WorldWideScience

Sample records for early mitogenomic evolution

  1. Marine turtle mitogenome phylogenetics and evolution

    DEFF Research Database (Denmark)

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Luis Alonso

    2012-01-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae...... distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses...... to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all...

  2. The Paleo-Indian Entry into South America According to Mitogenomes.

    Science.gov (United States)

    Brandini, Stefania; Bergamaschi, Paola; Cerna, Marco Fernando; Gandini, Francesca; Bastaroli, Francesca; Bertolini, Emilie; Cereda, Cristina; Ferretti, Luca; Gómez-Carballa, Alberto; Battaglia, Vincenza; Salas, Antonio; Semino, Ornella; Achilli, Alessandro; Olivieri, Anna; Torroni, Antonio

    2018-02-01

    Recent and compelling archaeological evidence attests to human presence ∼14.5 ka at multiple sites in South America and a very early exploitation of extreme high-altitude Andean environments. Considering that, according to genetic evidence, human entry into North America from Beringia most likely occurred ∼16 ka, these archeological findings would imply an extremely rapid spread along the double continent. To shed light on this issue from a genetic perspective, we first completely sequenced 217 novel modern mitogenomes of Native American ancestry from the northwestern area of South America (Ecuador and Peru); we then evaluated them phylogenetically together with other available mitogenomes (430 samples, both modern and ancient) from the same geographic area and, finally, with all closely related mitogenomes from the entire double continent. We detected a large number (N = 48) of novel subhaplogroups, often branching into further subclades, belonging to two classes: those that arose in South America early after its peopling and those that instead originated in North or Central America and reached South America with the first settlers. Coalescence age estimates for these subhaplogroups provide time boundaries indicating that early Paleo-Indians probably moved from North America to the area corresponding to modern Ecuador and Peru over the short time frame of ∼1.5 ka comprised between 16.0 and 14.6 ka. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Life-history evolution and mitogenomic phylogeny of caecilian amphibians.

    Science.gov (United States)

    San Mauro, Diego; Gower, David J; Müller, Hendrik; Loader, Simon P; Zardoya, Rafael; Nussbaum, Ronald A; Wilkinson, Mark

    2014-04-01

    We analyze mitochondrial genomes to reconstruct a robust phylogenetic framework for caecilian amphibians and use this to investigate life-history evolution within the group. Our study comprises 45 caecilian mitochondrial genomes (19 of them newly reported), representing all families and 27 of 32 currently recognized genera, including some for which molecular data had never been reported. Support for all relationships in the inferred phylogenetic tree is high to maximal, and topology tests reject all investigated alternatives, indicating an exceptionally robust molecular phylogenetic framework of caecilian evolution consistent with current morphology-based supraspecific classification. We used the mitogenomic phylogenetic framework to infer ancestral character states and to assess correlation among three life-history traits (free-living larvae, viviparity, specialized pre-adult or vernal teeth), each of which occurs only in some caecilian species. Our results provide evidence that an ancestor of the Seychelles caecilians abandoned direct development and re-evolved a free-living larval stage. This study yields insights into the concurrent evolution of direct development and of vernal teeth in an ancestor of Teresomata that likely gave rise to skin-feeding (maternal dermatophagy) behavior and subsequently enabled evolution of viviparity, with skin feeding possibly a homologous precursor of oviduct feeding in viviparous caecilians. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Ancient mitogenomics

    DEFF Research Database (Denmark)

    Ho, Simon Y. W.; Gilbert, Tom

    2010-01-01

    the technical challenges that face researchers in the field. We catalogue the diverse sequencing methods and source materials used to obtain ancient mitogenomic sequences, summarise the associated genetic and phylogenetic studies that have been conducted, and evaluate the future prospects of the field.......The mitochondrial genome has been the traditional focus of most research into ancient DNA, owing to its high copy number and population-level variability. Despite this long-standing interest in mitochondrial DNA, it was only in 2001 that the first complete ancient mitogenomic sequences were...... obtained. As a result of various methodological developments, including the introduction of high-throughput sequencing techniques, the total number of ancient mitogenome sequences has increased rapidly over the past few years. In this review, we present a brief history of ancient mitogenomics and describe...

  5. Comparative Mitogenomic Analysis of Species Representing Six Subfamilies in the Family Tenebrionidae

    Directory of Open Access Journals (Sweden)

    Hong-Li Zhang

    2016-05-01

    Full Text Available To better understand the architecture and evolution of the mitochondrial genome (mitogenome, mitogenomes of ten specimens representing six subfamilies in Tenebrionidae were selected, and comparative analysis of these mitogenomes was carried out in this study. Ten mitogenomes in this family share a similar gene composition, gene order, nucleotide composition, and codon usage. In addition, our results show that nucleotide bias was strongly influenced by the preference of codon usage for A/T rich codons which significantly correlated with the G + C content of protein coding genes (PCGs. Evolutionary rate analyses reveal that all PCGs have been subjected to a purifying selection, whereas 13 PCGs displayed different evolution rates, among which ATPase subunit 8 (ATP8 showed the highest evolutionary rate. We inferred the secondary structure for all RNA genes of Tenebrio molitor (Te2 and used this as the basis for comparison with the same genes from other Tenebrionidae mitogenomes. Some conserved helices (stems and loops of RNA structures were found in different domains of ribosomal RNAs (rRNAs and the cloverleaf structure of transfer RNAs (tRNAs. With regard to the AT-rich region, we analyzed tandem repeat sequences located in this region and identified some essential elements including T stretches, the consensus motif at the flanking regions of T stretch, and the secondary structure formed by the motif at the 3′ end of T stretch in major strand, which are highly conserved in these species. Furthermore, phylogenetic analyses using mitogenomic data strongly support the relationships among six subfamilies: ((Tenebrionidae incertae sedis + (Diaperinae + Tenebrioninae + (Pimeliinae + Lagriinae, which is consistent with phylogenetic results based on morphological traits.

  6. Parallel Mitogenome Sequencing Alleviates Random Rooting Effect in Phylogeography.

    Science.gov (United States)

    Hirase, Shotaro; Takeshima, Hirohiko; Nishida, Mutsumi; Iwasaki, Wataru

    2016-04-28

    Reliably rooted phylogenetic trees play irreplaceable roles in clarifying diversification in the patterns of species and populations. However, such trees are often unavailable in phylogeographic studies, particularly when the focus is on rapidly expanded populations that exhibit star-like trees. A fundamental bottleneck is known as the random rooting effect, where a distant outgroup tends to root an unrooted tree "randomly." We investigated whether parallel mitochondrial genome (mitogenome) sequencing alleviates this effect in phylogeography using a case study on the Sea of Japan lineage of the intertidal goby Chaenogobius annularis Eighty-three C. annularis individuals were collected and their mitogenomes were determined by high-throughput and low-cost parallel sequencing. Phylogenetic analysis of these mitogenome sequences was conducted to root the Sea of Japan lineage, which has a star-like phylogeny and had not been reliably rooted. The topologies of the bootstrap trees were investigated to determine whether the use of mitogenomes alleviated the random rooting effect. The mitogenome data successfully rooted the Sea of Japan lineage by alleviating the effect, which hindered phylogenetic analysis that used specific gene sequences. The reliable rooting of the lineage led to the discovery of a novel, northern lineage that expanded during an interglacial period with high bootstrap support. Furthermore, the finding of this lineage suggested the existence of additional glacial refugia and provided a new recent calibration point that revised the divergence time estimation between the Sea of Japan and Pacific Ocean lineages. This study illustrates the effectiveness of parallel mitogenome sequencing for solving the random rooting problem in phylogeographic studies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity analysis

    DEFF Research Database (Denmark)

    Liu, Shanlin; Wang, Xin; Xie, Lin

    2016-01-01

    Biodiversity analyses based on next-generation sequencing (NGS) platforms have developed by leaps and bounds in recent years. A PCR-free strategy, which can alleviate taxonomic bias, was considered as a promising approach to delivering reliable species compositions of targeted environments...... data is highly demanding on computing resources. Here, we present a mitogenome enrichment pipeline via a gene capture chip that was designed by virtue of the mitogenome sequences of the 1000 Insect Transcriptome Evolution project (1KITE, www.1kite.org). A mock sample containing 49 species was used...... in abundance. However, the frequencies of input taxa were largely maintained after capture (R2 = 0.81). We suggest that our mitogenome capture approach coupled with PCR-free shotgun sequencing could provide ecological researchers an efficient NGS method to deliver reliable biodiversity assessment....

  8. The complete mitogenome of Fusarium gerlachii

    NARCIS (Netherlands)

    Kulik, Tomasz; Brankovics, Balázs; Sawicki, Jakub; van Diepeningen, Anne D

    2014-01-01

    Abstract The structure of the Fusarium gerlachii mitogenome is similar to that of closely related Fusarium graminearum; it has a total length of 93,428 bp, the base composition of the genome is: A (35.3%), T (32.8%), C (14.7%) and G (17.2%). The mitogenome contains 13 protein-coding genes, 2

  9. Landscape genomics: natural selection drives the evolution of mitogenome in penguins

    OpenAIRE

    Ramos, Barbara; González-Acuña, Daniel; Loyola, David E.; Johnson, Warren E.; Parker, Patricia G.; Massaro, Melanie; Dantas, Gisele P. M.; Miranda, Marcelo D.; Vianna, Juliana A.

    2018-01-01

    Background Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin...

  10. The complete mitogenome of Fusarium culmorum

    NARCIS (Netherlands)

    Kulik, Tomasz; Brankovics, Balázs; Sawicki, Jakub; van Diepeningen, A.D.

    2015-01-01

    The structure of the Fusarium culmorum mitogenome is similar to that of closely related Fusarium spp.: it has a total length of 103,844 bp, the base composition of the genome is the following: A (35.4%), T (32.9%), C (14.6%), and G (17.1%). The mitogenome contains 13 protein-coding genes, 2

  11. Characterization of the complete mitochondrial genome of the storage mite pest Tyrophagus longior (Gervais) (Acari: Acaridae) and comparative mitogenomic analysis of four acarid mites.

    Science.gov (United States)

    Yang, Banghe; Li, Chaopin

    2016-02-01

    Mites of the genus Tyrophagus are economically important polyphagous pest commonly living on stored products and also responsible for allergic reactions to humans. Complete mitochondrial genomes (mitogenomes) and the gene features therein are widely used as molecular markers in the study of population genetics, phylogenetics as well as molecular evolution. However, scarcity on the sequence data has greatly impeded the studies in these areas pertaining to the Acari (mites and ticks). Information on the Tyrophagus mitogenomes is quite critical for phylogenetic evaluation and molecular evolution of the mitogenomes within Acariformes. Herein, we reported the complete mitogenome of the allergenic acarid storage mite Tyrophagus longior (Astigmata: Acaridae), an important member of stored food pests, and compared with those of other three acarid mites. The complete mitogenome of T. longior was a circular molecule of 13,271 bp. Unexpectedly, only 19 transfer RNA genes (tRNAs) were present, lacking trnF, trnS1 and trnQ. Furthermore, it also contained 13 protein-coding genes (PCGs) and 2 genes for rRNA (rrnS and rrnL) commonly detected in metazoans. The four mitogenomes displayed similar characteristics with respect to the gene content, nucleotide comparison, and codon usages. Yet, the gene order of T. longior was different from that in other Acari. The J-strands of the four mitogenomes possessed high A+T content (67.4-70.0%), and exhibited positive GC-skews and negative AT-skews. Most inferred tRNAs of T. longior were extremely truncated, lacking either a D- or T-arm, as found in other acarid mites. In T. longior mitogenome the A+T-rich region was just 50 bp in length and can be folded as a stable stem-loop structure, whereas in the region some structures of microsatellite-like (AT)n and palindromic sequences was not present. Besides, reconstructing of the phylogenetic relationship based on concatenated amino acid sequences of 13 PCGs supported that monophyly of the family

  12. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers.

    Science.gov (United States)

    Wang, Juan; Zhang, Li; Zhang, Qi-Lin; Zhou, Min-Qiang; Wang, Xiao-Tong; Yang, Xing-Zhuo; Yuan, Ming-Long

    2017-01-01

    The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of Lygus pratenszs and re-sequenced the mitogenomes of four mirids (i.e., Apolygus lucorum , Adelphocoris suturalis , Ade. fasciaticollis and Ade. lineolatus ). We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage) were well conserved among these mirids. Four protein-coding genes (PCGs) ( cox1 , cox3 , nad1 and nad3 ) had no length variability, where nad5 showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs ( nad4 and nad5 ) showed relatively high substitution rates at the nucleotide and amino acid levels, where cox1 had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than 1 (barcode sequences were always larger than 1 (1.34 -15.20), indicating that the 658 bp sequences of cox1 may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of Nesidiocoris + ( Trigonotylus + ( Adelphocoris + ( Apolygus + Lygus ))), as revealed by nad4 , nad5 , rrnL and the combined 22 transfer RNA genes (tRNAs), respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes ( nad4 , nad5 and rrnL ) and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification studies.

  13. Mitogenomes from type specimens, a genotyping tool for morphologically simple species: ten genomes of agar-producing red algae.

    Science.gov (United States)

    Boo, Ga Hun; Hughey, Jeffery R; Miller, Kathy Ann; Boo, Sung Min

    2016-10-14

    DNA sequences from type specimens provide independent, objective characters that enhance the value of type specimens and permit the correct application of species names to phylogenetic clades and specimens. We provide mitochondrial genomes (mitogenomes) from archival type specimens of ten species in agar-producing red algal genera Gelidium and Pterocladiella. The genomes contain 43-44 genes, ranging in size from 24,910 to 24,970 bp with highly conserved gene synteny. Low Ka/Ks ratios of apocytochrome b and cytochrome oxidase genes support their utility as markers. Phylogenies of mitogenomes and cox1+rbcL sequences clarified classification at the genus and species levels. Three species formerly in Gelidium and Pterocladia are transferred to Pterocladiella: P. media comb. nov., P. musciformis comb. nov., and P. luxurians comb. and stat. nov. Gelidium sinicola is merged with G. coulteri because they share identical cox1 and rbcL sequences. We describe a new species, Gelidium millariana sp. nov., previously identified as G. isabelae from Australia. We demonstrate that mitogenomes from type specimens provide a new tool for typifying species in the Gelidiales and that there is an urgent need for analyzing mitogenomes from type specimens of red algae and other morphologically simple organisms for insight into their nomenclature, taxonomy and evolution.

  14. The mitogenome of Onchocerca volvulus from the Brazilian Amazonia focus

    Directory of Open Access Journals (Sweden)

    James L Crainey

    2016-01-01

    Full Text Available We report here the first complete mitochondria genome of Onchocerca volvulus from a focus outside of Africa. An O. volvulus mitogenome from the Brazilian Amazonia focus was obtained using a combination of high-throughput and Sanger sequencing technologies. Comparisons made between this mitochondrial genome and publicly available mitochondrial sequences identified 46 variant nucleotide positions and suggested that our Brazilian mitogenome is more closely related to Cameroon-origin mitochondria than West African-origin mitochondria. As well as providing insights into the origins of Latin American onchocerciasis, the Brazilian Amazonia focus mitogenome may also have value as an epidemiological resource.

  15. Reconstruction of mitogenomes by NGS and phylogenetic implications for leaf beetles.

    Science.gov (United States)

    Song, Nan; Yin, Xinming; Zhao, Xincheng; Chen, Junhua; Yin, Jian

    2017-11-30

    Mitochondrial genome (mitogenome) sequences are frequently used to infer phylogenetic relationships of insects at different taxonomic levels. Next-generation sequencing (NGS) techniques are revolutionizing many fields of biology, and allow for acquisition of insect mitogenomes for large number of species simultaneously. In this study, 20 full or partial mitogenomes were sequenced from pooled genomic DNA samples by NGS for leaf beetles (Chrysomelidae). Combined with published mitogenome sequences, a higher level phylogeny of Chrysomelidae was reconstructed under maximum likelihood and Bayesian inference with different models and various data treatments. The results revealed support for a basal position of Bruchinae within Chrysomelidae. In addition, two major subfamily groupings were recovered: one including seven subfamilies, namely Donaciinae, Criocerinae, Spilopyrinae, Cassidinae, Cryptocephalinae, Chlamisinae and Eumolpinae, another containing a non-monophyletic Chrysomelinae and a monophyletic Galerucinae.

  16. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae and evaluation of potential DNA barcoding markers

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2017-08-01

    Full Text Available The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of Lygus pratenszs and re-sequenced the mitogenomes of four mirids (i.e., Apolygus lucorum, Adelphocoris suturalis, Ade. fasciaticollis and Ade. lineolatus. We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage were well conserved among these mirids. Four protein-coding genes (PCGs (cox1, cox3, nad1 and nad3 had no length variability, where nad5 showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs (nad4 and nad5 showed relatively high substitution rates at the nucleotide and amino acid levels, where cox1 had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than 1 (<0.59, but the Ka/Ks values of cox1-barcode sequences were always larger than 1 (1.34 –15.20, indicating that the 658 bp sequences of cox1 may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of Nesidiocoris + (Trigonotylus + (Adelphocoris + (Apolygus + Lygus, as revealed by nad4, nad5, rrnL and the combined 22 transfer RNA genes (tRNAs, respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes (nad4, nad5 and rrnL and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification

  17. Morphological characters are compatible with mitogenomic data in resolving the phylogeny of nymphalid butterflies (lepidoptera: papilionoidea: nymphalidae).

    Science.gov (United States)

    Shi, Qing-Hui; Sun, Xiao-Yan; Wang, Yun-Liang; Hao, Jia-Sheng; Yang, Qun

    2015-01-01

    Nymphalidae is the largest family of butterflies with their phylogenetic relationships not adequately approached to date. The mitochondrial genomes (mitogenomes) of 11 new nymphalid species were reported and a comparative mitogenomic analysis was conducted together with other 22 available nymphalid mitogenomes. A phylogenetic analysis of the 33 species from all 13 currently recognized nymphalid subfamilies was done based on the mitogenomic data set with three Lycaenidae species as the outgroups. The mitogenome comparison showed that the eleven new mitogenomes were similar with those of other butterflies in gene content and order. The reconstructed phylogenetic trees reveal that the nymphalids are made up of five major clades (the nymphaline, heliconiine, satyrine, danaine and libytheine clades), with sister relationship between subfamilies Cyrestinae and Biblidinae, and most likely between subfamilies Morphinae and Satyrinae. This whole mitogenome-based phylogeny is generally congruent with those of former studies based on nuclear-gene and mitogenomic analyses, but differs considerably from the result of morphological cladistic analysis, such as the basal position of Libytheinae in morpho-phylogeny is not confirmed in molecular studies. However, we found that the mitogenomic phylogeny established herein is compatible with selected morphological characters (including developmental and adult morpho-characters).

  18. New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha

    Directory of Open Access Journals (Sweden)

    Wei-Jen eChen

    2014-10-01

    Full Text Available The Acanthomorpha is the largest group of teleost fishes with about one third of extant vertebrate species. In the course of its evolution this lineage experienced several episodes of radiation, leading to a large number of descendant lineages differing profoundly in morphology, ecology, distribution and behavior. Although Acanthomorpha was recognized decades ago, we are only now beginning to decipher its large-scale, time-calibrated phylogeny, a prerequisite to test various evolutionary hypotheses explaining the tremendous diversity of this group. In this study, we provide new insights into the early evolution of the acanthomorphs and the euteleost allies based on the phylogenetic analysis of a newly developed dataset combining nine nuclear and mitochondrial gene markers. Our inferred tree is time-calibrated using 15 fossils, some of which have not been used before. While our phylogeny strongly supports a monophyletic Neoteleostei, Ctenosquamata (i.e., Acanthomorpha plus Myctophiformes, and Acanthopterygii, we find weak support (bootstrap value < 48% for the traditionally defined Acanthomorpha, as well as evidence of non-monophyly for the traditional Paracanthopterygii, Beryciformes, and Percomorpha. We corroborate the new Paracanthopterygii sensu Miya et al. (2005 including Polymixiiformes, Zeiformes, Gadiformes, Percopsiformes, and likely the enigmatic Stylephorus chordatus. Our timetree largely agrees with other recent studies based on nuclear loci in inferring an Early Cretaceous origin for the acanthomorphs followed by a Late Cretaceous/Early Paleogene radiation of major lineages. This is in contrast to mitogenomic studies mostly inferring Jurassic or even Triassic ages for the origin of the acanthomorphs. We compare our results to those of previous studies, and attempt to address some of the issues that may have led to incongruence between the fossil record and the molecular clock studies, as well as between the different molecular

  19. The complete mitochondrial genome of the Chinese hook snout carp Opsariichthys bidens (Actinopterygii: Cypriniformes) and an alternative pattern of mitogenomic evolution in vertebrate

    DEFF Research Database (Denmark)

    Wang, Xuzhen; Wang, Jun; He, Shunping

    2007-01-01

    The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S), 22 tRNA genes, and a no......The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S), 22 tRNA genes...

  20. Evolutionary history of anglerfishes (Teleostei: Lophiiformes: a mitogenomic perspective

    Directory of Open Access Journals (Sweden)

    Shimazaki Mitsuomi

    2010-02-01

    -sea midwater dwellers (Ceratioidei cannot be reconciled with the molecular phylogeny. A relaxed molecular-clock Bayesian analysis of the divergence times suggests that all of the subordinal diversifications have occurred during a relatively short time period between 100 and 130 Myr ago (early to mid Cretaceous. Conclusions The mitogenomic analyses revealed previously unappreciated phylogenetic relationships among the lophiiform suborders and ceratioid familes. Although the latter relationships cannot be reconciled with the earlier hypotheses based on morphology, we found that simple exclusion of the reductive or simplified characters can alleviate some of the conflict. The acquisition of novel features, such as male dwarfism, bioluminescent lures, and unique reproductive modes allowed the deep-sea ceratioids to diversify rapidly in a largely unexploited, food-poor bathypelagic zone (200-2000 m depth relative to the other lophiiforms occurring in shallow coastal areas.

  1. Second generation DNA sequencing of the mitogenome of the Chinstrap penguin and comparative genomics of Antarctic penguins.

    Science.gov (United States)

    Subramanian, Sankar; Lingala, Syamala Gowri; Swaminathan, Siva; Huynen, Leon; Lambert, David

    2014-08-01

    The complete mitochondrial genome of the Chinstrap penguin (Pygoscelis antarcticus) was sequenced and compared with other penguin mitogenomes. The genome is 15,972 bp in length with the number and order of protein coding genes and RNAs being very similar to that of other known penguin mitogenomes. Comparative nucleotide analysis showed the Chinstrap mitogenome shares 94% homology with the mitogenome of its sister species, Pygoscelis adelie (Adélie penguin). Divergence at nonsynonymous nucleotide positions was found to be up to 23 times less than that observed in synonymous positions of protein coding genes, suggesting high selection constraints. The complete mitogenome data will be useful for genetic and evolutionary studies of penguins.

  2. Mitogenomics of 'Old World Acraea' butterflies reveals a highly divergent 'Bematistes'.

    Science.gov (United States)

    Timmermans, M J T N; Lees, D C; Thompson, M J; Sáfián, Sz; Brattström, O

    2016-04-01

    Afrotropical Acraeini butterflies provide a fascinating potential model system to contrast with the Neotropical Heliconiini, yet their phylogeny remains largely unexplored by molecular methods and their generic level nomenclature is still contentious. To test the potential of mitogenomes in a simultaneous analysis of the radiation, we sequenced the full mitochondrial genomes of 19 African species. Analyses show the potential of mitogenomic phylogeny reconstruction in this group. Inferred relationships are largely congruent with a previous multilocus study. We confirm a monophyletic Telchinia to include the Asiatic Pareba with a complicated paraphylum, traditional (sub)genus Acraea, toward the base. The results suggest that several proposed subgenera and some species groups within Telchinia are not monophyletic, while two other (sub)genera could possibly be combined. Telchinia was recovered without strong support as sister to the potentially interesting system of distasteful model butterflies known as Bematistes, a name that is suppressed in some treatments. Surprisingly, we find that this taxon has remarkably divergent mitogenomes and unexpected synapomorphic tRNA rearrangements. These gene order changes, combined with evidence for deviating dN/dS ratios and evidence for episodal diversifying selection, suggest that the ancestral Bematistes mitogenome has had a turbulent past. Our study adds genetic support for treating this clade as a distinct genus, while the alternative option, adopted by some authors, of Acraea being equivalent to Acraeini merely promotes redundancy. We pave the way for more detailed mitogenomic and multi-locus molecular analyses which can determine how many genera are needed (possibly at least six) to divide Acraeini into monophyletic groups that also facilitate communication about their biology. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes

    DEFF Research Database (Denmark)

    Petersen, Gitte; Cuenca, Argelia; Zervas, Athanasios

    2017-01-01

    The order Alismatales is a hotspot for evolution of plant mitochondrial genomes characterized by remarkable differences in genome size, substitution rates, RNA editing, retrotranscription, gene loss and intron loss. Here we have sequenced the complete mitogenomes of Zostera marina and Stratiotes...... aloides, which together with previously sequenced mitogenomes from Butomus and Spirodela, provide new evolutionary evidence of genome size reduction, gene loss and transfer to the nucleus. The Zostera mitogenome includes a large portion of DNA transferred from the plastome, yet it is the smallest known...... mitogenome from a non-parasitic plant. Using a broad sample of the Alismatales, the evolutionary history of ribosomal protein gene loss is analyzed. In Zostera almost all ribosomal protein genes are lost from the mitogenome, but only some can be found in the nucleus....

  4. Application of RNA-seq for mitogenome reconstruction, and reconsideration of long-branch artifacts in Hemiptera phylogeny

    Science.gov (United States)

    Song, Nan; An, Shiheng; Yin, Xinming; Cai, Wanzhi; Li, Hu

    2016-01-01

    Hemiptera make up the largest nonholometabolan insect assemblage. Despite previous efforts to elucidate phylogeny within this group, relationships among the major sub-lineages remain uncertain. In particular, mitochondrial genome (mitogenome) data are still sparse for many important hemipteran insect groups. Recent mitogenomic analyses of Hemiptera have usually included no more than 50 species, with conflicting hypotheses presented. Here, we determined the nearly complete nucleotide sequence of the mitogenome for the aphid species of Rhopalosiphum padi using RNA-seq plus gap filling. The 15,205 bp mitogenome included all mitochondrial genes except for trnF. The mitogenome organization and size for R. padi are similar to previously reported aphid species. In addition, the phylogenetic relationships for Hemiptera were examined using a mitogenomic dataset which included sequences from 103 ingroup species and 19 outgroup species. Our results showed that the seven species representing the Aleyrodidae exhibit extremely long branches, and always cluster with long-branched outgroups. This lead to the failure of recovering a monophyletic Hemiptera in most analyses. The data treatment of Degen-coding for protein-coding genes and the site-heterogeneous CAT model show improved suppression of the long-branch effect. Under these conditions, the Sternorrhyncha was often recovered as the most basal clade in Hemiptera. PMID:27633117

  5. A South American Prehistoric Mitogenome: Context, Continuity, and the Origin of Haplogroup C1d

    Science.gov (United States)

    Sans, Mónica; Figueiro, Gonzalo; Hughes, Cris E.; Lindo, John; Hidalgo, Pedro C.; Malhi, Ripan S.

    2015-01-01

    Based on mitochondrial DNA (mtDNA), it has been estimated that at least 15 founder haplogroups peopled the Americas. Subhaplogroup C1d3 was defined based on the mitogenome of a living individual from Uruguay that carried a lineage previously identified in hypervariable region I sequences from ancient and modern Uruguayan individuals. When complete mitogenomes were studied, additional substitutions were found in the coding region of the mitochondrial genome. Using a complete ancient mitogenome and three modern mitogenomes, we aim to clarify the ancestral state of subhaplogroup C1d3 and to better understand the peopling of the region of the Río de la Plata basin, as well as of the builders of the mounds from which the ancient individuals were recovered. The ancient mitogenome, belonging to a female dated to 1,610±46 years before present, was identical to the mitogenome of one of the modern individuals. All individuals share the mutations defining subhaplogroup C1d3. We estimated an age of 8,974 (5,748–12,261) years for the most recent common ancestor of C1d3, in agreement with the initial peopling of the geographic region. No individuals belonging to the defined lineage were found outside of Uruguay, which raises questions regarding the mobility of the prehistoric inhabitants of the country. Moreover, the present study shows the continuity of Native lineages over at least 6,000 years. PMID:26509686

  6. The complete mitogenome of brown trout (Salmo trutta fario) and its phylogeny.

    Science.gov (United States)

    Sahoo, Prabhati K; Singh, Lalit; Sharma, Lata; Kumar, Rohit; Singh, Vijay K; Ali, S; Singh, Atul K; Barat, Ashoktaru

    2016-11-01

    The complete mitochondrial genome of Salmo trutta fario, commonly known as brown trout, was sequenced using NGS technology. The mitochondrial genome size was determined to be 16 677 bp and composed of 13 protein-coding gene (PCG), 22 tRNAs, 2 rRNA genes, and 1 putative control region. The overall mitogenome composition of S. trutta fario is A: 28.13%, G: 16.44%, C: 29.47%, and T: 25.96% with A + T content of 54.09% and G + C content of 45.91%. The gene arrangement and the order are similar to other vertebrates. The phylogenetic tree constructed using 42 complete mitogenomes of Salmonidae fishes confirmed the position of the present species under the genus Salmo of subfamily Salmoninae. NGS platform was proved to be a rapid and time-saving technology to reveal complete mitogenomes.

  7. Mitogenomes from The 1000 Genome Project reveal new Near Eastern features in present-day Tuscans.

    Directory of Open Access Journals (Sweden)

    Alberto Gómez-Carballa

    Full Text Available Genetic analyses have recently been carried out on present-day Tuscans (Central Italy in order to investigate their presumable recent Near East ancestry in connection with the long-standing debate on the origins of the Etruscan civilization. We retrieved mitogenomes and genome-wide SNP data from 110 Tuscans analyzed within the context of The 1000 Genome Project. For phylogeographic and evolutionary analysis we made use of a large worldwide database of entire mitogenomes (>26,000 and partial control region sequences (>180,000.Different analyses reveal the presence of typical Near East haplotypes in Tuscans representing isolated members of various mtDNA phylogenetic branches. As a whole, the Near East component in Tuscan mitogenomes can be estimated at about 8%; a proportion that is comparable to previous estimates but significantly lower than admixture estimates obtained from autosomal SNP data (21%. Phylogeographic and evolutionary inter-population comparisons indicate that the main signal of Near Eastern Tuscan mitogenomes comes from Iran.Mitogenomes of recent Near East origin in present-day Tuscans do not show local or regional variation. This points to a demographic scenario that is compatible with a recent arrival of Near Easterners to this region in Italy with no founder events or bottlenecks.

  8. The complete mitogenome of a 500-year-old Inca child mummy

    OpenAIRE

    G?mez-Carballa, Alberto; Catelli, Laura; Pardo-Seco, Jacobo; Martin?n-Torres, Federico; Roewer, Lutz; Vullo, Carlos; Salas, Antonio

    2015-01-01

    In 1985, a frozen mummy was found in Cerro Aconcagua (Argentina). Archaeological studies identified the mummy as a seven-year-old Inca sacrifice victim who lived >500 years ago, at the time of the expansion of the Inca Empire towards the southern cone. The sequence of its entire mitogenome was obtained. After querying a large worldwide database of mitogenomes (>28,000) we found that the Inca haplotype belonged to a branch of haplogroup C1b (C1bi) that has not yet been identified in modern Nat...

  9. Complete nucleotide sequence and organization of the mitogenome ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-01

    Feb 1, 2010 ... In this study, the complete mitochondrial genome (mitogenome) of E. autonoe was .... skew” was calculated for the PCGs between two strands and the ..... codon stem and 7 bp in the anticodon loop, but also con- tained a ...

  10. Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny.

    Science.gov (United States)

    Maddock, Simon T; Briscoe, Andrew G; Wilkinson, Mark; Waeschenbach, Andrea; San Mauro, Diego; Day, Julia J; Littlewood, D Tim J; Foster, Peter G; Nussbaum, Ronald A; Gower, David J

    2016-01-01

    Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a 'traditional' Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing platforms (Illumina's HiSeq and MiSeq, Roche's 454 GS FLX, and Life Technologies' Ion Torrent) to produce seven (near-) complete mitogenomes from six species that form a small radiation of caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun sequencing) using the MiSeq platform. Bayesian inference and maximum likelihood analyses using seven different partitioning strategies were unable to resolve compellingly all phylogenetic relationships among the Seychelles caecilian species, indicating the need for additional data in this case.

  11. Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny.

    Directory of Open Access Journals (Sweden)

    Simon T Maddock

    Full Text Available Mitochondrial genome (mitogenome sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a 'traditional' Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing on four different sequencing platforms (Illumina's HiSeq and MiSeq, Roche's 454 GS FLX, and Life Technologies' Ion Torrent to produce seven (near- complete mitogenomes from six species that form a small radiation of caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun sequencing using the MiSeq platform. Bayesian inference and maximum likelihood analyses using seven different partitioning strategies were unable to resolve compellingly all phylogenetic relationships among the Seychelles caecilian species, indicating the need for additional data in this case.

  12. Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous-Tertiary boundary.

    Science.gov (United States)

    Roos, Jonas; Aggarwal, Ramesh K; Janke, Axel

    2007-11-01

    The mitochondrial genomes of the dwarf crocodile, Osteolaemus tetraspis, and two species of dwarf caimans, the smooth-fronted caiman, Paleosuchus trigonatus, and Cuvier's dwarf caiman, Paleosuchus palpebrosus, were sequenced and included in a mitogenomic phylogenetic study. The phylogenetic analyses, which included a total of ten crocodylian species, yielded strong support to a basal split between Crocodylidae and Alligatoridae. Osteolaemus fell within the Crocodylidae as the sister group to Crocodylus. Gavialis and Tomistoma, which joined on a common branch, constituted a sister group to Crocodylus/Osteolaemus. This suggests that extant crocodylians are organized in two families: Alligatoridae and Crocodylidae. Within the Alligatoridae there was a basal split between Alligator and a branch that contained Paleosuchus and Caiman. The analyses also provided molecular estimates of various divergences applying recently established crocodylian and outgroup fossil calibration points. Molecular estimates based on amino acid data placed the divergence between Crocodylidae and Alligatoridae at 97-103 million years ago and that between Alligator and Caiman/Paleosuchus at 65-72 million years ago. Other crocodilian divergences were placed after the Cretaceous-Tertiary boundary. Thus, according to the molecular estimates, three extant crocodylian lineages have their roots in the Cretaceous. Considering the crocodylian diversification in the Cretaceous the molecular datings suggest that the extinction of the dinosaurs was also to some extent paralleled in the crocodylian evolution. However, for whatever reason, some crocodylian lineages survived into the Tertiary.

  13. Multiple independent structural dynamic events in the evolution of snake mitochondrial genomes.

    Science.gov (United States)

    Qian, Lifu; Wang, Hui; Yan, Jie; Pan, Tao; Jiang, Shanqun; Rao, Dingqi; Zhang, Baowei

    2018-05-10

    Mitochondrial DNA sequences have long been used in phylogenetic studies. However, little attention has been paid to the changes in gene arrangement patterns in the snake's mitogenome. Here, we analyzed the complete mitogenome sequences and structures of 65 snake species from 14 families and examined their structural patterns, organization and evolution. Our purpose was to further investigate the evolutionary implications and possible rearrangement mechanisms of the mitogenome within snakes. In total, eleven types of mitochondrial gene arrangement patterns were detected (Type I, II, III, III-A, III-B, III-B1, III-C, III-D, III-E, III-F, III-G), with mitochondrial genome rearrangements being a major trend in snakes, especially in Alethinophidia. In snake mitogenomes, the rearrangements mainly involved three processes, gene loss, translocation and duplication. Within Scolecophidia, the O L was lost several times in Typhlopidae and Leptotyphlopidae, but persisted as a plesiomorphy in the Alethinophidia. Duplication of the control region and translocation of the tRNA Leu gene are two visible features in Alethinophidian mitochondrial genomes. Independently and stochastically, the duplication of pseudo-Pro (P*) emerged in seven different lineages of unequal size in three families, indicating that the presence of P* was a polytopic event in the mitogenome. The WANCY tRNA gene cluster and the control regions and their adjacent segments were hotspots for mitogenome rearrangement. Maintenance of duplicate control regions may be the source for snake mitogenome structural diversity.

  14. Revisiting the mitogenomic phylogeny of Salmoninae: new insights thanks to recent sequencing advances

    Directory of Open Access Journals (Sweden)

    Jose L. Horreo

    2017-09-01

    Full Text Available The phylogeny of the Salmonidae family, the only living one of the Order Salmoniformes, remains still unclear because of several reasons. Such reasons include insufficient taxon sampling and/or DNA information. The use of complete mitochondrial genomes (mitogenomics could provide some light on it, but despite the high number of mitogenomes of species belonging to this family published during last years, an integrative work containing all this information has not been done. In this work, the phylogeny of 46 Salmonidae species was inferred from their mitogenomic sequences. Results include a Bayesian molecular-dated phylogenetic tree with very high statistical support showing Coregoninae and Salmoninae as sister subfamilies, as well as several new phylogenetic relationships among species and genus of the family. All these findings contribute to improve our understanding of the Salmonidae systematics and could have consequences on related evolutionary studies, as well as highlight the importance of revisiting phylogenies with integrative studies.

  15. Next generation sequencing and comparative analyses of Xenopus mitogenomes

    Directory of Open Access Journals (Sweden)

    Lloyd Rhiannon E

    2012-09-01

    Full Text Available Abstract Background Mitochondrial genomes comprise a small but critical component of the total DNA in eukaryotic organisms. They encode several key proteins for the cell’s major energy producing apparatus, the mitochondrial respiratory chain. Additonally, their nucleotide and amino acid sequences are of great utility as markers for systematics, molecular ecology and forensics. Their characterization through nucleotide sequencing is a fundamental starting point in mitogenomics. Methods to amplify complete mitochondrial genomes rapidly and efficiently from microgram quantities of tissue of single individuals are, however, not always available. Here we validate two approaches, which combine long-PCR with Roche 454 pyrosequencing technology, to obtain two complete mitochondrial genomes from individual amphibian species. Results We obtained two new xenopus frogs (Xenopus borealis and X. victorianus complete mitochondrial genome sequences by means of long-PCR followed by 454 of individual genomes (approach 1 or of multiple pooled genomes (approach 2, the mean depth of coverage per nucleotide was 9823 and 186, respectively. We also characterised and compared the new mitogenomes against their sister taxa; X. laevis and Silurana tropicalis, two of the most intensely studied amphibians. Our results demonstrate how our approaches can be used to obtain complete amphibian mitogenomes with depths of coverage that far surpass traditional primer-walking strategies, at either the same cost or less. Our results also demonstrate: that the size, gene content and order are the same among xenopus mitogenomes and that S. tropicalis form a separate clade to the other xenopus, among which X. laevis and X. victorianus were most closely related. Nucleotide and amino acid diversity was found to vary across the xenopus mitogenomes, with the greatest diversity observed in the Complex 1 gene nad4l and the least diversity observed in Complex 4 genes (cox1-3. All protein

  16. Mitochondrial genome of the stonefly Kamimuria wangi (Plecoptera: Perlidae) and phylogenetic position of plecoptera based on mitogenomes.

    Science.gov (United States)

    Yu-Han, Qian; Hai-Yan, Wu; Xiao-Yu, Ji; Wei-Wei, Yu; Yu-Zhou, Du

    2014-01-01

    This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848-15651) and stem-loop 2 (15965-15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.

  17. Mitochondrial genome of the stonefly Kamimuria wangi (Plecoptera: Perlidae and phylogenetic position of plecoptera based on mitogenomes.

    Directory of Open Access Journals (Sweden)

    Qian Yu-Han

    Full Text Available This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848-15651 and stem-loop 2 (15965-15998. The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.

  18. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes).

    Science.gov (United States)

    Amaral, Cesar R L; Pereira, Filipe; Silva, Dayse A; Amorim, António; de Carvalho, Elizeu F

    2017-09-20

    Here we present a mitogenomic perspective on the evolution of sharks and rays, being a first glance on the complete mitochondrial history of such an old and diversified group of vertebrates. The Elasmobranchii is a diverse subclass of Chondrichthyes, or cartilaginous fish, with about 1200 species of ocean- and freshwater-dwelling fishes spread all over the world's seas, including some of the ocean's largest fishes. The group dates back about 400 million years near the Devonian-Silurian boundary, being nowadays represented by several derivative lineages, mainly related to Mesozoic forms. Although considered of ecological, commercial and conservation importance, the phylogeny of this old group is poorly studied and still under debate. Here we apply a molecular systematic approach on 82 complete mitochondrial genomes to investigate the phylogeny of the Elasmobranchii. By using maximum likelihood (ML) and Bayesian analyses, we found a clear separation within the shark clade between the Galeomorphii and the Squalomorphii, as well as sister taxa relationships between the Carcharhiniformes and the Lamniformes. Moreover, we found that Pristoidei clusters within the Rhinobatoidei, having been recovered as the sister taxon of the Rhinobatos genus in a clade which also includes the basal Zapteryx. Our results also reject the Hypnosqualea hypothesis, which proposes that the Batoidea should be placed within the Selachii.

  19. The complete mitogenome of a 500-year-old Inca child mummy.

    Science.gov (United States)

    Gómez-Carballa, Alberto; Catelli, Laura; Pardo-Seco, Jacobo; Martinón-Torres, Federico; Roewer, Lutz; Vullo, Carlos; Salas, Antonio

    2015-11-12

    In 1985, a frozen mummy was found in Cerro Aconcagua (Argentina). Archaeological studies identified the mummy as a seven-year-old Inca sacrifice victim who lived >500 years ago, at the time of the expansion of the Inca Empire towards the southern cone. The sequence of its entire mitogenome was obtained. After querying a large worldwide database of mitogenomes (>28,000) we found that the Inca haplotype belonged to a branch of haplogroup C1b (C1bi) that has not yet been identified in modern Native Americans. The expansion of C1b into the Americas, as estimated using 203 C1b mitogenomes, dates to the initial Paleoindian settlements (~18.3 thousand years ago [kya]); however, its internal variation differs between Mesoamerica and South America. By querying large databases of control region haplotypes (>150,000), we found only a few C1bi members in Peru and Bolivia (e.g. Aymaras), including one haplotype retrieved from ancient DNA of an individual belonging to the Wari Empire (Peruvian Andes). Overall, the results suggest that the profile of the mummy represents a very rare sub-clade that arose 14.3 (5-23.6) kya and could have been more frequent in the past. A Peruvian Inca origin for present-day C1bi haplotypes would satisfy both the genetic and paleo-anthropological findings.

  20. Mitogenomic phylogenetic analyses of the Delphinidae with an emphasis on the Globicephalinae

    Directory of Open Access Journals (Sweden)

    de Stephanis Renaud

    2011-03-01

    Full Text Available Abstract Background Previous DNA-based phylogenetic studies of the Delphinidae family suggest it has undergone rapid diversification, as characterised by unresolved and poorly supported taxonomic relationships (polytomies for some of the species within this group. Using an increased amount of sequence data we test between alternative hypotheses of soft polytomies caused by rapid speciation, slow evolutionary rate and/or insufficient sequence data, and hard polytomies caused by simultaneous speciation within this family. Combining the mitogenome sequences of five new and 12 previously published species within the Delphinidae, we used Bayesian and maximum-likelihood methods to estimate the phylogeny from partitioned and unpartitioned mitogenome sequences. Further ad hoc tests were then conducted to estimate the support for alternative topologies. Results We found high support for all the relationships within our reconstructed phylogenies, and topologies were consistent between the Bayesian and maximum-likelihood trees inferred from partitioned and unpartitioned data. Resolved relationships included the placement of the killer whale (Orcinus orca as sister taxon to the rest of the Globicephalinae subfamily, placement of the Risso's dolphin (Grampus griseus within the Globicephalinae subfamily, removal of the white-beaked dolphin (Lagenorhynchus albirostris from the Delphininae subfamily and the placement of the rough-toothed dolphin (Steno bredanensis as sister taxon to the rest of the Delphininae subfamily rather than within the Globicephalinae subfamily. The additional testing of alternative topologies allowed us to reject all other putative relationships, with the exception that we were unable to reject the hypothesis that the relationship between L. albirostris and the Globicephalinae and Delphininae subfamilies was polytomic. Conclusion Despite their rapid diversification, the increased sequence data yielded by mitogenomes enables the

  1. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples.

    Science.gov (United States)

    Peck, Michelle A; Sturk-Andreaggi, Kimberly; Thomas, Jacqueline T; Oliver, Robert S; Barritt-Ross, Suzanne; Marshall, Charla

    2018-05-01

    Generating mitochondrial genome (mitogenome) data from reference samples in a rapid and efficient manner is critical to harnessing the greater power of discrimination of the entire mitochondrial DNA (mtDNA) marker. The method of long-range target enrichment, Nextera XT library preparation, and Illumina sequencing on the MiSeq is a well-established technique for generating mitogenome data from high-quality samples. To this end, a validation was conducted for this mitogenome method processing up to 24 samples simultaneously along with analysis in the CLC Genomics Workbench and utilizing the AQME (AFDIL-QIAGEN mtDNA Expert) tool to generate forensic profiles. This validation followed the Federal Bureau of Investigation's Quality Assurance Standards (QAS) for forensic DNA testing laboratories and the Scientific Working Group on DNA Analysis Methods (SWGDAM) validation guidelines. The evaluation of control DNA, non-probative samples, blank controls, mixtures, and nonhuman samples demonstrated the validity of this method. Specifically, the sensitivity was established at ≥25 pg of nuclear DNA input for accurate mitogenome profile generation. Unreproducible low-level variants were observed in samples with low amplicon yields. Further, variant quality was shown to be a useful metric for identifying sequencing error and crosstalk. Success of this method was demonstrated with a variety of reference sample substrates and extract types. These studies further demonstrate the advantages of using NGS techniques by highlighting the quantitative nature of heteroplasmy detection. The results presented herein from more than 175 samples processed in ten sequencing runs, show this mitogenome sequencing method and analysis strategy to be valid for the generation of reference data. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The Nothoaspis amazoniensis Complete Mitogenome: A Comparative and Phylogenetic Analysis

    Directory of Open Access Journals (Sweden)

    Paulo H. C. Lima

    2018-03-01

    Full Text Available The molecular biology era, together with morphology, molecular phylogenetics, bioinformatics, and high-throughput sequencing technologies, improved the taxonomic identification of Argasidae family members, especially when considering specimens at different development stages, which remains a great difficulty for acarologists. These tools could provide important data and insights on the history and evolutionary relationships of argasids. To better understand these relationships, we sequenced and assembled the first complete mitochondrial genome of Nothoaspis amazoniensis. We used phylogenomics to identify the evolutionary history of this species of tick, comparing the data obtained with 26 complete mitochondrial sequences available in biological databases. The results demonstrated the absence of genetic rearrangements, high similarity and identity, and a close organizational link between the mitogenomes of N. amazoniensis and other argasids analyzed. In addition, the mitogenome had a monophyletic cladistic taxonomic arrangement, encompassed by representatives of the Afrotropical and Neotropical regions, with specific parasitism in bats, which may be indicative of an evolutionary process of cospeciation between vectors and the host.

