotional abuse on negative urgency through brooding among individuals with 5-HTT low expressing genotypes but not among individuals with 5-HTT high expressing genotypes. Further, a logistic regression analysis revealed that negative urgency was associated with higher odds (O.R. = 16.2) of reporting suicide ideation (versus no ideation) at follow-up. Our findings suggest that brooding and negative urgency may result from the interaction between early life emotional abuse and 5-HTT low expressing genotypes. Further research is necessary to understand how early life stress interacts with 5-HTT genotypes to confer risk for suicidal behavior through psychological mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Examination of the Positive and Negative Syndrome Scale factor structure and longitudinal relationships with functioning in early psychosis.

    Science.gov (United States)

    Best, Michael W; Grossman, Michael; Oyewumi, L Kola; Bowie, Christopher R

    2016-04-01

    We examined the factor structure of the Positive and Negative Syndrome Scale (PANSS) in early-episode psychosis and its relationships with functioning at baseline and follow-up. A total of 240 consecutive admissions to an early intervention in psychosis clinic were assessed at intake to the program with the PANSS, Global Assessment of Functioning (GAF) and Social and Occupational Functioning Assessment Scale (SOFAS). Seventy individuals were reassessed at follow-up. A maximum likelihood factor analysis was conducted on baseline PANSS scores and the ability of each factor to predict baseline and follow-up GAF and SOFAS was examined. A five-factor model with varimax rotation was the best fit to our data and was largely congruent with factors found previously. The negative symptom factor was the best predictor of GAF and SOFAS at baseline and follow-up. Negative symptoms are the best symptomatic predictor of functioning in individuals with early psychosis and are an important treatment target to improve recovery. © 2014 Wiley Publishing Asia Pty Ltd.

  18. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd...likereceptor signal transduction. O'Neill LA. Immunity. 2008 Jul 18;29(1):12-20. (.png) (.svg) (.html) (.csm

  19. Early Behavioral Self-Regulation, Academic Achievement, and Gender: Longitudinal Findings from France, Germany, and Iceland

    Science.gov (United States)

    Gestsdottir, Steinunn; von Suchodoletz, Antje; Wanless, Shannon B.; Hubert, Blandine; Guimard, Philippe; Birgisdottir, Freyja; Gunzenhauser, Catherine; McClelland, Megan

    2014-01-01

    Research suggests that behavioral self-regulation skills are critical for early school success, but few studies have explored such links among young children in Europe. This study examined the contribution of early self-regulation to academic achievement gains among children in France, Germany, and Iceland. Gender differences in behavioral…

  20. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway.

    Science.gov (United States)

    Liu, Yunxia; Dong, Weibing; Shao, Jing; Wang, Yibin; Zhou, Meiyi; Sun, Haipeng

    2017-01-01

    Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation.

  1. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway

    Directory of Open Access Journals (Sweden)

    Yunxia Liu

    2017-10-01

    Full Text Available Recent studies have linked branched-chain amino acid (BCAA with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15 is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation.

  2. Longitudinal Relations between Beliefs Supporting Aggression,Anger Regulation, and Dating Aggression among Early Adolescents.

    Science.gov (United States)

    Sullivan, Terri N; Garthe, Rachel C; Goncy, Elizabeth A; Carlson, Megan M; Behrhorst, Kathryn L

    2017-05-01

    Dating aggression occurs frequently in early to mid-adolescence and has negative repercussions for psychosocial adjustment and physical health. The patterns of behavior learned during this developmental timeframe may persist in future dating relationships, underscoring the need to identify risk factors for this outcome. The current study examined longitudinal relations between beliefs supporting aggression, anger regulation, and dating aggression. Participants were 176 middle school students in sixth, seventh, and eighth grade (50 % female; 82 % African American). No direct effects were found between beliefs supporting reactive or proactive aggression and dating aggression. Beliefs supporting reactive aggression predicted increased rates of anger dysregulation, and beliefs supporting proactive aggression led to subsequent increases in anger inhibition. Anger dysregulation and inhibition were associated with higher frequencies of dating aggression. An indirect effect was found for the relation between beliefs supporting reactive aggression and dating aggression via anger dysregulation. Another indirect effect emerged for the relation between beliefs supporting proactive aggression and dating aggression through anger inhibition. The study's findings suggested that beliefs supporting proactive and reactive aggression were differentially related to emotion regulation processes, and identified anger dysregulation and inhibition as risk factors for dating aggression among adolescents.

  3. Affective processing within 1/10th of a second: High arousal is necessary for early facilitative processing of negative but not positive words.

    Science.gov (United States)

    Hofmann, Markus J; Kuchinke, Lars; Tamm, Sascha; Võ, Melissa L-H; Jacobs, Arthur M

    2009-12-01

    Lexical decisions to high- and low-arousal negative words and to low-arousal neutral and positive words were examined in an event-related potentials (ERP) study. Reaction times to positive and high-arousal negative words were shorter than those to neutral (low-arousal) words, whereas those to low-arousal negative words were longer. A similar pattern was observed in an early time window of the ERP response: Both positive and high-arousal negative words elicited greater negative potentials in a time frame of 80 to 120 msec after stimulus onset. This result suggests that arousal has a differential impact on early lexical processing of positive and negative words. Source localization in the relevant time frame revealed that the arousal effect in negative words is likely to be localized in a left occipito-temporal region including the middle temporal and fusiform gyri. The ERP arousal effect appears to result from early lexico-semantic processing in high-arousal negative words.

  4. LORETA current source density for duration mismatch negativity and neuropsychological assessment in early schizophrenia.

    Directory of Open Access Journals (Sweden)

    Tomohiro Miyanishi

    Full Text Available INTRODUCTION: Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN, by using low-resolution brain electromagnetic tomography (LORETA, and neuropsychological performance in subjects with early schizophrenia. METHODS: Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J. RESULTS: Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients. CONCLUSIONS: This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia.

  5. The Development of Prosocial Behaviour in Early Childhood: Contributions of Early Parenting and Self-Regulation

    Science.gov (United States)

    Williams, Kate E.; Berthelsen, Donna

    2017-01-01

    This research considers the role of parenting practices and early self-regulation, on children's prosocial behaviour when they begin school. Data for 4007 children were drawn from "Growing Up in Australia: The Longitudinal Study of Australian Children" (LSAC). The analyses explored relations between self-reported parenting practices for…

  6. Negative regulation of Toll-like receptor signaling plays an essential role in homeostasis of the intestine.

    Science.gov (United States)

    Biswas, Amlan; Wilmanski, Jeanette; Forsman, Huamei; Hrncir, Tomas; Hao, Liming; Tlaskalova-Hogenova, Helena; Kobayashi, Koichi S

    2011-01-01

    A healthy intestinal tract is characterized by controlled homeostasis due to the balanced interaction between commensal bacteria and the host mucosal immune system. Human and animal model studies have supported the hypothesis that breakdown of this homeostasis may underlie the pathogenesis of inflammatory bowel diseases. However, it is not well understood how intestinal microflora stimulate the intestinal mucosal immune system and how such activation is regulated. Using a spontaneous, commensal bacteria-dependent colitis model in IL-10-deficient mice, we investigated the role of TLR and their negative regulation in intestinal homeostasis. In addition to IL-10(-/-) MyD88(-/-) mice, IL-10(-/-) TLR4(-/-) mice exhibited reduced colitis compared to IL-10(-/-) mice, indicating that TLR4 signaling plays an important role in inducing colitis. Interestingly, the expression of IRAK-M, a negative regulator of TLR signaling, is dependent on intestinal commensal flora, as IRAK-M expression was reduced in mice re-derived into a germ-free environment, and introduction of commensal bacteria into germ-free mice induced IRAK-M expression. IL-10(-/-) IRAK-M(-/-) mice exhibited exacerbated colitis with increased inflammatory cytokine gene expression. Therefore, this study indicates that intestinal microflora stimulate the colitogenic immune system through TLR and negative regulation of TLR signaling is essential in maintaining intestinal homeostasis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evidence for the negative impact of reward on self-regulated learning.

    Science.gov (United States)

    Wehe, Hillary S; Rhodes, Matthew G; Seger, Carol A

    2015-01-01

    The undermining effect refers to the detrimental impact rewards can have on intrinsic motivation to engage in a behaviour. The current study tested the hypothesis that participants' self-regulated learning behaviours are susceptible to the undermining effect. Participants were assigned to learn a set of Swahili-English word pairs. Half of the participants were offered a reward for performance, and half were not offered a reward. After the initial study phase, participants were permitted to continue studying the words during a free period. The results were consistent with an undermining effect: Participants who were not offered a reward spent more time studying the words during the free period. The results suggest that rewards may negatively impact self-regulated learning behaviours and provide support for the encouragement of intrinsic motivation.

  8. HDAC3 Is a Critical Negative Regulator of Long-Term Memory Formation

    Science.gov (United States)

    McQuown, Susan C.; Barrett, Ruth M.; Matheos, Dina P.; Post, Rebecca J.; Rogge, George A.; Alenghat, Theresa; Mullican, Shannon E.; Jones, Steven; Rusche, James R.; Lazar, Mitchell A.; Wood, Marcelo A.

    2011-01-01

    Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyl-transerases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3–FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3–FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3–FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation. PMID:21228185

  9. Triggering receptor expressed on myeloid cells-2 fine-tunes inflammatory responses in murine Gram-negative sepsis

    DEFF Research Database (Denmark)

    Schmidt Thøgersen, Mariane; Gawish, Riem; Martins, Rui

    2015-01-01

    During infections, TLR-mediated responses require tight regulation to allow for pathogen removal, while preventing overwhelming inflammation and immunopathology. The triggering receptor expressed on myeloid cells (TREM)-2 negatively regulates inflammation by macrophages and impacts on phagocytosis...... was followed by an accelerated resolution and ultimately improved survival, associated with the induction of the negative regulator A20. Upon infection with Escherichia coli, the otherwise beneficial effect of an exaggerated early immune response in TREM-2(-/-) animals was counteracted by a 50% reduction...... in bacterial phagocytosis. In line with this, TREM-2(-/-) peritoneal macrophages (PMs) exhibited augmented inflammation following TLR4 stimulation, demonstrating the presence and negative regulatory functionality of TREM-2 on primary PMs. Significantly, we identified a high turnover rate because TREM-2 RNA...

  10. Mindfulness in schizophrenia: Associations with self-reported motivation, emotion regulation, dysfunctional attitudes, and negative symptoms.

    Science.gov (United States)

    Tabak, Naomi T; Horan, William P; Green, Michael F

    2015-10-01

    Mindfulness-based interventions are gaining empirical support as alternative or adjunctive treatments for a variety of mental health conditions, including anxiety, depression, and substance use disorders. Emerging evidence now suggests that mindfulness-based treatments may also improve clinical features of schizophrenia, including negative symptoms. However, no research has examined the construct of mindfulness and its correlates in schizophrenia. In this study, we examined self-reported mindfulness in patients (n=35) and controls (n=25) using the Five-Facet Mindfulness Questionnaire. We examined correlations among mindfulness, negative symptoms, and psychological constructs associated with negative symptoms and adaptive functioning, including motivation, emotion regulation, and dysfunctional attitudes. As hypothesized, patients endorsed lower levels of mindfulness than controls. In patients, mindfulness was unrelated to negative symptoms, but it was associated with more adaptive emotion regulation (greater reappraisal) and beliefs (lower dysfunctional attitudes). Some facets of mindfulness were also associated with self-reported motivation (behavioral activation and inhibition). These patterns of correlations were similar in patients and controls. Findings from this initial study suggest that schizophrenia patients may benefit from mindfulness-based interventions because they (a) have lower self-reported mindfulness than controls and (b) demonstrate strong relationships between mindfulness and psychological constructs related to adaptive functioning. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation.

    Directory of Open Access Journals (Sweden)

    Kelly E Roney

    Full Text Available Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2(-/- macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2(-/- macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.

  12. Arabidopsis phosphoinositide-specific phospholipase C 4 negatively regulates seedling salt tolerance.

    Science.gov (United States)

    Xia, Keke; Wang, Bo; Zhang, Jiewei; Li, Yuan; Yang, Hailian; Ren, Dongtao

    2017-08-01

    Previous physiological and pharmacological studies have suggested that the activity of phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in regulating plant salt stress responses by altering the intracellular Ca 2+ concentration. However, the individual members of plant PLCs involved in this process need to be identified. Here, the function of AtPLC4 in the salt stress response of Arabidopsis seedlings was analysed. plc4 mutant seedlings showed hyposensitivity to salt stress compared with Col-0 wild-type seedlings, and the salt hyposensitive phenotype could be complemented by the expression of native promoter-controlled AtPLC4. Transgenic seedlings with AtPLC4 overexpression (AtPLC4 OE) exhibited a salt-hypersensitive phenotype, while transgenic seedlings with its inactive mutant expression (AtPLC4m OE) did not exhibit this phenotype. Using aequorin as a Ca 2+ indicator in plc4 mutant and AtPLC4 OE seedlings, AtPLC4 was shown to positively regulate the salt-induced Ca 2+ increase. The salt-hypersensitive phenotype of AtPLC4 OE seedlings was partially rescued by EGTA. An analysis of salt-responsive genes revealed that the transcription of RD29B, MYB15 and ZAT10 was inversely regulated in plc4 mutant and AtPLC4 OE seedlings. Our findings suggest that AtPLC4 negatively regulates the salt tolerance of Arabidopsis seedlings, and Ca 2+ may be involved in regulating this process. © 2017 John Wiley & Sons Ltd.

  13. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer.

    Science.gov (United States)

    Shields, Sarah; Conroy, Emer; O'Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W; O'Connor, Darran; McCann, Amanda; Gallagher, William M; Coppinger, Judith A

    2018-03-20

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.

  14. A Loss-of-Function Screen for Phosphatases that Regulate Neurite Outgrowth Identifies PTPN12 as a Negative Regulator of TrkB Tyrosine Phosphorylation

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico

    2013-01-01

    Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely....... This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. "Classical" protein tyrosine phosphatases (PTPs) accounted for 13......% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream...

  15. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Yolanda Stypula-Cyrus

    Full Text Available Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC. However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  16. A Longitudinal Study of Emotion Regulation, Emotion Lability-Negativity, and Internalizing Symptomatology in Maltreated and Nonmaltreated Children

    Science.gov (United States)

    Kim-Spoon, Jungmeen; Cicchetti, Dante; Rogosch, Fred A.

    2013-01-01

    The longitudinal contributions of emotion regulation and emotion lability-negativity to internalizing symptomatology were examined in a low-income sample (171 maltreated and 151 nonmaltreated children, from age 7 to 10 years). Latent difference score models indicated that for both maltreated and nonmaltreated children, emotion regulation was a…

  17. Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation.

    Science.gov (United States)

    Yuk, Jae-Min; Kim, Tae Sung; Kim, Soo Yeon; Lee, Hye-Mi; Han, Jeongsu; Dufour, Catherine Rosa; Kim, Jin Kyung; Jin, Hyo Sun; Yang, Chul-Su; Park, Ki-Sun; Lee, Chul-Ho; Kim, Jin-Man; Kweon, Gi Ryang; Choi, Hueng-Sik; Vanacker, Jean-Marc; Moore, David D; Giguère, Vincent; Jo, Eun-Kyeong

    2015-07-21

    The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Risk factors for alcoholism in the Oklahoma Family Health Patterns project: impact of early life adversity and family history on affect regulation and personality.

    Science.gov (United States)

    Sorocco, Kristen H; Carnes, Nathan C; Cohoon, Andrew J; Vincent, Andrea S; Lovallo, William R

    2015-05-01

    This study examined the impact of early lifetime adversity (ELA) on affect regulation and personality in persons with family history (FH+) and without (FH-) a family history of alcoholism. We examined the impact of early life adversity in healthy young adults, 18-30 years of age enrolled in a long-term study on risk for alcohol and other substance abuse. ELA was assessed by a composite score of low socioeconomic status and personal experience of physical or sexual abuse and/or separation from parents before age 16, resulting in a score of 0, 1-2, or >3 adverse events. Unstable affect regulation and personality variables were obtained via self-report measures. Higher ELA scores were seen in FH+ (χ(2)=109.2, paffect regulation, negative moods, and have risky drinking and drug abuse tendencies independent of ELA level. ELA predicts reduced stress reactivity and poorer cognitive control over impulsive behaviors as shown elsewhere. The present work shows that FH+ have poor mood regulation and antisocial characteristics. The greater prevalence of ELA in FH+ persons indicates that life experience and FH+ work in tandem to result in risky patterns of alcohol and drug experimentation to elevate risk for alcoholism. Further studies of genetic and environmental contributions to alcoholism are called for. Published by Elsevier Ireland Ltd.

  19. Maternal Self-Regulation, Relationship Adjustment, and Home Chaos: Contributions to Infant Negative Emotionality

    Science.gov (United States)

    Bridgett, David J.; Burt, Nicole M.; Laake, Lauren M.; Oddi, Kate B.

    2013-01-01

    There has been increasing interest in the direct and indirect effects of parental self-regulation on children’s outcomes. In the present investigation, the effects of maternal self-regulation, home chaos, and inter-parental relationship adjustment on broad and specific indicators of infant negative emotionality (NE) were examined. A sample of maternal caregivers and their 4-month-old infants (N = 85) from a rural community participated. Results demonstrated that better maternal self-regulation was associated with lower infant NE broadly, as well as with lower infant sadness and distress to limitations/frustration and better falling reactivity (i.e. emotion regulation), specifically. Maternal self-regulation also predicted less chaotic home environments and better maternal inter-parental relationship adjustment. Findings also supported the indirect effects of maternal self-regulation on broad and specific indicators of infant NE through home chaos and maternal relationship adjustment. Some differential effects were also identified. Elevated home chaos appeared to specifically affect infant frustration/distress to limitations whereas maternal relationship adjustment affected broad infant NE, as well as several specific indicators of infant NE: frustration/distress to limitations, sadness, and falling reactivity. In conjunction with other recent investigations that have reported the effects of maternal self-regulation on parenting, the findings in the present investigation suggest that parental self-regulation may influence children’s outcomes through several proximal environmental pathways. PMID:23748168

  20. KCNK10, a Tandem Pore Domain Potassium Channel, Is a Regulator of Mitotic Clonal Expansion during the Early Stage of Adipocyte Differentiation

    Directory of Open Access Journals (Sweden)

    Makoto Nishizuka

    2014-12-01

    Full Text Available KCNK10, a member of tandem pore domain potassium channel family, gives rise to leak K+ currents. It plays important roles in stabilizing the negative resting membrane potential and in counterbalancing depolarization. We previously demonstrated that kcnk10 expression is quickly elevated during the early stage of adipogenesis of 3T3-L1 cells and that reduction of kcnk10 expression inhibits adipocyte differentiation. However, the molecular mechanism of KCNK10 in adipocyte differentiation remains unclear. Here we revealed that kcnk10 is induced by 3-isobutyl-1-methylxanthine, a cyclic nucleotide phosphodiesterase inhibitor and a potent inducer of adipogenesis, during the early stage of adipocyte differentiation. We also demonstrated that KCNK10 functions as a positive regulator of mitotic clonal expansion (MCE, a necessary process for terminal differentiation. The reduction of kcnk10 expression repressed the expression levels of CCAAT/enhancer-binding protein β (C/EBPβ and C/EBPδ as well as the phosphorylation level of Akt during the early phase of adipogenesis. In addition, knockdown of kcnk10 expression suppressed insulin-induced Akt phosphorylation. These results indicate that KCNK10 contributes to the regulation of MCE through the control of C/EBPβ and C/EBPδ expression and insulin signaling.

  1. Amygdala reactivity to sad faces in preschool children: An early neural marker of persistent negative affect

    Directory of Open Access Journals (Sweden)

    Michael S. Gaffrey

    2016-02-01

    Conclusions: The current findings provide preliminary evidence for amygdala activity as a potential biomarker of persistent negative affect during early childhood and suggest future work examining the origins and long-term implications of this relationship is necessary.

  2. miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: mengxiangruibb2008@163.com [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Fan, Qingxia [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2016-01-29

    MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCC cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.

  3. Vitamin a is a negative regulator of osteoblast mineralization.

    Directory of Open Access Journals (Sweden)

    Thomas Lind

    Full Text Available An excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth. Whether the latter is a consequence of direct effects on bone or indirect effects on appetite and general growth is unknown. In this study we therefore used pair-feeding and dynamic histomorphometry to investigate the direct effect of a high intake of vitamin A on bone formation in rats. Although there were no differences in body weight or femur length compared to controls, there was an approximately halved bone formation and mineral apposition rate at the femur diaphysis of rats fed vitamin A. To try to clarify the mechanism(s behind this reduction, we treated primary human osteoblasts and a murine preosteoblastic cell line (MC3T3-E1 with the active metabolite of vitamin A; retinoic acid (RA, a retinoic acid receptor (RAR antagonist (AGN194310, and a Cyp26 inhibitor (R115866 which blocks endogenous RA catabolism. We found that RA, via RARs, suppressed in vitro mineralization. This was independent of a negative effect on osteoblast proliferation. Alkaline phosphatase and bone gamma carboxyglutamate protein (Bglap, Osteocalcin were drastically reduced in RA treated cells and RA also reduced the protein levels of Runx2 and Osterix, key transcription factors for progression to a mature osteoblast. Normal osteoblast differentiation involved up regulation of Cyp26b1, the major enzyme responsible for RA degradation, suggesting that a drop in RA signaling is required for osteogenesis analogous to what has been found for chondrogenesis. In addition, RA decreased Phex, an osteoblast/osteocyte protein necessary for mineralization. Taken together, our data indicate that vitamin A is a negative regulator of osteoblast mineralization.

  4. ST2 negatively regulates TLR2 signaling, but is not required for bacterial lipoprotein-induced tolerance.

    LENUS (Irish Health Repository)

    Liu, Jinghua

    2010-05-15

    Activation of TLR signaling is critical for host innate immunity against bacterial infection. Previous studies reported that the ST2 receptor, a member of the Toll\\/IL-1 receptor superfamily, functions as a negative regulator of TLR4 signaling and maintains LPS tolerance. However, it is undetermined whether ST2 negatively regulates TLR2 signaling and furthermore, whether a TLR2 agonist, bacterial lipoprotein (BLP)-induced tolerance is dependent on ST2. In this study, we show that BLP stimulation-induced production of proinflammatory cytokines and immunocomplex formation of TLR2-MyD88 and MyD88-IL-1R-associated kinase (IRAK) were significantly enhanced in ST2-deficient macrophages compared with those in wild-type controls. Furthermore, overexpression of ST2 dose-dependently attenuated BLP-induced NF-kappaB activation, suggesting a negative regulatory role of ST2 in TLR2 signaling. A moderate but significantly attenuated production of TNF-alpha and IL-6 on a second BLP stimulation was observed in BLP-pretreated, ST2-deficient macrophages, which is associated with substantially reduced IRAK-1 protein expression and downregulated TLR2-MyD88 and MyD88-IRAK immunocomplex formation. ST2-deficient mice, when pretreated with a nonlethal dose of BLP, benefitted from an improved survival against a subsequent lethal BLP challenge, indicating BLP tolerance develops in the absence of the ST2 receptor. Taken together, our results demonstrate that ST2 acts as a negative regulator of TLR2 signaling, but is not required for BLP-induced tolerance.

  5. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Won Hee Jung

    2010-11-01

    Full Text Available The fungal pathogen Cryptococcus neoformans is a major cause of illness in immunocompromised individuals such as AIDS patients. The ability of the fungus to acquire nutrients during proliferation in host tissue and the ability to elaborate a polysaccharide capsule are critical determinants of disease outcome. We previously showed that the GATA factor, Cir1, is a major regulator both of the iron uptake functions needed for growth in host tissue and the key virulence factors such as capsule, melanin and growth at 37°C. We are interested in further defining the mechanisms of iron acquisition from inorganic and host-derived iron sources with the goal of understanding the nutritional adaptation of C. neoformans to the host environment. In this study, we investigated the roles of the HAP3 and HAPX genes in iron utilization and virulence. As in other fungi, the C. neoformans Hap proteins negatively influence the expression of genes encoding respiratory and TCA cycle functions under low-iron conditions. However, we also found that HapX plays both positive and negative roles in the regulation of gene expression, including a positive regulatory role in siderophore transporter expression. In addition, HapX also positively regulated the expression of the CIR1 transcript. This situation is in contrast to the negative regulation by HapX of genes encoding GATA iron regulatory factors in Aspergillus nidulans and Schizosaccharomyces pombe. Although both hapX and hap3 mutants were defective in heme utilization in culture, only HapX made a contribution to virulence, and loss of HapX in a strain lacking the high-affinity iron uptake system did not cause further attenuation of disease. Therefore, HapX appears to have a minimal role during infection of mammalian hosts and instead may be an important regulator of environmental iron uptake functions. Overall, these results indicated that C. neoformans employs multiple strategies for iron acquisition during infection.

  6. Situation Selection and Modification for Emotion Regulation in Younger and Older Adults.

    Science.gov (United States)

    Livingstone, Kimberly M; Isaacowitz, Derek M

    2015-11-01

    This research investigated age differences in use and effectiveness of situation selection and situation modification for emotion regulation. Socioemotional selectivity theory suggests stronger emotional well-being goals in older age; emotion regulation may support this goal. Younger and older adults assigned to an emotion regulation or "just view" condition first freely chose to engage with negative, neutral, or positive material (situation selection), then chose to view or skip negative and positive material (situation modification), rating affect after each experience. In both tasks, older adults in both goal conditions demonstrated pro-hedonic emotion regulation, spending less time with negative material compared to younger adults. Younger adults in the regulate condition also engaged in pro-hedonic situation selection, but not modification. Whereas situation selection was related to affect, modification of negative material was not. This research supports more frequent pro-hedonic motivation in older age, as well as age differences in use of early-stage emotion regulation.

  7. Classes of Trajectory in Mobile Phone Dependency and the Effects of Negative Parenting on Them during Early Adolescence

    Science.gov (United States)

    Seo, Mijung; Choi, Eunsil

    2018-01-01

    The aim of this study was to identify the classes of trajectory in mobile phone dependency using growth mixture modeling among Korean early adolescents from elementary school to the middle school transition. The effects of negative parenting on determining the classes were also examined. The participants were 2,378 early adolescents in the Korean…

  8. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    Science.gov (United States)

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  9. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway

    OpenAIRE

    Yunxia Liu; Weibing Dong; Jing Shao; Yibin Wang; Meiyi Zhou; Haipeng Sun

    2017-01-01

    Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively cont...

  10. MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.

    Science.gov (United States)

    Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel

    2011-02-15

    At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.

  11. NKG2H-Expressing T Cells Negatively Regulate Immune Responses

    Directory of Open Access Journals (Sweden)

    Daniela Dukovska

    2018-03-01

    Full Text Available The biology and function of NKG2H receptor, unlike the better characterized members of the NKG2 family NKG2A, NKG2C, and NKG2D, remains largely unclear. Here, we show that NKG2H is able to associate with the signaling adapter molecules DAP12 and DAP10 suggesting that this receptor can signal for cell activation. Using a recently described NKG2H-specific monoclonal antibody (mAb, we have characterized the expression and function of lymphocytes that express this receptor. NKG2H is expressed at the cell surface of a small percentage of peripheral blood mononuclear cell (PBMC and is found more frequently on T cells, rather than NK cells. Moreover, although NKG2H is likely to trigger activation, co-cross-linking of this receptor with an NKG2H-specific mAb led to decreased T cell activation and proliferation in polyclonal PBMC cultures stimulated by anti-CD3 mAbs. This negative regulatory activity was seen only after cross-linking with NKG2H, but not NKG2A- or NKG2C-specific monoclonal antibodies. The mechanism underlying this negative effect is as yet unclear, but did not depend on the release of soluble factors or recognition of MHC class I molecules. These observations raise the intriguing possibility that NKG2H may be a novel marker for T cells able to negatively regulate T cell responses.

  12. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    Science.gov (United States)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  13. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.

    Science.gov (United States)

    Gamer, L W; Cox, K A; Small, C; Rosen, V

    2001-01-15

    GDF11, a new member of the TGF-beta gene superfamily, regulates anterior/posterior patterning in the axial skeleton during mouse embryogenesis. Gdf11 null mice display skeletal abnormalities that appear to represent anterior homeotic transformations of vertebrae consistent with high levels of Gdf11 expression in the primitive streak, presomitic mesoderm, and tail bud. However, despite strong Gdf11 expression in the limb throughout development, this structure does not appear to be affected in the knockout mice. In order to understand this dichotomy of Gdf11 expression versus Gdf11 function, we identified the chicken Gdf11 gene and studied its role during limb formation. In the early limb bud, Gdf11 transcripts are detected in the subectodermal mesoderm at the distal tip, in a region overlapping the progress zone. At these stages, Gdf11 is excluded from the central core mesenchyme where precartilaginous condensations will form. Later in development, Gdf11 continues to be expressed in the distal most mesenchyme and can also be detected more proximally, in between the forming skeletal elements. When beads incubated in GDF11 protein were implanted into the early wing bud, GDF11 caused severe truncations of the limb that affected both the cartilage elements and the muscle. Limb shortening appeared to be the result of an inhibition of chondrogenesis and myogenesis and using an in vitro micromass assay, we confirmed the negative effects of GDF11 on both myogenic and chondrogenic cell differentiation. Analysis of molecular markers of skeletal patterning revealed that GDF11 induced ectopic expression of Hoxd-11 and Hoxd-13, but not of Hoxa-11, Hoxa-13, or the Msx genes. These data suggest that GDF11 may be involved in controlling the late distal expression of the Hoxd genes during limb development and that misregulation of these Hox genes by excess GDF11 may cause some of the observed alterations in skeletal element shape. In addition, GDF11 induced the expression of its own

  14. Nfatc2 and Tob1 have non-overlapping function in T cell negative regulation and tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Sarah L May

    Full Text Available Nfatc2 and Tob1 are intrinsic negative regulators of T cell activation. Nfatc2-deficient and Tob1-deficient T cells show reduced thresholds of activation; however, whether these factors have independent or overlapping roles in negative regulation of T cell responses has not been previously examined. Here, we show that Nfatc2 knockout (KO but not Tob1 KO mice have age-associated accumulation of persistently activated T cells in vivo and expansion of the CD44+ memory cell compartment and age-associated lymphocytic infiltrates in visceral organs, without significant changes in numbers of CD4+CD25+Foxp3+ regulatory T cells (Treg. In vitro, CD4+CD25- "conventional" T cells (Tconvs from both KO strains showed greater proliferation than wild type (WT Tconvs. However, while Tregs from Nfatc2 KO mice retained normal suppressive function, Tregs from Tob1 KOs had enhanced suppressive activity. Nfatc2 KO Tconvs expanded somewhat more rapidly than WT Tconvs under conditions of homeostatic proliferation, but their accelerated growth capacity was negated, at least acutely, in a lymphoreplete environment. Finally, Nfatc2 KO mice developed a previously uncharacterized increase in B-cell malignancies, which was not accelerated by the absence of Tob1. The data thus support the prevailing hypothesis that Nfatc2 and Tob1 are non-redundant regulators of lymphocyte homeostasis.

  15. Claudin-2 is an independent negative prognostic factor in breast cancer and specifically predicts early liver recurrences.

    Science.gov (United States)

    Kimbung, Siker; Kovács, Anikó; Bendahl, Pär-Ola; Malmström, Per; Fernö, Mårten; Hatschek, Thomas; Hedenfalk, Ingrid

    2014-02-01

    Predicting any future metastatic site of early-stage breast cancer is important as it significantly influences the prognosis of advanced disease. This study aimed at investigating the potential of claudin-2, over-expressed in breast cancer liver metastases, as a biomarker for predicting liver metastatic propensity in primary breast cancer. Claudin-2 expression was analyzed in two independent cohorts. Cohort 1 included 304 women with metastatic breast cancer diagnosed between 2002 and 2007, while cohort 2 included 237 premenopausal women with early-stage node-negative breast cancer diagnosed between 1991 and 1994. Global transcriptional profiling of fine-needle aspirates from metastases was performed, followed by immunohistochemical analyses in archival primary tumor tissue. Associations between claudin-2 expression and relapse site were assessed by univariable and multivariable Cox regression models including conventional prognostic factors. Two-sided statistical tests were used. CLDN2 was significantly up-regulated (P diagnosis and liver-specific recurrence was observed among patients with high levels of claudin-2 expression in the primary tumor (cohort 1, HR = 2.3, 95% CI = 1.3-3.9). These results suggest a novel role for claudin-2 as a prognostic biomarker with the ability to predict not only the likelihood of a breast cancer recurrence, but more interestingly, the liver metastatic potential of the primary tumor. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Integrating and differentiating aspects of self-regulation: effortful control, executive functioning, and links to negative affectivity.

    Science.gov (United States)

    Bridgett, David J; Oddi, Kate B; Laake, Lauren M; Murdock, Kyle W; Bachmann, Melissa N

    2013-02-01

    Subdisciplines within psychology frequently examine self-regulation from different frameworks despite conceptually similar definitions of constructs. In the current study, similarities and differences between effortful control, based on the psychobiological model of temperament (Rothbart, Derryberry, & Posner, 1994), and executive functioning are examined and empirically tested in three studies (n = 509). Structural equation modeling indicated that effortful control and executive functioning are strongly associated and overlapping constructs (Study 1). Additionally, results indicated that effortful control is related to the executive function of updating/monitoring information in working memory, but not inhibition (Studies 2 and 3). Study 3 also demonstrates that better updating/monitoring information in working memory and better effortful control were uniquely linked to lower dispositional negative affect, whereas the executive function of low/poor inhibition was uniquely associated with an increased tendency to express negative affect. Furthermore, dispositional negative affect mediated the links between effortful control and, separately, the executive function of updating/monitoring information in working memory and the tendency to express negative affect. The theoretical implications of these findings are discussed, and a potential framework for guiding future work directed at integrating and differentiating aspects of self-regulation is suggested. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  17. Moving to the Beat: Using Music, Rhythm, and Movement to Enhance Self-Regulation in Early Childhood Classrooms

    Science.gov (United States)

    Williams, Kate E.

    2018-01-01

    Differences in early self-regulation skills contribute to disparities in success in early learning and school transition, as well as in childhood well-being. Self-regulation refers to managing emotional, cognitive, and behavioral processes that are conducive to positive adjustment and social relationships. Researchers have identified that various…

  18. A large family of antivirulence regulators modulates the effects of transcriptional activators in Gram-negative pathogenic bacteria.

    Directory of Open Access Journals (Sweden)

    Araceli E Santiago

    2014-05-01

    Full Text Available We have reported that transcription of a hypothetical small open reading frame (orf60 in enteroaggregative E. coli (EAEC strain 042 is impaired after mutation of aggR, which encodes a global virulence activator. We have also reported that the cryptic orf60 locus was linked to protection against EAEC diarrhea in two epidemiologic studies. Here, we report that the orf60 product acts as a negative regulator of aggR itself. The orf60 protein product lacks homology to known repressors, but displays 44-100% similarity to at least fifty previously undescribed small (<10 kDa hypothetical proteins found in many gram negative pathogen genomes. Expression of orf60 homologs from enterotoxigenic E. coli (ETEC repressed the expression of the AraC-transcriptional ETEC regulator CfaD/Rns and its regulon in ETEC strain H10407. Complementation in trans of EAEC 042orf60 by orf60 homologs from ETEC and the mouse pathogen Citrobacter rodentium resulted in dramatic suppression of aggR. A C. rodentium orf60 homolog mutant showed increased levels of activator RegA and increased colonization of the adult mouse. We propose the name Aar (AggR-activated regulator for the clinically and epidemiologically important orf60 product in EAEC, and postulate the existence of a large family of homologs among pathogenic Enterobacteriaceae and Pasteurellaceae. We propose the name ANR (AraC Negative Regulators for this family.

  19. Brassinosteroid-Induced Transcriptional Repression and Dephosphorylation-Dependent Protein Degradation Negatively Regulate BIN2-Interacting AIF2 (a BR Signaling-Negative Regulator) bHLH Transcription Factor.

    Science.gov (United States)

    Kim, Yoon; Song, Ji-Hye; Park, Seon-U; Jeong, You-Seung; Kim, Soo-Hwan

    2017-02-01

    Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Role of NeuroD1 on the negative regulation of Pomc expression by glucocorticoid.

    Directory of Open Access Journals (Sweden)

    Rehana Parvin

    Full Text Available The mechanism of the negative regulation of proopiomelanocortin gene (Pomc by glucocorticoids (Gcs is still unclear in many points. Here, we demonstrated the involvement of neurogenic differentiation factor 1 (NeuroD1 in the Gc-mediated negative regulation of Pomc. Murine pituitary adrenocorticotropic hormone (ACTH producing corticotroph tumor-derived AtT20 cells were treated with dexamethasone (DEX (1-100 nM and cultured for 24 hrs. Thereafter, Pomc mRNA expression was studied by quantitative real-time PCR and rat Pomc promoter (-703/+58 activity was examined by luciferase assay. Both Pomc mRNA expression and Pomc promoter activity were inhibited by DEX in a dose-dependent manner. Deletion and point mutant analyses of Pomc promoter suggested that the DEX-mediated transcriptional repression was mediated via E-box that exists at -376/-371 in the promoter. Since NeuroD1 is known to bind to and activate E-box of the Pomc promoter, we next examined the effect of DEX on NeuroD1 expression. Interestingly, DEX dose-dependently inhibited NeuroD1 mRNA expression, mouse NeuroD1 promoter (-2.2-kb activity, and NeuroD1 protein expression in AtT20 cells. In addition, we confirmed the inhibitory effect of DEX on the interaction of NeuroD1 and E-box on Pomc promoter by chromatin immunoprecipitation (ChIP assay. Finally, overexpression of mouse NeuroD1 could rescue the DEX-mediated inhibition of Pomc mRNA expression and Pomc promoter activity. Taken together, it is suggested that the suppression of NeuroD1 expression and the inhibition of NeuroD1/E-box interaction may play an important role in the Gc-mediated negative regulation of Pomc.

  1. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    Science.gov (United States)

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  2. Regulation of fertilization and early seed development.

    Science.gov (United States)

    Dresselhaus, Thomas; Doughty, James

    2014-04-01

    Plant reproduction meetings often deal either with pre-fertilization processes such as flowering and pollen biology or post-fertilization processes such as embryogenesis and seed development. The Biochemical Society Focused Meeting entitled 'Regulation of Fertilization and Early Seed Development' was organized to close this gap and to discuss mechanistic similarities and future research directions in the reproductive processes shortly before, during and after fertilization. As an outcome of the workshop, invited speakers and a few selected oral communication presenters contributed focused reviews and technical articles for this issue of Biochemical Society Transactions. We provide here a short overview of the contents and highlights of the various articles.

  3. Management of the clinically negative neck in early-stage head and neck cancers after transoral resection

    NARCIS (Netherlands)

    Rodrigo, J.P.; Shah, J.P.; Silver, C.E.; Medina, J.E.; Takes, R.P.; Robbins, K.T.; Rinaldo, A.; Werner, J.A.; Ferlito, A.

    2011-01-01

    The decision regarding treatment of the clinically negative neck has been debated extensively. This is particularly true with early-stage tumors for which surgery is the treatment of choice, and the tumor has been resected transorally without a cervical incision. Elective neck dissection in this

  4. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos

    Directory of Open Access Journals (Sweden)

    Jeffrey C. Medley

    2017-01-01

    Full Text Available Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2 in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner.

  5. Spiders do not evoke greater early posterior negativity in the event-related potential as snakes.

    Science.gov (United States)

    He, Hongshen; Kubo, Kenta; Kawai, Nobuyuki

    2014-09-10

    It has been long believed that both snakes and spiders are archetypal fear stimuli for humans. Furthermore, snakes have been assumed as stronger threat cues for nonhuman primates. However, it is still unclear whether spiders hold a special status in human perception. The current study explored to what extent spider pictures draw early visual attention [as assessed with early posterior negativity (EPN)] when compared with insects similar to spiders. To measure the EPN, participants watched a random rapid serial presentation of pictures, which consisted of two conditions: spider condition (spider, wasp, bumblebee, beetle) and snake condition (snake, bird). EPN amplitudes revealed no significant difference between spider, wasp, bumblebee, and beetle pictures, whereas EPN amplitudes were significantly larger for snake pictures relative to bird pictures. In addition, EPN amplitudes were significantly larger for snake pictures relative to spider pictures. These results suggest that the early visual attentional capture of animate objects is stronger for snakes, whereas spiders do not appear to hold special early attentional value.

  6. Peroxiredoxin II is an antioxidant enzyme that negatively regulates collagen-stimulated platelet function.

    Science.gov (United States)

    Jang, Ji Yong; Wang, Su Bin; Min, Ji Hyun; Chae, Yun Hee; Baek, Jin Young; Yu, Dae-Yeul; Chang, Tong-Shin

    2015-05-01

    Collagen-induced platelet signaling is mediated by binding to the primary receptor glycoprotein VI (GPVI). Reactive oxygen species produced in response to collagen have been found to be responsible for the propagation of GPVI signaling pathways in platelets. Therefore, it has been suggested that antioxidant enzymes could down-regulate GPVI-stimulated platelet activation. Although the antioxidant enzyme peroxiredoxin II (PrxII) has emerged as having a role in negatively regulating signaling through various receptors by eliminating H2O2 generated upon receptor stimulation, the function of PrxII in collagen-stimulated platelets is not known. We tested the hypothesis that PrxII negatively regulates collagen-stimulated platelet activation. We analyzed PrxII-deficient murine platelets. PrxII deficiency enhanced GPVI-mediated platelet activation through the defective elimination of H2O2 and the impaired protection of SH2 domain-containing tyrosine phosphatase 2 (SHP-2) against oxidative inactivation, which resulted in increased tyrosine phosphorylation of key components for the GPVI signaling cascade, including Syk, Btk, and phospholipase Cγ2. Interestingly, PrxII-mediated antioxidative protection of SHP-2 appeared to occur in the lipid rafts. PrxII-deficient platelets exhibited increased adhesion and aggregation upon collagen stimulation. Furthermore, in vivo experiments demonstrated that PrxII deficiency facilitated platelet-dependent thrombus formation in injured carotid arteries. This study reveals that PrxII functions as a protective antioxidant enzyme against collagen-stimulated platelet activation and platelet-dependent thrombosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Transcriptional factor PU.1 regulates decidual C1q expression in early pregnancy in human

    Directory of Open Access Journals (Sweden)

    Priyaa Madhukaran Raj

    2015-02-01

    Full Text Available C1q is the first recognition subcomponent of the complement classical pathway, which in addition to being synthesized in the liver, is also expressed by macrophages and dendritic cells. Trophoblast invasion during early placentation results in accumulation of debris that triggers the complement system. Hence, both early and late components of the classical pathway are widely distributed in the placenta and decidua. In addition, C1q has recently been shown to significantly contribute to feto-maternal tolerance, trophoblast migration, and spiral artery remodeling, although the exact mechanism remains unknown. Pregnancy in mice, genetically deficient in C1q, mirrors symptoms similar to that of human preeclampsia. Thus, regulated complement activation has been proposed as an essential requirement for normal successful pregnancy. Little is known about the molecular pathways that regulate C1q expression in pregnancy. PU.1, an Ets-family transcription factor, is required for the development of hematopoietic myeloid lineage immune cells, and its expression is tissue- specific. Recently, PU.1 has been shown to regulate C1q gene expression in dendritic cells and macrophages. Here, we have examined if PU.1 transcription factor regulates decidual C1q expression. We used immune-histochemical analysis, PCR and immunostaining to localize and study the gene expression of PU.1 transcription factor in early human decidua. PU.1 was highly expressed at gene and protein level in early human decidual cells including trophoblast and stromal cells. Surprisingly, nuclear as well as cytoplasmic PU.1 expression was observed. Decidual cells with predominantly nuclear PU.1 expression had higher C1q expression. It is likely that nuclear and cytoplasmic PU.1 localization has a role to play in early pregnancy via regulating C1q expression in the decidua during implantation.