  3. A performance evaluation of Nextera XT and KAPA HyperPlus for rapid Illumina library preparation of long-range mitogenome amplicons.

    Science.gov (United States)

    Ring, Joseph D; Sturk-Andreaggi, Kimberly; Peck, Michelle A; Marshall, Charla

    2017-07-01

    Next-generation sequencing (NGS) facilitates the rapid and high-throughput generation of human mitochondrial genome (mitogenome) data to build population and reference databases for forensic comparisons. To this end, long-range amplification provides an effective method of target enrichment that is amenable to library preparation assays employing DNA fragmentation. This study compared the Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA) and the KAPA HyperPlus Library Preparation Kit (Kapa Biosystems, Wilmington, MA) for enzymatic fragmentation and indexing of ∼8500bp mitogenome amplicons for Illumina sequencing. The Nextera XT libraries produced low-coverage regions that were consistent across all samples, while the HyperPlus libraries resulted in uniformly high coverage across the mitogenome, even with reduced-volume reaction conditions. The balanced coverage observed from KAPA HyperPlus libraries enables not only low-level variant calling across the mitogenome but also increased sample multiplexing for greater processing efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Phylogenetic inference of calyptrates, with the first mitogenomes for Gasterophilinae (Diptera: Oestridae) and Paramacronychiinae (Diptera: Sarcophagidae)

    Science.gov (United States)

    Zhang, Dong; Yan, Liping; Zhang, Ming; Chu, Hongjun; Cao, Jie; Li, Kai; Hu, Defu; Pape, Thomas

    2016-01-01

    The complete mitogenome of the horse stomach bot fly Gasterophilus pecorum (Fabricius) and a near-complete mitogenome of Wohlfahrt's wound myiasis fly Wohlfahrtia magnifica (Schiner) were sequenced. The mitogenomes contain the typical 37 mitogenes found in metazoans, organized in the same order and orientation as in other cyclorrhaphan Diptera. Phylogenetic analyses of mitogenomes from 38 calyptrate taxa with and without two non-calyptrate outgroups were performed using Bayesian Inference and Maximum Likelihood. Three sub-analyses were performed on the concatenated data: (1) not partitioned; (2) partitioned by gene; (3) 3rd codon positions of protein-coding genes omitted. We estimated the contribution of each of the mitochondrial genes for phylogenetic analysis, as well as the effect of some popular methodologies on calyptrate phylogeny reconstruction. In the favoured trees, the Oestroidea are nested within the muscoid grade. Relationships at the family level within Oestroidea are (remaining Calliphoridae (Sarcophagidae (Oestridae, Pollenia + Tachinidae))). Our mito-phylogenetic reconstruction of the Calyptratae presents the most extensive taxon coverage so far, and the risk of long-branch attraction is reduced by an appropriate selection of outgroups. We find that in the Calyptratae the ND2, ND5, ND1, COIII, and COI genes are more phylogenetically informative compared with other mitochondrial protein-coding genes. Our study provides evidence that data partitioning and the inclusion of conserved tRNA genes have little influence on calyptrate phylogeny reconstruction, and that the 3rd codon positions of protein-coding genes are not saturated and therefore should be included. PMID:27019632

  5. Stochastic evolution of cosmological parameters in the early universe

    Indian Academy of Sciences (India)

    We develop a stochastic formulation of cosmology in the early universe, after considering the scatter in the redshift-apparent magnitude diagram in the early epochs as an observational evidence for the non-deterministic evolution of early universe. We consider the stochastic evolution of density parameter in the early ...

  6. Analyses of Mitogenome Sequences Revealed that Asian Citrus Psyllids (Diaphorina citri) from California Were Related to Those from Florida.

    Science.gov (United States)

    Wu, Fengnian; Kumagai, Luci; Cen, Yijing; Chen, Jianchi; Wallis, Christopher M; Polek, MaryLou; Jiang, Hongyan; Zheng, Zheng; Liang, Guangwen; Deng, Xiaoling

    2017-08-31

    Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) transmits "Candidatus Liberibacter asiaticus" (CLas), an unculturable alpha-proteobacterium associated with citrus Huanglongbing (HLB). CLas has recently been found in California. Understanding ACP population diversity is necessary for HLB regulatory practices aimed at reducing CLas spread. In this study, two circular ACP mitogenome sequences from California (mt-CApsy, ~15,027 bp) and Florida (mt-FLpsy, ~15,012 bp), USA, were acquired. Each mitogenome contained 13 protein coding genes, 2 ribosomal RNA and 22 transfer RNA genes, and a control region varying in sizes. The Californian mt-CApsy was identical to the Floridian mt-FLpsy, but different from the mitogenome (mt-GDpsy) of Guangdong, China, in 50 single nucleotide polymorphisms (SNPs). Further analyses were performed on sequences in cox1 and trnAsn regions with 100 ACPs, SNPs in nad1-nad4-nad5 locus through PCR with 252 ACP samples. All results showed the presence of a Chinese ACP cluster (CAC) and an American ACP cluster (AAC). We proposed that ACP in California was likely not introduced from China based on our current ACP collection but somewhere in America. However, more studies with ACP samples from around the world are needed. ACP mitogenome sequence analyses will facilitate ACP population research.

  7. The mitogenome of a 35,000-year-old Homo sapiens from Europe supports a Palaeolithic back-migration to Africa.

    Science.gov (United States)

    Hervella, M; Svensson, E M; Alberdi, A; Günther, T; Izagirre, N; Munters, A R; Alonso, S; Ioana, M; Ridiche, F; Soficaru, A; Jakobsson, M; Netea, M G; de-la-Rua, C

    2016-05-19

    After the dispersal of modern humans (Homo sapiens) Out of Africa, hominins with a similar morphology to that of present-day humans initiated the gradual demographic expansion into Eurasia. The mitogenome (33-fold coverage) of the Peştera Muierii 1 individual (PM1) from Romania (35 ky cal BP) we present in this article corresponds fully to Homo sapiens, whilst exhibiting a mosaic of morphological features related to both modern humans and Neandertals. We have identified the PM1 mitogenome as a basal haplogroup U6*, not previously found in any ancient or present-day humans. The derived U6 haplotypes are predominantly found in present-day North-Western African populations. Concomitantly, those found in Europe have been attributed to recent gene-flow from North Africa. The presence of the basal haplogroup U6* in South East Europe (Romania) at 35 ky BP confirms a Eurasian origin of the U6 mitochondrial lineage. Consequently, we propose that the PM1 lineage is an offshoot to South East Europe that can be traced to the Early Upper Paleolithic back migration from Western Asia to North Africa, during which the U6 lineage diversified, until the emergence of the present-day U6 African lineages.

  8. Complete mitogenomic sequence of the Critically Endangered Northern River Shark Glyphis garricki (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Feutry, Pierre; Grewe, Peter M; Kyne, Peter M; Chen, Xiao

    2015-01-01

    In this study we describe the first complete mitochondrial sequence for the Critically Endangered Northern River shark Glyphis garricki. The complete mitochondrial sequence is 16,702 bp in length, contains 37 genes and one control region with the typical gene order and transcriptional direction of vertebrate mitogenomes. The overall base composition is 31.5% A, 26.3% C, 12.9% G and 29.3% T. The length of 22 tRNA genes ranged from 68 (tRNA-Ser2 and tRNA-Cys) to 75 (tRNA-Leu1) bp. The control region of G. garricki was 1067 bp in length with high A+T (67.9%) and poor G (12.6%) content. The mitogenomic characters (base composition, codon usage and gene length) of G. garricki were very similar to Glyphis glyphis.

  9. Landscape genomics: natural selection drives the evolution of mitogenome in penguins.

    Science.gov (United States)

    Ramos, Barbara; González-Acuña, Daniel; Loyola, David E; Johnson, Warren E; Parker, Patricia G; Massaro, Melanie; Dantas, Gisele P M; Miranda, Marcelo D; Vianna, Juliana A

    2018-01-16

    Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin species distributed from the equator to Antarctica. Signatures of selection of 13 mitochondrial protein-coding genes were evaluated by comparing among species within and among genera (Spheniscus, Pygoscelis, Eudyptula, Eudyptes and Aptenodytes). The genetic data were correlated with environmental data obtained through remote sensing (sea surface temperature [SST], chlorophyll levels [Chl] and a combination of SST and Chl [COM]) through the distribution of these species. We identified the complete mtDNA genomes of several penguin species, including ND6 and 8 tRNAs on the light strand and 12 protein coding genes, 14 tRNAs and two rRNAs positioned on the heavy strand. The highest diversity was found in NADH dehydrogenase genes and the lowest in COX genes. The lowest evolutionary divergence among species was between Humboldt (Spheniscus humboldti) and Galapagos (S. mendiculus) penguins (0.004), while the highest was observed between little penguin (Eudyptula minor) and Adélie penguin (Pygoscelis adeliae) (0.097). We identified a signature of purifying selection (Ka/Ks penguins. In contrast, COX1 had a signature of strong negative selection. ND4 Ka/Ks ratios were highly correlated with SST (Mantel, p-value: 0.0001; GLM, p-value: 0.00001) and thus may be related to climate adaptation throughout penguin speciation. These results identify mtDNA candidate genes under selection which could be involved in broad-scale adaptations of penguins to their environment. Such knowledge may be

  10. The mitogenome of a 35,000-year-old Homo sapiens from Europe supports a Palaeolithic back-migration to Africa

    OpenAIRE

    Hervella, M.; Svensson, E. M.; Alberdi, A.; G?nther, T.; Izagirre, N.; Munters, A. R.; Alonso, S.; Ioana, M.; Ridiche, F.; Soficaru, A.; Jakobsson, M.; Netea, M. G.; de-la-Rua, C.

    2016-01-01

    After the dispersal of modern humans (Homo sapiens) Out of Africa, hominins with a similar morphology to that of present-day humans initiated the gradual demographic expansion into Eurasia. The mitogenome (33-fold coverage) of the Pestera Muierii 1 individual (PM1) from Romania (35 ky cal BP) we present in this article corresponds fully to Homo sapiens, whilst exhibiting a mosaic of morphological features related to both modern humans and Neandertals. We have identified the PM1 mitogenome as ...

  11. Nearly complete mitogenome of hairy sawfly, Corynis lateralis (Brullé, 1832) (Hymenoptera: Cimbicidae): rearrangements in the IQM and ARNS1EF gene clusters.

    Science.gov (United States)

    Doğan, Özgül; Korkmaz, E Mahir

    2017-10-01

    The Cimbicidae is a small family of the primitive and relatively less diverse suborder Symphyta (Hymenoptera). Here, nearly complete mitochondrial genome (mitogenome) of hairy sawfly, Corynis lateralis (Hymenoptera: Cimbicidae) was sequenced using next generation sequencing and comparatively analysed with the mitogenome of Trichiosoma anthracinum. The sequenced length of C. lateralis mitogenome was 14,899 bp with an A+T content of 80.60%. All protein coding genes (PCGs) are initiated by ATN codons and all are terminated with TAR or T- stop codon. All tRNA genes preferred usual anticodons. Compared with the inferred insect ancestral mitogenome, two tRNA rearrangements were observed in the IQM and ARNS1EF gene clusters, representing a new event not previously reported in Symphyta. An illicit priming of replication and/or intra/inter-mitochondrial recombination and TDRL seem to be responsible mechanisms for the rearrangement events in these gene clusters. Phylogenetic analyses confirmed the position of Corynis within Cimbicidae and recovered a relationship of Tenthredinoidea + (Cephoidea + Orussoidea) in Symphyta.

  12. The elusive nature of adaptive mitochondrial DNA evolution of an Arctic lineage prone to frequent introgression

    DEFF Research Database (Denmark)

    Melo-Ferreira, Jose; Vilela, Joana; Fonseca, Miguel M.

    2014-01-01

    understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread...

  13. Low diversity in the mitogenome of sperm whales revealed by next-generation sequencing

    Science.gov (United States)

    Alana Alexander; Debbie Steel; Beth Slikas; Kendra Hoekzema; Colm Carraher; Matthew Parks; Richard Cronn; C. Scott Baker

    2012-01-01

    Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20...

  14. Solar Radiation as Driving Force In Early Evolution

    Science.gov (United States)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  15. Comparative mitogenomics, phylogeny and evolutionary history of Leptogorgia (Gorgoniidae).

    Science.gov (United States)

    Poliseno, Angelo; Feregrino, Christian; Sartoretto, Stéphane; Aurelle, Didier; Wörheide, Gert; McFadden, Catherine S; Vargas, Sergio

    2017-10-01

    Molecular analyses of the ecologically important gorgonian octocoral genus Leptogorgia are scant and mostly deal with few species from restricted geographical regions. Here we explore the phylogenetic relationships and the evolutionary history of Leptogorgia using the complete mitochondrial genomes of six Leptogorgia species from different localities in the Atlantic, Mediterranean and eastern Pacific as well as four other genera of Gorgoniidae and Plexauridae. Our mitogenomic analyses showed high inter-specific diversity, variable nucleotide substitution rates and, for some species, novel genomic features such as ORFs of unknown function. The phylogenetic analyses using complete mitogenomes and an extended mtMutS dataset recovered Leptogorgia as polyphyletic, and the species considered in the analyses were split into two defined groups corresponding to different geographic regions, namely the eastern Pacific and the Atlantic-Mediterranean. Our phylogenetic analysis based on mtMutS also showed a clear separation between the eastern Atlantic and South African Leptogorgia, suggesting the need of a taxonomic revision for these forms. A time-calibrated phylogeny showed that the separation of eastern Pacific and western Atlantic species started ca. 20Mya and suggested a recent divergence for eastern Pacific species and for L. sarmentosa-L. capverdensis. Our results also revealed high inter-specific diversity among eastern Atlantic and South African species, highlighting a potential role of the geographical diversification processes and geological events occurring during the last 30Ma in the Atlantic on the evolutionary history of these organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mitogenomic evidence for an Indo-West Pacific origin of the Clupeoidei (Teleostei: Clupeiformes.

    Directory of Open Access Journals (Sweden)

    Sébastien Lavoué

    Full Text Available The clupeoid fishes are distributed worldwide, with marine, freshwater and euryhaline species living in either tropical or temperate environments. Regional endemism is important at the species and genus levels, and the highest species diversity is found in the tropical marine Indo-West Pacific region. The clupeoid distribution follows two general pattern of species richness, the longitudinal and latitudinal gradients. To test historical hypotheses explaining the formation of these two gradients, we have examined the early biogeography of the Clupeoidei in reconstructing the evolution of their habitat preferences along with their ancestral range distributions on a time-calibrated mitogenomic phylogeny. The phylogenetic results support the distinction of nine main lineages within the Clupeoidei, five of them new. We infer several independent transitions from a marine to freshwater environment and from a tropical to temperate environment that occurred after the initial diversification period of the Clupeoidei. These results combined with our ancestral range reconstruction hypothesis suggest that the probable region of origin and diversification of the Clupeoidei during the Cretaceous period was the tropical marine precursor to the present Indo-West Pacific region. Thus, our study favors the hypotheses of "Region of origin" and "Tropical conservatism" to explain the origins of the longitudinal and latitudinal gradients of clupeoid species richness, respectively. Additional geological and paleontological evidence further define the tropical marine paleo-region of origin as the eastern Tethys Sea region. The Cretaceous fossil record of the Clupeoidei is partially incongruent with the results here as it contains taxa found outside this region. We discuss three possible causes of conflict between our biogeographical hypothesis and the distributions of the Cretaceous clupeoid fossils: regional extinction, incomplete taxonomic sampling and incorrect

  17. Mitogenomes of Giant-Skipper Butterflies reveal an ancient split between deep and shallow root feeders [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-03-01

    Full Text Available Background: Giant-Skipper butterflies from the genus Megathymus are North American endemics. These large and thick-bodied Skippers resemble moths and are unique in their life cycles. Grub-like at the later stages of development, caterpillars of these species feed and live inside yucca roots. Adults do not feed and are mostly local, not straying far from the patches of yucca plants. Methods: Pieces of muscle were dissected from the thorax of specimens and genomic DNA was extracted (also from the abdomen of a specimen collected nearly 60 years ago. Paired-end libraries were prepared and sequenced for 150bp from both ends. The mitogenomes were assembled from the reads followed by a manual gap-closing procedure and a phylogenetic tree was constructed using a maximum likelihood method from an alignment of the mitogenomes. Results: We determined mitogenome sequences of nominal subspecies of all five known species of Megathymus and Agathymus mariae to confidently root the phylogenetic tree. Pairwise sequence identity indicates the high similarity, ranging from 88-96% among coding regions for 13 proteins, 22 tRNAs and 2 rRNA, with a gene order typical for mitogenomes of Lepidoptera. Phylogenetic analysis confirms that Giant-Skippers (Megathymini originate within the subfamily Hesperiinae and do not warrant a subfamily rank. Genus Megathymus is monophyletic and splits into two species groups. M. streckeri and M. cofaqui caterpillars feed deep in the main root system of yucca plants and deposit frass underground. M. ursus, M. beulahae and M. yuccae feed in the yucca caudex and roots near the ground, and deposit frass outside through a "tent" (a silk tube projecting from the center of yucca plant. M. yuccae and M. beulahae are sister species consistently with morphological similarities between them. Conclusions: We constructed the first DNA-based phylogeny of the genus Megathymus from their mitogenomes. The phylogeny agrees with morphological

  18. Silent innovation: corporate strategizing in early nanotechnology evolution

    DEFF Research Database (Denmark)

    Andersen, Maj Munch

    2011-01-01

    Nanotechnology offers a rare opportunity to study the early evolution of a new generic technology in real time. This paper suggests focusing more on the market formation side, rather than technology generation, when seeking to explain technology evolution. Applying an evolutionary capabilities...... perspective, the paper examines how firms organize innovation in the early embryonic stages of a technology and how the market as a selective device undergoes qualitative change as part of economic evolution. The traditional Danish window chain is used as a case. A model of nanotechnology evolution...... is proposed which suggests that nanotechnology commercialization is significantly driven by small and medium-sized firms based on their internal knowhow, with larger firms as important suppliers of know how. These smaller firms are adept at addressing social needs which appear to be key factors in the nano...

  19. Ancient mitogenomes of Phoenicians from Sardinia and Lebanon: A story of settlement, integration, and female mobility

    Science.gov (United States)

    Gosling, A. L.; Platt, D.; Kardailsky, O.; Prost, S.; Cameron-Christie, S.; Collins, C. J.; Boocock, J.; Kurumilian, Y.; Guirguis, M.; Pla Orquín, R.; Khalil, W.; Genz, H.; Abou Diwan, G.; Nassar, J.; Zalloua, P.

    2018-01-01

    The Phoenicians emerged in the Northern Levant around 1800 BCE and by the 9th century BCE had spread their culture across the Mediterranean Basin, establishing trading posts, and settlements in various European Mediterranean and North African locations. Despite their widespread influence, what is known of the Phoenicians comes from what was written about them by the Greeks and Egyptians. In this study, we investigate the extent of Phoenician integration with the Sardinian communities they settled. We present 14 new ancient mitogenome sequences from pre-Phoenician (~1800 BCE) and Phoenician (~700–400 BCE) samples from Lebanon (n = 4) and Sardinia (n = 10) and compare these with 87 new complete mitogenomes from modern Lebanese and 21 recently published pre-Phoenician ancient mitogenomes from Sardinia to investigate the population dynamics of the Phoenician (Punic) site of Monte Sirai, in southern Sardinia. Our results indicate evidence of continuity of some lineages from pre-Phoenician populations suggesting integration of indigenous Sardinians in the Monte Sirai Phoenician community. We also find evidence of the arrival of new, unique mitochondrial lineages, indicating the movement of women from sites in the Near East or North Africa to Sardinia, but also possibly from non-Mediterranean populations and the likely movement of women from Europe to Phoenician sites in Lebanon. Combined, this evidence suggests female mobility and genetic diversity in Phoenician communities, reflecting the inclusive and multicultural nature of Phoenician society. PMID:29320542

  20. Ancient mitogenomes of Phoenicians from Sardinia and Lebanon: A story of settlement, integration, and female mobility.

    Directory of Open Access Journals (Sweden)

    E Matisoo-Smith

    Full Text Available The Phoenicians emerged in the Northern Levant around 1800 BCE and by the 9th century BCE had spread their culture across the Mediterranean Basin, establishing trading posts, and settlements in various European Mediterranean and North African locations. Despite their widespread influence, what is known of the Phoenicians comes from what was written about them by the Greeks and Egyptians. In this study, we investigate the extent of Phoenician integration with the Sardinian communities they settled. We present 14 new ancient mitogenome sequences from pre-Phoenician (~1800 BCE and Phoenician (~700-400 BCE samples from Lebanon (n = 4 and Sardinia (n = 10 and compare these with 87 new complete mitogenomes from modern Lebanese and 21 recently published pre-Phoenician ancient mitogenomes from Sardinia to investigate the population dynamics of the Phoenician (Punic site of Monte Sirai, in southern Sardinia. Our results indicate evidence of continuity of some lineages from pre-Phoenician populations suggesting integration of indigenous Sardinians in the Monte Sirai Phoenician community. We also find evidence of the arrival of new, unique mitochondrial lineages, indicating the movement of women from sites in the Near East or North Africa to Sardinia, but also possibly from non-Mediterranean populations and the likely movement of women from Europe to Phoenician sites in Lebanon. Combined, this evidence suggests female mobility and genetic diversity in Phoenician communities, reflecting the inclusive and multicultural nature of Phoenician society.

  1. Ancient mitogenomes of Phoenicians from Sardinia and Lebanon: A story of settlement, integration, and female mobility.

    Science.gov (United States)

    Matisoo-Smith, E; Gosling, A L; Platt, D; Kardailsky, O; Prost, S; Cameron-Christie, S; Collins, C J; Boocock, J; Kurumilian, Y; Guirguis, M; Pla Orquín, R; Khalil, W; Genz, H; Abou Diwan, G; Nassar, J; Zalloua, P

    2018-01-01

    The Phoenicians emerged in the Northern Levant around 1800 BCE and by the 9th century BCE had spread their culture across the Mediterranean Basin, establishing trading posts, and settlements in various European Mediterranean and North African locations. Despite their widespread influence, what is known of the Phoenicians comes from what was written about them by the Greeks and Egyptians. In this study, we investigate the extent of Phoenician integration with the Sardinian communities they settled. We present 14 new ancient mitogenome sequences from pre-Phoenician (~1800 BCE) and Phoenician (~700-400 BCE) samples from Lebanon (n = 4) and Sardinia (n = 10) and compare these with 87 new complete mitogenomes from modern Lebanese and 21 recently published pre-Phoenician ancient mitogenomes from Sardinia to investigate the population dynamics of the Phoenician (Punic) site of Monte Sirai, in southern Sardinia. Our results indicate evidence of continuity of some lineages from pre-Phoenician populations suggesting integration of indigenous Sardinians in the Monte Sirai Phoenician community. We also find evidence of the arrival of new, unique mitochondrial lineages, indicating the movement of women from sites in the Near East or North Africa to Sardinia, but also possibly from non-Mediterranean populations and the likely movement of women from Europe to Phoenician sites in Lebanon. Combined, this evidence suggests female mobility and genetic diversity in Phoenician communities, reflecting the inclusive and multicultural nature of Phoenician society.

  2. Contrasting Patterns of Nucleotide Substitution Rates Provide Insight into Dynamic Evolution of Plastid and Mitochondrial Genomes of Geranium.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Weng, Mao-Lun; Hajrah, Nahid H; Sabir, Jamal S M; Jansen, Robert K

    2017-06-01

    Geraniaceae have emerged as a model system for investigating the causes and consequences of variation in plastid and mitochondrial genomes. Incredible structural variation in plastid genomes (plastomes) and highly accelerated evolutionary rates have been reported in selected lineages and functional groups of genes in both plastomes and mitochondrial genomes (mitogenomes), and these phenomena have been implicated in cytonuclear incompatibility. Previous organelle genome studies have included limited sampling of Geranium, the largest genus in the family with over 400 species. This study reports on rates and patterns of nucleotide substitutions in plastomes and mitogenomes of 17 species of Geranium and representatives of other Geraniaceae. As detected across other angiosperms, substitution rates in the plastome are 3.5 times higher than the mitogenome in most Geranium. However, in the branch leading to Geranium brycei/Geranium incanum mitochondrial genes experienced significantly higher dN and dS than plastid genes, a pattern that has only been detected in one other angiosperm. Furthermore, rate accelerations differ in the two organelle genomes with plastomes having increased dN and mitogenomes with increased dS. In the Geranium phaeum/Geranium reflexum clade, duplicate copies of clpP and rpoA genes that experienced asymmetric rate divergence were detected in the single copy region of the plastome. In the case of rpoA, the branch leading to G. phaeum/G. reflexum experienced positive selection or relaxation of purifying selection. Finally, the evolution of acetyl-CoA carboxylase is unusual in Geraniaceae because it is only the second angiosperm family where both prokaryotic and eukaryotic ACCases functionally coexist in the plastid. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny

    OpenAIRE

    Maddock, Simon T.; Briscoe, Andrew G.; Wilkinson, Mark; Waeschenbach, Andrea; San Mauro, Diego; Day, Julia J.; Littlewood, D. Tim J.; Foster, Peter G.; Nussbaum, Ronald A.; Gower, David J.

    2016-01-01

    Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a ‘traditional’ Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing pla...

  4. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences.

    Science.gov (United States)

    Poortvliet, Marloes; Olsen, Jeanine L; Croll, Donald A; Bernardi, Giacomo; Newton, Kelly; Kollias, Spyros; O'Sullivan, John; Fernando, Daniel; Stevens, Guy; Galván Magaña, Felipe; Seret, Bernard; Wintner, Sabine; Hoarau, Galice

    2015-02-01

    Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders

  5. Accretion and early evolution of Earth

    DEFF Research Database (Denmark)

    Saji, Nikitha Susan

    in solar system materials is found to be related to selective thermal processing of dust in the early nebula given the correlation observed for these eects with Fe-peak neutron-rich isotope anomalies, whose origin is attributed to distinct nucleosnythetic sites other than classical s-, r- or p......-sized dust, of which the early protoplanetary disk is initially composed of, coalesce over the course of several millions of years to form the precursors to planets that make up the solar system today. The final assembly of Earth-like planets is complete only after a protracted latestage evolution...... that extends over at least 100 Myr, characterized by violent collisions between Mars- to Moon-sized planetary embryos. Evidence for the many details of solar system evolution - such as the diverse stellar sources that contributed material to solar system bodies to what role disk processes and late...

  6. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences

    NARCIS (Netherlands)

    Poortvliet, Marloes; Olsen, Jeanine; Croll, Donald A.; Bernardi, Giacomo; Newton, Kelly; Kollias, Spyros; O'Sullivan, John; Fernando, Daniel; Stevens, Guy; Galván Magaña, Felipe; Seret, Bernard; Wintner, Sabine; Hoarau, Galice

    Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two

  7. Early resistance change and stress/electromigration evolution in near bamboo interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Dima, G.; Govoreanu, B.; Mitrea, O.; Profirescu, M.

    1997-01-01

    A complete description for early resistance change and mechanical stress evolution in near-bamboo interconnects, related to the electromigration, is given in this paper. The proposed model, for the first time, combines the stress/vacancy concentration evolution with the early resistance change of

  8. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny

    Directory of Open Access Journals (Sweden)

    Talavera Gerard

    2011-10-01

    Full Text Available Abstract Background Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. Results Long-branch attraction (LBA artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the

  9. The early thermal evolution of Mars

    Science.gov (United States)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  10. The complete mitogenome of the whale shark parasitic copepod Pandarus rhincodonicus norman, Newbound & Knott (Crustacea; Siphonostomatoida; Pandaridae)--a new gene order for the copepoda.

    Science.gov (United States)

    Austin, Christopher M; Tan, Mun Hua; Lee, Yin Peng; Croft, Laurence J; Meekan, Mark G; Pierce, Simon J; Gan, Han Ming

    2016-01-01

    The complete mitochondrial genome of the parasitic copepod Pandarus rhincodonicus was obtained from a partial genome scan using the HiSeq sequencing system. The Pandarus rhincodonicus mitogenome has 14,480 base pairs (62% A+T content) made up of 12 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 384 bp non-coding AT-rich region. This Pandarus mitogenome sequence is the first for the family Pandaridae, the second for the order Siphonostomatoida and the sixth for the Copepoda.

  11. Effect of site-specific heterogeneous evolution on phylogenetic reconstruction: a simple evaluation.

    Science.gov (United States)

    Cheng, Qiqun; Su, Zhixi; Zhong, Yang; Gu, Xun

    2009-07-15

    Recent studies have shown that heterogeneous evolution may mislead phylogenetic analysis, which has been neglected for a long time. We evaluate the effect of heterogeneous evolution on phylogenetic analysis, using 18 fish mitogenomic coding sequences as an example. Using the software DIVERGE, we identify 198 amino acid sites that have experienced heterogeneous evolution. After removing these sites, the rest of sites are shown to be virtually homogeneous in the evolutionary rate. There are some differences between phylogenetic trees built with heterogeneous sites ("before tree") and without heterogeneous sites ("after tree"). Our study demonstrates that for phylogenetic reconstruction, an effective approach is to identify and remove sites with heterogeneous evolution, and suggests that researchers can use the software DIVERGE to remove the influence of heterogeneous evolution before reconstructing phylogenetic trees.

  12. Early evolution without a tree of life.

    Science.gov (United States)

    Martin, William F

    2011-06-30

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.

  13. ON THE SIZE AND COMOVING MASS DENSITY EVOLUTION OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Van der Wel, Arjen; Bell, Eric F.; Van den Bosch, Frank C.; Gallazzi, Anna; Rix, Hans-Walter

    2009-01-01

    We present a simple, empirically motivated model that simultaneously predicts the evolution of the mean size and the comoving mass density of massive (>10 11 M sun ) early-type galaxies from z = 2 to the present. First, we demonstrate that some size evolution of the population can be expected simply due to the continuous emergence of early-type galaxies. The Sloan Digital Sky Survey (SDSS) data reveal that in the present-day universe more compact early-type galaxies with a given dynamical mass have older stellar populations. This implies that with increasing look-back time, the more extended galaxies will be more and more absent from the population. In contrast, at a given stellar velocity dispersion, SDSS data show that there is no relation between size and age, which implies that the velocity dispersion can be used to estimate the epoch at which galaxies stopped forming stars, turning into early-type galaxies. Based on this, we define an empirically motivated, redshift-dependent velocity dispersion threshold above which galaxies do not form stars at a significant rate, which we associate with the transformation into early-type galaxies. Applying this 'formation' criterion to a large sample of nearby early-type galaxies, we predict the redshift evolution in the size distribution and the comoving mass density. The resulting evolution in the mean size is roughly half of the observed evolution. Then we include a prescription for the merger histories of galaxies between the 'formation' redshift and the present, based on cosmological simulations of the assembly of dark matter halos. Such mergers after the transformation into an early-type galaxy are presumably dissipationless ('dry'), where the increase in size is expected to be approximately proportional to the increase in mass. This model successfully reproduces the observed evolution since z ∼ 2 in the mean size and in the comoving mass density of early-type galaxies with mass M > 10 11 M sun . We conclude that

  14. The Origin and Early Evolution of Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  15. Chemical evolution of the early Martian hydrosphere

    International Nuclear Information System (INIS)

    Schaefer, M.W.

    1990-01-01

    The chemical evolution of the early Martian hydrosphere is discussed. The early Martian ocean can be modeled as a body of relatively pure water in equilibrium with a dense carbon dioxide atmosphere. The chemical weathering of lavas, pyroclastic deposits, and impact melt sheets would have the effect of neutralizing the acidity of the juvenile water. As calcium and other cations are added to the water by chemical weathering, they are quickly removed by the precipitation of calcium carbonate and other minerals, forming a deposit of limestone beneath the surface of the ocean. As the atmospheric carbon dioxide pressure and the temperature decrease, the Martian ocean would be completely frozen. Given the scenario for the chemical evolution of the northern lowland plains of Mars, it should be possible to draw a few conclusions about the expected mineralogy and geomorphology of this regions

  16. Hosting Early Evolution in Heated Pores of Rock

    Science.gov (United States)

    Mast, C. B.; Möller, F.; Lanzmich, S.; Keil, L.; Braun, D.

    2017-07-01

    Recent experiments with non-equilibrium micro­systems suggest that porous rock conditions drive early molecular evolution in many ways, including accumulation, polymerization, replication, length selection and gelation.

  17. Rates of morphological evolution are heterogeneous in Early Cretaceous birds

    Science.gov (United States)

    Lloyd, Graeme T.

    2016-01-01

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. PMID:27053742

  18. Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe

    Czech Academy of Sciences Publication Activity Database

    Filipi, Karolína; Marková, Silvia; Searle, J. B.; Kotlík, Petr

    2015-01-01

    Roč. 82, PA (2015), s. 245-257 ISSN 1055-7903 R&D Projects: GA ČR GAP506/11/1872 Institutional support: RVO:67985904 Keywords : adaptation * glacial refugia * mitogenome * mtDNA * Myodes glareolus * Numt Subject RIV: EG - Zoology Impact factor: 3.792, year: 2015

  19. Tracing the phylogeographic history of Southeast Asian long-tailed macaques through mitogenomes of museum specimens.

    Science.gov (United States)

    Yao, Lu; Li, Hongjie; Martin, Robert D; Moreau, Corrie S; Malhi, Ripan S

    2017-11-01

    The biogeographical history of Southeast Asia is complicated due to the continuous emergences and disappearances of land bridges throughout the Pleistocene. Here, we use long-tailed macaques (Macaca fascicularis), which are widely distributed throughout the mainland and islands of Southeast Asia, asa model for better understanding the biogeographical patterns of diversification in this geographically complex region. A reliable intraspecific phylogeny including individuals from localities on oceanic islands, continental islands, and the mainland is needed to trace relatedness along with the pattern and timing of colonization in this region. We used high-throughput sequencing techniques to sequence mitochondrial genomes (mitogenomes) from 95 Southeast Asian M. fascicularis specimens housed at natural history museums around the world. To achieve a comprehensive picture, we more than tripled the mitogenome sample size for M. fascicularis from previous studies, and for the first time included documented samples from the Philippines and several small Indonesian islands. Confirming the result from a previous, recent intraspecific phylogeny for M. fascicularis, the newly reconstructed phylogeny of 135 specimens divides the samples into two major clades: Clade A includes haplotypes from the mainland and some from northern Sumatra, while Clade B includes all insular haplotypes along with lineages from southern Sumatra. This study resolves a previous disparity by revealing a disjunction in the origin of Sumatran macaques, with separate lineages originating within the two major clades, suggesting that at least two major migrations to Sumatra occurred. However, our dated phylogeny reveals that the two major clades split ∼1.88Ma, which is earlier than in previously published phylogenies. Our new data reveal that most Philippine macaque lineages diverged from the Borneo stock within the last ∼0.06-0.43Ma. Finally, our study provides insight into successful sequencing of DNA

  20. Indian signatures in the westernmost edge of the European Romani diaspora: new insight from mitogenomes.

    Science.gov (United States)

    Gómez-Carballa, Alberto; Pardo-Seco, Jacobo; Fachal, Laura; Vega, Ana; Cebey, Miriam; Martinón-Torres, Nazareth; Martinón-Torres, Federico; Salas, Antonio

    2013-01-01

    In agreement with historical documentation, several genetic studies have revealed ancestral links between the European Romani and India. The entire mitochondrial DNA (mtDNA) of 27 Spanish Romani was sequenced in order to shed further light on the origins of this population. The data were analyzed together with a large published dataset (mainly hypervariable region I [HVS-I] haplotypes) of Romani (N=1,353) and non-Romani worldwide populations (N>150,000). Analysis of mitogenomes allowed the characterization of various Romani-specific clades. M5a1b1a1 is the most distinctive European Romani haplogroup; it is present in all Romani groups at variable frequencies (with only sporadic findings in non-Romani) and represents 18% of their mtDNA pool. Its phylogeographic features indicate that M5a1b1a1 originated 1.5 thousand years ago (kya; 95% CI: 1.3-1.8) in a proto-Romani population living in Northwest India. U3 represents the most characteristic Romani haplogroup of European/Near Eastern origin (12.4%); it appears at dissimilar frequencies across the continent (Iberia: ≈ 31%; Eastern/Central Europe: ≈ 13%). All U3 mitogenomes of our Iberian Romani sample fall within a new sub-clade, U3b1c, which can be dated to 0.5 kya (95% CI: 0.3-0.7); therefore, signaling a lower bound for the founder event that followed admixture in Europe/Near East. Other minor European/Near Eastern haplogroups (e.g. H24, H88a) were also assimilated into the Romani by introgression with neighboring populations during their diaspora into Europe; yet some show a differentiation from the phylogenetically closest non-Romani counterpart. The phylogeny of Romani mitogenomes shows clear signatures of low effective population sizes and founder effects. Overall, these results are in good agreement with historical documentation, suggesting that cultural identity and relative isolation have allowed the Romani to preserve a distinctive mtDNA heritage, with some features linking them unequivocally to their

  1. Mitogenome sequencing reveals shallow evolutionary histories and recent divergence time between morphologically and ecologically distinct European whitefish (Coregonus spp.)

    DEFF Research Database (Denmark)

    Jacobsen, Magnus W.; Hansen, Michael Møller; Orlando, Ludovic

    2012-01-01

    colonized Denmark following the last glacial maximum, Bayesian Serial SimCoal analysis showed consistency with a scenario of long-term stability, resulting from a rapid initial sixfold population expansion. The findings illustrate the utility of mitogenome data for resolving recent intraspecific divergence...

  2. Early evolution without a tree of life

    Directory of Open Access Journals (Sweden)

    Martin William F

    2011-06-01

    Full Text Available Abstract Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre.

  3. The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae).

    Science.gov (United States)

    Kim, Seong Ryeol; Kim, Man Il; Hong, Mee Yeon; Kim, Kee Young; Kang, Pil Don; Hwang, Jae Sam; Han, Yeon Soo; Jin, Byung Rae; Kim, Iksoo

    2009-09-01

    The 15,338-bp long complete mitochondrial genome (mitogenome) of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae) was determined. This genome has a gene arrangement identical to those of all other sequenced lepidopteran insects, but differs from the most common type, as the result of the movement of tRNA(Met) to a position 5'-upstream of tRNA(Ile). No typical start codon of the A. yamamai COI gene is available. Instead, a tetranucleotide, TTAG, which is found at the beginning context of all sequenced lepidopteran insects was tentatively designated as the start codon for A. yamamai COI gene. Three of the 13 protein-coding genes (PCGs) harbor the incomplete termination codon, T or TA. All tRNAs formed stable stem-and-loop structures, with the exception of tRNA(Ser)(AGN), the DHU arm of which formed a simple loop as has been observed in many other metazoan mt tRNA(Ser)(AGN). The 334-bp long A + T-rich region is noteworthy in that it harbors tRNA-like structures, as has also been seen in the A + T-rich regions of other insect mitogenomes. Phylogenetic analyses of the available species of Bombycoidea, Pyraloidea, and Tortricidea bolstered the current morphology-based hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As has been previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (A. yamamai and Caligula boisduvalii) formed a reciprocal monophyletic group.

  4. A new hypothesis of dinosaur relationships and early dinosaur evolution.

    Science.gov (United States)

    Baron, Matthew G; Norman, David B; Barrett, Paul M

    2017-03-22

    For 130 years, dinosaurs have been divided into two distinct clades-Ornithischia and Saurischia. Here we present a hypothesis for the phylogenetic relationships of the major dinosaurian groups that challenges the current consensus concerning early dinosaur evolution and highlights problematic aspects of current cladistic definitions. Our study has found a sister-group relationship between Ornithischia and Theropoda (united in the new clade Ornithoscelida), with Sauropodomorpha and Herrerasauridae (as the redefined Saurischia) forming its monophyletic outgroup. This new tree topology requires redefinition and rediagnosis of Dinosauria and the subsidiary dinosaurian clades. In addition, it forces re-evaluations of early dinosaur cladogenesis and character evolution, suggests that hypercarnivory was acquired independently in herrerasaurids and theropods, and offers an explanation for many of the anatomical features previously regarded as notable convergences between theropods and early ornithischians.

  5. The mitogenome of a 35,000-year-old Homo sapiens from Europe supports a Palaeolithic back-migration to Africa

    NARCIS (Netherlands)

    Hervella, M.; Svensson, E.M.; Alberdi, A.; Gunther, T.; Izagirre, N.; Munters, A.R.; Alonso, S.; Ioana, M.; Ridiche, F.; Soficaru, A.; Jakobsson, M.; Netea, M.G.; Rua, C. de la

    2016-01-01

    After the dispersal of modern humans (Homo sapiens) Out of Africa, hominins with a similar morphology to that of present-day humans initiated the gradual demographic expansion into Eurasia. The mitogenome (33-fold coverage) of the Pestera Muierii 1 individual (PM1) from Romania (35 ky cal BP) we

  6. SMRT Sequencing Revealed Mitogenome Characteristics and Mitogenome-Wide DNA Modification Pattern in Ophiocordyceps sinensis.

    Science.gov (United States)

    Kang, Xincong; Hu, Liqin; Shen, Pengyuan; Li, Rui; Liu, Dongbo

    2017-01-01

    Single molecule, real-time (SMRT) sequencing was used to characterize mitochondrial (mt) genome of Ophiocordyceps sinensis and to analyze the mt genome-wide pattern of epigenetic DNA modification. The complete mt genome of O. sinensis , with a size of 157,539 bp, is the fourth largest Ascomycota mt genome sequenced to date. It contained 14 conserved protein-coding genes (PCGs), 1 intronic protein rps3 , 27 tRNAs and 2 rRNA subunits, which are common characteristics of the known mt genomes in Hypocreales. A phylogenetic tree inferred from 14 PCGs in Pezizomycotina fungi supports O. sinensis as most closely related to Hirsutella rhossiliensis in Ophiocordycipitaceae. A total of 36 sequence sites in rps3 were under positive selection, with dN/dS >1 in the 20 compared fungi. Among them, 16 sites were statistically significant. In addition, the mt genome-wide base modification pattern of O. sinensis was determined in this study, especially DNA methylation. The methylations were located in coding and uncoding regions of mt PCGs in O. sinensis , and might be closely related to the expression of PCGs or the binding affinity of transcription factor A to mtDNA. Consequently, these methylations may affect the enzymatic activity of oxidative phosphorylation and then the mt respiratory rate; or they may influence mt biogenesis. Therefore, methylations in the mitogenome of O. sinensis might be a genetic feature to adapt to the cold and low PO 2 environment at high altitude, where O. sinensis is endemic. This is the first report on epigenetic modifications in a fungal mt genome.

  7. Archean komatiite volcanism controlled by the evolution of early continents.

    Science.gov (United States)

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  8. Complete mitochondrial genome of the giant African snail, Achatina fulica (Mollusca: Achatinidae): a novel location of putative control regions (CR) in the mitogenome within Pulmonate species.

    Science.gov (United States)

    He, Zhang-Ping; Dai, Xia-Bin; Zhang, Shuai; Zhi, Ting-Ting; Lun, Zhao-Rong; Wu, Zhong-Dao; Yang, Ting-Bao

    2016-01-01

    The whole sequence (15,057 bp) of the mitochondrial DNA (mtDNA) of the terrestrial snail Achatina fulica (order Stylommatophora) was determined. The mitogenome, as the typical metazoan mtDNA, contains 13 protein-coding genes (PCG), 2 ribosomal RNA genes (rRNA) and 22 transfer RNA genes (tRNA). The tRNA genes include two trnS without standard secondary structure. Interestingly, among the known mitogenomes of Pulmonata species, we firstly characterized an unassigned lengthy sequence (551 bp) between the cox1 and the trnV which may be the CR for the sake of its AT bases usage bias (65.70%) and potential hairpin structure.

  9. The mitochondrial genomes of Atlas Geckos (Quedenfeldtia): mitogenome assembly from transcriptomes and anchored hybrid enrichment datasets

    OpenAIRE

    Lyra, Mariana L.; Joger, Ulrich; Schulte, Ulrich; Slimani, Tahar; El Mouden, El Hassan; Bouazza, Abdellah; Künzel, Sven; Lemmon, Alan R.; Moriarty Lemmon, Emily; Vences, Miguel

    2017-01-01

    The nearly complete mitogenomes of the two species of North African Atlas geckos, Quedenfeldtia moerens and Q. trachyblepharus were assembled from anchored hybrid enrichment data and RNAseq data. Congruent assemblies were obtained for four samples included in both datasets. We recovered the 13 protein-coding genes, 22 tRNA genes, and two rRNA genes for both species, including partial control region. The order of genes agrees with that of other geckos.

  10. Early Microbial Evolution: The Age of Anaerobes.

    Science.gov (United States)

    Martin, William F; Sousa, Filipa L

    2015-12-18

    In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Multiplicity in Early Stellar Evolution

    Science.gov (United States)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  12. Early evolution of Tubulogenerina during the Paleogene of Europe

    Science.gov (United States)

    Gibson, T.G.; Barbin, V.; Poignant, A.; Sztrakos, K.

    1991-01-01

    The early evolution of Tubulogenerina took place in Europe where eight species occur in lower Eocene to uppermost Oligocene or lower Miocene strata. Species diversity within Tubulogenerina dropped significantly in the early Oligocne; only a single species persisted from the late Eocene, and it became extinct before the end of the early Oligocene. Morphologic changes during the European phylogeny of Tubulogenerina include (1) the development of costate and more complex tubulopore ornamentation, and (2) the change from a single elongated apertural slit with a single toothplate to multiple apertures and toothplates. Three new Tubulogenerina species are described. -from Authors

  13. Complete mitochondrial genome sequence of Indian medium carp, Labeo gonius (Hamilton, 1822) and its comparison with other related carp species.