  8. An Early Years Toolbox for Assessing Early Executive Function, Language, Self-Regulation, and Social Development: Validity, Reliability, and Preliminary Norms.

    Science.gov (United States)

    Howard, Steven J; Melhuish, Edward

    2017-06-01

    Several methods of assessing executive function (EF), self-regulation, language development, and social development in young children have been developed over previous decades. Yet new technologies make available methods of assessment not previously considered. In resolving conceptual and pragmatic limitations of existing tools, the Early Years Toolbox (EYT) offers substantial advantages for early assessment of language, EF, self-regulation, and social development. In the current study, results of our large-scale administration of this toolbox to 1,764 preschool and early primary school students indicated very good reliability, convergent validity with existing measures, and developmental sensitivity. Results were also suggestive of better capture of children's emerging abilities relative to comparison measures. Preliminary norms are presented, showing a clear developmental trajectory across half-year age groups. The accessibility of the EYT, as well as its advantages over existing measures, offers considerably enhanced opportunities for objective measurement of young children's abilities to enable research and educational applications.

  9. Perceived maternal autonomy-support and early adolescent emotion regulation: a longitudinal study

    OpenAIRE

    Brenning, Katrijn; Soenens, Bart; Van Petegem, Stijn; Vansteenkiste, Maarten

    2015-01-01

    This study investigated longitudinal associations between perceived maternal autonomy-supportive parenting and early adolescents' use of three emotion regulation (ER) styles: emotional integration, suppressive regulation, and dysregulation. We tested whether perceived maternal autonomy support predicted changes in ER and whether these ER styles, in turn, related to changes in adjustment (i.e., depressive symptoms, self-esteem). Participants (N= 311, mean age at Time 1 = 12.04) reported on per...

  10. PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading.

    Science.gov (United States)

    Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J

    2001-09-18

    It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.

  11. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana

    OpenAIRE

    Besseau, Sébastien; Li, Jing; Palva, E. Tapio

    2012-01-01

    The plant-specific WRKY transcription factor (TF) family with 74 members in Arabidopsis thaliana appears to be involved in the regulation of various physiological processes including plant defence and senescence. WRKY53 and WRKY70 were previously implicated as positive and negative regulators of senescence, respectively. Here the putative function of other WRKY group III proteins in Arabidopsis leaf senescence has been explored and the results suggest the involvement of two additional WRKY TF...

  12. The negative cell cycle regulator, Tob (transducer of ErbB-2), is involved in motor skill learning

    International Nuclear Information System (INIS)

    Wang Xinming; Gao Xiang; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming

    2006-01-01

    Tob (transducer of ErbB-2) is a negative cell cycle regulator with anti-proliferative activity in peripheral tissues. Our previous study identified Tob as a protein involved in hippocampus-dependent memory consolidation (M.L. Jin, X.M. Wang, Y.Y. Tu, X.H. Zhang, X. Gao, N. Guo, Z.Q. Xie, G.P. Zhao, N.H. Jing, B.M. Li, Y.Yu, The negative cell cycle regulator, Tob (Transducer of ErbB-2), is a multifunctional protein involved in hippocampus-dependent learning and memory, Neuroscience 131 (2005) 647-659). Here, we provide evidence that Tob in the central nervous system is engaged in acquisition of motor skill. Tob has a relatively high expression in the cerebellum. Tob expression is up-regulated in the cerebellum after rats receive training on a rotarod-running task. Rats infused with Tob antisense oligonucleotides into the 4th ventricle exhibit a severe deficit in running on a rotating rod or walking across a horizontally elevated beam

  13. Exchange rate behavior with negative interest rates: Some early negative observations

    OpenAIRE

    Hameed, Allaudeen S.; Rose, Andrew

    2017-01-01

    This paper examines exchange rate behavior during the recent period with negative nominal interest rates. We use a daily panel of data on 61 currencies from January 2010 through May 2016, during which five economies - Denmark, the European Economic and Monetary Union, Japan, Sweden, and Switzerland - experienced negative nominal interest rates. We examine both effective exchange rates and bilateral rates; the latter typically measured against the Swiss franc since Switzerland has had the long...

  14. SACE_3986, a TetR family transcriptional regulator, negatively controls erythromycin biosynthesis in Saccharopolyspora erythraea.

    Science.gov (United States)

    Wu, Panpan; Pan, Hui; Zhang, Congming; Wu, Hang; Yuan, Li; Huang, Xunduan; Zhou, Ying; Ye, Bang-ce; Weaver, David T; Zhang, Lixin; Zhang, Buchang

    2014-07-01

    Erythromycin, a medically important antibiotic, is produced by Saccharopolyspora erythraea. Unusually, the erythromycin biosynthetic gene cluster lacks a regulatory gene, and the regulation of its biosynthesis remains largely unknown. In this study, through gene deletion, complementation and overexpression experiments, we identified a novel TetR family transcriptional regulator SACE_3986 negatively regulating erythromycin biosynthesis in S. erythraea A226. When SACE_3986 was further inactivated in an industrial strain WB, erythromycin A yield of the mutant was increased by 54.2 % in average compared with that of its parent strain, displaying the universality of SACE_3986 as a repressor for erythromycin production in S. erythraea. qRT-PCR analysis indicated that SACE_3986 repressed the transcription of its adjacent gene SACE_3985 (which encodes a short-chain dehydrogenase/reductase), erythromycin biosynthetic gene eryAI and the resistance gene ermE. As determined by EMSA analysis, purified SACE_3986 protein specifically bound to the intergenic region between SACE_3985 and SACE_3986, whereas it did not bind to the promoter regions of eryAI and ermE. Furthermore, overexpression of SACE_3985 in A226 led to enhanced erythromycin A yield by at least 32.6 %. These findings indicate that SACE_3986 is a negative regulator of erythromycin biosynthesis, and the adjacent gene SACE_3985 is one of its target genes. The present study provides a basis to increase erythromycin production by engineering of SACE_3986 and SACE_3985 in S. erythraea.

  15. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice.

    Science.gov (United States)

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Watanabe, Mutsumi; Hoefgen, Rainer; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2014-02-01

    Grain quality is an important agricultural trait that is mainly determined by grain size and composition. Here, we characterize the role of the rice transcription factor (TF) SALT-RESPONSIVE ERF1 (SERF1) during grain development. Through genome-wide expression profiling and chromatin immunoprecipitation, we found that SERF1 directly regulates RICE PROLAMIN-BOX BINDING FACTOR (RPBF), a TF that functions as a positive regulator of grain filling. Loss of SERF1 enhances RPBF expression resulting in larger grains with increased starch content, while SERF1 overexpression represses RPBF resulting in smaller grains. Consistently, during grain filling, starch biosynthesis genes such as GRANULE-BOUND STARCH SYNTHASEI (GBSSI), STARCH SYNTHASEI (SSI), SSIIIa, and ADP-GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT2 (AGPL2) are up-regulated in SERF1 knockout grains. Moreover, SERF1 is a direct upstream regulator of GBSSI. In addition, SERF1 negatively regulates germination by controlling RPBF expression, which mediates the gibberellic acid (GA)-induced expression of RICE AMYLASE1A (RAmy1A). Loss of SERF1 results in more rapid seedling establishment, while SERF1 overexpression has the opposite effect. Our study reveals that SERF1 represents a negative regulator of grain filling and seedling establishment by timing the expression of RPBF.

  16. MicroRNA, miR-374b, directly targets Myf6 and negatively regulates C2C12 myoblasts differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan; Sun, Xiaorui; Xu, Dequan; Xiong, Yuanzhu; Zuo, Bo, E-mail: zuobo@mail.hzau.edu.cn

    2015-11-27

    Myogenesis is a complex process including myoblast proliferation, differentiation and myotube formation and is controlled by myogenic regulatory factors (MRFs), MyoD, MyoG, Myf5 and Myf6 (also known as MRF4). MicroRNA is a kind of ∼22 nt-long non-coding small RNAs, and act as key transcriptional or post-transcriptional regulators of gene expression. Identification of miRNAs involved in the regulation of muscle genes could improve our understanding of myogenesis process. In this study, we investigated the regulation of Myf6 gene by miRNAs. We showed that miR-374b specifically bound to the 3'untranslated region (UTR) of Myf6 and down-regulated the expression of Myf6 gene at both mRNA and protein level. Furthermore, miR-374b is ubiquitously expressed in the tissues of adult C57BL6 mouse, and the mRNA abundance increases first and then decreases during C2C12 myoblasts differentiation. Over-expression of miR-374b impaired C2C12 cell differentiation, while inhibiting miR-374b expression by 2′-O-methyl antisense oligonucleotides promoted C2C12 cell differentiation. Taken together, our findings identified miR-374b directly targets Myf6 and negatively regulates myogenesis. - Highlights: • MiR-374b directly targets 3′UTR of Myf6. • MiR-374b negatively regulates Myf6 in C2C12 cells. • MiR-374b abundance significiently changes during C2C12 cells differentiation. • MiR-374b negatively regulates C2C12 cells differentiation.

  17. EGR-1 and DUSP-1 are important negative regulators of pro-allergic responses in airway epithelium

    NARCIS (Netherlands)

    Golebski, Korneliusz; van Egmond, Danielle; de Groot, Esther J.; Roschmann, Kristina I. L.; Fokkens, Wytske J.; van Drunen, Cornelis M.

    2015-01-01

    Background: Primary nasal epithelium of house dust mite allergic individuals is in a permanently activated inflammatory transcriptional state. Objective: To investigate whether a deregulated expression of EGR-1 and/or DUSP-1, two potential negative regulators of pro-inflammatory responses, could

  18. Grass Carp Laboratory of Genetics and Physiology 2 Serves As a Negative Regulator in Retinoic Acid-Inducible Gene I- and Melanoma Differentiation-Associated Gene 5-Mediated Antiviral Signaling in Resting State and Early Stage of Grass Carp Reovirus Infection

    OpenAIRE

    Rao, Youliang; Wan, Quanyuan; Yang, Chunrong; Su, Jianguo

    2017-01-01

    Laboratory of genetics and physiology 2 (LGP2) is a key component of RIG-I-like receptors (RLRs). However, the lack of the caspase recruitment domains (CARDs) results in its controversial functional performance as a negative or positive regulator in antiviral responses. Especially, no sufficient evidence uncovers the functional mechanisms of LGP2 in RLR signaling pathways in teleost. Here, negative regulation mechanism of LGP2 in certain situations in retinoic acid-inducible gene I (RIG-I) an...

  19. Positive and Negative Self-Esteem Among Ethnic Minority Early Adolescents : Social and Cultural Sources and Threats

    NARCIS (Netherlands)

    Verkuyten, Maykel

    2003-01-01

    This paper uses data from a large-scale study (N D 1070) of Turkish and Moroccan early adolescents in the Netherlands. In it, it was found that a distinction between positive and negative self-esteem as 2 relatively independent dimensions of global self-esteem could be made. Other results were that

  20. BRAFV600E Negatively Regulates the AKT Pathway in Melanoma Cell Lines

    OpenAIRE

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F.; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamy...

  1. Fat mass and obesity associated gene (FTO expression is regulated negatively by the transcription factor Foxa2.

    Directory of Open Access Journals (Sweden)

    Jianjin Guo

    Full Text Available Fat mass and obesity associated gene (FTO is the first gene associated with body mass index (BMI and risk for diabetes. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. To investigate the transcriptional regulation of FTO expression, we created 5'-deletion constructs of the FTO promoter to determine which transcription factors are most relevant to FTO expression. The presence of an activation region at -201/+34 was confirmed by luciferase activity analysis. A potential Foxa2 (called HNF-3β binding site and an upstream stimulatory factor (USF-binding site was identified in the -100 bp fragment upstream of the transcription start site (TSS. Furthermore, using mutagenesis, we identified the Foxa2 binding sequence (-26/-14 as a negative regulatory element to the activity of the human FTO promoter. The USF binding site did not affect the FTO promoter activity. Chromatin immunoprecipitation (ChIP assays were performed to confirm Foxa2 binding to the FTO promoter. Overexpression of Foxa2 in HEK 293 cells significantly down-regulated FTO promoter activity and expression. Conversely, knockdown of Foxa2 by siRNA significantly up-regulated FTO expression. These findings suggest that Foxa2 negatively regulates the basal transcription and expression of the human FTO gene.

  2. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  3. delta-EF1 is a negative regulator of Ihh in the developing growth plate.

    Science.gov (United States)

    Bellon, Ellen; Luyten, Frank P; Tylzanowski, Przemko

    2009-11-30

    Indian hedgehog (Ihh) regulates proliferation and differentiation of chondrocytes in the growth plate. Although the biology of Ihh is currently well documented, its transcriptional regulation is poorly understood. delta-EF1 is a two-handed zinc finger/homeodomain transcriptional repressor. Targeted inactivation of mouse delta-EF1 leads to skeletal abnormalities including disorganized growth plates, shortening of long bones, and joint fusions, which are reminiscent of defects associated with deregulation of Ihh signaling. Here, we show that the absence of delta-EF1 results in delayed hypertrophic differentiation of chondrocytes and increased cell proliferation in the growth plate. Further, we demonstrate that delta-EF1 binds to the putative regulatory elements in intron 1 of Ihh in vitro and in vivo, resulting in down-regulation of Ihh expression. Finally, we show that delta-EF1 haploinsufficiency leads to a postnatal increase in trabecular bone mass associated with enhanced Ihh expression. In summary, we have identified delta-EF1 as an in vivo negative regulator of Ihh expression in the growth plate.

  4. Evaluation of the Preschool Situational Self-Regulation Toolkit (PRSIST) Program for Supporting children's early self-regulation development: study protocol for a cluster randomized controlled trial.

    Science.gov (United States)

    Howard, Steven J; Vasseleu, Elena; Neilsen-Hewett, Cathrine; Cliff, Ken

    2018-01-24

    For children with low self-regulation in the preschool years, the likelihood of poorer intellectual, health, wealth and anti-social outcomes in adulthood is overwhelming. Yet this knowledge has not yielded a framework for understanding self-regulatory change, nor generated particularly successful methods for enacting this change. Reconciling insights from cross-disciplinary theory, research and practice, this study seeks to implement a newly developed program of low-cost and routine practices and activities for supporting early self-regulatory development within preschool contexts and to evaluate its effect on children's self-regulation, executive function and school readiness; and educator perceived knowledge, attitudes and self-efficacy related to self-regulation. The Early Start to Self-Regulation study is a cluster randomized, controlled trial for evaluating benefits of the Preschool Situational Self-Regulation Toolkit (PRSIST) program, when implemented by early childhood educators, compared with routine practice. The PRSIST program combines professional learning, adult practices, child activities and connections to the home to support children's self-regulation development. Fifty preschool centers in New South Wales, Australia, will be selected to ensure a range of characteristics, namely: National Quality Standards (NQS) ratings, geographic location and socioeconomic status. After collection of baseline child and educator data, participating centers will then be randomly allocated to one of two groups, stratified by NQS rating: (1) an intervention group (25 centers) that will implement the PRSIST program; or (2) a control group (25 centers) that will continue to engage in practice as usual. Primary outcomes at the child level will be two measures of self-regulation: Head-Toes-Knees-Shoulders task and the PRSIST observational assessment. Secondary outcomes at the child level will be adult-reported measures of child self-regulation, executive function and

  5. Post-transcriptional regulation of macrophage ABCA1, an early response gene to IFN-γ

    International Nuclear Information System (INIS)

    Alfaro Leon, Martha Leticia; Evans, Glenn F.; Farmen, Mark W.; Zuckerman, Steven H.

    2005-01-01

    Interferon-γ (IFN-γ) down-regulates receptors associated with reverse cholesterol transport including ABCA1. In the present study, the kinetics and mechanism of ABCA1 down-regulation were determined in mouse peritoneal macrophages. IFN-γ decreased ABCA1 mRNA 1 h following IFN-γ addition and was maximally reduced by 3 h. Down-regulation was protein synthesis dependent and involved post-transcriptional processes. ABCA1 message had a T 1/2 of 115 min in actinomycin treated cells that was reduced to a T 1/2 of 37 min by IFN-γ. The decrease in message stability was also associated with a rapid loss of ABCA1 protein, significant 3 h following IFN-γ addition. The kinetics of ABCA1 message and protein decrease was consistent with the early IFN-γ-induced changes in Stat1 phosphorylation and nuclear translocation observed in these cells. Therefore, ABCA1 can be considered as an early response gene to macrophage activation by IFN-γ with down-regulation occurring by message destabilization

  6. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela; Raveh-Amit, Hadas; Frost, Sigal A.; Livneh, Etta, E-mail: etta@bgu.ac.il

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.

  7. Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T₃in the mouse cerebral cortex.

    Science.gov (United States)

    Hernandez, Arturo; Morte, Beatriz; Belinchón, Mónica M; Ceballos, Ainhoa; Bernal, Juan

    2012-06-01

    Thyroid hormones regulate brain development and function through the control of gene expression, mediated by binding of T(3) to nuclear receptors. Brain T(3) concentration is tightly controlled by homeostatic mechanisms regulating transport and metabolism of T(4) and T(3). We have examined the role of the inactivating enzyme type 3 deiodinase (D3) in the regulation of 43 thyroid hormone-dependent genes in the cerebral cortex of 30-d-old mice. D3 inactivation increased slightly the expression of two of 22 positively regulated genes and significantly decreased the expression of seven of 21 negatively regulated genes. Administration of high doses of T(3) led to significant changes in the expression of 12 positive genes and three negative genes in wild-type mice. The response to T(3) treatment was enhanced in D3-deficient mice, both in the number of genes and in the amplitude of the response, demonstrating the role of D3 in modulating T(3) action. Comparison of the effects on gene expression observed in D3 deficiency with those in hypothyroidism, hyperthyroidism, and type 2 deiodinase (D2) deficiency revealed that the negative genes are more sensitive to D2 and D3 deficiencies than the positive genes. This observation indicates that, in normal physiological conditions, D2 and D3 play critical roles in maintaining local T(3) concentrations within a very narrow range. It also suggests that negatively and positively regulated genes do not have the same physiological significance or that their regulation by thyroid hormone obeys different paradigms at the molecular or cellular levels.

  8. Treatment outcome in patients with triple negative early stage breast cancers compared with other molecular subtypes

    International Nuclear Information System (INIS)

    Kim, Ja Young; Chang, Sei Kyung; Lee, Bo Mi; Shin, Hyun Soo; Park, Heily

    2012-01-01

    To determine whether triple negative (TN) early stage breast cancers have poorer survival rates compared with other molecular types. Between August 2000 and July 2006, patients diagnosed with stage I, II early stage breast cancers, in whom all three markers (estrogen receptor, progesterone receptor, and human epidermal growth factor receptor [HER]-2) were available and treated with modified radical mastectomy or breast conserving surgery followed by radiotherapy, were retrospectively reviewed. Of 446 patients, 94 (21.1%) were classified as TN, 57 (12.8%) as HER-2 type, and 295 (66.1%) as luminal. TN was more frequently associated with young patients younger than 35 years old (p = 0.002), higher histologic grade (p 0.05). We found that patients with TN early stage breast cancers had no difference in survival rates compared with other molecular subtypes. Prospective study in homogeneous treatment group will need for a prognosis of TN early stage breast cancer.

  9. MYB52 Negatively Regulates Pectin Demethylesterification in Seed Coat Mucilage.

    Science.gov (United States)

    Shi, Dachuan; Ren, Angyan; Tang, Xianfeng; Qi, Guang; Xu, Zongchang; Chai, Guohua; Hu, Ruibo; Zhou, Gongke; Kong, Yingzhen

    2018-04-01

    Pectin, which is a major component of the plant primary cell walls, is synthesized and methyl-esterified in the Golgi apparatus and then demethylesterified by pectin methylesterases (PMEs) located in the cell wall. The degree of methylesterification affects the functional properties of pectin, and thereby influences plant growth, development and defense. However, little is known about the mechanisms that regulate pectin demethylesterification. Here, we show that in Arabidopsis ( Arabidopsis thaliana ) seed coat mucilage, the absence of the MYB52 transcription factor is correlated with an increase in PME activity and a decrease in the degree of pectin methylesterification. Decreased methylesterification in the myb52 mutant is also correlated with an increase in the calcium content of the seed mucilage. Chromatin immunoprecipitation analysis and molecular genetic studies suggest that MYB52 transcriptionally activates PECTIN METHYLESTERASE INHIBITOR6 ( PMEI6 ), PMEI14 , and SUBTILISIN-LIKE SER PROTEASE1.7 ( SBT1.7 ) by binding to their promoters. PMEI6 and SBT1.7 have previously been shown to be involved in seed coat mucilage demethylesterification. Our characterization of two PMEI14 mutants suggests that PMEI14 has a role in seed coat mucilage demethylesterification, although its activity may be confined to the seed coat in contrast to PMEI6, which functions in the whole seed. Our demonstration that MYB52 negatively regulates pectin demethylesterification in seed coat mucilage, and the identification of components of the molecular network involved, provides new insight into the regulatory mechanism controlling pectin demethylesterification and increases our understanding of the transcriptional regulation network involved in seed coat mucilage formation. © 2018 American Society of Plant Biologists. All Rights Reserved.

  10. Emotional and Adrenocortical Regulation in Early Adolescence: Prediction by Attachment Security and Disorganization in Infancy

    Science.gov (United States)

    Spangler, Gottfried; Zimmermann, Peter

    2014-01-01

    The aim of the present study was to examine differences in emotion expression and emotion regulation in emotion-eliciting situations in early adolescence from a bio-psycho-social perspective, specifically investigating the influence of early mother-infant attachment and attachment disorganization on behavioural and adrenocortical responses. The…

  11. Immune Regulator MCPIP1 Modulates TET Expression during Early Neocortical Development

    Directory of Open Access Journals (Sweden)

    Huihui Jiang

    2016-09-01

    Full Text Available MCPIP1 is a recently identified immune regulator that plays critical roles in preventing immune disorders, and is also present in the brain. Currently an unresolved question remains as to how MCPIP1 performs its non-immune functions in normal brain development. Here, we report that MCPIP1 is abundant in neural progenitor cells (NPCs and newborn neurons during the early stages of neurogenesis. The suppression of MCPIP1 expression impairs normal neuronal differentiation, cell-cycle exit, and concomitant NPC proliferation. MCPIP1 is important for maintenance of the NPC pool. Notably, we demonstrate that MCPIP1 reduces TET (TET1/TET2/TET3 levels and then decreases 5-hydroxymethylcytosine levels. Furthermore, the MCPIP1 interaction with TETs is involved in neurogenesis and in establishing the proper number of NPCs in vivo. Collectively, our findings not only demonstrate that MCPIP1 plays an important role in early cortical neurogenesis but also reveal an unexpected link between neocortical development, immune regulators, and epigenetic modification.

  12. Mechanisms of JAK/STAT pathway negative regulation by the short coreceptor Eye Transformer/Latran.

    Science.gov (United States)

    Fisher, Katherine H; Stec, Wojciech; Brown, Stephen; Zeidler, Martin P

    2016-02-01

    Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms. © 2016 Fisher et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Endothelium derived nitric oxide synthase negatively regulates the PDGF-survivin pathway during flow-dependent vascular remodeling.

    Directory of Open Access Journals (Sweden)

    Jun Yu

    Full Text Available Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (-/- is associated with activation of the platelet derived growth factor (PDGF signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (-/- mice. Moreover, nitric oxide (NO negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence.

  14. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yang, Mi-So [Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Song, Du-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Baek, E-mail: ebbyun80@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@kongju.ac.k [Department of Food Science and Technology, Kongju National University, Yesan 340-800 (Korea, Republic of)

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  15. Insecure Attachment and Eating Pathology in Early Adolescence: Role of Emotion Regulation

    Science.gov (United States)

    van Durme, Kim; Braet, Caroline; Goossens, Lien

    2015-01-01

    The present study investigated whether associations exist between attachment dimensions toward mother and different forms of eating pathology (EP) in a group of early adolescent boys and girls, and whether these associations were mediated by maladaptive emotion regulation (ER) strategies. Developmentally appropriate self-report questionnaires were…

  16. Vasopressin up-regulates the expression of growth-related immediate-early genes via two distinct EGF receptor transactivation pathways

    Science.gov (United States)

    Fuentes, Lida Q.; Reyes, Carlos E.; Sarmiento, José M.; Villanueva, Carolina I.; Figueroa, Carlos D.; Navarro, Javier; González, Carlos B.

    2008-01-01

    Activation of V1a receptor triggers the expression of growth-related immediate-early genes (IEGs), including c-Fos and Egr-1. Here we found that pre-treatment of rat vascular smooth muscle A-10 cell line with the EGF receptor inhibitor AG1478 or the over-expression of an EGFR dominant negative mutant (HEBCD533) blocked the vasopressin-induced expression of IEGs, suggesting that activation of these early genes mediated by V1a receptor is via transactivation of the EGF receptor. Importantly, the inhibition of the metalloproteinases, which catalyzed the shedding of the EGF receptor agonist HB-EGF, selectively blocked the vasopressin-induced expression c-Fos. On the other hand, the inhibition of c-Src selectively blocked the vasopressin-induced expression of Egr-1. Interestingly, in contrast to the expression of c-Fos, the expression of Egr-1 was mediated via the Ras/MEK/MAPK-dependent signalling pathway. Vasopressin-triggered expression of both genes required the release of intracellular calcium, activation of PKC and β-arrestin 2. These findings demonstrated that vasopressin up-regulated the expression of c-Fos and Erg-1 via transactivation of two distinct EGF receptor-dependent signalling pathways. PMID:18571897

  17. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Chui Sun; Sinha, Rohit Anthony [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore); Ota, Sho; Katsuki, Masahito [Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Yen, Paul Michael, E-mail: paul.yen@duke-nus.edu.sg [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore)

    2013-11-01

    Highlights: •Thyroid hormone induces miR-181d expression in human hepatic cells and mouse livers. •Thyroid hormone downregulates CDX2 and SOAT2 (or ACAT2) via miR-181d. •miR-181d reduces cholesterol output from human hepatic cells. -- Abstract: Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we used a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.

  18. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    International Nuclear Information System (INIS)

    Li Ang; He Meilan; Wang Hui; Qiao Bin; Chen Ping; Gu Hua; Zhang Mengjie; He Shengxiang

    2007-01-01

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-α, IFN-γ), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-κB pathways related with immune response. Our results demonstrated that ATRA suppressed NF-κB activity and prevented IκBα degradation in a dose-dependent way, inhibited IFN-γ production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo

  19. Microenvironments and Signaling Pathways Regulating Early Dissemination, Dormancy, and Metastasis

    Science.gov (United States)

    2016-09-01

    regulators of branching morphogenesis during mammary gland development 17,18, arguing that normal mammary epithelial cells cooperate with these innate ...CD45+CD11b+F4/80+ cells lacking lymphoid and granulocytic markers (Supplementary Fig.3B). viSNE plots 30 of myelo- monocytic cells (Fig.5A) showed that...cancer cells and how the microenvironment in these primary sites named P-TMEM (Primary Tumor Microenvironment of Metastases) contribute to early

  20. From early family systems to internalizing symptoms: The role of emotion regulation and peer relations.

    Science.gov (United States)

    Lindblom, Jallu; Vänskä, Mervi; Flykt, Marjo; Tolvanen, Asko; Tiitinen, Aila; Tulppala, Maija; Punamäki, Raija-Leena

    2017-04-01

    Research has demonstrated the importance of early family characteristics, such as the quality of caregiving, on children's later mental health. Information is, however, needed about the role of more holistic family systems and specific child-related socioemotional mechanisms. In this study, we conceptualize families as dynamic family system types, consisting of both marital and parenting trajectories over the transition to parenthood. First, we examine how early family system types predict children's anxiety, depression, peer exclusion, and emotion regulation. Second, we test whether couples' infertility history and other family related contextual factors moderate the effects of family system types on child outcomes. Third, we test whether children's emotion regulation and peer exclusion mediate the effects of family system types on anxiety and depression. The participants were 452 families representing cohesive, distant, authoritative, enmeshed, and discrepant family types, identified on the basis of relationship autonomy and intimacy from pregnancy to the child's age of 2 and 12 months. Children's anxiety, depression, emotion regulation, and peer exclusion were assessed at the age of 7-8 years. Structural equation modeling showed that distant, enmeshed, and discrepant families similarly predicted children's heightened anxiety and depression. Infertility history, parental education, and parity moderated the associations between certain family system types and child outcomes. Finally, emotion regulation, but not peer exclusion, was a common mediating mechanism between distant and enmeshed families and children's depression. The results emphasize the importance of early family environments on children's emotion regulation development and internalizing psychopathology. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Predicting Negative Life Outcomes from Early Aggressive-Disruptive Behavior Trajectories: Gender Differences in Maladaptation across Life Domains

    Science.gov (United States)

    Bradshaw, Catherine P.; Schaeffer, Cindy M.; Petras, Hanno; Ialongo, Nicholas

    2010-01-01

    Transactional theories of development suggest that displaying high levels of antisocial behavior early in life and persistently over time causes disruption in multiple life domains, which in turn places individuals at risk for negative life outcomes. We used longitudinal data from 1,137 primarily African American urban youth (49.1% female) to…

  2. Mental health of early adolescents from high-risk neighborhoods: the role of maternal HIV and other contextual, self-regulation, and family factors.

    Science.gov (United States)

    Mellins, Claude A; Brackis-Cott, Elizabeth; Dolezal, Curtis; Leu, Cheng Shiun; Valentin, Cidna; Meyer-Bahlburg, Heino F L

    2008-01-01

    To examine the effect of maternal HIV infection, as well as other individual, family, and contextual factors on the mental health of inner-city, ethnic minority early adolescents. Participants included 220 HIV-negative early adolescents (10-14 years) and their mothers, half of whom were HIV-infected. Individual interviews were conducted regarding youth depression, anxiety, externalizing and internalizing behaviour problems, as well as a range of correlates of youth mental health guided by a modified version of Social Action Theory, a theoretical model of behavioral health. Although the HIV status of mothers alone did not predict youth mental health, youth knowledge of mother's HIV infection and mother's overall health were associated with worse youth mental health outcomes, as were contextual, self-regulation, and family interaction factors from our theoretical model. There is a need for family-based mental health interventions for this population, particularly focusing on parent-child relationships, disclosure, and youth self-esteem.

  3. Purification and Crystallization of Murine Myostatin: A Negative Regulator of Muscle Mass

    Science.gov (United States)

    Hong, Young S.; Adamek, Daniel; Bridge, Kristi; Malone, Christine C.; Young, Ronald B.; Miller, Teresa; Karr, Laurel

    2004-01-01

    Myostatin (MSTN) has been crystallized and its preliminary X-ray diffraction data were collected. MSTN is a negative regulator of muscle growt/differentiation and suppressor of fat accumulation. It is a member of TGF-b family of proteins. Like other members of this family, the regulation of MSTN is critically tied to its process of maturation. This process involves the formation of a homodimer followed by two proteolytic steps. The first proteolytic cleavage produces a species where the n-terminal portion of the dimer is covalently separated from, but remains non-covalently bound to, the c-terminal, functional, portion of the protein. The protein is activated upon removal of the n-terminal "pro-segment" by a second n-terminal proteolytic cut by BMP-1 in vivo, or by acid treatment in vitro. Understanding the structural nature and physical interactions involved in these regulatory processes is the objective of our studies. Murine MSTN was purified from culture media of genetically engineered Chinese Hamster Ovary cells by multicolumn purification process and crystallized using the vapor diffusion method.

  4. Early Childhood Media Exposure and Self-Regulation: Bi-Directional Longitudinal Associations.

    Science.gov (United States)

    Cliff, Dylan P; Howard, Steven J; Radesky, Jenny S; McNeill, Jade; Vella, Stewart A

    2018-04-26

    To investigate: i) prospective associations between media exposure (television viewing, computers, and electronic games) at 2 years and self-regulation at 4 and 6 years, and ii) bi-directional associations between media exposure and self-regulation at 4 and 6 years. We hypothesized that media exposure and self-regulation would display a negative prospective association and subsequent bi-directional inverse associations. Data from the nationally-representative Longitudinal Study of Australian Children (LSAC) when children were aged 2 (n=2786) and 4/6 years (n=3527) were used. Primary caregivers reported children's weekly electronic media exposure. A composite measure of self-regulation was computed from caregivers-, teacher-, and observer-report data. Associations were examined using linear regression and cross-lagged panel models, accounting for covariates. Lower television viewing and total media exposure at 2 years were associated with higher self-regulation at 4 years (both β -0.02; 95% confidence interval [CI] -0.03, -0.01). Lower self-regulation at 4 years was also significantly associated with higher television viewing (β -0.15; 95% CI -0.21, -0.08), electronic game use (β -0.05; 95% CI -0.09, -0.01), and total media exposure (β -0.19; 95% CI -0.29, -0.09) at 6 years. However, media exposure at 4 years was not associated with self-regulation at 6 years. Although media exposure duration at 2 years was associated with later self-regulation, and self-regulation at 4 years was associated with later media exposure, associations were of small magnitude. More research is needed examining content quality, social context, and mobile media use and child self-regulation. Copyright © 2018. Published by Elsevier Inc.

  5. Perfectionism and negative/positive affect associations: the role of cognitive emotion regulation and perceived distress/coping.

    Science.gov (United States)

    Castro, Juliana; Soares, Maria João; Pereira, Ana T; Macedo, António

    2017-01-01

    To explore 1) if perfectionism, perceived distress/coping, and cognitive emotion regulation (CER) are associated with and predictive of negative/positive affect (NA/PA); and 2) if CER and perceived distress/coping are associated with perfectionism and if they mediate the perfectionism-NA/PA associations. There is a distinction between maladaptive and adaptive perfectionism in its association with NA/PA. CER and perceived distress/coping may mediate the maladaptive/adaptive perfectionism and NA/PA associations. 344 students (68.4% girls) completed the Hewitt & Flett and the Frost Multidimensional Perfectionism Scales, the Composite Multidimensional Perfectionism Scale, the Profile of Mood States, the Perceived Stress Scale, and the Cognitive Emotion Regulation Questionnaire. NA predictors were maladaptive/adaptive perfectionism, maladaptive CER and perceived distress (positively), positive reappraisal and planning, and perceived coping (negatively). PA predictors were maladaptive/adaptive perfectionism and perceived distress (negatively), positive reappraisal and planning, positive refocusing and perceived coping (positively). The association between maladaptive perfectionism and NA was mediated by maladaptive CER/low adaptive CER, perceived distress/low coping. Maladaptive perfectionism and low PA association was mediated by perceived distress. High PA was determined by low maladaptive perfectionism and this association was mediated by adaptive REC and coping. Adaptive perfectionism and NA association was mediated by maladaptive CER and perceived distress. CER and perceived distress/coping are associated and mediate the perfectionism-NA/PA associations.

  6. Reciprocal regulation of annexin A2 and EGFR with Her-2 in Her-2 negative and herceptin-resistant breast cancer.

    Directory of Open Access Journals (Sweden)

    Praveenkumar K Shetty

    Full Text Available Alternative survival pathways are commonly seen to be upregulated upon inhibition of receptor tyrosine kinases (RTK, including Her-2. It is established that treatment with Herceptin leads to selective overexpression and activation of epidermal growth factor receptor (EGFR and Src which further contributes to oncogenesis in Herceptin resistant and triple negative breast cancer (TNBC patients. Here, we show a co-regulated upregulation in the expression of Annexin A2 (AnxA2, a known substrate of Src and one of the regulators of EGFR receptor endocytosis, in Herceptin resistant and Her-2 negative breast cancer. Immunohistochemical expression analysis revealed a reciprocal regulation between Her-2 and AnxA2 in breast cancer clinical samples as well as in cell lines as confirmed by protein and RNA analysis. The siRNA and Herceptin mediated downregulation/inhibition of Her-2 in Her-2 amplified cells induced AnxA2 expression and membrane translocation. In this study we report a possible involvement of AnxA2 in maintaining constitutively activated EGFR downstream signaling intermediates and hence in cell proliferation, migration and viability. This effect was consistent in Herceptin resistant JIMT-1 cells as well as in Her-2 negative breast cancer. The siRNA mediated AnxA2 downregulation leads to increased apoptosis, decreased cell viability and migration. Our studies further indicate the role of AnxA2 in EGFR-Src membrane bound signaling complex and ligand induced activation of downstream signaling pathways. Targeting this AnxA2 dependent positive regulation of EGFR signaling cascade may be of therapeutic value in Her-2 negative breast cancer.

  7. SH2-inositol phosphatase 1 negatively influences early megakaryocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Lia E Perez

    Full Text Available The SH2-containing-5'inositol phosphatase-1 (SHIP influences signals downstream of cytokine/chemokine receptors that play a role in megakaryocytopoiesis, including thrombopoietin, stromal-cell-derived-Factor-1/CXCL-12 and interleukin-3. We hypothesize that SHIP might control megakaryocytopoiesis through effects on proliferation of megakaryocyte progenitors (MKP and megakaryocytes (MK.Herein, we report the megakaryocytic phenotype and MK functional assays of hematopoietic organs of two strains of SHIP deficient mice with deletion of the SHIP promoter/first exon or the inositol phosphatase domain. Both SHIP deficient strains exhibit a profound increase in MKP numbers in bone marrow (BM, spleen and blood as analyzed by flow cytometry (Lin(-c-Kit+CD41+ and functional assays (CFU-MK. SHIP deficient MKP display increased phosphorylation of Signal Transducers and Activators of Transcription 3 (STAT-3, protein kinase B (PKB/AKT and extracellular signal-regulated kinases (ERKs. Despite increased MKP content, total body number of mature MK (Lin(-c-kit(-CD41+ are not significantly changed as SHIP deficient BM contains reduced MK while spleen MK numbers are increased. Reduction of CXCR-4 expression in SHIP deficient MK may influence MK localization to the spleen instead of the BM. Endomitosis, process involved in MK maturation, was preserved in SHIP deficient MK. Circulating platelets and red blood cells are also reduced in SHIP deficient mice.SHIP may play an important role in regulation of essential signaling pathways that control early megakaryocytopoiesis in vivo.

  8. No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo.

    Science.gov (United States)

    Wharton, Tammy H; Nomie, Krystle J; Wharton, Robin P

    2018-01-01

    Drosophila Pumilio (Pum) is a founding member of the conserved Puf domain class of RNA-binding translational regulators. Pum binds with high specificity, contacting eight nucleotides, one with each of the repeats in its RNA-binding domain. In general, Pum is thought to block translation in collaboration with Nanos (Nos), which exhibits no binding specificity in isolation but is recruited jointly to regulatory sequences containing a Pum binding site in the 3'-UTRs of target mRNAs. Unlike Pum, which is ubiquitous in the early embryo, Nos is tightly restricted to the posterior, ensuring that repression of its best-characterized target, maternal hunchback (hb) mRNA, takes place exclusively in the posterior. An exceptional case of Nos-independent regulation by Pum has been described-repression of maternal bicoid (bcd) mRNA at the anterior pole of the early embryo, dependent on both Pum and conserved Pum binding sites in the 3'-UTR of the mRNA. We have re-investigated regulation of bcd in the early embryo; our experiments reveal no evidence of a role for Pum or its conserved binding sites in regulation of the perdurance of bcd mRNA or protein. Instead, we find that Pum and Nos control the accumulation of bcd mRNA in testes.

  9. Del-1 Expression as a Potential Biomarker in Triple-Negative Early Breast Cancer.

    Science.gov (United States)

    Lee, Soo Jung; Lee, Jeeyeon; Kim, Wan Wook; Jung, Jin Hyang; Park, Ho Yong; Park, Ji-Young; Chae, Yee Soo

    2018-01-01

    A differential diagnostic role for plasma Del-1 was proposed for early breast cancer (EBC) in our previous study. We examined tumoral Del-1 expression and analyzed its prognostic impact among patients with EBC. Del-1 mRNA expression was assessed in breast epithelial and cancer cells. Meanwhile, the tumoral expression of Del-1 was determined based on tissue microarrays and immunohistochemistry results from 440 patients. While a high Del-1 mRNA expression was found in all the breast cancer cell lines, the expression was significantly higher in MDA-MB-231. Tumoral expression of Del-1 was also significantly associated with a negative expression of estrogen receptor or progesterone receptor, and low expression of Ki-67, particularly in the case of triple-negative breast cancer (TNBC) (p breast cancer cell lines exhibited Del-1 expression, the expression rate and intensity were specifically prominent in TNBC. In addition, based on its relationship to an unfavorable histology and worse survival trend, Del-1 could act as a molecular target in TNBC patients. © 2018 S. Karger AG, Basel.

  10. Different Fear-Regulation Behaviors in Toddlerhood: Relations to Preceding Infant Negative Emotionality, Maternal Depression, and Sensitivity

    Science.gov (United States)

    Gloggler, Bettina; Pauli-Pott, Ursula

    2008-01-01

    In the study presented, the development of different fear regulation behaviors and their associations with preceding maternal sensitivity and depression is addressed. A sample of 64 mother-child pairs was examined at the children's ages of 4, 12, and 30 months. Four-month negative reactivity and 12- and 30- month behavioral inhibition and fear…

  11. Negative regulation of human parathyroid hormone gene promoter by vitamin D3 through nuclear factor Y

    International Nuclear Information System (INIS)

    Jaeaeskelaeinen, T.; Huhtakangas, J.; Maeenpaeae, P.H.

    2005-01-01

    The negative regulation of the human parathyroid hormone (PTH) gene by biologically active vitamin D 3 (1,25-dihydroxyvitamin D 3 ; 1,25(OH) 2 D 3 ) was studied in rat pituitary GH4C1 cells, which express factors needed for the negative regulation. We report here that NF-Y binds to sequences downstream of the site previously reported to bind the vitamin D receptor (VDR). Additional binding sites for NF-Y reside in the near vicinity and were shown to be important for full activity of the PTH gene promoter. VDR and NF-Y were shown to exhibit mutually exclusive binding to the VDRE region. According to our results, sequestration of binding partners for NF-Y by VDR also affects transcription through a NF-Y consensus binding element in GH4C1 but not in ROS17/2.8 cells. These results indicate that 1,25(OH) 2 D 3 may affect transcription of the human PTH gene both by competitive binding of VDR and NF-Y, and by modulating transcriptional activity of NF-Y

  12. Tell it to a child! A brain stimulation study of the role of left inferior frontal gyrus in emotion regulation during storytelling.

    Science.gov (United States)

    Urgesi, Cosimo; Mattiassi, Alan D A; Buiatti, Tania; Marini, Andrea

    2016-08-01

    In everyday life we need to continuously regulate our emotional responses according to their social context. Strategies of emotion regulation allow individuals to control time, intensity, nature and expression of emotional responses to environmental stimuli. The left inferior frontal gyrus (LIFG) is involved in the cognitive control of the selection of semantic content. We hypothesized that it might also be involved in the regulation of emotional feelings and expressions. We applied continuous theta burst stimulation (cTBS) over LIFG or a control site before a newly-developed ecological regulation task that required participants to produce storytelling of pictures with negative or neutral valence to either a peer (unregulated condition) or a child (regulated condition). Linguistic, expressive, and physiological responses were analyzed in order to assess the effects of LIFG-cTBS on emotion regulation. Results showed that the emotion regulation context modulated the emotional content of narrative productions, but not the physiologic orienting response or the early expressive behavior to negative stimuli. Furthermore, LIFG-cTBS disrupted the text-level structuring of negative picture storytelling and the early cardiac and muscular response to negative pictures; however, it did not affect the contextual emotional regulation of storytelling. These results may suggest that LIFG is involved in the initial detection of the affective arousal of emotional stimuli. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. An Early Years Toolbox for Assessing Early Executive Function, Language, Self-Regulation, and Social Development: Validity, Reliability, and Preliminary Norms

    Science.gov (United States)

    Howard, Steven J.; Melhuish, Edward

    2017-01-01

    Several methods of assessing executive function (EF), self-regulation, language development, and social development in young children have been developed over previous decades. Yet new technologies make available methods of assessment not previously considered. In resolving conceptual and pragmatic limitations of existing tools, the Early Years…

  14. Small kinetochore associated protein (SKAP promotes UV-induced cell apoptosis through negatively regulating pre-mRNA processing factor 19 (Prp19.

    Directory of Open Access Journals (Sweden)

    Shan Lu

    Full Text Available Apoptosis is a regulated cellular suicide program that is critical for the development and maintenance of healthy tissues. Previous studies have shown that small kinetochore associated protein (SKAP cooperates with kinetochore and mitotic spindle proteins to regulate mitosis. However, the role of SKAP in apoptosis has not been investigated. We have identified a new interaction involving SKAP, and we propose a mechanism through which SKAP regulates cell apoptosis. Our experiments demonstrate that both overexpression and knockdown of SKAP sensitize cells to UV-induced apoptosis. Further study has revealed that SKAP interacts with Pre-mRNA processing Factor 19 (Prp19. We find that UV-induced apoptosis can be inhibited by ectopic expression of Prp19, whereas silencing Prp19 has the opposite effect. Additionally, SKAP negatively regulates the protein levels of Prp19, whereas Prp19 does not alter SKAP expression. Finally, rescue experiments demonstrate that the pro-apoptotic role of SKAP is executed through Prp19. Taken together, these findings suggest that SKAP promotes UV-induced cell apoptosis by negatively regulating the anti-apoptotic protein Prp19.

  15. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  16. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells.

    Science.gov (United States)

    Fonseca, Sonya G; Ishigaki, Shinsuke; Oslowski, Christine M; Lu, Simin; Lipson, Kathryn L; Ghosh, Rajarshi; Hayashi, Emiko; Ishihara, Hisamitsu; Oka, Yoshitomo; Permutt, M Alan; Urano, Fumihiko

    2010-03-01

    Wolfram syndrome is an autosomal-recessive disorder characterized by insulin-dependent diabetes mellitus, caused by nonautoimmune loss of beta cells, and neurological dysfunctions. We have previously shown that mutations in the Wolfram syndrome 1 (WFS1) gene cause Wolfram syndrome and that WFS1 has a protective function against ER stress. However, it remained to be determined how WFS1 mitigates ER stress. Here we have shown in rodent and human cell lines that WFS1 negatively regulates a key transcription factor involved in ER stress signaling, activating transcription factor 6alpha (ATF6alpha), through the ubiquitin-proteasome pathway. WFS1 suppressed expression of ATF6alpha target genes and repressed ATF6alpha-mediated activation of the ER stress response element (ERSE) promoter. Moreover, WFS1 stabilized the E3 ubiquitin ligase HRD1, brought ATF6alpha to the proteasome, and enhanced its ubiquitination and proteasome-mediated degradation, leading to suppression of ER stress signaling. Consistent with these data, beta cells from WFS1-deficient mice and lymphocytes from patients with Wolfram syndrome exhibited dysregulated ER stress signaling through upregulation of ATF6alpha and downregulation of HRD1. These results reveal a role for WFS1 in the negative regulation of ER stress signaling and in the pathogenesis of diseases involving chronic, unresolvable ER stress, such as pancreatic beta cell death in diabetes.

  17. Discrete β-adrenergic mechanisms regulate early and late erythropoiesis in erythropoietin-resistant anemia.

    Science.gov (United States)

    Hasan, Shirin; Mosier, Michael J; Szilagyi, Andrea; Gamelli, Richard L; Muthumalaiappan, Kuzhali

    2017-10-01

    Anemia of critical illness is resistant to exogenous erythropoietin. Packed red blood cells transfusions is the only treatment option, and despite related cost and morbidity, there is a need for alternate strategies. Erythrocyte development can be divided into erythropoietin-dependent and erythropoietin-independent stages. We have shown previously that erythropoietin-dependent development is intact in burn patients and the erythropoietin-independent early commitment stage, which is regulated by β1/β2-adrenergic mechanisms, is compromised. Utilizing the scald burn injury model, we studied erythropoietin-independent late maturation stages and the effect of β1/β2, β-2, or β-3 blockade in burn mediated erythropoietin-resistant anemia. Burn mice were randomized to receive daily injections of propranolol (nonselective β1/β2 antagonist), nadolol (long-acting β1/β2 antagonist), butoxamine (selective β2 antagonist), or SR59230A (selective β3 antagonist) for 6 days after burn. Total bone marrow cells were characterized as nonerythroid cells, early and late erythroblasts, nucleated orthochromatic erythroblasts and enucleated reticulocyte subsets using CD71, Ter119, and Syto-16 by flow cytometry. Multipotential progenitors were probed for MafB expressing cells. Although propranolol improved early and late erythroblasts, only butoxamine and selective β3-antagonist administrations were positively reflected in the peripheral blood hemoglobin and red blood cells count. While burn impeded early commitment and late maturation stages, β1/β2 antagonism increased the early erythroblasts through commitment stages via β2 specific MafB regulation. β3 antagonism was more effective in improving overall red blood cells through late maturation stages. The study unfolds novel β2 and β3 adrenergic mechanisms orchestrating erythropoietin resistant anemia after burn, which impedes both the early commitment stage and the late maturation stages, respectively. Copyright © 2017

  18. Early use of negative pressure therapy in combination with silver dressings in a difficult breast abscess.

    Science.gov (United States)

    Richards, Alastair J; Hagelstein, Sue M; Patel, Girish K; Ivins, Nicola M; Sweetland, Helen M; Harding, Keith G

    2011-12-01

    Combining silver-based dressings with negative pressure therapy after radical excision of chronically infected breast disease is a novel application of two technologies. One patient with complex, chronic, infected breast disease underwent radical excision of the affected area and was treated early with a combination of silver-based dressings and topical negative pressure therapy. The wound was then assessed sequentially using clinical measurements of wound area and depth, pain severity scores and level of exudation. It is possible to combine accepted techniques with modern dressing technologies that result in a positive outcome. In this case, the combination of a silver-based dressing with negative pressure therapy following radical excision proved safe and was well tolerated by the patient. Full epithelisation of the wound was achieved and there was no recurrence of the infection for the duration of the treatment. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  19. Cerebrospinal fluid abnormalities in HIV-negative patients with secondary and early latent syphilis and serum VDRL ≥ 1:32

    Directory of Open Access Journals (Sweden)

    Maciej Pastuszczak

    2013-01-01

    Full Text Available Background : Syphilis is caused by a spirochete Treponema pallidum. Invasion of the central nervous system (CNS by T. pallidum may appear early during the course of disease. The diagnosis of confirmed neurosyphilis is based on the reactive Venereal Disease Research Laboratory (VDRL in cerebrospinal fluid (CSF. Recent studies indicated that serum RPR ≥ 1:32 are associated with higher risk of reactivity of CSF VDRL. Aims : The main aim of the current study was to assess cerebrospinal fluid serological and biochemical abnormalities in HIV negative subjects with secondary and early latent syphilis and serum VDRL ≥ 1:32. Materials and Methods : Clinical and laboratory data of 33 HIV-negative patients with secondary and early latent syphilis, with the serum VDRL titer ≥ 1:32, who underwent a lumbar puncture and were treated in Department of Dermatology at Jagiellonian University School of Medicine in Cracow, were collected. Results : Clinical examination revealed no symptoms of CNS involvement in all patients. 18% ( n = 6 of patients met the criteria of confirmed neurosyphilis (reactive CSF-VDRL. In 14 (42% patients CSF WBC count ≥ 5/ul was found, and in 13 (39% subjects there was elevated CSF protein concentration (≥ 45 mg/dL. 10 patients had CSF WBC count ≥ 5/ul and/or elevated CSF protein concentration (≥ 45 mg/dL but CSF-VDRL was not reactive. Conclusions : Indications for CSF examination in HIV-negative patients with early syphilis are the subject of discussion. It seems that all patients with syphilis and with CSF abnormalities (reactive serological tests, elevated CSF WBC count, elevated protein concentration should be treated according to protocols for neurosyphilis. But there is a need for identification of biomarkes in order to identify a group of patients with syphilis, in whom risk of such abnormalities is high.

  20. proBDNF Negatively Regulates Neuronal Remodeling, Synaptic Transmission, and Synaptic Plasticity in Hippocampus

    Directory of Open Access Journals (Sweden)

    Jianmin Yang

    2014-05-01

    Full Text Available Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP via TrkB activation. BDNF is initially translated as proBDNF, which binds p75NTR. In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knockin mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75NTR. Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP, and enhanced long-term depression (LTD in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission, and plasticity, effects that are distinct from those of mature BDNF.

  1. SarA is a negative regulator of Staphylococcus epidermidis biofilm formation

    DEFF Research Database (Denmark)

    Martin, Christer; Heinze, C.; Busch, M.

    2012-01-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant-associated infections. Nonetheless, large proportions of invasive S. epidermidis isolates fail to show accumulative biofilm growth in vitro. We here tested the hypothesis that this apparent paradox is related...... virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via over-expression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed...... to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from up-regulation of metalloprotease SepA, leading to boosted processing of major autolysin AtlE, in turn inducing augmented autolysis and release of chromosomal DNA. Hence, this study identifies sarA as a negative...

  2. Models of Aire-dependent gene regulation for thymic negative selection

    Directory of Open Access Journals (Sweden)

    Dina eDanso-Abeam

    2011-05-01

    Full Text Available Mutations in the Autoimmune Regulator (AIRE gene lead to Autoimmune Polyendocrinopathy Syndrome type 1 (APS1, characterized by the development of multi-organ autoimmune damage. The mechanism by which defects in AIRE result in autoimmunity has been the subject of intense scrutiny. At the cellular level, the working model explains most of the clinical and immunological characteristics of APS1, with AIRE driving the expression of tissue restricted antigens (TRAs in the epithelial cells of the thymic medulla. This TRA expression results in effective negative selection of TRA-reactive thymocytes, preventing autoimmune disease. At the molecular level, the mechanism by which AIRE initiates TRA expression in the thymic medulla remains unclear. Multiple different models for the molecular mechanism have been proposed, ranging from classical transcriptional activity, to random induction of gene expression, to epigenetic tag recognition effect, to altered cell biology. In this review, we evaluate each of these models and discuss their relative strengths and weaknesses.

  3. The trans-kingdom identification of negative regulators of pathogen hypervirulence.

    Science.gov (United States)

    Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E

    2016-01-01

    Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. © FEMS 2015.

  4. Egr2 induced during DC development acts as an intrinsic negative regulator of DC immunogenicity.

    Science.gov (United States)

    Miah, Mohammad Alam; Byeon, Se Eun; Ahmed, Md Selim; Yoon, Cheol-Hee; Ha, Sang-Jun; Bae, Yong-Soo

    2013-09-01

    Early growth response gene 2 (Egr2), which encodes a zinc finger transcription factor, is rapidly and transiently induced in various cell types independently of de novo protein synthesis. Although a role for Egr2 is well established in T-cell development, Egr2 expression and its biological function in dendritic cells (DCs) have not yet been described. Here, we demonstrate Egr2 expression during DC development, and its role in DC-mediated immune responses. Egr2 is expressed in the later stage of DC development from BM precursor cells. Even at steady state, Egr2 is highly expressed in mouse splenic DCs. Egr2-knockdown (Egr2-KD) DCs showed increased levels of major histocompatability complex (MHC) class I and II and co-stimulatory molecules, and enhanced antigen uptake and migratory capacities. Furthermore, Egr2-KD abolished SOCS1 expression and signal transducer and activator of transcription 5 (STAT5) activation during DC development, probably resulting in the enhancement of IL-12 expression and Th1 immunogenicity of a DC vaccine. DC-mediated cytotoxic T lymphocyte (CTL) activation and antitumor immunity were significantly enhanced by Egr2-KD, and impaired by Egr2 overexpression in antigen-pulsed DC vaccines. These data suggest that Egr2 acts as an intrinsic negative regulator of DC immunogenicity and can be an attractive molecular target for DC vaccine development. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Lack of Csk-mediated negative regulation in a unicellular SRC kinase.

    Science.gov (United States)

    Schultheiss, Kira P; Suga, Hiroshi; Ruiz-Trillo, Iñaki; Miller, W Todd

    2012-10-16

    Phosphotyrosine-based signaling plays a vital role in cellular communication in multicellular organisms. Unexpectedly, unicellular choanoflagellates (the closest phylogenetic group to metazoans) possess numbers of tyrosine kinases that are comparable to those in complex metazoans. Here, we have characterized tyrosine kinases from the filasterean Capsaspora owczarzaki, a unicellular protist representing the sister group to choanoflagellates and metazoans. Two Src-like tyrosine kinases have been identified in C. owczarzaki (CoSrc1 and CoSrc2), both of which have the arrangement of SH3, SH2, and catalytic domains seen in mammalian Src kinases. In Capsaspora cells, CoSrc1 and CoSrc2 localize to punctate structures in filopodia that may represent primordial focal adhesions. We have cloned, expressed, and purified both enzymes. CoSrc1 and CoSrc2 are active tyrosine kinases. Mammalian Src kinases are normally regulated in a reciprocal fashion by autophosphorylation in the activation loop (which increases activity) and by Csk-mediated phosphorylation of the C-terminal tail (which inhibits activity). Similar to mammalian Src kinases, the enzymatic activities of CoSrc1 and CoSrc2 are increased by autophosphorylation in the activation loop. We have identified a Csk-like kinase (CoCsk) in the genome of C. owczarzaki. We cloned, expressed, and purified CoCsk and found that it has no measurable tyrosine kinase activity. Furthermore, CoCsk does not phosphorylate or regulate CoSrc1 or CoSrc2 in cells or in vitro, and CoSrc1 and CoSrc2 are active in Capsaspora cell lysates. Thus, the function of Csk as a negative regulator of Src family kinases appears to have arisen with the emergence of metazoans.

  6. Associations between Early Family Risk, Children's Behavioral Regulation, and Academic Achievement in Portugal

    Science.gov (United States)

    Cadima, Joana; Gamelas, Ana M.; McClelland, Megan; Peixoto, Carla

    2015-01-01

    Research Findings: This study examined concurrent associations between family sociodemographic risk, self-regulation, and early literacy and mathematics in young children from Azores, Portugal (N = 186). Family sociodemographic risk was indexed by low maternal education, low family income, and low occupational status. Behavioral aspects of…

  7. Early Childhood Profiles of Sleep Problems and Self-Regulation Predict Later School Adjustment

    Science.gov (United States)

    Williams, Kate E.; Nicholson, Jan M.; Walker, Sue; Berthelsen, Donna

    2016-01-01

    Background: Children's sleep problems and self-regulation problems have been independently associated with poorer adjustment to school, but there has been limited exploration of longitudinal early childhood profiles that include both indicators. Aims: This study explores the normative developmental pathway for sleep problems and self-regulation…

  8. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-01-01

    Full Text Available Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF signaling pathway in early embryoid bodies (EBs. Gcn5−/− EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.

  9. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    International Nuclear Information System (INIS)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-01-01

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations

  10. Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders

    OpenAIRE

    Gery, Sigal; Gueller, Saskia; Chumakova, Katya; Kawamata, Norihiko; Liu, Liqin; Koeffler, H. Phillip

    2007-01-01

    Recently, activating myeloproliferative leukemia virus oncogene (MPL) mutations, MPLW515L/K, were described in myeloproliferative disorder (MPD) patients. MPLW515L leads to activation of downstream signaling pathways and cytokine-independent proliferation in hematopoietic cells. The adaptor protein Lnk is a negative regulator of several cytokine receptors, including MPL. We show that overexpression of Lnk in Ba/F3-MPLW515L cells inhibits cytokine-independent growth, while suppression of Lnk i...

  11. Early repeated infections with Trichomonas vaginalis among HIV-positive and HIV-negative women.

    Science.gov (United States)

    Kissinger, Patricia; Secor, W Evan; Leichliter, Jami S; Clark, Rebecca A; Schmidt, Norine; Curtin, Erink; Martin, David H

    2008-04-01

    The purpose of the study was to examine whether early repeated infections due to Trichomonas vaginalis among human immunuodeficiency virus (HIV)-positive and HIV-negative women are reinfections, new infections, or cases of treatment failure. Women attending an HIV outpatient clinic and a family planning clinic in New Orleans, Louisiana, who had culture results positive for T. vaginalis were treated with 2 g of metronidazole under directly observed therapy. At 1 month, detailed sexual exposure and sexual partner treatment information was collected. Isolates from women who had clinical resistance (i.e., who tested positive for a third time after treatment at a higher dose) were tested for metronidazole susceptibility in vitro. Of 60 HIV-positive women with trichomoniasis, 11 (18.3%) were T. vaginalis positive 1 month after treatment. The 11 recurrences were classified as 3 probable reinfections (27%), 2 probable infections from a new sexual partner (18%), and 6 probable treatment failures (55%); 2 of the 6 patients who experienced probable treatment failure had isolates with mild resistance to metronidazole. Of 301 HIV-negative women, 24 (8.0%) were T. vaginalis positive 1 month after treatment. The 24 recurrences were classified as 2 probable reinfections (8%) and 22 probable treatment failures (92%); of the 22 patients who experienced probable treatment failure, 2 had strains with moderate resistance to metronidazole, and 1 had a strain with mild resistance to metronidazole. HIV-positive women were more likely to have sexual re-exposure than were HIV-negative women, although the rate of treatment failure was similar in both groups. High rates of treatment failure among both HIV-positive and HIV-negative women indicate that a 2-g dose of metronidazole may not be adequate for treatment of some women and that rescreening should be considered.

  12. Neither hippurate-negative Brachyspira pilosicoli nor Brachyspira pilosicoli type strain caused diarrhoea in early-weaned pigs by experimental infection

    DEFF Research Database (Denmark)

    Fossi, M.; Ahlsten, K.; Pohjanvirta, T.

    2005-01-01

    Fossi M, Ahlsten K, Pohjanvirta T, Anttila M, Kokkonen T, Jensen TK, Boye M, Sukura A, Pelkola K, Pelkonen S: Neither hippurate-negative Brachyspira pilosicoli nor Brachyspira pilosicoli type strain caused diarrhoea in early-weaned pigs by experimental infection. Acta vet. scand. 2005, 46, 257...

  13. Children's Self-Regulation in the Context of Participatory Pedagogy in Early Childhood Education

    Science.gov (United States)

    Kangas, Jonna; Ojala, Mikko; Venninen, Tuulikki

    2015-01-01

    Research Findings: Research has shown that self-regulation can support child development in the areas of children's attentional flexibility, working memory, and inhibitory control for excluding impulsive responses. How this is actually related in everyday pedagogical early childhood education (ECE) activities has rarely been studied in detail. In…

  14. The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering[W

    Science.gov (United States)

    Lazaro, Ana; Valverde, Federico; Piñeiro, Manuel; Jarillo, Jose A.

    2012-01-01

    The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) locus, which encodes a RING finger–containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased FLOWERING LOCUS C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of FLOWERING LOCUS T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with CONSTITUTIVE PHOTOMORPHOGENIC1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis. PMID:22408073

  15. Emotion Risk-Factor in Patients with Cardiac Diseases: The Role of Cognitive Emotion Regulation Strategies, Positive Affect and Negative Affect (A Case-Control Study).

    Science.gov (United States)

    Bahremand, Mostafa; Alikhani, Mostafa; Zakiei, Ali; Janjani, Parisa; Aghei, Abbas

    2015-05-17

    Application of psychological interventions is essential in classic treatments for patient with cardiac diseases. The present study compared cognitive emotion regulation strategies, positive affect, and negative affect for cardiac patients with healthy subjects. This study was a case-control study. Fifty subjects were selected using convenient sampling method from cardiac (coronary artery disease) patients presenting in Imam Ali medical center of Kermanshah, Iran in the spring 2013. Fifty subjects accompanied the patients to the medical center, selected as control group, did not have any history of cardiac diseases. For collecting data, the cognitive emotion regulation questionnaire and positive and negative affect scales were used. For data analysis, multivariate analysis of variance (MANOVA) Was applied using the SPSS statistical software (ver. 19.0). In all cognitive emotion regulation strategies, there was a significant difference between the two groups. A significant difference was also detected regarding positive affect between the two groups, but no significant difference was found regarding negative affect. We found as a result that, having poor emotion regulation strategies is a risk factor for developing heart diseases.

  16. Emotion Risk-Factor in Patients With Cardiac Diseases: The Role of Cognitive Emotion Regulation Strategies, Positive Affect and Negative Affect (A Case-Control Study)

    Science.gov (United States)

    Bahremand, Mostafa; Alikhani, Mostafa; Zakiei, Ali; Janjani, Parisa; Aghaei, Abbas

    2016-01-01

    Application of psychological interventions is essential in classic treatments for patient with cardiac diseases. The present study compared cognitive emotion regulation strategies, positive affect, and negative affect for cardiac patients with healthy subjects. This study was a case-control study. Fifty subjects were selected using convenient sampling method from cardiac (coronary artery disease) patients presenting in Imam Ali medical center of Kermanshah, Iran in the spring 2013. Fifty subjects accompanied the patients to the medical center, selected as control group, did not have any history of cardiac diseases. For collecting data, the cognitive emotion regulation questionnaire and positive and negative affect scales were used. For data analysis, multivariate analysis of variance (MANOVA) was applied using the SPSS statistical software (ver. 19.0). In all cognitive emotion regulation strategies, there was a significant difference between the two groups. A significant difference was also detected regarding positive affect between the two groups, but no significant difference was found regarding negative affect. We found as a result that, having poor emotion regulation strategies is a risk factor for developing heart diseases. PMID:26234976

  17. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs

    OpenAIRE

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-01-01

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A)...

  18. Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control.

    Directory of Open Access Journals (Sweden)

    Amélie Avet-Rochex

    2014-09-01

    Full Text Available Neuronal differentiation is exquisitely controlled both spatially and temporally during nervous system development. Defects in the spatiotemporal control of neurogenesis cause incorrect formation of neural networks and lead to neurological disorders such as epilepsy and autism. The mTOR kinase integrates signals from mitogens, nutrients and energy levels to regulate growth, autophagy and metabolism. We previously identified the insulin receptor (InR/mTOR pathway as a critical regulator of the timing of neuronal differentiation in the Drosophila melanogaster eye. Subsequently, this pathway has been shown to play a conserved role in regulating neurogenesis in vertebrates. However, the factors that mediate the neurogenic role of this pathway are completely unknown. To identify downstream effectors of the InR/mTOR pathway we screened transcriptional targets of mTOR for neuronal differentiation phenotypes in photoreceptor neurons. We identified the conserved gene unkempt (unk, which encodes a zinc finger/RING domain containing protein, as a negative regulator of the timing of photoreceptor differentiation. Loss of unk phenocopies InR/mTOR pathway activation and unk acts downstream of this pathway to regulate neurogenesis. In contrast to InR/mTOR signalling, unk does not regulate growth. unk therefore uncouples the role of the InR/mTOR pathway in neurogenesis from its role in growth control. We also identified the gene headcase (hdc as a second downstream regulator of the InR/mTOR pathway controlling the timing of neurogenesis. Unk forms a complex with Hdc, and Hdc expression is regulated by unk and InR/mTOR signalling. Co-overexpression of unk and hdc completely suppresses the precocious neuronal differentiation phenotype caused by loss of Tsc1. Thus, Unk and Hdc are the first neurogenic components of the InR/mTOR pathway to be identified. Finally, we show that Unkempt-like is expressed in the developing mouse retina and in neural stem

  19. Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus.

    Science.gov (United States)

    Xiao, Xiang; Cheng, Xi; Yin, Kangquan; Li, Huali; Qiu, Jin-Long

    2017-08-01

    Pytohormone abscisic acid (ABA) plays important roles in defense responses. Nonetheless, how ABA regulates plant resistance to biotrophic fungi remains largely unknown. Arabidopsis ABA-deficient mutants, aba2-1 and aba3-1, displayed enhanced resistance to the biotrophic powdery mildew fungus Golovinomyces cichoracearum. Moreover, exogenously administered ABA increased the susceptibility of Arabidopsis to G. cichoracearum. Arabidopsis ABA perception components mutants, abi1-1 and abi2-1, also displayed similar phenotypes to ABA-deficient mutants in resistance to G. cichoracearum. However, the resistance to G. cichoracearum is not changed in downstream ABA signaling transduction mutants, abi3-1, abi4-1, and abi5-1. Microscopic examination revealed that hyphal growth and conidiophore production of G. cichoracearum were compromised in the ABA deficient mutants, even though pre-penetration and penetration growth of the fungus were not affected. In addition, salicylic acid (SA) and MPK3 are found to be involved in ABA-regulated resistance to G. cichoracearum. Our work demonstrates that ABA negatively regulates post-penetration resistance of Arabidopsis to powdery mildew fungus G. cichoracearum, probably through antagonizing the function of SA.

  20. THE USE OF DIETARY FATS AND CONCENTRATES TO ALLEVIATE THE NEGATIVE ENERGY BALANCE IN CROSSBRED COWS IN EARLY LACTATION

    Directory of Open Access Journals (Sweden)

    Carlos F. Aguilar-Pérez

    2014-08-01

    Full Text Available Energy balance (EB is defined as the difference between energy intake and energy expenditure. Fertility in the high-merit cow has been adversely associated with high milk production, low intake of energy and mobilisation of body reserves in early lactation, which combine in the term negative energy balance (NEB.  The timing of insemination usually coincides with peak milk yield, when dairy cows are often in NEB. Crossbred cows (Bos taurus x Bos indicus in the tropics have comparatively lower nutrient requirements and different partition of nutrients than high merit dairy cows. Thus, it would be expected that both the magnitude and length of negative energy balance were different in a crossbred cow. Because of marked differences compared with high-merit cows, crossbred cows in the tropics would be expected to show greater response to additional energy in early lactation improving their energy status and hence reproductive performance. Knowing the influence of nutrition on reproduction, many methods have been proposed for manipulating the diet to avoid or to alleviate negative energy balance. The use of fats is one alternative, which has been extensively studied in dairy and beef cows but with inconclusive results. Another alternative is to use starch-based concentrates, taking into account level of inclusion and quality and availability of pasture, in order to avoid substitution effects and to get maximum profits. Two experiments were carried out in Yucatan Mexico, in order to evaluate the use of bypass fats (calcium soaps of long-chain fatty acids, CAFA or a starch-based concentrate to alleviate the NEB in grazing crossbred cows in early lactation. The NEB in early lactation was successfully avoided by the use of the starch-based concentrate but not by the use of bypass fats, this due to a reduction in the grass DM intake. It was concluded that crossbred cows in the tropics may experience a period of NEB postpartum, which can be avoided if

  1. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats

    Science.gov (United States)

    Beaudin, Stephane A.; Strupp, Barbara J.; Strawderman, Myla; Smith, Donald R.

    2016-01-01

    Background: Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. Objectives: To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Methods: Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1–21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Results: Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. Conclusions: This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230–237; http://dx.doi.org/10.1289/EHP258 PMID:27384154

  2. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats.

    Science.gov (United States)

    Beaudin, Stephane A; Strupp, Barbara J; Strawderman, Myla; Smith, Donald R

    2017-02-01

    Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1-21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230-237; http://dx.doi.org/10.1289/EHP258.

  3. MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway.

    Science.gov (United States)

    Hou, Changhe; Yang, Zibo; Kang, Yan; Zhang, Ziji; Fu, Ming; He, Aishan; Zhang, Zhiqi; Liao, Weiming

    2015-04-13

    Cartilage generation and degradation are regulated by miRNAs. Our previous study has shown altered expression of miR-193b in chondrogenic human adipose-derived mesenchymal stem cells (hADSCs). In the current study, we investigated the role of miR-193b in chondrogenesis and cartilage degradation. Luciferase reporter assays showed that miR-193b targeted seed sequences of the TGFB2 and TGFBR3 3'-UTRs. MiR-193b suppressed the expression of early chondrogenic markers in chondrogenic ATDC5 cells, and TNF-alpha expression in IL-1b-induced PMCs. In conclusion, MiR-193b may inhibit early chondrogenesis by targeting TGFB2 and TGFBR3, and may regulate inflammation by repressing TNF-alpha expression in inflamed chondrocytes. Copyright © 2015. Published by Elsevier B.V.

  4. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences

    KAUST Repository

    Frei dit Frey, Nicolas; Garcia, Ana; Bigeard, Jean; Zaag, Rim; Bueso, Eduardo; Garmier, Marie; Pateyron, Sté phanie; de Tauzia-Moreau, Marie-Ludivine; Brunaud, Vé ronique; Balzergue, Sandrine; Colcombet, Jean; Aubourg, Sé bastien; Martin-Magniette, Marie-Laure; Hirt, Heribert

    2014-01-01

    -induced genes and we identify a negative role for MPK3 in regulating defence gene expression, flg22-induced salicylic acid accumulation and disease resistance to Pseudomonas syringae. Among the MAPK-dependent genes, 27% of flg22-upregulated genes and 76

  5. TRAF family member-associated NF-κB activator (TANK) induced by RANKL negatively regulates osteoclasts survival and function.

    Science.gov (United States)

    Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping

    2012-01-01

    Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption.

  6. Elongated Hypocotyl 5-Homolog (HYH Negatively Regulates Expression of the Ambient Temperature-Responsive MicroRNA Gene MIR169

    Directory of Open Access Journals (Sweden)

    Phanu T. Serivichyaswat

    2017-12-01

    Full Text Available Arabidopsis microRNA169 (miR169 is an ambient temperature-responsive microRNA that plays an important role in stress responses and the floral transition. However, the transcription factors that regulate the expression of MIR169 have remained unknown. In this study, we show that Elongated Hypocotyl 5-Homolog (HYH directly binds to the promoter of MIR169a and negatively regulates its expression. Absolute quantification identified MIR169a as the major locus producing miR169. GUS reporter assays revealed that the deletion of a 498-bp fragment (–1,505 to –1,007, relative to the major transcriptional start site of MIR169a abolished its ambient temperature-responsive expression. DNA-affinity chromatography followed by liquid chromatography-mass spectrometry analysis identified transcription factor HYH as a trans-acting factor that binds to the 498-bp promoter fragment of pri-miR169a. Electrophoretic mobility shift assays and chromatin immunoprecipitation–quantitative PCR demonstrated that the HYH.2 protein, a predominant isoform of HYH, directly associated with a G-box-like motif in the 498-bp fragment of pri-miR169a. Higher enrichment of HYH.2 protein on the promoter region of MIR169a was seen at 23°C, consistent with the presence of more HYH.2 protein in the cell at the temperature. Transcript levels of pri-miR169a increased in hyh mutants and decreased in transgenic plants overexpressing HYH. Consistent with the negative regulation of MIR169a by HYH, the diurnal levels of HYH mRNA and pri-miR169a showed opposite patterns. Taken together, our results suggest that HYH is a transcription factor that binds to a G-box-like motif in the MIR169a promoter and negatively regulates ambient temperature-responsive expression of MIR169a at higher temperatures in Arabidopsis.

  7. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    OpenAIRE

    Kai Shu; Ying Qi; Feng Chen; Yongjie Meng; Xiaofeng Luo; Haiwei Shuai; Wenguan Zhou; Jun Ding; Junbo Du; Jiang Liu; Feng Yang; Qiang Wang; Weiguo Liu; Taiwen Yong; Xiaochun Wang

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease i...

  8. Defective interleukin-4/Stat6 activity correlates with increased constitutive expression of negative regulators SOCS-3, SOCS-7, and CISH in colon cancer cells.

    Science.gov (United States)

    Liu, Xiao Hong; Xu, Shuang Bing; Yuan, Jia; Li, Ben Hui; Zhang, Yan; Yuan, Qin; Li, Pin Dong; Li, Feng; Zhang, Wen Jie

    2009-12-01

    Interleukin-4 (IL-4)-induced Stat6 activities (phenotypes) vary among human cancer cells, of which the HT-29 cell line carries an active Stat6(high) phenotype, while Caco-2 carries a defective Stat6(null) phenotype, respectively. Cancer cells with Stat6(high) show resistance to apoptosis and exaggerated metastasis, suggesting the clinical significance of Stat6 phenotypes. We previously showed that Stat6(high) HT-29 cells exhibited low constitutive expression of Stat6-negative regulators SOCS-1 and SHP-1 because of gene hypermethylation. This study further examined the constitutive expression of other closely related SOCS family numbers including SOCS-3, SOCS-5, SOCS-7, and CISH using RT-PCR. Similar to SOCS-1 and SHP-1, Stat6(high) HT-29 cells expressed low constitutive mRNA of SOCS-3, SOCS-7, and CISH than Stat6(null) Caco-2 cells. Interestingly, DNA demethylation using 5-aza-2'-deoxycytidine in HT-29 cells up-regulated mRNA expression of the above genes, indicating a hypermethylation status, which was confirmed by methylation-specific sequencing in selected SOCS-3 gene. Furthermore, defective Stat6(null) Caco-2 exhibited impaired phosphorylation of Stat6 after IL-4 stimulation by flow cytometry, in keeping with the notion of an over-performed negative regulation. The findings that IL-4/Stat6 phenotypes show differential expression of multiple negative regulators suggest a model that a collective force of powerful negative regulators, directly and indirectly, acts on Stat6 activation, which may result in differential Stat6 phenotypes.

  9. Investing in the Early Childhood Mental Health Workforce Development: Enhancing Professionals' Competencies to Support Emotion and Behavior Regulation in Young Children.

    Science.gov (United States)

    Ritblatt, Shulamit N; Hokoda, Audrey; Van Liew, Charles

    2017-09-19

    This paper delineates a preventive approach to early childhood mental health by preparing the workforce to provide relational, sensitive care to young children ages 0-5. One of the most prevalent issues in early childhood is behavioral challenges and the inability of young children to regulate themselves. This leads to an expulsion rate in early childhood (3-4 times higher than K-12 expulsion rate) and future mental health issues. The Early Childhood Social-Emotional and Behavior Regulation Intervention Specialist (EC-SEBRIS) graduate level certificate program was created to strengthen early care and education providers with the knowledge and practice of how to support emotion and behavior regulation in young children in their groups. Evaluation data provide evidence that early care and education professionals increased in their perception of self-efficacy and in their sensitivity of care and skills to support behavioral health in young children. Results indicated that the children in their care showed less challenging behaviors and increased social competencies. This manuscript highlights the importance of prevention and the dire need to provide young children with high-quality, appropriate care to support their mental health.

  10. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang; Xue, Jun; Shao, Xue-jun, E-mail: xuejunshao@hotmail.com

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.

  11. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells.

    Science.gov (United States)

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-12-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Response and binding elements for ligand-dependent positive transcription factors integrate positive and negative regulation of gene expression

    International Nuclear Information System (INIS)

    Rosenfeld, M.G.; Glass, C.K.; Adler, S.; Crenshaw, E.B. III; He, X.; Lira, S.A.; Elsholtz, H.P.; Mangalam, H.J.; Holloway, J.M.; Nelson, C.; Albert, V.R.; Ingraham, H.A.

    1988-01-01

    Accurate, regulated initiation of mRNA transcription by RNA polymerase II is dependent on the actions of a variety of positive and negative trans-acting factors that bind cis-acting promoter and enhancer elements. These transcription factors may exert their actions in a tissue-specific manner or function under control of plasma membrane or intracellular ligand-dependent receptors. A major goal in the authors' laboratory has been to identify the molecular mechanisms responsible for the serial activation of hormone-encoding genes in the pituitary during development and the positive and negative regulation of their transcription. The anterior pituitary gland contains phenotypically distinct cell types, each of which expresses unique trophic hormones: adrenocorticotropic hormone, thyroid-stimulating hormone, prolactin, growth hormone, and follicle-stimulating hormone/luteinizing hormone. The structurally related prolactin and growth hormone genes are expressed in lactotrophs and somatotrophs, respectively, with their expression virtually limited to the pituitary gland. The reported transient coexpression of these two structurally related neuroendocrine genes raises the possibility that the prolactin and growth hormone genes are developmentally controlled by a common factor(s)

  13. Distribution of Endogenous NO Regulates Early Gravitropic Response and PIN2 Localization in Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Ramiro París

    2018-04-01

    Full Text Available High-resolution and automated image analysis of individual roots demonstrated that endogenous nitric oxide (NO contribute significantly to gravitropism of Arabidopsis roots. Lowering of endogenous NO concentrations strongly reduced and even reversed gravitropism, resulting in upward bending, without affecting root growth rate. Notably, the asymmetric accumulation of NO along the upper and lower sides of roots correlated with a positive gravitropic response. Detection of NO by the specific DAF-FM DA fluorescent probe revealed that NO was higher at the lower side of horizontally-oriented roots returning to initial values 2 h after the onset of gravistimulation. We demonstrate that NO promotes plasma membrane re-localization of PIN2 in epidermal cells, which is required during the early root gravitropic response. The dynamic and asymmetric localization of both auxin and NO is critical to regulate auxin polar transport during gravitropism. Our results collectively suggest that, although auxin and NO crosstalk occurs at different levels of regulation, they converge in the regulation of PIN2 membrane trafficking in gravistimulated roots, supporting the notion that a temporally and spatially coordinated network of signal molecules could participate in the early phases of auxin polar transport during gravitropism.

  14. Early-life sugar consumption has long-term negative effects on memory function in male rats.

    Science.gov (United States)

    Noble, Emily E; Hsu, Ted M; Liang, Joanna; Kanoski, Scott E

    2017-09-25

    Added dietary sugars contribute substantially to the diet of children and adolescents in the USA, and recent evidence suggests that consuming sugar-sweetened beverages (SSBs) during early life has deleterious effects on hippocampal-dependent memory function. Here, we test whether the effects of early-life sugar consumption on hippocampal function persist into adulthood when access to sugar is restricted to the juvenile/adolescent phase of development. Male rats were given ad libitum access to an 11% weight-by-volume sugar solution (made with high fructose corn syrup-55) throughout the adolescent phase of development (post-natal day (PN) 26-56). The control group received a second bottle of water instead, and both groups received ad libitum standard laboratory chow and water access throughout the study. At PN 56 sugar solutions were removed and at PN 175 rats were subjected to behavioral testing for hippocampal-dependent episodic contextual memory in the novel object in context (NOIC) task, for anxiety-like behavior in the Zero maze, and were given an intraperitoneal glucose tolerance test. Early-life exposure to SSBs conferred long-lasting impairments in hippocampal-dependent memory function later in life- yet had no effect on body weight, anxiety-like behavior, or glucose tolerance. A second experiment demonstrated that NOIC performance was impaired at PN 175 even when SSB access was limited to 2 hours daily from PN 26-56. Our data suggest that even modest SSB consumption throughout early life may have long-term negative consequences on memory function during adulthood.

  15. The Putative PAX8/PPARγ Fusion Oncoprotein Exhibits Partial Tumor Suppressor Activity through Up-Regulation of Micro-RNA-122 and Dominant-Negative PPARγ Activity.

    Science.gov (United States)

    Reddi, Honey V; Madde, Pranathi; Milosevic, Dragana; Hackbarth, Jennifer S; Algeciras-Schimnich, Alicia; McIver, Bryan; Grebe, Stefan K G; Eberhardt, Norman L

    2011-01-01

    In vitro studies have demonstrated that the PAX8/PPARγ fusion protein (PPFP), which occurs frequently in follicular thyroid carcinomas (FTC), exhibits oncogenic activity. However, paradoxically, a meta-analysis of extant tumor outcome studies indicates that 68% of FTC-expressing PPFP are minimally invasive compared to only 32% of those lacking PPFP (χ(2) = 6.86, P = 0.008), suggesting that PPFP favorably impacts FTC outcomes. In studies designed to distinguish benign thyroid neoplasms from thyroid carcinomas, the previously identified tumor suppressor miR-122, a major liver micro-RNA (miR) that is decreased in hepatocellular carcinoma, was increased 8.9-fold (P negative PPARγ mutant in WRO cells was less effective than PPFP at inhibiting xenograft tumor progression (1.8-fold [P negative PPARγ activity. Up-regulation of miR-122 negatively regulates ADAM-17, a known downstream target, in thyroid cells, suggesting an antiangiogenic mechanism in thyroid carcinoma. This latter inference is directly supported by reduced CD-31 expression in WRO xenografts expressing PPFP, miR-122, and DN-PPARγ. We conclude that, in addition to its apparent oncogenic potential in vitro, PPFP exhibits paradoxical tumor suppressor activity in vivo, mediated by multiple mechanisms including up-regulation of miR-122 and dominant-negative inhibition of PPARγ activity.

  16. Emotional Reactivity and Regulation in Infancy Interact to Predict Executive Functioning in Early Childhood

    Science.gov (United States)

    Ursache, Alexandra; Blair, Clancy; Stifter, Cynthia; Voegtline, Kristin

    2013-01-01

    The relation of observed emotional reactivity and regulation in infancy to executive function in early childhood was examined in a prospective longitudinal sample of 1,292 children from predominantly low-income and rural communities. Children participated in a fear eliciting task at ages 7, 15, and 24 months and completed an executive function…

  17. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency.