    Science.gov (United States)

    Behera, Bijay Kumar; Kumari, Kavita; Baisvar, Vishwamitra Singh; Rout, Ajaya Kumar; Pakrashi, Sudip; Paria, Prasenjet; Jena, J K

    2017-01-01

    In the present study, the complete mitochondrial genome sequence of Labeo gonius is reported using PGM sequencer (Ion Torrent). The complete mitogenome of L. gonius is obtained by the de novo sequences assembly of genomic reads using the Torrent Mapping Alignment Program (TMAP) which is 16 614 bp in length. The mitogenome of L. gonius comprised of 13 protein-coding genes, 22 tRNAs, 2 rRNA genes, and D-loop as control region along with gene order and organization, being similar to most of other fish mitogenomes of NCBI databases. The mitogenome in the present study has 99% similarity to the complete mitogenome sequence of Labeo fimbriatus, as reported earlier. The phylogenetic analysis of Cypriniformes depicted that their mitogenomes are closely related to each other. The complete mitogenome sequence of L. gonius would be helpful in understanding the population genetics, phylogenetics, and evolution of Indian Carps.

  14. Open Listening: Creative Evolution in Early Childhood Settings

    Science.gov (United States)

    Davies, Bronwyn

    2011-01-01

    This article sketches out a philosophy and practice of open listening, linking open listening to Bergson's (1998) concept of creative evolution. I draw on examples of small children at play from a variety of sources, including Reggio-Emilia-inspired preschools in Sweden. The article offers a challenge to early childhood educators to listen and to…

  15. Evolutionary and functional mitogenomics associated with the genetic restoration of the Florida panther

    Science.gov (United States)

    Ochoa, Alexander; Onorato, David P.; Fitak, Robert R.; Roelke-Parker, Melody; Culver, Melanie

    2017-01-01

    Florida panthers are endangered pumas that currently persist in reduced patches of habitat in South Florida, USA. We performed mitogenome reference-based assemblies for most parental lines of the admixed Florida panthers that resulted from the introduction of female Texas pumas into South Florida in 1995. With the addition of 2 puma mitogenomes, we characterized 174 single nucleotide polymorphisms (SNPs) across 12 individuals. We defined 5 haplotypes (Pco1–Pco5), one of which (Pco1) had a geographic origin exclusive to Costa Rica and Panama and was possibly introduced into the Everglades National Park, Florida, prior to 1995. Haplotype Pco2 was native to Florida. Haplotypes Pco3 and Pco4 were exclusive to Texas, whereas haplotype Pco5 had an undetermined geographic origin. Phylogenetic inference suggests that haplotypes Pco1–Pco4 diverged ~202000 (95% HPDI = 83000–345000) years ago and that haplotypes Pco2–Pco4 diverged ~61000 (95% HPDI = 9000–127000) years ago. These results are congruent with a south-to-north continental expansion and with a recent North American colonization by pumas. Furthermore, pumas may have migrated from Texas to Florida no earlier than ~44000 (95% HPDI = 2000–98000) years ago. Synonymous mutations presented a greater mean substitution rate than other mitochondrial functional regions: nonsynonymous mutations, tRNAs, rRNAs, and control region. Similarly, all protein-coding genes were under predominant negative selection constraints. We directly and indirectly assessed the presence of potential deleterious SNPs in the ND2 and ND5 genes in Florida panthers prior to and as a consequence of the introduction of Texas pumas. Screenings for such variants are recommended in extant Florida panthers.

  16. The early evolution of the Archegoniatae: a re-appraisal

    NARCIS (Netherlands)

    Meeuse, A.D.J.

    1966-01-01

    After a re-appraisal of the alternative hypotheses concerning the origin and the early evolution of the archegoniate land plants, the postulation of a thalassiophytic group of precursors with free isomorphic alternating generations by Church, Zimmermann, and several others is rejected. Several

  17. The evolution of early-type galaxies in distant clusters

    International Nuclear Information System (INIS)

    Stanford, S.A.; Eisenhardt, P.R.; Dickinson, M.

    1998-01-01

    We present results from an optical-infrared photometric study of early-type (E+S0) galaxies in 19 galaxy clusters out to z=0.9. The galaxy sample is selected on the basis of morphologies determined from Hubble Space Telescope (HST) WFPC2 images and is photometrically defined in the K band in order to minimize redshift-dependent selection biases. Using new ground-based photometry in five optical and infrared bands for each cluster, we examine the evolution of the color-magnitude relation for early-type cluster galaxies, considering its slope, intercept, and color scatter around the mean relation. New multiwavelength photometry of galaxies in the Coma Cluster is used to provide a baseline sample at z∼0 with which to compare the distant clusters. The optical - IR colors of the early-type cluster galaxies become bluer with increasing redshift in a manner consistent with the passive evolution of an old stellar population formed at an early cosmic epoch. The degree of color evolution is similar for clusters at similar redshift and does not depend strongly on the optical richness or X-ray luminosity of the cluster, which suggests that the history of early-type galaxies is relatively insensitive to environment, at least above a certain density threshold. The slope of the color-magnitude relationship shows no significant change out to z=0.9, which provides evidence that it arises from a correlation between galaxy mass and metallicity, not age. Finally, the intrinsic scatter in the optical - IR colors of the galaxies is small and nearly constant with redshift, which indicates that the majority of giant, early-type galaxies in clusters share a common star formation history, with little perturbation due to uncorrelated episodes of later star formation. Taken together, our results are consistent with models in which most early-type galaxies in rich clusters are old, formed the majority of their stars at high redshift in a well-synchronized fashion, and evolved quiescently

  18. The early evolution of the atmospheres of terrestrial planets

    CERN Document Server

    Raulin, François; Muller, Christian; Nixon, Conor; Astrophysics and Space Science Proceedings : Volume 35

    2013-01-01

    “The Early Evolution of the Atmospheres of Terrestrial Planets” presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth’s transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are ...

  19. Human evolution. Evolution of early Homo: an integrated biological perspective.

    Science.gov (United States)

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-04

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments. Copyright © 2014, American Association for the Advancement of Science.

  20. The complete mitochondrial genome of the Anabas testudineus (Perciformes, Anabantidae) and its comparison with other related fish species.

    Science.gov (United States)

    Behera, Bijay Kumar; Baisvar, Vishwamitra Singh; Kumari, Kavita; Rout, Ajaya Kumar; Pakrashi, Sudip; Paria, Prasenjet; Rao, A R; Rai, Anil

    2017-03-01

    In the present study, the complete mitochondrial genome sequence of Anabas testudineusis reported using PGM sequencer (Ion Torrent, Life Technologies, La Jolla, CA). The complete mitogenome of climbing perch, A. testudineusis obtained by the de novo sequences assembly of genomic reads using the Torrent Mapping Alignment Program (TMAP), which is 16 603 bp in length. The mitogenome of A. testudineus composed of 13 protein- coding genes, two rRNA, and 22 tRNAs. Here, 20 tRNAs genes showed typical clover leaf model, and D-Loop as the control region along with gene order and organization, being closely similar to Osphronemidae and most of other Perciformes fish mitogenomes of NCBI databases. The mitogenome in the present study has 99% similarity to the complete mitogenome sequence of earlier reported A. testudineus. The phylogenetic analysis of Anabantidae depicted that their mitogenomes are closely related to each other. The complete mitogenome sequence of A. testudineus would be helpful in understanding the population genetics, phylogenetics, and evolution of Anabantidae.

  1. The Complete Mitochondrial Genome of Mindarus keteleerifoliae (Insecta: Hemiptera: Aphididae) and Comparison with Other Aphididae Insects.

    Science.gov (United States)

    Wang, Yuan; Chen, Jing; Jiang, Li-Yun; Qiao, Ge-Xia

    2015-12-17

    The mitogenome of Mindarus keteleerifoliae Zhang (Hemiptera: Aphididae) is a 15,199 bp circular molecule. The gene order and orientation of M. keteleerifoliae is similarly arranged to that of the ancestral insect of other aphid mitogenomes, and, a tRNA isomerism event maybe identified in the mitogenome of M. keteleerifoliae. The tRNA-Trp gene is coded in the J-strand and the same sequence in the N-strand codes for the tRNA-Ser gene. A similar phenomenon was also found in the mitogenome of Eriosoma lanigerum. However, whether tRNA isomers in aphids exist requires further study. Phylogenetic analyses, using all available protein-coding genes, support Mindarinae as the basal position of Aphididae. Two tribes of Aphidinae were recovered with high statistical significance. Characteristics of the M. keteleerifoliae mitogenome revealed distinct mitogenome structures and provided abundant phylogenetic signals, thus advancing our understanding of insect mitogenomic architecture and evolution. But, because only eight complete aphid mitogenomes, including M. keteleerifoliae, were published, future studies with larger taxon sampling sizes are necessary.

  2. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    International Nuclear Information System (INIS)

    Frey, H.

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics

  3. Comparison of the complete mitochondrial genome of the stonefly Sweltsa longistyla (Plecoptera: Chloroperlidae) with mitogenomes of three other stoneflies.

    Science.gov (United States)

    Chen, Zhi-Teng; Du, Yu-Zhou

    2015-03-01

    The complete mitochondrial genome of the stonefly, Sweltsa longistyla Wu (Plecoptera: Chloroperlidae), was sequenced in this study. The mitogenome of S. longistyla is 16,151bp and contains 37 genes including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a large non-coding region. S. longistyla, Pteronarcys princeps Banks, Kamimuria wangi Du and Cryptoperla stilifera Sivec belong to the Plecoptera, and the gene order and orientation of their mitogenomes were similar. The overall AT content for the four stoneflies was below 72%, and the AT content of tRNA genes was above 69%. The four genomes were compact and contained only 65-127bp of non-coding intergenic DNAs. Overlapping nucleotides existed in all four genomes and ranged from 24 (P. princeps) to 178bp (K. wangi). There was a 7-bp motif ('ATGATAA') of overlapping DNA and an 8-bp motif (AAGCCTTA) conserved in three stonefly species (P. princeps, K. wangi and C. stilifera). The control regions of four stoneflies contained a stem-loop structure. Four conserved sequence blocks (CSBs) were present in the A+T-rich regions of all four stoneflies. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia.

    Science.gov (United States)

    Tobler, Ray; Rohrlach, Adam; Soubrier, Julien; Bover, Pere; Llamas, Bastien; Tuke, Jonathan; Bean, Nigel; Abdullah-Highfold, Ali; Agius, Shane; O'Donoghue, Amy; O'Loughlin, Isabel; Sutton, Peter; Zilio, Fran; Walshe, Keryn; Williams, Alan N; Turney, Chris S M; Williams, Matthew; Richards, Stephen M; Mitchell, Robert J; Kowal, Emma; Stephen, John R; Williams, Lesley; Haak, Wolfgang; Cooper, Alan

    2017-04-13

    Aboriginal Australians represent one of the longest continuous cultural complexes known. Archaeological evidence indicates that Australia and New Guinea were initially settled approximately 50 thousand years ago (ka); however, little is known about the processes underlying the enormous linguistic and phenotypic diversity within Australia. Here we report 111 mitochondrial genomes (mitogenomes) from historical Aboriginal Australian hair samples, whose origins enable us to reconstruct Australian phylogeographic history before European settlement. Marked geographic patterns and deep splits across the major mitochondrial haplogroups imply that the settlement of Australia comprised a single, rapid migration along the east and west coasts that reached southern Australia by 49-45 ka. After continent-wide colonization, strong regional patterns developed and these have survived despite substantial climatic and cultural change during the late Pleistocene and Holocene epochs. Remarkably, we find evidence for the continuous presence of populations in discrete geographic areas dating back to around 50 ka, in agreement with the notable Aboriginal Australian cultural attachment to their country.

  5. Early Stages of the Evolution of Life: a Cybernetic Approach

    Science.gov (United States)

    Melkikh, Alexey V.; Seleznev, Vladimir D.

    2008-08-01

    Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.

  6. THE ROLE OF DUST IN THE EARLY UNIVERSE. I. PROTOGALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Yamasawa, Daisuke; Habe, Asao; Kozasa, Takashi; Nozawa, Takaya; Nomoto, Ken'ichi; Hirashita, Hiroyuki; Umeda, Hideyuki

    2011-01-01

    We develop one-zone galaxy formation models in the early universe, taking into account dust formation and evolution by supernova (SN) explosions. We focus on the time evolution of dust size distribution, because H 2 formation on the dust surface plays a critical role in the star formation process in the early universe. In the model, we assume that star formation rate (SFR) is proportional to the total amount of H 2 . We consistently treat (1) the formation and size evolution of dust, (2) the chemical reaction networks including H 2 formation both on the surface of dust and in gas phase, and (3) the SFR in the model. First, we find that, because of dust destruction due to both reverse and forward shocks driven by SNe, H 2 formation is more suppressed than in situations without such dust destruction. At the galaxy age of ∼0.8 Gyr, for galaxy models with virial mass M vir = 10 9 M sun and formation redshift z vir = 10, the molecular fraction is 2.5 orders of magnitude less in the model with dust destruction by both shocks than that in the model without dust destruction. Second, we show that the H 2 formation rate strongly depends on the interstellar medium (ISM) density around SN progenitors. The SFR in higher ISM density is lower, since dust destruction by reverse shocks is more effective in higher ISM density. We conclude that not only the amount but also the size distribution of dust related to star formation activity strongly affects the evolution of galaxies in the early universe.

  7. Line Evolution of the Nova V5587 Sgr from Early to Nebula Phase

    Directory of Open Access Journals (Sweden)

    T. Kajikawa

    2015-02-01

    Full Text Available The spectral evolution of the nova V5587 Sgr has been monitored at Koyama Astronomical Observatory and Higashi-Hiroshima Observatory, Japan, from the early to nebula phase. The nova rebrightened several times. The spectra during the early phase showed emission lines of H α, H β, O I, He I, He II, N II, Fe II. Nova V5587 Sgr is classified into the Fe II type. The helium abundance of the nova is estimated as N(He/N(H = 0.134 ± 0.09. The light curve, the spectral evolution, and the helium abundance in V5587 Sgr are similar to those of the nova PW Vul.

  8. Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns

    OpenAIRE

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-01-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. c...

  9. The Asian Rice Gall Midge (Orseolia oryzae Mitogenome Has Evolved Novel Gene Boundaries and Tandem Repeats That Distinguish Its Biotypes.

    Directory of Open Access Journals (Sweden)

    Isha Atray

    Full Text Available The complete mitochondrial genome of the Asian rice gall midge, Orseolia oryzae (Diptera; Cecidomyiidae was sequenced, annotated and analysed in the present study. The circular genome is 15,286 bp with 13 protein-coding genes, 22 tRNAs and 2 ribosomal RNA genes, and a 578 bp non-coding control region. All protein coding genes used conventional start codons and terminated with a complete stop codon. The genome presented many unusual features: (1 rearrangement in the order of tRNAs as well as protein coding genes; (2 truncation and unusual secondary structures of tRNAs; (3 presence of two different repeat elements in separate non-coding regions; (4 presence of one pseudo-tRNA gene; (5 inversion of the rRNA genes; (6 higher percentage of non-coding regions when compared with other insect mitogenomes. Rearrangements of the tRNAs and protein coding genes are explained on the basis of tandem duplication and random loss model and why intramitochondrial recombination is a better model for explaining rearrangements in the O. oryzae mitochondrial genome is discussed. Furthermore, we evaluated the number of iterations of the tandem repeat elements found in the mitogenome. This led to the identification of genetic markers capable of differentiating rice gall midge biotypes and the two Orseolia species investigated.

  10. A new basal sauropod dinosaur from the middle Jurassic of Niger and the early evolution of sauropoda.

    Directory of Open Access Journals (Sweden)

    Kristian Remes

    2009-09-01

    Full Text Available The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification.A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography.Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification.

  11. Adaptive Patterns of Mitogenome Evolution Are Associated with the Loss of Shell Scutes in Turtles.

    Science.gov (United States)

    Escalona, Tibisay; Weadick, Cameron J; Antunes, Agostinho

    2017-10-01

    The mitochondrial genome encodes several protein components of the oxidative phosphorylation (OXPHOS) pathway and is critical for aerobic respiration. These proteins have evolved adaptively in many taxa, but linking molecular-level patterns with higher-level attributes (e.g., morphology, physiology) remains a challenge. Turtles are a promising system for exploring mitochondrial genome evolution as different species face distinct respiratory challenges and employ multiple strategies for ensuring efficient respiration. One prominent adaptation to a highly aquatic lifestyle in turtles is the secondary loss of keratenized shell scutes (i.e., soft-shells), which is associated with enhanced swimming ability and, in some species, cutaneous respiration. We used codon models to examine patterns of selection on mitochondrial protein-coding genes along the three turtle lineages that independently evolved soft-shells. We found strong evidence for positive selection along the branches leading to the pig-nosed turtle (Carettochelys insculpta) and the softshells clade (Trionychidae), but only weak evidence for the leatherback (Dermochelys coriacea) branch. Positively selected sites were found to be particularly prevalent in OXPHOS Complex I proteins, especially subunit ND2, along both positively selected lineages, consistent with convergent adaptive evolution. Structural analysis showed that many of the identified sites are within key regions or near residues involved in proton transport, indicating that positive selection may have precipitated substantial changes in mitochondrial function. Overall, our study provides evidence that physiological challenges associated with adaptation to a highly aquatic lifestyle have shaped the evolution of the turtle mitochondrial genome in a lineage-specific manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Environment and Climate of Early Human Evolution

    Science.gov (United States)

    Levin, Naomi E.

    2015-05-01

    Evaluating the relationships between climate, the environment, and human traits is a key part of human origins research because changes in Earth's atmosphere, oceans, landscapes, and ecosystems over the past 10 Myr shaped the selection pressures experienced by early humans. In Africa, these relationships have been influenced by a combination of high-latitude ice distributions, sea surface temperatures, and low-latitude orbital forcing that resulted in large oscillations in vegetation and moisture availability that were modulated by local basin dynamics. The importance of both climate and tectonics in shaping African landscapes means that integrated views of the ecological, environmental, and tectonic histories of a region are necessary in order to understand the relationships between climate and human evolution.

  13. Comparative analysis of mitochondrial genomes of five aphid species (Hemiptera: Aphididae and phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    Full Text Available Insect mitochondrial genomes (mitogenomes are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.

  14. The early-stage structural evolution of the Barmer Basin rift, Rajasthan, northwest India

    OpenAIRE

    Bladon, Andrew John

    2015-01-01

    The structural evolution of the Barmer Basin and the context of the rift within the northwest Indian region are poorly understood, despite being a prolific hydrocarbon province. In this work an integrated basin analysis is presented covering the outcrop-, seismic-, and lithosphere-scales. The early-stage structural evolution and the origin of poorly understood structural complications in the Barmer Basin subsurface are assessed. Subsequently, the findings are placed within the wider context o...

  15. Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects.

    Science.gov (United States)

    Hong, Mee Yeon; Lee, Eun Mee; Jo, Yong Hun; Park, Hae Chul; Kim, Seong Ryul; Hwang, Jae Sam; Jin, Byung Rae; Kang, Pil Don; Kim, Ki-Gyoung; Han, Yeon Soo; Kim, Iksoo

    2008-04-30

    The 15,360-bp long complete mitogenome of Caligula boisduvalii possesses a gene arrangement and content identical to other completely sequenced lepidopteran mitogenomes, but different from the common arrangement found in most insect order, as the result of the movement of tRNA(Met) to a position 5'-upstream of tRNA Ile. The 330-bp A+T-rich region is apparently capable of forming a stem-and-loop structure, which harbors the conserved flanking sequences at both ends. Dissimilar to what has been seen in other sequenced lepidopteran insects, the initiation codon for C. boisduvalii COI appears to be TTG, which is a rare, but apparently possible initiation codon. The ATP8, ATP6, ND4L, and ND6 genes, which neighbor another PCG at their 3' end, all harbored potential sequences for the formation of a hairpin structure. This is suggestive of the importance of such structures for the precise cleavage of the mRNA of mature PCGs. Phylogenetic analyses of available sequenced species of Bombycoidea, Pyraloidea, and Tortricidea supported the morphology-based current hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (Antheraea pernyi and C. boisduvalii) formed a reciprocal monophyletic group.

  16. Stardust in Laboratory & Evolution of Early Solar System f y S Sy

    Indian Academy of Sciences (India)

    kkmarhas

    2008-09-13

    Sep 13, 2008 ... Picture book of presolar grains! Graphite grains. Silicon carbide. Corundum. 500nm. Spinel grains. Silicate grain. Silicon Nitride. Spinel grains. Silicate grain. Silicon Nitride. Presolar Grains &. Evolution of Early Solar System. Kuljeet K. Marhas. 13th September 2008. Physical Research Laboratory ...

  17. Numerical modeling of hydration process and temperature evolution in early age concrete

    NARCIS (Netherlands)

    Caggiano, A.; Pepe, M.; Koenders, E.A.B.; Martinelli, E.; Etse, G.J.

    2012-01-01

    Heat production induced by the hydration reaction and the resulting temperature evolution in the early phases of setting and hardening processes are critical phenomena, often leading to premature cracking of concrete members. However, the interest for simulating such phenomena is also related to the

  18. The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies

    Science.gov (United States)

    Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L.

    2018-04-01

    We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size R e , on the ratio v/σ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j ⋆ of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z ∼ 1–2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan

  19. Origin and evolution of the atmospheres of early Venus, Earth and Mars

    Science.gov (United States)

    Lammer, Helmut; Zerkle, Aubrey L.; Gebauer, Stefanie; Tosi, Nicola; Noack, Lena; Scherf, Manuel; Pilat-Lohinger, Elke; Güdel, Manuel; Grenfell, John Lee; Godolt, Mareike; Nikolaou, Athanasia

    2018-05-01

    We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥ 0.5 M_Earth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H_2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun's more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N_2 atmospheres. The buildup of atmospheric N_2, O_2, and the role of greenhouse gases such as CO_2 and CH_4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth's geophysical and related atmospheric evolution in relation

  20. Symbiosis in cell evolution: Life and its environment on the early earth

    Science.gov (United States)

    Margulis, L.

    1981-01-01

    The book treats cell evolution from the viewpoint of the serial endosymbiosis theory of the origin of organelles. Following a brief outline of the symbiotic theory, which holds that eukaryotes evolved by the association of free-living bacteria with a host prokaryote, the diversity of life is considered, and five kingdoms of organisms are distinguished: the prokaryotic Monera and the eukaryotic Protoctista, Animalia, Fungi and Plantae. Symbiotic and traditional direct filiation theories of cell evolution are compared. Recent observations of cell structure and biochemistry are reviewed in relation to early cell evolution, with attention given to the geological context for the origin of eukaryotic cells, the origin of major bacterial anaerobic pathways, the relationship between aerobic metabolism and atmospheric oxygen, criteria for distinguishing symbiotic organelles from those that originated by differentiation, and the major classes of eukaryotic organelles: mitochondria, cilia, microtubules, the mitotic and meiotic apparatuses, and pastids. Cell evolution during the Phanerozoic is also discussed with emphasis on the effects of life on the biosphere

  1. Arrival of Paleo-Indians to the southern cone of South America: new clues from mitogenomes.

    Directory of Open Access Journals (Sweden)

    Michelle de Saint Pierre

    Full Text Available With analyses of entire mitogenomes, studies of Native American mitochondrial DNA (MTDNA variation have entered the final phase of phylogenetic refinement: the dissection of the founding haplogroups into clades that arose in America during and after human arrival and spread. Ages and geographic distributions of these clades could provide novel clues on the colonization processes of the different regions of the double continent. As for the Southern Cone of South America, this approach has recently allowed the identification of two local clades (D1g and D1j whose age estimates agree with the dating of the earliest archaeological sites in South America, indicating that Paleo-Indians might have reached that region from Beringia in less than 2000 years. In this study, we sequenced 46 mitogenomes belonging to two additional clades, termed B2i2 (former B2l and C1b13, which were recently identified on the basis of mtDNA control-region data and whose geographical distributions appear to be restricted to Chile and Argentina. We confirm that their mutational motifs most likely arose in the Southern Cone region. However, the age estimate for B2i2 and C1b13 (11-13,000 years appears to be younger than those of other local clades. The difference could reflect the different evolutionary origins of the distinct South American-specific sub-haplogroups, with some being already present, at different times and locations, at the very front of the expansion wave in South America, and others originating later in situ, when the tribalization process had already begun. A delayed origin of a few thousand years in one of the locally derived populations, possibly in the central part of Chile, would have limited the geographical and ethnic diffusion of B2i2 and explain the present-day occurrence that appears to be mainly confined to the Tehuelche and Araucanian-speaking groups.

  2. Mitogenomes of polar bodies and corresponding oocytes.

    Directory of Open Access Journals (Sweden)

    Luca Gianaroli

    Full Text Available The objective of the present study was to develop an approach that could assess the chromosomal status and the mitochondrial DNA (mtDNA content of oocytes and their corresponding polar bodies (PBs with the goal of obtaining a comparative picture of the segregation process both for nuclear and mtDNA. After Whole Genome Amplification (WGA, sequencing of the whole mitochondrial genome was attempted to analyze the segregation of mutant and wild-type mtDNA during human meiosis. Three triads, composed of oocyte and corresponding PBs, were analyzed and their chromosome status was successfully assessed. The complete mitochondrial genome (mitogenome was almost entirely sequenced in the oocytes (95.99% compared to 98.43% in blood, while the percentage of sequences obtained in the corresponding PB1 and PB2 was lower (69.70% and 69.04% respectively. The comparison with the mtDNA sequence in blood revealed no changes in the D-loop region for any of the cells of each triad. In the coding region of blood mtDNA and oocyte mtDNA sequences showed full correspondence, whereas all PBs had at least one change with respect to the blood-oocyte pairs. In all, 9 changes were found, either in PB1 or PB2: 4 in MT-ND5, 2 in MT-RNR2, and 1 each in MT-ATP8, MT-ND4, MT-CYTB. The full concordance between oocyte and blood in the 3 triads, and the relegation of changes to PBs, revealed the unexpected coexistence of different variants, giving a refined estimation of mitochondrial heteroplasmy. Should these findings be confirmed by additional data, an active mechanism could be postulated in the oocyte to preserve a condition of 'normality'.

  3. The early evolution of Jean Piaget's clinical method.

    Science.gov (United States)

    Mayer, Susan Jean

    2005-11-01

    This article analyzes the early evolution of Jean Piaget's renowned "clinical method" in order to investigate the method's strikingly original and generative character. Throughout his 1st decade in the field, Piaget frequently discussed and justified the many different approaches to data collection he used. Analysis of his methodological progression during this period reveals that Piaget's determination to access the genuine convictions of children eventually led him to combine 3 distinct traditions in which he had been trained-naturalistic observation, psychometrics, and the psychiatric clinical examination. It was in this amalgam, first evident in his 4th text, that Piaget discovered the clinical dynamic that would drive the classic experiments for which he is most well known.

  4. Early-stage evolution of particle size distribution with Johnson's SB function due to Brownian coagulation

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2013-01-01

    The moment method can be used to determine the time evolution of particle size distribution due to Brownian coagulation based on the general dynamic equation (GDE). But the function form of the initial particle size distribution must be determined beforehand for the moment method. If the assumed function type of the initial particle size distribution has an obvious deviation from the true particle population, the evolution of particle size distribution may be different from the real evolution tendency. Thus, a simple and general method is proposed based on the moment method. In this method, the Johnson's S B function is chosen as a general distribution function to fit the initial distributions including the log normal (L-N), Rosin–Rammler (R-R), normal (N-N) and gamma distribution functions, respectively. Meanwhile, using the modified beta function to fit the L-N, R-R, N-N and gamma functions is also conducted as a comparison in order to present the advantage of the Johnson's S B function as the general distribution function. And then, the time evolution of particle size distributions using the Johnson's S B function as the initial distribution can be obtained by several lower order moment equations of the Johnson's S B function in conjunction with the GDE during the Brownian coagulation process. Simulation experiments indicate that fairly reasonable results of the time evolution of particle size distribution can be obtained with this proposed method in the free molecule regime, transition regime and continuum plus near continuum regime, respectively, at the early time stage of evolution. The Johnson's S B function has the ability of describing the early time evolution of different initial particle size distributions. (paper)

  5. Spinal cord evolution in early Homo.

    Science.gov (United States)

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    Science.gov (United States)

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  7. Performance of single and concatenated sets of mitochondrial genes at inferring metazoan relationships relative to full mitogenome data.

    Directory of Open Access Journals (Sweden)

    Justin C Havird

    Full Text Available Mitochondrial (mt genes are some of the most popular and widely-utilized genetic loci in phylogenetic studies of metazoan taxa. However, their linked nature has raised questions on whether using the entire mitogenome for phylogenetics is overkill (at best or pseudoreplication (at worst. Moreover, no studies have addressed the comparative phylogenetic utility of mitochondrial genes across individual lineages within the entire Metazoa. To comment on the phylogenetic utility of individual mt genes as well as concatenated subsets of genes, we analyzed mitogenomic data from 1865 metazoan taxa in 372 separate lineages spanning genera to subphyla. Specifically, phylogenies inferred from these datasets were statistically compared to ones generated from all 13 mt protein-coding (PC genes (i.e., the "supergene" set to determine which single genes performed "best" at, and the minimum number of genes required to, recover the "supergene" topology. Surprisingly, the popular marker COX1 performed poorest, while ND5, ND4, and ND2 were most likely to reproduce the "supergene" topology. Averaged across all lineages, the longest ∼2 mt PC genes were sufficient to recreate the "supergene" topology, although this average increased to ∼5 genes for datasets with 40 or more taxa. Furthermore, concatenation of the three "best" performing mt PC genes outperformed that of the three longest mt PC genes (i.e, ND5, COX1, and ND4. Taken together, while not all mt PC genes are equally interchangeable in phylogenetic studies of the metazoans, some subset can serve as a proxy for the 13 mt PC genes. However, the exact number and identity of these genes is specific to the lineage in question and cannot be applied indiscriminately across the Metazoa.

  8. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    Science.gov (United States)

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily

  9. Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation.

    Science.gov (United States)

    Martin, William F

    2012-03-09

    Life is a persistent, self-specified set of far from equilibrium chemical reactions. In modern microbes, core carbon and energy metabolism are what keep cells alive. In very early chemical evolution, the forerunners of carbon and energy metabolism were the processes of generating reduced carbon compounds from CO(2) and the mechanisms of harnessing energy as compounds capable of doing some chemical work. The process of serpentinization at alkaline hydrothermal vents holds promise as a model for the origin of early reducing power, because Fe(2+) in the Earth's crust reduces water to H(2) and inorganic carbon to methane. The overall geochemical process of serpentinization is similar to the biochemical process of methanogenesis, and methanogenesis is similar to acetogenesis in that both physiologies allow energy conservation from the reduction of CO(2) with electrons from H(2). Electron bifurcation is a newly recognized cytosolic process that anaerobes use generate low potential electrons, it plays an important role in some forms of methanogenesis and, via speculation, possibly in acetogenesis. Electron bifurcation likely figures into the early evolution of biological energy conservation. Copyright © 2011. Published by Elsevier B.V.

  10. The TIM Barrel Architecture Facilitated the Early Evolution of Protein-Mediated Metabolism.

    Science.gov (United States)

    Goldman, Aaron David; Beatty, Joshua T; Landweber, Laura F

    2016-01-01

    The triosephosphate isomerase (TIM) barrel protein fold is a structurally repetitive architecture that is present in approximately 10% of all enzymes. It is generally assumed that this ubiquity in modern proteomes reflects an essential historical role in early protein-mediated metabolism. Here, we provide quantitative and comparative analyses to support several hypotheses about the early importance of the TIM barrel architecture. An information theoretical analysis of protein structures supports the hypothesis that the TIM barrel architecture could arise more easily by duplication and recombination compared to other mixed α/β structures. We show that TIM barrel enzymes corresponding to the most taxonomically broad superfamilies also have the broadest range of functions, often aided by metal and nucleotide-derived cofactors that are thought to reflect an earlier stage of metabolic evolution. By comparison to other putatively ancient protein architectures, we find that the functional diversity of TIM barrel proteins cannot be explained simply by their antiquity. Instead, the breadth of TIM barrel functions can be explained, in part, by the incorporation of a broad range of cofactors, a trend that does not appear to be shared by proteins in general. These results support the hypothesis that the simple and functionally general TIM barrel architecture may have arisen early in the evolution of protein biosynthesis and provided an ideal scaffold to facilitate the metabolic transition from ribozymes, peptides, and geochemical catalysts to modern protein enzymes.

  11. Mitogenomic perspectives on the origin and phylogeny of living amphibians.

    Science.gov (United States)

    Zhang, Peng; Zhou, Hui; Chen, Yue-Qin; Liu, Yi-Fei; Qu, Liang-Hu

    2005-06-01

    Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution.

  12. Morphological and genetic evidence for early Holocene cattle management in northeastern China

    DEFF Research Database (Denmark)

    Zhang, Hucai; Paijmans, Johanna L. A.; Chang, Fengqin

    2013-01-01

    The domestication of cattle is generally accepted to have taken place in two independent centres: around 10,500 years ago in the Near East, giving rise to modern taurine cattle, and two millennia later in southern Asia, giving rise to zebu cattle. Here we provide firmly dated morphological...... and genetic evidence for early Holocene management of taurine cattle in northeastern China. We describe conjoining mandibles from this region that show evidence of oral stereotypy, dated to the early Holocene by two independent (14)C dates. Using Illumina high-throughput sequencing coupled with DNA...... hybridization capture, we characterize 15,406 bp of the mitogenome with on average 16.7-fold coverage. Phylogenetic analyses reveal a hitherto unknown mitochondrial haplogroup that falls outside the known taurine diversity. Our data suggest that the first attempts to manage cattle in northern China predate...

  13. Complete mitochondrial genome of Clistocoeloma sinensis (Brachyura: Grapsoidea): Gene rearrangements and higher-level phylogeny of the Brachyura.

    Science.gov (United States)

    Xin, Zhao-Zhe; Liu, Yu; Zhang, Dai-Zhen; Chai, Xin-Yue; Wang, Zheng-Fei; Zhang, Hua-Bin; Zhou, Chun-Lin; Tang, Bo-Ping; Liu, Qiu-Ning

    2017-06-23

    Deciphering the animal mitochondrial genome (mitogenome) is very important to understand their molecular evolution and phylogenetic relationships. In this study, the complete mitogenome of Clistocoeloma sinensis was determined. The mitogenome of C. sinensis was 15,706 bp long, and its A+T content was 75.7%. The A+T skew of the mitogenome of C. sinensis was slightly negative (-0.020). All the transfer RNA genes had the typical cloverleaf structure, except for the trnS1 gene, which lacked a dihydroxyuridine arm. The two ribosomal RNA genes had 80.2% A+T content. The A+T-rich region spanned 684 bp. The gene order within the complete mitogenome of C. sinensis was identical to the pancrustacean ground pattern except for the translocation of trnH. Additionally, the gene order of trnI-trnQ-trnM in the pancrustacean ground pattern becomes trnQ-trnI-trnM in C. sinensis. Our phylogenetic analysis showed that C. sinensis and Sesarmops sinensis cluster together with high nodal support values, indicating that C. sinensis and S. sinensis have a sister group relationship. The results support that C. sinensis belongs to Grapsoidea, Sesarmidae. Our findings also indicate that Varunidae and Sesarmidae species share close relationships. Thus, mitogenomes are likely to be valuable tools for systematics in other groups of Crustacea.

  14. Origins and Early Evolution of the tRNA Molecule

    Directory of Open Access Journals (Sweden)

    Koji Tamura

    2015-12-01

    Full Text Available Modern transfer RNAs (tRNAs are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs. Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC. The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome.

  15. Body size and premolar evolution in the early-middle eocene euprimates of Wyoming.

    Science.gov (United States)

    Jones, Katrina E; Rose, Kenneth D; Perry, Jonathan M G

    2014-01-01

    The earliest euprimates to arrive in North America were larger-bodied notharctids and smaller-bodied omomyids. Through the Eocene, notharctids generally continued to increase in body size, whereas omomyids generally radiated within small- and increasingly mid-sized niches in the middle Eocene. This study examines the influence of changing body size and diet on the evolution of the lower fourth premolar in Eocene euprimates. The P4 displays considerable morphological variability in these taxa. Despite the fact that most studies of primate dental morphology have focused on the molars, P4 can also provide important paleoecological insights. We analyzed the P4 from 177 euprimate specimens, representing 35 species (11 notharctids and 24 omomyids), in three time bins of approximately equal duration: early Wasatchian, late Wasatchian, and Bridgerian. Two-dimensional surface landmarks were collected from lingual photographs, capturing important variation in cusp position and tooth shape. Disparity metrics were calculated and compared for the three time bins. In the early Eocene, notharctids have a more molarized P4 than omomyids. During the Bridgerian, expanding body size range of omomyids was accompanied by a significant increase in P4 disparity and convergent evolution of the semimolariform condition in the largest omomyines. P4 morphology relates to diet in early euprimates, although patterns vary between families. Copyright © 2013 Wiley Periodicals, Inc.

  16. Digging deeper: new gene order rearrangements and distinct patterns of codons usage in mitochondrial genomes among shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: Decapoda

    Directory of Open Access Journals (Sweden)

    Mun Hua Tan

    2017-03-01

    Full Text Available Background Whole mitochondrial DNA is being increasingly utilized for comparative genomic and phylogenetic studies at deep and shallow evolutionary levels for a range of taxonomic groups. Although mitogenome sequences are deposited at an increasing rate into public databases, their taxonomic representation is unequal across major taxonomic groups. In the case of decapod crustaceans, several infraorders, including Axiidea (ghost shrimps, sponge shrimps, and mud lobsters and Caridea (true shrimps are still under-represented, limiting comprehensive phylogenetic studies that utilize mitogenomic information. Methods Sequence reads from partial genome scans were generated using the Illumina MiSeq platform and mitogenome sequences were assembled from these low coverage reads. In addition to examining phylogenetic relationships within the three infraorders, Axiidea, Gebiidea, and Caridea, we also investigated the diversity and frequency of codon usage bias and mitogenome gene order rearrangements. Results We present new mitogenome sequences for five shrimp species from Australia that includes two ghost shrimps, Callianassa ceramica and Trypaea australiensis, along with three caridean shrimps, Macrobrachium bullatum, Alpheus lobidens, and Caridina cf. nilotica. Strong differences in codon usage were discovered among the three infraorders and significant gene order rearrangements were observed. While the gene order rearrangements are congruent with the inferred phylogenetic relationships and consistent with taxonomic classification, they are unevenly distributed within and among the three infraorders. Discussion Our findings suggest potential for mitogenome rearrangements to be useful phylogenetic markers for decapod crustaceans and at the same time raise important questions concerning the drivers of mitogenome evolution in different decapod crustacean lineages.

  17. Early galactic evolution and the nature of the first stars

    International Nuclear Information System (INIS)

    Jones, J.E.

    1985-05-01

    In this paper, the observational data relating to the early evolution of the Galaxy are reviewed in order to assess the plausibility of a number of models that have been proposed for the first stars. On the basis of standard fragmentation models, it is argued that primordial stars were very similar to normal stars, but that in some circumstances the formation of low mass primordial stars may be suppressed through the dissociation of molecular hydrogen by UV radiation. The existence of these conditions at the time of formation of the Galaxy could explain the absence of zero-metal stars. (orig./WL)

  18. The early Miocene balaenid Morenocetus parvus from Patagonia (Argentina and the evolution of right whales

    Directory of Open Access Journals (Sweden)

    Mónica R. Buono

    2017-12-01

    Full Text Available Balaenidae (right and bowhead whales are a key group in understanding baleen whale evolution, because they are the oldest surviving lineage of crown Mysticeti, with a fossil record that dates back ∼20 million years. However, this record is mostly Pliocene and younger, with most of the Miocene history of the clade remaining practically unknown. The earliest recognized balaenid is the early Miocene Morenocetus parvus Cabrera, 1926 from Argentina. M. parvus was originally briefly described from two incomplete crania, a mandible and some cervical vertebrae collected from the lower Miocene Gaiman Formation of Patagonia. Since then it has not been revised, thus remaining a frequently cited yet enigmatic fossil cetacean with great potential for shedding light on the early history of crown Mysticeti. Here we provide a detailed morphological description of this taxon and revisit its phylogenetic position. The phylogenetic analysis recovered the middle Miocene Peripolocetus as the earliest diverging balaenid, and Morenocetus as the sister taxon of all other balaenids. The analysis of cranial and periotic morphology of Morenocetus suggest that some of the specialized morphological traits of modern balaenids were acquired by the early Miocene and have remained essentially unchanged up to the present. Throughout balaenid evolution, morphological changes in skull arching and ventral displacement of the orbits appear to be coupled and functionally linked to mitigating a reduction of the field of vision. The body length of Morenocetus and other extinct balaenids was estimated and the evolution of body size in Balaenidae was reconstructed. Optimization of body length on our phylogeny of Balaenidae suggests that the primitive condition was a relatively small body length represented by Morenocetus, and that gigantism has been acquired independently at least twice (in Balaena mysticetus and Eubalaena spp., with the earliest occurrence of this trait in the late

  19. The early Miocene balaenid Morenocetus parvus from Patagonia (Argentina) and the evolution of right whales

    Science.gov (United States)

    Cozzuol, Mario A.; Fitzgerald, Erich M.G.

    2017-01-01

    Balaenidae (right and bowhead whales) are a key group in understanding baleen whale evolution, because they are the oldest surviving lineage of crown Mysticeti, with a fossil record that dates back ∼20 million years. However, this record is mostly Pliocene and younger, with most of the Miocene history of the clade remaining practically unknown. The earliest recognized balaenid is the early Miocene Morenocetus parvus Cabrera, 1926 from Argentina. M. parvus was originally briefly described from two incomplete crania, a mandible and some cervical vertebrae collected from the lower Miocene Gaiman Formation of Patagonia. Since then it has not been revised, thus remaining a frequently cited yet enigmatic fossil cetacean with great potential for shedding light on the early history of crown Mysticeti. Here we provide a detailed morphological description of this taxon and revisit its phylogenetic position. The phylogenetic analysis recovered the middle Miocene Peripolocetus as the earliest diverging balaenid, and Morenocetus as the sister taxon of all other balaenids. The analysis of cranial and periotic morphology of Morenocetus suggest that some of the specialized morphological traits of modern balaenids were acquired by the early Miocene and have remained essentially unchanged up to the present. Throughout balaenid evolution, morphological changes in skull arching and ventral displacement of the orbits appear to be coupled and functionally linked to mitigating a reduction of the field of vision. The body length of Morenocetus and other extinct balaenids was estimated and the evolution of body size in Balaenidae was reconstructed. Optimization of body length on our phylogeny of Balaenidae suggests that the primitive condition was a relatively small body length represented by Morenocetus, and that gigantism has been acquired independently at least twice (in Balaena mysticetus and Eubalaena spp.), with the earliest occurrence of this trait in the late Miocene–early

  20. Origin and Evolution of The Early- Silurian Land Vascular Plants: Evidence From Biomarkers

    Science.gov (United States)

    Jin, R.

    2016-12-01

    Origin and early evolution of land vascular plants, is one of the most intriguing hotspots in the life science research. During the 1970s and 1980s,Pinnatiramosus qianensis was found in early-Silurian strata in guizhou of south China.43 years have passed. But so far, the biological characteristics and belonging of the age of this unique plant have been debated again and again, up in the air.Biomarkers have a good stability in the process of organic evolution, no more or less changed, so they have a special `function of mark'. While biomarkers can provide information about organic matter of hydrocarbon source rock (the source), the period of deposition and burial (diagenesis) environmental conditions, and many other aspects of information.This paper obtained the sedimentary environment, source of organic matter input and other relevant information, through extracting and analyzing biomarkers of the 26 samples in the late Ordovician to early Silurian strata in NorthGuizhou areas. According to the results, Pr/Ph of late Ordovician Meitan Fm-early Silurian Hanjiadian Fm is high.It manifests more pristane, characterized by reductive environment. At the bottom of the Hanjiadian Fm, Pr/Ph has a volatility.Some huge environmental changes may have taken place in the corresponding period. N-alkanes do not have parity advantage or has even carbon advantage slightly.The peak carbon is mainly in low carbon number.(C21 + C22)/(C28 + C29) is high.Aquatic organisms is a major source of organic matter during this period,C21-/C22+ is low.This may be caused by the relatively serious loss of light hydrocarbon during the separation of components. In the Hanjiadian Fm,information of C29/C27 sterane ratios and oleanane index showed a trend of rising at the same time, indicating that during this period, there was a gradual increase input in the number of higher plants.The stable carbon isotope of saturated hydrocarbon and aromatic hydrocarbon in the Hanjiadian Fm also gradually become

  1. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    Science.gov (United States)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  2. Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe

    Science.gov (United States)

    Cote, Benoit; JINA-CEE, NuGrid, ChETEC

    2018-06-01

    Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.

  3. Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan.

    Science.gov (United States)

    Webster, Bonnie L; Copley, Richard R; Jenner, Ronald A; Mackenzie-Dodds, Jacqueline A; Bourlat, Sarah J; Rota-Stabelli, Omar; Littlewood, D T J; Telford, Maximilian J

    2006-01-01

    Research into arthropod evolution is hampered by the derived nature and rapid evolution of the best-studied out-group: the nematodes. We consider priapulids as an alternative out-group. Priapulids are a small phylum of bottom-dwelling marine worms; their tubular body with spiny proboscis or introvert has changed little over 520 million years and recognizable priapulids are common among exceptionally preserved Cambrian fossils. Using the complete mitochondrial genome and 42 nuclear genes from Priapulus caudatus, we show that priapulids are slowly evolving ecdysozoans; almost all these priapulid genes have evolved more slowly than nematode orthologs and the priapulid mitochondrial gene order may be unchanged since the Cambrian. Considering their primitive bodyplan and embryology and the great conservation of both nuclear and mitochondrial genomes, priapulids may deserve the popular epithet of "living fossil." Their study is likely to yield significant new insights into the early evolution of the Ecdysozoa and the origins of the arthropods and their kin as well as aiding inference of the morphology of ancestral Ecdysozoa and Bilateria and their genomes.

  4. Galactic chemical evolution in hierarchical formation models - I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matías; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  5. Galactic chemical evolution in hierarchical formation models : I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matias; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    2010-01-01

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  6. The Complete Mitochondrial Genome Sequence of Bactericera cockerelli and Comparison with Three Other Psylloidea Species.