    Science.gov (United States)

    Liu, Wei; Li, Qiwei; Wang, Yi; Wu, Ting; Yang, Yafei; Zhang, Xinzhong; Han, Zhenhai; Xu, Xuefeng

    2017-09-23

    Ethylene regulates the plant's response to stress caused by iron (Fe) deficiency. However, specific roles of ERF proteins in response to Fe deficiency remain poorly understood. Here, we investigated the role of ERF72 in response to iron deficiency in Arabidopsis thaliana. In this study, the levels of the ethylene response factor AtERF72 increased in leaves and roots induced under the iron deficient conditions. erf72 mutant plants showed increased growth compared to wild type (WT) when grown in iron deficient medium for 5 d. erf72 mutants had increased root H + velocity and the ferric reductase activity, and increase in the expression of the iron deficiency response genes iron-regulated transporter 1 (IRT1) and H + -ATPase (HA2) levels in iron deficient conditions. Compared to WT plants, erf72 mutants retained healthy chloroplast structure with significantly higher Fe and Mg content, and decreased chlorophyll degradation gene pheophorbide a oxygenase (PAO) and chlorophyllase (CLH1) expression when grown in iron deficient media. Yeast one-hybrid analysis showed that ERF72 could directly bind to the promoter regions of iron deficiency responses genes IRT1, HA2 and CLH1. Based on our results, we suggest that ethylene released from plants under iron deficiency stress can activate the expression of ERF72, which responds to iron deficiency in the negative regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The effects of friendship network popularity on depressive symptoms during early adolescence: moderation by fear of negative evaluation and gender.

    Science.gov (United States)

    Kornienko, Olga; Santos, Carlos E

    2014-04-01

    We integrated a social network analysis and developmental perspectives to examine the effects of friendship network popularity on depressive symptoms during early adolescence. We explored whether the association between social status processes (i.e., friendship network popularity) and depressive symptoms was moderated by socio-cognitive aspects of peer relations (i.e., a fear of negative evaluation by peers) and gender. This longitudinal study was conducted with a sample of 367 adolescents (48.5 % female; M age = 11.9 years; 9 % European American, 19 % African American, 7 % Native American, 60 % Latino(a), 5 % other) attending sixth and seventh grades at Time 1. Results indicated that, for males with high levels of fear of negative evaluation, friendship network popularity was associated negatively with increases in depressive symptoms. Conversely, for females with high levels of fear of negative evaluation, friendship network popularity was associated positively with increases in depressive symptoms. Theoretical and clinical implications are discussed.

  19. Osteocalcin as a negative regulator of serum leptin concentration in humans: insight from triathlon competitions.

    Science.gov (United States)

    Guadalupe-Grau, Amelia; Ara, Ignacio; Dorado, Cecilia; Vicente-Rodríguez, German; Perez-Gomez, Jorge; Cabrero, Javier Chavarren; Serrano-Sanchez, José A; Santana, Alfredo; Calbet, Jose A L

    2010-10-01

    Osteocalcin is a hormone produced by osteoblasts which acts as a negative regulator of fat mass, protecting against diet induced obesity and insulin resistance in rodents. To determine if an acute increase in osteocalcin concentration is associated with opposed changes in circulating leptin levels and insulin resistance we studied 15 middle and long distance male triathletes, (age 32.1 ± 6.9 years), before and 48 h after an Olympic (OT) or an Ironman (IT) triathlon competition. Muscle power, anaerobic capacity, body composition (dual-energy X-ray absorptiometry), and serum concentrations of testosterone, dihydrotestosterone, osteocalcin, leptin, glucose, insulin and insulin resistance (HOMA) were determined pre- and post-race. Pre- and 48 h post-race total and regional lean body mass was not altered, but fat mass was similarly increased (~250 g) 48 h after the competitions. This elicited an increase in plasma leptin of 33% after the IT while it remained unchanged after the OT, likely due to a 25% increase in plasma osteocalcin which occurred only after the OT (all p < 0.05). Post-race HOMA remained unchanged in OT and IT. Performance was normalized 48 h after the competitions, with the exception of a slightly lower jumping capacity after the IT. Serum testosterone concentration tended to decrease by 10% after the IT whilst dihydrotestosterone was reduced by 24% after the IT. In conclusion, an acute increase in serum osteocalcin concentration blunts the expected increase of serum leptin concentration that should occur with fat mass gain. This study provides evidence for osteocalcin as a negative regulator of serum leptin in humans.

  20. PTP1B is a negative regulator of interleukin 4–induced STAT6 signaling

    Science.gov (United States)

    Lu, Xiaoqing; Malumbres, Raquel; Shields, Benjamin; Jiang, Xiaoyu; Sarosiek, Kristopher A.; Natkunam, Yasodha

    2008-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed enzyme shown to negatively regulate multiple tyrosine phosphorylation-dependent signaling pathways. PTP1B can modulate cytokine signaling pathways by dephosphorylating JAK2, TYK2, and STAT5a/b. Herein, we report that phosphorylated STAT6 may serve as a cytoplasmic substrate for PTP1B. Overexpression of PTP1B led to STAT6 dephosphorylation and the suppression of STAT6 transcriptional activity, whereas PTP1B knockdown or deficiency augmented IL-4–induced STAT6 signaling. Pretreatment of these cells with the PTK inhibitor staurosporine led to sustained STAT6 phosphorylation consistent with STAT6 serving as a direct substrate of PTP1B. Furthermore, PTP1B-D181A “substrate-trapping” mutants formed stable complexes with phosphorylated STAT6 in a cellular context and endogenous PTP1B and STAT6 interacted in an interleukin 4 (IL-4)–inducible manner. We delineate a new negative regulatory loop of IL-4–JAK-STAT6 signaling. We demonstrate that IL-4 induces PTP1B mRNA expression in a phosphatidylinositol 3-kinase–dependent manner and enhances PTP1B protein stability to suppress IL-4–induced STAT6 signaling. Finally, we show that PTP1B expression may be preferentially elevated in activated B cell–like diffuse large B-cell lymphomas. These observations identify a novel regulatory loop for the regulation of IL-4–induced STAT6 signaling that may have important implications in both neoplastic and inflammatory processes. PMID:18716132

  1. Implicit conditioning of faces via the social regulation of emotion: ERP evidence of early attentional biases for security conditioned faces.

    Science.gov (United States)

    Beckes, Lane; Coan, James A; Morris, James P

    2013-08-01

    Not much is known about the neural and psychological processes that promote the initial conditions necessary for positive social bonding. This study explores one method of conditioned bonding utilizing dynamics related to the social regulation of emotion and attachment theory. This form of conditioning involves repeated presentations of negative stimuli followed by images of warm, smiling faces. L. Beckes, J. Simpson, and A. Erickson (2010) found that this conditioning procedure results in positive associations with the faces measured via a lexical decision task, suggesting they are perceived as comforting. This study found that the P1 ERP was similarly modified by this conditioning procedure and the P1 amplitude predicted lexical decision times to insecure words primed by the faces. The findings have implications for understanding how the brain detects supportive people, the flexibility and modifiability of early ERP components, and social bonding more broadly. Copyright © 2013 Society for Psychophysiological Research.

  2. The gga-let-7 family post-transcriptionally regulates TGFBR1 and LIN28B during the differentiation process in early chick development.

    Science.gov (United States)

    Lee, Sang In; Jeon, Mi-Hyang; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2015-12-01

    Early chick embryogenesis is governed by a complex mechanism involving transcriptional and post-transcriptional regulation, although how post-transcriptional processes influence the balance between pluripotency and differentiation during early chick development have not been previously investigated. Here, we characterized the microRNA (miRNA) signature associated with differentiation in the chick embryo, and found that as expression of the gga-let-7 family increases through early development, expression of their direct targets, TGFBR1 and LIN28B, decreases; indeed, gga-let-7a-5p and gga-let-7b miRNAs directly bind to TGFBR1 and LIN28B transcripts. Our data further indicate that TGFBR1 and LIN28B maintain pluripotency by regulating POUV, NANOG, and CRIPTO. Therefore, gga-let-7 miRNAs act as post-transcriptional regulators of differentiation in blastodermal cells by repressing the expression of the TGFBR1 and LIN28B, which intrinsically controls blastodermal cell differentiation in early chick development. © 2015 Wiley Periodicals, Inc.

  3. Atrial natriuretic peptide regulates Ca channel in early developmental cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Lin Miao

    Full Text Available BACKGROUND: Cardiomyocytes derived from murine embryonic stem (ES cells possess various membrane currents and signaling cascades link to that of embryonic hearts. The role of atrial natriuretic peptide (ANP in regulation of membrane potentials and Ca(2+ currents has not been investigated in developmental cardiomyocytes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of ANP in regulating L-type Ca(2+ channel current (I(CaL in different developmental stages of cardiomyocytes derived from ES cells. ANP decreased the frequency of action potentials (APs in early developmental stage (EDS cardiomyocytes, embryonic bodies (EB as well as whole embryo hearts. ANP exerted an inhibitory effect on basal I(CaL in about 70% EDS cardiomyocytes tested but only in about 30% late developmental stage (LDS cells. However, after stimulation of I(CaL by isoproterenol (ISO in LDS cells, ANP inhibited the response in about 70% cells. The depression of I(CaL induced by ANP was not affected by either Nomega, Nitro-L-Arginine methyl ester (L-NAME, a nitric oxide synthetase (NOS inhibitor, or KT5823, a cGMP-dependent protein kinase (PKG selective inhibitor, in either EDS and LDS cells; whereas depression of I(CaL by ANP was entirely abolished by erythro-9-(2-Hydroxy-3-nonyl adenine (EHNA, a selective inhibitor of type 2 phosphodiesterase(PDE2 in most cells tested. CONCLUSION/SIGNIFICANCES: Taken together, these results indicate that ANP induced depression of action potentials and I(CaL is due to activation of particulate guanylyl cyclase (GC, cGMP production and cGMP-activation of PDE2 mediated depression of adenosine 3', 5'-cyclic monophophate (cAMP-cAMP-dependent protein kinase (PKA in early cardiomyogenesis.

  4. The role of negative maternal affective states and infant temperament in early interactions between infants with cleft lip and their mothers.

    Science.gov (United States)

    Montirosso, Rosario; Fedeli, Claudia; Murray, Lynne; Morandi, Francesco; Brusati, Roberto; Perego, Guenda Ghezzi; Borgatti, Renato

    2012-03-01

    The study examined the early interaction between mothers and their infants with cleft lip, assessing the role of maternal affective state and expressiveness and differences in infant temperament. Mother-infant interactions were assessed in 25 2-month-old infants with cleft lip and 25 age-matched healthy infants. Self-report and behavioral observations were used to assess maternal depressive symptoms and expressions. Mothers rated infant temperament. Infants with cleft lip were less engaged and their mothers showed more difficulty in interaction than control group dyads. Mothers of infants with cleft lip displayed more negative affectivity, but did not report more self-rated depressive symptoms than control group mothers. No group differences were found in infant temperament. In order to support the mother's experience and facilitate her ongoing parental role, findings highlight the importance of identifying maternal negative affectivity during early interactions, even when they seem have little awareness of their depressive symptoms.

  5. DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer.

    Directory of Open Access Journals (Sweden)

    Steven T Lott

    2009-05-01

    female breast cancer patients with a 20-year follow-up indicated that in early-onset breast cancer, DEAR1 expression serves as an independent predictor of local recurrence-free survival and correlates significantly with strong family history of breast cancer and the triple-negative phenotype (ER(-, PR(-, HER-2(- of breast cancers with poor prognosis.Our data provide compelling evidence for the genetic alteration and loss of expression of DEAR1 in breast cancer, for the functional role of DEAR1 in the dominant regulation of acinar morphogenesis in 3D culture, and for the potential utility of an immunohistochemical assay for DEAR1 expression as an independent prognostic marker for stratification of early-onset disease.

  6. Antiangiogenic Treatment Diminishes Renal Injury and Dysfunction via Regulation of Local AKT in Early Experimental Diabetes

    OpenAIRE

    Bai, Xiaoyan; Li, Xiao; Tian, Jianwei; Zhou, Zhanmei

    2014-01-01

    In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin...

  7. Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment

    Science.gov (United States)

    Naveiras, Olaia; Nardi, Valentina; Wenzel, Pamela L.; Fahey, Frederic; Daley, George Q.

    2009-01-01

    Osteoblasts and endothelium constitute functional niches that support hematopoietic stem cells (HSC) in mammalian bone marrow (BM) 1,2,3 . Adult BM also contains adipocytes, whose numbers correlate inversely with the hematopoietic activity of the marrow. Fatty infiltration of hematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia 4. To explore whether adipocytes influence hematopoiesis or simply fill marrow space, we compared the hematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. By flow cytometry, colony forming activity, and competitive repopulation assay, HSCs and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 “fatless” mice, which are genetically incapable of forming adipocytes8, and in mice treated with the PPARγ inhibitor Bisphenol-A-DiGlycidyl-Ether (BADGE), which inhibits adipogenesis9, post-irradiation marrow engraftment is accelerated relative to wild type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone marrow microenvironment, and suggest that antagonizingmarrow adipogenesis may enhance hematopoietic recovery in clinical bone marrow transplantation. PMID:19516257

  8. Plasmid Negative Regulation of CPAF Expression Is Pgp4 Independent and Restricted to Invasive Chlamydia trachomatis Biovars

    Directory of Open Access Journals (Sweden)

    Michael John Patton

    2018-01-01

    Full Text Available Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes blinding trachoma and sexually transmitted disease. C. trachomatis isolates are classified into 2 biovars—lymphogranuloma venereum (LGV and trachoma—which are distinguished biologically by their natural host cell infection tropism. LGV biovars infect macrophages and are invasive, whereas trachoma biovars infect oculo-urogenital epithelial cells and are noninvasive. The C. trachomatis plasmid is an important virulence factor in the pathogenesis of these infections. Central to its pathogenic role is the transcriptional regulatory function of the plasmid protein Pgp4, which regulates the expression of plasmid and chromosomal virulence genes. As many gene regulatory functions are post-transcriptional, we employed a comparative proteomic study of cells infected with plasmid-cured C. trachomatis serovars A and D (trachoma biovar, a L2 serovar (LGV biovar, and the L2 serovar transformed with a plasmid containing a nonsense mutation in pgp4 to more completely elucidate the effects of the plasmid on chlamydial infection biology. Our results show that the Pgp4-dependent elevations in the levels of Pgp3 and a conserved core set of chromosomally encoded proteins are remarkably similar for serovars within both C. trachomatis biovars. Conversely, we found a plasmid-dependent, Pgp4-independent, negative regulation in the expression of the chlamydial protease-like activity factor (CPAF for the L2 serovar but not the A and D serovars. The molecular mechanism of plasmid-dependent negative regulation of CPAF expression in the LGV serovar is not understood but is likely important to understanding its macrophage infection tropism and invasive infection nature.

  9. Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation.

    Science.gov (United States)

    Leiba, Jade; Syson, Karl; Baronian, Grégory; Zanella-Cléon, Isabelle; Kalscheuer, Rainer; Kremer, Laurent; Bornemann, Stephen; Molle, Virginie

    2013-06-07

    GlgE is a maltosyltransferase involved in the biosynthesis of α-glucans that has been genetically validated as a potential therapeutic target against Mycobacterium tuberculosis. Despite also making α-glucan, the GlgC/GlgA glycogen pathway is distinct and allosterically regulated. We have used a combination of genetics and biochemistry to establish how the GlgE pathway is regulated. M. tuberculosis GlgE was phosphorylated specifically by the Ser/Thr protein kinase PknB in vitro on one serine and six threonine residues. Furthermore, GlgE was phosphorylated in vivo when expressed in Mycobacterium bovis bacillus Calmette-Guérin (BCG) but not when all seven phosphorylation sites were replaced by Ala residues. The GlgE orthologues from Mycobacterium smegmatis and Streptomyces coelicolor were phosphorylated by the corresponding PknB orthologues in vitro, implying that the phosphorylation of GlgE is widespread among actinomycetes. PknB-dependent phosphorylation of GlgE led to a 2 orders of magnitude reduction in catalytic efficiency in vitro. The activities of phosphoablative and phosphomimetic GlgE derivatives, where each phosphorylation site was substituted with either Ala or Asp residues, respectively, correlated with negative phosphoregulation. Complementation studies of a M. smegmatis glgE mutant strain with these GlgE derivatives, together with both classical and chemical forward genetics, were consistent with flux through the GlgE pathway being correlated with GlgE activity. We conclude that the GlgE pathway appears to be negatively regulated in actinomycetes through the phosphorylation of GlgE by PknB, a mechanism distinct from that known in the classical glycogen pathway. Thus, these findings open new opportunities to target the GlgE pathway therapeutically.

  10. Early Seizure Detection Based on Cardiac Autonomic Regulation Dynamics

    Directory of Open Access Journals (Sweden)

    Jonatas Pavei

    2017-10-01

    Full Text Available Epilepsy is a neurological disorder that causes changes in the autonomic nervous system. Heart rate variability (HRV reflects the regulation of cardiac activity and autonomic nervous system tone. The early detection of epileptic seizures could foster the use of new treatment approaches. This study presents a new methodology for the prediction of epileptic seizures using HRV signals. Eigendecomposition of HRV parameter covariance matrices was used to create an input for a support vector machine (SVM-based classifier. We analyzed clinical data from 12 patients (9 female; 3 male; age 34.5 ± 7.5 years, involving 34 seizures and a total of 55.2 h of interictal electrocardiogram (ECG recordings. Data from 123.6 h of ECG recordings from healthy subjects were used to test false positive rate per hour (FP/h in a completely independent data set. Our methodological approach allowed the detection of impending seizures from 5 min to just before the onset of a clinical/electrical seizure with a sensitivity of 94.1%. The FP rate was 0.49 h−1 in the recordings from patients with epilepsy and 0.19 h−1 in the recordings from healthy subjects. Our results suggest that it is feasible to use the dynamics of HRV parameters for the early detection and, potentially, the prediction of epileptic seizures.

  11. Cross-Lagged Associations Between Adolescents' Depressive Symptoms and Negative Cognitive Style: The Role of Negative Life Event

    NARCIS (Netherlands)

    Kindt, K.C.M.; Kleinjan, M.; Janssens, J.M.A.M.; Scholte, R.H.J.

    2015-01-01

    Previous research has established that cognitive theory-based depression prevention programs aiming change in negative cognitive style in early adolescents do not have strong effects in universal settings. Although theories suggest that a negative cognitive style precedes depressive symptoms,

  12. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  13. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis.

    Science.gov (United States)

    Zhu, Hui-Fen; Fitzsimmons, Karen; Khandelwal, Abha; Kranz, Robert G

    2009-07-01

    Single-repeat R3 MYB transcription factors like CPC (CAPRICE) are known to play roles in developmental processes such as root hair differentiation and trichome initiation. However, none of the six Arabidopsis single-repeat R3 MYB members has been reported to regulate flavonoid biosynthesis. We show here that CPC is a negative regulator of anthocyanin biosynthesis. In the process of using CPC to test GAL4-dependent driver lines, we observed a repression of anthocyanin synthesis upon GAL4-mediated CPC overexpression. We demonstrated that this is not due to an increase in nutrient uptake because of more root hairs. Rather, CPC expression level tightly controls anthocyanin accumulation. Microarray analysis on the whole genome showed that, of 37 000 features tested, 85 genes are repressed greater than three-fold by CPC overexpression. Of these 85, seven are late anthocyanin biosynthesis genes. Also, anthocyanin synthesis genes were shown to be down-regulated in 35S::CPC overexpression plants. Transient expression results suggest that CPC competes with the R2R3-MYB transcription factor PAP1/2, which is an activator of anthocyanin biosynthesis genes. This report adds anthocyanin biosynthesis to the set of programs that are under CPC control, indicating that this regulator is not only for developmental programs (e.g. root hairs, trichomes), but can influence anthocyanin pigment synthesis.

  14. amiA is a negative regulator of acetamidase expression in Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Turner Jane

    2001-08-01

    Full Text Available Abstract Background The acetamidase of Mycobacterium smegmatis is a highly inducible enzyme. Expression of this enzyme is increased 100-fold when the substrate acetamide is present. The acetamidase gene is found immediately downstream of three open reading frames. Two of these are proposed to be involved in regulation. Results We constructed a deletion mutant in one of the upstream ORFs (amiA. This mutant (Mad1 showed a constitutively high level of acetamidase expression. We identified four promoters in the upstream region using a β-galactosidase reporter gene. One of these (P2 was inducible in the wild-type, but was constitutively active in Mad1. Conclusions These results demonstrate that amiA encodes a negative regulatory protein which interacts with P2. Since amiA has homology to DNA-binding proteins, it is likely that it exerts the regulatory effect by binding to the promoter to prevent transcription.

  15. Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi.

    Science.gov (United States)

    Bassler, B L; Wright, M; Silverman, M R

    1994-05-01

    Density-dependent expression of luminescence in Vibrio harveyi is regulated by the concentration of extracellular signal molecules (autoinducers) in the culture medium. A recombinant clone that restored function to one class of spontaneous dim mutants was found to encode a function required for the density-dependent response. Transposon Tn5 insertions in the recombinant clone were isolated, and the mutations were transferred to the genome of V. harveyi for examination of mutant phenotypes. Expression of luminescence in V. harveyi strains with transposon insertions in one locus, luxO, was independent of the density of the culture and was similar in intensity to the maximal level observed in wild-type bacteria. Sequence analysis of luxO revealed one open reading frame that encoded a protein, LuxO, similar in amino acid sequence to the response regulator domain of the family of two-component, signal transduction proteins. The constitutive phenotype of LuxO- mutants indicates that LuxO acts negatively to control expression of luminescence, and relief of repression by LuxO in the wild type could result from interactions with other components in the Lux signalling system.

  16. miR-375-3p negatively regulates osteogenesis by targeting and decreasing the expression levels of LRP5 and β-catenin.

    Directory of Open Access Journals (Sweden)

    Tianhao Sun

    Full Text Available Wnt signaling pathways are essential for bone formation. Previous studies showed that Wnt signaling pathways were regulated by miR-375. Thus, we aim to explore whether miR-375 could affect osteogenesis. In the present study, we investigated the roles of miR-375 and its downstream targets. Firstly, we revealed that miR-375-3p negatively modulated osteogenesis by suppressing positive regulators of osteogenesis and promoting negative regulators of osteogenesis. In addition, the results of TUNEL cell apoptosis assay showed that miR-375-3p induced MC3T3-E1 cell apoptosis. Secondly, miR-375-3p targeted low-density lipoprotein receptor-related protein 5 (LRP5, a co-receptor of the Wnt signaling pathways, and β-catenin as determined by luciferase activity assay, and it decreased the expression levels of LRP5 and β-catenin. Thirdly, the decline of protein levels of β-catenin was determined by immunocytochemistry and immunofluorescence. Finally, silence of LRP5 in osteoblast precursor cells resulted in diminished cell viability and cell proliferation as detected by WST-1-based colorimetric assay. Additionally, all the parameters including the relative bone volume from μCT measurement suggested that LRP5 knockout in mice resulted in a looser and worse-connected trabeculae. The mRNA levels of important negative modulators relating to osteogenesis increased after the functions of LRP5 were blocked in mice. Last but not least, the expression levels of LRP5 increased during the osteogenesis of MC3T3-E1, while the levels of β-catenin decreased in bone tissues from osteoporotic patients with vertebral compression fractures. In conclusion, we revealed miR-375-3p negatively regulated osteogenesis by targeting LRP5 and β-catenin. In addition, loss of functions of LRP5 damaged bone formation in vivo. Clinically, miR-375-3p and its targets might be used as diagnostic biomarkers for osteoporosis and might be also as novel therapeutic agents in osteoporosis

  17. Maternal and Early-Life Circadian Disruption Have Long-Lasting Negative Consequences on Offspring Development and Adult Behavior in Mice.

    Science.gov (United States)

    Smarr, Benjamin L; Grant, Azure D; Perez, Luz; Zucker, Irving; Kriegsfeld, Lance J

    2017-06-12

    Modern life involves chronic circadian disruption through artificial light and these disruptions are associated with numerous mental and physical health maladies. Because the developing nervous system is particularly vulnerable to perturbation, we hypothesized that early-life circadian disruption would negatively impact offspring development and adult function. Pregnant mice were subjected to chronic circadian disruption from the time of uterine implantation through weaning. To dissociate in utero from postnatal effects, a subset of litters was cross-fostered at birth from disrupted dams to control dams and vice versa. Postnatal circadian disruption was associated with reduced adult body mass, social avoidance, and hyperactivity. In utero disruption resulted in more pronounced social avoidance and hyperactivity, phenotypes not abrogated by cross-fostering to control mothers. To examine whether circadian disruption affects development by acting as an early life stressor, we examined birthweight, litter size, maternal cannibalism, and epigenetic modifications. None of these variables differed between control and disrupted dams, or resembled patterns seen following early-life stress. Our findings indicate that developmental chronic circadian disruption permanently affects somatic and behavioral development in a stage-of-life-dependent manner, independent of early life stress mechanisms, underscoring the importance of temporal structure during development, both in utero and early postnatal life.

  18. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.

    Science.gov (United States)

    Wei, Jiangyong; Hu, Xiaohua; Zou, Xiufen; Tian, Tianhai

    2017-12-28

    Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information. This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression. The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate

  19. TRAF Family Member-Associated NF-κB Activator (TANK) Induced by RANKL Negatively Regulates Osteoclasts Survival and Function

    OpenAIRE

    Mengrui Wu, Yiping Wang, Lianfu Deng, Wei Chen, Yi-Ping Li

    2012-01-01

    Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation...

  20. TRAF Family Member-Associated NF-κB Activator (TANK) Induced by RANKL Negatively Regulates Osteoclasts Survival and Function

    OpenAIRE

    Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping

    2012-01-01

    Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and...

  1. The FasX Small Regulatory RNA Negatively Regulates the Expression of Two Fibronectin-Binding Proteins in Group A Streptococcus.

    Science.gov (United States)

    Danger, Jessica L; Makthal, Nishanth; Kumaraswami, Muthiah; Sumby, Paul

    2015-12-01

    The group A Streptococcus (GAS; Streptococcus pyogenes) causes more than 700 million human infections each year. The success of this pathogen can be traced in part to the extensive arsenal of virulence factors that are available for expression in temporally and spatially specific manners. To modify the expression of these virulence factors, GAS use both protein- and RNA-based regulators, with the best-characterized RNA-based regulator being the small regulatory RNA (sRNA) FasX. FasX is a 205-nucleotide sRNA that contributes to GAS virulence by enhancing the expression of the thrombolytic secreted virulence factor streptokinase and by repressing the expression of the collagen-binding cell surface pili. Here, we have expanded the FasX regulon, showing that this sRNA also negatively regulates the expression of the adhesion- and internalization-promoting, fibronectin-binding proteins PrtF1 and PrtF2. FasX posttranscriptionally regulates the expression of PrtF1/2 through a mechanism that involves base pairing to the prtF1 and prtF2 mRNAs within their 5' untranslated regions, overlapping the mRNA ribosome-binding sites. Thus, duplex formation between FasX and the prtF1 and prtF2 mRNAs blocks ribosome access, leading to an inhibition of mRNA translation. Given that FasX positively regulates the expression of the spreading factor streptokinase and negatively regulates the expression of the collagen-binding pili and of the fibronectin-binding PrtF1/2, our data are consistent with FasX functioning as a molecular switch that governs the transition of GAS between the colonization and dissemination stages of infection. More than half a million deaths each year are a consequence of infections caused by GAS. Insights into how this pathogen regulates the production of proteins during infection may facilitate the development of novel therapeutic or preventative regimens aimed at inhibiting this activity. Here, we have expanded insight into the regulatory activity of the GAS small

  2. Examining Effects of Poverty, Maternal Depression, and Children's Self-Regulation Abilities on the Development of Language and Cognition in Early Childhood: An Early Head Start Perspective

    Science.gov (United States)

    Sharkins, Kimberly A.; Leger, Sarah E.; Ernest, James M.

    2017-01-01

    Early childhood poverty is a prevalent social issue, both in the United States and in the wider international community. It has been well established that factors associated with poverty, including familial income and parental education level, can negatively affect children's language and cognitive development, which can result in academic…

  3. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Li, Wei [Department of Gerontology, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qichang [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Qin, Tao [Department of Hepatobiliary Pancreatic Surgery, People' s Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou 450003 (China); Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Liu, Sanguang, E-mail: sanguang1998@sina.com [Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang 050000 (China); Song, Zifang, E-mail: zsong@hust.edu.cn [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China)

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  4. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-01-01

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation

  5. Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer.

    Science.gov (United States)

    Shan, Naing Lin; Wahler, Joseph; Lee, Hong Jin; Bak, Min Ji; Gupta, Soumyasri Das; Maehr, Hubert; Suh, Nanjoo

    2017-10-01

    Triple-negative breast cancer is one of the least responsive breast cancer subtypes to available targeted therapies due to the absence of hormonal receptors, aggressive phenotypes, and the high rate of relapse. Early breast cancer prevention may therefore play an important role in delaying the progression of triple-negative breast cancer. Cancer stem cells are a subset of cancer cells that are thought to be responsible for tumor progression, treatment resistance, and metastasis. We have previously shown that vitamin D compounds, including a Gemini vitamin D analog BXL0124, suppress progression of ductal carcinoma in situ in vivo and inhibit cancer stem-like cells in MCF10DCIS mammosphere cultures. In the present study, the effects of vitamin D compounds in regulating breast cancer stem-like cells and differentiation in triple-negative breast cancer were assessed. Mammosphere cultures, which enriches for breast cancer cells with stem-like properties, were used to assess the effects of 1α,25(OH) 2 D 3 and BXL0124 on cancer stem cell markers in the triple-negative breast cancer cell line, SUM159. Vitamin D compounds significantly reduced the mammosphere forming efficiency in primary, secondary and tertiary passages of mammospheres compared to control groups. Key markers of cancer stem-like phenotype and pluripotency were analyzed in mammospheres treated with 1α,25(OH) 2 D 3 and BXL0124. As a result, OCT4, CD44 and LAMA5 levels were decreased. The vitamin D compounds also down-regulated the Notch signaling molecules, Notch1, Notch2, Notch3, JAG1, JAG2, HES1 and NFκB, which are involved in breast cancer stem cell maintenance. In addition, the vitamin D compounds up-regulated myoepithelial differentiating markers, cytokeratin 14 and smooth muscle actin, and down-regulated the luminal marker, cytokeratin 18. Cytokeratin 5, a biomarker associated with basal-like breast cancer, was found to be significantly down-regulated by the vitamin D compounds. These results suggest

  6. Executive Function in Adolescence: Associations with Child and Family Risk Factors and Self-Regulation in Early Childhood.

    Science.gov (United States)

    Berthelsen, Donna; Hayes, Nicole; White, Sonia L J; Williams, Kate E

    2017-01-01

    Executive functions are important higher-order cognitive skills for goal-directed thought and action. These capacities contribute to successful school achievement and lifelong wellbeing. The importance of executive functions to children's education begins in early childhood and continues throughout development. This study explores contributions of child and family factors in early childhood to the development of executive function in adolescence. Analyses draw on data from the nationally representative study, Growing up in Australia: The Longitudinal Study of Australian Children . Participants are 4819 children in the Kindergarten Cohort who were recruited at age 4-5 years. Path analyses were employed to examine contributions of early childhood factors, including family socio-economic position (SEP), parenting behaviors, maternal mental health, and a child behavioral risk index, to the development of executive function in adolescence. The influence of children's early self-regulatory behaviors (attentional regulation at 4-5 years and approaches to learning at 6-7 years) were also taken into account. A composite score for the outcome measure of executive function was constructed from scores on three Cogstate computerized tasks for assessing cognition and measured visual attention, visual working memory, and spatial problem-solving. Covariates included child gender, age at assessment of executive function, Aboriginal and Torres Strait Islander status, speaking a language other than English at home, and child's receptive vocabulary skills. There were significant indirect effects involving child and family risk factors measured at 4-5 years on executive function at age 14-15 years, mediated by measures of self-regulatory behavior. Child behavioral risk, family SEP and parenting behaviors (anger, warmth, and consistency) were associated with attentional regulation at 4-5 years which, in turn, was significantly associated with approaches to learning at 6-7 years. Both

  7. Evidence for the negative regulation of phytase gene expression in Streptomyces lividans and Streptomyces coelicolor.

    Science.gov (United States)

    Boukhris, Ines; Dulermo, Thierry; Chouayekh, Hichem; Virolle, Marie-Joëlle

    2016-01-01

    Sco7697, a gene encoding a phytase, enzyme able to degrade phytate (myo-inositol 1,2,3,4,5,6-hexakis phosphate), the most abundant phosphorus storing compound in plants is present in the genome of S. coelicolor, a soil born bacteria with a saprophytic lifestyle. The expression of this gene was previously shown to be induced in conditions of Pi limitation by the response regulator PhoP binding to an operator sequence, the PHO box, located upstream of the -35 promoter sequence. A close examination of the promoter region of sco7697 revealed the presence of another putative operator site, a Direct Repeat (DR), located downstream of the -10 promoter sequence. In order to determine whether this DR played a role in regulation of sco7697 expression, different variants of the phytase gene promoter region were transcriptionally fused to the ß-glucuronidase reporter gene (GUS). As expected, deletion of the PHO box led to abolition of sco7697 induction in conditions of Pi limitation. Interestingly, alteration of the DR correlated with a dramatic increase of GUS expression but only when PhoP was present. These results demonstrated that this DR is the site of strong negative regulation by an unknown repressor. The latter would impede the necessary activation of phytase expression by PhoP. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    International Nuclear Information System (INIS)

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-01-01

    Highlights: → Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. → Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. → Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  9. Women in the midluteal phase of the menstrual cycle have difficulty suppressing the processing of negative emotional stimuli: An event-related potential study.

    Science.gov (United States)

    Lusk, Bethany R; Carr, Andrea R; Ranson, Valerie A; Felmingham, Kim L

    2017-08-01

    Emotion regulation deficits have been implicated in anxiety and depressive disorders, and these internalising disorders are more prevalent in women than men. Few electrophysiological studies have investigated sex differences in emotional reactivity and emotion regulation controlling for menstrual phase. Event-related potentials (ERPs) were recorded from 28 early follicular women, 29 midluteal women, and 27 men who completed an emotion regulation task. A novel finding of increased N2 amplitude during suppression was found for midluteal women compared with men. These findings suggest midluteal women may be significantly less able to suppress cortical processing of negative stimuli compared to men. This ERP finding was complemented by behavioral ratings data which revealed that while both early follicular and midluteal women reported more distress than men, midluteal women also reported greater effort when suppressing their responses than men. P1 and N1 components were increased in midluteal women compared to men regardless of instructional set, suggesting greater early attentional processing. No sex or menstrual phase differences were apparent in P3 or LPP. This study underscores the importance of considering menstrual phase when examining sex differences in the cortical processing of emotion regulation and demonstrates that midluteal women may have deficits in down-regulating their neural and behavioural responses.

  10. TGF-β/Smad2/3 signaling directly regulates several miRNAs in mouse ES cells and early embryos.

    Directory of Open Access Journals (Sweden)

    Nicholas Redshaw

    Full Text Available The Transforming Growth Factor-β (TGF-β signaling pathway is one of the major pathways essential for normal embryonic development and tissue homeostasis, with anti-tumor but also pro-metastatic properties in cancer. This pathway directly regulates several target genes that mediate its downstream functions, however very few microRNAs (miRNAs have been identified as targets. miRNAs are modulators of gene expression with essential roles in development and a clear association with diseases including cancer. Little is known about the transcriptional regulation of the primary transcripts (pri-miRNA, pri-miR from which several mature miRNAs are often derived. Here we present the identification of miRNAs regulated by TGF-β signaling in mouse embryonic stem (ES cells and early embryos. We used an inducible ES cell system to maintain high levels of the TGF-β activated/phosphorylated Smad2/3 effectors, which are the transcription factors of the pathway, and a specific inhibitor that blocks their activation. By performing short RNA deep-sequencing after 12 hours Smad2/3 activation and after 16 hours inhibition, we generated a database of responsive miRNAs. Promoter/enhancer analysis of a subset of these miRNAs revealed that the transcription of pri-miR-181c/d and the pri-miR-341∼3072 cluster were found to depend on activated Smad2/3. Several of these miRNAs are expressed in early mouse embryos, when the pathway is known to play an essential role. Treatment of embryos with TGF-β inhibitor caused a reduction of their levels confirming that they are targets of this pathway in vivo. Furthermore, we showed that pri-miR-341∼3072 transcription also depends on FoxH1, a known Smad2/3 transcription partner during early development. Together, our data show that miRNAs are regulated directly by the TGF-β/Smad2/3 pathway in ES cells and early embryos. As somatic abnormalities in functions known to be regulated by the TGF-β/Smad2/3 pathway underlie tumor

  11. Examining the Predictive Relations between Two Aspects of Self-Regulation and Growth in Preschool Children’s Early Literacy Skills

    Science.gov (United States)

    Lonigan, Christopher J.; Allan, Darcey M.; Phillips, Beth M.

    2016-01-01

    There is strong evidence that self-regulatory processes are linked to early academic skills both concurrently and longitudinally. The majority of extant longitudinal studies, however, have been conducted using autoregressive techniques that may not accurately model change across time. The purpose of this study was to examine the unique associations between two components of self-regulation, attention and executive functioning (EF), and growth in early literacy skills over the preschool year using latent-growth-curve analysis. The sample included 1,082 preschool children (M-age = 55.0 months, SD = 3.73). Children completed measures of vocabulary, syntax, phonological awareness, print knowledge, cognitive ability, and self-regulation, and children’s classroom teachers completed a behavior rating measure. To examine the independent relations of the self-regulatory skills and cognitive ability with children’s initial early literacy skills and growth across the preschool year, growth models in which the intercept and slope were simultaneously regressed on each of the predictor variables were examined. Because of the significant relation between intercept and slope for most outcomes, slope was regressed on intercept in the models to allow a determination of direct and indirect effects of the predictors on growth in children’s language and literacy skills across the preschool year. In general, both teacher-rated inattention and directly measured EF were uniquely associated with initial skills level; however, only teacher-rated inattention uniquely predicted growth in early literacy skills. These findings suggest that teacher-ratings of inattention may measure an aspect of self-regulation that is particularly associated with the acquisition of academic skills in early childhood. PMID:27854463

  12. Post-translational regulation enables robust p53 regulation.

    Science.gov (United States)

    Shin, Yong-Jun; Chen, Kai-Yuan; Sayed, Ali H; Hencey, Brandon; Shen, Xiling

    2013-08-30

    The tumor suppressor protein p53 plays important roles in DNA damage repair, cell cycle arrest and apoptosis. Due to its critical functions, the level of p53 is tightly regulated by a negative feedback mechanism to increase its tolerance towards fluctuations and disturbances. Interestingly, the p53 level is controlled by post-translational regulation rather than transcriptional regulation in this feedback mechanism. We analyzed the dynamics of this feedback to understand whether post-translational regulation provides any advantages over transcriptional regulation in regard to disturbance rejection. When a disturbance happens, even though negative feedback reduces the steady-state error, it can cause a system to become less stable and transiently overshoots, which may erroneously trigger downstream reactions. Therefore, the system needs to balance the trade-off between steady-state and transient errors. Feedback control and adaptive estimation theories revealed that post-translational regulation achieves a better trade-off than transcriptional regulation, contributing to a more steady level of p53 under the influence of noise and disturbances. Furthermore, post-translational regulation enables cells to respond more promptly to stress conditions with consistent amplitude. However, for better disturbance rejection, the p53- Mdm2 negative feedback has to pay a price of higher stochastic noise. Our analyses suggest that the p53-Mdm2 feedback favors regulatory mechanisms that provide the optimal trade-offs for dynamic control.

  13. Testing the snake-detection hypothesis: larger early posterior negativity in humans to pictures of snakes than to pictures of other reptiles, spiders and slugs

    OpenAIRE

    Van Strien, Jan W.; Franken, Ingmar H. A.; Huijding, Jorg

    2014-01-01

    According to the snake detection hypothesis (Isbell, 2006), fear specifically of snakes may have pushed evolutionary changes in the primate visual system allowing pre-attentional visual detection of fearful stimuli. A previous study demonstrated that snake pictures, when compared to spiders or bird pictures, draw more early attention as reflected by larger early posterior negativity (EPN). Here we report two studies that further tested the snake detection hypothesis. In Study, 1 we tested whe...

  14. Mosaic and Regulation Phenomena during the Early Formation of the Chick Blastoderm

    Directory of Open Access Journals (Sweden)

    Marc Callebaut

    2010-01-01

    Full Text Available After culturing symmetrically hemisectioned unincubated chicken blastoderms, asymmetric hemiembryos developed (indicating mosaic development. In the present study, we observed that after prolonged culture, the further asymmetric development (way with no possible return becomes profoundly disturbed, more particularly the Rauber's sickle-dependent phenomena: gastrulation and the formation of the coelomo-cardiovascular complex with absence of heart and pericard development. By contrast, the neural plate develops symmetrically. Asymmetrical ablation of Rauber's sickle and the neighboring upper layer results in the development of an apparently normal symmetrical embryo. Indeed, at the unoperated side, a normal half coelomo-cardiovascular system develops with a unilateral or bilateral heart tube and pericard formation (indicating regulation. Both regulation and mosaicism indicate that during normal early development, the interaction between the left and right sides of the caudal area centralis of the blastoderm is indispensable, depending on the spatial relationship between the elementary tissues (upper layer, Rauber's sickle, endophyll.

  15. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNFα-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    International Nuclear Information System (INIS)

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu; Potts, Jay D.; Tang, Dong-Qi; Li, Dong-Sheng; Cui, Taixing

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNFα)-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNFα-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNFα hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.

  16. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    Science.gov (United States)

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Chamberlain, Jeffrey; James, David E.

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  17. TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production.

    Science.gov (United States)

    McNab, Finlay W; Ewbank, John; Rajsbaum, Ricardo; Stavropoulos, Evangelos; Martirosyan, Anna; Redford, Paul S; Wu, Xuemei; Graham, Christine M; Saraiva, Margarida; Tsichlis, Philip; Chaussabel, Damien; Ley, Steven C; O'Garra, Anne

    2013-08-15

    Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of mortality and morbidity worldwide, causing ≈ 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1, and TNF-α, as well as IFN-γ and CD4(+) Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I IFN have been linked to exacerbated disease during tuberculosis in mouse models and to active disease in patients, suggesting tight regulation of this family of cytokines is critical to host resistance. In addition, the immunosuppressive cytokine IL-10 is known to inhibit the immune response to M. tuberculosis in murine models through the negative regulation of key proinflammatory cytokines and the subsequent Th1 response. We show in this study, using a combination of transcriptomic analysis, genetics, and pharmacological inhibitors, that the TPL-2-ERK1/2 signaling pathway is important in mediating host resistance to tuberculosis through negative regulation of type I IFN production. The TPL-2-ERK1/2 signaling pathway regulated production by macrophages of several cytokines important in the immune response to M. tuberculosis as well as regulating induction of a large number of additional genes, many in a type I IFN-dependent manner. In the absence of TPL-2 in vivo, excess type I IFN promoted IL-10 production and exacerbated disease. These findings describe an important regulatory mechanism for controlling tuberculosis and reveal mechanisms by which type I IFN may promote susceptibility to this important disease.

  18. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling

    DEFF Research Database (Denmark)

    Ungureanu, Daniela; Wu, Jinhua; Pekkala, Tuija

    2011-01-01

    Human JAK2 tyrosine kinase mediates signaling through numerous cytokine receptors. The JAK2 JH2 domain functions as a negative regulator and is presumed to be a catalytically inactive pseudokinase, but the mechanism(s) for its inhibition of JAK2 remains unknown. Mutations in JH2 lead to increased...... JAK2 activity, contributing to myeloproliferative neoplasms (MPNs). Here we show that JH2 is a dual-specificity protein kinase that phosphorylates two negative regulatory sites in JAK2: Ser523 and Tyr570. Inactivation of JH2 catalytic activity increased JAK2 basal activity and downstream signaling....... Notably, different MPN mutations abrogated JH2 activity in cells, and in MPN (V617F) patient cells phosphorylation of Tyr570 was reduced, suggesting that loss of JH2 activity contributes to the pathogenesis of MPNs. These results identify the catalytic activity of JH2 as a previously unrecognized...

  19. Expression of alkyl hydroperoxide reductase is regulated negatively by OxyR1 and positively by RpoE2 sigma factor in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Dwivedi, Susheel Kumar; Singh, Vijay Shankar; Tripathi, Anil Kumar

    2016-10-01

    OxyR proteins are LysR-type transcriptional regulators, which play an important role in responding to oxidative stress in bacteria. Azospirillum brasilense Sp7 harbours two copies of OxyR. The inactivation of the oxyR1, the gene organized divergently to ahpC in A. brasilense Sp7, led to an increased tolerance to alkyl hydroperoxides, which was corroborated by an increase in alkyl hydroperoxide reductase (AhpC) activity, enhanced expression of ahpC :lacZ fusion and increased synthesis of AhpC protein in the oxyR1::km mutant. The upstream region of ahpC promoter harboured a putative OxyR binding site, T-N11-A. Mutation of T, A or both in the T-N11-Amotif caused derepression of ahpC in A. brasilense suggesting that T-N11-A might be the binding site for a negative regulator. Retardation of the electrophoretic mobility of the T-N11-A motif harbouring oxyR1-ahpC intergenic DNA by recombinant OxyR1, under reducing as well as oxidizing conditions, indicated that OxyR1 acts as a negative regulator of ahpC in A. brasilense. Sequence of the promoter of ahpC, predicted on the basis of transcriptional start site, and an enhanced expression of ahpC:lacZ fusion in chrR2::km mutant background suggested that ahpC promoter was RpoE2 dependent. Thus, this study shows that in A. brasilense Sp7, ahpC expression is regulated negatively by OxyR1 but is regulated positively by RpoE2, an oxidative-stress-responsive sigma factor. It also shows that OxyR1 regulates the expression RpoE1, which is known to play an important role during photooxidative stress in A. brasilense.

  20. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells.

    Science.gov (United States)

    Deng, Minnan; Du, Ganqin; Zhao, Jiegang; Du, Xiaowei

    2017-06-01

    Increasing evidence confirms the involvement of virus infection and miRNA, such as miR-146a, in neuroinflammation-associated epilepsy. In the present study, we investigated the upregulation of miR-146a with RT-qPCR and in situ hybridization methods in a mice infection model of Japanese encephalitis virus (JEV) and in vitro. Subsequently we investigated the involvement of miR-146a in modulating JEV-induced neuroinflammation. It was demonstrated that JEV infection promoted miR-146a production in BALB/c mice brain and in cultured mouse microglial C8-B4 cells, along with pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, IFN-β and IFN-α. We also found that miR-146a exerted negative regulatory effects upon IL-1β, IL-6, TNF-α, IFN-β and IFN-α in C8-B4 cells. Accordingly, miR-146a downregulation with a miR-146a inhibitor promoted the upregulation of IL-1β, IL-6, TNF-α, IFN-β and IFN-α, whereas miR-146a upregulation with miR-146a mimics reduced the upregulation of these cytokines. Moreover, miR-146a exerted no regulation upon JEV growth in C8-B4 cells. In conclusion, JEV infection upregulated miR-146a and pro-inflammatory cytokine production, in mice brain and in cultured C8-B4 cells. Furthermore, miR-146a negatively regulated the production of JEV-induced pro-inflammatory cytokines, in virus growth independent fashion, identifying miR-146a as a negative feedback regulator in JEV-induced neuroinflammation, and possibly in epilepsy.

  1. Increased amygdala reactivity following early life stress: a potential resilience enhancer role.

    Science.gov (United States)

    Yamamoto, Tetsuya; Toki, Shigeru; Siegle, Greg J; Takamura, Masahiro; Takaishi, Yoshiyuki; Yoshimura, Shinpei; Okada, Go; Matsumoto, Tomoya; Nakao, Takashi; Muranaka, Hiroyuki; Kaseda, Yumiko; Murakami, Tsuneji; Okamoto, Yasumasa; Yamawaki, Shigeto

    2017-01-18

    Amygdala hyper-reactivity is sometimes assumed to be a vulnerability factor that predates depression; however, in healthy people, who experience early life stress but do not become depressed, it may represent a resilience mechanism. We aimed to test these hypothesis examining whether increased amygdala activity in association with a history of early life stress (ELS) was negatively or positively associated with depressive symptoms and impact of negative life event stress in never-depressed adults. Twenty-four healthy participants completed an individually tailored negative mood induction task during functional magnetic resonance imaging (fMRI) assessment along with evaluation of ELS. Mood change and amygdala reactivity were increased in never-depressed participants who reported ELS compared to participants who reported no ELS. Yet, increased amygdala reactivity lowered effects of ELS on depressive symptoms and negative life events stress. Amygdala reactivity also had positive functional connectivity with the bilateral DLPFC, motor cortex and striatum in people with ELS during sad memory recall. Increased amygdala activity in those with ELS was associated with decreased symptoms and increased neural features, consistent with emotion regulation, suggesting that preservation of robust amygdala reactions may reflect a stress buffering or resilience enhancing factor against depression and negative stressful events.

  2. Somatostatin Negatively Regulates Parasite Burden and Granulomatous Responses in Cysticercosis

    Directory of Open Access Journals (Sweden)

    Mitra Khumbatta

    2014-01-01

    Full Text Available Cysticercosis is an infection of tissues with the larval cysts of the cestode, Taenia  solium. While live parasites elicit little or no inflammation, dying parasites initiate a granulomatous reaction presenting as painful muscle nodules or seizures when cysts are located in the brain. We previously showed in the T. crassiceps murine model of cysticercosis that substance P (SP, a neuropeptide, was detected in early granulomas and was responsible for promoting granuloma formation, while somatostatin (SOM, another neuropeptide and immunomodulatory hormone, was detected in late granulomas; SOM’s contribution to granuloma formation was not examined. In the current studies, we used somatostatin knockout (SOM−/− mice to examine the hypothesis that SOM downmodulates granulomatous inflammation in cysticercosis, thereby promoting parasite growth. Our results demonstrated that parasite burden was reduced 5.9-fold in SOM−/− mice compared to WT mice (P<0.05. This reduction in parasite burden in SOM−/− mice was accompanied by a 95% increase in size of their granulomas (P<0.05, which contained a 1.5-fold increase in levels of IFN-γ and a 26-fold decrease in levels of IL-1β (P<0.05 for both compared to granulomas from WT mice. Thus, SOM regulates both parasite burden and granulomatous inflammation perhaps through modulating granuloma production of IFN-γ and IL-1β.

  3. Negative regulation of NOD1 mediated angiogenesis by PPARγ-regulated miR-125a

    International Nuclear Information System (INIS)

    Kang, Hyesoo; Park, Youngsook; Lee, Aram; Seo, Hyemin; Kim, Min Jung; Choi, Jihea; Jo, Ha-neul; Jeong, Ha-neul; Cho, Jin Gu; Chang, Woochul; Lee, Myeong-Sok; Jeon, Raok; Kim, Jongmin

    2017-01-01

    Infection with pathogens activates the endothelial cell and its sustained activation may result in impaired endothelial function. Endothelial dysfunction contributes to the pathologic angiogenesis that is characteristic of infection-induced inflammatory pathway activation. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a protein receptor which recognizes bacterial molecules and stimulates an immune reaction in various cells; however, the underlying molecular mechanisms in the regulation of inflammation-triggered angiogenesis are not fully understood. Here we report that peroxisome proliferator-activated receptor gamma (PPARγ)-mediated miR-125a serves as an important regulator of NOD1 agonist-mediated angiogenesis in endothelial cells by directly targeting NOD1. Treatment of human umbilical vein endothelial cells with natural PPARγ ligand, 15-Deoxy-Delta12,14-prostaglandin J2, led to inhibition of NOD1 expression; contrarily, protein levels of NOD1 were significantly increased by PPARγ knockdown. We report that PPARγ regulation of NOD1 expression is a novel microRNA-mediated regulation in endothelial cells. MiR-125a expression was markedly decreased in human umbilical vein endothelial cells subjected to PPARγ knockdown while 15-Deoxy-Delta12,14-prostaglandin J2 treatment increased the level of miR-125a. In addition, NOD1 is closely regulated by miR-125a, which directly targets the 3′ untranslated region of NOD1. Moreover, both overexpression of miR-125a and PPARγ activation led to inhibition of NOD1 agonist-induced tube formation in endothelial cells. Finally, NOD1 agonist increased the formation of cranial and subintestinal vessel plexus in zebrafish, and this effect was abrogated by concurrent PPARγ activation. Overall, these findings identify a PPARγ-miR-125a-NOD1 signaling axis in endothelial cells that is critical in the regulation of inflammation-mediated angiogenesis. - Highlights: • Expression of NOD1 is regulated by

  4. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development

    Science.gov (United States)

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; Nakayama, Takuya; Shah, Anoop; Grainger, Robert M.; White, Judith M.; DeSimone, Douglas W.

    2012-01-01

    Pericellular proteolysis by ADAM family metalloproteinases has been widely implicated in cell signaling and development. We recently found that Xenopus ADAM13, an ADAM metalloproteinase, is required for activation of canonical Wnt signaling during cranial neural crest (CNC) induction by regulating a novel crosstalk between Wnt and ephrin B (EfnB) signaling pathways (Wei et al., 2010b). In the present study we show that the metalloproteinase activity of ADAM13 also plays important roles in eye development in X. tropicalis. Knockdown of ADAM13 results in reduced expression of eye field markers pax6 and rx1, as well as that of the pan-neural marker sox2. Activation of canonical Wnt signaling or inhibition of forward EfnB signaling rescues the eye defects caused by loss of ADAM13, suggesting that ADAM13 functions through regulation of the EfnB-Wnt pathway interaction. Downstream of Wnt, the head inducer Cerberus was identified as an effector that mediates ADAM13 function in early eye field formation. Furthermore, ectopic expression of the Wnt target gene snail2 restores cerberus expression and rescues the eye defects caused by ADAM13 knockdown. Together these data suggest an important role of ADAM13-regulated Wnt activity in eye development in Xenopus. PMID:22227340

  5. What our eyes tell us about feelings: Tracking pupillary responses during emotion regulation processes.

    Science.gov (United States)

    Kinner, Valerie L; Kuchinke, Lars; Dierolf, Angelika M; Merz, Christian J; Otto, Tobias; Wolf, Oliver T

    2017-04-01

    Emotion regulation is essential for adaptive behavior and mental health. Strategies applied to alter emotions are known to differ in their impact on psychological and physiological aspects of the emotional response. However, emotion regulation outcome has primarily been assessed via self-report, and studies comparing regulation strategies with regard to their peripheral physiological mechanisms are limited in number. In the present study, we therefore aimed to investigate the effects of different emotion regulation strategies on pupil dilation, skin conductance responses, and subjective emotional responses. Thirty healthy females were presented with negative and neutral pictures and asked to maintain or up- and downregulate their upcoming emotional responses through reappraisal or distraction. Pupil dilation and skin conductance responses were significantly enhanced when viewing negative relative to neutral pictures. For the pupil, this emotional arousal effect manifested specifically late during the pupillary response. In accordance with subjective ratings, increasing negative emotions through reappraisal led to the most prominent pupil size enlargements, whereas no consistent effect for downregulation was found. In contrast, early peak dilations were enhanced in all emotion regulation conditions independent of strategy. Skin conductance responses were not further modulated by emotion regulation. These results indicate that pupil diameter is modulated by emotional arousal, but is initially related to the extent of mental effort required to regulate automatic emotional responses. Our data thus provide first evidence that the pupillary response might comprise two distinct temporal components reflecting cognitive emotion regulation effort on the one hand and emotion regulation success on the other hand. © 2017 Society for Psychophysiological Research.

  6. The early activation marker CD69 regulates the expression of chemokines and CD4 T cell accumulation in intestine.

    Directory of Open Access Journals (Sweden)

    Katarina Radulovic

    Full Text Available Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4(+ T cells and/or CD4(- cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69(-/- CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69(-/- CD4 T cell accumulation in colonic lamina propria (cLP was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69(-/- mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-II×CD69(-/- CD45RB(high CD4 T cells into RAG(-/- hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis.

  7. SHIP-1 Increases Early Oxidative Burst and Regulates Phagosome Maturation in Macrophages1

    Science.gov (United States)

    Kamen, Lynn A.; Levinsohn, Jonathan; Cadwallader, Amy; Tridandapani, Susheela; Swanson, Joel A.

    2010-01-01

    Although the inositol phosphatase SHIP-1 is generally thought to inhibit signaling for Fc receptor-mediated phagocytosis, the product of its activity, phosphatidylinositol 3,4 bisphosphate (PI(3,4)P2) has been implicated in activation of the NADPH oxidase. This suggests that SHIP-1 positively regulates generation of reactive oxygen species after phagocytosis. To examine how SHIP-1 activity contributes to Fc receptor-mediated phagocytosis, we measured and compared phospholipid dynamics, membrane trafficking and the oxidative burst in macrophages from SHIP-1-deficient and wild-type mice. SHIP-1-deficient macrophages showed significantly elevated ratios of PI(3,4,5) P3 to PI(3,4)P2 on phagosomal membranes. Imaging reactive oxygen intermediate activities in phagosomes revealed decreased early NADPH oxidase activity in SHIP-1-deficient macrophages. SHIP-1-deficiency also altered later stages of phagosome maturation, as indicated by the persistent elevation of PI(3)P and the early localization of Rab5a to phagosomes. These direct measurements of individual organelles indicate that phagosomal SHIP-1 enhances the early oxidative burst through localized alteration of the membrane 3′ phosphoinositide composition. PMID:18490750

  8. Using a Negative Binomial Regression Model for Early Warning at the Start of a Hand Foot Mouth Disease Epidemic in Dalian, Liaoning Province, China.

    Science.gov (United States)

    An, Qingyu; Wu, Jun; Fan, Xuesong; Pan, Liyang; Sun, Wei

    2016-01-01

    The hand foot and mouth disease (HFMD) is a human syndrome caused by intestinal viruses like that coxsackie A virus 16, enterovirus 71 and easily developed into outbreak in kindergarten and school. Scientifically and accurately early detection of the start time of HFMD epidemic is a key principle in planning of control measures and minimizing the impact of HFMD. The objective of this study was to establish a reliable early detection model for start timing of hand foot mouth disease epidemic in Dalian and to evaluate the performance of model by analyzing the sensitivity in detectability. The negative binomial regression model was used to estimate the weekly baseline case number of HFMD and identified the optimal alerting threshold between tested difference threshold values during the epidemic and non-epidemic year. Circular distribution method was used to calculate the gold standard of start timing of HFMD epidemic. From 2009 to 2014, a total of 62022 HFMD cases were reported (36879 males and 25143 females) in Dalian, Liaoning Province, China, including 15 fatal cases. The median age of the patients was 3 years. The incidence rate of epidemic year ranged from 137.54 per 100,000 population to 231.44 per 100,000population, the incidence rate of non-epidemic year was lower than 112 per 100,000 population. The negative binomial regression model with AIC value 147.28 was finally selected to construct the baseline level. The threshold value was 100 for the epidemic year and 50 for the non- epidemic year had the highest sensitivity(100%) both in retrospective and prospective early warning and the detection time-consuming was 2 weeks before the actual starting of HFMD epidemic. The negative binomial regression model could early warning the start of a HFMD epidemic with good sensitivity and appropriate detection time in Dalian.

  9. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    International Nuclear Information System (INIS)

    Heizmann, Beate; Sellars, MacLean; Macias-Garcia, Alejandra; Chan, Susan; Kastner, Philippe

    2016-01-01

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  10. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heizmann, Beate [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Sellars, MacLean [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Macias-Garcia, Alejandra [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Institute for Medical Engineering and Science at MIT, Cambridge, MA 02139 (United States); Chan, Susan, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Kastner, Philippe, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Faculté de Médecine, Université de Strasbourg, Strasbourg (France)

    2016-02-12

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  11. Src-family kinases negatively regulate NFAT signaling in resting human T cells.

    Directory of Open Access Journals (Sweden)

    Alan Baer

    Full Text Available T cell signaling is required for activation of both natural and therapeutic T cells including chimeric antigen receptor (CAR T cells. Identification of novel factors and pathways regulating T cell signaling may aid in development of effective T cell therapies. In resting human T cells, the majority of Src-family of tyrosine kinases (SFKs are inactive due to phosphorylation of a conserved carboxy-terminal tyrosine residue. Recently, a pool of enzymatically active SFKs has been identified in resting T cells; however, the significance of these is incompletely understood. Here, we characterized the role of active SFKs in resting human T cells. Pharmacologic inhibition of active SFKs enhanced distal TCR signaling as measured by IL-2 release and CD25 surface expression following TCR-independent activation. Mechanistically, inhibition of the active pool of SFKs induced nuclear translocation of NFAT1, and enhanced NFAT1-dependent signaling in resting T cells. The negative regulation of NFAT1 signaling was in part mediated by the Src-kinase Lck as human T cells lacking Lck had increased levels of nuclear NFAT1 and demonstrated enhanced NFAT1-dependent gene expression. Inhibition of active SFKs in resting primary human T cells also increased nuclear NFAT1 and enhanced NFAT1-dependent signaling. Finally, the calcineurin inhibitor FK506 and Cyclosporin A reversed the effect of SFKs inhibition on NFAT1. Together, these data identified a novel role of SFKs in preventing aberrant NFAT1 activation in resting T cells, and suggest that maintaining this pool of active SFKs in therapeutic T cells may increase the efficacy of T cell therapies.

  12. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

    Science.gov (United States)

    Chen, Linan; Dumelie, Jason G; Li, Xiao; Cheng, Matthew Hk; Yang, Zhiyong; Laver, John D; Siddiqui, Najeeb U; Westwood, J Timothy; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2014-01-07

    Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug's target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.

  13. Parental Discipline and Externalizing Behavior Problems in Early Childhood: The Roles of Moral Regulation and Child Gender

    Science.gov (United States)

    Kerr, David C.R.; Lopez, Nestor L.; Olson, Sheryl L.; Sameroff, Arnold J.

    2004-01-01

    We tested whether individual differences in a component of early conscience mediated relations between parental discipline and externalizing behavior problems in 238 3.5-year-olds. Parents contributed assessments of discipline practices and child moral regulation. Observations of children's behavioral restraint supplemented parental reports.…

  14. An unusual spliced variant of DELLA protein, a negative regulator of gibberellin signaling, in lettuce.

    Science.gov (United States)

    Sawada, Yoshiaki; Umetsu, Asami; Komatsu, Yuki; Kitamura, Jun; Suzuki, Hiroyuki; Asami, Tadao; Fukuda, Machiko; Honda, Ichiro; Mitsuhashi, Wataru; Nakajima, Masatoshi; Toyomasu, Tomonobu

    2012-01-01

    DELLA proteins are negative regulators of the signaling of gibberellin (GA), a phytohormone regulating plant growth. DELLA degradation is triggered by its interaction with GID1, a soluble GA receptor, in the presence of bioactive GA. We isolated cDNA from a spliced variant of LsDELLA1 mRNA in lettuce, and named it LsDELLA1sv. It was deduced that LsDELLA1sv encodes truncated LsDELLA1, which has DELLA and VHYNP motifs at the N terminus but lacks part of the C-terminal GRAS domain. The recombinant LsDELLA1sv protein interacted with both Arabidopsis GID1 and lettuce GID1s in the presence of GA. A yeast two-hybrid assay suggested that LsDELLA1sv interacted with LsDELLA1. The ratio of LsDELLA1sv to LsDELLA1 transcripts was higher in flower samples at the late reproductive stage and seed samples (dry seeds and imbibed seeds) than in the other organ samples examined. This study suggests that LsDELLA1sv is a possible modulator of GA signaling in lettuce.

  15. Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders.

    Science.gov (United States)

    Gery, Sigal; Gueller, Saskia; Chumakova, Katya; Kawamata, Norihiko; Liu, Liqin; Koeffler, H Phillip

    2007-11-01

    Recently, activating myeloproliferative leukemia virus oncogene (MPL) mutations, MPLW515L/K, were described in myeloproliferative disorder (MPD) patients. MPLW515L leads to activation of downstream signaling pathways and cytokine-independent proliferation in hematopoietic cells. The adaptor protein Lnk is a negative regulator of several cytokine receptors, including MPL. We show that overexpression of Lnk in Ba/F3-MPLW515L cells inhibits cytokine-independent growth, while suppression of Lnk in UT7-MPLW515L cells enhances proliferation. Lnk blocks the activation of Jak2, Stat3, Erk, and Akt in these cells. Furthermore, MPLW515L-expressing cells are more susceptible to Lnk inhibitory functions than their MPL wild-type (MPLWT)-expressing counterparts. Lnk associates with activated MPLWT and MPLW515L and colocalizes with the receptors at the plasma membrane. The SH2 domain of Lnk is essential for its binding and for its down-regulation of MPLWT and MPLW515L. Lnk itself is tyrosine-phosphorylated following thrombopoietin stimulation. Further elucidating the cellular pathways that attenuate MPLW515L will provide insight into the pathogenesis of MPD and could help develop specific therapeutic approaches.

  16. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis.

    Science.gov (United States)

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA 1 , GA 3 , and GA 4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA 1 /ABA, GA 3 /ABA, and GA 4 /ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  17. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2017-08-01

    Full Text Available Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA while positively mediating abscisic acid (ABA biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN, an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  18. The role of emotion regulation in situational empathy-related responding and prosocial behaviour in the presence of negative affect.

    Science.gov (United States)

    Hein, Sascha; Röder, Mandy; Fingerle, Michael

    2016-12-15

    Empathy and prosocial behaviour are crucial factors for children's positive social adjustment. Contemporary models of empathy highlight the capacity to regulate vicariously experienced emotions as a precursor to empathy-related responses (e.g., prosocial behaviour). The goal of this study was to examine the role of emotion regulation (ER) in situational empathy-related responding and prosocial behaviour. A sample of 157 children (76 boys and 81 girls; M age = 9.94 years) participated in a two-tiered interview procedure that utilised vignettes to assess empathy and prosocial behaviour. Between both phases of the interview, a negative affect was induced to investigate the influence of ER on the change between the two phases. Results from a latent change model showed that ER strategies positively predicted change scores, that is, children with higher abilities to regulate emotions showed a higher increase in empathy and prosocial behaviour. Implications for the promotion of social-emotional learning in school are discussed. © 2016 International Union of Psychological Science.

  19. End-Binding Protein 1 (EB1) Up-regulation is an Early Event in Colorectal Carcinogenesis

    Science.gov (United States)

    Stypula-Cyrus, Yolanda; Mutyal, Nikhil N.; Cruz, Mart Angelo Dela; Kunte, Dhananjay P.; Radosevich, Andrew J.; Wali, Ramesh; Roy, Hemant K.; Backman, Vadim

    2014-01-01

    End-binding protein (EB1) is a microtubule protein that binds to the tumor suppressor adenomatous polyposis coli (APC). While EB1 is implicated as a potential oncogene, its role in cancer progression is unknown. Therefore, we analyzed EB1/APC expression at the earliest stages of colorectal carcinogenesis and in the uninvolved mucosa ("field effect") of human and animal tissue. We also performed siRNA-knockdown in colon cancer cell lines. EB1 is up-regulated in early and field carcinogenesis in the colon, and the cellular/nano-architectural effect of EB1 knockdown depended on the genetic context. Thus, dysregulation of EB1 is an important early event in colon carcinogenesis. PMID:24492008

  20. A negative regulation loop of long noncoding RNA HOTAIR and p53 in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhai N

    2016-09-01

    Full Text Available Nailiang Zhai,1 Yongfu Xia,1 Rui Yin,2 Jinping Liu,3 Fuquan Gao1 1Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, 2Department of Respiratory Medicine, People’s Hospital of Binzhou City, 3Department of Pharmacology, Binzhou Medical University, Binzhou, Shandong, People’s Republic of China Abstract: Non-small-cell lung cancer (NSCLC is one of the leading causes of cancer-related death worldwide, and the 5-year survival rate is still low despite advances in diagnosis and therapeutics. A long noncoding RNA (lncRNA HOX antisense intergenic RNA (HOTAIR has been revealed to play important roles in NSCLC carcinogenesis but the detailed mechanisms are still unclear. In the current study, we aimed to investigate the regulation between the lncRNA HOTAIR and p53 in the NSCLC patient samples and cell lines. Our results showed that HOTAIR expression was significantly higher in the cancer tissues than that in the adjacent normal tissue, and was negatively correlated with p53 functionality rather than expression. When p53 was overexpressed in A549 cells, the lncRNA HOTAIR expression was downregulated, and the cell proliferation rate and cell invasion capacity decreased as a consequence. We identified two binding sites of p53 on the promoter region of HOTAIR, where the p53 protein would bind to and suppress the HOTAIR mRNA transcription. Inversely, overexpression of lncRNA HOTAIR inhibited the expression of p53 in A549 cells. Mechanistic studies revealed that HOTAIR modified the promoter of p53 and enhanced histone H3 lysine 27 trimethylation (H3K27me3. These studies identified a specific negative regulation loop of lncRNA HOTAIR and p53 in NSCLC cells, which revealed a new understanding of tumorigenesis in p53 dysfunction NSCLC cells. Keywords: NSCLC, LncRNA HOTAIR, p53, negative loop

  1. Executive Function in Adolescence: Associations with Child and Family Risk Factors and Self-Regulation in Early Childhood

    Science.gov (United States)

    Berthelsen, Donna; Hayes, Nicole; White, Sonia L. J.; Williams, Kate E.

    2017-01-01

    Executive functions are important higher-order cognitive skills for goal-directed thought and action. These capacities contribute to successful school achievement and lifelong wellbeing. The importance of executive functions to children’s education begins in early childhood and continues throughout development. This study explores contributions of child and family factors in early childhood to the development of executive function in adolescence. Analyses draw on data from the nationally representative study, Growing up in Australia: The Longitudinal Study of Australian Children. Participants are 4819 children in the Kindergarten Cohort who were recruited at age 4–5 years. Path analyses were employed to examine contributions of early childhood factors, including family socio-economic position (SEP), parenting behaviors, maternal mental health, and a child behavioral risk index, to the development of executive function in adolescence. The influence of children’s early self-regulatory behaviors (attentional regulation at 4–5 years and approaches to learning at 6–7 years) were also taken into account. A composite score for the outcome measure of executive function was constructed from scores on three Cogstate computerized tasks for assessing cognition and measured visual attention, visual working memory, and spatial problem-solving. Covariates included child gender, age at assessment of executive function, Aboriginal and Torres Strait Islander status, speaking a language other than English at home, and child’s receptive vocabulary skills. There were significant indirect effects involving child and family risk factors measured at 4–5 years on executive function at age 14–15 years, mediated by measures of self-regulatory behavior. Child behavioral risk, family SEP and parenting behaviors (anger, warmth, and consistency) were associated with attentional regulation at 4–5 years which, in turn, was significantly associated with approaches to learning at 6

  2. Executive Function in Adolescence: Associations with Child and Family Risk Factors and Self-Regulation in Early Childhood

    Directory of Open Access Journals (Sweden)

    Donna Berthelsen

    2017-06-01

    Full Text Available Executive functions are important higher-order cognitive skills for goal-directed thought and action. These capacities contribute to successful school achievement and lifelong wellbeing. The importance of executive functions to children’s education begins in early childhood and continues throughout development. This study explores contributions of child and family factors in early childhood to the development of executive function in adolescence. Analyses draw on data from the nationally representative study, Growing up in Australia: The Longitudinal Study of Australian Children. Participants are 4819 children in the Kindergarten Cohort who were recruited at age 4–5 years. Path analyses were employed to examine contributions of early childhood factors, including family socio-economic position (SEP, parenting behaviors, maternal mental health, and a child behavioral risk index, to the development of executive function in adolescence. The influence of children’s early self-regulatory behaviors (attentional regulation at 4–5 years and approaches to learning at 6–7 years were also taken into account. A composite score for the outcome measure of executive function was constructed from scores on three Cogstate computerized tasks for assessing cognition and measured visual attention, visual working memory, and spatial problem-solving. Covariates included child gender, age at assessment of executive function, Aboriginal and Torres Strait Islander status, speaking a language other than English at home, and child’s receptive vocabulary skills. There were significant indirect effects involving child and family risk factors measured at 4–5 years on executive function at age 14–15 years, mediated by measures of self-regulatory behavior. Child behavioral risk, family SEP and parenting behaviors (anger, warmth, and consistency were associated with attentional regulation at 4–5 years which, in turn, was significantly associated with approaches

  3. An Empathetic Beginning in Education: Exploring the Prospects of Self-Regulation Skills on Pro-Social Behaviour in the Early Childhood Environment

    Science.gov (United States)

    Willis, Elizabeth

    2016-01-01

    One avenue substantially researched and supported in early childhood research is the importance and the cultivation of self-regulation skills in the classroom. Most educational research on self-regulation skills has illustrated the importance between the enhancement of these skills and long-term academic success. Notwithstanding, there is little…

  4. Preservice Teachers' Emotion-Related Regulation and Cognition: Associations with Teachers' Responses to Children's Emotions in Early Childhood Classrooms

    Science.gov (United States)

    Swartz, Rebecca Anne; McElwain, Nancy L.

    2012-01-01

    Research Findings: The present research examines preservice teachers' (N = 24) self-reported emotion-related regulation and cognition as predictors of their observed responses to young children's positive and negative emotional displays. Correlation and regression analyses revealed that teachers reporting greater reappraisal strategies in…

  5. A Novel TetR Family Transcriptional Regulator, CalR3, Negatively Controls Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882

    Directory of Open Access Journals (Sweden)

    Lixia Gou

    2017-11-01

    Full Text Available Calcimycin is a unique ionophoric antibiotic that is widely used in biochemical and pharmaceutical applications, but the genetic basis underlying the regulatory mechanisms of calcimycin biosynthesis are unclear. Here, we identified the calR3 gene, which encodes a novel TetR family transcriptional regulator and exerts a negative effect on calcimycin biosynthesis. Disruption of calR3 in Streptomyces chartreusis NRRL 3882 led to significantly increased calcimycin and its intermediate cezomycin. Gene expression analysis showed that the transcription of calR3 and its adjacent calT gene were dramatically enhanced (30- and 171-fold, respectively in GLX26 (ΔcalR3 mutants compared with the wild-type strains. Two CalR3-binding sites within the bidirectional calR3-calT promoter region were identified using a DNase I footprinting assay, indicating that CalR3 directly repressed the transcription of its own gene and the calT gene. In vitro electrophoretic mobility shift assays suggested that both calcimycin and cezomycin can act as CalR3 ligands to induce CalR3 to dissociate from its binding sites. These findings indicate negative feedback for the regulation of CalR3 in calcimycin biosynthesis and suggest that calcimycin production can be improved by manipulating its biosynthetic machinery.

  6. Enhanced Mucosal Defense and Reduced Tumor Burden in Mice with the Compromised Negative Regulator IRAK-M

    Directory of Open Access Journals (Sweden)

    Daniel E. Rothschild

    2017-02-01

    Full Text Available Aberrant inflammation is a hallmark of inflammatory bowel disease (IBD and colorectal cancer. IRAK-M is a critical negative regulator of TLR signaling and overzealous inflammation. Here we utilize data from human studies and Irak-m−/− mice to elucidate the role of IRAK-M in the modulation of gastrointestinal immune system homeostasis. In human patients, IRAK-M expression is up-regulated during IBD and colorectal cancer. Further functional studies in mice revealed that Irak-m−/− animals are protected against colitis and colitis associated tumorigenesis. Mechanistically, our data revealed that the gastrointestinal immune system of Irak-m−/− mice is highly efficient at eliminating microbial translocation following epithelial barrier damage. This attenuation of pathogenesis is associated with expanded areas of gastrointestinal associated lymphoid tissue (GALT, increased neutrophil migration, and enhanced T-cell recruitment. Further evaluation of Irak-m−/− mice revealed a splice variant that robustly activates NF-κB signaling. Together, these data identify IRAK-M as a potential target for future therapeutic intervention.

  7. SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65

    Directory of Open Access Journals (Sweden)

    Pengcheng Li

    2018-04-01

    Full Text Available Dengue virus (DENV is a mosquito-borne single-stranded RNA virus causing human disease with variable severity. The production of massive inflammatory cytokines in dengue patients has been associated with dengue disease severity. However, the regulation of these inflammatory responses remains unclear. In this study, we report that SIRT6 is a negative regulator of innate immune responses during DENV infection. Silencing of Sirt6 enhances DENV-induced proinflammatory cytokine and chemokine production. Overexpression of SIRT6 inhibits RIG-I-like receptor (RLR and Toll-like receptor 3 (TLR3 mediated NF-κB activation. The sirtuin core domain of SIRT6 is required for the inhibition of NF-κB p65 function. SIRT6 interacts with the DNA binding domain of p65 and competes with p65 to occupy the Il6 promoter during DENV infection. Collectively, our study demonstrates that SIRT6 negatively regulates DENV-induced inflammatory response via RLR and TLR3 signaling pathways.

  8. Impaired down-regulation of negative emotion in self-referent social situations in bipolar disorder: A pilot study of a novel experimental paradigm.

    Science.gov (United States)

    Kjærstad, Hanne L; Vinberg, Maj; Goldin, Philippe R; Køster, Nicolai; Støttrup, Mette Marie D; Knorr, Ulla; Kessing, Lars V; Miskowiak, Kamilla W

    2016-04-30

    Emotion dysregulation is a core feature of bipolar disorder (BD) that persists into periods of remission. Neuroimaging studies show aberrant neural responses during emotion regulation (ER) in patients with BD relative to healthy controls, but behavioural evidence for ER deficits is sparse and conflicting. This study aimed to explore ER in BD using a novel, personally relevant experimental paradigm. Twenty patients with BD and 20 patients with unipolar disorder (UD), in full or partial remission, and 20 healthy controls were given a novel computerised test. Participants were instructed to react naturally or dampen their emotional response to positive and negative social scenarios and associated self-beliefs. They were also given an established experimental task for comparison, involving reappraisal of negative affective picture stimuli, as well as a questionnaire of habitual ER strategies. BD patients showed reduced ability to down-regulate emotional responses in negative, but not positive, social scenarios relative to healthy controls and UD patients. In contrast, there were no between-group differences in the established ER task or in self-reported habitual reappraisal strategies. Findings highlight the novel social scenario paradigm as a sensitive test for detection of ER difficulties in BD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Gibberellin Application at Pre-Bloom in Grapevines Down-Regulates the Expressions of VvIAA9 and VvARF7, Negative Regulators of Fruit Set Initiation, during Parthenocarpic Fruit Development

    Science.gov (United States)

    Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae

    2014-01-01

    Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid ‘Tamnara’ grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during

  10. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li; Niu, De; Hu, Zi-Liang; Kim, Dae Heon; Jin, Yin Hua; Cai, Bin; Liu, Peng; Miura, Kenji; Yun, Dae-Jin; Kim, Woe-Yeon; Lin, Rongcheng; Jin, Jing Bo

    2016-01-01

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  11. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li

    2016-04-29

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  12. Sirt1 negatively regulates FcεRI-mediated mast cell activation through AMPK- and PTP1B-dependent processes.

    Science.gov (United States)

    Li, Xian; Lee, Youn Ju; Jin, Fansi; Park, Young Na; Deng, Yifeng; Kang, Youra; Yang, Ju Hye; Chang, Jae-Hoon; Kim, Dong-Young; Kim, Jung-Ae; Chang, Young-Chae; Ko, Hyun-Jeong; Kim, Cheorl-Ho; Murakami, Makoto; Chang, Hyeun Wook

    2017-07-25

    Sirt1, a key regulator of metabolism and longevity, has recently been implicated in the regulation of allergic reactions, although the underlying mechanism remains unclear. Here we show that Sirt1 negatively regulates FcεRI-stimulated mast cell activation and anaphylaxis through two mutually regulated pathways involving AMP-activated protein kinase (AMPK) and protein tyrosine phosphatase 1B (PTP1B). Mast cell-specific knockout of Sirt1 dampened AMPK-dependent suppression of FcεRI signaling, thereby augmenting mast cell activation both in vitro and in vivo. Sirt1 inhibition of FcεRI signaling also involved an alternative component, PTP1B, which attenuated the inhibitory AMPK pathway and conversely enhanced the stimulatory Syk pathway, uncovering a novel role of this phosphatase. Moreover, a Sirt1 activator resveratrol stimulated the inhibitory AMPK axis, with reciprocal suppression of the stimulatory PTP1B/Syk axis, thus potently inhibiting anaphylaxis. Overall, our results provide a molecular explanation for the beneficial role of Sirt1 in allergy and underscore a potential application of Sirt1 activators as a new class of anti-allergic agents.

  13. SNT-2 interacts with ERK2 and negatively regulates ERK2 signaling in response to EGF stimulation

    International Nuclear Information System (INIS)

    Huang Lin; Gotoh, Noriko; Zhang Shengliang; Shibuya, Masabumi; Yamamoto, Tadashi; Tsuchida, Nobuo

    2004-01-01

    The control of cellular responses with fibroblast growth factors and neurotrophins is mediated through membrane-linked docking proteins, SNT (suc1-binding neurotrophic target)-1/FRS2α and SNT-2/FRS2β. ERK1/2 are members of the mitogen-activated protein kinase family that regulate diverse cellular activities in response to various stimuli. Here, we demonstrate that SNT-2 does not become tyrosine phosphorylated significantly in response to EGF but forms a complex with ERK2 via the region of 186-252 amino acid residues, and the complex formation is enhanced upon EGF stimulation. SNT-2 downregulates ERK2 phosphorylation, suppresses and delays ERK2 nuclear accumulation which occurs following EGF stimulation. In contrast, the mutant SNT-2 which carries deletion of 186-252 amino acids and lacks ERK2 binding does not have these effects. These observations suggest that SNT-2 negatively regulates ERK2 signaling activated via EGF stimulation through direct binding to ERK2

  14. Family Interactions, Exposure to Violence, and Emotion Regulation: Perceptions of Children and Early Adolescents at Risk

    Science.gov (United States)

    Houltberg, Benjamin J.; Henry, Carolyn S.; Morris, Amanda Sheffield

    2012-01-01

    This study examined the protective nature of youth reports of family interactions in relation to perceived exposure to violence and anger regulation in 84 children and early adolescents (mean age of 10.5; 7-15 years old) primarily from ethnic minority groups and living in high-risk communities in a large southwestern city. Path analysis and…

  15. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  16. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a , and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH , we used a yeast ( Saccharomyces cerevisiae ) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant ( soc1-6 ) showed an accelerated yellowing phenotype, whereas those of SOC1 -overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis ( Arabidopsis thaliana ) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES ( SAGs ) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis. © 2017 American Society of Plant Biologists. All

  17. Individual differences in the development of early peer aggression: Integrating contributions of self-regulation, theory of mind, and parenting

    Science.gov (United States)

    OLSON, SHERYL L.; LOPEZ-DURAN, NESTOR; LUNKENHEIMER, ERIKA S.; CHANG, HYEIN; SAMEROFF, ARNOLD J.

    2014-01-01

    This prospective longitudinal study focused on self-regulatory, social–cognitive, and parenting precursors of individual differences in children’s peer-directed aggression at early school age. Participants were 1993-year-old boys and girls who were reassessed following the transition to kindergarten (5.5–6 years). Peer aggression was assessed in preschool and school settings using naturalistic observations and teacher reports. Children’s self-regulation abilities and theory of mind understanding were assessed during a laboratory visit, and parenting risk (corporal punishment and low warmth/responsiveness) was assessed using interview-based and questionnaire measures. Individual differences in children’s peer aggression were moderately stable across the preschool to school transition. Preschool-age children who manifested high levels of aggressive peer interactions also showed lower levels of self-regulation and theory of mind understanding, and experienced higher levels of adverse parenting than others. Our main finding was that early corporal punishment was associated with increased levels of peer aggression across the transition from preschool to school, as was the interaction between low maternal emotional support and children’s early delays in theory of mind understanding. These data highlight the need for family-directed preventive efforts during the early preschool years. PMID:21262052

  18. The C-terminal domain of Nrf1 negatively regulates the full-length CNC-bZIP factor and its shorter isoform LCR-F1/Nrf1β; both are also inhibited by the small dominant-negative Nrf1γ/δ isoforms that down-regulate ARE-battery gene expression.