    Directory of Open Access Journals (Sweden)

    Fengnian Wu

    Full Text Available Potato psyllid (Bactericera cockerelli is an important pest of potato, tomato and pepper. Not only could a toxin secreted by nymphs results in serious phytotoxemia in some host plants, but also over the past few years B. cockerelli was shown to transmit "Candidatus Liberibacter solanacearum", the putative bacterial pathogen of potato zebra chip (ZC disease, to potato and tomato. ZC has caused devastating losses to potato production in the western U.S., Mexico, and elsewhere. New knowledge of the genetic diversity of the B. cockerelli is needed to develop improved strategies to manage pest populations. Mitochondrial genome (mitogenome sequencing provides important knowledge about insect evolution and diversity in and among populations. This report provides the first complete B. cockerelli mitogenome sequence as determined by next generation sequencing technology (Illumina MiSeq. The circular B. cockerelli mitogenome had a size of 15,220 bp with 13 protein-coding gene (PCGs, 2 ribosomal RNA genes (rRNAs, 22 transfer RNA genes (tRNAs, and a non-coding region of 975 bp. The overall gene order of the B. cockerelli mitogenome is identical to three other published Psylloidea mitogenomes: one species from the Triozidae, Paratrioza sinica; and two species from the Psyllidae, Cacopsylla coccinea and Pachypsylla venusta. This suggests all of these species share a common ancestral mitogenome. However, sequence analyses revealed differences between and among the insect families, in particular a unique region that can be folded into three stem-loop secondary structures present only within the B. cockerelli mitogenome. A phylogenetic tree based on the 13 PCGs matched an existing taxonomy scheme that was based on morphological characteristics. The available complete mitogenome sequence makes it accessible to all genes for future population diversity evaluation of B. cockerelli.

  7. Mass loss in early stages of stellar evolution

    International Nuclear Information System (INIS)

    Dearborn, D.S.P.; Kozlowski, M.; Schramm, D.

    1976-01-01

    It is known that stars lose mass between their birth on the main sequence and their death as white dwarfs, or as neutron stars or black holes for more massive stars. Solar wind considerations indicate that not all of the mass loss occurs in a 'last gasp' to form a planetary nebula. Mass loss has be observed in O-B stars and in red giants, but the mass loss observed in these stages do not appear sufficient to account for all the loss required for stars to become white dwarfs. The problem is at what stages and in what manner the excess mass is lost. Suggestions have tended to favour He flashes for stars with M < 2.25 M. and possibly double shell instability flashes for stars in the range from 2.25 M. to 8 M. Although is is possible that significant mass is lost during these stages, there appears to be no quantitative support for this suggestion, and in particular none for the He flash. It is shown here that there is increasing evidence for substantial mass loss during the immediate post main sequence stages when the star is moving from the main sequence to the giant branch. Mass loss at these early stages of evolution may have implications on the subsequent evolution of the star and the amount of nuclearly processed material that is ejected into the interstellar-medium. The behaviour of Arcturus is discussed in these connections. (U.K.)

  8. COSMIC EVOLUTION OF SIZE AND VELOCITY DISPERSION FOR EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Fan, L.; Lapi, A.; Bressan, A.; De Zotti, G.; Danese, L.; Bernardi, M.

    2010-01-01

    Massive (stellar mass M * ∼> 3 x 10 10 M sun ), passively evolving galaxies at redshifts z ∼> 1 exhibit on average physical sizes smaller, by factors ∼3, than local early-type galaxies (ETGs) endowed with the same stellar mass. Small sizes are in fact expected on theoretical grounds, if dissipative collapse occurs. Recent results show that the size evolution at z ∼ 1, where both compact and already extended galaxies are observed and the scatter in size is remarkably larger than it is locally. The presence at high redshift of a significant number of ETGs with the same size as their local counterparts, as well as ETGs with quite small size (∼ H (z). We demonstrate that the projected mass of compact, high-redshift galaxies and that of local ETGs within the same physical radius, the nominal half-luminosity radius of high-redshift ETGs, differ substantially in that the high-redshift ETGs are on average significantly denser. This result suggests that the physical mechanism responsible for the size increase should also remove mass from central galaxy regions (r ∼ 1, we predict the local velocity dispersion distribution function. On comparing it to the observed one, we show that velocity dispersion evolution of massive ETGs is fully compatible with the observed average evolution in size at constant stellar mass. Less massive ETGs (with stellar masses M * ∼ 10 M sun ) are expected to evolve less both in size and in velocity dispersion, because their evolution is essentially determined by supernova feedback, which cannot yield winds as powerful as those triggered by quasars. The differential evolution is expected to leave imprints in the size versus luminosity/mass, velocity dispersion versus luminosity/mass, and central black hole mass versus velocity dispersion relationships, as observed in local ETGs.

  9. The Complete Mitochondrial Genome of Corizus tetraspilus (Hemiptera: Rhopalidae) and Phylogenetic Analysis of Pentatomomorpha

    Science.gov (United States)

    Guo, Zhong-Long; Wang, Juan; Shen, Yu-Ying

    2015-01-01

    Insect mitochondrial genome (mitogenome) are the most extensively used genetic information for molecular evolution, phylogenetics and population genetics. Pentatomomorpha (>14,000 species) is the second largest infraorder of Heteroptera and of great economic importance. To better understand the diversity and phylogeny within Pentatomomorpha, we sequenced and annotated the complete mitogenome of Corizus tetraspilus (Hemiptera: Rhopalidae), an important pest of alfalfa in China. We analyzed the main features of the C. tetraspilus mitogenome, and provided a comparative analysis with four other Coreoidea species. Our results reveal that gene content, gene arrangement, nucleotide composition, codon usage, rRNA structures and sequences of mitochondrial transcription termination factor are conserved in Coreoidea. Comparative analysis shows that different protein-coding genes have been subject to different evolutionary rates correlated with the G+C content. All the transfer RNA genes found in Coreoidea have the typical clover leaf secondary structure, except for trnS1 (AGN) which lacks the dihydrouridine (DHU) arm and possesses a unusual anticodon stem (9 bp vs. the normal 5 bp). The control regions (CRs) among Coreoidea are highly variable in size, of which the CR of C. tetraspilus is the smallest (440 bp), making the C. tetraspilus mitogenome the smallest (14,989 bp) within all completely sequenced Coreoidea mitogenomes. No conserved motifs are found in the CRs of Coreoidea. In addition, the A+T content (60.68%) of the CR of C. tetraspilus is much lower than that of the entire mitogenome (74.88%), and is lowest among Coreoidea. Phylogenetic analyses based on mitogenomic data support the monophyly of each superfamily within Pentatomomorpha, and recognize a phylogenetic relationship of (Aradoidea + (Pentatomoidea + (Lygaeoidea + (Pyrrhocoroidea + Coreoidea)))). PMID:26042898

  10. Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    Science.gov (United States)

    Grandin, Robert John

    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material's operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material's life, and this early-stage damage occurs on length scales at which the material may be considered "granular'' in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and

  11. Environmental oxygen conditions during the origin and early evolution of life

    Science.gov (United States)

    Towe, Kenneth M.

    The well-known sensitivity of proteins and nucleic acids to UV-radiation requires that some internally consistent protection scenario be envisioned for the origin and early evolution of life on Earth. Although a variety of ozone-surrogates has been proposed, the available biochemical, geochemical and geological evidence best supports the conclusion that free oxygen was available at levels capable of providing at least a moderate ozone screen. Levels of oxygen near 1-2% of the present atmospheric level are consistent with such a screen, and with: (1) the biochemical needs of early procaryotes considered phylogenetically more primitive than the oxygen-producing Cyanobacteria; (2) the rare-earth element data from the oxide facies of the 3.8 Byr-old Isua banded-iron formations; (3) the nature and phylogenetic distribution of superoxide dismutases; (4) the need for aerobic recycling of early photosynthetic productivity dictated by the distribution of ancient sedimentary iron and organic carbon; (5) the incompatibility of dissolved reduced sulfur (to support anoxygenic photosynthesis) and ferrous iron (to support banded iron-formations) in the surface waters of the world oceans; and (6) the comparative oxygen and UV-sensitivities of modern procaryotes.

  12. New hominin fossils from Kanapoi, Kenya, and the mosaic evolution of canine teeth in early hominins

    Directory of Open Access Journals (Sweden)

    J. Michael Plavcan

    2012-03-01

    Full Text Available Whilst reduced size, altered shape and diminished sexual dimorphism of the canine–premolar complex are diagnostic features of the hominin clade, little is known about the rate and timing of changes in canine size and shape in early hominins. The earliest Australopithecus, Australopithecus anamensis, had canine crowns similar in size to those of its descendant Australopithecus afarensis, but a single large root alveolus has suggested that this species may have had larger and more dimorphic canines than previously recognised. Here we present three new associated dentitions attributed to A. anamensis, recently recovered from the type site of Kanapoi, Kenya, that provide evidence of canine evolution in early Australopithecus. These fossils include the largest mandibular canine root in the hominin fossil record. We demonstrate that, although canine crown height did not differ between these species, A. anamensis had larger and more dimorphic roots, more like those of extant great apes and Ardipithecus ramidus, than those of A. afarensis. The canine and premolar occlusal shapes of A. anamensis also resemble those of Ar. ramidus, and are intermediary between extant great apes and A. afarensis. A. afarensis achieved Homo-like maxillary crown basal proportions without a reduction in crown height. Thus, canine crown size and dimorphism remained stable during the early evolution of Australopithecus, but mandibular root dimensions changed only later within the A. anamensis–afarensis lineage, coincident with morphological changes in the canine–premolar complex. These observations suggest that selection on canine tooth crown height, shape and root dimensions was not coupled in early hominin evolution, and was not part of an integrated adaptive package.

  13. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    Science.gov (United States)

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  14. The emergence and early evolution of biological carbon-fixation.

    Science.gov (United States)

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more

  15. The emergence and early evolution of biological carbon-fixation.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology

  16. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick (Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis.

    Science.gov (United States)

    Gan, Han Ming; Thomas, Bolaji N; Cavanaugh, Nicole T; Morales, Grace H; Mayers, Ashley N; Savka, Michael A; Hudson, André O

    2017-01-01

    In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts.

  17. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick (Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis

    Science.gov (United States)

    Thomas, Bolaji N.; Cavanaugh, Nicole T.; Morales, Grace H.; Mayers, Ashley N.; Savka, Michael A.

    2017-01-01

    In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts. PMID:29158974

  18. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.

    Science.gov (United States)

    Matthewman, Richard; Court, Richard W; Crawford, Ian A; Jones, Adrian P; Joy, Katherine H; Sephton, Mark A

    2015-02-01

    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.

  19. The worldwide spread of the tiger mosquito as revealed by mitogenome haplogroup diversity

    Directory of Open Access Journals (Sweden)

    Vincenza Battaglia

    2016-11-01

    Full Text Available In the last 40 years, the Asian tiger mosquito Aedes albopictus, indigenous to East Asia, has colonized every continent except Antarctica. Its spread is a major public health concern, given that this species is a competent vector for numerous arboviruses, including those causing dengue, chikungunya, West Nile and the recently emerged Zika fever. To acquire more information on the ancestral source(s of adventive populations and the overall diffusion process from its native range, we analyzed the mitogenome variation of 27 individuals from representative populations of Asia, the Americas and Europe. Phylogenetic analyses revealed five haplogroups in Asia, but population surveys appear to indicate that only three of these (A1a1, A1a2 and A1b were involved in the recent worldwide spread. We also found out that a derived lineage (A1a1a1 within A1a1, which is now common in Italy, most likely arose in North America from an ancestral Japanese source. These different genetic sources now coexist in many of the recently colonized areas, thus probably creating novel genomic combinations which might be one of the causes of the apparently growing ability of Ae. albopictus to expand its geographical range.

  20. Novel scenarios of early animal evolution--is it time to rewrite textbooks?

    Science.gov (United States)

    Dohrmann, Martin; Wörheide, Gert

    2013-09-01

    Understanding how important phenotypic, developmental, and genomic features of animals originated and evolved is essential for many fields of biological research, but such understanding depends on robust hypotheses about the phylogenetic interrelationships of the higher taxa to which the studied species belong. Molecular approaches to phylogenetics have proven able to revolutionize our knowledge of organismal evolution. However, with respect to the deepest splits in the metazoan Tree of Life-the relationships between Bilateria and the four non-bilaterian phyla (Porifera, Placozoa, Ctenophora, and Cnidaria)-no consensus has been reached yet, since a number of different, often contradictory, hypotheses with sometimes spectacular implications have been proposed in recent years. Here, we review the recent literature on the topic and contrast it with more classical perceptions based on analyses of morphological characters. We conclude that the time is not yet ripe to rewrite zoological textbooks and advocate a conservative approach when it comes to developing scenarios of the early evolution of animals.

  1. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds.

    Science.gov (United States)

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-03-10

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.

  2. Constrained pattern of viral evolution in acute and early HCV infection limits viral plasticity.

    Directory of Open Access Journals (Sweden)

    Katja Pfafferott

    2011-02-01

    Full Text Available Cellular immune responses during acute Hepatitis C virus (HCV and HIV infection are a known correlate of infection outcome. Viral adaptation to these responses via mutation(s within CD8+ T-cell epitopes allows these viruses to subvert host immune control. This study examined HCV evolution in 21 HCV genotype 1-infected subjects to characterise the level of viral adaptation during acute and early HCV infection. Of the total mutations observed 25% were within described CD8+ T-cell epitopes or at viral adaptation sites. Most mutations were maintained into the chronic phase of HCV infection (75%. The lack of reversion of adaptations and high proportion of silent substitutions suggests that HCV has structural and functional limitations that constrain evolution. These results were compared to the pattern of viral evolution observed in 98 subjects during a similar phase in HIV infection from a previous study. In contrast to HCV, evolution during acute HIV infection is marked by high levels of amino acid change relative to silent substitutions, including a higher proportion of adaptations, likely reflecting strong and continued CD8+ T-cell pressure combined with greater plasticity of the virus. Understanding viral escape dynamics for these two viruses is important for effective T cell vaccine design.

  3. Evolution of an Early Illness Warning System to Monitor Frail Elders in Independent Living

    Directory of Open Access Journals (Sweden)

    Gregory L. Alexander

    2011-01-01

    Full Text Available This paper describes the evolution of an early illness warning system used by an interdisciplinary team composed of clinicians and engineers in an independent living facility. The early illness warning system consists of algorithms which analyze resident activity patterns obtained from sensors embedded in residents' apartments. The engineers designed an automated reasoning system to generate clinically relevant alerts which are sent to clinicians when significant changes occur in the sensor data, for example declining activity levels. During January 2010 through July 2010, clinicians and engineers conducted weekly iterative review cycles of the early illness warning system to discuss concerns about the functionality of the warning system, to recommend solutions for the concerns, and to evaluate the implementation of the solutions. A total of 45 concerns were reviewed during this period. Iterative reviews resulted in greater efficiencies and satisfaction for clinician users who were monitoring elder activity patterns.

  4. Complete mitochondrial genome of the big-eared horseshoe bat Rhinolophus macrotis (Chiroptera, Rhinolophidae).

    Science.gov (United States)

    Zhang, Lin; Sun, Keping; Feng, Jiang

    2016-11-01

    We sequenced and characterized the complete mitochondrial genome of the big-eared horseshoe bat, Rhinolophus macrotis. Total length of the mitogenome is 16,848 bp, with a base composition of 31.2% A, 25.3% T, 28.8% C and 14.7% G. The mitogenome consists of 13 protein-coding genes, 2 rRNA (12S and 16S rRNA) genes, 22 tRNA genes and 1 control region. It has the same gene arrangement pattern as those of typical vertebrate mitochondrial genome. The results will contribute to our understanding of the taxonomic status and evolution in the genus Rhinolophus bats.

  5. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology

    Science.gov (United States)

    Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng

    2018-03-01

    The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a

  6. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda.

    Science.gov (United States)

    Yang, Jie; Ortega-Hernández, Javier; Butterfield, Nicholas J; Liu, Yu; Boyan, George S; Hou, Jin-Bo; Lan, Tian; Zhang, Xi-Guang

    2016-03-15

    Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda.

  7. Spectral evolution of galaxies: current views

    International Nuclear Information System (INIS)

    Bruzual, A.G.

    1985-01-01

    A summary of current views on the interpretation of the various evolutionary tests aimed at detecting spectral evolution in galaxies is presented. It is concluded that the evolution taking place in known galaxy samples is a slow process (perhaps consistent with no evolution at all), and that the early phases of rapid spectral evolution in early-type galaxies have not yet been detected. (author)

  8. Transformation and diversification in early mammal evolution.

    Science.gov (United States)

    Luo, Zhe-Xi

    2007-12-13

    Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.

  9. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds

    OpenAIRE

    Motani, R; Chen, XH; Jiang, DY; Cheng, L; Tintori, A; Rieppel, O

    2015-01-01

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus ...

  10. Revalidation of the genus Chiloguembelitria Hofker: Implications for the evolution of early Danian planktonic foraminifera

    Science.gov (United States)

    Arenillas, Ignacio; Arz, José A.; Gilabert, Vicente

    2017-10-01

    Guembelitria is the only planktonic foraminiferal genus whose survival from the mass extinction event of the Cretaceous/Paleogene (K/Pg) boundary has been clearly proven. The evolution of Guembelitria after the K/Pg boundary led to the appearance of two guembelitriid lineages in the early Danian: one biserial, represented by Woodringina and culminating in Chiloguembelina, and the other trochospiral, represented by Trochoguembelitria and culminating in Globoconusa. We have re-examined the genus Chiloguembelitria, another guembelitriid descended from Guembelitria and whose taxonomic validity had been questioned, it being considered a junior synonym of the latter. Nevertheless, Chiloguembelitria differs from Guembelitria mainly in the wall texture (pustulate to rugose vs. pore-mounded) and the position of the aperture (umbilical-extraumbilical to extraumbilical vs. umbilical). Chiloguembelitria shares its wall texture with Trochoguembelitria and some of the earliest specimens of Woodringina, suggesting that it played an important role in the evolution of early Danian guembelitriids, as it seems to be the most immediate ancestor of both trochospiral and biserial lineages. Morphological and morphostatistical analyses of Chiloguembelitria discriminate at least five species: Chg. danica, Chg. irregularis, and three new species: Chg. hofkeri, Chg. trilobata and Chg. biseriata.

  11. Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation

    Science.gov (United States)

    Choi, Hoseung; Yi, Sukyoung K.; Dubois, Yohan; Kimm, Taysun; Devriendt, Julien. E. G.; Pichon, Christophe

    2018-04-01

    Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z ≃ 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than {10}10 {M}ȯ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, f SR, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of f SR, a weak trend is seen in the mean value of the spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of the central ETGs of halos with {M}vir}> {10}12.5 {M}ȯ , but only 22% of satellite and field ETGs. We find that non-merger-induced tidal perturbations better correlate with the galaxy spin down in satellite ETGs than in mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  12. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    International Nuclear Information System (INIS)

    Ryan, R. E. Jr.; McCarthy, P. J.; Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Bond, H. E.; Bushouse, H.; O'Connell, R. W.; Balick, B.; Calzetti, D.; Crockett, R. M.; Disney, M.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.

    2012-01-01

    We present the size evolution of passively evolving galaxies at z ∼ 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z ∼> 1.5. We identify 30 galaxies in ∼40 arcmin 2 to H obs ∼ * ∼ 10 11 M ☉ ) undergo the strongest evolution from z ∼ 2 to the present. Parameterizing the size evolution as (1 + z) –α , we find a tentative scaling of α ≈ (– 0.6 ± 0.7) + (0.9 ± 0.4)log (M * /10 9 M ☉ ), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M * -R e relation for red galaxies.

  13. The complete mitochondrial genome of Sesarmops sinensis reveals gene rearrangements and phylogenetic relationships in Brachyura.

    Science.gov (United States)

    Tang, Bo-Ping; Xin, Zhao-Zhe; Liu, Yu; Zhang, Dai-Zhen; Wang, Zheng-Fei; Zhang, Hua-Bin; Chai, Xin-Yue; Zhou, Chun-Lin; Liu, Qiu-Ning

    2017-01-01

    Mitochondrial genome (mitogenome) is very important to understand molecular evolution and phylogenetics. Herein, in this study, the complete mitogenome of Sesarmops sinensis was reported. The mitogenome was 15,905 bp in size, and contained 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region (CR). The AT skew and the GC skew are both negative in the mitogenomes of S. sinensis. The nucleotide composition of the S. sinensis mitogenome was also biased toward A + T nucleotides (75.7%). All tRNA genes displayed a typical mitochondrial tRNA cloverleaf structure, except for the trnS1 gene, which lacked a dihydroxyuridine arm. S. sinensis exhibits a novel rearrangement compared with the Pancrustacean ground pattern and other Brachyura species. Based on the 13 PCGs, the phylogenetic analysis showed that S. sinensis and Sesarma neglectum were clustered on one branch with high nodal support values, indicating that S. sinensis and S. neglectum have a sister group relationship. The group (S. sinensis + S. neglectum) was sister to (Parasesarmops tripectinis + Metopaulias depressus), suggesting that S. sinensis belongs to Grapsoidea, Sesarmidae. Phylogenetic trees based on amino acid sequences and nucleotide sequences of mitochondrial 13 PCGs using BI and ML respectively indicate that section Eubrachyura consists of four groups clearly. The resulting phylogeny supports the establishment of a separate subsection Potamoida. These four groups correspond to four subsections of Raninoida, Heterotremata, Potamoida, and Thoracotremata.

  14. Cyanobacterial evolution during the Precambrian

    Science.gov (United States)

    Schirrmeister, Bettina E.; Sanchez-Baracaldo, Patricia; Wacey, David

    2016-07-01

    Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth's biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth's atmosphere and hydrosphere, triggered the evolution of plants -being ancestral to chloroplasts- and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history. However, very little is known about the early evolution of this phylum and ongoing debates about cyanobacterial fossils, biomarkers and molecular clock analyses highlight the difficulties in this field of research. Although phylogenomic analyses have provided promising glimpses into the early evolution of cyanobacteria, estimated divergence ages are often very uncertain, because of vague and insufficient tree-calibrations. Results of molecular clock analyses are intrinsically tied to these prior calibration points, hence improving calibrations will enable more precise divergence time estimations. Here we provide a review of previously described Precambrian microfossils, biomarkers and geochemical markers that inform upon the early evolution of cyanobacteria. Future research in micropalaeontology will require novel analyses and imaging techniques to improve taxonomic affiliation of many Precambrian microfossils. Consequently, a better understanding of early cyanobacterial evolution will not only allow for a more specific calibration of cyanobacterial and eubacterial phylogenies, but also provide new dates for the tree

  15. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    Science.gov (United States)

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  16. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    International Nuclear Information System (INIS)

    Shkolnik, Evgenya L.; Barman, Travis S.

    2014-01-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation and evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t –1 . Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.

  17. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: barman@lpl.arizona.edu [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2014-10-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation and evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t {sup –1}. Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.

  18. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution

    KAUST Repository

    Yasumura, Yuki

    2012-10-18

    Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh-water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence-induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land. © 2012 Blackwell Publishing Ltd.

  19. Bayesian analyses of Yemeni mitochondrial genomes suggest multiple migration events with Africa and Western Eurasia.

    Science.gov (United States)

    Vyas, Deven N; Kitchen, Andrew; Miró-Herrans, Aida T; Pearson, Laurel N; Al-Meeri, Ali; Mulligan, Connie J

    2016-03-01

    Anatomically, modern humans are thought to have migrated out of Africa ∼60,000 years ago in the first successful global dispersal. This initial migration may have passed through Yemen, a region that has experienced multiple migrations events with Africa and Eurasia throughout human history. We use Bayesian phylogenetics to determine how ancient and recent migrations have shaped Yemeni mitogenomic variation. We sequenced 113 mitogenomes from multiple Yemeni regions with a focus on haplogroups M, N, and L3(xM,N) as these groups have the oldest evolutionary history outside of Africa. We performed Bayesian evolutionary analyses to generate time-measured phylogenies calibrated by Neanderthal and Denisovan mitogenomes in order to determine the age of Yemeni-specific clades. As defined by Yemeni monophyly, Yemeni in situ evolution is limited to the Holocene or latest Pleistocene (ages of clades in subhaplogroups L3b1a1a, L3h2, L3x1, M1a1f, M1a5, N1a1a3, and N1a3 range from 2 to 14 kya) and is often situated within broader Horn of Africa/southern Arabia in situ evolution (L3h2, L3x1, M1a1f, M1a5, and N1a1a3 ages range from 7 to 29 kya). Five subhaplogroups show no monophyly and are candidates for Holocene migration into Yemen (L0a2a2a, L3d1a1a, L3i2, M1a1b, and N1b1a). Yemeni mitogenomes are largely the product of Holocene migration, and subsequent in situ evolution, from Africa and western Eurasia. However, we hypothesize that recent population movements may obscure the genetic signature of more ancient migrations. Additional research, e.g., analyses of Yemeni nuclear genetic data, is needed to better reconstruct the complex population and migration histories associated with Out of Africa. © 2015 Wiley Periodicals, Inc.

  20. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    Science.gov (United States)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  1. The Formation and Early Evolution of Embedded Massive Star Clusters

    Science.gov (United States)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  2. Early Human Evolution in the Western Palaearctic: Ecological Scenarios

    Science.gov (United States)

    Carrión, José S.; Rose, James; Stringer, Chris

    2011-06-01

    This review presents the themes of a special issue dealing with environmental scenarios of human evolution during the Early Pleistocene (2.6-0.78 Ma; MIS 103-MIS 19) and early Middle Pleistocene (0.78-0.47 Ma; MIS 19-base of MIS 12) within the western Palaearctic. This period is one of dramatic changes in the climates and the distribution of Palaearctic biota. These changes have played their role in generating adaptive and phyletic patterns within the human ancestry, involving several species such as Homo habilis, "Homo georgicus", Homo erectus, Homo antecessor and Homo heidelbergensis. In the archaeological record, these species include the Oldowan (Mode 1) and Acheulian (Mode 2) lithic technologies. Taphonomic considerations of palaeoecological research in hominin-bearing sites are provided and evaluated. Syntheses are provided for north Africa, western Asia, the Mediterranean Basin, Britain, and continental Europe. Palaeoenvironmental reconstructions based on multidisciplinary data are given for Ain Boucherit, Ain Hanech and El-Kherba in Algeria, Dmanisi in Georgia, Atapuerca, Cueva Negra, and the Orce Basin in Spain, Monte Poggiolo and Pirro Nord in Italy, Pont-de-Lavaud in France, and Mauer in Germany. The state of the art with the Out of Africa 1 dispersal model is reviewed. A source-sink dynamics model for Palaeolithic Europe is described to explain the morphological disparity of H. heidelbergensis (we will sometimes use the informal name "Heidelbergs") and early Neanderthals. Other aspects debated here are the selective value of habitat mosaics including reconstructions based on mammal and avian databases, and the role of geological instability combined with topographic complexity. This review is completed by addressing the question of whether the appearance of evolutionary trends within hominins is concentrated in regions of highest worldwide biological diversity (biodiversity hotspots). It is concluded that the keys for the activation of evolutionary

  3. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates.

    Science.gov (United States)

    Sallan, Lauren Cole; Coates, Michael I

    2010-06-01

    The Devonian marks a critical stage in the early evolution of vertebrates: It opens with an unprecedented diversity of fishes and closes with the earliest evidence of limbed tetrapods. However, the latter part of the Devonian has also been characterized as a period of global biotic crisis marked by two large extinction pulses: a "Big Five" mass extinction event at the Frasnian-Famennian stage boundary (374 Ma) and the less well-documented Hangenberg event some 15 million years later at the Devonian-Carboniferous boundary (359 Ma). Here, we report the results of a wide-ranging analysis of the impact of these events on early vertebrate evolution, which was obtained from a database of vertebrate occurrences sampling over 1,250 taxa from 66 localities spanning Givetian to Serpukhovian stages (391 to 318 Ma). We show that major vertebrate clades suffered acute and systematic effects centered on the Hangenberg extinction involving long-term losses of over 50% of diversity and the restructuring of vertebrate ecosystems worldwide. Marine and nonmarine faunas were equally affected, precluding the existence of environmental refugia. The subsequent recovery of previously diverse groups (including placoderms, sarcopterygian fish, and acanthodians) was minimal. Tetrapods, actinopterygians, and chondrichthyans, all scarce within the Devonian, undergo large diversification events in the aftermath of the extinction, dominating all subsequent faunas. The Hangenberg event represents a previously unrecognized bottleneck in the evolutionary history of vertebrates as a whole and a historical contingency that shaped the roots of modern biodiversity.

  4. A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales

    OpenAIRE

    Fitzgerald, Erich M.G

    2006-01-01

    Extant baleen whales (Cetacea, Mysticeti) are all large filter-feeding marine mammals that lack teeth as adults, instead possessing baleen, and feed on small marine animals in bulk. The early evolution of these superlative mammals, and their unique feeding method, has hitherto remained enigmatic. Here, I report a new toothed mysticete from the Late Oligocene of Australia that is more archaic than any previously described. Unlike all other mysticetes, this new whale was small, had enormous eye...

  5. Earth's earliest biosphere: Its origin and evolution

    International Nuclear Information System (INIS)

    Schopf, J.W.

    1983-01-01

    Some of the subjects discussed are related to the early biogeologic history, the nature of the earth prior to the oldest known rock record, the early earth and the Archean rock record, the prebiotic organic syntheses and the origin of life, Precambrian organic geochemistry, the biochemical evolution of anaerobic energy conversion, the isotopic inferences of ancient biochemistries, Archean stromatolites providing evidence of the earth's earliest benthos, Archean microfossils, the geologic evolution of the Archean-Early Proterozoic earth, and the environmental evolution of the Archean-Early Proterozoic earth. Other topics examined are concerned with geochemical evidence bearing on the origin of aerobiosis, biological and biochemical effects of the development of an aerobic environment, Early Proterozoic microfossils, the evolution of earth's earliest ecosystems, and geographic and geologic data for processed rock samples. Attention is given to a processing procedure for abiotic samples and calculation of model atmospheric compositions, and procedures of organic geochemical analysis

  6. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages

    OpenAIRE

    Karol, Kenneth G; Arumuganathan, Kathiravetpillai; Boore, Jeffrey L; Duffy, Aaron M; Everett, Karin DE; Hall, John D; Hansen, S Kellon; Kuehl, Jennifer V; Mandoli, Dina F; Mishler, Brent D; Olmstead, Richard G; Renzaglia, Karen S; Wolf, Paul G

    2010-01-01

    Abstract Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined...

  7. Toward a better understanding of nearshore meteotsunami evolution, and effective meteotsunami early-warning systems

    Science.gov (United States)

    Sheremet, A.; Li, C.; Shrira, V. I.

    2017-12-01

    We present high-resolution observations collected in 2008 on the Atcahfalaya shelf that capture the shoaling evolution of a meteotsunami (MT), including the disintegration into the train of solitons (solibore). One of the intriguing elements of this process is a spectacular 1.5-m solitary-wave (soliton), that precedes the arrival of the MT solibore by approximately 5 min, reaching the observation site propagating through a background of nearly-calm waters (20-cm height wind waves). Solitons, products of the MT disintegration process, are observed at all experiment sites, covering approx. 200 km shoreline. We interpret observations employing numerical simulations of a simplified hydrodynamic model based on the variable coefficient KdV equation. The analysis shows that observed wide-spread soliton presence and the soliton/solibore formation are the result of a complicated evolution process involving refraction, collision, and nonlinear interaction of multiple meteotsunami waves.Our results highlight the substantial lack of detail of the current picture of the nonlinear transformation of a MT from generation to its shoreline manifestation. A realistic reconstruction of MT evolution is at present almost impossible based on the current poor spatial and temporal resolution MT observations, overwhelmingly confined to the shoreline. Since the MTs tend to disintegrate into very short (down to 10s) pulses, even modern tidal gauges (1 min resolution) fail to capture essential features of its evolution. We also briefly discuss an ongoing field experiment that carries further the effort to collect high-resolution MT measurements, and that will investigate and test methodologies for early warning systems.

  8. Early evolution of an X-ray emitting solar active region

    International Nuclear Information System (INIS)

    Wolfson, C.J.; Acton, L.W.; Leibacher, J.W.; Roethig, D.T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the Lockheed Mapping X-Ray Heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of Hα plage. At that time, a plasma temperature of 4 x 10 6 K in a region having a density of the order of 10 10 cm -3 is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by plasma with a temperature of the order 3 x 10 6 K. If it is assumed that the X-rays result from heating due to dissipation of current systems or magnetic field reconnection, it can be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration. (Auth.)

  9. Three neuropeptide Y receptor genes in the spiny dogfish, Squalus acanthias, support en bloc duplications in early vertebrate evolution.

    Science.gov (United States)

    Salaneck, Erik; Ardell, David H; Larson, Earl T; Larhammar, Dan

    2003-08-01

    It has been debated whether the increase in gene number during early vertebrate evolution was due to multiple independent gene duplications or synchronous duplications of many genes. We describe here the cloning of three neuropeptide Y (NPY) receptor genes belonging to the Y1 subfamily in the spiny dogfish, Squalus acanthias, a cartilaginous fish. The three genes are orthologs of the mammalian subtypes Y1, Y4, and Y6, which are located in paralogous gene regions on different chromosomes in mammals. Thus, these genes arose by duplications of a chromosome region before the radiation of gnathostomes (jawed vertebrates). Estimates of duplication times from linearized trees together with evidence from other gene families supports two rounds of chromosome duplications or tetraploidizations early in vertebrate evolution. The anatomical distribution of mRNA was determined by reverse-transcriptase PCR and was found to differ from mammals, suggesting differential functional diversification of the new gene copies during the radiation of the vertebrate classes.

  10. Early human communication helps in understanding language evolution.

    Science.gov (United States)

    Lenti Boero, Daniela

    2014-12-01

    Building a theory on extant species, as Ackermann et al. do, is a useful contribution to the field of language evolution. Here, I add another living model that might be of interest: human language ontogeny in the first year of life. A better knowledge of this phase might help in understanding two more topics among the "several building blocks of a comprehensive theory of the evolution of spoken language" indicated in their conclusion by Ackermann et al., that is, the foundation of the co-evolution of linguistic motor skills with the auditory skills underlying speech perception, and the possible phylogenetic interactions of protospeech production with referential capabilities.

  11. A revision of Sanpasaurus yaoi Young, 1944 from the Early Jurassic of China, and its relevance to the early evolution of Sauropoda (Dinosauria

    Directory of Open Access Journals (Sweden)

    Blair W. McPhee

    2016-10-01

    Full Text Available The Early Jurassic of China has long been recognized for its diverse array of sauropodomorph dinosaurs. However, the contribution of this record to our understanding of early sauropod evolution is complicated by a dearth of information on important transitional taxa. We present a revision of the poorly known taxon Sanpasaurus yaoi Young, 1944 from the late Early Jurassic Ziliujing Formation of Sichuan Province, southwest China. Initially described as the remains of an ornithopod ornithischian, we demonstrate that the material catalogued as IVPP V156 is unambiguously referable to Sauropoda. Although represented by multiple individuals of equivocal association, Sanpasaurus is nonetheless diagnosable with respect to an autapomorphic feature of the holotypic dorsal vertebral series. Additional material thought to be collected from the type locality is tentatively referred to Sanpasaurus. If correctly attributed, a second autapomorphy is present in a referred humerus. The presence of a dorsoventrally compressed pedal ungual in Sanpasaurus is of particular interest, with taxa possessing this typically ‘vulcanodontid’ character exhibiting a much broader geographic distribution than previously thought. Furthermore, the association of this trait with other features of Sanpasaurus that are broadly characteristic of basal eusauropods underscores the mosaic nature of the early sauropod–eusauropod transition. Our revision of Sanpasaurus has palaeobiogeographic implications for Early Jurassic sauropods, with evidence that the group maintained a cosmopolitan Pangaean distribution.

  12. THE POTENTIAL IMPORTANCE OF BINARY EVOLUTION IN ULTRAVIOLET-OPTICAL SPECTRAL FITTING OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian; Li, Maocai

    2013-01-01

    Most galaxies possibly contain some binaries, and more than half of Galactic hot subdwarf stars, which are thought to be a possible origin of the UV-upturn of old stellar populations, are found in binaries. However, the effect of binary evolution has not been taken into account in most works on the spectral fitting of galaxies. This paper studies the role of binary evolution in the spectral fitting of early-type galaxies, via a stellar population synthesis model including both single and binary star populations. Spectra from ultraviolet to optical bands are fitted to determine a few galaxy parameters. The results show that the inclusion of binaries in stellar population models may lead to obvious change in the determination of some parameters of early-type galaxies and therefore it is potentially important for spectral studies. In particular, the ages of young components of composite stellar populations become much older when using binary star population models instead of single star population models. This implies that binary star population models will measure significantly different star formation histories for early-type galaxies compared to single star population models. In addition, stellar population models with binary interactions on average measure larger dust extinctions than single star population models. This suggests that when binary star population models are used, negative extinctions are possibly no longer necessary in the spectral fitting of galaxies (see previous works, e.g., Cid Fernandes et al. for comparison). Furthermore, it is shown that optical spectra have strong constraints on stellar age while UV spectra have strong constraints on binary fraction. Finally, our results suggest that binary star population models can provide new insight into the stellar properties of globular clusters

  13. Evolution of Late-type Galaxies in a Cluster Environment: Effects of High-speed Multiple Encounters with Early-type Galaxies

    Science.gov (United States)

    Hwang, Jeong-Sun; Park, Changbom; Banerjee, Arunima; Hwang, Ho Seong

    2018-04-01

    Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way–like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15–65 h ‑1 kpc at the relative velocities of 1500–1600 km s‑1. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy–cluster interactions, we claim that the role of the galaxy–galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy–cluster interactions, depending on the dynamical history.

  14. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  15. Late Carboniferous to early Permian sedimentary–tectonic evolution of the north of Alxa, Inner Mongolia, China: Evidence from the Amushan Formation

    Directory of Open Access Journals (Sweden)

    Haiquan Yin

    2016-09-01

    Full Text Available The late Paleozoic evolution of the Wulijishanhen (WSH-Shangdan (SD area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biological associations, detrital materials, sandstone geochemistry and volcanic rocks indicates that the SD area was an epicontinental sea and rift during the late Paleozoic rather than a large-scale ocean undergoing spreading and closure. This study reveals that the actual evolution of the study area is from the late Carboniferous to the early Permian. The fusulinids Triticites sp. and Pseudoschwagerina sp. in the limestones demonstrate that the Amushan Formation develops during the late Carboniferous to the early Permian. The limestones at the base of the SD section indicate that it is a stable carbonate platform environment, the volcanic rocks in the middle of the sequence support a rift tectonic background, and the overlying conglomerates and sandstones are characteristic of an epicontinental sea or marine molasse setting. The rift volcanism made the differences in the fossil content of the SD and WSH sections and led to two sections expose different levels within the Amushan Formation and different process of tectonic evolution. Moreover, the geochemical characteristics and detrital materials of the sandstones show that the provenance and formation of the sandstones were related to the setting of active continental margin. The quartz-feldspar-lithic fragments distribution diagram indicates that the material source for the sandstones was a recycled orogenic belt. Thus, the source area of the sandstones may have been an active continental margin before the late Carboniferous–early Permian. The characteristics of the regional tectonic evolution of the area indicate that the region may form a small part of the Gobi–Tianshan rift of southern Mongolia.

  16. New Views on the Early Evolution of Oxygen in the Galaxy

    Science.gov (United States)

    Rebolo, R.; Israelian, G.; García López, R. J.

    We have performed a detailed oxygen abundance analysis of 23 metal-poor (-3.0 Abia & Rebolo 1989; Tomkin et al. 1992; Cavallo, Pilachowski, & Rebolo 1997). Contrary to the previously accepted picture, our oxygen abundances, derived from low-excitation OH lines, agree well with those derived from high-excitation lines of the triplet. For nine stars in common with Tomkin et al. we obtain a mean difference of 0.00 plus or minus 0.11dex with respect to the abundances determined from the triplet using the same stellar parameters and model photospheres. Our new results show a smooth extension of the Edvardsson et al.'s (1993) [O/Fe] versus metallicity curve to much lower abundances. The oxygen abundances of unevolved stars when compared with values in the literature for giants of similar metallicity imply that the latter may have suffered a process of oxygen depletion. It appears that unevolved metal-poor stars are better tracers of the early chemical evolution of the Galaxy. The extrapolation of our results to very low metallicities indicates that the ratio of oxygen to iron emerging from the first Type II SNe in the early Galaxy was indeed close to unity. The higher [O/Fe] ratios we find in dwarfs has an impact on the age determination of globular clusters, and suggest that current age estimates have to be reduced by about 1-2 Gyr.

  17. Mitogenomic phylogenetics of fin whales (Balaenoptera physalus spp.: genetic evidence for revision of subspecies.

    Directory of Open Access Journals (Sweden)

    Frederick I Archer

    Full Text Available There are three described subspecies of fin whales (Balaenoptera physalus: B. p. physalus Linnaeus, 1758 in the Northern Hemisphere, B. p. quoyi Fischer, 1829 in the Southern Hemisphere, and a recently described pygmy form, B. p. patachonica Burmeister, 1865. The discrete distribution in the North Pacific and North Atlantic raises the question of whether a single Northern Hemisphere subspecies is valid. We assess phylogenetic patterns using ~16 K base pairs of the complete mitogenome for 154 fin whales from the North Pacific, North Atlantic--including the Mediterranean Sea--and Southern Hemisphere. A Bayesian tree of the resulting 136 haplotypes revealed several well-supported clades representing each ocean basin, with no haplotypes shared among ocean basins. The North Atlantic haplotypes (n = 12 form a sister clade to those from the Southern Hemisphere (n = 42. The estimated time to most recent common ancestor (TMRCA for this Atlantic/Southern Hemisphere clade and 81 of the 97 samples from the North Pacific was approximately 2 Ma. 14 of the remaining North Pacific samples formed a well-supported clade within the Southern Hemisphere. The TMRCA for this node suggests that at least one female from the Southern Hemisphere immigrated to the North Pacific approximately 0.37 Ma. These results provide strong evidence that North Pacific and North Atlantic fin whales should not be considered the same subspecies, and suggest the need for revision of the global taxonomy of the species.

  18. Biologist Edwin Grant Conklin and the idea of the religious direction of human evolution in the early 1920s.

    Science.gov (United States)

    Pavuk, Alexander

    2017-01-01

    Edwin Grant Conklin, renowned US embryologist and evolutionary popularizer, publicly advocated a social vision of evolution that intertwined science and modernist Protestant theology in the early 1920s. The moral prestige of professional science in American culture - along with Conklin's own elite scientific status - diverted attention from the frequency with which his work crossed boundaries between natural science, religion and philosophy. Writing for broad audiences, Conklin was one of the most significant of the religious and modernist biological scientists whose rhetoric went well beyond simply claiming that certain kinds of religion were amenable to evolutionary science; he instead incorporated religion itself into evolution's broadest workings. A sampling of Conklin's widely-resonant discourse suggests that there was substantially more to the religion-evolution story in the 1920s US than many creationist-centred narratives of the era imply.

  19. A first-principles model of early evolution: emergence of gene families, species, and preferred protein folds.

    Directory of Open Access Journals (Sweden)

    Konstantin B Zeldovich

    2007-07-01

    Full Text Available In this work we develop a microscopic physical model of early evolution where phenotype--organism life expectancy--is directly related to genotype--the stability of its proteins in their native conformations-which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the "Big Bang" scenario whereby exponential population growth ensues as soon as favorable sequence-structure combinations (precursors of stable proteins are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species--subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution.

  20. Adaptability and evolution.

    Science.gov (United States)

    Bateson, Patrick

    2017-10-06

    The capacity of organisms to respond in their own lifetimes to new challenges in their environments probably appeared early in biological evolution. At present few studies have shown how such adaptability could influence the inherited characteristics of an organism's descendants. In part, this has been because organisms have been treated as passive in evolution. Nevertheless, their effects on biological evolution are likely to have been important and, when they occurred, accelerated the pace of evolution. Ways in which this might have happened have been suggested many times since the 1870s. I review these proposals and discuss their relevance to modern thought.

  1. Post-early cretaceous landform evolution along the western margin of the banca~nnia trough, western nsw

    Science.gov (United States)

    Gibson, D.L.

    2000-01-01

    Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.

  2. Five-year evolution of reperfusion strategies and early mortality in patients with ST-segment elevation myocardial infarction in France.

    Science.gov (United States)

    El Khoury, Carlos; Bochaton, Thomas; Flocard, Elodie; Serre, Patrice; Tomasevic, Danka; Mewton, Nathan; Bonnefoy-Cudraz, Eric

    2017-10-01

    To assess 5-year evolutions in reperfusion strategies and early mortality in patients with ST-segment elevation myocardial infarction. Using data from the French RESCUe network, we studied patients with ST-segment elevation myocardial infarction treated in mobile intensive care units between 2009 and 2013. Among 2418 patients (median age 62 years; 78.5% male), 2119 (87.6%) underwent primary percutaneous coronary intervention and 299 (12.4%) pre-hospital thrombolysis (94.0% of whom went on to undergo percutaneous coronary intervention). Use of primary percutaneous coronary intervention increased from 78.4% in 2009 to 95.9% in 2013 ( P trend 90 minutes delay group (83.0% in 2009 to 97.7% in 2013; P trend <0.001 versus 34.1% in 2009 to 79.2% in 2013; P trend <0.001). In-hospital (4-6%) and 30-day (6-8%) mortalities remained stable from 2009 to 2013. In the RESCUe network, the use of primary percutaneous coronary intervention increased from 2009 to 2013, in line with guidelines, but there was no evolution in early mortality.

  3. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires.

    Science.gov (United States)

    Bertrand, Ornella C; Amador-Mughal, Farrah; Silcox, Mary T

    2016-01-27

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. © 2016 The Author(s).

  4. Hybrid Differential Evolution Optimisation for Earth Observation Satellite Scheduling with Time-Dependent Earliness-Tardiness Penalties

    Directory of Open Access Journals (Sweden)

    Guoliang Li

    2017-01-01

    Full Text Available We study the order acceptance and scheduling (OAS problem with time-dependent earliness-tardiness penalties in a single agile earth observation satellite environment where orders are defined by their release dates, available processing time windows ranging from earliest start date to deadline, processing times, due dates, sequence-dependent setup times, and revenues. The objective is to maximise total revenue, where the revenue from an order is a piecewise linear function of its earliness and tardiness with reference to its due date. We formulate this problem as a mixed integer linear programming model and develop a novel hybrid differential evolution (DE algorithm under self-adaptation framework to solve this problem. Compared with classical DE, hybrid DE employs two mutation operations, scaling factor adaptation and crossover probability adaptation. Computational tests indicate that the proposed algorithm outperforms classical DE in addition to two other variants of DE.