    Science.gov (United States)

    Zhang, Yiguo; Qiu, Lu; Li, Shaojun; Xiang, Yuancai; Chen, Jiayu; Ren, Yonggang

    2014-01-01

    The C-terminal domain (CTD, aa 686-741) of nuclear factor-erythroid 2 p45-related factor 1 (Nrf1) shares 53% amino acid sequence identity with the equivalent Neh3 domain of Nrf2, a homologous transcription factor. The Neh3 positively regulates Nrf2, but whether the Neh3-like (Neh3L) CTD of Nrf1 has a similar role in regulating Nrf1-target gene expression is unknown. Herein, we report that CTD negatively regulates the full-length Nrf1 (i.e. 120-kDa glycoprotein and 95-kDa deglycoprotein) and its shorter isoform LCR-F1/Nrf1β (55-kDa). Attachment of its CTD-adjoining 112-aa to the C-terminus of Nrf2 yields the chimaeric Nrf2-C112Nrf1 factor with a markedly decreased activity. Live-cell imaging of GFP-CTD reveals that the extra-nuclear portion of the fusion protein is allowed to associate with the endoplasmic reticulum (ER) membrane through the amphipathic Neh3L region of Nrf1 and its basic c-tail. Thus removal of either the entire CTD or the essential Neh3L portion within CTD from Nrf1, LCR-F1/Nrf1β and Nrf2-C112Nrf1, results in an increase in their transcriptional ability to regulate antioxidant response element (ARE)-driven reporter genes. Further examinations unravel that two smaller isoforms, 36-kDa Nrf1γ and 25-kDa Nrf1δ, act as dominant-negative inhibitors to compete against Nrf1, LCR-F1/Nrf1β and Nrf2. Relative to Nrf1, LCR-F1/Nrf1β is a weak activator, that is positively regulated by its Asn/Ser/Thr-rich (NST) domain and acidic domain 2 (AD2). Like AD1 of Nrf1, both AD2 and NST domain of LCR-F1/Nrf1β fused within two different chimaeric contexts to yield Gal4D:Nrf1β607 and Nrf1β:C270Nrf2, positively regulate their transactivation activity of cognate Gal4- and Nrf2-target reporter genes. More importantly, differential expression of endogenous ARE-battery genes is attributable to up-regulation by Nrf1 and LCR-F1/Nrf1β and down-regulation by Nrf1γ and Nrf1δ.

  19. A Longitudinal Study for the Empirical Validation of an Etiopathogenetic Model of Internet Addiction in Adolescence Based on Early Emotion Regulation

    Directory of Open Access Journals (Sweden)

    Silvia Cimino

    2018-01-01

    Full Text Available Several etiopathogenetic models have been conceptualized for the onset of Internet Addiction (IA. However, no study had evaluated the possible predictive effect of early emotion regulation strategies on the development of IA in adolescence. In a sample of N=142 adolescents with Internet Addiction, this twelve-year longitudinal study aimed at verifying whether and how emotion regulation strategies (self-focused versus other-focused at two years of age were predictive of school-age children’s internalizing/externalizing symptoms, which in turn fostered Internet Addiction (compulsive use of the Web versus distressed use in adolescence. Our results confirmed our hypotheses demonstrating that early emotion regulation has an impact on the emotional-behavioral functioning in middle childhood (8 years of age, which in turn has an influence on the onset of IA in adolescence. Moreover, our results showed a strong, direct statistical link between the characteristics of emotion regulation strategies in infancy and IA in adolescence. These results indicate that a common root of unbalanced emotion regulation could lead to two different manifestations of Internet Addiction in youths and could be useful in the assessment and treatment of adolescents with IA.

  20. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells.

    Science.gov (United States)

    Zhang, Zhong-Lin; Shin, Margaret; Zou, Xiaolu; Huang, Jianzhi; Ho, Tun-hua David; Shen, Qingxi J

    2009-05-01

    Abscisic acid (ABA) and gibberellins (GAs) control several developmental processes including seed maturation, dormancy, and germination. The antagonism of these two hormones is well-documented. However, recent data from transcription profiling studies indicate that they can function as agonists in regulating the expression of many genes although the underlying mechanism is unclear. Here we report a rice WRKY gene, OsWRKY24, which encodes a protein that functions as a negative regulator of both GA and ABA signaling. Overexpression of OsWRKY24 via particle bombardment-mediated transient expression in aleurone cells represses the expression of two reporter constructs: the beta-glucuronidase gene driven by the GA-inducible Amy32b alpha-amylase promoter (Amy32b-GUS) and the ABA-inducible HVA22 promoter (HVA22-GUS). OsWRKY24 is unlikely a general repressor because it has little effect on the expression of the luciferase reporter gene driven by a constitutive ubiquitin promoter (UBI-Luciferase). As to the GA signaling, OsWRKY24 differs from OsWRKY51 and -71, two negative regulators specifically function in the GA signaling pathway, in several ways. First, OsWRKY24 contains two WRKY domains while OsWRKY51 and -71 have only one; both WRKY domains are essential for the full repressing activity of OsWRKY24. Second, binding of OsWRKY24 to the Amy32b promoter appears to involve sequences in addition to the TGAC cores of the W-boxes. Third, unlike OsWRKY71, OsWRKY24 is stable upon GA treatment. Together, these data demonstrate that OsWRKY24 is a novel type of transcriptional repressor that inhibits both GA and ABA signaling.

  1. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport.

    Science.gov (United States)

    Pirkmajer, Sergej; Kirchner, Henriette; Lundell, Leonidas S; Zelenin, Pavel V; Zierath, Juleen R; Makarova, Kira S; Wolf, Yuri I; Chibalin, Alexander V

    2017-07-15

    Small transmembrane proteins such as FXYDs, which interact with Na + ,K + -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca 2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na + ,K + -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony

  2. Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells.

    Science.gov (United States)

    Mochizuki, Michika; Lorenz, Vera; Ivanek, Robert; Della Verde, Giacomo; Gaudiello, Emanuele; Marsano, Anna; Pfister, Otmar; Kuster, Gabriela M

    2017-10-24

    Recent studies suggest that adult cardiac progenitor cells (CPCs) can produce new cardiac cells. Such cell formation requires an intricate coordination of progenitor cell proliferation and commitment, but the molecular cues responsible for this regulation in CPCs are ill defined. Extracellular matrix components are important instructors of cell fate. Using laminin and fibronectin, we induced two slightly distinct CPC phenotypes differing in proliferation rate and commitment status and analyzed the early transcriptomic response to CPC adhesion (<2 hours). Ninety-four genes were differentially regulated on laminin versus fibronectin, consisting of mostly downregulated genes that were enriched for Yes-associated protein (YAP) conserved signature and TEA domain family member 1 (TEAD1)-related genes. This early gene regulation was preceded by the rapid cytosolic sequestration and degradation of YAP on laminin. Among the most strongly regulated genes was polo-like kinase 2 ( Plk2 ). Plk2 expression depended on YAP stability and was enhanced in CPCs transfected with a nuclear-targeted mutant YAP. Phenotypically, the early downregulation of Plk2 on laminin was succeeded by lower cell proliferation, enhanced lineage gene expression (24 hours), and facilitated differentiation (3 weeks) compared with fibronectin. Finally, overexpression of Plk2 enhanced CPC proliferation and knockdown of Plk2 induced the expression of lineage genes. Plk2 acts as coordinator of cell proliferation and early lineage commitment in CPCs. The rapid downregulation of Plk2 on YAP inactivation marks a switch towards enhanced commitment and facilitated differentiation. These findings link early gene regulation to cell fate and provide novel insights into how CPC proliferation and differentiation are orchestrated. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. Parent emotional expressiveness and children's self-regulation: Associations with abused children's school functioning

    Science.gov (United States)

    Haskett, Mary E.; Stelter, Rebecca; Proffit, Katie; Nice, Rachel

    2012-01-01

    Objective Identifying factors associated with school functioning of abused children is important in prevention of long-term negative outcomes associated with school failure. The purpose of this study was to examine the degree to which parent emotional expressiveness and children's self-regulation predicted early school behavior of abused children. Methods The sample included 92 physically abused children ages 4-7 and one of their parents (95.7% mothers). Parents completed a measure of their own emotional expressiveness, and parents and teachers provided reports of children's self-regulatory skills. Children's school functioning was measured by observations of playground aggression and teacher reports of aggression and classroom behavior. Results Parents’ expression of positive and negative emotions was associated with various aspects of children's self-regulation and functioning in the school setting. Links between self-regulation and children's school adjustment were robust; poor self-regulation was associated with higher aggression and lower cooperation and self-directed behavior in the classroom. There was minimal support for a mediating role of children's self-regulation in links between parent expressiveness and children's behavior. Practice implications Findings point to the relevance of parent emotional expressivity and children's self-regulatory processes in understanding physically abused children's functioning at the transition to school. Although further research is needed, findings indicate that increasing parental expression of positive emotion should be a focus in treatment along with reduction in negativity of abusive parents. Further, addressing children's self-regulation could be important in efforts to reduce aggression and enhance children's classroom competence. PMID:22565040

  4. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings.

    Science.gov (United States)

    Liu, Zhongjuan; Zhang, Yongqiang; Wang, Jianfeng; Li, Ping; Zhao, Chengzhou; Chen, Yadi; Bi, Yurong

    2015-09-01

    Light is an important environmental factor inducing anthocyanin accumulation in plants. Phytochrome-interacting factors (PIFs) have been shown to be a family of bHLH transcription factors involved in light signaling in Arabidopsis. Red light effectively increased anthocyanin accumulation in wild-type Col-0, whereas the effects were enhanced in pif4 and pif5 mutants but impaired in overexpression lines PIF4OX and PIF5OX, indicating that PIF4 and PIF5 are both negative regulators for red light-induced anthocyanin accumulation. Consistently, transcript levels of several genes involved in anthocyanin biosynthesis and regulatory pathway, including CHS, F3'H, DFR, LDOX, PAP1 and TT8, were significantly enhanced in mutants pif4 and pif5 but decreased in PIF4OX and PIF5OX compared to in Col-0, indicating that PIF4 and PIF5 are transcriptional repressor of these gene. Transient expression assays revealed that PIF4 and PIF5 could repress red light-induced promoter activities of F3'H and DFR in Arabidopsis protoplasts. Furthermore, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) test and electrophoretic mobility shift assay (EMSA) showed that PIF5 could directly bind to G-box motifs present in the promoter of DFR. Taken together, these results suggest that PIF4 and PIF5 negatively regulate red light-induced anthocyanin accumulation through transcriptional repression of the anthocyanin biosynthetic genes in Arabidopsis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Association between partial-volume corrected SUVmax and Oncotype DX recurrence score in early-stage, ER-positive/HER2-negative invasive breast cancer.

    Science.gov (United States)

    Lee, Su Hyun; Ha, Seunggyun; An, Hyun Joon; Lee, Jae Sung; Han, Wonshik; Im, Seock-Ah; Ryu, Han Suk; Kim, Won Hwa; Chang, Jung Min; Cho, Nariya; Moon, Woo Kyung; Cheon, Gi Jeong

    2016-08-01

    Oncotype DX, a 21-gene expression assay, provides a recurrence score (RS) which predicts prognosis and the benefit from adjuvant chemotherapy in patients with early-stage, estrogen receptor-positive (ER-positive), and human epidermal growth factor receptor 2-negative (HER2-negative) invasive breast cancer. However, Oncotype DX tests are expensive and not readily available in all institutions. The purpose of this study was to investigate whether metabolic parameters on (18)F-FDG PET/CT are associated with the Oncotype DX RS and whether (18)F-FDG PET/CT can be used to predict the Oncotype DX RS. The study group comprised 38 women with stage I/II, ER-positive/HER2-negative invasive breast cancer who underwent pretreatment (18)F-FDG PET/CT and Oncotype DX testing. On PET/CT, maximum (SUVmax) and average standardized uptake values, metabolic tumor volume, and total lesion glycolysis were measured. Partial volume-corrected SUVmax (PVC-SUVmax) determined using the recovery coefficient method was also evaluated. Oncotype DX RS (0 - 100) was categorized as low (negative breast cancer.

  6. Evidence of an IFN-γ by early life stress interaction in the regulation of amygdala reactivity to emotional stimuli.

    Science.gov (United States)

    Redlich, Ronny; Stacey, David; Opel, Nils; Grotegerd, Dominik; Dohm, Katharina; Kugel, Harald; Heindel, Walter; Arolt, Volker; Baune, Bernhard T; Dannlowski, Udo

    2015-12-01

    Since numerous studies have found that exposure to early life stress leads to increased peripheral inflammation and psychiatric disease, it is thought that peripheral immune activation precedes and possibly mediates the onset of stress-associated psychiatric disease. Despite early studies, IFNγ has received little attention relative to other inflammatory cytokines in the context of the pathophysiology of affective disorders. Neuroimaging endophenotypes have emerged recently as a promising means of elucidating these types of complex relationships including the modeling of the interaction between environmental factors and genetic predisposition. Here we investigate the GxE relationship between early-life stress and genetic variants of IFNγ on emotion processing. To investigate the impact of the relationship between genetic variants of IFNγ (rs1861494, rs2069718, rs2430561) and early life stress on emotion processing, a sample of healthy adults (n=409) undergoing an emotional faces paradigm in an fMRI study were genotyped and analysed. Information on early life stress was obtained via Childhood Trauma Questionnaire (CTQ). A positive association between early life stress and amygdala reactivity was found. Specifically, the main effect of genotype of rs1861494 on amygdala reactivity indicates a higher neural response in C allele carriers compared to T homozygotes, while we did not find main effects of rs2069718 and rs2430561. Importantly, interaction analyses revealed a specific interaction between IFNγ genotype (rs1861494) and early life stress affecting amygdala reactivity to emotional faces, resulting from a positive association between CTQ scores and amygdala reactivity in C allele carriers while this association was absent in T homozygotes. Our findings indicate that firstly the genetic variant of IFNγ (rs1861494) is involved with the regulation of amygdala reactivity to emotional stimuli and secondly, that this genetic variant moderates effects of early life

  7. Regulation of protein synthesis during sea urchin early development

    International Nuclear Information System (INIS)

    Kelso, L.C.

    1989-01-01

    Fertilization of the sea urchin egg results in a 20-40 fold increase in the rate of protein synthesis. The masked message hypothesis proposes that mRNAs are masked or unavailable for translation in the egg. We devised an in vivo assay to test this hypothesis. Our results show that masked mRNAs limit protein synthesis in the unfertilized egg. In addition, we show that protein synthesis is also regulated at the level of translational machinery. Following fertilization is a period of rapid cell divisions. This period, known as the rapid cleavage stage, is characterized by the transient synthesis of a novel set of proteins. The synthesis of these proteins is programmed by maternal mRNAs stored in the unfertilized egg. To study the behavior of these mRNAs, we prepared a cDNA library from polysomal poly (A+) RNA from 2-hour embryos. [ 32 P] labeled probes, prepared from the cDNA library, were used to monitor the levels of individual mRNAs in polysomes at fertilization and during early development

  8. Biological Motion induced mu suppression is reduced in Early Psychosis (EP) patients with active negative symptoms and Autism Spectrum Disorders (ASD).

    Science.gov (United States)

    Minichino, Amedeo; Singh, Fiza; Pineda, Jaime; Friederich, Elisabeth; Cadenhead, Kristin S

    2016-04-30

    There is evidence of genetic and neural system overlap in Autism Spectrum Disorder (ASD) and Early Psychosis (EP). Five datasets were pooled to compare mu suppression index (MSI), a proxy of mirror neuron activity, in EP, high functioning ASD, and healthy subjects (HS). ASDs and EPs with "active" negative symptoms showed significant differences in mu suppression, in response to Biological Motion/point-light display animation, compared to HS. Preliminary findings suggest that similar neural network deficits in ASD and EP could be driven by the expression of negative symptoms in the latter group of patients. These findings may aid future studies on EP and ASD and facilitate the formulation of new hypotheses regarding their pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Steroidogenesis and early response gene expression in MA-10 Leydig tumor cells following heterologous receptor down-regulation and cellular desensitization

    Directory of Open Access Journals (Sweden)

    Tsuey-Ming Chen

    2016-03-01

    Full Text Available The Leydig tumor cell line, MA-10, expresses the luteinizing hormone receptor, a G protein-coupled receptor that, when activated with luteinizing hormone or chorionic gonadotropin (CG, stimulates cAMP production and subsequent steroidogenesis, notably progesterone. These cells also respond to epidermal growth factor (EGF and phorbol esters with increased steroid biosynthesis. In order to probe the intracellular pathways along with heterologous receptor down-regulation and cellular desensitization, cells were preincubated with EGF or phorbol esters and then challenged with CG, EGF, dibutryl-cyclic AMP, and a phorbol ester. Relative receptor numbers, steroid biosynthesis, and expression of the early response genes, JUNB and c-FOS, were measured. It was found that in all cases but one receptor down-regulation and decreased progesterone production were closely coupled under the conditions used; the exception involved preincubation of the cells with EGF followed by addition of CG where the CG-mediated stimulation of steroidogenesis was considerably lower than the level of receptor down-regulation. In a number of instances JUNB and c-FOS expression paralleled the decreases in receptor number and progesterone production, while in some cases these early response genes were affected little if at all by the changes in receptor number. This finding may indicate that even low levels of activated signaling kinases, e.g. protein kinase A, protein kinase C, or receptor tyrosine kinase, may suffice to yield good expression of JUNB and c-FOS, or it may suggest alternative pathways for regulating expression of these two early response genes.

  10. Smart conjugated polymer nanocarrier for healthy weight loss by negative feedback regulation of lipase activity

    Science.gov (United States)

    Chen, Yu-Lei; Zhu, Sha; Zhang, Lei; Feng, Pei-Jian; Yao, Xi-Kuang; Qian, Cheng-Gen; Zhang, Can; Jiang, Xi-Qun; Shen, Qun-Dong

    2016-02-01

    Healthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion. It also creates negative feedback to control the release of itself. The nanocarrier smartly regulates activity of the lipase cyclically varied between high and low levels. In spite of high fat diet intervention, obese mice receiving a single dose of the nanocarrier lose weight over eight days, whereas a control group continues the tendency to gain weight. Daily intragastric administration of the nanocarrier leads to lower weight of livers or fat pads, smaller adipocyte size, and lower total cholesterol level than that of the control group. Near-infrared fluorescence of the nanocarrier reveals its biodistribution.Healthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion. It also creates negative feedback to control the release of itself. The nanocarrier smartly regulates activity of the lipase cyclically varied between high and low levels. In spite of high fat diet intervention, obese mice receiving a single dose of the nanocarrier lose weight over eight days, whereas a control group continues the tendency to gain weight. Daily intragastric administration of the nanocarrier leads to lower weight of livers or fat pads, smaller adipocyte size, and lower total cholesterol level than that of the control group. Near-infrared fluorescence of the nanocarrier reveals its biodistribution

  11. 47 CFR 76.981 - Negative option billing.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Negative option billing. 76.981 Section 76.981 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate Regulation § 76.981 Negative option billing. (a) A cable operator...

  12. [Negative symptoms of schizophrenia: historical aspects].

    Science.gov (United States)

    Pringuey, D; Paquin, N; Cherikh, F; Giordana, B; Belzeaux, R; Cermolacce, M; Adida, M; Azorin, J-M

    2015-12-01

    The history of negative symptoms of schizophrenia rises early days of medicine in clinical and pathophysiological differences between positive and negative and their complex joint. Forming a set of typical core of symptoms, and some feature of a syndrome belonging to a specific pathophysiological mechanism, negative symptoms of schizophrenia emerge from old descriptions of clinical pictures, related to the overall look of madness, the heart of alienation, a central sign of early dementia, gradually more precisely describing the strange nature of the autistic withdrawal and schizophrenic apragmatism. At therapeutic era, negative symptoms have taken over the positive symptoms to establish an operational criteria whose importance lies in the progressive severity of this clinical type and in their contribution to therapeutic resistance. Despite the efforts of modern typological classifications, this work rehabilitates the old concept of "unitary psychosis" by defining a common symptomatic core to multiple clinical forms of psychosis, combining deficit of emotional expression and avolition, meaning a native psychopathology and a pathophysiology possibly in a common final way, and calling the arrival of new treatment strategies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. [The early pregnancy factor (EPF) as an early marker of disorders in pregnancy].

    Science.gov (United States)

    Straube, W; Römer, T; Zeenni, L; Loh, M

    1995-01-01

    The early pregnancy factor (EPF) seems to be very helpful in clinical applications such as early detection of pregnancy, differential diagnosis of failure of fertilization or implementation and prognosis of a fertilized ovum. Our purpose was to investigate the diagnostic value of single and serial measurement of EPF, especially in the differential diagnosis of abortion and extrauterine pregnancy. Women with a history of 6-16 weeks amenorrhoea with/without vaginal bleeding were included in the prospective study. The EPF-test system was carried out by means of the rosette inhibition method. EPF proved to be always positive in normal pregnant women and always negative in nonpregnant controls. In case of threatened abortion the prognosis was good, when the EPF values were positive, and poor when they became negative. Patients suffering from spontaneous and missed abortion mostly showed negative EPF-values. This was also true in ectopic pregnancies. The sensitivity and specificity of EPF-test system were 83%. The positive predictive value was observed to be 54% and the negative predictive value 95%. The EPF as an early embryonic signal may be a suitable parameter for the clinical use detecting pregnancy disturbances very early.

  14. 7 CFR 996.11 - Negative aflatoxin content.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Negative aflatoxin content. 996.11 Section 996.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... aflatoxin content. Negative aflatoxin content means 15 parts per billion (ppb) or less for peanuts that have...

  15. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors

    International Nuclear Information System (INIS)

    Ahmed, M.

    2003-01-01

    Ionizing radiation exposure is associated with activation of certain immediate-early genes that function as transcription factors. These include members of jun or fos and early growth response (EGR) gene families. In particular, the functional role of EGR-1 in radiation-induced signaling is pivotal since the promoter of EGR-1 contains radiation-inducible CArG DNA sequences. The Egr-1 gene belongs to a family of Egr genes that includes EGR-2, EGR-3, EGR-4, EGR-α and the tumor suppressor, Wilms' tumor gene product, WT1. The Egr-1 gene product, EGR-1, is a nuclear protein that contains three zinc fingers of the C 2 H 2 subtype. The EGR-1 GC-rich consensus target sequence, 5'-GCGT/GGGGCG-3' or 5'-TCCT/ACCTCCTCC-3', has been identified in the promoter regions of transcription factors, growth factors, receptors, cell cycle regulators and pro-apoptotic genes. The gene targets mediated by Egr-1 in response to ionizing radiation include TNF-α , p53, Rb and Bax, all these are effectors of apoptosis. Based on these targets, Egr-1 is a pivotal gene that initiates early signal transduction events in response to ionizing radiation leading to either growth arrest or cell death in tumor cells. There are two potential application of Egr-1 gene in therapy of cancer. First, the Egr-1 promoter contains information for appropriate spatial and temporal expression in-vivo that can be regulated by ionizing radiation to control transcription of genes that have pro-apoptotic and suicidal function. Secondly, EGR-1 protein can eliminate 'induced-radiation resistance' by inhibiting the functions of radiation-induced pro-survival genes (NFκB activity and bcl-2 expression) and activate pro-apoptotic genes (such as bax) to confer a significant radio-sensitizing effect. Together, the reported findings from my laboratory demonstrate clearly that EGR-1 is an early central gene that confers radiation sensitivity and its pro-apoptotic functions are synergized by abrogation of induced radiation

  16. Neural correlates of preparatory and regulatory control over positive and negative emotion.

    Science.gov (United States)

    Seo, Dongju; Olman, Cheryl A; Haut, Kristen M; Sinha, Rajita; MacDonald, Angus W; Patrick, Christopher J

    2014-04-01

    This study used functional magnetic resonance imaging to investigate brain activation during preparatory and regulatory control while participants (N = 24) were instructed either to simply view or decrease their emotional response to, pleasant, neutral or unpleasant pictures. A main effect of emotional valence on brain activity was found in the right precentral gyrus, with greater activation during positive than negative emotion regulation. A main effect of regulation phase was evident in the bilateral anterior prefrontal cortex (PFC), precuneus, posterior cingulate cortex, right putamen and temporal and occipital lobes, with greater activity in these regions during preparatory than regulatory control. A valence X regulation interaction was evident in regions of ventromedial PFC and anterior cingulate cortex, reflecting greater activation while regulating negative than positive emotion, but only during active emotion regulation (not preparation). Conjunction analyses revealed common brain regions involved in differing types of emotion regulation including selected areas of left lateral PFC, inferior parietal lobe, temporal lobe, right cerebellum and bilateral dorsomedial PFC. The right lateral PFC was additionally activated during the modulation of both positive and negative valence. Findings demonstrate significant modulation of brain activity during both preparation for, and active regulation of positive and negative emotional states.

  17. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse

    Directory of Open Access Journals (Sweden)

    Masayuki Tanaka

    2016-07-01

    Full Text Available Thrombin-activated protease-activated receptor (PAR-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethylbenzenesulfonyl fluoride (AEBSF, which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs.

  18. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants.

    Science.gov (United States)

    Li, Peiling; Song, Aiping; Gao, Chunyan; Wang, Linxiao; Wang, Yinjie; Sun, Jing; Jiang, Jiafu; Chen, Fadi; Chen, Sumei

    2015-08-01

    CmWRKY17 was induced by salinity in chrysanthemum, and it might negatively regulate salt stress in transgenic plants as a transcriptional repressor. WRKY transcription factors play roles as positive or negative regulators in response to various stresses in plants. In this study, CmWRKY17 was isolated from chrysanthemum (Chrysanthemum morifolium). The gene encodes a 227-amino acid protein and belongs to the group II WRKY family, but has an atypical WRKY domain with the sequence WKKYGEK. Our data indicated that CmWRKY17 was localized to the nucleus in onion epidermal cells. CmWRKY17 showed no transcriptional activation in yeast; furthermore, luminescence assay clearly suggested that CmWRKY17 functions as a transcriptional repressor. DNA-binding assay showed that CmWRKY17 can bind to W-box. The expression of CmWRKY17 was induced by salinity in chrysanthemum, and a higher expression level was observed in the stem and leaf compared with that in the root, disk florets, and ray florets. Overexpression of CmWRKY17 in chrysanthemum and Arabidopsis increased the sensitivity to salinity stress. The activities of superoxide dismutase and peroxidase and proline content in the leaf were significantly lower in transgenic chrysanthemum than those in the wild type under salinity stress, whereas electrical conductivity was increased in transgenic plants. Expression of the stress-related genes AtRD29, AtDREB2B, AtSOS1, AtSOS2, AtSOS3, and AtNHX1 was reduced in the CmWRKY17 transgenic Arabidopsis compared with that in the wild-type Col-0. Collectively, these data suggest that CmWRKY17 may increase the salinity sensitivity in plants as a transcriptional repressor.

  19. Negative attention bias and processing deficits during the cognitive reappraisal of unpleasant emotions in HIV+ women.

    Science.gov (United States)

    McIntosh, Roger C; Tartar, Jaime L; Widmayer, Susan; Rosselli, Monica

    2015-01-01

    Deficits in emotional processing may be attributed to HIV disease or comorbid psychiatric disorders. Electrocortical markers of emotional attention, i.e., amplitude of the P2 and late positive potential (LPP), were compared between 26 HIV+ women and 25 healthy controls during an emotional regulation paradigm. HIV+ women showed early attention bias to negative stimuli indexed by greater P2 amplitude. In contrast, compared with the passive viewing of unpleasant images, HIV+ women demonstrated attenuation of the early and late LPP during positive reappraisal. This interaction remained significant after adjusting for individual differences in apathy, anxiety, and depression. Post hoc analyses implicated time since HIV diagnosis with LPP attenuation during positive reappraisal. Advancing HIV disease may disrupt neural generators associated with the cognitive reappraisal of emotions independent of psychiatric function.

  20. Canonical TGF-β Signaling Negatively Regulates Neuronal Morphogenesis through TGIF/Smad Complex-Mediated CRMP2 Suppression.

    Science.gov (United States)

    Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi

    2018-05-16

    Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our

  1. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model.

    Science.gov (United States)

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model.

  2. A switch from a gradient to a threshold mode in the regulation of a transcriptional cascade promotes robust execution of meiosis in budding yeast.

    Directory of Open Access Journals (Sweden)

    Vyacheslav Gurevich

    Full Text Available Tight regulation of developmental pathways is of critical importance to all organisms, and is achieved by a transcriptional cascade ensuring the coordinated expression of sets of genes. We aimed to explore whether a strong signal is required to enter and complete a developmental pathway, by using meiosis in budding yeast as a model. We demonstrate that meiosis in budding yeast is insensitive to drastic changes in the levels of its consecutive positive regulators (Ime1, Ime2, and Ndt80. Entry into DNA replication is not correlated with the time of transcription of the early genes that regulate this event. Entry into nuclear division is directly regulated by the time of transcription of the middle genes, as premature transcription of their activator NDT80, leads to a premature entry into the first meiotic division, and loss of coordination between DNA replication and nuclear division. We demonstrate that Cdk1/Cln3 functions as a negative regulator of Ime2, and that ectopic expression of Cln3 delays entry into nuclear division as well as NDT80 transcription. Because Ime2 functions as a positive regulator for premeiotic DNA replication and NDT80 transcription, as well as a negative regulator of Cdk/Cln, we suggest that a double negative feedback loop between Ime2 and Cdk1/Cln3 promotes a bistable switch from the cell cycle to meiosis. Moreover, our results suggest a regulatory mode switch that ensures robust meiosis as the transcription of the early meiosis-specific genes responds in a graded mode to Ime1 levels, whereas that of the middle and late genes as well as initiation of DNA replication, are regulated in a threshold mode.

  3. Age Differences in Affective and Cardiovascular Responses to a Negative Social Interaction: The Role of Goals, Appraisals, and Emotion Regulation

    Science.gov (United States)

    Luong, Gloria; Charles, Susan T.

    2014-01-01

    Older adults often report less affective reactivity to interpersonal tensions than younger individuals, but few studies have directly investigated mechanisms explaining this effect. The current study examined whether older adults’ differential endorsement of goals, appraisals, and emotion regulation strategies (i.e., conflict avoidance/de-escalation, self-distraction) during a controlled negative social interaction may explain age differences in affective and cardiovascular responses to the conflict discussion. Participants (N=159; 80 younger adults, 79 older adults) discussed hypothetical dilemmas with disagreeable confederates. Throughout the laboratory session, participants’ subjective emotional experience, blood pressure, and pulse rate were assessed. Older adults generally exhibited less reactivity (negative affect reactivity, diastolic blood pressure reactivity, and pulse rate reactivity) to the task, and more pronounced positive and negative affect recovery following the task, than did younger adults. Older adults appraised the task as more enjoyable and the confederate as more likeable, and more strongly endorsed goals to perform well on the task, which mediated age differences in negative affect reactivity, pulse rate reactivity, and positive affect recovery (i.e., increases in post-task positive affect), respectively. In addition, younger adults showed increased negative affect reactivity with greater use of self-distraction, whereas older adults did not. Together, findings suggest that older adults respond less negatively to unpleasant social interactions than younger adults, and these responses are explained in part by older adults’ pursuit of different motivational goals, less threatening appraisals of the social interaction, and more effective use of self-distraction, compared to younger adults. PMID:24773101

  4. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis.

    Science.gov (United States)

    Sun, Honghong; Gong, Shunyou; Carmody, Ruaidhri J; Hilliard, Anja; Li, Li; Sun, Jing; Kong, Li; Xu, Lingyun; Hilliard, Brendan; Hu, Shimin; Shen, Hao; Yang, Xiaolu; Chen, Youhai H

    2008-05-02

    Immune homeostasis is essential for the normal functioning of the immune system, and its breakdown leads to fatal inflammatory diseases. We report here the identification of a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, designated TIPE2, that is required for maintaining immune homeostasis. TIPE2 is preferentially expressed in lymphoid tissues, and its deletion in mice leads to multiorgan inflammation, splenomegaly, and premature death. TIPE2-deficient animals are hypersensitive to septic shock, and TIPE2-deficient cells are hyper-responsive to Toll-like receptor (TLR) and T cell receptor (TCR) activation. Importantly, TIPE2 binds to caspase-8 and inhibits activating protein-1 and nuclear factor-kappaB activation while promoting Fas-induced apoptosis. Inhibiting caspase-8 significantly blocks the hyper-responsiveness of TIPE2-deficient cells. These results establish that TIPE2 is an essential negative regulator of TLR and TCR function, and its selective expression in the immune system prevents hyperresponsiveness and maintains immune homeostasis.

  5. Ethanol negatively regulates hepatic differentiation of hESC by inhibition of the MAPK/ERK signaling pathway in vitro.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Alcohol insult triggers complex events in the liver, promoting fibrogenic/inflammatory signals and in more advanced cases, aberrant matrix deposition. It is well accepted that the regenerative capacity of the adult liver is impaired during alcohol injury. The liver progenitor/stem cells have been shown to play an important role in liver regeneration -in response to various chronic injuries; however, the effects of alcohol on stem cell differentiation in the liver are not well understood.We employed hepatic progenitor cells derived from hESCs to study the impact of ethanol on hepatocyte differentiation by exposure of these progenitor cells to ethanol during hepatocyte differentiation.We found that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitor cells in a dose-dependent manner. There was also a moderate cell cycle arrest at G1/S checkpoint in the ethanol treated cells, which is associated with a reduced level of cyclin D1 in these cells. Ethanol treatment specifically inhibited the activation of the ERK but not JNK nor the p38 MAP signaling pathway. At the same time, the WNT signaling pathway was also reduced in the cells exposed to ethanol. Upon evaluating the effects of the inhibitors of these two signaling pathways, we determined that the Erk inhibitor replicated the effects of ethanol on the hepatocyte differentiation and attenuated the WNT/β-catenin signaling, however, inhibitors of WNT only partially replicated the effects of ethanol on the hepatocyte differentiation.Our results demonstrated that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitors through inhibiting the MAPK/ERK signaling pathway, and subsequently attenuating the WNT signaling pathway. Thus, our finding provides a novel insight into the mechanism by which alcohol regulates cell fate selection of hESC-derived hepatic progenitor cells, and the identified pathways may provide therapeutic targets

  6. Negative trends for in utero Chernobyl exposure and early childhood leukaemia in Western Germany

    International Nuclear Information System (INIS)

    Burkart, W.; Steiner, M.; Grosche, B.; Kaletsch, U.; Michaelis, J.

    1997-01-01

    A recent report in Nature linked increased incidence of early infant leukaemia in Greece with 137 Cs fallout density, attributing the effect to an increased in utero exposure to ionizing radiation from the Chernobyl accident. As a validation exercise in a similarly affected region, we performed an analysis based on the data of the Childhood Cancer Registry for Western Germany. Using the same definitions as Petridou et al. we also observed an increased incidence of infant leukaemia in a cohort of children who were born after the Chernobyl accident. More detailed analyses of embryonic/foetal doses regarding areas of different contamination levels and dose rate gradients with time since the accident showed non-significant negative trends with exposure. Therefore, we conclude that the observed effect was not caused by exposure to ionizing radiation due to the Chernobyl accident. Dosimetric considerations per se, based on careful assessment of in utero doses in three different exposure categories, show doses much too small relative to natural radiation exposures to account for a significant effect on leukaemia rates. (author)

  7. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    Directory of Open Access Journals (Sweden)

    Saito Koji

    2005-08-01

    Full Text Available Abstract Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1 is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS, in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1

  8. PGC-1-related coactivator (PRC) negatively regulates endothelial adhesion of monocytes via inhibition of NF κB activity

    Energy Technology Data Exchange (ETDEWEB)

    Chengye, Zhan; Daixing, Zhou, E-mail: dxzhou7246@hotmail.com; Qiang, Zhong; Shusheng, Li

    2013-09-13

    Highlights: •First time to display that LPS downregulate the expression of PRC. •First time to show that PRC inhibits the induction of VCAM-1 and E-selectin. •First time to show that PRC inhibit monocytes attachment to endothelial cells. •First time to display that PRC inhibits transcriptional activity of NF-κB. •PRC protects the respiration rate and suppresses the glycolysis rate against LPS. -- Abstract: PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate the attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation. The effects of PRC in regards to endothelial inflammation remain unknown. In this study, our findings show that PRC can be inhibited by the inflammatory cytokine LPS in cultured human umbilical vein endothelial cells (HUVECs). In the presence of LPS, the expression of endothelial cell adhesion molecular, such as VCAM1 and E-selectin, is found to be increased. These effects can be negated by overexpression of PRC. Importantly, monocyte adhesion to endothelial cells caused by LPS is significantly attenuated by PRC. In addition, overexpression of PRC protects mitochondrial metabolic function and suppresses the rate of glycolysis against LPS. It is also found that overexpression of PRC decreases the transcriptional activity of NF-κB. These findings suggest that PRC is a negative regulator of endothelial inflammation.

  9. Peak negative myocardial velocity gradient in early diastole as a noninvasive indicator of left ventricular diastolic function: comparison with transmitral flow velocity indices.

    Science.gov (United States)

    Shimizu, Y; Uematsu, M; Shimizu, H; Nakamura, K; Yamagishi, M; Miyatake, K

    1998-11-01

    We sought to assess the clinical significance of peak negative myocardial velocity gradient (MVG) in early diastole as a noninvasive indicator of left ventricular (LV) diastolic function. Peak systolic MVG has been shown useful for the quantitative assessment of regional wall motion abnormalities, but limited data exist regarding the diastolic MVG as an indicator of LV diastolic function. Peak negative MVG was obtained from M-mode tissue Doppler imaging (TDI) in 43 subjects with or without impairment of systolic and diastolic performance: 12 normal subjects, 12 patients with hypertensive heart disease (HHD) with normal systolic performance and 19 patients with dilated cardiomyopathy (DCM), and was compared with standard Doppler transmitral flow velocity indices. In a subgroup of 30 patients, effects of preload increase on these indices were assessed by performing passive leg lifting. In an additional 11 patients with congestive heart failure at the initial examination, the measurements were repeated after 26+/-16 days of volume-reducing therapy. Peak negative MVG was significantly depressed both in HHD (-3.9+/-1.3/s, p indices failed to distinguish DCM from normal due to the pseudonormalization. Transmitral flow velocity indices were significantly altered (peak early/late diastolic filling velocity [E/A]=1.1+/-0.5 to 1.5+/-0.7, p indicator of LV diastolic function that is less affected by preload alterations than the transmitral flow velocity indices, and thereby could be used for the follow-up of patients with nonischemic LV dysfunction presenting congestive heart failure.

  10. Diacylglycerol kinase zeta negatively regulates CXCR4-stimulated T lymphocyte firm arrest to ICAM-1 under shear flow.

    Science.gov (United States)

    Lee, Dooyoung; Kim, Jiyeon; Beste, Michael T; Koretzky, Gary A; Hammer, Daniel A

    2012-06-01

    T lymphocyte arrest within microvasculature is an essential process in immune surveillance and the adaptive immune response. Integrins and chemokines coordinately regulate when and where T cells stop under flow via chemokine-triggered inside-out activation of integrins. Diacylglycerol kinases (DGKs) regulate the levels of diacylglycerol (DAG) which in turn determine the activation of guanine nucleotide exchange factors (GEFs) and Ras proximity 1 (Rap1) molecules crucial to the activation of integrin lymphocyte function-associated antigen 1 (LFA-1). However, how the level of DGK regulates chemokine-stimulated LFA-1-mediated T cell arrest under flow is unknown. Using a combination of experiment and computational modeling, we demonstrate that DGKζ is a crucial regulator of CXCL12-triggered T cell arrest on surfaces presenting inter-cellular adhesion molecule 1 (ICAM-1). Using flow chamber assays, we found that the deficiency of DGKζ in T cells significantly increased firm arrest to ICAM-1-coated substrates and shortened the time to stop without altering the rolling velocity. These results suggest that DGKζ levels affect LFA-1-mediated T cell firm arrest, but not P-selectin-mediated rolling during CXCL12 stimulation. We accurately simulated the role of DGKζ in firm arrest of T cells computationally using an Integrated-Signaling Adhesive Dynamics (ISAD). In the absence of DGK catalytic reaction, the model cells rolled for a significantly shorter time before arrest, compared to when DGK molecules were present. Predictions of our model for T cell arrest quantitatively match experimental results. Overall these results demonstrate that DGKζ is a negative regulator of CXCL12-triggered inside-out activation of LFA-1 and firm adhesion of T cells under shear flow.

  11. PRKCI negatively regulates autophagy via PIK3CA/AKT–MTOR signaling

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Liujing; Li, Ge; Xia, Dan; Hongdu, Beiqi; Xu, Chentong; Lin, Xin [Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Beijing (China); Peking University Center for Human Disease Genomics, Peking University, Beijing (China); Chen, Yingyu, E-mail: yingyu_chen@bjmu.edu.cn [Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Beijing (China); Peking University Center for Human Disease Genomics, Peking University, Beijing (China)

    2016-02-05

    The atypical protein kinase C isoform PRKC iota (PRKCI) plays a key role in cell proliferation, differentiation, and carcinogenesis, and it has been shown to be a human oncogene. Here, we show that PRKCI overexpression in U2OS cells impaired functional autophagy in normal or cell stress conditions, as characterized by decreased levels of light chain 3B-II protein (LC3B-II) and weakened degradation of endogenous and exogenous autophagic substrates. Conversely, PRKCI knockdown by small interference RNA resulted in opposite effects. Additionally, we identified two novel PRKCI mutants, PRKCI{sup L485M} and PRKCI{sup P560R}, which induced autophagy and exhibited dominant negative effects. Further studies indicated that PRKCI knockdown–mediated autophagy was associated with the inactivation of phosphatidylinositol 3-kinase alpha/AKT–mammalian target of rapamycin (PIK3CA/AKT–MTOR) signaling. These data underscore the importance of PRKCI in the regulation of autophagy. Moreover, the finding may be useful in treating PRKCI-overexpressing carcinomas that are characterized by increased levels of autophagy. - Highlights: • The atypical protein kinase C iota isoform (PRKCI) is a human oncogene. • PRKCI overexpression impairs functional autophagy in U2OS cells. • It reduces LC3B-II levels and weakens SQSTM1 and polyQ80 aggregate degradation. • PRKCI knockdown has the opposite effect. • The effect of PRKCI knockdown is related to PIK3CA/AKT–MTOR signaling inactivation.

  12. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    International Nuclear Information System (INIS)

    Zhai, Hong; Bai, Xi; Zhu, Yanming; Li, Yong; Cai, Hua; Ji, Wei; Ji, Zuojun; Liu, Xiaofei; Liu, Xin; Li, Jing

    2010-01-01

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not altered in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven β-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.

  13. Early intervention for relapse in schizophrenia: impact of cognitive behavioural therapy on negative beliefs about psychosis and self-esteem.

    Science.gov (United States)

    Gumley, Andrew; Karatzias, Athanasios; Power, Kevin; Reilly, James; McNay, Lisa; O'Grady, Margaret

    2006-06-01

    The study aimed to test two hypotheses. Firstly, that participants who relapsed during the 12-month follow-up period of our randomized controlled trial, would show increased negative beliefs about their illness and reduced self-esteem, in comparison to the non-relapsed participants. Secondly, that cognitive behavioural therapy (CBT) for early signs of relapse would result in a reduction in negative beliefs about psychosis and an improvement in self-esteem at 12 months. A total of 144 participants with schizophrenia or a related disorder were randomized to receive either treatment as usual (TAU; N=72) or CBT (N=72). Participants completed the Personal Beliefs about Illness Questionnaire (PBIQ; Birchwood, Mason, MacMillan, & Healy, 1993) and the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965) at entry, 3 months, 6 months, and 12 months. At 12 months, relapsers showed greater increase in scores for PBIQ entrapment compared with non-relapsers. In addition, after controlling for baseline covariates (treatment group and PBIQ self versus illness), relapsers also showed greater increase in scores for PBIQ self versus illness at 12 months. Furthermore, in comparison to treatment as usual, participants who received CBT showed greater improvement in PBIQ loss and in Rosenberg self-esteem. The study provides evidence that relapse is associated with the development of negative appraisals of entrapment and self-blame (self vs. illness). In addition, this is the first study to show that CBT reduces negative appraisals of loss arising from psychosis and improvements in self-esteem. Implications for future research and treatment are discussed.

  14. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew.

    Science.gov (United States)

    Liu, Jie; Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-03-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.

    Science.gov (United States)

    Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna

    2011-02-04

    SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.

  16. Negative Effects of Antimonopoly Regulation on the Russian Electric Power Industry

    Directory of Open Access Journals (Sweden)

    Elena NEPRINTSEVA

    2017-07-01

    Full Text Available With the antimonopoly regulation in the domestic economy getting more stringent an analysis of the current measures of antimonopoly regulation in terms of their efficiency is now becoming ever more relevant. The aim of the study - analyze how the measures of antimonopoly regulation affect competitive relationships in the electric power industry. The following methods have been used in this work: empirical method, cause-effect method and scientific abstraction method. The article sets out an analysis of the antimonopoly regulation measures that the antimonopoly authority applies. It also provides an assessment of consequences that follow from such methods being applied for the promotion of competitive relationships on the market of electric power and capacity. A conclusion has been reached that the antimonopoly regulation measures being applied impede the progress of competitive relationships on the market of electric power and capacity. The continuing process of reformation in electric power industry aims to liberalize relationships in the area of electric power production. Yet, as a result of this process, generating capacities are becoming increasingly more concentrated mainly around state companies. This is mainly caused by the lack of certainty regarding the results of the industry reformation and a more stringent state regulation over the last years of the reforms. At the same time, for the purposes of limiting the market force, measures of antimonopoly regulation are being applied to generating companies. Such measures have an adverse effect on competitive relationships and stimulate further concentration.

  17. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    Energy Technology Data Exchange (ETDEWEB)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Makboul, Rania [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Pathology Department, Assiut University, Assiut (Egypt); Chadalawada, Gita; Chen, Ying [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Crawford, Susan E. [Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd, Saint Louis, MO 63104 (United States); Savkovic, Suzana D., E-mail: ssavkovi@tulane.edu [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States)

    2016-01-15

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  18. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    International Nuclear Information System (INIS)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe; Makboul, Rania; Chadalawada, Gita; Chen, Ying; Crawford, Susan E.; Savkovic, Suzana D.

    2016-01-01

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  19. TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING.

    Directory of Open Access Journals (Sweden)

    Yanming Wang

    2015-06-01

    Full Text Available Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α was induced by herpes simplex virus type 1 (HSV-1 infection in dendritic cells (DCs. Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING, which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING.

  20. bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses.

    Directory of Open Access Journals (Sweden)

    Sandra Fonseca

    Full Text Available Cell reprogramming in response to jasmonates requires a tight control of transcription that is achieved by the activity of JA-related transcription factors (TFs. Among them, MYC2, MYC3 and MYC4 have been described as activators of JA responses. Here we characterized the function of bHLH003, bHLH013 and bHLH017 that conform a phylogenetic clade closely related to MYC2, MYC3 and MYC4. We found that these bHLHs form homo- and heterodimers and also interact with JAZ repressors in vitro and in vivo. Phenotypic analysis of JA-regulated processes, including root and rosette growth, anthocyanin accumulation, chlorophyll loss and resistance to Pseudomonas syringae, on mutants and overexpression lines, suggested that these bHLHs are repressors of JA responses. bHLH003, bHLH013 and bHLH017 are mainly nuclear proteins and bind DNA with similar specificity to that of MYC2, MYC3 and MYC4, but lack a conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Moreover, expression of bHLH017 is induced by JA and depends on MYC2, suggesting a negative feed-back regulation of the activity of positive JA-related TFs. Our results suggest that the competition between positive and negative TFs determines the output of JA-dependent transcriptional activation.

  1. BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana.

    Science.gov (United States)

    Hindt, Maria N; Akmakjian, Garo Z; Pivarski, Kara L; Punshon, Tracy; Baxter, Ivan; Salt, David E; Guerinot, Mary Lou

    2017-07-19

    Iron (Fe) is required for plant health, but it can also be toxic when present in excess. Therefore, Fe levels must be tightly controlled. The Arabidopsis thaliana E3 ligase BRUTUS (BTS) is involved in the negative regulation of the Fe deficiency response and we show here that the two A. thaliana BTS paralogs, BTS LIKE1 (BTSL1) and BTS LIKE2 (BTSL2) encode proteins that act redundantly as negative regulators of the Fe deficiency response. Loss of both of these E3 ligases enhances tolerance to Fe deficiency. We further generated a triple mutant with loss of both BTS paralogs and a partial loss of BTS expression that exhibits even greater tolerance to Fe-deficient conditions and increased Fe accumulation without any resulting Fe toxicity effects. Finally, we identified a mutant carrying a novel missense mutation of BTS that exhibits an Fe deficiency response in the root when grown under both Fe-deficient and Fe-sufficient conditions, leading to Fe toxicity when plants are grown under Fe-sufficient conditions.

  2. fundTPL-2 – ERK1/2 Signaling Promotes Host Resistance against Intracellular Bacterial Infection by Negative Regulation of Type I Interferon Production3

    Science.gov (United States)

    McNab, Finlay W.; Ewbank, John; Rajsbaum, Ricardo; Stavropoulos, Evangelos; Martirosyan, Anna; Redford, Paul S.; Wu, Xuemei; Graham, Christine M.; Saraiva, Margarida; Tsichlis, Philip; Chaussabel, Damien; Ley, Steven C.; O’Garra, Anne

    2013-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of mortality and morbidity worldwide, causing approximately 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1 and TNF-α, as well as IFN-γ and CD4+ Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I interferon have been linked to exacerbated disease during tuberculosis in mouse models and to active disease in patients, suggesting tight regulation of this family of cytokines is critical to host resistance. In addition, the immunosuppressive cytokine IL-10 is known to inhibit the immune response to Mtb in murine models through the negative regulation of key pro-inflammatory cytokines and the subsequent Th1 response. We show here, using a combination of transcriptomic analysis, genetics and pharmacological inhibitors that the TPL-2-ERK1/2 signaling pathway is important in mediating host resistance to tuberculosis through negative regulation of type I interferon production. The TPL-2-ERK1/2 signalling pathway regulated production by macrophages of several cytokines important in the immune response to Mtb as well as regulating induction of a large number of additional genes, many in a type I IFN dependent manner. In the absence of TPL-2 in vivo, excess type I interferon promoted IL-10 production and exacerbated disease. These findings describe an important regulatory mechanism for controlling tuberculosis and reveal mechanisms by which type I interferon may promote susceptibility to this important disease. PMID:23842752

  3. The impact of early powered mobility on parental stress, negative emotions, and family social interactions.

    Science.gov (United States)

    Tefft, Donita; Guerette, Paula; Furumasu, Jan

    2011-02-01

    Powered mobility has been found to have positive effects on young children with severe physical disabilities, but the impact on the family has been less well documented. We evaluated the impact of early powered mobility on parental stress, negative emotions, perceived social interactions, and parental satisfaction with wheelchair characteristics such as size and durability. The participants were parents of 23 children with disabilities-10 with orthopedic disabilities (average age 30.1 months) and 13 with cerebral palsy (average age 47.0 months). Pretest assessments were completed two times: at initial wheelchair evaluation and at wheelchair delivery. A posttest assessment was completed after each child had used the wheelchair for 4-6 months. Parents reported a lower perceived level of stress at the time of wheelchair delivery, although the magnitude of this effect was fairly small, standardized mean difference (δ) = .27. They also reported an increased satisfaction with their child's social and play skills (δ = .38), ability to go where desired (δ = .86), sleep/wake pattern (δ = .61), and belief that the general public accepts their child (δ = .39) after several months using the wheelchair. Parents reported an increase in interactions within the family at the time of wheelchair delivery (δ = .66). There was no decrease in negative emotions. Parents were satisfied with most factors relating to the wheelchair itself, with areas of concern being wheelchair size and difficulty adjusting the wheelchair. The findings suggest that self-initiated powered mobility for a young child had a positive impact on the family.

  4. When mothering goes awry: Challenges and opportunities for utilizing evidence across rodent, nonhuman primate and human studies to better define the biological consequences of negative early caregiving.

    Science.gov (United States)

    Drury, Stacy S; Sánchez, Mar M; Gonzalez, Andrea

    2016-01-01

    This article is part of a Special Issue "Parental Care".Across mammalian species, mothers shape socio-emotional development and serve as essential external regulators of infant physiology, brain development, behavior patterns, and emotional regulation. Caregiving quality, consistency and predictability shape the infant's underlying neurobiological processes. Although the requirements for "optimal" caregiving differ across species, the negative long-term consequences of the absence of needed caregiving (e.g. neglect) or the presence of harmful/aversive caregiving (e.g. physical abuse), are translatable across species. Recognizing the significant potential of cross species comparisons in terms of defining underlying mechanisms, effective translation requires consideration of the evolutionary, ecological, and fundamental biological and developmental differences between and among species. This review provides both an overview of several success stories of cross-species translations in relation to negative caregiving and a template for future studies seeking to most effectively define the underlying biological processes and advance research dedicated to mitigating the lasting negative health consequences of child maltreatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Loss of PTB or negative regulation of Notch mRNA reveals distinct zones of Notch and actin protein accumulation in Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Cedric S Wesley

    Full Text Available Polypyrimidine Tract Binding (PTB protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1 the Notch mRNA is a potential target of PTB, (2 PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3 the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions.

  6. Loss of PTB or Negative Regulation of Notch mRNA Reveals Distinct Zones of Notch and Actin Protein Accumulation in Drosophila Embryo

    Science.gov (United States)

    Wesley, Cedric S.; Guo, Heng; Chaudhry, Kanita A.; Thali, Markus J.; Yin, Jerry C.; Clason, Todd; Wesley, Umadevi V.

    2011-01-01

    Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions. PMID:21750738

  7. Guide to a Strategic Procurement Planning Approach on Regulated Commodity Markets

    Science.gov (United States)

    Seifert, Marcus; Wüst, Thorsten

    The access of Virtual Organizations to raw materials normally requires external resources. In many cases, the market for raw materials is regulated and the VO principles of trust, customer orientation etc. are not applicable. In consequence, the VO needs to provide reliable solutions for the customer while being dependent on the access to the required raw materials. The objective of the proposed paper is to present a guide to a strategic procurement planning for the manufacturing industry on regulated commodity markets. This guide can be used to evaluate specific sourcing options. The main goal of this guide is to identify the negative effects of market regulation at an early stage and reduce them by developing strategic alternatives. The successful application of this guide is demonstrated by the practical example of the refractory industry and one of their commodities, refractory grade bauxite.

  8. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  9. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    International Nuclear Information System (INIS)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-01-01

    Highlights: • LPA 5 inhibits the cell growth and motile activities of 3T3 cells. • LPA 5 suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA 5 on the cell motile activities inhibited by LPA 1 in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA 5 in 3T3 cells. • LPA signaling via LPA 5 acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA 1 –LPA 6 ) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA 1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA 5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA 1 and LPA 5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA 5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA 1

  10. Wise regulates bone deposition through genetic interactions with Lrp5.

    Science.gov (United States)

    Ellies, Debra L; Economou, Androulla; Viviano, Beth; Rey, Jean-Philippe; Paine-Saunders, Stephenie; Krumlauf, Robb; Saunders, Scott

    2014-01-01

    In this study using genetic approaches in mouse we demonstrate that the secreted protein Wise plays essential roles in regulating early bone formation through its ability to modulate Wnt signaling via interactions with the Lrp5 co-receptor. In Wise-/- mutant mice we find an increase in the rate of osteoblast proliferation and a transient increase in bone mineral density. This change in proliferation is dependent upon Lrp5, as Wise;Lrp5 double mutants have normal bone mass. This suggests that Wise serves as a negative modulator of Wnt signaling in active osteoblasts. Wise and the closely related protein Sclerostin (Sost) are expressed in osteoblast cells during temporally distinct early and late phases in a manner consistent with the temporal onset of their respective increased bone density phenotypes. These data suggest that Wise and Sost may have common roles in regulating bone development through their ability to control the balance of Wnt signaling. We find that Wise is also required to potentiate proliferation in chondrocytes, serving as a potential positive modulator of Wnt activity. Our analyses demonstrate that Wise plays a key role in processes that control the number of osteoblasts and chondrocytes during bone homeostasis and provide important insight into mechanisms regulating the Wnt pathway during skeletal development.

  11. Effects of early maternal distress and parenting on the development of children's self-regulation and externalizing behavior.

    Science.gov (United States)

    Choe, Daniel Ewon; Olson, Sheryl L; Sameroff, Arnold J

    2013-05-01

    Emotional distress experienced by mothers increases young children's risk of externalizing problems through suboptimal parenting and child self-regulation. An integrative structural equation model tested hypotheses that mothers' parenting (i.e., low levels of inductive discipline and maternal warmth) would mediate adverse effects of early maternal distress on child effortful control, which in turn would mediate effects of maternal parenting on child externalizing behavior. This longitudinal study spanning ages 3, 6, and 10 included 241 children, mothers, and a subset of teachers. The hypothesized model was partially supported. Elevated maternal distress was associated with less inductive discipline and maternal warmth, which in turn were associated with less effortful control at age 3 but not at age 6. Inductive discipline and maternal warmth mediated adverse effects of maternal distress on children's effortful control. Less effortful control at ages 3 and 6 predicted smaller relative decreases in externalizing behavior at 6 and 10, respectively. Effortful control mediated effects of inductive discipline, but not maternal warmth, on externalizing behavior. Findings suggest elevated maternal distress increases children's risk of externalizing problems by compromising early parenting and child self-regulation.

  12. NFIL3 is a negative regulator of hepatic gluconeogenesis.

    Science.gov (United States)

    Kang, Geon; Han, Hye-Sook; Koo, Seung-Hoi

    2017-12-01

    Nuclear factor interleukin-3 regulated (NFIL3) has been known as an important transcriptional regulator of the development and the differentiation of immune cells. Although expression of NFIL3 is regulated by nutritional cues in the liver, the role of NFIL3 in the glucose metabolism has not been extensively studied. Thus, we wanted to explore the potential role of NFIL3 in the control of hepatic glucose metabolism. Mouse primary hepatocytes were cultured to perform western blot analysis, Q-PCR and chromatin immunoprecipitation assay. 293T cells were cultured to perform luciferase assay. Male C57BL/6 mice (fed a normal chow diet or high fat diet for 27weeks) as well as ob/ob mice were used for experiments with adenoviral delivery. We observed that NFIL3 reduced glucose production in hepatocytes by reducing expression of gluconeogenic gene transcription. The repression by NFIL3 required its basic leucine zipper DNA binding domain, and it competed with CREB onto the binding of cAMP response element in the gluconeogenic promoters. The protein levels of hepatic NFIL3 were decreased in the mouse models of genetic- and diet-induced obesity and insulin resistance, and ectopic expression of NFIL3 in the livers of insulin resistant mice ameliorated hyperglycemia and glucose intolerance, with concomitant reduction in expression of hepatic gluconeogenic genes. Finally, we witnessed that knockdown of NFIL3 in the livers of normal chow-fed mice promoted elevations in the glucose levels and expression of hepatic gluconeogenic genes. In this study, we showed that NFIL3 functions as an important regulator of glucose homeostasis in the liver by limiting CREB-mediated hepatic gluconeogenesis. Thus, enhancement of hepatic NFIL3 activity in insulin resistant state could be potentially beneficial in relieving glycemic symptoms in the metabolic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Androgen Receptor Expression in Early Triple-Negative Breast Cancer: Clinical Significance and Prognostic Associations

    Energy Technology Data Exchange (ETDEWEB)

    Pistelli, Mirco, E-mail: mirco.pistelli@alice.it; Caramanti, Miriam [Clinica di Oncologia Medica, AO Ospedali Riuniti-Ancona, Università Politecnica delle Marche, Ancona 60020 (Italy); Biscotti, Tommasina; Santinelli, Alfredo [Anatomia Patologica, AO Ospedali Riuniti-Ancona, Università Politecnica delle Marche, Ancona 60020 (Italy); Pagliacci, Alessandra; De Lisa, Mariagrazia; Ballatore, Zelmira; Ridolfi, Francesca; Maccaroni, Elena; Bracci, Raffaella; Berardi, Rossana; Battelli, Nicola; Cascinu, Stefano [Clinica di Oncologia Medica, AO Ospedali Riuniti-Ancona, Università Politecnica delle Marche, Ancona 60020 (Italy)

    2014-06-27

    Background: Triple-negative breast cancers (TNBC) are characterized by aggressive tumour biology resulting in a poor prognosis. Androgen receptor (AR) is one of newly emerging biomarker in TNBC. In recent years, ARs have been demonstrated to play an important role in the genesis and in the development of breast cancer, although their prognostic role is still debated. In the present study, we explored the correlation of AR expression with clinical, pathological and molecular features and its impact on prognosis in early TNBC. Patients and Methods: ARs were considered positive in case of tumors with >10% nuclear-stained. Survival distribution was estimated by the Kaplan Meier method. The univariate and multivariate analyses were performed. The difference among variables were calculated by chi-square test. Results: 81 TNBC patients diagnosed between January 2006 and December 2011 were included in the analysis. Slides were stained immunohistochemically for estrogen and progesterone receptors, HER-2, Ki-67, ALDH1, e-cadherin and AR. Of the 81 TNBC samples, 18.8% showed positive immunostaining for AR, 23.5% and 44.4% of patients were negative for e-cadherin and ALDH1, respectively. Positive AR immunostaining was inversely correlated with a higher Ki-67 (p < 0.0001) and a lympho-vascular invasion (p = 0.01), but no other variables. Univariate survival analysis revealed that AR expression was not associated with disease-free survival (p = 0.72) or overall survival (p = 0.93). Conclusions: The expression of AR is associated with some biological features of TNBC, such as Ki-67 and lympho-vascular invasion; nevertheless the prognostic significance of AR was not documented in our analysis. However, since ARs are expressed in a significant number of TNBC, prospective studies in order to determine the biological mechanisms and their potential role as novel treatment target.

  14. Androgen Receptor Expression in Early Triple-Negative Breast Cancer: Clinical Significance and Prognostic Associations

    Directory of Open Access Journals (Sweden)

    Mirco Pistelli

    2014-06-01

    Full Text Available Background: Triple-negative breast cancers (TNBC are characterized by aggressive tumour biology resulting in a poor prognosis. Androgen receptor (AR is one of newly emerging biomarker in TNBC. In recent years, ARs have been demonstrated to play an important role in the genesis and in the development of breast cancer, although their prognostic role is still debated. In the present study, we explored the correlation of AR expression with clinical, pathological and molecular features and its impact on prognosis in early TNBC. Patients and Methods: ARs were considered positive in case of tumors with >10% nuclear-stained. Survival distribution was estimated by the Kaplan Meier method. The univariate and multivariate analyses were performed. The difference among variables were calculated by chi-square test. Results: 81 TNBC patients diagnosed between January 2006 and December 2011 were included in the analysis. Slides were stained immunohistochemically for estrogen and progesterone receptors, HER-2, Ki-67, ALDH1, e-cadherin and AR. Of the 81 TNBC samples, 18.8% showed positive immunostaining for AR, 23.5% and 44.4% of patients were negative for e-cadherin and ALDH1, respectively. Positive AR immunostaining was inversely correlated with a higher Ki-67 (p < 0.0001 and a lympho-vascular invasion (p = 0.01, but no other variables. Univariate survival analysis revealed that AR expression was not associated with disease-free survival (p = 0.72 or overall survival (p = 0.93. Conclusions: The expression of AR is associated with some biological features of TNBC, such as Ki-67 and lympho-vascular invasion; nevertheless the prognostic significance of AR was not documented in our analysis. However, since ARs are expressed in a significant number of TNBC, prospective studies in order to determine the biological mechanisms and their potential role as novel treatment target.

  15. Androgen Receptor Expression in Early Triple-Negative Breast Cancer: Clinical Significance and Prognostic Associations

    International Nuclear Information System (INIS)

    Pistelli, Mirco; Caramanti, Miriam; Biscotti, Tommasina; Santinelli, Alfredo; Pagliacci, Alessandra; De Lisa, Mariagrazia; Ballatore, Zelmira; Ridolfi, Francesca; Maccaroni, Elena; Bracci, Raffaella; Berardi, Rossana; Battelli, Nicola; Cascinu, Stefano

    2014-01-01

    Background: Triple-negative breast cancers (TNBC) are characterized by aggressive tumour biology resulting in a poor prognosis. Androgen receptor (AR) is one of newly emerging biomarker in TNBC. In recent years, ARs have been demonstrated to play an important role in the genesis and in the development of breast cancer, although their prognostic role is still debated. In the present study, we explored the correlation of AR expression with clinical, pathological and molecular features and its impact on prognosis in early TNBC. Patients and Methods: ARs were considered positive in case of tumors with >10% nuclear-stained. Survival distribution was estimated by the Kaplan Meier method. The univariate and multivariate analyses were performed. The difference among variables were calculated by chi-square test. Results: 81 TNBC patients diagnosed between January 2006 and December 2011 were included in the analysis. Slides were stained immunohistochemically for estrogen and progesterone receptors, HER-2, Ki-67, ALDH1, e-cadherin and AR. Of the 81 TNBC samples, 18.8% showed positive immunostaining for AR, 23.5% and 44.4% of patients were negative for e-cadherin and ALDH1, respectively. Positive AR immunostaining was inversely correlated with a higher Ki-67 (p < 0.0001) and a lympho-vascular invasion (p = 0.01), but no other variables. Univariate survival analysis revealed that AR expression was not associated with disease-free survival (p = 0.72) or overall survival (p = 0.93). Conclusions: The expression of AR is associated with some biological features of TNBC, such as Ki-67 and lympho-vascular invasion; nevertheless the prognostic significance of AR was not documented in our analysis. However, since ARs are expressed in a significant number of TNBC, prospective studies in order to determine the biological mechanisms and their potential role as novel treatment target

  16. Cross-Lagged Associations Between Adolescents' Depressive Symptoms and Negative Cognitive Style: The Role of Negative Life Events.

    Science.gov (United States)

    Kindt, Karlijn C M; Kleinjan, Marloes; Janssens, Jan M A M; Scholte, Ron H J

    2015-11-01

    Previous research has established that cognitive theory-based depression prevention programs aiming change in negative cognitive style in early adolescents do not have strong effects in universal settings. Although theories suggest that a negative cognitive style precedes depressive symptoms, empirical findings are mixed. We hypothesized that negative cognitive style may not predict depressive symptoms in adolescents with normative depressive symptoms. Depressive symptoms, negative cognitive style and dependent negative life events were assessed in young adolescents (N = 1343; mean age = 13.4 years, SD = 0.77; 52.3 % girls) at four time points over an 18-month period. Using a cross-lagged panel design, results revealed that depressive symptoms predicted a negative cognitive style but not vice versa. However, when including dependent negative life events as a variable, depressive symptoms did not prospect a negative cognitive style consistently. When dependent negative life events were used as a time-varying covariate, depressive symptoms and a negative cognitive style were not related. We concluded that negative cognitive style is not predictive of depressive symptoms in a community sample of young adolescents. Moreover, the findings suggest that longitudinal relationships between depressive symptoms and a negative cognitive style are not meaningful when dependent negative life events are not considered.

  17. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development.

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    Full Text Available Endocardial to mesenchymal transformation (EMT is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1 show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.

  18. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    Science.gov (United States)

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. fNIRS evidence of prefrontal regulation of frustration in early childhood.

    Science.gov (United States)

    Perlman, Susan B; Luna, Beatriz; Hein, Tyler C; Huppert, Theodore J

    2014-01-15

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3-5-year-old children, who are not readily adaptable for typical neuroimaging approaches, using functional near infrared spectroscopy (fNIRS). fNIRS of frontal regions were measured as frustration was induced in children through a computer game where a desired and expected prize was "stolen" by an animated dog. A fNIRS general linear model (GLM) was used to quantify the correlation of brain regions with the task and identify areas that were statistically different between the winning and frustrating test conditions. A second-level voxel-based ANOVA analysis was then used to correlate the amplitude of each individual's brain activation with measure of parent-reported frustration. Experimental results indicated increased activity in the middle prefrontal cortex during winning of a desired prize, while lateral prefrontal cortex activity increased during frustration. Further, activity increase in lateral prefrontal cortex during frustration correlated positively with parent-reported frustration tolerance. These findings point to the role of the lateral prefrontal cortex as a potential region supporting the regulation of emotion during frustration. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.

    Science.gov (United States)

    Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping

    2015-07-01

    Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors

    Science.gov (United States)

    Kim, So Yoon; Rane, Sushil G.

    2011-01-01

    Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1+ pancreatic progenitor cells. Expression of activated Cdk4R24C kinase leads to increased Nkx2.2+ and Nkx6.1+ cells and a rise in the number and proliferation of Ngn3+ endocrine precursors, resulting in expansion of the β cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes β cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors. PMID:21490060

  2. Interaction of the receptor FGFRL1 with the negative regulator Spred1.

    Science.gov (United States)

    Zhuang, Lei; Villiger, Peter; Trueb, Beat

    2011-09-01

    FGFRL1 is a member of the fibroblast growth factor receptor family. It plays an essential role during branching morphogenesis of the metanephric kidneys, as mice with a targeted deletion of the Fgfrl1 gene show severe kidney dysplasia. Here we used the yeast two-hybrid system to demonstrate that FGFRL1 binds with its C-terminal, histidine-rich domain to Spred1 and to other proteins of the Sprouty/Spred family. Members of this family are known to act as negative regulators of the Ras/Raf/Erk signaling pathway. Truncation experiments further showed that FGFRL1 interacts with the SPR domain of Spred1, a domain that is shared by all members of the Sprouty/Spred family. The interaction could be verified by coprecipitation of the interaction partners from solution and by codistribution at the cell membrane of COS1 and HEK293 cells. Interestingly, Spred1 increased the retention time of FGFRL1 at the plasma membrane where the receptor might interact with ligands. FGFRL1 and members of the Sprouty/Spred family belong to the FGF synexpression group, which also includes FGF3, FGF8, Sef and Isthmin. It is conceivable that FGFRL1, Sef and some Sprouty/Spred proteins work in concert to control growth factor signaling during branching morphogenesis of the kidneys and other organs. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses.

    Science.gov (United States)

    Moriyama, Saya; Brestoff, Jonathan R; Flamar, Anne-Laure; Moeller, Jesper B; Klose, Christoph S N; Rankin, Lucille C; Yudanin, Naomi A; Monticelli, Laurel A; Putzel, Gregory Garbès; Rodewald, Hans-Reimer; Artis, David

    2018-03-02

    The type 2 inflammatory response is induced by various environmental and infectious stimuli. Although recent studies identified group 2 innate lymphoid cells (ILC2s) as potent sources of type 2 cytokines, the molecular pathways controlling ILC2 responses are incompletely defined. Here we demonstrate that murine ILC2s express the β 2 -adrenergic receptor (β 2 AR) and colocalize with adrenergic neurons in the intestine. β 2 AR deficiency resulted in exaggerated ILC2 responses and type 2 inflammation in intestinal and lung tissues. Conversely, β 2 AR agonist treatment was associated with impaired ILC2 responses and reduced inflammation in vivo. Mechanistically, we demonstrate that the β 2 AR pathway is a cell-intrinsic negative regulator of ILC2 responses through inhibition of cell proliferation and effector function. Collectively, these data provide the first evidence of a neuronal-derived regulatory circuit that limits ILC2-dependent type 2 inflammation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Tn5-induced pBS286 plasmid mutations blocking early stages of napthalene oxidation

    International Nuclear Information System (INIS)

    Kosheleva, I.A.; Tsoi, T.V.; Ivashina, T.V.; Selifonov, S.A.; Starovoitov, I.I.; Boronin, A.M.

    1988-01-01

    The authors present data on the further analysis of the structural and functional organization of the nah region of plasmid pBS286 controlling the constitutive oxidation of naphthalene by Pseudomonas putida cells. They have studied Tn5-induced mutations blocking early stages of naphthalene oxidation. They present and discuss data providing evidence that, in contrast to plasmid NAH7, the mechanism of regulation of the nahl operon of plasmid NPL-1, the parent plasmid of plasmid pBS286, with inducible synthesis of naphthalene dioxygenase can include elements of a negative control with participation of the regulatory locus R, located proximal to the structural nah genes and closely linked to or overlapped by the inverted control DNA segment (4.2 kb). They also present data on the possibility of regulation of the activity of the catechol-splitting meta-pathway genes with the participation of products of early stages of naphthalene oxidation

  5. Pedagogical Work, Stress Regulation and Work-Related Well-Being among Early Childhood Professionals in Integrated Special Day-Care Groups

    Science.gov (United States)

    Nislin, Mari A.; Sajaniemi, Nina K.; Sims, Margaret; Suhonen, Eira; Maldonado Montero, Enrique F.; Hirvonen, Ari; Hyttinen, Sirpa

    2016-01-01

    The aim of this study was to investigate the relationship between early childhood professionals' (ECPs) stress regulation (using salivary cortisol and alpha-amylase [AA] measurements), work engagement and the quality of their pedagogical work in integrated special day-care groups. Participants were 89 ECPs from 21 integrated special day-care…

  6. Mammary gland-specific nuclear factor activity is positively regulated by lactogenic hormones and negatively by milk stasis.

    Science.gov (United States)

    Schmitt-Ney, M; Happ, B; Hofer, P; Hynes, N E; Groner, B

    1992-12-01

    The mammary gland-specific nuclear factor (MGF) is a crucial contributor to the regulation of transcription from the beta-casein gene promoter. The beta-casein gene encodes a major milk protein, which is expressed in mammary epithelial cells during lactation and can be induced by lactogenic hormones in the clonal mammary epithelial cell line HC11. We have investigated the specific DNA-binding activity of MGF in mammary epithelial cells in vivo and in vitro. Comparison of MGF in HC11 cells and mammary gland cells from lactating mice revealed molecules with identical DNA-binding properties. Bandshift and UV cross-linking experiments indicated that MGF in HC11 cells has a higher mol wt than MGF found in mice. Little MGF activity was detected in nuclear extracts from HC11 cells cultured in the absence of lactogenic hormones. Lactogenic hormone treatment of HC11 cells led to a strong induction of MGF activity. The induction of MGF activity as well as utilization of the beta-casein promoter were suppressed when epidermal growth factor was present in the tissue culture medium simultaneously with the lactogenic hormones. In lactating animals, MGF activity is regulated by suckling, milk stasis, and systemic hormone signals. The mammary glands from maximally lactating animals, 16 days postpartum, contain drastically reduced MGF activity after removal of the pups for only 8 h. The down-regulation of MGF by pup withdrawal was slower in early lactation, 6 days postpartum. We also investigated the relative contributions of local signals, generated by milk stasis, and systemic hormone signals to the regulation of MGF activity. The access to one row of mammary glands of lactating mothers was denied to the pups for 24 h. High levels of MGF were found in the accessible mammary glands, and intermediate levels of MGF were found in the inaccessible glands of the same mouse. Very low MGF levels were detected when the pups were removed from the dams for 24 h. We conclude that systemic as

  7. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew1

    Science.gov (United States)

    Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-01-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. PMID:26813794

  8. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    Science.gov (United States)

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides

  9. Up-Regulation of RFC3 Promotes Triple Negative Breast Cancer Metastasis and is Associated With Poor Prognosis Via EMT

    Directory of Open Access Journals (Sweden)

    Zhen-Yu He

    2017-02-01

    Full Text Available Triple-negative breast cancer (TNBC was regarded as the most aggressive and mortal subtype of breast cancer (BC since the molecular subtype system has been established. Abundant studies have revealed that epithelial-mesenchymal transition (EMT played a pivotal role during breast cancer metastasis and progression, especially in TNBC. Herein, we showed that inhibition the expression of replication factor C subunit 3 (RFC3 significantly attenuated TNBC metastasis and progression, which was associated with EMT signal pathway. In TNBC cells, knockdown of RFC3 can down-regulate mesenchymal markers and up-regulate epithelial markers, significantly attenuated cell proliferation, migration and invasion. Additionally, silencing RFC3 expression can decrease nude mice tumor volume, weight and relieve lung metastasis in vivo. Furthermore, we also demonstrated that overexpression of RFC3 in TNBC showed increased metastasis, progression and poor prognosis. We confirmed all of these results by immunohistochemistry analysis in 127 human TNBC tissues and found that RFC3 expression was significantly associated with poor prognosis in TNBC. Taken all these findings into consideration, we can conclude that up-regulation of RFC3 promotes TNBC progression through EMT signal pathway. Therefore, RFC3 could be an independent prognostic factor and therapeutic target for TNBC.

  10. Expressive Suppression Tendencies, Projection Bias in Memory of Negative Emotions, and Well-Being.

    Science.gov (United States)

    Chang, Valerie T; Overall, Nickola C; Madden, Helen; Low, Rachel S T

    2018-02-01

    The current research extends prior research linking negative emotions and emotion regulation tendencies to memory by investigating whether (a) naturally occurring negative emotions during routine weekly life are associated with more negatively biased memories of prior emotional experiences-a bias called projection; (b) tendencies to regulate emotions via expressive suppression are associated with greater projection bias in memory of negative emotions; and (c) greater projection bias in memory is associated with poorer future well-being. Participants (N = 308) completed a questionnaire assessing their general tendencies to engage in expressive suppression. Then, every week for 7 weeks, participants reported on (a) the negative emotions they experienced across the current week (e.g., "This week, I felt 'sad'"), (b) their memories of the negative emotions they experienced the prior week (e.g., "Last week, I felt 'sad'"), and (c) their well-being. First, participants demonstrated significant projection bias in memory: Greater negative emotions in a given week were associated with remembering emotions in the prior week more negatively than those prior emotions were originally reported. Second, projection bias in memory of negative emotions was greater for individuals who reported greater tendencies to regulate emotions via expressive suppression. Third, greater projection bias in memory of negative emotions was associated with reductions in well-being across weeks. These 3 novel findings indicate that (a) current negative emotions bias memory of past emotions, (b) this memory bias is magnified for people who habitually use expressive suppression to regulate emotions, and (c) this memory bias may undermine well-being over time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Dopamine receptor gene d4 polymorphisms and early sexual onset: gender and environmental moderation in a sample of african-american youth.

    Science.gov (United States)

    Kogan, Steven M; Lei, Man-Kit; Beach, Steven R H; Brody, Gene H; Windle, Michael; Lee, Sunbok; MacKillop, James; Chen, Yi-Fu

    2014-08-01

    Early sexual onset and its consequences disproportionately affect African-American youth, particularly male youth. The dopamine receptor D4 gene (DRD4) has been linked to sexual activity and other forms of appetitive behavior, particularly for male youth and in combination with environmental factors (gene × environment [G × E] effects). The differential susceptibility perspective suggests that DRD4 may exert this effect by amplifying the effects of both positive and negative environments. We hypothesized that DRD4 status would amplify the influence of both positive and negative neighborhood environments on early sexual onset among male, but not female, African-Americans. Hypotheses were tested with self-report, biospecimen, and census data from five prospective studies of male and female African-American youth in rural Georgia communities, N = 1,677. Early sexual onset was defined as intercourse before age 14. No significant G × E findings emerged for female youth. Male youth with a DRD4 long allele were more likely than those with two DRD4 short alleles to report early sexual onset in negative community environments and not to report early onset in positive community environments. Dopaminergic regulation of adolescent sexual behaviors may operate differently by gender. DRD4 operated as an environmental amplification rather than a vulnerability factor. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  12. A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation

    Directory of Open Access Journals (Sweden)

    Giri Lopamudra

    2004-08-01

    Full Text Available Abstract Background The phenomenon of switch-like response to graded input signal is the theme involved in various signaling pathways in living systems. Positive feedback loops or double negative feedback loops embedded with nonlinearity exhibit these switch-like bistable responses. Such feedback regulations exist in insulin signaling pathway as well. Methods In the current manuscript, a steady state analysis of the metabolic insulin-signaling pathway is presented. The threshold concentration of insulin required for glucose transporter GLUT4 translocation was studied with variation in system parameters and component concentrations. The dose response curves of GLUT4 translocation at various concentration of insulin obtained by steady state analysis were quantified in-terms of half saturation constant. Results We show that, insulin-stimulated GLUT4 translocation can operate as a bistable switch, which ensures that GLUT4 settles between two discrete, but mutually exclusive stable steady states. The threshold concentration of insulin required for GLUT4 translocation changes with variation in system parameters and component concentrations, thus providing insights into possible pathological conditions. Conclusion A steady state analysis indicates that negative feedback regulation of phosphatase PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. The threshold concentration of insulin required for GLUT4 translocation and the corresponding bistable response at different system parameters and component concentrations was compared with reported experimental observations on specific defects in regulation of the system.

  13. AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder

    Science.gov (United States)

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K.; Vleet, Jeremy Van; Fenstermaker, Ali G.; Silhavy, Jennifer L.; Scheliga, Judith S.; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma Mujgan; Celep, Figen; Oraby, Azza; Zaki, Maha S.; Al-Baradie, Raidah; Faqeih, Eissa; Saleh, Mohammad; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W.; Gleeson, Joseph G.

    2013-01-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a new distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new, potentially treatable early-onset neurodegenerative disease. PMID:23911318

  14. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.

    Science.gov (United States)

    Schmaltz-Panneau, Barbara; Cordova, Amanda; Dhorne-Pollet, Sophie; Hennequet-Antier, Christelle; Uzbekova, Sveltlana; Martinot, Emmanuelle; Doret, Sarah; Martin, Patrice; Mermillod, Pascal; Locatelli, Yann

    2014-10-01

    In mammals, the oviduct may participate to the regulation of early embryo development. In vitro co-culture of early bovine embryos with bovine oviduct epithelial cells (BOEC) has been largely used to mimic the maternal environment. However, the mechanisms of BOEC action have not been clearly elucidated yet. The aim of this study was to determine the response of BOEC cultures to the presence of developing bovine embryos. A 21,581-element bovine oligonucleotide array was used compare the gene expression profiles of confluent BOEC cultured for 8 days with or without embryos. This study revealed 34 differentially expressed genes (DEG). Of these 34 genes, IFI6, ISG15, MX1, IFI27, IFI44, RSAD2, IFITM1, EPSTI1, USP18, IFIT5, and STAT1 expression increased to the greatest extent due to the presence of embryos with a major impact on antiviral and immune response. Among the mRNAs at least 25 are already described as induced by interferons. In addition, transcript levels of new candidate genes involved in the regulation of transcription, modulation of the maternal immune system and endometrial remodeling were found to be increased. We selected 7 genes and confirmed their differential expression by quantitative RT-PCR. The immunofluorescence imaging of cellular localization of STAT1 protein in BOEC showed a nuclear translocation in the presence of embryos, suggesting the activation of interferon signaling pathway. This first systematic study of BOEC transcriptome changes in response to the presence of embryos in cattle provides some evidences that these cells are able to adapt their transcriptomic profile in response to embryo signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Early double-negative thymocyte export in Trypanosoma cruzi infection is restricted by sphingosine receptors and associated with human chagas disease.

    Directory of Open Access Journals (Sweden)

    Ailin Lepletier

    2014-10-01

    Full Text Available The protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironmental and lymphoid compartments. Acute infection results in severe atrophy of the organ and early release of immature thymocytes into the periphery. To date, the pathophysiological effects of thymic changes promoted by parasite-inducing premature release of thymocytes to the periphery has remained elusive. Herein, we show that sphingosine-1-phosphate (S1P, a potent mediator of T cell chemotaxis, plays a role in the exit of immature double-negative thymocytes in experimental Chagas disease. In thymuses from T. cruzi-infected mice we detected reduced transcription of the S1P kinase 1 and 2 genes related to S1P biosynthesis, together with increased transcription of the SGPL1 sphingosine-1-lyase gene, whose product inactivates S1P. These changes were associated with reduced intrathymic levels of S1P kinase activity. Interestingly, double-negative thymocytes from infected animals expressed high levels of the S1P receptor during infection, and migrated to lower levels of S1P. Moreover, during T. cruzi infection, this thymocyte subset expresses high levels of IL-17 and TNF-α cytokines upon polyclonal stimulation. In vivo treatment with the S1P receptor antagonist FTY720 resulted in recovery the numbers of double-negative thymocytes in infected thymuses to physiological levels. Finally, we showed increased numbers of double-negative T cells in the peripheral blood in severe cardiac forms of human Chagas disease.

  16. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  17. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    Directory of Open Access Journals (Sweden)

    Pushpavalli Sreerangam NCVL

    2013-01-01

    Full Text Available Abstract Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using

  18. Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass

    Directory of Open Access Journals (Sweden)

    Vivas Yurena

    2011-12-01

    Full Text Available Abstract Background The progression towards type 2 diabetes depends on the allostatic response of pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physiological and pathophysiological states associated to insulin resistance such as pregnancy, obesity or ageing, but the mechanisms mediating beta cell mass expansion in these scenarios are not well defined. We have recently shown that ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse failed to expand its beta cell mass. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Thus, comparison of these models islets particularly at early ages could provide some new insights on early PPARγ dependent transcriptional responses involved in the process of beta cell mass expansion Results Here we have investigated PPARγ dependent transcriptional responses occurring during the early stages of beta cell adaptation to insulin resistance in wild type, ob/ob, PPARγ2 KO and POKO mice. We have identified genes known to regulate both the rate of proliferation and the survival signals of beta cells. Moreover we have also identified new pathways induced in ob/ob islets that remained unchanged in POKO islets, suggesting an important role for PPARγ in maintenance/activation of mechanisms essential for the continued function of the beta cell. Conclusions Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with the activation of an immune response that fails to occur in POKO islets. We have also indentified other PPARγ dependent differentially regulated pathways including cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation.

  19. MicroRNA-451 Negatively Regulates Hepatic Glucose Production and Glucose Homeostasis by Targeting Glycerol Kinase-Mediated Gluconeogenesis.