  5. Evolution of allosteric regulation in chorismate mutases from early plants

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Kourtney; Holland, Cynthia K.; Starks, Courtney M.; Jez, Joseph M.

    2017-09-28

    Plants, fungi, and bacteria synthesize the aromatic amino acids: l-phenylalanine, l-tyrosine, and l-tryptophan. Chorismate mutase catalyzes the branch point reaction of phenylalanine and tyrosine biosynthesis to generate prephenate. In Arabidopsis thaliana, there are two plastid-localized chorismate mutases that are allosterically regulated (AtCM1 and AtCM3) and one cytosolic isoform (AtCM2) that is unregulated. Previous analysis of plant chorismate mutases suggested that the enzymes from early plants (i.e. bryophytes/moss, lycophytes, and basal angiosperms) formed a clade distinct from the isoforms found in flowering plants; however, no biochemical information on these enzymes is available. To understand the evolution of allosteric regulation in plant chorismate mutases, we analyzed a basal lineage of plant enzymes homologous to AtCM1 based on sequence similarity. The chorismate mutases from the moss/bryophyte Physcomitrella patens (PpCM1 and PpCM2), the lycophyte Selaginella moellendorffii (SmCM), and the basal angiosperm Amborella trichopoda (AmtCM1 and AmtCM2) were characterized biochemically. Tryptophan was a positive effector for each of the five enzymes examined. Histidine was a weak positive effector for PpCM1 and AmtCM1. Neither tyrosine nor phenylalanine altered the activity of SmCM; however, tyrosine was a negative regulator of the other four enzymes. Phenylalanine down-regulates both moss enzymes and AmtCM2. The 2.0 Å X-ray crystal structure of PpCM1 in complex with the tryptophan identified the allosteric effector site and reveals structural differences between the R- (more active) and T-state (less active) forms of plant chorismate mutases. Molecular insight into the basal plant chorismate mutases guides our understanding of the evolution of allosteric regulation in these enzymes.

  6. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae

    Directory of Open Access Journals (Sweden)

    Neil Brocklehurst

    2016-01-01

    Full Text Available Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact, it is those which experience a size decrease which evolve at higher rates. It is possible the shift in rates of evolution is related to the improved food processing ability of

  7. High mitogenomic evolutionary rates and time dependency.

    NARCIS (Netherlands)

    Subramanian, S.; Denver, D.R.; Millar, C.D.; Heupink, T.; Aschrafi, A.; Emslie, S.D.; Baroni, C.; Lambert, D.M.

    2009-01-01

    Using entire modern and ancient mitochondrial genomes of Adelie penguins (Pygoscelis adeliae) that are up to 44000 years old, we show that the rates of evolution of the mitochondrial genome are two to six times greater than those estimated from phylogenetic comparisons. Although the rate of

  8. Big and slow: phylogenetic estimates of molecular evolution in baleen whales (suborder mysticeti).

    Science.gov (United States)

    Jackson, J A; Baker, C S; Vant, M; Steel, D J; Medrano-González, L; Palumbi, S R

    2009-11-01

    Baleen whales are the largest animals that have ever lived. To develop an improved estimation of substitution rate for nuclear and mitochondrial DNA for this taxon, we implemented a relaxed-clock phylogenetic approach using three fossil calibration dates: the divergence between odontocetes and mysticetes approximately 34 million years ago (Ma), between the balaenids and balaenopterids approximately 28 Ma, and the time to most recent common ancestor within the Balaenopteridae approximately 12 Ma. We examined seven mitochondrial genomes, a large number of mitochondrial control region sequences (219 haplotypes for 465 bp) and nine nuclear introns representing five species of whales, within which multiple species-specific alleles were sequenced to account for within-species diversity (1-15 for each locus). The total data set represents >1.65 Mbp of mitogenome and nuclear genomic sequence. The estimated substitution rate for the humpback whale control region (3.9%/million years, My) was higher than previous estimates for baleen whales but slow relative to other mammal species with similar generation times (e.g., human-chimp mean rate > 20%/My). The mitogenomic third codon position rate was also slow relative to other mammals (mean estimate 1%/My compared with a mammalian average of 9.8%/My for the cytochrome b gene). The mean nuclear genomic substitution rate (0.05%/My) was substantially slower than average synonymous estimates for other mammals (0.21-0.37%/My across a range of studies). The nuclear and mitogenome rate estimates for baleen whales were thus roughly consistent with an 8- to 10-fold slowing due to a combination of large body size and long generation times. Surprisingly, despite the large data set of nuclear intron sequences, there was only weak and conflicting support for alternate hypotheses about the phylogeny of balaenopterid whales, suggesting that interspecies introgressions or a rapid radiation has obscured species relationships in the nuclear genome.

  9. Contemporary evolution strategies

    CERN Document Server

    Bäck, Thomas; Krause, Peter

    2013-01-01

    Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the a

  10. Early Stages of Microstructure and Texture Evolution during Beta Annealing of Ti-6Al-4V

    Science.gov (United States)

    Pilchak, A. L.; Sargent, G. A.; Semiatin, S. L.

    2018-03-01

    The early stages of microstructure evolution during annealing of Ti-6Al-4V in the beta phase field were established. For this purpose, a series of short-time heat treatments was performed using sheet samples that had a noticeable degree of alpha-phase microtexture in the as-received condition. Reconstruction of the beta-grain structure from electron-backscatter-diffraction measurements of the room-temperature alpha-phase texture revealed that microstructure evolution at short times was controlled not by general grain growth, but rather by nucleation-and-growth events analogous to discontinuous recrystallization. The nuclei comprised a small subset of beta grains that were highly misoriented relative to those comprising the principal texture component of the beta matrix. From a quantitative standpoint, the transformation kinetics were characterized by an Avrami exponent of approximately unity, thus suggestive of metadynamic recrystallization. The recrystallization process led to the weakening and eventual elimination of the initial beta texture through the growth of a population of highly misoriented grains.

  11. Pegylated interferon and ribavirin promote early evolution of nonstructural 5A protein in individuals with hepatitis C who demonstrate a response to treatment.

    Science.gov (United States)

    Jain, Mamta K; Yuan, He-Jun; Adams-Huet, Beverley; Reeck, Amanda; Shelton, Janel; Attar, Nahid; Zhang, Song; Neumann, Avidan U; Carney, David S; Gale, Michael; Lee, William M

    2009-09-15

    Hepatitis C virus (HCV) quasispecies diversity is more likely to affect early viral decline during treatment of hepatitis C than is having human immunodeficiency virus (HIV) infection. We evaluated the influence of HCV therapy on changes in the nonstructural 5A (NS5A) protein. Fifteen patients with HCV genotype 1 infection with or without HIV infection were recruited for the present study, and the decrease in the HCV RNA level was measured at early time points. The evolution of HCV NS5A quasispecies within the first week was analyzed by comparing the clones observed at later times in the study with the baseline consensus sequence of individual patients. The response to therapy was defined as an early response (ER; ie, an HCV RNA level <615 IU/mL at week 4) or a slow response (SR; ie, a detectable HCV RNA level at week 4). HIV infection did not affect early viral kinetics. At baseline, lower diversity was seen in NS5A and in the amino and carboxyl termini of patients with an ER, compared with those with an SR. Rapid evolution of the NS5A genetic region occurred in patients with an ER (P = .01) but not in those with an SR (P = .73). The evolution was the result of an increase in the number of amino acid substitutions in the carboxyl region (P = .02) in patients with an ER. Selective pressure appears to result in more-marked changes in individuals with an ER than in those with an SR. The carboxyl terminus was subject to the most change and may be an important determinant of phenotypic resistance to interferon-based therapy.

  12. Early evolution and dynamics of Earth from a molten initial stage

    Science.gov (United States)

    Louro Lourenço, Diogo; Tackley, Paul J.

    2016-04-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower

  13. Northern Bobwhite (Colinus virginianus Mitochondrial Population Genomics Reveals Structure, Divergence, and Evidence for Heteroplasmy.

    Directory of Open Access Journals (Sweden)

    Yvette A Halley

    Full Text Available Herein, we evaluated the concordance of population inferences and conclusions resulting from the analysis of short mitochondrial fragments (i.e., partial or complete D-Loop nucleotide sequences versus complete mitogenome sequences for 53 bobwhites representing six ecoregions across TX and OK (USA. Median joining (MJ haplotype networks demonstrated that analyses performed using small mitochondrial fragments were insufficient for estimating the true (i.e., complete mitogenome haplotype structure, corresponding levels of divergence, and maternal population history of our samples. Notably, discordant demographic inferences were observed when mismatch distributions of partial (i.e., partial D-Loop versus complete mitogenome sequences were compared, with the reduction in mitochondrial genomic information content observed to encourage spurious inferences in our samples. A probabilistic approach to variant prediction for the complete bobwhite mitogenomes revealed 344 segregating sites corresponding to 347 total mutations, including 49 putative nonsynonymous single nucleotide variants (SNVs distributed across 12 protein coding genes. Evidence of gross heteroplasmy was observed for 13 bobwhites, with 10 of the 13 heteroplasmies involving one moderate to high frequency SNV. Haplotype network and phylogenetic analyses for the complete bobwhite mitogenome sequences revealed two divergent maternal lineages (dXY = 0.00731; FST = 0.849; P < 0.05, thereby supporting the potential for two putative subspecies. However, the diverged lineage (n = 103 variants almost exclusively involved bobwhites geographically classified as Colinus virginianus texanus, which is discordant with the expectations of previous geographic subspecies designations. Tests of adaptive evolution for functional divergence (MKT, frequency distribution tests (D, FS and phylogenetic analyses (RAxML provide no evidence for positive selection or hybridization with the sympatric scaled quail

  14. A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds

    Directory of Open Access Journals (Sweden)

    Jiandong Huang

    2016-03-01

    Full Text Available Despite the increasing number of exceptional feathered fossils discovered in the Late Jurassic and Cretaceous of northeastern China, representatives of Ornithurae, a clade that includes comparatively-close relatives of crown clade Aves (extant birds and that clade, are still comparatively rare. Here, we report a new ornithurine species Changzuiornis ahgmi from the Early Cretaceous Jiufotang Formation. The new species shows an extremely elongate rostrum so far unknown in basal ornithurines and changes our understanding of the evolution of aspects of extant avian ecology and cranial evolution. Most of this elongate rostrum in Changzuiornis ahgmi is made up of maxilla, a characteristic not present in the avian crown clade in which most of the rostrum and nearly the entire facial margin is made up by premaxilla. The only other avialans known to exhibit an elongate rostrum with the facial margin comprised primarily of maxilla are derived ornithurines previously placed phylogenetically as among the closest outgroups to the avian crown clade as well as one derived enantiornithine clade. We find that, consistent with a proposed developmental shift in cranial ontogeny late in avialan evolution, this elongate rostrum is achieved through elongation of the maxilla while the premaxilla remains only a small part of rostral length. Thus, only in Late Cretaceous ornithurine taxa does the premaxilla begin to play a larger role. The rostral and postcranial proportions of Changzuiornis suggest an ecology not previously reported in Ornithurae; the only other species with an elongate rostrum are two marine Late Cretacous taxa interpreted as showing a derived picivorous diet.

  15. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R. E. Jr. [Physics Department, University of California, Davis, CA 95616 (United States); McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Hathi, N. P. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Koekemoer, A. M.; Bond, H. E.; Bushouse, H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Crockett, R. M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Disney, M. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Frogel, J. A. [Galaxies Unlimited, Lutherville, MD 21093 (United States); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Holtzman, J. A., E-mail: rryan@physics.ucdavis.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2012-04-10

    We present the size evolution of passively evolving galaxies at z {approx} 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z {approx}> 1.5. We identify 30 galaxies in {approx}40 arcmin{sup 2} to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 {mu}m {approx}< {lambda}{sub obs} {approx}< 1.6 {mu}m with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of {approx}0.033(1 + z). We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M{sub *} {approx} 10{sup 11} M{sub Sun }) undergo the strongest evolution from z {approx} 2 to the present. Parameterizing the size evolution as (1 + z){sup -{alpha}}, we find a tentative scaling of {alpha} Almost-Equal-To (- 0.6 {+-} 0.7) + (0.9 {+-} 0.4)log (M{sub *}/10{sup 9} M{sub Sun }), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M{sub *}-R{sub e} relation for red galaxies.

  16. Age of acquisition predicts rate of lexical evolution.

    Science.gov (United States)

    Monaghan, Padraic

    2014-12-01

    The processes taking place during language acquisition are proposed to influence language evolution. However, evidence demonstrating the link between language learning and language evolution is, at best, indirect, constituting studies of laboratory-based artificial language learning studies or computational simulations of diachronic change. In the current study, a direct link between acquisition and evolution is established, showing that for two hundred fundamental vocabulary items, the age at which words are acquired is a predictor of the rate at which they have changed in studies of language evolution. Early-acquired words are more salient and easier to process than late-acquired words, and these early-acquired words are also more stably represented within the community's language. Analysing the properties of these early-acquired words potentially provides insight into the origins of communication, highlighting features of words that have been ultra-conserved in language. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A dinosaur missing-link? Chilesaurus and the early evolution of ornithischian dinosaurs.

    Science.gov (United States)

    Baron, Matthew G; Barrett, Paul M

    2017-08-01

    The enigmatic dinosaur taxon Chilesaurus diegosuarezi was originally described as a tetanuran theropod, but this species possesses a highly unusual combination of features that could provide evidence of alternative phylogenetic positions within the clade. In order to test the relationships of Chilesaurus , we added it to a new dataset of early dinosaurs and other dinosauromorphs. Our analyses recover Chilesaurus in a novel position, as the earliest diverging member of Ornithischia, rather than a tetanuran theropod. The basal position of Chilesaurus within the clade and its suite of anatomical characters suggest that it might represent a 'transitional' taxon, bridging the morphological gap between Theropoda and Ornithischia, thereby offering potential insights into the earliest stages of ornithischian evolution, which were previously obscure. For example, our results suggest that pubic retroversion occurred prior to some of the craniodental and postcranial modifications that previously diagnosed the clade (e.g. the presence of a predentary bone and ossified tendons). © 2017 The Author(s).

  18. Aural exostoses (surfer's ear) provide vital fossil evidence of an aquatic phase in Man's early evolution.

    Science.gov (United States)

    Rhys Evans, P H; Cameron, M

    2017-11-01

    For over a century, otolaryngologists have recognised the condition of aural exostoses, but their significance and aetiology remains obscure, although they tend to be associated with frequent swimming and cold water immersion of the auditory canal. The fact that this condition is usually bilateral is predictable since both ears are immersed in water. However, why do exostoses only grow in swimmers and why do they grow in the deep bony meatus at two or three constant sites? Furthermore, from an evolutionary point of view, what is or was the purpose and function of these rather incongruous protrusions? In recent decades, paleoanthropological evidence has challenged ideas about early hominid evolution. In 1992 the senior author suggested that aural exostoses were evolved in early hominid Man for protection of the delicate tympanic membrane during swimming and diving by narrowing the ear canal in a similar fashion to other semiaquatic species. We now provide evidence for this theory and propose an aetiological explanation for the formation of exostoses.

  19. Evolution of care indicators after an early discharge intervention in preterm infants.

    Science.gov (United States)

    Toral-López, Isabel; González-Carrión, María Pilar; Rivas-Campos, Antonio; Lafuente-Lorca, Justa; Castillo-Vera, Josefa; de Casas, Carmen; Peña-Caballero, Manuela

    To evaluate the evolution of health outcomes in preterm infants included in an early discharge programme. Controlled, non-randomised trial with an intervention group and a control group children admitted to the Neonatal Intensive Care Unit of the University Hospital Virgen de las Nieves of Granada were included in the study. The intervention group comprised preterm infants admitted to the neonatal unit clinically stable, whose family home was located within 20km. from the hospital. They were discharged two weeks before the established time and a skilled nurse in neonatal care monitored them at home. The control group comprised infants who could not be included in home monitoring due to the distance to the hospital criterion or because their families did not give their consent and who received the usual care until their discharge. The study variables were the outcome indicators of the Nursing Outcomes Classification. Differences were found in the Nursing Outcomes Classification scores in the intervention group compared to the control group. The early discharge of preterm infants followed up at home by an expert nurse in neonatal care is a health service that achieves results in preparating parents for the care of their child, enabling them to learn about the health services, adapt to their new life, and establishbreastfeeding times. It constitutes safe intervention for children and is beneficial to parents. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  20. Early 20th-century research at the interfaces of genetics, development, and evolution: reflections on progress and dead ends.

    Science.gov (United States)

    Deichmann, Ute

    2011-09-01

    Three early 20th-century attempts at unifying separate areas of biology, in particular development, genetics, physiology, and evolution, are compared in regard to their success and fruitfulness for further research: Jacques Loeb's reductionist project of unifying approaches by physico-chemical explanations; Richard Goldschmidt's anti-reductionist attempts to unify by integration; and Sewall Wright's combination of reductionist research and vision of hierarchical genetic systems. Loeb's program, demanding that all aspects of biology, including evolution, be studied by the methods of the experimental sciences, proved highly successful and indispensible for higher level investigations, even though evolutionary change and properties of biological systems up to now cannot be fully explained on the molecular level alone. Goldschmidt has been appraised as pioneer of physiological and developmental genetics and of a new evolutionary synthesis which transcended neo-Darwinism. However, this study concludes that his anti-reductionist attempts to integrate genetics, development and evolution have to be regarded as failures or dead ends. His grand speculations were based on the one hand on concepts and experimental systems that were too vague in order to stimulate further research, and on the other on experiments which in their core parts turned out not to be reproducible. In contrast, Sewall Wright, apart from being one of the architects of the neo-Darwinian synthesis of the 1930s, opened up new paths of testable quantitative developmental genetic investigations. He placed his research within a framework of logical reasoning, which resulted in the farsighted speculation that examinations of biological systems should be related to the regulation of hierarchical genetic subsystems, possibly providing a mechanism for development and evolution. I argue that his suggestion of basing the study of systems on clearly defined properties of the components has proved superior to

  1. The evolution of the manus of early theropod dinosaurs is characterized by high inter- and intraspecific variation.

    Science.gov (United States)

    Barta, Daniel E; Nesbitt, Sterling J; Norell, Mark A

    2018-01-01

    The origin of the avian hand, with its reduced and fused carpals and digits, from the five-fingered hands and complex wrists of early dinosaurs represents one of the major transformations of manus morphology among tetrapods. Much attention has been directed to the later part of this transition, from four- to three-fingered taxa. However, earlier anatomical changes may have influenced these later modifications, possibly paving the way for a later frameshift in digit identities. We investigate the five- to four-fingered transition among early dinosaurs, along with changes in carpus morphology. New three-dimensional reconstructions from computed tomography data of the manus of the Triassic and Early Jurassic theropod dinosaurs Coelophysis bauri and Megapnosaurus rhodesiensis are described and compared intra- and interspecifically. Several novel findings emerge from these reconstructions and comparisons, including the first evidence of an ossified centrale and a free intermedium in some C. bauri specimens, as well as confirmation of the presence of a vestigial fifth metacarpal in this taxon. Additionally, a specimen of C. bauri and an unnamed coelophysoid from the Upper Triassic Hayden Quarry, New Mexico, are to our knowledge the only theropods (other than alvarezsaurs and birds) in which all of the distal carpals are completely fused together into a single unit. Several differences between the manus of C. bauri and M. rhodesiensis are also identified. We review the evolution of the archosauromorph manus more broadly in light of these new data, and caution against incorporating carpal characters in phylogenetic analyses of fine-scale relationships of Archosauromorpha, in light of the high degree of observed polymorphism in taxa for which large sample sizes are available, such as the theropod Coelophysis and the sauropodomorph Plateosaurus. We also find that the reduction of the carpus and ultimate loss of the fourth and fifth digits among early dinosaurs did not

  2. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of apobec

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Bhattacharya, Tanmoy [Los Alamos National Laboratory; Giorgi, Elena [Los Alamos National Laboratory; Gaschen, B [Los Alamos National Laboratory; Daniels, M [Los Alamos National Laboratory

    2009-01-01

    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, represent adaptation for rapid growth in a newly infected host, or reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV -I env coding sequences in 81 very early B SUbtype infections previously shown to have resulted from transmission or expansion of single viruses (n=78) or two closely related viruses (n=3). In these cases the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 envand identified a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either (i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or (ii) in a nucleotide context indicative of APOBEC mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was both embedded in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp4l. We also examined the distribution, extent, and sequence context of insertions and deletions and provide evidence that the length

  3. The Importance of Lake Overflow Floods for Early Martian Landscape Evolution: Insights From Licus Vallis

    Science.gov (United States)

    Goudge, T. A.; Fassett, C. I.

    2017-01-01

    Open-basin lake outlet valleys are incised when water breaches the basin-confining topography and overflows. Outlet valleys record this flooding event and provide insight into how the lake and surrounding terrain evolved over time. Here we present a study of the paleolake outlet Licus Vallis, a >350 km long, >2 km wide, >100 m deep valley that heads at the outlet breach of an approx.30 km diameter impact crater. Multiple geomorphic features of this valley system suggest it records a more complex evolution than formation from a single lake overflow flood. This provides unique insight into the paleohydrology of lakes on early Mars, as we can make inferences beyond the most recent phase of activity..

  4. Early descriptions of acromegaly and gigantism and their historical evolution as clinical entities.

    Science.gov (United States)

    Mammis, Antonios; Eloy, Jean Anderson; Liu, James K

    2010-10-01

    Giants have been a subject of fascination throughout history. Whereas descriptions of giants have existed in the lay literature for millennia, the first attempt at a medical description was published by Johannes Wier in 1567. However, it was Pierre Marie, in 1886, who established the term "acromegaly" for the first time and established a distinct clinical diagnosis with clear clinical descriptions in 2 patients with the characteristic presentation. Multiple autopsy findings revealed a consistent correlation between acromegaly and pituitary enlargement. In 1909, Harvey Cushing postulated a “hormone of growth" as the underlying pathophysiological trigger involved in pituitary hypersecretion in patients with acromegaly. This theory was supported by his observations of clinical remission in patients with acromegaly in whom he had performed hypophysectomy. In this paper, the authors present some of the early accounts of acromegaly and gigantism, and describe its historical evolution as a medical and surgical entity.

  5. Neuromuscular study of early branching Diuronotus aspetos (Paucitubulatina) yields insights into the evolution of organs systems in Gastrotricha

    DEFF Research Database (Denmark)

    Bekkouche, Nicolas Tarik; Worsaae, Katrine

    2016-01-01

    BACKGROUND: Diuronotus is one of the most recently described genera of Paucitubulatina, one of the three major clades in Gastrotricha. Its morphology suggests that Diuronotus is an early branch of Paucitubulatina, making it a key taxon for understanding the evolution of this morphologically...... constitute new apomorphies of Paucitubulatina, or even Gastrotricha. In order to test these new evolutionary hypotheses, comparable morphological data from other understudied gastrotrich branches and a better resolution of the basal nodes of the gastrotrich phylogeny are warranted. Nonetheless, the present...

  6. The early evolution of stars and planets with varying mass

    International Nuclear Information System (INIS)

    Bhattacharjee, S.K.

    1980-09-01

    In this thesis some aspects of stellar and planetary evolution with varying mass are examined. It is divided into two sections. The first section deals with the evolution of stars in the pre-main-sequence phase with mass accretion while in the second section we discuss the spin angular momentum of the planets with mass loss. (author)

  7. Early resistance change and stress/electromigrationmodeling in aluminium interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Schoenmaker, W.

    1997-01-01

    A complete description for early resistance change and two dimensional simulation of mechanical stress evolution in confined Al interconnects, related to the electromigration, is given in this paper. The model, combines the stress/ vacancy concentration evolution with the early resistance change of

  8. Mitochondrial genomes suggest rapid evolution of dwarf California Channel Islands foxes (Urocyon littoralis).

    Science.gov (United States)

    Hofman, Courtney A; Rick, Torben C; Hawkins, Melissa T R; Funk, W Chris; Ralls, Katherine; Boser, Christina L; Collins, Paul W; Coonan, Tim; King, Julie L; Morrison, Scott A; Newsome, Seth D; Sillett, T Scott; Fleischer, Robert C; Maldonado, Jesus E

    2015-01-01

    Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California's Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200-7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics.

  9. The chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    1986-01-01

    The chemical evolution of galaxies is reviewed with particular attention to the theoretical interpretation of the distribution and abundances of elements in stars and the interstellar medium. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. The metallicity distribution of the solar vicinity, age metallicity relationship, abundance gradients in the galaxy, external galaxies, star formation and evolution, major sites of nucleosynthesis, yields of chemical elements, chemical models, and the galactic disk, are all discussed. (U.K.)

  10. Second Symposium on Chemical Evolution and the Origin of Life

    International Nuclear Information System (INIS)

    Devincenzi, D.L.; Dufour, P.A.

    1986-05-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI)

  11. Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill

    International Nuclear Information System (INIS)

    Dudina, Dina V.; Lomovsky, Oleg I.; Valeev, Konstantin R.; Tikhov, Serguey F.; Boldyreva, Natalya N.; Salanov, Aleksey N.; Cherepanova, Svetlana V.; Zaikovskii, Vladimir I.; Andreev, Andrey S.; Lapina, Olga B.; Sadykov, Vladislav A.

    2015-01-01

    Highlights: • Phase formation during early stages of Cu–Al mechanical alloying was studied. • The products of mechanical alloying are of highly non-equilibrium character. • X-ray amorphous phases are present in the products of mechanical alloying. • An Al-rich X-ray amorphous phase is distributed between the crystallites. - Abstract: We report the phase and microstructure evolution of the Cu–13 wt.% Al mixture during treatment in a high-energy planetary ball mill with a particular focus on the early stages of mechanical alloying. Several characterization techniques, including X-ray diffraction phase analysis, nuclear magnetic resonance spectroscopy, differential dissolution, thermal analysis, and electron microscopy/elemental analysis, have been combined to study the evolution of the phase composition of the mechanically alloyed powders and describe the microstructure of the multi-phase products of mechanical alloying at different length scales. The following reaction sequence has been confirmed: Cu + Al → CuAl 2 (+Cu) → Cu 9 Al 4 + (Cu) → Cu(Al). The phase evolution was accompanied by the microstructure changes, the layered structure of the powder agglomerates disappearing with milling time. This scheme is further complicated by the processes of copper oxidation, reduction of copper oxides by metallic aluminum, and by variation of the stoichiometry of Cu(Al) solid solutions with milling time. Substantial amounts of X-ray amorphous phases were detected as well. Differential dissolution technique has revealed that a high content of aluminum in the Cu(Al) solid solution-based powders is due to the presence of Al-rich phases distributed between the Cu(Al) crystallites

  12. ON THE PROGENITOR AND EARLY EVOLUTION OF THE TYPE II SUPERNOVA 2009kr

    International Nuclear Information System (INIS)

    Fraser, M.; Takats, K.; Pastorello, A.; Smartt, S. J.; Botticella, M-T.; Valenti, S.; Mattila, S.; Ergon, M.; Sollerman, J.; Arcavi, I.; Gal-Yam, A.; Benetti, S.; Bufano, F.; Crockett, R. M.; Danziger, I. J.; Maund, J. R.; Taubenberger, S.; Turatto, M.

    2010-01-01

    We identify a source coincident with SN 2009kr in Hubble Space Telescope pre-explosion images. The object appears to be a single point source with an intrinsic color V - I = 1.1 ± 0.25 and M V = -7.6 ± 0.6. If this is a single star, it would be a yellow supergiant of log L/L sun ∼ 5.1 and a mass of 15 +5 -4 M sun . The spatial resolution does not allow us yet to definitively determine if the progenitor object is a single star, a binary system, or a compact cluster. We show that the early light curve is similar to a Type IIL SN, but the prominent Hα P-Cygni profiles and the signature of the end of a recombination phase are reminiscent of a Type IIP. The evolution of the expanding ejecta will play an important role in understanding the progenitor object.

  13. A complete skull of an early cretaceous sauropod and the evolution of advanced titanosaurians.

    Directory of Open Access Journals (Sweden)

    Hussam Zaher

    Full Text Available Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.

  14. Deposition and early hydrologic evolution of Westwater Canyon wet alluvial-fan system

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1980-01-01

    The Westwater Canyon Member is one of several large, low-gradient alluvial fans that compose the Morrison Formation in the Four Corners area. Morrison fans were deposited by major laterally migrating streams entering a broad basin bounded by highlands to the west and south. The Westwater Canyon sand framework consists of a downfan succession of 1) proximal braided channel, 2) straight bed-load channel, 3) sinuous mixed-load channel, and 4) distributary mixed-load-channel sand bodies. Regional sand distribution and facies patterns are highly digitate and radiate from a point source located northwest of Gallup, New Mexico. Early ground-water flow evolution within the Westwater Canyon fan aquifer system can be inferred by analogy with Quaternary wet-fan deposits and by the interpreted paragenetic sequence of diagenetic features present. Syndepositional flow was controlled by the downfan hydrodynamic gradient and the high horizontal and vertical transmissivity of the sand-rich fan aquifer. Dissolution and transport of soluble humate would be likely in earliest ground water, which was abundant, fresh, and slightly alkaline. With increasing confinement of the aquifer below less permeable tuffaceous Brushy Basin deposits and release of soluble constituents from volcanic ash, flow patterns stabilized, and relatively more saline, uranium-rich ground water permeated the aquifer. Uranium mineralization occurred during this early postdepositional, semiconfined flow phase. Development of overlying Dakota swamps suggests a shallow water table indicative of regional dischare or stagnation. In either event, only limited downward flux of acidic water is recorded by local, bleached, kaolinized zones where the Westwater Canyon directly underlies the Dakota swamps. Subsequent ground-water flow phases have further obscured primary alteration patterns and caused local oxidation and redistribution of uranium

  15. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Explore the Origin and Evolution of the Early Solar System

    Science.gov (United States)

    Bell, J. F., III; Olkin, C.; Castillo, J. C.

    2015-12-01

    The orbital properties, compositions, and physical properties of the diverse populations of small outer solar system bodies provide a forensic map of how our solar system formed and evolved. Perhaps the most potentially diagnostic, but least explored, of those populations are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. More than 6200 Jupiter Trojans are presently known, but these are predicted to be only a small fraction of the 500,000 to 1 million Trojans >1 km in size. The Trojans are hypothesized to be either former Kuiper Belt Objects (KBOs) that were scattered into the inner solar system by early giant planet migration and then trapped in the 1:1 Jupiter mean motion resonance, or bodies formed near 5 AU in a much more quiescent early solar system, and then trapped at L4 and L5. The 2011 Planetary Science Decadal Survey identified important questions about the origin and evolution of the solar system that can be addressed by studying of the Trojan asteroids, including: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft? The Trojan Tour and Rendezvous (TTR) is a New Frontiers-class mission designed to answer these questions, and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of a large number of these objects,, and orbital characterization of at least one large Trojan, TTR will enable the first-time exploration of this population. Our primary mission goals are to characterize the overall surface geology

  16. A multi-wavelength study of the evolution of early-type galaxies in groups: the ultraviolet view

    Science.gov (United States)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Bianchi, L.; Plana, H.; Trinchieri, G.; Uslenghi, M.; Wolter, A.

    2018-04-01

    The ultraviolet-optical colour magnitude diagram of rich galaxy groups is characterised by a well developed Red Sequence, a Blue Cloud and the so-called Green Valley. Loose, less evolved groups of galaxies which are probably not virialised yet may lack a well defined Red Sequence. This is actually explained in the framework of galaxy evolution. We are focussing on understanding galaxy migration towards the Red Sequence, checking for signatures of such a transition in their photometric and morphological properties. We report on the ultraviolet properties of a sample of early-type (ellipticals+S0s) galaxies inhabiting the Red Sequence. The analysis of their structures, as derived by fitting a Sérsic law to their ultraviolet luminosity profiles, suggests the presence of an underlying disk. This is the hallmark of dissipation processes that still must have a role to play in the evolution of this class of galaxies. Smooth particle hydrodynamic simulations with chemo-photometric implementations able to match the global properties of our targets are used to derive their evolutionary paths through ultraviolet-optical colour magnitude diagrams, providing some fundamental information such as the crossing time through the Green Valley, which depends on their luminosity. The transition from the Blue Cloud to the Red Sequence takes several Gyrs, being about 3-5 Gyr for the brightest galaxies and longer for fainter ones, if occurring. The photometric study of nearby galaxy structures in the ultraviolet is seriously hampered by either the limited field of view of the cameras (e.g., in Hubble Space Telescope) or by the low spatial resolution of the images (e.g., in the Galaxy Evolution Explorer). Current missions equipped with telescopes and cameras sensitive to ultraviolet wavelengths, such as Swift- UVOT and Astrosat-UVIT, provide a relatively large field of view and a better resolution than the Galaxy Evolution Explorer. More powerful ultraviolet instruments (size, resolution

  17. The de novo assembly of mitochondrial genomes of the extinct passenger pigeon (Ectopistes migratorius with next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Chih-Ming Hung

    Full Text Available The information from ancient DNA (aDNA provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome of two extinct passenger pigeons (Ectopistes migratorius using de novo assembly of massive short (90 bp, paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species.

  18. The De Novo Assembly of Mitochondrial Genomes of the Extinct Passenger Pigeon (Ectopistes migratorius) with Next Generation Sequencing

    Science.gov (United States)

    Hung, Chih-Ming; Lin, Rong-Chien; Chu, Jui-Hua; Yeh, Chia-Fen; Yao, Chiou-Ju; Li, Shou-Hsien

    2013-01-01

    The information from ancient DNA (aDNA) provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome) of two extinct passenger pigeons (Ectopistes migratorius) using de novo assembly of massive short (90 bp), paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species. PMID:23437111

  19. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U-Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai

    Science.gov (United States)

    Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.

    2017-11-01

    Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.

  20. The complete mitochondrial genome sequence of the world's largest fish, the whale shark (Rhincodon typus), and its comparison with those of related shark species.

    Science.gov (United States)

    Alam, Md Tauqeer; Petit, Robert A; Read, Timothy D; Dove, Alistair D M

    2014-04-10

    The whale shark (Rhincodon typus) is the largest extant species of fish, belonging to the order Orectolobiformes. It is listed as a "vulnerable" species on the International Union for Conservation of Nature (IUCN)'s Red List of Threatened Species, which makes it an important species for conservation efforts. We report here the first complete sequence of the mitochondrial genome (mitogenome) of the whale shark obtained by next-generation sequencing methods. The assembled mitogenome is a 16,875 bp circle, comprising of 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a control region. We also performed comparative analysis of the whale shark mitogenome to the available mitogenome sequences of 17 other shark species, four from the order Orectolobiformes, five from Lamniformes and eight from Carcharhiniformes. The nucleotide composition, number and arrangement of the genes in whale shark mitogenome are the same as found in the mitogenomes of the other members of the order Orectolobiformes and its closest orders Lamniformes and Carcharhiniformes, although the whale shark mitogenome had a slightly longer control region. The availability of mitogenome sequence of whale shark will aid studies of molecular systematics, biogeography, genetic differentiation, and conservation genetics in this species. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The light up and early evolution of high redshift Supermassive Black Holes

    Science.gov (United States)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  2. The early universe

    International Nuclear Information System (INIS)

    Steigman, G.

    1989-01-01

    The author discusses the physics of the early universe: the production and survival of relics from the big bang. The author comments on relic WIMPs as the dark matter in the universe. The remainder of this discussion is devoted to a review of the status of the only predictions from the early evolution of the universe that are accessible to astronomical observation: primordial nucleosynthesis

  3. Evolution of Scale Worms

    DEFF Research Database (Denmark)

    Gonzalez, Brett Christopher

    ) caves, and the interstitium, recovering six monophyletic clades within Aphroditiformia: Acoetidae, Aphroditidae, Eulepethidae, Iphionidae, Polynoidae, and Sigalionidae (inclusive of the former ‘Pisionidae’ and ‘Pholoidae’), respectively. Tracing of morphological character evolution showed a high degree...... of adaptability and convergent evolution between relatively closely related scale worms. While some morphological and behavioral modifications in cave polynoids reflected troglomorphism, other modifications like eye loss were found to stem from a common ancestor inhabiting the deep sea, further corroborating...... the deep sea ancestry of scale worm cave fauna. In conclusion, while morphological characterization across Aphroditiformia appears deceptively easy due to the presence of elytra, convergent evolution during multiple early radiations across wide ranging habitats have confounded our ability to reconstruct...

  4. The redshift number density evolution of Mg II absorption systems

    International Nuclear Information System (INIS)

    Chen Zhi-Fu

    2013-01-01

    We make use of the recent large sample of 17 042 Mg II absorption systems from Quider et al. to analyze the evolution of the redshift number density. Regardless of the strength of the absorption line, we find that the evolution of the redshift number density can be clearly distinguished into three different phases. In the intermediate redshift epoch (0.6 ≲ z ≲ 1.6), the evolution of the redshift number density is consistent with the non-evolution curve, however, the non-evolution curve over-predicts the values of the redshift number density in the early (z ≲ 0.6) and late (z ≳ 1.6) epochs. Based on the invariant cross-section of the absorber, the lack of evolution in the redshift number density compared to the non-evolution curve implies the galaxy number density does not evolve during the middle epoch. The flat evolution of the redshift number density tends to correspond to a shallow evolution in the galaxy merger rate during the late epoch, and the steep decrease of the redshift number density might be ascribed to the small mass of halos during the early epoch.

  5. Cosmic Evolution: The History of an Idea

    Science.gov (United States)

    Dick, S. J.

    2004-12-01

    Cosmic evolution has become the conceptual framework within which modern astronomy is undertaken, and is the guiding principle of major NASA programs such as Origins and Astrobiology. While there are 19th- and early 20th century antecedents, as in the work of Robert Chambers, Herbert Spencer and Lawrence Henderson, it was only at mid-20th century that full-blown cosmic evolution began to be articulated and accepted as a research paradigm extending from the Big Bang to life, intelligence and the evolution of culture. Harlow Shapley was particularly important in spreading the idea to the public in the 1950s, and NASA embraced the idea in the 1970s as part of its SETI program and later its exobiology and astrobiology programs. Eric Chaisson, Carl Sagan and others were early proponents of cosmic evolution, and it continues to be elaborated in ever more subtle form as a research program and a philosophy. It has even been termed "Genesis for the 21st century." This paper documents the origin and development of the idea and offers a glimpse of where it could lead if cultural evolution is taken seriously, possibly leading to the concept of a postbiological universe.

  6. The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr)

    Science.gov (United States)

    Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.

    2018-03-01

    There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.

  7. Early evolution of the LIM homeobox gene family

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  8. Early evolution of the LIM homeobox gene family

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2010-01-01

    Full Text Available Abstract Background LIM homeobox (Lhx transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. Results We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. Conclusions The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In

  9. Characterization of microstructural evolution in Fe-C(-Mn) alloys during early stages of ageing using atom probe

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Tran, P.; Pereloma, E.; Ringer, S.P.

    2004-01-01

    Full text: Extensive studies on the effect of ageing treatment on the micro structure and mechanical properties of most commercial ferritic (a) Fe-C(-X) alloys reveal age-hardening characteristics that involve a monotonic increase towards a peak hardness after several hours of ageing. Peak hardness is always associated with the formation of precipitate particles (e.g: MnC 3 ). However, there is relatively little systematic work on the very early stages of ageing using direct nanostructural analysis and many questions remain on the potential for clustering of interstitial C atoms prior to the precipitation reaction. In this experimental work, we report a small but significant hardness peak within 300 sec during ageing at 550 deg C. High resolution transmission electron microscopy (HRTEM) observations did not show any microstructural change during this early stage of ageing. In order to understand the microstructural evolution in ultra-low carbon a-Fe-C(-Mn) alloys during these early stages of ageing, 3-dimensional atom probe (3DAP) has been used to examine the C atom distribution and possible segregation of C and Mn atoms in these alloys. In this report, the 3DAP analyses and HRTEM observations of Fe-C and Fe-C-Mn alloys are correlated with age hardening measurements and possible mechanisms of the initial hardening phenomenon will be discussed

  10. Mathematics in Early Childhood Education: Revolution or Evolution?

    Science.gov (United States)

    Stipek, Deborah

    2013-01-01

    Hachey (2013) aptly describes a recent surge in attention to mathematics for young children. The value of math for children as young as preschool age, however, was discovered before the 21st century. This is presently not a revolution but rather a potentially important step in an evolution of work that began at least a half century ago. Some…

  11. Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems.

    Science.gov (United States)

    Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D; Fortey, Richard A; Land, Michael F; Liu, Yu; Cong, Peiyun; Hou, Xianguang

    2016-03-01

    Four types of eyes serve the visual neuropils of extant arthropods: compound retinas composed of adjacent facets; a visual surface populated by spaced eyelets; a smooth transparent cuticle providing inwardly directed lens cylinders; and single-lens eyes. The first type is a characteristic of pancrustaceans, the eyes of which comprise lenses arranged as hexagonal or rectilinear arrays, each lens crowning 8-9 photoreceptor neurons. Except for Scutigeromorpha, the second type typifies Myriapoda whose relatively large eyelets surmount numerous photoreceptive rhabdoms stacked together as tiers. Scutigeromorph eyes are facetted, each lens crowning some dozen photoreceptor neurons of a modified apposition-type eye. Extant chelicerate eyes are single-lensed except in xiphosurans, whose lateral eyes comprise a cuticle with a smooth outer surface and an inner one providing regular arrays of lens cylinders. This account discusses whether these disparate eye types speak for or against divergence from one ancestral eye type. Previous considerations of eye evolution, focusing on the eyes of trilobites and on facet proliferation in xiphosurans and myriapods, have proposed that the mode of development of eyes in those taxa is distinct from that of pancrustaceans and is the plesiomorphic condition from which facetted eyes have evolved. But the recent discovery of enormous regularly facetted compound eyes belonging to early Cambrian radiodontans suggests that high-resolution facetted eyes with superior optics may be the ground pattern organization for arthropods, predating the evolution of arthrodization and jointed post-protocerebral appendages. Here we provide evidence that compound eye organization in stem-group euarthropods of the Cambrian can be understood in terms of eye morphologies diverging from this ancestral radiodontan-type ground pattern. We show that in certain Cambrian groups apposition eyes relate to fixed or mobile eyestalks, whereas other groups reveal concomitant

  12. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    Science.gov (United States)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  13. Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs.

    Science.gov (United States)

    Fong, Raymond K M; LeBlanc, Aaron R H; Berman, David S; Reisz, Robert R

    2016-07-01

    Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian- 209-201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916-924, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Tertiary evolution of the Shimanto belt (Japan): A large-scale collision in Early Miocene

    Science.gov (United States)

    Raimbourg, Hugues; Famin, Vincent; Palazzin, Giulia; Yamaguchi, Asuka; Augier, Romain

    2017-07-01

    To decipher the Miocene evolution of the Shimanto belt of southwestern Japan, structural and paleothermal studies were carried out in the western area of Shikoku Island. All units constituting the belt, both in its Cretaceous and Tertiary domains, are in average strongly dipping to the NW or SE, while shortening directions deduced from fault kinematics are consistently orientated NNW-SSE. Peak paleotemperatures estimated with Raman spectra of organic matter increase strongly across the southern, Tertiary portion of the belt, in tandem with the development of a steeply dipping metamorphic cleavage. Near the southern tip of Ashizuri Peninsula, the unconformity between accreted strata and fore-arc basin, present along the whole belt, corresponds to a large paleotemperature gap, supporting the occurrence of a major collision in Early Miocene. This tectonic event occurred before the magmatic event that affected the whole belt at 15 Ma. The associated shortening was accommodated in two opposite modes, either localized on regional-scale faults such as the Nobeoka Tectonic Line in Kyushu or distributed through the whole belt as in Shikoku. The reappraisal of this collision leads to reinterpret large-scale seismic refraction profiles of the margins, where the unit underlying the modern accretionary prism is now attributed to an older package of deformed and accreted sedimentary units belonging to the Shimanto belt. When integrated into reconstructions of Philippine Sea Plate motion, the collision corresponds to the oblique collision of a paleo Izu-Bonin-Mariana Arc with Japan in Early Miocene.

  15. The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans.

    Science.gov (United States)

    Liu, Yunhuan; Xiao, Shuhai; Shao, Tiequan; Broce, Jesse; Zhang, Huaqiao

    2014-05-01

    Morphological phylogenetic analyses suggest that scalidophorans (priapulids, loriciferans, and kinorhynchs) and nematoids (nematodes and nematomorphs) form the ecdysozoan clade Cycloneuralia, which is a sister group to panarthropods. It has been proposed that extant priapulids and Cambrian priapulid-like scalidophorans, because of their conserved evolution, have the potential to illuminate the ancestral morphology, ecology, and developmental biology of highly derived ecdysozoans such as nematods and arthropods. As such, Cambrian fossils, particularly Markuelia and possibly olivooids, can inform the early evolution of scalidophorans, cycloneuralians, and ecdysozoans. However, the scalidophoran Markuelia is known exclusively as embryo fossils, and the olivooids have been alternatively interpreted as cnidarians or cycloneuralians. Here, we describe a post-embryonic scalidophoran fossil Eopriapulites sphinx new genus and species, which represents the oldest known scalidophoran, from the early Cambrian Period (∼535 Ma) in South China. E. sphinx is similar to modern scalidophorans in having an introvert armed with hollow scalids, a collar with coronal scalids, and a pharynx with pharyngeal teeth, but its scalids and pharyngeal teeth are arranged in a hexaradial pattern. Phylogenetically resolved as a stem-group scalidophoran, E. sphinx shares a hexaradial pattern with the hexaradial arrangement of certain anatomical structures in kinorhynchs, loriciferans, nematoids, and Cambrian fossils such as Eolympia pediculata, which could also be a scalidophoran. Thus, the bodyplan of ancestral cycloneuralians may have had a component of hexaradial symmetry (i.e., some but not necessarily all anatomical parts are hexaradially arranged). If panarthropods are nested within paraphyletic cycloneuralians, as several molecular phylogenetic analyses suggest, the ancestral ecdysozoans may have been a legless worm possibly with a component of hexaradial symmetry. © 2014 Wiley

  16. EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H-R DIAGRAMS?

    International Nuclear Information System (INIS)

    Baraffe, I.; Chabrier, G.; Gallardo, J.

    2009-01-01

    We present evolutionary models for young low-mass stars and brown dwarfs taking into account episodic phases of accretion at early stages of the evolution, a scenario supported by recent large surveys of embedded protostars. An evolution including short episodes of vigorous accretion followed by longer quiescent phases can explain the observed luminosity spread in H-R diagrams of star-forming regions at ages of a few Myr, for objects ranging from a few Jupiter masses to a few tenths of a solar mass. The gravitational contraction of these accreting objects strongly departs from the standard Hayashi track at constant T eff . The best agreement with the observed luminosity scatter is obtained if most of the accretion shock energy is radiated away. The obtained luminosity spread at 1 Myr in the H-R diagram is equivalent to what can be misinterpreted as an ∼10 Myr age spread for non-accreting objects. We also predict a significant spread in radius at a given T eff , as suggested by recent observations. These calculations bear important consequences for our understanding of star formation and early stages of evolution and on the determination of the initial mass function for young (≤ a few Myr) clusters. Our results also show that the concept of a stellar birthline for low-mass objects has no valid support.

  17. Modern Microbial Ecosystems are a Key to Understanding Our Biosphere's Early Evolution and its Contributions To The Atmosphere and Rock Record

    Science.gov (United States)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The survival of our early biosphere depended upon efficient coordination anion- diverse microbial populations. Microbial mats exhibit a 3.46-billion-year fossil record, thus they are the oldest known ecosystems. Photosynthetic microbial mats were key because, today, sunlight powers more than 99 percent of global primary productivity. Thus photosynthetic ecosystems have affected the atmosphere profoundly and have created the most pervasive, easily-detected fossils. Photosynthetic biospheres elsewhere will be most detectible via telescopes or spacecraft. As a part of the Astrobiology Institute, our Ames Microbial Ecosystems group examines the roles played by ecological processes in the early evolution of our biosphere, as recorded in geologic fossils and in the macromolecules of living cells: (1) We are defining the microbial mat microenvironment, which was an important milieu for early evolution. (2) We are comparing mats in contrasting environments to discern strategies of adaptation and diversification, traits that were key for long-term survival. (3) We have selected sites that mimic key environmental attributes of early Earth and thereby focus upon evolutionary adaptations to long-term changes in the global environment. (4) Our studies of gas exchange contribute to better estimates of biogenic gases in Earth's early atmosphere. This group therefore directly addresses the question: How have the Earth and its biosphere influenced each other over time Our studies strengthen the systematics for interpreting the microbial fossil record and thereby enhance astrobiological studies of martian samples. Our models of biogenic gas emissions will enhance models of atmospheres that might be detected on inhabited extrasolar planets. This work therefore also addresses the question: How can other biospheres be recogniZed" Our choice of field sites helps us explore Earth's evolving early environment. For example, modern mats that occupy thermal springs and certain freshwater

  18. Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: Useful molecular markers for phylogenetic and population studies

    Science.gov (United States)

    2011-01-01

    Background Copepods are highly diverse and abundant, resulting in extensive ecological radiation in marine ecosystems. Calanus sinicus dominates continental shelf waters in the northwest Pacific Ocean and plays an important role in the local ecosystem by linking primary production to higher trophic levels. A lack of effective molecular markers has hindered phylogenetic and population genetic studies concerning copepods. As they are genome-level informative, mitochondrial DNA sequences can be used as markers for population genetic studies and phylogenetic studies. Results The mitochondrial genome of C. sinicus is distinct from other arthropods owing to the concurrence of multiple non-coding regions and a reshuffled gene arrangement. Further particularities in the mitogenome of C. sinicus include low A + T-content, symmetrical nucleotide composition between strands, abbreviated stop codons for several PCGs and extended lengths of the genes atp6 and atp8 relative to other copepods. The monophyletic Copepoda should be placed within the Vericrustacea. The close affinity between Cyclopoida and Poecilostomatoida suggests reassigning the latter as subordinate to the former. Monophyly of Maxillopoda is rejected. Within the alignment of 11 C. sinicus mitogenomes, there are 397 variable sites harbouring three 'hotspot' variable sites and three microsatellite loci. Conclusion The occurrence of the circular subgenomic fragment during laboratory assays suggests that special caution should be taken when sequencing mitogenomes using long PCR. Such a phenomenon may provide additional evidence of mitochondrial DNA recombination, which appears to have been a prerequisite for shaping the present mitochondrial profile of C. sinicus during its evolution. The lack of synapomorphic gene arrangements among copepods has cast doubt on the utility of gene order as a useful molecular marker for deep phylogenetic analysis. However, mitochondrial genomic sequences have been valuable markers for

  19. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs

    Science.gov (United States)

    Li, Hu; Leavengood, John M.; Chapman, Eric G.; Burkhardt, Daniel; Song, Fan; Jiang, Pei; Liu, Jinpeng; Cai, Wanzhi

    2017-01-01

    Hemiptera, the largest non-holometabolous order of insects, represents approximately 7% of metazoan diversity. With extraordinary life histories and highly specialized morphological adaptations, hemipterans have exploited diverse habitats and food sources through approximately 300 Myr of evolution. To elucidate the phylogeny and evolutionary history of Hemiptera, we carried out the most comprehensive mitogenomics analysis on the richest taxon sampling to date covering all the suborders and infraorders, including 34 newly sequenced and 94 published mitogenomes. With optimized branch length and sequence heterogeneity, Bayesian analyses using a site-heterogeneous mixture model resolved the higher-level hemipteran phylogeny as (Sternorrhyncha, (Auchenorrhyncha, (Coleorrhyncha, Heteroptera))). Ancestral character state reconstruction and divergence time estimation suggest that the success of true bugs (Heteroptera) is probably due to angiosperm coevolution, but key adaptive innovations (e.g. prognathous mouthpart, predatory behaviour, and haemelytron) facilitated multiple independent shifts among diverse feeding habits and multiple independent colonizations of aquatic habitats. PMID:28878063

  20. Education and Evolution

    DEFF Research Database (Denmark)

    Hjermitslev, Hans Henrik

    2015-01-01

    Herbert Spencer’s ideas were first introduced to a Scandinavian audience in the early 1870s when the Danish philosopher Harald Høffding published and lectured on his evolutionary philosophy. At this time, Høffding also played an important role in disseminating Charles Darwin’s theory of evolution...... and in discussing the philosophical consequences of an evolutionary worldview. In the late 1870s and 1880s several of Spencer’s works were translated into Danish and Swedish and he became a household name among liberal intellectuals who primarily discussed his views on education and evolution. His most influential...... known foreign thinkers in the general public at the time of his death in 1903. Moreover, in the decades around 1900 Spencer’s thoughts on education were part of the curricula at many colleges of education. Spencer’s ideas on evolution and education were thus widely circulated and positively received...

  1. Neonatal mucolipidosis 2. The spontaneous evolution of early bone lesions and the effect of vitamin D treatment

    International Nuclear Information System (INIS)

    Pazzaglia, U.E.; Zatti, G.; Pagani, G.

    1989-01-01

    Evolution of the early bone lesions in two children with mucolipidosis 2 was followed from birth. The progression of the bone changes did not differ from healing of rickets. Low levels of 1,25-OH 2 -D3 were found in one child and he was treated with vitamin D; resolution of the rachitic changes was more rapid than in the untreated child. It is suggested that in mucolipidosis 2 bone reacts to two independent factors, one controlling calcium metabolism, the other depending on the primary lysosomal enzyme defect. Since ricket-like features are not present in the other mucolipidoses or mucopolysaccharidoses, the defect of calcium metabolism seems to be related to the specific enzyme defect of mucolipidosis 2. (orig.)

  2. E-modulus evolution and its relation to solids formation of pastes from commercial cements

    DEFF Research Database (Denmark)

    Maia, Lino; Azenha, Miguel; Geiker, Mette

    2012-01-01

    Models for early age E-modulus evolution of cement pastes are available in the literature, but their validation is limited. This paper provides correlated measurements of early age evolution of E-modulus and hydration of pastes from five commercial cements differing in limestone content. A recently...

  3. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.

    Science.gov (United States)

    Proffitt, J V; Clarke, J A; Scofield, R P

    2016-08-01

    Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy. © 2016 Anatomical Society.

  4. Contrasting Patterns of Nucleotide Substitution Rates Provide Insight into Dynamic Evolution of Plastid and Mitochondrial Genomes of Geranium

    OpenAIRE

    Park, Seongjun; Ruhlman, Tracey A.; Weng, Mao-Lun; Hajrah, Nahid H.; Sabir, Jamal S.M.; Jansen, Robert K.

    2017-01-01

    Abstract Geraniaceae have emerged as a model system for investigating the causes and consequences of variation in plastid and mitochondrial genomes. Incredible structural variation in plastid genomes (plastomes) and highly accelerated evolutionary rates have been reported in selected lineages and functional groups of genes in both plastomes and mitochondrial genomes (mitogenomes), and these phenomena have been implicated in cytonuclear incompatibility. Previous organelle genome studies have i...

  5. Geohistory. Global evolution of the earth

    Energy Technology Data Exchange (ETDEWEB)

    Ozima, Minoru

    1987-01-01

    A full understanding of the earth's evolution can be achieved only by considering it as a continuous process starting with the birth of the solar system. This book traces the evolution of the earth, mainly on the basis of radiogenic isotopes from long half-life parent elements, and discusses it in terms of the latest developments in astrophysical theory, which impose unique constraints on the earth's origin and early evolution. By its 'historical' nature, geohistorical study also offers a unique approach to forecasting the future of the earth, yielding useful clues for the understanding of environmental problems, such as radioactive waste disposal. This book aims to provide an outline of global evolution of the planet earth for students of general science and for earth scientists.

  6. Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics

    NARCIS (Netherlands)

    Paijmans, Johanna L.A.; Barnett, Ross; Gilbert, M. Thomas P.; Zepeda-Mendoza, M. Lisandra; Reumer, Jelle W.F.; de Vos, John; Zazula, Grant; Nagel, Doris; Baryshnikov, Gennady F.; Leonard, Jennifer A.; Rohland, Nadin; Westbury, Michael V.; Barlow, Axel; Hofreiter, Michael

    2017-01-01

    Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of

  7. Analysis of the Early Stages and Evolution of Dental Enamel Erosion.

    Science.gov (United States)

    Derceli, Juliana Dos Reis; Faraoni, Juliana Jendiroba; Pereira-da-Silva, Marcelo Assumpção; Palma-Dibb, Regina Guenka

    2016-01-01

    The aim of this study was to evaluate by atomic force microscopy (AFM) the early phases and evolution of dental enamel erosion caused by hydrochloric acid exposure, simulating gastroesophageal reflux episodes. Polished bovine enamel slabs (4x4x2 mm) were selected and exposed to 0.1 mL of 0.01 M hydrochloric acid (pH=2) at 37 ?#61472;?#61616;C using five different exposure intervals (n=1): no acid exposure (control), 10 s, 20 s, 30 s and 40 s. The exposed area was analyzed by AFM in 3 regions to measure the roughness, surface area and morphological surface. The data were analyzed qualitatively. Roughness started as low as that of the control sample, Rrms=3.5 nm, and gradually increased at a rate of 0.3 nm/s, until reaching Rrms=12.5 nm at 30 s. After 40 s, the roughness presented increment of 0.40 nm only. Surface area (SA) increased until 20 s, and for longer exposures, the surface area was constant (at 30 s, SA=4.40 μm2 and at 40 s, SA=4.43 μm2). As regards surface morphology, the control sample presented smaller hydroxyapatite crystals (22 nm) and after 40 s the crystal size was approximately 60 nm. Short periods of exposure were sufficient to produce enamel demineralization in different patterns and the morphological structure was less affected by exposure to hydrochloric acid over 30 s.

  8. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.; Kashef-Haghighi, D.; Weng, Z.; Salari, R.; Sweeney, R. T.; Brunner, A. L.; Zhu, S. X.; Guo, X.; Varma, S.; Troxell, M. L.; West, R. B.; Batzoglou, S.; Sidow, A.

    2013-01-01

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  9. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.

    2013-04-08

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  10. Complete mitochondrial genome of the giant ramshorn snail Marisa cornuarietis (Gastropoda: Ampullariidae).

    Science.gov (United States)

    Wang, Mingling; Qiu, Jian-Wen

    2016-05-01

    We report the complete mitochondrial genome (mitogenome) of the giant ramshorn snail Marisa cornuarietis, a biocontrol agent of freshwater weeds and snail vectors of schistosomes. The mitogenome is 15,923 bp in length, encoding 13 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs. The mitogenome is A+T biased (70.0%), with 28.9% A, 41.1% T, 16.7% G, and 13.3% C. A comparison with Pomacea canaliculata, the other member in the same family (Ampullariidae) with a sequenced mitogenome, shows that the two species have an identical gene order, but their intergenic regions vary substantially in sequence length. The mitogenome data can be used to understand the population genetics of M. cornuarietis, and resolve the phylogenetic relationship of various genera in Ampullariidae.

  11. Phylogenetic relationships and divergence dates of softshell turtles (Testudines: Trionychidae) inferred from complete mitochondrial genomes.

    Science.gov (United States)

    Li, H; Liu, J; Xiong, L; Zhang, H; Zhou, H; Yin, H; Jing, W; Li, J; Shi, Q; Wang, Y; Liu, J; Nie, L

    2017-05-01

    The softshell turtles (Trionychidae) are one of the most widely distributed reptile groups in the world, and fossils have been found on all continents except Antarctica. The phylogenetic relationships among members of this group have been previously studied; however, disagreements regarding its taxonomy, its phylogeography and divergence times are still poorly understood as well. Here, we present a comprehensive mitogenomic study of softshell turtles. We sequenced the complete mitochondrial genomes of 10 softshell turtles, in addition to the GenBank sequence of Dogania subplana, Lissemys punctata, Trionyx triunguis, which cover all extant genera within Trionychidae except for Cyclanorbis and Cycloderma. These data were combined with other mitogenomes of turtles for phylogenetic analyses. Divergence time calibration and ancestral reconstruction were calculated using BEAST and RASP software, respectively. Our phylogenetic analyses indicate that Trionychidae is the sister taxon of Carettochelyidae, and support the monophyly of Trionychinae and Cyclanorbinae, which is consistent with morphological data and molecular analysis. Our phylogenetic analyses have established a sister taxon relationship between the Asian Rafetus and the Asian Palea + Pelodiscus + Dogania + Nilssonia + Amyda, whereas a previous study grouped the Asian Rafetus with the American Apalone. The results of divergence time estimates and area ancestral reconstruction show that extant Trionychidae originated in Asia at around 108 million years ago (MA), and radiations mainly occurred during two warm periods, namely Late Cretaceous-Early Eocene and Oligocene. By combining the estimated divergence time and the reconstructed ancestral area of softshell turtles, we determined that the dispersal of softshell turtles out of Asia may have taken three routes. Furthermore, the times of dispersal seem to be in agreement with the time of the India-Asia collision and opening of the Bering Strait, which

  12. Possible role of radon in prebiotic chemistry and in early evolution of life on earth

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2010-01-01

    Radon in the environment of early Earth was present in sites, determined by location of deposits of uranium, in very different geological formations. According to the decay of uranium-238, the total production of radon at the beginnings was twice as high as now and was continuously diminishing to the present levels. This nuclide could not play as big a role as do radioactive elements connected with the presence of high concentration of 235 U, which was high enough in some places to give rise to formation of natural nuclear fission reactors (e.g. Oklo phenomenon in Africa). The main role of ionizing radiation in prebiotic chemistry and biological evolution was played by low LET (linear energy transfer) radiations, as deep penetrating sources of external energy. High LET radiations are of low penetration and could act only superficially. Radon is an exception, due to its easy transfer in the air. Therefore, it could play a role already in the cases of these early organisms which exhibited the gaseous exchange of chemical compounds with the surrounding atmosphere. The action was destructive, but, on the other hand, was also mutagenic. Nevertheless, the general quantitative effect of radon on the global scale could not be larger than of other radioactive nuclides. Presented considerations are part of the chapter by the present author on the role of nuclear and radiation chemistry in astrobiology, in the monograph published by American Scientific Publishers. (author)

  13. Hands of early primates.

    Science.gov (United States)

    Boyer, Doug M; Yapuncich, Gabriel S; Chester, Stephen G B; Bloch, Jonathan I; Godinot, Marc

    2013-12-01

    Questions surrounding the origin and early evolution of primates continue to be the subject of debate. Though anatomy of the skull and inferred dietary shifts are often the focus, detailed studies of postcrania and inferred locomotor capabilities can also provide crucial data that advance understanding of transitions in early primate evolution. In particular, the hand skeleton includes characteristics thought to reflect foraging, locomotion, and posture. Here we review what is known about the early evolution of primate hands from a comparative perspective that incorporates data from the fossil record. Additionally, we provide new comparative data and documentation of skeletal morphology for Paleogene plesiadapiforms, notharctines, cercamoniines, adapines, and omomyiforms. Finally, we discuss implications of these data for understanding locomotor transitions during the origin and early evolutionary history of primates. Known plesiadapiform species cannot be differentiated from extant primates based on either intrinsic hand proportions or hand-to-body size proportions. Nonetheless, the presence of claws and a different metacarpophalangeal [corrected] joint form in plesiadapiforms indicate different grasping mechanics. Notharctines and cercamoniines have intrinsic hand proportions with extremely elongated proximal phalanges and digit rays relative to metacarpals, resembling tarsiers and galagos. But their hand-to-body size proportions are typical of many extant primates (unlike those of tarsiers, and possibly Teilhardina, which have extremely large hands). Non-adapine adapiforms and omomyids exhibit additional carpal features suggesting more limited dorsiflexion, greater ulnar deviation, and a more habitually divergent pollex than observed plesiadapiforms. Together, features differentiating adapiforms and omomyiforms from plesiadapiforms indicate increased reliance on vertical prehensile-clinging and grasp-leaping, possibly in combination with predatory behaviors in

  14. Isotopes and the early evolution of the earth

    International Nuclear Information System (INIS)

    Russell, R.D.

    1980-01-01

    The observed isotopic ratios of lead, strontium, neodymium, helium, and argon contain information about the chemical abundances of selected parent and daughter elements in the outer parts of the Earth. By necessity, we observe these isotopic ratios at the Earth's surface, which is a small, highly evolved part of the Earth. The studies of such isotopic ratios permit inferences to be made about interactions between this crust and the upper mantle. Helium has been especially valuable for demonstrating that primordial materials are still being outgassed from the earth. Models based on the observed argon isotopic ratios have lead to contradictory conclusions about the existence of an early period of extensive outgassing of the Earth. Lead has been a particularly interesting element because the ratio of the parents, 235 U/ 238 U, was very different in the Earth's early history than it is now. Therefore there is the potential for determining constraints on the early history of the Earth. A number of recently published papers offering lead isotope interpretations that reflect on the Earth's early history are reviewed, with special reference to models that are based upon uni-directional and bi-directional exchange between a protocrust and a residual mantle. Geochemical parameters for uranium, thorium and lead can be inferred for two evolving systems, as well as rate constants for differentiation. The principal conclusions are that the differentiation process extended beyond the first quarter of the Earth's history, and that it is possible to reproduce exactly the apparent oceanic basalt isochron by a simple two-reservoir model. In particular, such a model can explain quantitatively the observed lead-207 deficiency in the oceanic basalts

  15. The phylogenomic position of the grey nurse shark Carcharias taurus Rafinesque, 1810 (Lamniformes, Odontaspididae) inferred from the mitochondrial genome.

    Science.gov (United States)

    Bowden, Deborah L; Vargas-Caro, Carolina; Ovenden, Jennifer R; Bennett, Michael B; Bustamante, Carlos

    2016-11-01

    The complete mitochondrial genome of the grey nurse shark Carcharias taurus is described from 25 963 828 sequences obtained using Illumina NGS technology. Total length of the mitogenome is 16 715 bp, consisting of 2 rRNAs, 13 protein-coding regions, 22 tRNA and 2 non-coding regions thus updating the previously published mitogenome for this species. The phylogenomic reconstruction inferred from the mitogenome of 15 species of Lamniform and Carcharhiniform sharks supports the inclusion of C. taurus in a clade with the Lamnidae and Cetorhinidae. This complete mitogenome contributes to ongoing investigation into the monophyly of the Family Odontaspididae.

  16. The complete mitochondrial genome of the alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea): Insight into the mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp.

    Science.gov (United States)

    Sun, Shao'e; Hui, Ming; Wang, Minxiao; Sha, Zhongli

    2018-03-01

    Deep-sea hydrothermal vent is one of the most extreme environments on Earth with low oxygen and high levels of toxins. Decapod species from the family Alvinocarididae have colonized and successfully adapted to this extremely harsh environment. Mitochondria plays a vital role in oxygen usage and energy metabolism, thus it may be under selection in the adaptive evolution of the hydrothermal vent shrimps. In this study, the mitochondrial genome (mitogenome) of alvinocaridid shrimp Shinkaicaris leurokolos (Kikuchi & Hashimoto, 2000) was determined through Illumina sequencing. The mitogenome of S. leurokolos was 15,903bp in length, containing 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. The gene order and orientation were identical to those of sequenced alvinocaridids. It has the longest concatenated sequences of protein-coding genes, tRNAs and shortest pooled rRNAs among the alvinocaridids. The control regions (CRs) of alvinocaridid were significantly longer (penergy metabolism to adapt to the hydrothermal environment. Phylogenetic analysis supported that the deep-sea hydrothermal vent shrimps may have originated from those living in shallow area. Positive selection analysis reveals the evidence of adaptive change in the mitogenome of Alvinocarididae. Thirty potentially important adaptive residues were identified, which were located in atp6, cox1, cox3, cytb and nad1-5. This study explores the mitochondrial genetic basis of hydrothermal vent adaptation in alvinocaridid for the first time, and provides valuable clues regarding the adaptation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The first complete mitochondrial genome of a Belostomatidae species, Lethocerus indicus, the giant water bug: An important edible insect.

    Science.gov (United States)

    Devi, Kshetrimayum Miranda; Shantibala, Tourangbam; Debaraj, Hajarimayum

    2016-10-10

    Lethocerus indicus of the family Belostomatidae is one of the most preferred and delicious edible insects in different parts of South-East Asia including North-East, India. The mitogenome of L. indicus represents the first complete mitogenome sequence of a Belostomatidae species in Heteroptera order. The mitogenome of L. indicus is 16,251bp and contains 37 genes including 13 protein coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a large non-coding region. The genome has a typical gene order which is identical to other Heteroptera species. All tRNAs exhibit the classic cloverleaf secondary structure except tRNASer (AGN). All the PCGs employ a complete translation termination codon either TAA or TAG except COII. The nucleotide composition showed heavy biased toward AT accounting to 70.9% of total mitogenome. The overall A+T content of L. indicus mitogenome was comparatively lower than some other Heteropteran bugs mitogenomes. The control region is divided into seven different parts which includes the putative stem loop, repeats, tandem repeats, GC and AT rich regions. The phylogenetic relationship based on maximum-likelihood method using all protein coding genes was congruent with the traditional morphological classification that Belostomatidae is closely related to Nepidae. The complete mitogenome sequence of L. indicus provides fundamental data useful in conservation genetics and aquaculture diversification. Copyright © 2016. Published by Elsevier B.V.

  18. Two mitochondrial genomes in Alcedinidae (Ceryle rudis/Halcyon pileata) and the phylogenetic placement of Coraciiformes.

    Science.gov (United States)

    Sun, Xiaomin; Zhao, Ruoping; Zhang, Ting; Gong, Jie; Jing, Meidong; Huang, Ling

    2017-10-01

    Coraciiformes comprises 209 species belonging to ten families with significant divergence on external morphologies and life styles. The phylogenetic placement of Coraciiformes was still in debate. Here, we determined the complete mitochondrial genomes (mitogenomes) of Crested Kingfisher (Ceryle rudis) and Black-capped Kingfisher (Halcyon pileata). The mitogenomes were 17,355 bp (C. rudis) and 17,612 bp (H. pileata) in length, and both of them contained 37 genes (two rRNA genes, 22 tRNA genes and 13 protein-coding genes) and one control region. The gene organizations and characters of two mitogenomes were similar with those of other mitogenomes in Coraciiformes, however the sizes and nucleotide composition of control regions in different mitogenomes were significantly different. Phylogenetic trees were constructed with both Bayesian and Maximum Likelihood methods based on mitogenome sequences from 11 families of six orders. The trees based on two different data sets supported the basal position of Psittacidae (Psittaciformes), the closest relationship between Cuculiformes (Cuculidae) and Trogoniformes (Trogonidae), and the close relationship between Coraciiformes and Piciformes. The phylogenetic placement of the clade including Cuculiformes and Trogoniformes has not been resolved in present study, which need further investigations with more molecular markers and species. The mitogenome sequences presented here provided valuable data for further taxonomic studies on Coraciiformes and other related groups.

  19. Mitogenomes from two uncommon haplogroups mark late glacial/postglacial expansions from the near east and neolithic dispersals within Europe.

    Directory of Open Access Journals (Sweden)

    Anna Olivieri

    Full Text Available The current human mitochondrial (mtDNA phylogeny does not equally represent all human populations but is biased in favour of representatives originally from north and central Europe. This especially affects the phylogeny of some uncommon West Eurasian haplogroups, including I and W, whose southern European and Near Eastern components are very poorly represented, suggesting that extensive hidden phylogenetic substructure remains to be uncovered. This study expanded and re-analysed the available datasets of I and W complete mtDNA genomes, reaching a comprehensive 419 mitogenomes, and searched for precise correlations between the ages and geographical distributions of their numerous newly identified subclades with events of human dispersal which contributed to the genetic formation of modern Europeans. Our results showed that haplogroups I (within N1a1b and W originated in the Near East during the Last Glacial Maximum or pre-warming period (the period of gradual warming between the end of the LGM, ∼19 ky ago, and the beginning of the first main warming phase, ∼15 ky ago and, like the much more common haplogroups J and T, may have been involved in Late Glacial expansions starting from the Near East. Thus our data contribute to a better definition of the Late and postglacial re-peopling of Europe, providing further evidence for the scenario that major population expansions started after the Last Glacial Maximum but before Neolithic times, but also evidencing traces of diffusion events in several I and W subclades dating to the European Neolithic and restricted to Europe.

  20. The Evolution of Electronic Publishing.

    Science.gov (United States)

    Lancaster, F. W.

    1995-01-01

    Discusses the evolution of electronic publishing from the early 1960s when computers were used merely to produce conventional printed products to the present move toward networked scholarly publishing. Highlights include library development, periodicals on the Internet, online journals versus paper journals, problems, and the future of…

  1. Early Cretaceous I-type granites in the Tengchong terrane: New constraints on the late Mesozoic tectonic evolution of southwestern China

    Directory of Open Access Journals (Sweden)

    Yi Fang

    2018-03-01

    Full Text Available The Early Cretaceous granitoids that are widespread in the Tengchong terrane of Southwest China play a critical role in understanding the tectonic framework associated with the Tethyan oceans. In this study, we present a detailed description of zircon U–Pb ages, whole-rock geochemistry and Hf isotopes for the Laoxiangkeng pluton in the eastern Tengchong terrane and elucidate their petrogenesis and geodynamic implications. Zircon U–Pb dating of the Laoxiangkeng pluton yields ages of 114 ± 1 Ma and 115 ± 1 Ma, which imply an Early Cretaceous magmatic event. The Laoxiangkeng pluton enriched in Si and Na, is calc-alkaline and metaluminous, and has the characteristics of highly fractionated I-type granites. Zircons from the pluton have calculated εHf(t values of −12.7 to −3.7 and two-stage model ages of 1327–1974 Ma, respectively, indicating a mixed source of partial melting of Paleo-Neoproterozoic crust-derived compositions with some inputs of mantle-derived magmas. By integrating all available data for the regional tectonic evolution of the eastern Tethys tectonic domain, we conclude that the Early Cretaceous magmatism in the Tengchong terrane was produced by the northeastward subduction of the Meso-Tethyan Bangong–Nujiang Ocean.

  2. Brachytherapy in early prostate cancer--early experience.

    Science.gov (United States)

    Jose, B O; Bailen, J L; Albrink, F H; Steinbock, G S; Cornett, M S; Benson, D C; Schmied, W K; Medley, R N; Spanos, W J; Paris, K J; Koerner, P D; Gatenby, R A; Wilson, D L; Meyer, R

    1999-01-01

    Use of brachytherapy with radioactive seeds in the management of early prostate cancer is commonly used in the United States. The early experience has been reported from the prostate treatment centers in Seattle for the last 10 years. In this manuscript we are reporting our early experience of 150 radioactive seed implantations in early stage prostate cancer using either Iodine 125 or Palladium 103 seeds. The average age of the patient is 66 years and the median Gleason score is 5.4 with a median PSA of 6. A brief description of the evolution of the treatment of prostate cancer as well as the preparation for the seed implantation using the volume study with ultrasound of the prostate, pubic arch study using CT scan of the pelvis and the complete planning using the treatment planning computers are discussed. We also have described the current technique which is used in our experience based on the Seattle guidelines. We plan a follow-up report with the results of the studies with longer follow-up.

  3. Tracing early stellar evolution with asteroseismology: pre-main sequence stars in NGC 2264

    Directory of Open Access Journals (Sweden)

    Zwintz Konstanze

    2015-01-01

    Full Text Available Asteroseismology has been proven to be a successful tool to unravel details of the internal structure for different types of stars in various stages of their main sequence and post-main sequence evolution. Recently, we found a relation between the detected pulsation properties in a sample of 34 pre-main sequence (pre-MS δ Scuti stars and the relative phase in their pre-MS evolution. With this we are able to demonstrate that asteroseismology is similarly powerful if applied to stars in the earliest stages of evolution before the onset of hydrogen core burning.

  4. The tectonometamorphic evolution of the Apuseni Mountains (Romania): Geodynamic constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens

    Science.gov (United States)

    Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard

    2015-04-01

    New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites

  5. Geohistory: Global evolution of the earth

    International Nuclear Information System (INIS)

    Ozima, M.

    1987-01-01

    This book traces the evolution of the Earth, mainly on the basis of radiogenic isotopes from half-life parent elements, and discusses it in terms of the latest developments in astrophysical theory, which impose unique constraints on the origin and early evolution of the earth. Owing to its historical nature, this geohistorical study offers an approach to forecasting the future of the Earth yielding clues for the understanding of environmental problems, such as radioactive waste to disposal and climate changes due to CO/sub 2/ increase

  6. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B

    2011-01-01

    occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic......The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid...... replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered...

  7. Some remarks on the early evolution of Enceladus

    Science.gov (United States)

    Czechowski, Leszek

    2014-12-01

    Thermal history of Enceladus is investigated from the beginning of accretion to formation of its core (~400 My). We consider model with solid state convection (in a solid layer) as well as liquid state convection (in molten parts of the satellite). The numerical model of convection uses full conservative finite difference method. The roles of two modes of convection are considered using the parameterized theory of convection. The following heat sources are included: short lived and long lived radioactive isotopes, accretion, serpentinization, and phase changes. Heat transfer processes are: conduction, solid state convection, and liquid state convection. It is found that core formation was completed only when liquid state convection had slowed down. Eventually, the porous core with pores filled with water was formed. Recent data concerning gravity field of Enceladus confirm low density of the core. We investigated also thermal history for different values of the following parameters: time of beginning of accretion tini, duration of accretion tacr, viscosity of ice close to the melting point ηm, activation energy in formula for viscosity E, thermal conductivity of silicate component ksil, ammonia content XNH3, and energy of serpentinization cserp. All these parameters are important for evolution, but not dramatic differences are found for realistic values. Moreover, the hypothesis of proto-Enceladus (stating that initially Enceladus was substantially larger) is considered and thermal history of such body is calculated. The last subject is the Mimas-Enceladus paradox. Comparison of thermal models of Mimas and Enceladus indicates that period favorable for 'excited path of evolution' was significantly shorter for Mimas than for Enceladus.

  8. Insight as a social identity process in the evolution of psychosocial functioning in the early phase of psychosis.

    Science.gov (United States)

    Klaas, H S; Clémence, A; Marion-Veyron, R; Antonietti, J-P; Alameda, L; Golay, P; Conus, P

    2017-03-01

    Awareness of illness (insight) has been found to have contradictory effects for different functional outcomes after the early course of psychosis. Whereas it is related to psychotic symptom reduction and medication adherence, it is also associated with increased depressive symptoms. In this line, the specific effects of insight on the evolution of functioning over time have not been identified, and social indicators, such as socio-occupational functioning have barely been considered. Drawing from social identity theory we investigated the impact of insight on the development of psychosocial outcomes and the interactions of these variables over time. The participants, 240 patients in early phase of psychosis from the Treatment and Early Intervention in Psychosis Program (TIPP) of the University Hospital of Lausanne, Switzerland, were assessed at eight time points over 3 years. Cross-lagged panel analyses and multilevel analyses were conducted on socio-occupational and general functioning [Social and Occupational Functioning Assessment Scale (SOFAS) and Global Assessment of Functioning (GAF)] with insight, time and depressive symptoms as independent variables. Results from multilevel analyses point to an overall positive impact of insight on psychosocial functioning, which increases over time. Yet the cross-lagged panel analysis did not reveal a systematic positive and causal effect of insight on SOFAS and GAF scores. Depressive symptoms seem only to be relevant in the beginning of the treatment process. Our results point to a complex process in which the positive impact of insight on psychosocial functioning increases over time, even when considering depressive symptoms. Future studies and treatment approaches should consider the procedural aspect of insight.

  9. Stellar dynamics and galactic evolution

    International Nuclear Information System (INIS)

    Gilmore, G.; Kuijken, K.; Wyse, R.F.G.

    1989-01-01

    Solar neighbourhood observations have the unique capability of providing detailed study of the consequences of the early evolution of the Galaxy. Important examples of this capability include determination of the distribution of luminous and unseen mass in the Galaxy, and deduction of the rate of star formation and chemical evolution in the proto-Galaxy. We describe a new method to determine the distribution of mass in the Galactic disk. We reinvestigate determinations of the local volume mass density (the Oort limit) and show there to be serious internal inconsistencies in the available data. The most likely value for the local volume mass density, based on old stars and with kinematic models consistent with the age structure of the local disk is ∼ 0.1 solar mass pc -3 , though this value is still poorly determined. Thus, there is no significant evidence for any missing mass associated with the Galactic disk. We also reinvestigate observational data on the chemical abundances and kinematics of old stars in the Galaxy. The (Intermediate Population II) thick disk stars are most likely as old as the globular clusters, and kinematically distinct from the old disk. This favours models of thick disk origin involving a discrete disruptive event, such as the accretion of a satellite of the Galaxy early in the evolution of the Galactic disk. (author)

  10. Sequencing of complete mitochondrial genomes confirms synonymization of Hyalomma asiaticum asiaticum and kozlovi, and advances phylogenetic hypotheses for the Ixodidae.

    Science.gov (United States)

    Liu, Zhi-Qiang; Liu, Yan-Feng; Kuermanali, Nuer; Wang, Deng-Feng; Chen, Shi-Jun; Guo, Hui-Ling; Zhao, Li; Wang, Jun-Wei; Han, Tao; Wang, Yuan-Zhi; Wang, Jie; Shen, Chen-Feng; Zhang, Zhuang-Zhi; Chen, Chuang-Fu

    2018-01-01

    Phylogeny of hard ticks (Ixodidae) remains unresolved. Mitochondrial genomes (mitogenomes) are increasingly used to resolve phylogenetic controversies, but remain unavailable for the entire large Hyalomma genus. Hyalomma asiaticum is a parasitic tick distributed throughout the Asia. As a result of great morphological variability, two subspecies have been recognised historically; until a morphological data-based synonymization was proposed. However, this hypothesis was never tested using molecular data. Therefore, objectives of this study were to: 1. sequence the first Hyalomma mitogenome; 2. scrutinise the proposed synonymization using molecular data, i.e. complete mitogenomes of both subspecies: H. a. asiaticum and kozlovi; 3. conduct phylogenomic and comparative analyses of all available Ixodidae mitogenomes. Results corroborate the proposed synonymization: the two mitogenomes are almost identical (99.6%). Genomic features of both mitogenomes are standard for Metastriata; which includes the presence of two control regions and all three "Tick-Box" motifs. Gene order and strand distribution are perfectly conserved for the entire Metastriata group. Suspecting compositional biases, we conducted phylogenetic analyses (29 almost complete mitogenomes) using homogeneous and heterogeneous (CAT) models of substitution. The results were congruent, apart from the deep-level topology of prostriate ticks (Ixodes): the homogeneous model produced a monophyletic Ixodes, but the CAT model produced a paraphyletic Ixodes (and thereby Prostriata), divided into Australasian and non-Australasian clades. This topology implies that all metastriate ticks have evolved from the ancestor of the non-Australian branch of prostriate ticks. Metastriata was divided into three clades: 1. Amblyomminae and Rhipicephalinae (Rhipicephalus, Hyalomma, Dermacentor); 2. Haemaphysalinae and Bothriocrotoninae, plus Amblyomma sphenodonti; 3. Amblyomma elaphense, basal to all Metastriata. We conclude that

  11. A new sauropodomorph dinosaur from the Early Jurassic of Patagonia and the origin and evolution of the sauropod-type sacrum.

    Directory of Open Access Journals (Sweden)

    Diego Pol

    2011-01-01

    Full Text Available The origin of sauropod dinosaurs is one of the major landmarks of dinosaur evolution but is still poorly understood. This drastic transformation involved major skeletal modifications, including a shift from the small and gracile condition of primitive sauropodomorphs to the gigantic and quadrupedal condition of sauropods. Recent findings in the Late Triassic-Early Jurassic of Gondwana provide critical evidence to understand the origin and early evolution of sauropods.A new sauropodomorph dinosaur, Leonerasaurus taquetrensis gen. et sp. nov., is described from the Las Leoneras Formation of Central Patagonia (Argentina. The new taxon is diagnosed by the presence of anterior unserrated teeth with a low spoon-shaped crown, amphicoelous and acamerate vertebral centra, four sacral vertebrae, and humeral deltopectoral crest low and medially deflected along its distal half. The phylogenetic analysis depicts Leonerasaurus as one of the closest outgroups of Sauropoda, being the sister taxon of a clade of large bodied taxa composed of Melanorosaurus and Sauropoda.The dental and postcranial anatomy of Leonerasaurus supports its close affinities with basal sauropods. Despite the small size and plesiomorphic skeletal anatomy of Leonerasaurus, the four vertebrae that compose its sacrum resemble that of the large-bodied primitive sauropods. This shows that the appearance of the sauropod-type of sacrum predated the marked increase in body size that characterizes the origins of sauropods, rejecting a causal explanation and evolutionary linkage between this sacral configuration and body size. Alternative phylogenetic placements of Leonerasaurus as a basal anchisaurian imply a convergent acquisition of the sauropod-type sacrum in the new small-bodied taxon, also rejecting an evolutionary dependence of sacral configuration and body size in sauropodomorphs. This and other recent discoveries are showing that the characteristic sauropod body plan evolved gradually

  12. The first two mitochondrial genomes from Taeniopterygidae (Insecta: Plecoptera): Structural features and phylogenetic implications.

    Science.gov (United States)

    Chen, Zhi-Teng; Du, Yu-Zhou

    2018-05-01

    The complete mitochondrial genomes (mitogenomes) of Taeniopteryx ugola and Doddsia occidentalis (Plecoptera: Taeniopterygidae) were firstly sequenced from the family Taeniopterygidae. The 15,353-bp long mitogenome of T. ugola and the 16,020-bp long mitogenome of D. occidentalis each contained 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and a control region (CR). The mitochondrial gene arrangement of the two taeniopterygids and other stoneflies was identical with the putative ancestral mitogenome of Drosophila yakuba. Most PCGs used standard ATN start codons and TAN termination codons. Twenty-one of the 22 tRNAs in each mitogenome could fold into the cloverleaf secondary structures, while the dihydrouridine (DHU) arm of trnSer (AGN) was reduced or absent. Stem-loop (SL) structures, poly-T stretch, poly-[AT] n stretch and tandem repeats were found in the CRs of the two mitogenomes. The phylogenetic analyses using Bayesian inference (BI) and maximum likelihood methods (ML) generated identical results, both supporting the monophyly of all stonefly families and the two infraorders, Systellognatha and Euholognatha. Taeniopterygidae was grouped with another two families from Euholognatha. The relationships within Plecoptera were recovered as (((Perlidae+Peltoperlidae)+((Pteronarcyidae+Chloroperlidae)+Styloperlidae))+((Capniidae+Taeniopterygidae)+Nemouridae))+Gripopterygidae. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. First Mitochondrial Genome from Nemouridae (Plecoptera) Reveals Novel Features of the Elongated Control Region and Phylogenetic Implications.

    Science.gov (United States)

    Chen, Zhi-Teng; Du, Yu-Zhou

    2017-05-05

    The complete mitochondrial genome (mitogenome) of Nemoura nankinensis (Plecoptera: Nemouridae) was sequenced as the first reported mitogenome from the family Nemouridae. The N. nankinensis mitogenome was the longest (16,602 bp) among reported plecopteran mitogenomes, and it contains 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes and two ribosomal RNA (rRNA) genes. Most PCGs used standard ATN as start codons, and TAN as termination codons. All tRNA genes of N. nankinensis could fold into the cloverleaf secondary structures except for trnSer ( AGN ), whose dihydrouridine (DHU) arm was reduced to a small loop. There was also a large non-coding region (control region, CR) in the N. nankinensis mitogenome. The 1751 bp CR was the longest and had the highest A+T content (81.8%) among stoneflies. A large tandem repeat region, five potential stem-loop (SL) structures, four tRNA-like structures and four conserved sequence blocks (CSBs) were detected in the elongated CR. The presence of these tRNA-like structures in the CR has never been reported in other plecopteran mitogenomes. These novel features of the elongated CR in N. nankinensis may have functions associated with the process of replication and transcription. Finally, phylogenetic reconstruction suggested that Nemouridae was the sister-group of Capniidae.

  14. White dwarf evolution - Cradle-to-grave constraints via pulsation

    Science.gov (United States)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  15. Tempo and mode in human evolution.

    Science.gov (United States)

    McHenry, H M

    1994-01-01

    The quickening pace of paleontological discovery is matched by rapid developments in geochronology. These new data show that the pattern of morphological change in the hominid lineage was mosaic. Adaptations essential to bipedalism appeared early, but some locomotor features changed much later. Relative to the highly derived postcrania of the earliest hominids, the craniodental complex was quite primitive (i.e., like the reconstructed last common ancestor with the African great apes). The pattern of craniodental change among successively younger species of Hominidae implies extensive parallel evolution between at least two lineages in features related to mastication. Relative brain size increased slightly among successively younger species of Australopithecus, expanded significantly with the appearance of Homo, but within early Homo remained at about half the size of Homo sapiens for almost a million years. Many apparent trends in human evolution may actually be due to the accumulation of relatively rapid shifts in successive species. PMID:8041697

  16. ROHHAD syndrome and evolution of sleep disordered breathing

    OpenAIRE

    Reppucci, Diana; Hamilton, Jill; Yeh, E Ann; Katz, Sherri; Al-Saleh, Suhail; Narang, Indra

    2016-01-01

    Background Rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) is a rare disease with a high mortality rate. Although nocturnal hypoventilation (NH) is central to ROHHAD, the evolution of sleep disordered breathing (SDB) is not well studied. The aim of the study was to assess early manifestations of SDB and their evolution in ROHHAD syndrome. Methods Retrospective study of children with ROHHAD at two Canadian centers. All children with suspe...

  17. A palaeoequatorial ornithischian and new constraints on early dinosaur diversification.

    Science.gov (United States)

    Barrett, Paul M; Butler, Richard J; Mundil, Roland; Scheyer, Torsten M; Irmis, Randall B; Sánchez-Villagra, Marcelo R

    2014-09-22

    Current characterizations of early dinosaur evolution are incomplete: existing palaeobiological and phylogenetic scenarios are based on a fossil record dominated by saurischians and the implications of the early ornithischian record are often overlooked. Moreover, the timings of deep phylogenetic divergences within Dinosauria are poorly constrained owing to the absence of a rigorous chronostratigraphical framework for key Late Triassic-Early Jurassic localities. A new dinosaur from the earliest Jurassic of the Venezuelan Andes is the first basal ornithischian recovered from terrestrial deposits directly associated with a precise radioisotopic date and the first-named dinosaur from northern South America. It expands the early palaeogeographical range of Ornithischia to palaeoequatorial regions, an area sometimes thought to be devoid of early dinosaur taxa, and offers insights into early dinosaur growth rates, the evolution of sociality and the rapid tempo of the global dinosaur radiation following the end-Triassic mass extinction, helping to underscore the importance of the ornithischian record in broad-scale discussions of early dinosaur history. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. A Mitogenomic Phylogeny of Living Primates

    Science.gov (United States)

    Finstermeier, Knut; Zinner, Dietmar; Brameier, Markus; Meyer, Matthias; Kreuz, Eva; Hofreiter, Michael; Roos, Christian

    2013-01-01

    Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels. PMID:23874967

  19. Sequence stratigraphy on an early wet Mars

    Science.gov (United States)

    Barker, Donald C.; Bhattacharya, Janok P.

    2018-02-01

    The evolution of Mars as a water-bearing body is of considerable interest for the understanding of its early history and evolution. The principles of terrestrial sequence stratigraphy provide a useful conceptual framework to hypothesize about the stratigraphic history of the planets northern plains. We present a model based on the hypothesized presence of an early ocean and the accumulation of lowland sediments eroded from highland terrain during the time of the valley networks and later outflow channels. Ancient, global environmental changes, induced by a progressively cooling climate would have led to a protracted loss of surface and near surface water from low-latitudes and eventual cold-trapping at higher latitudes - resulting in a unique and prolonged, perpetual forced regression within basins and lowland depositional environments. The Messinian Salinity Crisis (MSC) serves as a potential terrestrial analogue of the depositional and environmental consequences relating to the progressive removal of large standing bodies of water. We suggest that the evolution of similar conditions on Mars would have led to the emplacement of diagnostic sequences of deposits and regional scale unconformities, consistent with intermittent resurfacing of the northern plains and the progressive loss of an early ocean by the end of the Hesperian era.

  20. Balanced Cross Section for Restoration of Tectonic Evolution in the Southwest Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    Wu Shiguo; Ni Xianglong; Guo Junhua

    2007-01-01

    On the basis of the multi-channel seismic data and the other data, using 2DMove software,the tectonic evolution in three seismic profiles was restored since Pliocene. The tectonic restoration results show that: (1) the initial active center lay in the west slope and then was transferred to east and south via trough center during the evolution process; (2) several main normal faults controlled the evolution of the southern Okinawa Trough; (3) since Late Pliocene, the southern Okinawa Trough has experienced two spreading stages. The early is depression in Early-Middle Pleistocene and the late is back-arc spreading in Late Pleistocene and Holocene, which is in primary oceanic crust spreading stage.