    Science.gov (United States)

    Zhuo, Shu; Yang, Mengmei; Zhao, Yanan; Chen, Xiaofang; Zhang, Feifei; Li, Na; Yao, Pengle; Zhu, Tengfei; Mei, Hong; Wang, Shanshan; Li, Yu; Chen, Shiting; Le, Yingying

    2016-11-01

    MicroRNAs (miRNAs) are a new class of regulatory molecules implicated in type 2 diabetes, which is characterized by insulin resistance and hepatic glucose overproduction. We show that miRNA-451 (miR-451) is elevated in the liver tissues of dietary and genetic mouse models of diabetes. Through an adenovirus-mediated gain- and loss-of-function study, we found that miR-451 negatively regulates hepatic gluconeogenesis and blood glucose levels in normal mice and identified glycerol kinase (Gyk) as a direct target of miR-451. We demonstrate that miR-451 and Gyk regulate hepatic glucose production, the glycerol gluconeogenesis axis, and the AKT-FOXO1-PEPCK/G6Pase pathway in an opposite manner; Gyk could reverse the effect of miR-451 on hepatic gluconeogenesis and AKT-FOXO1-PEPCK/G6Pase pathway. Moreover, overexpression of miR-451 or knockdown of Gyk in diabetic mice significantly inhibited hepatic gluconeogenesis, alleviated hyperglycemia, and improved glucose tolerance. Further studies showed that miR-451 is upregulated by glucose and insulin in hepatocytes; the elevation of hepatic miR-451 in diabetic mice may contribute to inhibiting Gyk expression. This study provides the first evidence that miR-451 and Gyk regulate the AKT-FOXO1-PEPCK/G6Pase pathway and play critical roles in hepatic gluconeogenesis and glucose homeostasis and identifies miR-451 and Gyk as potential therapeutic targets against hyperglycemia in diabetes. © 2016 by the American Diabetes Association.

  20. Emotion regulation deficits in regular marijuana users.

    Science.gov (United States)

    Zimmermann, Kaeli; Walz, Christina; Derckx, Raissa T; Kendrick, Keith M; Weber, Bernd; Dore, Bruce; Ochsner, Kevin N; Hurlemann, René; Becker, Benjamin

    2017-08-01

    Effective regulation of negative affective states has been associated with mental health. Impaired regulation of negative affect represents a risk factor for dysfunctional coping mechanisms such as drug use and thus could contribute to the initiation and development of problematic substance use. This study investigated behavioral and neural indices of emotion regulation in regular marijuana users (n = 23) and demographically matched nonusing controls (n = 20) by means of an fMRI cognitive emotion regulation (reappraisal) paradigm. Relative to nonusing controls, marijuana users demonstrated increased neural activity in a bilateral frontal network comprising precentral, middle cingulate, and supplementary motor regions during reappraisal of negative affect (P marijuana users relative to controls. Together, the present findings could reflect an unsuccessful attempt of compensatory recruitment of additional neural resources in the context of disrupted amygdala-prefrontal interaction during volitional emotion regulation in marijuana users. As such, impaired volitional regulation of negative affect might represent a consequence of, or risk factor for, regular marijuana use. Hum Brain Mapp 38:4270-4279, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Effects of maternal negativity and of early and recent recurrent depressive disorder on children's false belief understanding.

    Science.gov (United States)

    Rohrer, Lisa M; Cicchetti, Dante; Rogosch, Fred A; Toth, Sheree L; Maughan, Angeline

    2011-01-01

    Research has shown that children of depressed mothers are at risk for problems in a variety of developmental domains; however, little is known about the effects of maternal depression on children's emerging understanding of false beliefs. In this study, 3 false belief tasks were administered to 5-year-old children whose mothers had either met criteria for major depressive disorder within the first 20 months of the child's life (n = 91) or had never been depressed (n = 50). Significant difficulties in performance were found among the children of depressed mothers, especially those whose mothers had experienced early and recent recurrent depressive disorder. Regardless of diagnostic status, children whose mothers exhibited negativity during problem-solving tasks administered at an earlier developmental period also were less likely to demonstrate false belief understanding. These effects remained even after child verbal ability was controlled.

  2. Prognostic relevance at 5 years of the early monitoring of neoadjuvant chemotherapy using 18F-FDG PET in luminal HER2-negative breast cancer

    International Nuclear Information System (INIS)

    Humbert, Olivier; Brunotte, Francois; Berriolo-Riedinger, Alina; Toubeau, Michel; Dygai-Cochet, Inna; Cochet, Alexandre; Gauthier, Melanie; Charon-Barra, Celine; Guiu, Severine; Desmoulins, Isabelle; Fumoleau, Pierre; Coutant, Charles

    2014-01-01

    The objective of this study was to evaluate, in the luminal human epidermal growth factor receptor 2 (HER2)-negative breast cancer subtype, the prognostic value of tumour glucose metabolism at baseline and of its early changes during neoadjuvant chemotherapy (NAC). This prospective study included 61 women with hormone-sensitive HER2-negative breast cancer treated with NAC. 18 F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) was performed at baseline. Hepatic activity was used as a reference to distinguish between low metabolic and hypermetabolic tumours. In hypermetabolic tumours, a PET exam was repeated after the first course of NAC. The relative change in the maximum standardized uptake value of the tumour (∇SUV) was calculated. Nineteen women had low metabolic luminal breast cancers at baseline, correlated with low proliferation indexes. Forty-two women had hypermetabolic tumours, corresponding to more proliferative breast cancers with higher Ki-67 expression (p = 0.017) and higher grade (p = 0.04). The median follow-up period was 64.2 months (range 11.5-93.2). Thirteen women developed recurrent disease, nine of whom died. Worse overall survival was associated with larger tumour size [>5 cm, hazard ratio (HR) = 6.52, p = 0.009] and with hypermetabolic tumours achieving a low metabolic response after one cycle of NAC (ΔSUV < 16 %, HR = 10.63, p = 0.004). Five-year overall survival in these poor responder patients was 49.2 %. Overall survival in women with low metabolic tumours or hypermetabolic/good response tumours was 100 and 96.15 %, respectively. In luminal HER2-negative breast tumours, tumour metabolism at baseline and changes after the first course of NAC are early surrogate markers of patients' survival. A subgroup of women with hypermetabolic/poorly responding tumours, correlated with poor prognosis at 5 years, can be identified early. These results may guide future studies by tailoring the NAC regimen to the metabolic response. (orig.)

  3. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1.

    Science.gov (United States)

    Svensson, Katrin J; Christianson, Helena C; Wittrup, Anders; Bourseau-Guilmain, Erika; Lindqvist, Eva; Svensson, Lena M; Mörgelin, Matthias; Belting, Mattias

    2013-06-14

    The role of exosomes in cancer can be inferred from the observation that they transfer tumor cell derived genetic material and signaling proteins, resulting in e.g. increased tumor angiogenesis and metastasis. However, the membrane transport mechanisms and the signaling events involved in the uptake of these virus-like particles remain ill-defined. We now report that internalization of exosomes derived from glioblastoma (GBM) cells involves nonclassical, lipid raft-dependent endocytosis. Importantly, we show that the lipid raft-associated protein caveolin-1 (CAV1), in analogy with its previously described role in virus uptake, negatively regulates the uptake of exosomes. We find that exosomes induce the phosphorylation of several downstream targets known to associate with lipid rafts as signaling and sorting platforms, such as extracellular signal-regulated kinase-1/2 (ERK1/2) and heat shock protein 27 (HSP27). Interestingly, exosome uptake appears dependent on unperturbed ERK1/2-HSP27 signaling, and ERK1/2 phosphorylation is under negative influence by CAV1 during internalization of exosomes. These findings significantly advance our general understanding of exosome-mediated uptake and offer potential strategies for how this pathway may be targeted through modulation of CAV1 expression and ERK1/2 signaling.

  4. Preventing Poor Vocational Functioning in Psychosis Through Early Intervention

    DEFF Research Database (Denmark)

    Hegelstad, Wenche Ten Velden; Bronnick, Kolbjorn S; Barder, Helene Eidsmo

    2017-01-01

    OBJECTIVE: This study tested the hypothesis that early detection of psychosis improves long-term vocational functioning through the prevention of negative symptom development. METHODS: Generalized estimating equations and mediation analysis were conducted to examine the association between...... employment and negative symptoms over ten years among patients in geographic areas characterized by usual detection (N=140) or early detection (N=141) of psychosis. RESULTS: Improved vocational outcome after ten years among patients in the early-detection area was mediated by lower levels of negative...

  5. Interferon-inducible protein 10 (IP-10) is associated with viremia of early HIV-1 infection in Korean patients.

    Science.gov (United States)

    Lee, SoYong; Chung, Yoon-Seok; Yoon, Cheol-Hee; Shin, YoungHyun; Kim, SeungHyun; Choi, Byeong-Sun; Kim, Sung Soon

    2015-05-01

    Cytokines/chemokines play key roles in modulating disease progression in human immunodeficiency virus (HIV) infection. Although it is known that early HIV-1 infection is associated with increased production of proinflammatory cytokines, the relationship between cytokine levels and HIV-1 pathogenesis is not clear. The concentrations of 18 cytokines/chemokines in 30 HIV-1 negative and 208 HIV-1 positive plasma samples from Korean patients were measured by the Luminex system. Early HIV-1 infection was classified according to the Fiebig stage (FS) based on the characteristics of the patients infected with HIV-1. Concentrations of interleukin-12 (IL-12), interferon-inducible protein-10 (IP-10), macrophage inflammatory protein-1α (MIP-1α) and regulated upon activation, normal T cells expressed and secreted (RANTES) were increased significantly during the early stage of HIV-1 infection (FS II-IV) compared with the HIV-1-negative group. Of these cytokines, an elevated level of IP-10 was the only factor to be correlated positively with a higher viral load during the early stages of HIV-1 infection (FS II-IV) in Koreans (R = 0.52, P IP-10 may be an indicator for HIV-1 viremia and associated closely with viral replication in patients with early HIV-1 infection. © 2015 Wiley Periodicals, Inc.

  6. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial–mesenchymal transition in triple-negative breast cancer

    Science.gov (United States)

    Qiao, Yichun; Shiue, Chiou-Nan; Zhu, Jian; Zhuang, Ting; Jonsson, Philip; Wright, Anthony P.H.; Zhao, Chunyan; Dahlman-Wright, Karin

    2015-01-01

    The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression. PMID:25762639

  7. DHU1 negatively regulates UV-B signaling via its direct interaction with COP1 and RUP1.

    Science.gov (United States)

    Kim, Sang-Hoon; Kim, Hani; Chung, Sunglan; Lee, Jae-Hoon

    2017-09-16

    Although DWD HYPERSENSITIVE TO UV-B 1 (DHU1) is reported to be a negative regulator in UV-B mediated cellular responses, its detailed role in UV-B signaling is still elusive. To further understand the action mechanism of DHU1 in UV-B response, physical and genetic interactions of DHU1 with various UV-B signaling components were investigated. Yeast two hybrid assay results suggested that DHU1 directly interacts with COP1 and RUP1, implying a functional connection with both COP1 and RUP1. In spite of the physical association between DHU1 and COP1, loss of DHU1 did not affect protein stability of COP1. Epistatic analysis showed that the functional loss of both DHU1 and UVR8 leads to alleviation of UV-B hypersensitivity displayed in dhu1-1. Moreover, phenotypic studies with dhu1-1 cop1-6 and dhu1-1 hy5-215 revealed that COP1 and HY5 are epistatic to DHU1, indicating that UV-B hypersensitivity of dhu1-1 requires both COP1 and HY5. In the case of dhu1-1 rup1-1, UV-B responsiveness was similar to that of both dhu1-1 and rup1-1, implying that DHU1 and RUP1 are required for each other's function. Collectively, these results show that the role of DHU1 as a negative regulator in UV-B response may be derived from its direct interaction with COP1 by sequestering COP1 from the active UVR8-COP1 complex, resulting in a decrease in the COP1 population that positively participates in UV-B signaling together with UVR8. Furthermore, this inhibitory role of DHU1 in UV-B signaling is likely to be functionally connected to RUP1. This study will serve as a platform to further understand more detailed action mechanism of DHU1 in UV-B response and DHU1-mediated core UV-B signaling in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Possible Roles of CC- and CXC-Chemokines in Regulating Bovine Endometrial Function during Early Pregnancy

    Directory of Open Access Journals (Sweden)

    Ryosuke Sakumoto

    2017-03-01

    Full Text Available The aim of the present study was to determine the possible roles of chemokines in regulating bovine endometrial function during early pregnancy. The expression of six chemokines, including CCL2, CCL8, CCL11, CCL14, CCL16, and CXCL10, was higher in the endometrium at 15 and 18 days of pregnancy than at the same days in non-pregnant animals. Immunohistochemical staining showed that chemokine receptors (CCR1, CCR2, CCR3, and CXCR3 were expressed in the epithelial cells and glandular epithelial cells of the bovine endometrium as well as in the fetal trophoblast obtained from a cow on day 18 of pregnancy. The addition of interferon-τ (IFNT to an endometrial tissue culture system increased CCL8 and CXCL10 expression in the tissues, but did not affect CCL2, CCL11, and CCL16 expression. CCL14 expression by these tissues was inhibited by IFNT. CCL16, but not other chemokines, clearly stimulated interferon-stimulated gene 15 (ISG15 and myxovirus-resistance gene 1 (MX1 expression in these tissues. Cyclooxygenase 2 (COX2 expression decreased after stimulation with CCL8 and CCL14, and oxytocin receptor (OTR expression was decreased by CCL2, CCL8, CCL14, and CXCL10. Collectively, the expression of chemokine genes is increased in the endometrium during early pregnancy. These genes may contribute to the regulation of endometrial function by inhibiting COX2 and OTR expression, subsequently decreasing prostaglandin production and preventing luteolysis in cows.

  9. Mobile Phone Use, Emotion Regulation, and Well-Being.

    Science.gov (United States)

    Hoffner, Cynthia A; Lee, Sangmi

    2015-07-01

    This study examined the use of mobile phones to regulate negative emotions, considering both the role of different aspects of phone use and individual differences in emotion regulation strategies. A total of 287 young adult smartphone users completed an online survey that addressed use of mobile phones for negative emotion regulation. They responded to a phone loss scenario by rating how much they would miss various uses/functions of the phone (which could be involved in emotion regulation). Habitual use of reappraisal to regulate emotion was associated with missing both interpersonal contact and social support, but not access to entertainment/information. In contrast, habitual use of emotion suppression was associated only with missing entertainment/information content. Regulating negative emotions via mobile phone was associated with missing all three uses/functions of the phone, but perception that the phone was effective in remediating negative emotion was associated only with missing social support. Well-being was related to greater use and perceived effectiveness of the mobile phone for emotion regulation. Overall, this study demonstrates that mobile phones can yield psychological benefits, depending on how they are used. Findings suggest that using the phone for social support is most likely to lead to effective remediation of negative emotion. Interpretations and implications of the findings are discussed.

  10. Nitric oxide is not a negative regulator of metamorphic induction in the abalone Haliotis asinina

    Directory of Open Access Journals (Sweden)

    Nobuo eUeda

    2014-07-01

    Full Text Available Nitric oxide (NO is a second messenger molecule synthesized by the enzyme nitric oxide synthase (NOS that requires the molecular chaperone heat shock protein 90 (HSP90 for normal enzymatic activity. Past studies have revealed that both NO and HSP90 act as negative regulators (repressors of metamorphosis in a diverse range of marine invertebrates, including several molluscan species. Here, we test the role of NO in the metamorphic induction of a vetigastropod mollusc, the tropical abalone Haliotis asinina. Specifically, we 1 test the effects of NO-manipulating pharmacological agents, 2 measure the temporal expression of NOS and HSP90 genes through metamorphosis, and 3 assess the spatial expression of NOS and HSP90 in larvae. We find that inhibition of NOS reduces rates of metamorphosis, indicating that NO facilitates, rather than represses, induction of metamorphosis in H. asinina. The marked increase in NOS expression in putative sensory cells localized to the anterior foot of competent larvae is consistent with NO as an inductive molecule for metamorphosis. In contrast to NOS, HSP90 transcript abundance decreases at competence and there is no evidence of NOS and HSP90 transcript co-localization. This study provides the first evidence of NO as an inductive facilitator of molluscan metamorphosis. Our experimental data suggest that NO modulates signals derived from live inductive substrates via the larval foot to regulate metamorphosis. Inter-specific comparisons of spatial NOS expression in molluscs suggest that the localized pattern of NOS or its protein product is related to the regulatory action of NO in metamorphosis.

  11. Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Zhenguo Dong

    2015-01-01

    Full Text Available Our previous study reported that muscle cell enhancement factor 2C (MEF2C was fully activated after inhibition of the phosphorylation activity of integrin-linked kinase (ILK in the skeletal muscle cells of goats. It enhanced the binding of promoter or enhancer of transcription factor related to proliferation of muscle cells and then regulated the expression of these genes. In the present investigation, we explored whether ILK activation depended on PI3K to regulate the phosphorylation and transcriptional activity of MEF2C during C2C12 cell proliferation. We inhibited PI3K activity in C2C12 with LY294002 and then found that ILK phosphorylation levels and MEF2C phosphorylation were decreased and that MCK mRNA expression was suppressed significantly. After inhibiting ILK phosphorylation activity with Cpd22 and ILK-shRNA, we found MEF2C phosphorylation activity and MCK mRNA expression were increased extremely significantly. In the presence of Cpd22, PI3K activity inhibition increased MEF2C phosphorylation and MCK mRNA expression indistinctively. We conclude that ILK negatively and independently of PI3K regulated MEF2C phosphorylation activity and MCK mRNA expression in C2C12 cells. The results provide new ideas for the study of classical signaling pathway of PI3K-ILK-related proteins and transcription factors.

  12. Genetic origin of the relationship between parental negativity and behavior problems from early childhood to adolescence: A longitudinal genetically sensitive study

    Science.gov (United States)

    Alemany, Silvia; Rijsdijk, Frühling V.; Haworth, Claire Margaret Alison; Fañanás, Lourdes; Plomin, Robert

    2013-01-01

    Little is known about how genetic and environmental factors contribute to the association between parental negativity and behavior problems from early childhood to adolescence. The current study fitted a cross-lagged model in a sample consisting of 4,075 twin pairs to explore (a) the role of genetic and environmental factors in the relationship between parental negativity and behavior problems from age 4 to age 12, (b) whether parent-driven and child-driven processes independently explain the association, and (c) whether there are sex differences in this relationship. Both phenotypes showed substantial genetic influence at both ages. The concurrent overlap between them was mainly accounted for by genetic factors. Causal pathways representing stability of the phenotypes and parent-driven and child-driven effects significantly and independently account for the association. Significant but slight differences were found between males and females for parent-driven effects. These results were highly similar when general cognitive ability was added asa covariate. In summary, the longitudinal association between parental negativity and behavior problems seems to be bidirectional and mainly accounted for by genetic factors. Furthermore, child-driven effects were mainly genetically mediated, and parent-driven effects were a function of both genetic and shared-environmental factors. PMID:23627958

  13. sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis‐dependent release of eDNA

    DEFF Research Database (Denmark)

    Christner, Martin; Heinze, Constanze; Busch, Michael

    2012-01-01

    to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from upregulation of metalloprotease SepA, leading to boosted processing of autolysin AtlE, in turn inducing augmented autolysis and release of eDNA. Hence, this study identifies sarA as a negative regulator of Embp‐ and e...

  14. Extracellular signal-regulated kinase activation is required for consolidation and reconsolidation of memory at an early stage of ontogenesis.

    Science.gov (United States)

    Languille, Solène; Davis, Sabrina; Richer, Paulette; Alcacer, Cristina; Laroche, Serge; Hars, Bernard

    2009-11-01

    The ability to form long-term memories exists very early during ontogeny; however, the properties of early memory processes, brain structures involved and underlying cellular mechanisms are poorly defined. Here, we examine the role of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase/ERK signaling cascade, which is crucial for adult memory, in the consolidation and reconsolidation of an early memory using a conditioned taste aversion paradigm in 3-day-old rat pups. We show that intraperitoneal injection of SL327, the upstream mitogen-activated protein kinase kinase inhibitor, impairs both consolidation and reconsolidation of early memory, leaving short-term memory after acquisition and after reactivation intact. The amnesic effect of SL327 diminishes with increasing delays after acquisition and reactivation. Biochemical analyses revealed ERK hyperphosphorylation in the amygdala but not the hippocampus following acquisition, suggesting functional activation of the amygdala as early as post-natal day 3, although there was no clear evidence for amygdalar ERK activation after reactivation. These results indicate that, despite an immature brain, the basic properties of memory and at least some of the molecular mechanisms and brain structures implicated in aversion memory share a number of similarities with the adult and emerge very early during ontogeny.

  15. Stage effects of negative emotion on spatial and verbal working memory

    Directory of Open Access Journals (Sweden)

    Chan Raymond CK

    2010-05-01

    Full Text Available Abstract Background The effects of negative emotion on different processing periods in spatial and verbal working memory (WM and the possible brain mechanism of the interaction between negative emotion and WM were explored using a high-time resolution event-related potential (ERP technique and time-locked delayed matching-to-sample task (DMST. Results Early P3b and late P3b were reduced in the negative emotion condition for both the spatial and verbal tasks at encoding. At retention, the sustained negative slow wave (NSW showed a significant interaction between emotional state and task type. Spatial trials in the negative emotion condition elicited a more negative deflection than they did in the neutral emotion condition. However, no such effect was observed for the verbal tasks. At retrieval, early P3b and late P3b were markedly more attenuated in the negative emotion condition than in the neutral emotion condition for both the spatial and verbal tasks. Conclusions The results indicate that the differential effects of negative emotion on spatial and verbal WM mainly take place during information maintenance processing, which implies that there is a systematic association between specific affects (e.g., negative emotion and certain cognitive processes (e.g., spatial retention.

  16. Early participation in a prenatal food supplementation program ameliorates the negative association of food insecurity with quality of maternal-infant interaction.

    Science.gov (United States)

    Frith, Amy L; Naved, Ruchira T; Persson, Lars Ake; Rasmussen, Kathleen M; Frongillo, Edward A

    2012-06-01

    Food insecurity is detrimental to child development, yet little is known about the combined influence of food insecurity and nutritional interventions on child development in low-income countries. We proposed that women assigned to an early invitation time to start a prenatal food supplementation program could reduce the negative influence of food insecurity on maternal-infant interaction. A cohort of 180 mother-infant dyads were studied (born between May and October 2003) from among 3267 in the randomized controlled trial Maternal Infant Nutritional Interventions Matlab, which was conducted in Matlab, Bangladesh. At 8 wk gestation, women were randomly assigned an invitation time to start receiving food supplements (2.5 MJ/d; 6 d/wk) either early (~9 wk gestation; early-invitation group) or at the usual start time (~20 wk gestation; usual-invitation group) for the government program. Maternal-infant interaction was observed in homes with the use of the Nursing Child Assessment Satellite Training Feeding Scale, and food-insecurity status was obtained from questionnaires completed when infants were 3.4-4.0 mo old. By using a general linear model for maternal-infant interaction, we found a significant interaction (P = 0.012) between invitation time to start a prenatal food supplementation program and food insecurity. Those in the usual-invitation group with higher food insecurity scores (i.e., more food insecure) had a lower quality of maternal-infant interaction, but this relationship was ameliorated among those in the early-invitation group. Food insecurity limits the ability of mothers and infants to interact well, but an early invitation time to start a prenatal food supplementation program can support mother-infant interaction among those who are food insecure.

  17. Nitrogen mustard (Chlorambucil) has a negative influence on early vascular development

    International Nuclear Information System (INIS)

    Schmidt, Annette; Boelck, Birgit; Jedig, Maria; Steinritz, Dirk; Balszuweit, Frank; Kehe, Kai; Bloch, Wilhelm

    2009-01-01

    The sulphur and nitrogen mustards are strong alkylating agents, which induces inflammations of the skin including blistering right up to ulcerations. Depending on the severity, the wounds may need weeks to heal. In the past it was shown that sulphur mustard has a destructive effect on endothelial precursor cells, which have been shown to play a pivotal role in the wound healing reaction by inducing neovascularisation. However, for these alkylating agents as well as for sulphur mustard nothing is known about their effects on endothelial precursors. Therefore, we investigated and compared the influence of Chlorambucil on proliferation, apoptosis and differentiation of endothelial cells in intact mouse embryoid bodies (EB). EBs were treated at different developmental stages and with different periods of Chlorambucil treatment. It was found that in each developmental stage and under each treatment period's Chlorambucil has an extremely negative effect on the vascularisation with a vessel reduction of around 99%. Of particular importance was the negative effect of treatment around day 3 of the development. On this day we found 377 vessels under control conditions but only 1.6 vessels under 24 h treatment of Chlorambucil. At this point in time many endothelial precursors can be found in the EB. Moreover, a negative effect on all stem cells was evident at this point in time, shown by an extreme reduction in EB size with 17.9 mm 2 for the control and only 1.55 mm 2 under Chlorambucil treatment. This negative effect on the vascularisation, on endothelial precursors but also on stem cells in general is of possible importance for impaired wound healing.

  18. TaUBA, a UBA domain-containing protein in wheat (Triticum aestivum L.), is a negative regulator of salt and drought stress response in transgenic Arabidopsis.

    Science.gov (United States)

    Li, Xiao; Zhang, Shuang-shuang; Ma, Jun-xia; Guo, Guang-yan; Zhang, Xue-yong; Liu, Xu; Bi, Cai-li

    2015-05-01

    TaUBA functions as a negative regulator of salt and drought stress response in transgenic Arabidopsis, either the UBA domain or the zinc finger domain is crucial for TaUBA's function. TaUBA (DQ211935), which is a UBA domain-containing protein in wheat, was cloned and functionally characterized. Southern blot suggested that TaUBA is a low copy gene in common wheat. qRT-PCR assay showed that the expression of TaUBA was strongly induced by salt and drought stress. When suffering from drought and salt stresses, lower proline content and much higher MDA content in the TaUBA overexpressors were observed than those of the wild-type control, suggesting TaUBA may function as a negative regulator of salt and drought stress response in plants. To study whether the UBA domain or the zinc finger domain affects the function of TaUBA, TaUBAΔUBA (deletion of UBA domain) and TaUBA-M (Cys464Gly and Cys467Gly) overexpression vectors were constructed and transformed into Arabidopsis. Upon drought and salt stresses, the TaUBAΔUBA-and TaUBA-M-overexpressed plants accumulated much more proline and lower MDA than the wild-type control, the TaUBA-overexpressors lost water more quickly than TaUBAΔUBA-and TaUBA-M-overexpressed plants as well as the wild-type control, suggesting that overexpression of TaUBAΔUBA or TaUBA-M improved the drought and salt tolerance of transgenic Arabidopsis plants and the possibility of ubiquitination role in the regulation of osmolyte synthesis and oxidative stress responses in mediating stress tolerance. qRT-PCR assay of stress-related genes in transgenic plants upon drought and salt stresses suggested that TaUBA may function through down-regulating some stress related-transcription factors and by regulating P5CSs to cope with osmotic stress.

  19. Studies of doped negative valve-regulated lead-acid battery electrodes

    Czech Academy of Sciences Publication Activity Database

    Micka, Karel; Calábek, M.; Bača, P.; Křivák, P.; Lábus, R.; Bilko, R.

    2009-01-01

    Roč. 191, č. 1 (2009), s. 154-158 ISSN 0378-7753 Institutional research plan: CEZ:AV0Z40400503 Keywords : lead-acid * negative electrode * sulfation suppression Subject RIV: CG - Electrochemistry Impact factor: 3.792, year: 2009

  20. DNA-PK/Ku complex binds to latency-associated nuclear antigen and negatively regulates Kaposi's sarcoma-associated herpesvirus latent replication

    International Nuclear Information System (INIS)

    Cha, Seho; Lim, Chunghun; Lee, Jae Young; Song, Yoon-Jae; Park, Junsoo; Choe, Joonho; Seo, Taegun

    2010-01-01

    During latent infection, latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) plays important roles in episomal persistence and replication. Several host factors are associated with KSHV latent replication. Here, we show that the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku70, and Ku86 bind the N-terminal region of LANA. LANA was phosphorylated by DNA-PK and overexpression of Ku70, but not Ku86, impaired transient replication. The efficiency of transient replication was significantly increased in the HCT116 (Ku86 +/-) cell line, compared to the HCT116 (Ku86 +/+) cell line, suggesting that the DNA-PK/Ku complex negatively regulates KSHV latent replication.

  1. The indirect effect of emotion dysregulation in terms of negative affect and smoking-related cognitive processes.

    Science.gov (United States)

    Johnson, Adrienne L; McLeish, Alison C

    2016-02-01

    Although negative affect is associated with a number of smoking-related cognitive processes, the mechanisms underlying these associations have yet to be examined. The current study sought to examine the indirect effect of emotion regulation difficulties in terms of the association between negative affect and smoking-related cognitive processes (internal barriers to cessation, negative affect reduction smoking motives, negative affect reduction smoking outcome expectancies). Participants were 126 daily cigarette smokers (70.4% male, Mage=36.5years, SD=13.0; 69.8% Caucasian) who smoked an average of 18.5 (SD=8.7) cigarettes per day and reported moderate nicotine dependence. Formal mediation analyses were conducted using PROCESS to examine the indirect effect of negative affect on internal barriers to cessation and negative affect reduction smoking motives and outcome expectancies through emotion regulation difficulties. After accounting for the effects of gender, daily smoking rate, and anxiety sensitivity, negative affect was indirectly related to internal barriers to cessation and negative affect reduction smoking motives through emotion regulation difficulties. There was no significant indirect effect for negative affect reduction smoking outcome expectancies. These findings suggest that greater negative affect is associated with a desire to smoke to reduce this negative affect and perceptions that quitting smoking will be difficult due to negative emotions because of greater difficulties managing these negative emotions. Thus, emotion regulation difficulties may be an important target for smoking cessation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Selective androgen receptor modulators (SARMs) negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Science.gov (United States)

    Narayanan, Ramesh; Ahn, Sunjoo; Cheney, Misty D; Yepuru, Muralimohan; Miller, Duane D; Steiner, Mitchell S; Dalton, James T

    2014-01-01

    The androgen receptor (AR) is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER)-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs) may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer. Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR) were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC) co-culture signaling studies were performed to understand the mechanisms of action. Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures. 1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  3. Selective androgen receptor modulators (SARMs negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Directory of Open Access Journals (Sweden)

    Ramesh Narayanan

    Full Text Available The androgen receptor (AR is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer.Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC co-culture signaling studies were performed to understand the mechanisms of action.Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures.1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  4. Sortilin regulates progranulin action in castration-resistant prostate cancer cells.

    Science.gov (United States)

    Tanimoto, Ryuta; Morcavallo, Alaide; Terracciano, Mario; Xu, Shi-Qiong; Stefanello, Manuela; Buraschi, Simone; Lu, Kuojung G; Bagley, Demetrius H; Gomella, Leonard G; Scotlandi, Katia; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2015-01-01

    The growth factor progranulin is as an important regulator of transformation in several cellular systems. We have previously demonstrated that progranulin acts as an autocrine growth factor and stimulates motility, proliferation, and anchorage-independent growth of castration-resistant prostate cancer cells, supporting the hypothesis that progranulin may play a critical role in prostate cancer progression. However, the mechanisms regulating progranulin action in castration-resistant prostate cancer cells have not been characterized. Sortilin, a single-pass type I transmembrane protein of the vacuolar protein sorting 10 family, binds progranulin in neurons and negatively regulates progranulin signaling by mediating progranulin targeting for lysosomal degradation. However, whether sortilin is expressed in prostate cancer cells and plays any role in regulating progranulin action has not been established. Here, we show that sortilin is expressed at very low levels in castration-resistant PC3 and DU145 cells. Significantly, enhancing sortilin expression in PC3 and DU145 cells severely diminishes progranulin levels and inhibits motility, invasion, proliferation, and anchorage-independent growth. In addition, sortilin overexpression negatively modulates Akt (protein kinase B, PKB) stability. These results are recapitulated by depleting endogenous progranulin in PC3 and DU145 cells. On the contrary, targeting sortilin by short hairpin RNA approaches enhances progranulin levels and promotes motility, invasion, and anchorage-independent growth. We dissected the mechanisms of sortilin action and demonstrated that sortilin promotes progranulin endocytosis through a clathrin-dependent pathway, sorting into early endosomes and subsequent lysosomal degradation. Collectively, these results point out a critical role for sortilin in regulating progranulin action in castration-resistant prostate cancer cells, suggesting that sortilin loss may contribute to prostate cancer progression.

  5. Auto-inhibitory regulation of angiotensin II functionality in hamster aorta during the early phases of dyslipidemia.

    Science.gov (United States)

    Pereira, Priscila Cristina; Pernomian, Larissa; Côco, Hariane; Gomes, Mayara Santos; Franco, João José; Marchi, Kátia Colombo; Hipólito, Ulisses Vilela; Uyemura, Sergio Akira; Tirapelli, Carlos Renato; de Oliveira, Ana Maria

    2016-06-15

    Emerging data point the crosstalk between dyslipidemia and renin-angiotensin system (RAS). Advanced dyslipidemia is described to induce RAS activation in the vasculature. However, the interplay between early dyslipidemia and the RAS remains unexplored. Knowing that hamsters and humans have a similar lipid profile, we investigated the effects of early and advanced dyslipidemia on angiotensin II-induced contraction. Cumulative concentration-response curves for angiotensin II (1.0pmol/l to 1.0µmol/l) were obtained in the hamster thoracic aorta. We also investigated the modulatory action of NAD(P)H oxidase on angiotensin II-induced contraction using ML171 (Nox-1 inhibitor, 0.5µmol/l) and VAS2870 (Nox-4 inhibitor, 5µmol/l). Early dyslipidemia was detected in hamsters treated with a cholesterol-rich diet for 15 days. Early dyslipidemia decreased the contraction induced by angiotensin II and the concentration of Nox-4-derived hydrogen peroxide. Advanced dyslipidemia, observed in hamsters treated with cholesterol-rich diet for 30 days, restored the contractile response induced by angiotensin II by compensatory mechanism that involves Nox-4-mediated oxidative stress. The hyporresponsiveness to angiotensin II may be an auto-inhibitory regulation of the angiotensinergic function during early dyslipidemia in an attempt to reduce the effects of the upregulation of the vascular RAS during the advanced stages of atherogenesis. The recovery of vascular angiotensin II functionality during the advanced phases of dyslipidemia is the result of the upregulation of redox-pro-inflammatory pathway that might be most likely involved in atherogenesis progression rather than in the recovery of vascular function. Taken together, our findings show the early phase of dyslipidemia may be the most favorable moment for effective atheroprotective therapeutic interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Orphan nuclear receptor NR4A1 is a negative regulator of DHT-induced rat preantral follicular growth.

    Science.gov (United States)

    Xue, Kai; Liu, Jia-yin; Murphy, Bruce D; Tsang, Benjamin K

    2012-12-01

    Nuclear receptor subfamily 4 group A member1 (NR4A1), an orphan nuclear receptor, is involved in the transcriptional regulation of thecal cell androgen biosynthesis and paracrine factor insulin-like 3 (INSL3) expression. Androgens are known to play an important regulatory role in ovarian follicle growth. Using a chronically androgenized rat model, a preantral follicle culture model and virus-mediated gene delivery, we examined the role and regulation of NR4A1 in the androgenic control of preantral follicular growth. In the present study, Ki67 staining was increased in preantral follicles on ovarian sections from 5α-dihydrotestosterone (DHT)-treated rats. Preantral follicles from DHT-treated rats cultured for 4 d exhibited increased growth and up-regulation of mRNA abundance of G(1)/S-specific cyclin-D2 (Ccnd2) and FSH receptor (Fshr). Similarly, DHT (1 μm) increased preantral follicular growth and Ccnd2 and Fshr mRNA abundance in vitro. The NR4A1 expression was high in theca cells and was down-regulated by DHT in vivo and in vitro. Forced expression of NR4A1 augmented preantral follicular growth, androstenedione production, and Insl3 expression in vitro. Inhibiting the action of androgen (with androgen receptor antagonist flutamide) or INSL3 (with INSL3 receptor antagonist INSL3 B-chain) reduced NR4A1-induced preantral follicular growth. Furthermore, NR4A1 overexpression enhanced DHT-induced preantral follicular growth, a response attenuated by inhibiting INSL3. In conclusion, DHT promotes preantral follicular growth and attenuates thecal NR4A1 expression in vivo and in vitro. Our findings are consistent with the notion that NR4A1 serves as an important point of negative feedback to minimize the excessive preantral follicle growth in hyperandrogenism.

  7. Early prenatal food supplementation ameliorates the negative association of maternal stress with birth size in a randomised trial.

    Science.gov (United States)

    Frith, Amy L; Naved, Ruchira T; Persson, Lars Ake; Frongillo, Edward A

    2015-10-01

    Low birthweight increases the risk of infant mortality, morbidity and poor development. Maternal nutrition and stress influence birth size, but their combined effect is not known. We hypothesised that an early-invitation time to start a prenatal food supplementation programme could reduce the negative influence of prenatal maternal stress on birth size, and that effect would differ by infant sex. A cohort of 1041 pregnant women, who had delivered an infant, June 2003-March 2004, was sampled from among 3267 in the randomised controlled trial, Maternal Infant Nutritional Interventions Matlab, conducted in Matlab, Bangladesh. At 8 weeks gestation, women were randomly assigned an invitation to start food supplements (2.5 MJ d(-1) ; 6 days a week) either early (∼9 weeks gestation; early-invitation group) or at usual start time for the governmental programme (∼20 weeks gestation; usual-invitation group). Morning concentration of cortisol was measured from one saliva sample/woman at 28-32 weeks gestation to assess stress. Birth-size measurements for 90% of infants were collected within 4 days of birth. In a general linear model, there was an interaction between invitation time to start the food supplementation programme and cortisol with birthweight, length and head circumference of male infants, but not female infants. Among the usual-invitation group only, male infants whose mothers had higher prenatal cortisol weighed less than those whose mothers had lower prenatal cortisol. Prenatal food supplementation programmes that begin first trimester may support greater birth size of male infants despite high maternal stress where low birthweight is a public health concern. © 2013 John Wiley & Sons Ltd.

  8. TetR Family Transcriptional Regulator PccD Negatively Controls Propionyl Coenzyme A Assimilation in Saccharopolyspora erythraea.

    Science.gov (United States)

    Xu, Zhen; Wang, Miaomiao; Ye, Bang-Ce

    2017-10-15

    Propanol stimulates erythromycin biosynthesis by increasing the supply of propionyl coenzyme A (propionyl-CoA), a starter unit of erythromycin production in Saccharopolyspora erythraea Propionyl-CoA is assimilated via propionyl-CoA carboxylase to methylmalonyl-CoA, an extender unit of erythromycin. We found that the addition of n -propanol or propionate caused a 4- to 16-fold increase in the transcriptional levels of the SACE_3398-3400 locus encoding propionyl-CoA carboxylase, a key enzyme in propionate metabolism. The regulator PccD was proved to be directly involved in the transcription regulation of the SACE_3398-3400 locus by EMSA and DNase I footprint analysis. The transcriptional levels of SACE_3398-3400 were upregulated 15- to 37-fold in the pccD gene deletion strain (Δ pccD ) and downregulated 3-fold in the pccD overexpression strain (WT/pIB- pccD ), indicating that PccD was a negative transcriptional regulator of SACE_3398-3400. The Δ pccD strain has a higher growth rate than that of the wild-type strain (WT) on Evans medium with propionate as the sole carbon source, whereas the growth of the WT/pIB- pccD strain was repressed. As a possible metabolite of propionate metabolism, methylmalonic acid was identified as an effector molecule of PccD and repressed its regulatory activity. A higher level of erythromycin in the Δ pccD strain was observed compared with that in the wild-type strain. Our study reveals a regulatory mechanism in propionate metabolism and suggests new possibilities for designing metabolic engineering to increase erythromycin yield. IMPORTANCE Our work has identified the novel regulator PccD that controls the expression of the gene for propionyl-CoA carboxylase, a key enzyme in propionyl-CoA assimilation in S. erythraea PccD represses the generation of methylmalonyl-CoA through carboxylation of propionyl-CoA and reveals an effect on biosynthesis of erythromycin. This finding provides novel insight into propionyl-CoA assimilation, and

  9. Anuran amphibians as comparative models for understanding extreme dehydration tolerance: a negative feedback lymphatic mechanism for blood volume regulation.

    Science.gov (United States)

    Hillman, Stanley S

    2018-06-06

    Anurans are the most terrestrial order of amphibians. Couple the high driving forces for evaporative loss in terrestrial environments and their low resistance to evaporation, dehydration is an inevitable stress on their water balance. Anurans have the greatest tolerances for dehydration of any vertebrate group, some species can tolerate evaporative losses up to 45% of their standard body mass. Anurans have remarkable capacities to regulate blood volume with hemorrhage and dehydration compared to mammals. Stabilization of blood volume is central to extending dehydration tolerance, since it avoids both the hypovolemic and hyperviscosity stresses on cardiac output and its consequential effects on aerobic capacity. Anurans, in contrast to mammals, seem incapable of generating a sufficient pressure difference, either oncotically or via interstitial compliance, to move fluid from the interstitium into the capillaries. Couple this inability to generate a sufficient pressure difference for transvascular uptake to a circulatory system with high filtration coefficients and a high rate of plasma turnover is the consequence. The novel lymphatic system of anurans is critical to a remarkable capacity for blood volume regulation. This review summarizes what is known about the anatomical and physiological specializations which are involved in explaining differential blood volume regulation and dehydration tolerance involving a true centrally mediated negative feedback of lymphatic function involving baroreceptors as sensors and lymph hearts, AVT, pulmonary ventilation and specialized skeletal muscles as effectors.

  10. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/β-catenin signaling in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Xiaozhi Rong

    Full Text Available The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3 is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3 domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.

  11. Rapid improvements in emotion regulation predict intensive treatment outcome for patients with bulimia nervosa and purging disorder.

    Science.gov (United States)

    MacDonald, Danielle E; Trottier, Kathryn; Olmsted, Marion P

    2017-10-01

    Rapid and substantial behavior change (RSBC) early in cognitive behavior therapy (CBT) for eating disorders is the strongest known predictor of treatment outcome. Rapid change in other clinically relevant variables may also be important. This study examined whether rapid change in emotion regulation predicted treatment outcomes, beyond the effects of RSBC. Participants were diagnosed with bulimia nervosa or purging disorder (N = 104) and completed ≥6 weeks of CBT-based intensive treatment. Hierarchical regression models were used to test whether rapid change in emotion regulation variables predicted posttreatment outcomes, defined in three ways: (a) binge/purge abstinence; (b) cognitive eating disorder psychopathology; and (c) depression symptoms. Baseline psychopathology and emotion regulation difficulties and RSBC were controlled for. After controlling for baseline variables and RSBC, rapid improvement in access to emotion regulation strategies made significant unique contributions to the prediction of posttreatment binge/purge abstinence, cognitive psychopathology of eating disorders, and depression symptoms. Individuals with eating disorders who rapidly improve their belief that they can effectively modulate negative emotions are more likely to achieve a variety of good treatment outcomes. This supports the formal inclusion of emotion regulation skills early in CBT, and encouraging patient beliefs that these strategies are helpful. © 2017 Wiley Periodicals, Inc.

  12. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder.

    Science.gov (United States)

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K; Van Vleet, Jeremy; Fenstermaker, Ali G; Silhavy, Jennifer L; Scheliga, Judith S; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma M; Celep, Figen; Oraby, Azza; Zaki, Maha S; Al-Baradie, Raidah; Faqeih, Eissa A; Saleh, Mohammed A M; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W; Gleeson, Joseph G

    2013-08-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energ