  1. Belief versus acceptance: why do people not believe in evolution?

    Science.gov (United States)

    Williams, James D

    2009-11-01

    Despite being an established and accepted scientific theory for 150 years, repeated public polls show that evolution is not believed by large numbers of people. This essay examines why people do not accept evolution and argues that its poor representation in some science textbooks allows misconceptions, established and reinforced in early childhood, to take hold. There is also a lack of up-to-date examples of evidence for evolution in school textbooks. Poor understanding by science graduates and teachers of the nature of science and incorrect definitions by them of key terminology, serve only to undermine efforts to improve public understanding of evolution. This paper has several recommendations, including the introduction of evolution to primary age children and a call to bring evolution back as the central tenet of biology.

  2. The complete mitochondrial genome structure of the jaguar (Panthera onca).

    Science.gov (United States)

    Caragiulo, Anthony; Dougherty, Eric; Soto, Sofia; Rabinowitz, Salisa; Amato, George

    2016-01-01

    The jaguar (Panthera onca) is the largest felid in the Western hemisphere, and the only member of the Panthera genus in the New World. The jaguar inhabits most countries within Central and South America, and is considered near threatened by the International Union for the Conservation of Nature. This study represents the first sequence of the entire jaguar mitogenome, which was the only Panthera mitogenome that had not been sequenced. The jaguar mitogenome is 17,049 bases and possesses the same molecular structure as other felid mitogenomes. Bayesian inference (BI) and maximum likelihood (ML) were used to determine the phylogenetic placement of the jaguar within the Panthera genus. Both BI and ML analyses revealed the jaguar to be sister to the tiger/leopard/snow leopard clade.

  3. Cytogenetics, conserved synteny and evolution of chicken fucosyltransferase genes compared to human

    NARCIS (Netherlands)

    Coullin, P.; Crooijmans, R.P.M.A.; Fillon, V.; Mollicone, R.; Groenen, M.A.M.; Adrien-Dehais, C.; Bernheim, A.; Zoorob, R.; Oriol, R.; Candelier, J.J.

    2003-01-01

    Fucosyltransferases appeared early in evolution, since they are present from bacteria to primates and the genes are well conserved. The aim of this work was to study these genes in the bird group, which is particularly attractive for the comprehension of the evolution of the vertebrate genome.

  4. Mitogenomics does not resolve deep molluscan relationships (yet?).

    Science.gov (United States)

    Stöger, I; Schrödl, M

    2013-11-01

    The origin of molluscs among lophotrochozoan metazoans is unresolved and interclass relationships are contradictory between morphology-based, multi-locus, and recent phylogenomic analyses. Within the "Deep Metazoan Phylogeny" framework, all available molluscan mitochondrial genomes were compiled, covering 6 of 8 classes. Genomes were reannotated, and 13 protein coding genes (PCGs) were analyzed in various taxon settings, under multiple masking and coding regimes. Maximum Likelihood based methods were used for phylogenetic reconstructions. In all cases, molluscs result mixed up with lophotrochozoan outgroups, and most molluscan classes with more than single representatives available are non-monophyletic. We discuss systematic errors such as long branch attraction to cause aberrant, basal positions of fast evolving ingroups such as scaphopods, patellogastropods and, in particular, the gastropod subgroup Heterobranchia. Mitochondrial sequences analyzed either as amino acids or nucleotides may perform well in some (Cephalopoda) but not in other palaeozoic molluscan groups; they are not suitable to reconstruct deep (Cambrian) molluscan evolution. Supposedly "rare" mitochondrial genome level features have long been promoted as phylogenetically informative. In our newly annotated data set, features such as genome size, transcription on one or both strands, and certain coupled pairs of PCGs show a homoplastic, but obviously non-random distribution. Apparently congruent (but not unambiguous) signal for non-trivial subclades, e.g. for a clade composed of pteriomorph and heterodont bivalves, needs confirmation from a more comprehensive bivalve sampling. We found that larger clusters not only of PCGs but also of rRNAs and even tRNAs can bear local phylogenetic signal; adding trnG-trnE to the end of the ancestral cluster trnM-trnC-trnY-trnW-trnQ might be synapomorphic for Mollusca. Mitochondrial gene arrangement and other genome level features explored and reviewed herein thus

  5. Secondary structure and feature of mitochondrial tRNA genes of the Ussurian tube-nosed bat Murina ussuriensis (Chiroptera: Vespertilionidae

    Directory of Open Access Journals (Sweden)

    Kwang Bae Yoon

    2015-09-01

    Full Text Available The complete mitogenome (NC_021119 of the Ussurian tube-nosed bat Murina ussuriensis (Chiroptera: Vespertilionidae was annotated and characterized in our recent publication (http://www.ncbi.nlm.nih.gov/nuccore/NC_021119. Here we provide additional information on methods in detail for obtaining the complete sequence of M. ussuriensis mitogenome. In addition, we describe characteristics of 22 tRNA genes and secondary structure and feature of 22 tRNAs of M. ussuriensis mitogenome.

  6. Developmental evolution: this side of paradise.

    Science.gov (United States)

    Graham, A; McGonnell, I

    1999-09-09

    It has long been appreciated that the evolution of snakes involved the loss of limbs and axis elongation, but their developmental basis has been obscure. It has now been shown that alterations in the deployment of Hox genes and an early block in the formation of hindlimb primordia underpin these modifications.

  7. Phanerozoic pO2 and the early evolution of terrestrial animals.

    Science.gov (United States)

    Schachat, Sandra R; Labandeira, Conrad C; Saltzman, Matthew R; Cramer, Bradley D; Payne, Jonathan L; Boyce, C Kevin

    2018-01-31

    Concurrent gaps in the Late Devonian/Mississippian fossil records of insects and tetrapods (i.e. Romer's Gap) have been attributed to physiological suppression by low atmospheric p O 2 Here, updated stable isotope inputs inform a reconstruction of Phanerozoic oxygen levels that contradicts the low oxygen hypothesis (and contradicts the purported role of oxygen in the evolution of gigantic insects during the late Palaeozoic), but reconciles isotope-based calculations with other proxies, like charcoal. Furthermore, statistical analysis demonstrates that the gap between the first Devonian insect and earliest diverse insect assemblages of the Pennsylvanian (Bashkirian Stage) requires no special explanation if insects were neither diverse nor abundant prior to the evolution of wings. Rather than tracking physiological constraint, the fossil record may accurately record the transformative evolutionary impact of insect flight. © 2018 The Author(s).

  8. White dwarf evolution - Cradle-to-grave constraints via pulsation

    International Nuclear Information System (INIS)

    Kawaler, S.D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge. 44 refs

  9. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  10. The quark gluon plasma equation of state and the expansion of the early Universe

    International Nuclear Information System (INIS)

    Sanches, S.M.; Navarra, F.S.; Fogaça, D.A.

    2015-01-01

    Our knowledge of the equation of state of the quark gluon plasma has been continuously growing due to the experimental results from heavy ion collisions, due to recent astrophysical measurements and also due to the advances in lattice QCD calculations. The new findings about this state may have consequences on the time evolution of the early Universe, which can be estimated by solving the Friedmann equations. The solutions of these equations give the time evolution of the energy density and also of the temperature in the beginning of the Universe. In this work we compute the time evolution of the QGP in the early Universe, comparing several equations of state, some of them based on the MIT bag model (and on its variants) and some of them based on lattice QCD calculations. Among other things, we investigate the effects of a finite baryon chemical potential in the evolution of the early Universe

  11. Structure and evolution of the Y-chromosomal and mitochondrial DNA of cattle

    NARCIS (Netherlands)

    Verkaar, Edward Louis Christian

    2003-01-01

    The research described in this thesis is focused on the structure and evolution of the bovine Y-chromosome and the use of paternal markers in molecular diagnostics. The Y-chromosome has emerged together with the X-chromosome early during the evolution of the mammals by differentiation of a pair of

  12. Proboscidean mitogenomics: chronology and mode of elephant evolution using mastodon as outgroup.

    Directory of Open Access Journals (Sweden)

    Nadin Rohland

    2007-08-01

    Full Text Available We have sequenced the complete mitochondrial genome of the extinct American mastodon (Mammut americanum from an Alaskan fossil that is between 50,000 and 130,000 y old, extending the age range of genomic analyses by almost a complete glacial cycle. The sequence we obtained is substantially different from previously reported partial mastodon mitochondrial DNA sequences. By comparing those partial sequences to other proboscidean sequences, we conclude that we have obtained the first sequence of mastodon DNA ever reported. Using the sequence of the mastodon, which diverged 24-28 million years ago (mya from the Elephantidae lineage, as an outgroup, we infer that the ancestors of African elephants diverged from the lineage leading to mammoths and Asian elephants approximately 7.6 mya and that mammoths and Asian elephants diverged approximately 6.7 mya. We also conclude that the nuclear genomes of the African savannah and forest elephants diverged approximately 4.0 mya, supporting the view that these two groups represent different species. Finally, we found the mitochondrial mutation rate of proboscideans to be roughly half of the rate in primates during at least the last 24 million years.

  13. Galaxies in the Early Universe

    DEFF Research Database (Denmark)

    Krogager, Jens-Kristian

    Understanding how galaxies evolved from the early Universe through cosmic time is a fundamental part of modern astrophysics. In order to study this evolution it is important to sample the galaxies at various times in a consistent way through time. In regular luminosity selected samples, our...

  14. Cross-linked structure of network evolution

    International Nuclear Information System (INIS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-01-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks

  15. Cross-linked structure of network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  16. Human evolution: humanistic selection and looking to the future.

    Science.gov (United States)

    Krsiak, Miloslav

    2006-10-01

    Cultural evolution has predominated over biological evolution in modern man (Homo sapiens sapiens). Cultural evolution differs from biological evolution not only by inheritance of acquired characteristics but also, as is proposed in the present essay, by another kind of selection mechanism. Whereas selection in biological evolution is executed according to a criterion of reproductive success (the natural selection), selection in cultural evolution appears to be carried out according to human and humanistic criteria (success or fitness in meeting human needs, interests and humanistic values--"humanistic selection"). Many humanistic needs or values do not seem to be prerequisite for reproductive success, yet some of them (e.g. a need for freedom) seem to be inborn. Innateness, humanistic selection (decisive at a community level) and hierarchy of some human needs, interests and values appear to give cultural evolution a generally upward trend although long periods of stagnation or even regression may occur. Modern humans appear to be still at the early stage of their cultural evolution. A further cultural evolution of man appears to be, in contrast to biological evolution, predictable (with an optimistic outlook) and testable. The problem is that the hopeful result of this test will probably be known only in the fairly remote future provided that this species will not become extinct before that.

  17. Connecting QGP-Heavy Ion Physics to the Early Universe

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann

    2013-10-15

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  18. IDEA and Early Childhood Inclusion.

    Science.gov (United States)

    Smith, Barbara J.; Rapport, Mary Jane K.

    This paper discusses 1997 amendments to the Individuals with Disabilities Education Act (IDEA) that promote the inclusion of children with disabilities in general early childhood education settings. The evolution of inclusion policy is explored and changes in disability terminology are described. Amended provisions are then explained and include:…

  19. Space station evolution: Planning for the future

    Science.gov (United States)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-06-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  20. Space station evolution: Planning for the future

    Science.gov (United States)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-01-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  1. The tempo and mode of barnacle evolution

    DEFF Research Database (Denmark)

    Pérez-Losada, Marcos; Harp, Margaret; Høeg, Jens T

    2008-01-01

    (outgroup) species representing almost all the Thoracica families to assess the tempo and mode of barnacle evolution. Using phylogenetic methods of maximum parsimony, maximum likelihood, and Bayesian inference and 14 fossil calibrations, we found that: (1) Iblomorpha form a monophyletic group; (2......) pedunculated barnacles without shell plates (Heteralepadomorpha) are not ancestral, but have evolved, at least twice, from plated forms; (3) the ontogenetic pattern with 5-->6-->8-->12+ plates does not reflect Thoracica shell evolution; (4) the traditional asymmetric barnacles (Verrucidae) and the Balanomorpha......) the Thoracica suborders evolved since the Early Carboniferous (340mya) with the final radiation of the Sessilia in the Upper Jurassic (147mya). These results, therefore, reject many of the underlying hypotheses about character evolution in the Cirripedia Thoracica, stimulate a variety of new thoughts...

  2. Early stages of technology intensive companies

    OpenAIRE

    Muhos, M. (Matti)

    2011-01-01

    Abstract This study aims to clarify the early development stages of technology intensive companies. The current literature does not offer an extensive review of stage perspectives for company growth – the overall picture of the field is somewhat vague. The evolution of this field remains unclear as well as the current state. Further, recent empirical stage models focusing on technology intensive companies have not been delineated. As companies move through their early stages, they face ev...

  3. Mesozoic mammals from Arizona: new evidence on Mammalian evolution.

    Science.gov (United States)

    Jenkins, F A; Crompton, A W; Downs, W R

    1983-12-16

    Knowledge of early mammalian evolution has been based on Old World Late Triassic-Early Jurassic faunas. The discovery of mammalian fossils of approximately equivalent age in the Kayenta Formation of northeastern Arizona gives evidence of greater diversity than known previously. A new taxon documents the development of an angular region of the jaw as a neomorphic process, and represents an intermediate stage in the origin of mammalian jaw musculature.

  4. Conceptual Ecology of the Evolution Acceptance among Greek Education Students: Knowledge, Religious Practices and Social Influences

    Science.gov (United States)

    Athanasiou, Kyriacos; Papadopoulou, Penelope

    2012-01-01

    In this study, we explored some of the factors related to the acceptance of evolution theory among Greek university students training to be teachers in early childhood education, using conceptual ecology for biological evolution as a theoretical framework. We examined the acceptance of evolution theory and we also looked into the relationship…

  5. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  6. Neonatal mucolipidosis 2. The spontaneous evolution of early bone lesions and the effect of vitamin D treatment. Report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Pazzaglia, U.E.; Zatti, G. (Pavia Univ. (Italy). Clinica Ortopedica); Beluffi, G. (Policlinico San Matteo, Pavia (Italy). Servizio di Radiodiagnostica); Danesino, C. (Sassari Univ. (Italy). Cattedra di Genetica Umana); Frediani, P.V. (Ospedale dei Bambini Umberto I, Brescia (Italy)); Pagani, G. (Ospedale Santa Anna, Como (Italy). Div. di Patologia Neonatale)

    1989-11-01

    Evolution of the early bone lesions in two children with mucolipidosis 2 was followed from birth. The progression of the bone changes did not differ from healing of rickets. Low levels of 1,25-OH{sub 2}-D3 were found in one child and he was treated with vitamin D; resolution of the rachitic changes was more rapid than in the untreated child. It is suggested that in mucolipidosis 2 bone reacts to two independent factors, one controlling calcium metabolism, the other depending on the primary lysosomal enzyme defect. Since ricket-like features are not present in the other mucolipidoses or mucopolysaccharidoses, the defect of calcium metabolism seems to be related to the specific enzyme defect of mucolipidosis 2. (orig.).

  7. The Evolution of Special Education in Malaysia

    Science.gov (United States)

    Lee, Lay Wah; Low, Hui Min

    2014-01-01

    This article traces the evolution of special education in Malaysia across four chronological stages: before and during the early colonial period (before 1900), pre-independence (1900-1957), post-independence (1957-1990) and modern Malaysia (1990 to the present), through document analysis. By placing current issues and trends within a historical…

  8. Integrated Multiregional Analysis Proposing a New Model of Colorectal Cancer Evolution

    Science.gov (United States)

    Niida, Atsushi; Shimamura, Teppei; Hirata, Hidenari; Sugimachi, Keishi; Sawada, Genta; Iwaya, Takeshi; Kurashige, Junji; Shinden, Yoshiaki; Iguchi, Tomohiro; Eguchi, Hidetoshi; Chiba, Kenichi; Shiraishi, Yuichi; Nagae, Genta; Yoshida, Kenichi; Nagata, Yasunobu; Haeno, Hiroshi; Yamamoto, Hirofumi; Ishii, Hideshi; Doki, Yuichiro; Iinuma, Hisae; Sasaki, Shin; Nagayama, Satoshi; Yamada, Kazutaka; Yachida, Shinichi; Kato, Mamoru; Shibata, Tatsuhiro; Oki, Eiji; Saeki, Hiroshi; Shirabe, Ken; Oda, Yoshinao; Maehara, Yoshihiko; Komune, Shizuo; Mori, Masaki; Suzuki, Yutaka; Yamamoto, Ken; Aburatani, Hiroyuki; Ogawa, Seishi; Miyano, Satoru; Mimori, Koshi

    2016-01-01

    Understanding intratumor heterogeneity is clinically important because it could cause therapeutic failure by fostering evolutionary adaptation. To this end, we profiled the genome and epigenome in multiple regions within each of nine colorectal tumors. Extensive intertumor heterogeneity is observed, from which we inferred the evolutionary history of the tumors. First, clonally shared alterations appeared, in which C>T transitions at CpG site and CpG island hypermethylation were relatively enriched. Correlation between mutation counts and patients’ ages suggests that the early-acquired alterations resulted from aging. In the late phase, a parental clone was branched into numerous subclones. Known driver alterations were observed frequently in the early-acquired alterations, but rarely in the late-acquired alterations. Consistently, our computational simulation of the branching evolution suggests that extensive intratumor heterogeneity could be generated by neutral evolution. Collectively, we propose a new model of colorectal cancer evolution, which is useful for understanding and confronting this heterogeneous disease. PMID:26890883

  9. Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample.

    Science.gov (United States)

    Crampton-Platt, Alex; Timmermans, Martijn J T N; Gimmel, Matthew L; Kutty, Sujatha Narayanan; Cockerill, Timothy D; Vun Khen, Chey; Vogler, Alfried P

    2015-09-01

    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Extended thermodynamics in the early Universe

    International Nuclear Information System (INIS)

    Lukacs, B.

    1985-01-01

    It is a general belief that in some early stages of the evolution of the Universe, unequilibrium situations played important role. In order to incorporate some deviations from thermal equilibrium into the description of the evolution, an extension of the thermodynamic formalism is given, where, using the notion of ekaentropy, new terms are introduced into the Gibbs-Duhem relation for representing the deviation. Two situations are investigated in simplified models: the primordial thermalization in the symmetric phase of GUT, and the development of a nonthermal distribution for massive neutrinos. (author)

  11. The complete mitochondrial genome of a spiraling whitefly, Aleurodicus dispersus Russell (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Ming-Xing, Lu; Zhi-Teng, Chen; Wei-Wei, Yu; Yu-Zhou, Du

    2017-03-01

    We report the complete mitochondrial genome (mitogenome) of a spiraling whitefly, Aleurodicus dispersus (Hemiptera: Aleyrodidae). The 16 170 bp long genome consists of 13 protein-coding genes, 20 transfer RNAs, 2 ribosomal RNAs, and a control region. The A. dispersus mitogenome also includes a cytb-like non-coding region and shows several variations relative to the typical insect mitogenome. A phylogenetic tree has been constructed using the 13 protein-coding genes of 12 related species from Hemiptera. Our results would contribute to further study of phylogeny in Aleyrodidae and Hemiptera.

  12. Niche evolution and adaptive radiation: Testing the order of trait divergence

    Science.gov (United States)

    Ackerly, D.D.; Schwilk, D.W.; Webb, C.O.

    2006-01-01

    In the course of an adaptive radiation, the evolution of niche parameters is of particular interest for understanding modes of speciation and the consequences for coexistence of related species within communities. We pose a general question: In the course of an evolutionary radiation, do traits related to within-community niche differences (?? niche) evolve before or after differentiation of macrohabitat affinity or climatic tolerances (?? niche)? Here we introduce a new test to address this question, based on a modification of the method of independent contrasts. The divergence order test (DOT) is based on the average age of the nodes on a tree, weighted by the absolute magnitude of the contrast at each node for a particular trait. The comparison of these weighted averages reveals whether large divergences for one trait have occurred earlier or later in the course of diversification, relative to a second trait; significance is determined by bootstrapping from maximum-likelihood ancestral state reconstructions. The method is applied to the evolution of Ceanothus, a woody plant group in California, in which co-occurring species exhibit significant differences in a key leaf trait (specific leaf area) associated with contrasting physiological and life history strategies. Co-occurring species differ more for this trait than expected under a null model of community assembly. This ?? niche difference evolved early in the divergence of two major subclades within Ceanothus, whereas climatic distributions (?? niche traits) diversified later within each of the subclades. However, rapid evolution of climate parameters makes inferences of early divergence events highly uncertain, and differentiation of the ?? niche might have taken place throughout the evolution of the group, without leaving a clear phylogenetic signal. Similar patterns observed in several plant and animal groups suggest that early divergence of ?? niche traits might be a common feature of niche evolution in

  13. MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION

    International Nuclear Information System (INIS)

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2012-01-01

    We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z ∼ 1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity, and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resembles that of a passively evolving population that formed relatively recently, at z ∼ 2. Mergers among the red sequence population ('dry mergers') occurring after z = 1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z = 1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z = 1 and z = 0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z ∼ 3-5), and is in closer agreement with observations. We conclude that measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.

  14. The Evolution of High-Mass Star-Forming Cores in the Nessie Nebula

    Science.gov (United States)

    Jackson, James; Rathborne, Jill; Sanhueza, Patricio; Whitaker, John Scott; Camarata, Matthew

    2013-04-01

    We aim to deduce the evolution of the ensemble properties of high-mass star-forming cores within a cluster-forming molecular clump. Two different theories of high-mass star-formation, "competitive accretion" and "monolithic collapse" make very different predictions for this evolution. In "competitive accretion" the clump will contain only low-mass cores in the early phases, and high-mass cores will be found in the later stages. In "monolithic collapse" high-mass cores are found early on, and the mass distribution of the cores will remain essentially unchanged. Both models predict cores to increase in temperature. We can classify evolutionary stage from Spitzer mid-IR images. We choose to study 6 cores in the Nessie nebula that span the complete range of protostellar evolution. Nessie is an ideal laboratory because all the cores are at the same distance and in the same Galactic environment.

  15. Paleogeographic Evolution of the Late Neoproterozoic and Early Phanerozoic with New Paleomagnetic Constraints from West African Craton

    Science.gov (United States)

    Robert, B.; Besse, J.; Blein, O.; Greff-Lefftz, M.; Baudin, T.; Fernando, L.; Meslouh, S.; Belbadaoui, M.

    2015-12-01

    The paleogeographic evolution of the late Neoproterozoic and early Phanerozoic is dominated by the dispersion of Rodinia and the assembly of Gondwana. The timing of these two episodes is still highly debated, partly due to the low number of good quality paleomagnetic data. In order to better constrain the paleogeography for this epoch, we bring new paleomagnetic data on volcanic series from the West African Craton (WAC), which is a key block to understand the evolution of these two supercontinents. We have sampled well dated pyroclastic and lava flows from the groups of Ouarzazate (upper Ediacaran) and Taroudant (lower Cambrian) in the Anti-Atlas (Morocco). 500 samples from 105 sites were thermally demagnetized in laboratory. Our results highlight two major groups of directions, mainly carried by minerals of the titano-hematite family. Magnetite may also contribute sometimes to the magnetization. The first group displays a single polarity direction, with a shallow inclination and a south-east declination. This direction close to the expected direction derived from the Permo-Carboniferous segment of the Gondwana apparent polar wander path (APWP) is due to a remagnetization acquired during the Kiaman reversed polarity superchron (320-262Ma). The second group, observed in the Ouarzazate and Taroudant groups, consists of a dual polarity high inclination direction and may represent the characteristic magnetization. On the basis of geologic and paleomagnetic data from literature, we constructed an APWP for both WAC and Amazonia between 615 and 530Ma, assuming these two blocks were already accreted. We found a paleomagnetic solution in which Laurentia and WAC-Amazonia remained attached from ~615Ma up to the late Ediacaran, Laurentia remaining at low latitude during this period. Around ~550Ma, WAC-Amazonia separated from Laurentia and finally collided with the other Gondwanan blocks during the lower Cambrian, marking the final accretion of Gondwana.

  16. Spontaneous chiral symmetry breaking in early molecular networks

    Directory of Open Access Journals (Sweden)

    Markovitch Omer

    2010-05-01

    Full Text Available Abstract Background An important facet of early biological evolution is the selection of chiral enantiomers for molecules such as amino acids and sugars. The origin of this symmetry breaking is a long-standing question in molecular evolution. Previous models addressing this question include particular kinetic properties such as autocatalysis or negative cross catalysis. Results We propose here a more general kinetic formalism for early enantioselection, based on our previously described Graded Autocatalysis Replication Domain (GARD model for prebiotic evolution in molecular assemblies. This model is adapted here to the case of chiral molecules by applying symmetry constraints to mutual molecular recognition within the assembly. The ensuing dynamics shows spontaneous chiral symmetry breaking, with transitions towards stationary compositional states (composomes enriched with one of the two enantiomers for some of the constituent molecule types. Furthermore, one or the other of the two antipodal compositional states of the assembly also shows time-dependent selection. Conclusion It follows that chiral selection may be an emergent consequence of early catalytic molecular networks rather than a prerequisite for the initiation of primeval life processes. Elaborations of this model could help explain the prevalent chiral homogeneity in present-day living cells. Reviewers This article was reviewed by Boris Rubinstein (nominated by Arcady Mushegian, Arcady Mushegian, Meir Lahav (nominated by Yitzhak Pilpel and Sergei Maslov.

  17. The origin and early evolution of dinosaurs.

    Science.gov (United States)

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  18. A Geological Model for the Evolution of Early Continents (Invited)

    Science.gov (United States)

    Rey, P. F.; Coltice, N.; Flament, N. E.; Thébaud, N.

    2013-12-01

    Geochemical probing of ancient sediments (REE in black shales, strontium composition of carbonates, oxygen isotopes in zircons...) suggests that continents were a late Archean addition at Earth's surface. Yet, geochemical probing of ancient basalts reveals that they were extracted from a mantle depleted of its crustal elements early in the Archean. Considerations on surface geology, the early Earth hypsometry and the rheology and density structure of Archean continents can help solve this paradox. Surface geology: The surface geology of Archean cratons is characterized by thick continental flood basalts (CFBs, including greenstones) emplaced on felsic crusts dominated by Trondhjemite-Tonalite-Granodiorite (TTG) granitoids. This simple geology is peculiar because i/ most CFBs were emplaced below sea level, ii/ after their emplacement, CFBs were deformed into relatively narrow, curviplanar belts (greenstone basins) wrapping around migmatitic TTG domes, and iii/ Archean greenstone belts are richly endowed with gold and other metals deposits. Flat Earth hypothesis: From considerations on early Earth continental geotherm and density structure, Rey and Coltice (2008) propose that, because of the increased ability of the lithosphere to flow laterally, orogenic processes in the Archean produced only subdued topography (early Earth showing that, until the late Archean, most continents were flooded and Earth was largely a water world. From this, a model consistent with many of the peculiar attributes of Archean geology, can be proposed: 1/ Continents appeared at Earth's surface at an early stage during the Hadean/Archean. However, because they were i/ covered by continental flood basalts, ii/ below sea level, and iii/ deprived of modern-style mountain belts and orogenic plateaux, early felsic

  19. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    To help determine whether the typical arthropod arrangement was a synapomorphy for the whole Tettigoniidae, we sequenced the mitochondrial genome (mitogenome) of the quiet-calling katydids, Xizicus fascipes (Orthoptera: Tettigoniidae: Meconematinae). The 16,166-bp nucleotide sequences of X. fascipes mitogenome ...

  20. Evidence of size-selective evolution in the fighting conch from prehistoric subsistence harvesting.

    Science.gov (United States)

    O'Dea, Aaron; Shaffer, Marian Lynne; Doughty, Douglas R; Wake, Thomas A; Rodriguez, Felix A

    2014-05-07

    Intensive size-selective harvesting can drive evolution of sexual maturity at smaller body size. Conversely, prehistoric, low-intensity subsistence harvesting is not considered an effective agent of size-selective evolution. Uniting archaeological, palaeontological and contemporary material, we show that size at sexual maturity in the edible conch Strombus pugilis declined significantly from pre-human (approx. 7 ka) to prehistoric times (approx. 1 ka) and again to the present day. Size at maturity also fell from early- to late-prehistoric periods, synchronous with an increase in harvesting intensity as other resources became depleted. A consequence of declining size at maturity is that early prehistoric harvesters would have received two-thirds more meat per conch than contemporary harvesters. After exploring the potential effects of selection biases, demographic shifts, environmental change and habitat alteration, these observations collectively implicate prehistoric subsistence harvesting as an agent of size-selective evolution with long-term detrimental consequences. We observe that contemporary populations that are protected from harvesting are slightly larger at maturity, suggesting that halting or even reversing thousands of years of size-selective evolution may be possible.

  1. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds.

    Science.gov (United States)

    Knoll, Fabien; Chiappe, Luis M; Sanchez, Sophie; Garwood, Russell J; Edwards, Nicholas P; Wogelius, Roy A; Sellers, William I; Manning, Phillip L; Ortega, Francisco; Serrano, Francisco J; Marugán-Lobón, Jesús; Cuesta, Elena; Escaso, Fernando; Sanz, Jose Luis

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages of development. Comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.

  2. Mitochondrial genome of the bullet tuna Auxis rochei from Indo-West Pacific collection provides novel genetic information about two subspecies.

    Science.gov (United States)

    Li, Mingming; Guo, Liang; Zhang, Heng; Yang, Sen; Chen, Xinghan; Lin, Haoran; Meng, Zining

    2016-09-01

    Previously morphological studies supported the division of the bullet tuna into the two subspecies, Auxis rochei rochei and A. rochei eudorax. As a cosmopolitan species, A. rochei rochei ranges in the Indo-West Pacific and Atlantic oceans, while A. rochei eudorax inhabits in eastern Pacific region. Here, we used the HiSeq next-generation sequencing technique to determine the mitochondrial genome (mitogenome) of A. rochei from Indo-West Pacific collection, and then compared our data with mitogenomic sequences of the Atlantic and eastern Pacific retrieved from NCBI database. Results showed the mitogenome of A. rochei from three geographic collections shared the same genes and gene order, similar to typical teleosts. Also, we examined a low level of nucleotide diversity among these mitogenomic sequences. Interestingly, nucleotide diversity of intra-subspecies (Atlantic versus Indo-West) was higher than that of inter-subspecies (Atlantic versus eastern Pacific, Indo-West versus eastern Pacific).

  3. Loess deposits since early Pleistocene in northeast China and implications for desert evolution in east China

    Science.gov (United States)

    Sun, Miao; Zhang, Xujiao; Tian, Mingzhong; Liu, Ru; He, Zexin; Qi, Lin; Qiao, Yansong

    2018-04-01

    Loess deposits and deserts are regarded as coupled geological systems and loess deposits on the periphery of deserts can often be used to reconstruct desert evolution. Previous studies of desert evolution in Asia are mainly concentrated in northwest China and the China Loess Plateau, and little is known about long-term desert evolution in east China. In this study, we selected the Sishijiazi loess section in the Chifeng area in northeast China to study the long-term evolution of the desert in east China. A high-resolution magnetostratigraphy combined with optically stimulated luminescence dating indicated that the age of the section base is approximately 1.02 Ma. The Brunhes-Matuyama boundary is at the depth of 39.8 m in loess unit L8, and the upper boundary of the Jaramillo Subchron is at the depth of 60.8 m in paleosol S10. The results of grain-size analysis indicate a coarsening grain-size trend in the past 1.0 Ma. In addition, based on grain-size variations, the desert evolution in east China since ∼1.0 Ma can be divided into three stages: stability from 1.0 to 0.8 Ma, desert recession from 0.8 to 0.5 Ma, and gradual expansion since 0.5 Ma. Our results further indicate that the evolution of desert in east China was mainly controlled by changes in global ice volume, and that the uplift of the Tibetan Plateau may have had an additional effect.

  4. The Interwoven Evolution of the Early Keyboard and Baroque Culture

    Directory of Open Access Journals (Sweden)

    Rachel Stevenson

    2016-04-01

    Full Text Available The purpose of this paper is to analyze the impact that Baroque society had in the development of the early keyboard. While the main timeframe is Baroque, a few references are made to the late Medieval Period in determining the reason for the keyboard to more prominently emerge in the musical scene. As Baroque society develops and new genres are formed, different keyboard instruments serve vital roles unique to their construction. These new roles also affect the way music was written for the keyboard as well. Advantages and disadvantages of each instrument are discussed, providing an analysis of what would have been either accepted or rejected by Baroque culture. While music is the main focus, other fine arts are mentioned, including architecture, poetry, politics, and others. My research includes primary and secondary resources retrieved from databases provided by Cedarville University. By demonstrating the relationship between Baroque society and early keyboard development, roles and music, this will be a helpful source in furthering the pianist's understanding of the instrument he or she plays. It also serves pedagogical purposes in its analysis of context in helping a student interpret a piece written during this time period with these early keyboard instruments.

  5. Geologic evolution of the SE.23 Sheet - Belo Horizonte, MG, Brazil

    International Nuclear Information System (INIS)

    Pereira, A.D.C.; Fonseca, E.G. da; Braz, E.R.C.

    1987-01-01

    The aim of this paper is to present a synthesis of the geologic evolution in the Belo Horizonte Sheet comprising an area about 281.210 Km 2 . Rb-Sr and K-Ar isotope dating methods are used for age estimation of geologic deposits. The geologic evolution of the cratonic area is reflected by a stable central nucleus surrounded by marginal orogenic belts. In the central area were recognized greenstone belts structures involved by granite terrains and bordered by a granulitic region. The framework of the Sao Francisco Craton involves events of metamorphism, granitogenesis, sedimentary, volcanism and plutonism developed in the Early to Late Proterozoic. The stratigraphic column is complemented by Late Jurassic-Early Cretaceous continental deposits belonging to Parana-Basin. (M.V.M.)

  6. Bulk viscous cosmology in early Universe

    Indian Academy of Sciences (India)

    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model.

  7. Chemical defense of early life stages of benthic marine invertebrates.

    Science.gov (United States)

    Lindquist, Niels

    2002-10-01

    Accurate knowledge of factors affecting the survival of early life stages of marine invertebrates is critically important for understanding their population dynamics and the evolution of their diverse reproductive and life-history characteristics. Chemical defense is an important determinant of survival for adult stages of many sessile benthic invertebrates, yet relatively little consideration has been given to chemical defenses at the early life stages. This review examines the taxonomic breadth of early life-stage chemical defense in relation to various life-history and reproductive characteristics, as well as possible constraints on the expression of chemical defense at certain life stages. Data on the localization of defensive secondary metabolites in larvae and the fitness-related consequences of consuming even a small amount of toxic secondary metabolites underpin proposals regarding the potential for Müllerian and Batesian mimicry to occur among marine larvae. The involvement of microbial symbionts in the chemical defense of early life stages illustrates its complexity for some species. As our knowledge of chemical defenses in early life stages grows, we will be able to more rigorously examine connections among phylogeny, chemical defenses, and the evolution of reproductive and life-history characteristics among marine invertebrates.

  8. Petrogenesis of the late Early Cretaceous granodiorite - Quartz diorite from eastern Guangdong, SE China: Implications for tectono-magmatic evolution and porphyry Cu-Au-Mo mineralization

    Science.gov (United States)

    Jia, Lihui; Mao, Jingwen; Liu, Peng; Li, Yang

    2018-04-01

    Comprehensive petrological, zircon U-Pb dating, Hf-O isotopes, whole rock geochemistry and Sr-Nd isotopes data are presented for the Xinwei and Sanrao intrusions in the eastern Guangdong Province, Southeast (SE) China, with an aim to constrain the petrogenesis, tectono-magmatic evolution and evaluate the implication for porphyry Cu-Au-Mo mineralization. The Xinwei intrusion is composed of granodiorite and quartz diorite, whilst the Sanrao intrusion consists of granodiorite. Zircon U-Pb ages show that both intrusions were emplaced at ca. 106-102 Ma. All rocks are metaluminous to weakly peraluminous, high-K calc-alkaline in composition, and they are characterized by LREEs enrichment, depletion in Nb, Ta, P, and Ti, and strongly fractionated LREEs to HREEs. The initial 87Sr/86Sr ratios range from 0.7055 to 0.7059, and εNd(t) values range from -3.9 to -3.0. Together with the relatively high εHf(t) values (-3.2 to 3.3) and low δ18O values (4.9‰ to 6.6‰), these data suggest that the Xinwei and Sanrao intrusions were derived from a mixed source: including the mantle-derived mafic magmas and lower continental crustal magmas. Fractional crystallization played an important role in the magmatic evolution of the Xinwei and Sanrao intrusions. The elemental and isotopic compositions of the Xinwei and Sanrao intrusions, as well as the high water content and oxidation state of their parental magmas, are similar to those of the ore-bearing granodiorites of the Luoboling porphyry Cu-Mo deposit in the Fujian Province, neighbouring east to the Guangdong Province, indicating that the late Early Cretaceous granodioritic intrusions in the eastern Guangdong Province may also have Cu-Au-Mo mineralization potential. The late Early Cretaceous magmatic event is firstly reported in eastern Guangdong, and represents a positive response of large-scale lithosphere extension and thinning, triggered by the changing subduction direction of the Paleo-Pacific plate from oblique subduction to

  9. Genomics, evolution and development of amphioxus and tunicates: The Goldilocks principle.

    Science.gov (United States)

    Holland, Linda Z

    2015-06-01

    Morphological comparisons among extant animals have long been used to infer their long-extinct ancestors for which the fossil record is poor or non-existent. For evolution of the vertebrates, the comparison has typically involved amphioxus and vertebrates. Both groups are evolving relatively slowly, and their genomes share a high level of synteny. Both vertebrates and amphioxus have regulative development in which cell fates become fixed only gradually during embryogenesis. Thus, their development fits a modified hourglass model in which constraints are greatest at the phylotypic stage (i.e., the late neurula/early larva), but are somewhat greater on earlier development than on later development. In contrast, the third group of chordates, the tunicates, which are sister group to vertebrates, are evolving rapidly. Constraints on evolution of tunicate genomes are relaxed, and they have discarded key developmental genes and organized much of their coding sequences into operons, which are transcribed as a single mRNA that undergoes trans-splicing. This contrasts with vertebrates and amphioxus, whose genomes are not organized into operons. Concomitantly, tunicates have switched to determinant development with very early fixation of cell fates. Thus, tunicate development more closely fits a progressive divergence model (shaped more like a wine glass than an hourglass) in which the constraints on the zygote and very early development are greatest. This model can help explain why tunicate body plans are so very diverse. The relaxed constraints on development after early cleavage stages are correlated with relaxed constraints on genome evolution. The question remains: which came first? © 2014 Wiley Periodicals, Inc.

  10. Unassigned Codons, Nonsense Suppression, and Anticodon Modifications in the Evolution of the Genetic Code

    NARCIS (Netherlands)

    P.T.S. van der Gulik (Peter); W.D. Hoff (Wouter)

    2011-01-01

    htmlabstractThe origin of the genetic code is a central open problem regarding the early evolution of life. Here, we consider two undeveloped but important aspects of possible scenarios for the evolutionary pathway of the translation machinery: the role of unassigned codons in early stages

  11. Negative association between parental care and sibling cooperation in earwigs: a new perspective on the early evolution of family life?

    Science.gov (United States)

    Kramer, J; Thesing, J; Meunier, J

    2015-07-01

    The evolution of family life requires net fitness benefits for offspring, which are commonly assumed to mainly derive from parental care. However, an additional source of benefits for offspring is often overlooked: cooperative interactions among juvenile siblings. In this study, we examined how sibling cooperation and parental care could jointly contribute to the early evolution of family life. Specifically, we tested whether the level of food transferred among siblings (sibling cooperation) in the European earwig Forficula auricularia (1) depends on the level of maternal food provisioning (parental care) and (2) is translated into offspring survival, as well as female investment into future reproduction. We show that higher levels of sibling food transfer were associated with lower levels of maternal food provisioning, possibly reflecting a compensatory relationship between sibling cooperation and maternal care. Furthermore, the level of sibling food transfer did not influence offspring survival, but was associated with negative effects on the production of the second and terminal clutch by the tending mothers. These findings indicate that sibling cooperation could mitigate the detrimental effects on offspring survival that result from being tended by low-quality mothers. More generally, they are in line with the hypothesis that sibling cooperation is an ancestral behaviour that can be retained to compensate for insufficient levels of parental investment. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  12. Observational constraints from models of close binary evolution

    International Nuclear Information System (INIS)

    Greve, J.P. de; Packet, W.

    1984-01-01

    The evolution of a system of 9 solar masses + 5.4 solar masses is computed from Zero Age Main Sequence through an early case B of mass exchange, up to the second phase of mass transfer after core helium burning. Both components are calculated simultaneously. The evolution is divided into several physically different phases. The characteristics of the models in each of these phases are transformed into corresponding 'observable' quantities. The outlook of the system for photometric observations is discussed, for an idealized case. The influence of the mass of the loser and the initial mass ratio is considered. (Auth.)

  13. Mitochondrial genome of Pteronotus personatus (Chiroptera: Mormoopidae): comparison with selected bats and phylogenetic considerations.

    Science.gov (United States)

    López-Wilchis, Ricardo; Del Río-Portilla, Miguel Ángel; Guevara-Chumacero, Luis Manuel

    2017-02-01

    We described the complete mitochondrial genome (mitogenome) of the Wagner's mustached bat, Pteronotus personatus, a species belonging to the family Mormoopidae, and compared it with other published mitogenomes of bats (Chiroptera). The mitogenome of P. personatus was 16,570 bp long and contained a typically conserved structure including 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region (D-loop). Most of the genes were encoded on the H-strand, except for eight tRNA and the ND6 genes. The order of protein-coding and rRNA genes was highly conserved in all mitogenomes. All protein-coding genes started with an ATG codon, except for ND2, ND3, and ND5, which initiated with ATA, and terminated with the typical stop codon TAA/TAG or the codon AGA. Phylogenetic trees constructed using Maximum Parsimony, Maximum Likelihood, and Bayesian inference methods showed an identical topology and indicated the monophyly of different families of bats (Mormoopidae, Phyllostomidae, Vespertilionidae, Rhinolophidae, and Pteropopidae) and the existence of two major clades corresponding to the suborders Yangochiroptera and Yinpterochiroptera. The mitogenome sequence provided here will be useful for further phylogenetic analyses and population genetic studies in mormoopid bats.

  14. Mitochondrial genomes reveal recombination in the presumed asexual Fusarium oxysporum species complex.

    Science.gov (United States)

    Brankovics, Balázs; van Dam, Peter; Rep, Martijn; de Hoog, G Sybren; J van der Lee, Theo A; Waalwijk, Cees; van Diepeningen, Anne D

    2017-09-18

    The Fusarium oxysporum species complex (FOSC) contains several phylogenetic lineages. Phylogenetic studies identified two to three major clades within the FOSC. The mitochondrial sequences are highly informative phylogenetic markers, but have been mostly neglected due to technical difficulties. A total of 61 complete mitogenomes of FOSC strains were de novo assembled and annotated. Length variations and intron patterns support the separation of three phylogenetic species. The variable region of the mitogenome that is typical for the genus Fusarium shows two new variants in the FOSC. The variant typical for Fusarium is found in members of all three clades, while variant 2 is found in clades 2 and 3 and variant 3 only in clade 2. The extended set of loci analyzed using a new implementation of the genealogical concordance species recognition method support the identification of three phylogenetic species within the FOSC. Comparative analysis of the mitogenomes in the FOSC revealed ongoing mitochondrial recombination within, but not between phylogenetic species. The recombination indicates the presence of a parasexual cycle in F. oxysporum. The obstacles hindering the usage of the mitogenomes are resolved by using next generation sequencing and selective genome assemblers, such as GRAbB. Complete mitogenome sequences offer a stable basis and reference point for phylogenetic and population genetic studies.

  15. Early Eocene climatic optimum: Environmental impact on the North Iberian continental margin

    NARCIS (Netherlands)

    Payros, A.; Ortiz, S.; Millán, I.; Arostegi, J.; Orue-Etxebarria, X.; Apellaniz, E.

    2015-01-01

    The early Eocene climatic optimum, which constituted the peak of the long-term early Cenozoic global warming, had a significant impact on the environmental evolution of terrestrial and oceanic areas. Surprisingly, however, its influence on continental margins is poorly known. New insights are

  16. Holocene Evolution of Qing'ao Embayment, Southern China

    Science.gov (United States)

    Switzer, A. D.; Yu, F.; Chen, B.; Zheng, Z.; Wang, D.

    2012-12-01

    The Holocene evolution of the Qing'ao embayment, Nan'ao Island, southern China, is primarily the result of the interaction of tectonic activity, climate variation and changes in relative sea level. Characterizing the evolutionary history of the relatively small Qing'ao embayment during the Holocene will help improve our understanding of the driving mechanisms of coastal evolution in the area. To reconstruct the Holocene evolution history we analyzed the grain size, loss on ignition (LOI) and carbonate content of modern and core samples. Modern environmental analogs were examined in surface samples ranging from the coastal sand dunes through to offshore. The results of these modern samples suggest that dune sand (mean size of ~2.33Phi) are slightly finer than beach sand (mean size of 2.13Phi), and nearshore sediment is much coarser than offshore sediment (mean size of 5.90Phi). This modern analogs were then applied to 8 percussion cores from the Qing'ao embayment. A chronological framework obtained from 11 radiocarbon samples suggests that the embayment started to accept deposition since early Holocene, ~8500 cal. yr. BP. Three main phases of Holocene evolution were identified. A basin wide shell-rich sand sheet forms the basal Holocene facies and overlies clay rich presumably Pleistocene sediments or bedrock. This facies records an initial sedimentation phase associated with the early Holocene transgression into the embayment (~8500-6000 cal. yr. BP). The basal facies grades upward to a mixed sandy-mud facies which includes lagoonal clayey-silts, flood tide delta sands and records an estuarine phase lasting from ~6000-1000 cal. yr. BP that appears coincident with falling regional sea levels. Coincident with the estuarine phase is a period of coastal dune building recorded as yet undated massive sands that are found in the upper fill. Toward the end of the estuarine phase it is apparent that dune migration has restricted the lagoon entrance and that this was

  17. Evolution of property predictability during conceptual design

    DEFF Research Database (Denmark)

    Salonen, Mikko; Hansen, Claus Thorp; Perttula, Matti

    2005-01-01

    of design alternatives, and identify the alternative which properties are best predicted to fulfil the requirements. The objective of this paper is to study the evolution of property predictability during the early phases of design in a case study context, and reflect on the implications this may have......A product is designed with the purpose of possessing certain properties, which are prescribed as requirements in the design specification. It is a common understanding that early design work and the resulting selected design concept have a significant impact on the subsequent phases of the design...... process and on the properties of the obtained design result. However, during the early phases of design every decision and choice of solution is based on incomplete information. The nature of early design work is to formulate the design problem based on an interpretation of a need, to generate a set...

  18. The Evolution of Research Paradigms in Pastoral/Spiritual Care, Counseling, and Education.

    Science.gov (United States)

    Carr, John C

    2015-12-01

    This partially autobiographical article is presented as a chapter in the narrative of the evolution of research methodology in the social sciences and the impact that evolution has had on pastoral/spiritual care research as the author has experienced and observed it during the latter part of the 20th century and the early years of the 21st century. © The Author(s) 2015.

  19. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Xu, Q.; Zhou, X.L.; Zhang, Z.H.

    2017-01-01

    Highlights: • An in-situ method to investigate hydrogen evolution in VRFBs is developed. • The rate of hydrogen evolution during battery operation is quantified. • The gas evolution behaviors in the charge process of VRFBs are observed. - Abstract: In this work, we conceived and fabricated a three-electrode electrochemical cell and transparent vanadium redox flow battery to in-situ investigate the hydrogen evolution reaction during battery operation. Experimental results show that operating temperature has a strong influence on the HER rate. In particular, compared with V"3"+ reduction reaction, HER is more sensitive to temperature variation. It is also found that, contrary to the conventional wisdom that side reactions occur at the late stage of the charge process, H_2 evolves at a relatively low SOC. About 0.26 and 1.94 mL H_2 were collected at an early (SOC lower than 20%) and end of the charge process, respectively, suggesting that attention to the hydrogen formation at the negative electrode in the early charge process should also be paid to during long-term battery operations. Moreover, the produced hydrogen gas at the negative side prefers to form macroscopically observable bubbles onto the electrode surface, covering the active sites for vanadium redox reactions, while oxygen evolution (including CO_2 production) at the positive side corrodes electrode surface and introduces certain oxygen-containing functional groups.

  20. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes

    Science.gov (United States)

    Zhang, Kan; Zhu, Xiangkun; Wood, Rachel A.; Shi, Yao; Gao, Zhaofu; Poulton, Simon W.

    2018-05-01

    The Mesoproterozoic era (1,600-1,000 million years ago (Ma)) has long been considered a period of relative environmental stasis, with persistently low levels of atmospheric oxygen. There remains much uncertainty, however, over the evolution of ocean chemistry during this period, which may have been of profound significance for the early evolution of eukaryotic life. Here we present rare earth element, iron-speciation and inorganic carbon isotope data to investigate the redox evolution of the 1,600-1,550 Ma Yanliao Basin, North China Craton. These data confirm that the ocean at the start of the Mesoproterozoic was dominantly anoxic and ferruginous. Significantly, however, we find evidence for a progressive oxygenation event starting at 1,570 Ma, immediately prior to the occurrence of complex multicellular eukaryotes in shelf areas of the Yanliao Basin. Our study thus demonstrates that oxygenation of the Mesoproterozoic environment was far more dynamic and intense than previously envisaged, and establishes an important link between rising oxygen and the emerging record of diverse, multicellular eukaryotic life in the early Mesoproterozoic.

  1. Conditions on Early Mars Might Have Fostered Rapid and Early Development of Life

    Science.gov (United States)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Wentworth, Susan J.

    2007-01-01

    The exploration of Mars during the past decades has begun to unveil the history of the planet. The combinations of remote sensing, in situ geochemical compositional measurements and photographic observations from both above and on the surface have shown Mars to have a dynamic and active geologic evolution. Mars geologic evolution clearly had conditions that were suitable for supporting life. For a planet to be able to be habitable, it must have water, carbon sources, energy sources and a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water-carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001 well-dated at approx.3.9 Gy., (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, early active volcanism continuing throughout Martian history, and, and continuing impact processes, (iii) Carbon and water from possibly extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) some crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust. The question arises: "Why would life not evolve from these favorable conditions on early Mars in its first 600 My?" During this period, it seems likely that environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would all favor the formation of early life. Even if life developed elsewhere (on Earth, Venus, or on other solar systems) and was transported to Mars, the surface conditions were likely very hospitable for that introduced life to multiply and evolve.

  2. New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto.

    Science.gov (United States)

    Kinkar, Liina; Laurimäe, Teivi; Sharbatkhori, Mitra; Mirhendi, Hossein; Kia, Eshrat Beigom; Ponce-Gordo, Francisco; Andresiuk, Vanessa; Simsek, Sami; Lavikainen, Antti; Irshadullah, Malik; Umhang, Gérald; Oudni-M'rad, Myriam; Acosta-Jamett, Gerardo; Rehbein, Steffen; Saarma, Urmas

    2017-08-01

    Cystic echinococcosis, a zoonotic disease caused by Echinococcus granulosus sensu lato (s. l.), is a significant global public health concern. Echinococcus granulosus s. l. is currently divided into numerous genotypes (G1-G8 and G10) of which G1-G3 are the most frequently implicated genotypes in human infections. Although it has been suggested that G1-G3 could be regarded as a distinct species E. granulosus sensu stricto (s. s.), the evidence to support this is inconclusive. Most importantly, data from nuclear DNA that provide means to investigate the exchange of genetic material between G1-G3 is lacking as none of the published nuclear DNA studies have explicitly included G2 or G3. Moreover, the commonly used relatively short mtDNA sequences, including the complete cox1 gene, have not allowed unequivocal differentiation of genotypes G1-G3. Therefore, significantly longer mtDNA sequences are required to distinguish these genotypes with confidence. The main aim of this study was to evaluate the phylogenetic relations and taxonomy of genotypes G1-G3 using sequences of nearly complete mitogenomes (11,443bp) and three nuclear loci (2984bp). A total of 23 G1-G3 samples were analysed, originating from 5 intermediate host species in 10 countries. The mtDNA data demonstrate that genotypes G1 and G3 are distinct mitochondrial genotypes (separated by 37 mutations), whereas G2 is not a separate genotype or even a monophyletic cluster, but belongs to G3. Nuclear data revealed no genetic separation of G1 and G3, suggesting that these genotypes form a single species due to ongoing gene flow. We conclude that: (a) in the taxonomic sense, genotypes G1 and G3 can be treated as a single species E. granulosus s. s.; (b) genotypes G1 and G3 should be regarded as distinct genotypes only in the context of mitochondrial data; (c) we recommend excluding G2 from the genotype list. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The ancient Virus World and evolution of cells

    Directory of Open Access Journals (Sweden)

    Dolja Valerian V

    2006-09-01

    Full Text Available Abstract Background Recent advances in genomics of viruses and cellular life forms have greatly stimulated interest in the origins and evolution of viruses and, for the first time, offer an opportunity for a data-driven exploration of the deepest roots of viruses. Here we briefly review the current views of virus evolution and propose a new, coherent scenario that appears to be best compatible with comparative-genomic data and is naturally linked to models of cellular evolution that, from independent considerations, seem to be the most parsimonious among the existing ones. Results Several genes coding for key proteins involved in viral replication and morphogenesis as well as the major capsid protein of icosahedral virions are shared by many groups of RNA and DNA viruses but are missing in cellular life forms. On the basis of this key observation and the data on extensive genetic exchange between diverse viruses, we propose the concept of the ancient virus world. The virus world is construed as a distinct contingent of viral genes that continuously retained its identity throughout the entire history of life. Under this concept, the principal lineages of viruses and related selfish agents emerged from the primordial pool of primitive genetic elements, the ancestors of both cellular and viral genes. Thus, notwithstanding the numerous gene exchanges and acquisitions attributed to later stages of evolution, most, if not all, modern viruses and other selfish agents are inferred to descend from elements that belonged to the primordial genetic pool. In this pool, RNA viruses would evolve first, followed by retroid elements, and DNA viruses. The Virus World concept is predicated on a model of early evolution whereby emergence of substantial genetic diversity antedates the advent of full-fledged cells, allowing for extensive gene mixing at this early stage of evolution. We outline a scenario of the origin of the main classes of viruses in conjunction

  4. Quantum information and the problem of mechanisms of biological evolution.

    Science.gov (United States)

    Melkikh, Alexey V

    2014-01-01

    One of the most important conditions for replication in early evolution is the de facto elimination of the conformational degrees of freedom of the replicators, the mechanisms of which remain unclear. In addition, realistic evolutionary timescales can be established based only on partially directed evolution, further complicating this issue. A division of the various evolutionary theories into two classes has been proposed based on the presence or absence of a priori information about the evolving system. A priori information plays a key role in solving problems in evolution. Here, a model of partially directed evolution, based on the learning automata theory, which includes a priori information about the fitness space, is proposed. A potential repository of such prior information is the states of biologically important molecules. Thus, the need for extended evolutionary synthesis is discussed. Experiments to test the hypothesis of partially directed evolution are proposed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Resolution of the enigmatic phylogenetic relationship of the critically endangered Western Swamp Tortoise Pseudemydura umbrina (Pleurodira: Chelidae) using a complete mitochondrial genome.

    Science.gov (United States)

    Zhang, Xiuwen; Unmack, Peter J; Kuchling, Gerald; Wang, Yinan; Georges, Arthur

    2017-10-01

    Pseudemydura umbrina is one of the most endangered turtle species in the world, and the imperative for its conservation is its distinctive morphology and relict status among the Chelidae. We use Illumina sequencing to obtain the complete mitogenome for resolving its uncertain phylogenetic position. A novel nuclear paralogue confounded the assembly, and resolution of the authentic mitogenome required further Sanger sequencing. The P. umbrina mitogenome is 16,414bp comprising 37 genes organized in a conserved pattern for other vertebrates. The nuclear paralogue is 547bp, 97.8% identity to the corresponding mitochondrial sequence. Particular features of the mitogenome include an nd3 174+1A frameshift, loss of DHC loop in tRNA Ser (AGN), and a light-strand replication initiation site in Wancy region that extends into an adjacent tRNA gene. Phylogenetic analysis showed that P. umbrina is the monotypic sister lineage to the remaining Australasian Chelidae, a lineage probably dating back to the Cretaceous. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S.; Sasselov, D. [Harvard Smithsonian Center for Astrophysics, 60 Garden st., 02138 MA Cambridge (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Kaltenegger, L., E-mail: srugheimer@cfa.harvard.edu [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States)

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  7. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    International Nuclear Information System (INIS)

    Rugheimer, S.; Sasselov, D.; Segura, A.; Kaltenegger, L.

    2015-01-01

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments

  8. Probing Mechanism of Evolution of Simple Genomes

    Science.gov (United States)

    Pohorille, Andrew; Ditzler, Mark; Popovic, Milena; Wei, Chenyu

    2016-01-01

    Our overarching goal is to discover how the structure of the genotypic space of RNA polymers affects their ability to evolve. Specifically, we will address several fundamental questions that, so far, have remained largely unanswered. Was the genotypic space explored globally or only locally? Was the outcome of early evolution predictable or was it, instead, govern by chance? What was the role of neutral mutations in the evolution of increasing complex systems? As the first step, we study the problem in the example of RNA ligases. We obtain the complete, empirical fitness landscapes for short ligases and examine possible evolutionary paths for RNA molecules that are sufficiently long to preclude exhaustive search of the genotypic space.

  9. Evolution of nonconformal Landau-Levich-Bretherton films of partially wetting liquids

    Science.gov (United States)

    Kreutzer, Michiel T.; Shah, Maulik S.; Parthiban, Pravien; Khan, Saif A.

    2018-01-01

    We experimentally and theoretically describe the dynamics of evolution and eventual rupture of Landau-Levich-Bretherton films of partially wetting liquids in microchannels in terms of nonplanar interface curvatures and disjoining pressure. While both the early-stage dynamics of film evolution and near-collapse dynamics of rupture are understood, we match these regimes and find theoretically that the dimensionless rupture time, Tr, scales with κ-10 /7. Here, κ is the dimensionless curvature given by the ratio of the Laplace-pressure discontinuity that initiates film thinning to the initial strength of the disjoining pressure that drives the rupture. We experimentally verify the rupture times and highlight the crucial consequences of early film rupture in digital microfluidic contexts: pressure drop in segmented flow and isolation of droplets from the walls.

  10. The complete mitochondrial genome sequence of Diaphorina citri (Hemiptera: Psyllidae)

    Science.gov (United States)

    The first complete mitochondrial genome (mitogenome) sequence of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), from Guangzhou, China is presented. The circular mitogenome is 14,996 bp in length with an A+T content of 74.5%, and contains 13 protein-coding genes (PCGs), 22 tRNA genes ...

  11. Characterization of the Complete Mitochondrial Genome Sequence of the Globose Head Whiptail Cetonurus globiceps (Gadiformes: Macrouridae and Its Phylogenetic Analysis.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Shi

    Full Text Available The particular environmental characteristics of deep water such as its immense scale and high pressure systems, presents technological problems that have prevented research to broaden our knowledge of deep-sea fish. Here, we described the mitogenome sequence of a deep-sea fish, Cetonurus globiceps. The genome is 17,137 bp in length, with a standard set of 22 transfer RNA genes (tRNAs, two ribosomal RNA genes, 13 protein-coding genes, and two typical non-coding control regions. Additionally, a 70 bp tRNA(Thr-tRNA(Pro intergenic spacer is present. The C. globiceps mitogenome exhibited strand-specific asymmetry in nucleotide composition. The AT-skew and GC-skew values in the whole genome of C. globiceps were 0 and -0.2877, respectively, revealing that the H-strand had equal amounts of A and T and that the overall nucleotide composition was C skewed. All of the tRNA genes could be folded into cloverleaf secondary structures, while the secondary structure of tRNA(Ser(AGY lacked a discernible dihydrouridine stem. By comparing this genome sequence with the recognition sites in teleost species, several conserved sequence blocks were identified in the control region. However, the GTGGG-box, the typical characteristic of conserved sequence block E (CSB-E, was absent. Notably, tandem repeats were identified in the 3' portion of the control region. No similar repetitive motifs are present in most of other gadiform species. Phylogenetic analysis based on 12 protein coding genes provided strong support that C. globiceps was the most derived in the clade. Some relationships however, are in contrast with those presented in previous studies. This study enriches our knowledge of mitogenomes of the genus Cetonurus and provides valuable information on the evolution of Macrouridae mtDNA and deep-sea fish.

  12. STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO z = 2.5 IN CANDELS

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Holden, Bradford; Faber, S. M.; Mozena, Mark; Guo Yicheng; Kocevski, Dale D. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); McGrath, Elizabeth J. [Department of Physics and Astronomy, Colby College, Waterville, ME 04901 (United States); Wuyts, Stijn [Max-Planck-Institut fuer Extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching (Germany); Haeussler, Boris [Schools of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Barden, Marco [Institute of Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Huang, Kuang-Han [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Galametz, Audrey [INAF-Osservatorio di Roma, Via Frascati 33, I-00040 Monteporzio (Italy); Dekel, Avishai [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Hathi, Nimish P., E-mail: chang@mpia.de [Observatories of the Carnegie Institution for Science, Pasadena, CA (United States); and others

    2013-08-20

    Projected axis ratio measurements of 880 early-type galaxies at redshifts 1 < z < 2.5 selected from CANDELS are used to reconstruct and model their intrinsic shapes. The sample is selected on the basis of multiple rest-frame colors to reflect low star-formation activity. We demonstrate that these galaxies as an ensemble are dust-poor and transparent and therefore likely have smooth light profiles, similar to visually classified early-type galaxies. Similar to their present-day counterparts, the z > 1 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by the random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a {approx} 0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z > 1 early-type galaxies. We find that the proportion of oblate versus triaxial galaxies depends both on the galaxies' stellar mass, and-at a given mass-on redshift. For present-day and z < 1 early-type galaxies the oblate fraction strongly depends on galaxy mass. At z > 1, this trend is much weaker over the mass range explored here (10{sup 10} < M{sub *}/M{sub Sun} < 10{sup 11}), because the oblate fraction among massive (M{sub *} {approx} 10{sup 11} M{sub Sun }) was much higher in the past: 0.59 {+-} 0.10 at z > 1, compared to 0.20 {+-} 0.02 at z {approx} 0.1. When combined with previous findings that the number density and sizes of early-type galaxies substantially increase over the same redshift range, this can be explained by the gradual emergence of merger-produced elliptical galaxies, at the expense of the destruction of pre-existing disks that were common among their high-redshift progenitors. In contrast, the oblate fraction among low-mass early-type galaxies (log (M{sub *}/M{sub Sun }) < 10

  13. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event

    Directory of Open Access Journals (Sweden)

    Gheysen Godelieve

    2008-11-01

    Full Text Available Abstract Background Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5 have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN. The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Results Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea; all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida. Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. Conclusion We conclude that the ancestral

  14. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event.

    Science.gov (United States)

    Kyndt, Tina; Haegeman, Annelies; Gheysen, Godelieve

    2008-11-03

    Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5) have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN). The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria) or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea); all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida). Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. We conclude that the ancestral PPN GHF5 endoglucanase gene most probably consisted of

  15. Fossils, feet and the evolution of human bipedal locomotion.

    Science.gov (United States)

    Harcourt-Smith, W E H; Aiello, L C

    2004-05-01

    We review the evolution of human bipedal locomotion with a particular emphasis on the evolution of the foot. We begin in the early twentieth century and focus particularly on hypotheses of an ape-like ancestor for humans and human bipedal locomotion put forward by a succession of Gregory, Keith, Morton and Schultz. We give consideration to Morton's (1935) synthesis of foot evolution, in which he argues that the foot of the common ancestor of modern humans and the African apes would be intermediate between the foot of Pan and Hylobates whereas the foot of a hypothetical early hominin would be intermediate between that of a gorilla and a modern human. From this base rooted in comparative anatomy of living primates we trace changing ideas about the evolution of human bipedalism as increasing amounts of postcranial fossil material were discovered. Attention is given to the work of John Napier and John Robinson who were pioneers in the interpretation of Plio-Pleistocene hominin skeletons in the 1960s. This is the period when the wealth of evidence from the southern African australopithecine sites was beginning to be appreciated and Olduvai Gorge was revealing its first evidence for Homo habilis. In more recent years, the discovery of the Laetoli footprint trail, the AL 288-1 (A. afarensis) skeleton, the wealth of postcranial material from Koobi Fora, the Nariokotome Homo ergaster skeleton, Little Foot (Stw 573) from Sterkfontein in South Africa, and more recently tantalizing material assigned to the new and very early taxa Orrorin tugenensis, Ardipithecus ramidus and Sahelanthropus tchadensis has fuelled debate and speculation. The varying interpretations based on this material, together with changing theoretical insights and analytical approaches, is discussed and assessed in the context of new three-dimensional morphometric analyses of australopithecine and Homo foot bones, suggesting that there may have been greater diversity in human bipedalism in the earlier phases

  16. Selection towards different adaptive optima drove the early diversification of locomotor phenotypes in the radiation of Neotropical geophagine cichlids.

    Science.gov (United States)

    Astudillo-Clavijo, Viviana; Arbour, Jessica H; López-Fernández, Hernán

    2015-05-01

    Simpson envisaged a conceptual model of adaptive radiation in which lineages diversify into "adaptive zones" within a macroevolutionary adaptive landscape. However, only a handful of studies have empirically investigated this adaptive landscape and its consequences for our interpretation of the underlying mechanisms of phenotypic evolution. In fish radiations the evolution of locomotor phenotypes may represent an important dimension of ecomorphological diversification given the implications of locomotion for feeding and habitat use. Neotropical geophagine cichlids represent a newly identified adaptive radiation and provide a useful system for studying patterns of locomotor diversification and the implications of selective constraints on phenotypic divergence in general. We use multivariate ordination, models of phenotypic evolution and posterior predictive approaches to investigate the macroevolutionary adaptive landscape and test for evidence of early divergence of locomotor phenotypes in Geophagini. The evolution of locomotor phenotypes was characterized by selection towards at least two distinct adaptive peaks and the early divergence of modern morphological disparity. One adaptive peak included the benthic and epibenthic invertivores and was characterized by fishes with deep, laterally compressed bodies that optimize precise, slow-swimming manoeuvres. The second adaptive peak resulted from a shift in adaptive optima in the species-rich ram-feeding/rheophilic Crenicichla-Teleocichla clade and was characterized by species with streamlined bodies that optimize fast starts and rapid manoeuvres. Evolutionary models and posterior predictive approaches favoured an early shift to a new adaptive peak over decreasing rates of evolution as the underlying process driving the early divergence of locomotor phenotypes. The influence of multiple adaptive peaks on the divergence of locomotor phenotypes in Geophagini is compatible with the expectations of an ecologically driven

  17. Climate and the evolution of group-living behaviour in the armadillo ...

    African Journals Online (AJOL)

    autumn period of low food availability and resulted in the evolution of heavy armour and group-living behaviour. The moderate winters and early spring temperatures allowed full capitalization on high arthropod abundance during winter–spring, ...

  18. The influence of UV radiation on protistan evolution

    Science.gov (United States)

    Rothschild, L. J.

    1999-01-01

    Ultraviolet radiation has provided an evolutionary challenge to life on Earth. Recent increases in surficial ultraviolet B fluxes have focused attention on the role of UV radiation in protistan ecology, cancer, and DNA damage. Exploiting this new wealth of data, I examine the possibility that ultraviolet radiation may have played a significant role in the evolution of the first eukaryotes, that is, protists. Protists probably arose well before the formation of a significant ozone shield, and thus were probably subjected to substantial ultraviolet A, ultraviolet B, and ultraviolet C fluxes early in their evolution. Evolution consists of the generation of heritable variations and the subsequent selection of these variants. Ultraviolet radiation has played a role both as a mutagen and as a selective agent. In its role as a mutagen, it may have been crucial in the origin of sex and as a driver of molecular evolution. As a selective agent, its influence has been broad. Discussed in this paper are the influence of ultraviolet radiation on biogeography, photosynthesis, and desiccation resistance.

  19. The complete mitochondrial genome of the big-belly seahorse, Hippocampus abdominalis (Lesson 1827).

    Science.gov (United States)

    Wang, Lei; Chen, Zaizhong; Leng, Xiangjun; Gao, Jianzhong; Chen, Xiaowu; Li, Zhongpu; Sun, Peiying; Zhao, Yuming

    2016-11-01

    In this study, the complete mitogenome sequence of the big-belly seahorse, Hippocampus abdominalis (Lesson, 1827) (Syngnathiformes: Syngnathidae), has been sequenced by the next-generation sequencing method. The assembled mitogenome is 16 521 bp in length which includes 13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs genes. The overall base composition of the seahorse is 31.1% for A, 23.6% for C, 16.0% for G, 29.3% for T and shows 87% identities similar to tiger tail seahorse, Hippocampus comes. The complete mitogenome of the big-belly seahorse provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for seahorse family.

  20. Complete mitochondrial genome of the tiger shark Galeocerdo cuvier (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Chen, Xiao; Yu, Junqi; Zhang, Saile; Ding, Wenyong; Xiang, Dan

    2014-12-01

    The tiger shark Galeocerdo cuvier is the only member of the genus Galeocerdo. The complete mitochondrial genome of G. cuvier is presented for the first time in this study. The gene composition and arrangement in the mitogenome of G. cuvier is identical to most animal mitogenome. There are 22 bp short noncoding sequences and 44 bp overlaps in the mitogenome. The overall base composition is 31.8% A, 23.9% C, 13.0% G and 31.3% T. The dihydrouridine arm of tRNA-Ser2 was replaced by a simple loop and the other tRNAs could be folded into the typical cloverleaf structure.

  1. Cesare Lombroso: an anthropologist between evolution and degeneration.

    Science.gov (United States)

    Mazzarello, Paolo

    2011-01-01

    Cesare Lombroso (1835-1909) was a prominent Italian medical doctor and intellectual in the second half of the nineteenth century. He became world famous for his theory that criminality, madness and genius were all sides of the same psychobiological condition: an expression of degeneration, a sort of regression along the phylogenetic scale, and an arrest at an early stage of evolution. Degeneration affected criminals especially, in particular the "born delinquent" whose development had stopped at an early stage, making them the most "atavistic" types of human being. Lombroso also advocated the theory that genius was closely linked with madness. A man of genius was a degenerate, an example of retrograde evolution in whom madness was a form of "biological compensation" for excessive intellectual development. To confirm this theory, in August 1897, Lombroso, while attending the Twelfth International Medical Congress in Moscow, decided to meet the great Russian writer Lev Tolstoy in order to directly verify, in him, his theory of degeneration in the genius. Lombroso's anthropological ideas fuelled a heated debate on the biological determinism of human behaviour.

  2. The evolution of radiology from paraclinical to clinical.

    Science.gov (United States)

    Boey, Hong Khim

    2009-07-01

    The perception of Radiology in the early 60s as paraclinical stems from the poor image the clinicians had for our limited resources in providing only plain fi lm studies, VIPs and the single contrast barium studies which exclude only gross lesions. The evolution to clinical status started as early as the mid 60s. My personal recollection and reflection of the histological events that took place covered here highlights the reasons for the transformation from paraclinical to clinical and these form the main theme for this paper. Radiologists' professionalism plays an infinite part in the evolution to clinical Radiology. Rapid technological advances in imaging help to propel Radiology to the forefront. But credit must go to the individual Radiologist for their personal efforts and contributions. Reflection on past events of Radiology in Singapore leading to the establishment of Clinical Radiology was presented. The future of Radiology is brought up for discussion on the role of Radiologists with reference to subspecialisation necessitated by the ever increasing advances in Medical Imaging and demand for Interventional Radiology.

  3. Magmatic record of Late Devonian arc-continent collision in the northern Qiangtang, Tibet: Implications for the early evolution of East Paleo-Tethys Ocean

    Science.gov (United States)

    Dan, Wei; Wang, Qiang; Zhang, Xiu-Zheng; Zhang, Chunfu; Tang, Gong-Jian; Wang, Jun; Ou, Quan; Hao, Lu-Lu; Qi, Yue

    2018-05-01

    Recognizing the early-developed intra-oceanic arc is important in revealing the early evolution of East Paleo-Tethys Ocean. In this study, new SIMS zircon U-Pb dating, O-Hf isotopes, and whole-rock geochemical data are reported for the newly-discovered Late Devonian-Early Carboniferous arc in Qiangtang, central Tibet. New dating results reveal that the eastern Riwanchaka volcanic rocks were formed at 370-365 Ma and were intruded by the 360 Ma Gangma Co alkali feldspar granites. The volcanic rocks consist of basalts, andesites, dacites, and rhyodacites, whose geochemistry is similar to that typical of subduction-related volcanism. The basalts and andesites were generated by partial melting of the fluid and sediment-melt metasomatized mantle, respectively. The rhyodacites and dacites were probably derived from the fractional crystallization of andesites and from partial melting of the juvenile underplated mafic rocks, respectively. The Gangma Co alkali feldspar granites are A-type granites, and were possibly derived by partial melting of juvenile underplated mafic rocks in a post-collisional setting. The 370-365 Ma volcanic arc was characterized by basalts with oceanic arc-like Ce/Yb ratios and by rhyodacites with mantle-like or slightly higher zircon δ18O values, and it was associated with the contemporary ophiolites. Thus, we propose that it is the earliest intra-oceanic arc in the East Paleo-Tethys Ocean, and was accreted to the Northern Qiangtang Terrane during 365-360 Ma.

  4. Early Pleistocene occurrence of Acheulian technology in North China

    Science.gov (United States)

    Li, Xingwen; Ao, Hong; Dekkers, Mark J.; Roberts, Andrew P.; Zhang, Peng; Lin, Shan; Huang, Weiwen; Hou, Yamei; Zhang, Weihua; An, Zhisheng

    2017-01-01

    Acheulian tools with their associated level of cognizance heralded a major threshold in the evolution of hominin technology, culture and behavior. Thus, unraveling occurrence ages of Acheulian technology across different regions worldwide constitutes a key aspect of understanding the archeology of early human evolution. Here we present a magneto-cyclochronology for the Acheulian assemblage from Sanmenxia Basin, Loess Plateau, North China. Our results place a sequence of stable normal and reversed paleomagnetic polarities within a regional lithostratigraphic context. The Acheulian assemblage is dated to be older than the Matuyama-Brunhes boundary at 0.78 Ma, and is found in strata that are probably equivalent to a weak paleosol subunit within loess layer L9 in the Chinese loess-paleosol sequence, which corresponds to marine isotope stage (MIS) 23, a relatively subdued interglacial period with age range of ∼0.89-0.92 Ma. This age of ∼0.9 Ma implies that Acheulian stone tools were unambiguously present in North China during the Early Pleistocene. It distinctly enlarges the geographic distribution of Acheulian technology and brings its occurrence in North China back into the Early Pleistocene, which is contemporaneous with its first emergence in Europe. Combined with other archeological records, the larger area over which Acheulian technology existed in East Asia during the terminal Early Pleistocene has important implications for understanding early human occupation of North China.

  5. E-modulus evolution and its relation to solids formation of pastes from commercial cements

    International Nuclear Information System (INIS)

    Maia, Lino; Azenha, Miguel; Geiker, Mette; Figueiras, Joaquim

    2012-01-01

    Models for early age E-modulus evolution of cement pastes are available in the literature, but their validation is limited. This paper provides correlated measurements of early age evolution of E-modulus and hydration of pastes from five commercial cements differing in limestone content. A recently developed methodology allowed continuous monitoring of E-modulus from the time of casting. The methodology is a variant of classic resonant frequency methods, which are based on determination of the first resonant frequency of a composite beam containing the material. The hydration kinetics — and thus the rate of formation of solids — was determined using chemical shrinkage measurements. For the cements studied similar relationships between E-modulus and chemical shrinkage were observed for comparable water-to-binder ratio. For commercial cements it is suggested to model the E-modulus evolution based on the amount of binder reacted, instead of the degree of hydration.

  6. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution

    Science.gov (United States)

    McConnell, Sean C.; Hernandez, Kyle M.; Wcisel, Dustin J.; Kettleborough, Ross N.; Stemple, Derek L.; Andrade, Jorge; de Jong, Jill L. O.

    2016-01-01

    Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218

  7. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.

    Science.gov (United States)

    Orlando, Ludovic; Ginolhac, Aurélien; Zhang, Guojie; Froese, Duane; Albrechtsen, Anders; Stiller, Mathias; Schubert, Mikkel; Cappellini, Enrico; Petersen, Bent; Moltke, Ida; Johnson, Philip L F; Fumagalli, Matteo; Vilstrup, Julia T; Raghavan, Maanasa; Korneliussen, Thorfinn; Malaspinas, Anna-Sapfo; Vogt, Josef; Szklarczyk, Damian; Kelstrup, Christian D; Vinther, Jakob; Dolocan, Andrei; Stenderup, Jesper; Velazquez, Amhed M V; Cahill, James; Rasmussen, Morten; Wang, Xiaoli; Min, Jiumeng; Zazula, Grant D; Seguin-Orlando, Andaine; Mortensen, Cecilie; Magnussen, Kim; Thompson, John F; Weinstock, Jacobo; Gregersen, Kristian; Røed, Knut H; Eisenmann, Véra; Rubin, Carl J; Miller, Donald C; Antczak, Douglas F; Bertelsen, Mads F; Brunak, Søren; Al-Rasheid, Khaled A S; Ryder, Oliver; Andersson, Leif; Mundy, John; Krogh, Anders; Gilbert, M Thomas P; Kjær, Kurt; Sicheritz-Ponten, Thomas; Jensen, Lars Juhl; Olsen, Jesper V; Hofreiter, Michael; Nielsen, Rasmus; Shapiro, Beth; Wang, Jun; Willerslev, Eske

    2013-07-04

    The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.

  8. The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.

    Science.gov (United States)

    Brusatte, Stephen L; Benton, Michael J; Ruta, Marcello; Lloyd, Graeme T

    2008-12-23

    The evolutionary radiation of dinosaurs in the Late Triassic and Early Jurassic was a pivotal event in the Earth's history but is poorly understood, as previous studies have focused on vague driving mechanisms and have not untangled different macroevolutionary components (origination, diversity, abundance and disparity). We calculate the morphological disparity (morphospace occupation) of dinosaurs throughout the Late Triassic and Early Jurassic and present new measures of taxonomic diversity. Crurotarsan archosaurs, the primary dinosaur 'competitors', were significantly more disparate than dinosaurs throughout the Triassic, but underwent a devastating extinction at the Triassic-Jurassic boundary. However, dinosaur disparity showed only a slight non-significant increase after this event, arguing against the hypothesis of ecological release-driven morphospace expansion in the Early Jurassic. Instead, the main jump in dinosaur disparity occurred between the Carnian and Norian stages of the Triassic. Conversely, dinosaur diversity shows a steady increase over this time, and measures of diversification and faunal abundance indicate that the Early Jurassic was a key episode in dinosaur evolution. Thus, different aspects of the dinosaur radiation (diversity, disparity and abundance) were decoupled, and the overall macroevolutionary pattern of the first 50Myr of dinosaur evolution is more complex than often considered.

  9. Evolution of the Moon: the 1974 model

    International Nuclear Information System (INIS)

    Schmitt, H.H.

    1975-01-01

    The interpretive evolution of the Moon can be divided now into seven major stages beginning sometime near the end of the formation of the solar system. These stages and their approximate durations are as follows: 1. The Beginning - 4.6 billion years ago. 2. The Melted Shell-4.6-4.4 billion years ago. 3. The Cratered Highlands -4.4-4.1 billion years ago. 4. The Large Basins-4.1-3.9 billion years ago. 5. The Light-Coloured Plains-3.9-3.8 billion years ago 6. The Basaltic Maria -3.8-3.0 billion years ago. 7. The Quiet Crust-3.0 billion years ago to the present. The Apollo and Luna explorations that permit the study of these stages of evolution have each contributed in progressive and significant ways. Through them the early differentiation of the Earth, the nature of the Earth's protocrust, the influence of the formation of large impact basins in that crust, the effects of early partial melting of the protomantle and possibly the earliest stages of the breakup of the protocrust into continents and ocean basins can now be looked at with new insight. (Auth.)

  10. Phylogenetic ctDNA analysis depicts early stage lung cancer evolution

    DEFF Research Database (Denmark)

    Abbosh, Christopher; Birkbak, Nicolai Juul; Wilson, Gareth A.

    2017-01-01

    The early detection of relapse following primary surgery for non-small cell lung cancer and the characterization of emerging subclones seeding metastatic sites might offer new therapeutic approaches to limit tumor recurrence. The potential to non-invasively track tumor evolutionary dynamics in ct...

  11. Early light curves for Type Ia supernova explosion models

    Science.gov (United States)

    Noebauer, U. M.; Kromer, M.; Taubenberger, S.; Baklanov, P.; Blinnikov, S.; Sorokina, E.; Hillebrandt, W.

    2017-12-01

    Upcoming high-cadence transient survey programmes will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synthetic light curves, calculated with the radiation hydrodynamical approach STELLA for a number of different explosion models, specifically focusing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.

  12. STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO z = 2.5 IN CANDELS

    International Nuclear Information System (INIS)

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter; Holden, Bradford; Faber, S. M.; Mozena, Mark; Guo Yicheng; Kocevski, Dale D.; Bell, Eric F.; McGrath, Elizabeth J.; Wuyts, Stijn; Häussler, Boris; Barden, Marco; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Huang, Kuang-Han; Galametz, Audrey; Dekel, Avishai; Hathi, Nimish P.

    2013-01-01

    Projected axis ratio measurements of 880 early-type galaxies at redshifts 1 1 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by the random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a ∼ 0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z > 1 early-type galaxies. We find that the proportion of oblate versus triaxial galaxies depends both on the galaxies' stellar mass, and—at a given mass—on redshift. For present-day and z 1, this trend is much weaker over the mass range explored here (10 10 * /M ☉ 11 ), because the oblate fraction among massive (M * ∼ 10 11 M ☉ ) was much higher in the past: 0.59 ± 0.10 at z > 1, compared to 0.20 ± 0.02 at z ∼ 0.1. When combined with previous findings that the number density and sizes of early-type galaxies substantially increase over the same redshift range, this can be explained by the gradual emergence of merger-produced elliptical galaxies, at the expense of the destruction of pre-existing disks that were common among their high-redshift progenitors. In contrast, the oblate fraction among low-mass early-type galaxies (log (M * /M ☉ ) 1 to 0.72 ± 0.06 at z = 0. We speculate that this lower incidence of disks at early cosmic times can be attributed to two factors: low-mass, star-forming progenitors at z > 1 were not settled into stable disks to the same degree as at later cosmic times, and the stripping of gas from star-forming disk galaxies in dense environments is an increasingly important process at lower redshifts

  13. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    Science.gov (United States)

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-07-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials.

  14. The Complete Maternally and Paternally Inherited Mitochondrial Genomes of a Freshwater Mussel Potamilus alatus (Bivalvia: Unionidae.

    Directory of Open Access Journals (Sweden)

    Hai B Wen

    Full Text Available Doubly uniparental inheritance (DUI of mitochondrial DNA, found only in some bivalve families and characterized by the existence of gender-associated mtDNA lineages that are inherited through males (M-type or females (F-type, is one of the very few exceptions to the general rule of strict maternal mtDNA inheritance in animals. M-type sequences are often undetected and hence still underrepresented in the GenBank, which hinders the progress of the understanding of the DUI phenomenon. We have sequenced and analyzed the complete M and F mitogenomes of a freshwater mussel, Potamilus alatus. The M-type was 493 bp longer (M = 16 560, F = 16 067 bp. Gene contents, order and the distribution of genes between L and H strands were typical for unionid mussels. Candidates for the two ORFan genes (forf and morf were found in respective mitogenomes. Both mitogenomes had a very similar A+T bias: F = 61% and M = 62.2%. The M mitogenome-specific cox2 extension (144 bp is much shorter than in other sequenced unionid mitogenomes (531-576 bp, which might be characteristic for the Potamilus genus. The overall topology of the phylogenetic tree is in very good agreement with the currently accepted phylogenetic relationships within the Unionidae: both studied sequences were placed within the Ambleminae subfamily clusters in the corresponding M and F clades.

  15. Population diversity of Diaphorina citri (Hemiptera: Liviidae) in China based on whole mitochondrial genome sequences.

    Science.gov (United States)

    Wu, Fengnian; Jiang, Hongyan; Beattie, G Andrew C; Holford, Paul; Chen, Jianchi; Wallis, Christopher M; Zheng, Zheng; Deng, Xiaoling; Cen, Yijing

    2018-04-24

    Diaphorina citri (Asian citrus psyllid; ACP) transmits 'Candidatus Liberibacter asiaticus' associated with citrus Huanglongbing (HLB). ACP has been reported in 11 provinces/regions in China, yet its population diversity remains unclear. In this study, we evaluated ACP population diversity in China using representative whole mitochondrial genome (mitogenome) sequences. Additional mitogenome sequences outside China were also acquired and evaluated. The sizes of the 27 ACP mitogenome sequences ranged from 14 986 to 15 030 bp. Along with three previously published mitogenome sequences, the 30 sequences formed three major mitochondrial groups (MGs): MG1, present in southwestern China and occurring at elevations above 1000 m; MG2, present in southeastern China and Southeast Asia (Cambodia, Indonesia, Malaysia, and Vietnam) and occurring at elevations below 180 m; and MG3, present in the USA and Pakistan. Single nucleotide polymorphisms in five genes (cox2, atp8, nad3, nad1 and rrnL) contributed mostly in the ACP diversity. Among these genes, rrnL had the most variation. Mitogenome sequences analyses revealed two major phylogenetic groups of ACP present in China as well as a possible unique group present currently in Pakistan and the USA. The information could have significant implications for current ACP control and HLB management. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  16. A Cretaceous eutriconodont and integument evolution in early mammals.

    Science.gov (United States)

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  17. Evolution of attention mechanisms for early visual processing

    Science.gov (United States)

    Müller, Thomas; Knoll, Alois

    2011-03-01

    Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism

  18. Dynamical evolution of star-forming regions - II. Basic kinematics

    Science.gov (United States)

    Parker, Richard J.; Wright, Nicholas J.

    2016-04-01

    We follow the dynamical evolution of young star-forming regions with a wide range of initial conditions and examine how the radial velocity dispersion, σ, evolves over time. We compare this velocity dispersion to the theoretically expected value for the velocity dispersion if a region were in virial equilibrium, σvir and thus assess the virial state (σ/σvir) of these systems. We find that in regions that are initially subvirial, or in global virial equilibrium but subvirial on local scales, the system relaxes to virial equilibrium within several million years, or roughly 25-50 crossing times, according to the measured virial ratio. However, the measured velocity dispersion, σ, appears to be a bad diagnostic of the current virial state of these systems as it suggests that they become supervirial when compared to the velocity dispersion estimated from the virial mass, σvir. We suggest that this discrepancy is caused by the fact that the regions are never fully relaxed, and that the early non-equilibrium evolution is imprinted in the one-dimensional velocity dispersion at these early epochs. If measured early enough (interquartile range (IQR) dispersion, with measures of spatial structure, places stronger constraints on the dynamical history of a region than using the velocity dispersion in isolation.

  19. Ludwig von Bertalanffy's organismic view on the theory of evolution.

    Science.gov (United States)

    Drack, Manfred

    2015-03-01

    Ludwig von Bertalanffy was a key figure in the advancement of theoretical biology. His early considerations already led him to recognize the necessity of considering the organism as a system, as an organization of parts and processes. He termed the resulting research program organismic biology, which he extended to all basic questions of biology and almost all areas of biology, hence also to the theory of evolution. This article begins by outlining the rather unknown (because often written in German) research of Bertalanffy in the field of theoretical biology. The basics of the organismic approach are then described. This is followed by Bertalanffy's considerations on the theory of evolution, in which he used methods from theoretical biology and then introduced his own, organismic, view on evolution, leading to the demand for finding laws of evolution. Finally, his view on the concept of homology is presented. © 2015 Wiley Periodicals, Inc.

  20. Early time evolution of high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [Cyclotron Institute and Department of Physics, Texas A and M University, College Station, TX 77843 (United States); RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2007-08-15

    We solve the Yang-Mills equations in the framework of the McLerran-Venugopalan model for small times {tau} after a collision of two nuclei. An analytic expansion around {tau} = 0 leads to explicit results for the field strength and the energy-momentum tensor of the gluon field at early times. We then discuss constraints for the energy density, pressure and flow of the plasma phase that emerges after thermalization of the gluon field.

  1. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution

    KAUST Repository

    Yasumura, Yuki; Pierik, Ronald; Fricker, Mark D.; Voesenek, Laurentius A. C. J.; Harberd, Nicholas P.

    2012-01-01

    in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a

  2. Structure and Evolution of the Foreign Exchange Networks

    Science.gov (United States)

    Kwapień, J.; Gworek, S.; Drożdż, S.

    2009-01-01

    We investigate topology and temporal evolution of the foreign currency exchange market viewed from a weighted network perspective. Based on exchange rates for a set of 46 currencies (including precious metals), we construct different representations of the FX network depending on a choice of the base currency. Our results show that the network structure is not stable in time, but there are main clusters of currencies, which persist for a long period of time despite the fact that their size and content are variable. We find a long-term trend in the network's evolution which affects the USD and EUR nodes. In all the network representations, the USD node gradually loses its centrality, while, on contrary, the EUR node has become slightly more central than it used to be in its early years. Despite this directional trend, the overall evolution of the network is noisy.

  3. Early evolution of efficient enzymes and genome organization

    Directory of Open Access Journals (Sweden)

    Szilágyi András

    2012-10-01

    Full Text Available Abstract Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight.

  4. Evolution of nef variants in gut associated lymphoid tissue of rhesus macaques during primary simian immunodeficiency virus infection

    International Nuclear Information System (INIS)

    Ndolo, Thomas; Syvanen, Michael; Ellison, Thomas; Dandekar, Satya

    2005-01-01

    We utilized the simian immunodeficiency virus model of AIDS to examine evolution of nef gene in gut-associated lymphoid tissue (GALT) during primary and early asymptomatic stages of infection. Macaques were infected with a cloned virus, SIVmac239/nef-stop harboring a premature stop codon in the nef gene. Restoration of the nef open reading frame occurred in GALT early at 3 days post-infection. Analysis of nef sequences by phylogenetic tools showed that evolution of nef was neutral thereafter, as evidenced by the ratio of synonymous to nonsynonymous substitutions, a star pattern in unrooted trees and distribution of amino acid replacements fitting a simple Poisson process. Two regions encoding for a nuclear localization signal and a CTL epitope were conserved. Thus, GALT was a site for strong positive selection of functional nef during initial stages of infection. However, evolution of the nef gene thereafter was neutral during early asymptomatic stage of infection

  5. Supporting Product Line Evolution with Framed Aspects

    DEFF Research Database (Denmark)

    Loughran, Neil; Rashid, Awais; Zhang, Weishan

    2004-01-01

    , but there will eventually come a time when a certain feature or scenario appears which could not have been foreseen in the early stages of development. We argue that frames and aspects when used in isolation cannot overcome these weaknesses effectively. However, they can be addressed by using the respective strengths......This paper discusses how evolution in software product lines can be supported using framed aspects: a combination of aspect-oriented programming and frame technology. Product line architectures and assets are subject to maintenance and evolution throughout their lifetime due to the emergence of new...... of both technologies in combination. The amalgamation of framing and aspect-oriented techniques can help in the integration of new features and thus reduce the risk of architectural erosion....

  6. The Toy model: Understanding the early universe

    Science.gov (United States)

    Fisher, Peter H.; Price, Richard H.

    2018-04-01

    In many branches of science, progress is being made by taking advantage of insights from other branches of science. Cosmology, the structure and evolution of the universe, is certainly an area that is currently beset by problems in understanding. We show here that the scientific insights from the studies of early childhood development, in particular, those of Piaget, give a new way of looking at the early universe. This new approach can not only be invaluable in undergraduate teaching, but can even be the basis of semi-quantitative predictions.

  7. Archeology and evolution of QCD

    CERN Document Server

    De Rújula, A.

    2017-01-01

    These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki --an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which --to my judgement-- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.

  8. Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation.

    Science.gov (United States)

    Burbrink, Frank T; Chen, Xin; Myers, Edward A; Brandley, Matthew C; Pyron, R Alexander

    2012-12-07

    Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification.

  9. Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae).

    Science.gov (United States)

    Botero-Castro, Fidel; Tilak, Marie-ka; Justy, Fabienne; Catzeflis, François; Delsuc, Frédéric; Douzery, Emmanuel J P

    2013-12-01

    Leaf-nosed bats (Phyllostomidae) are one of the most studied groups within the order Chiroptera mainly because of their outstanding species richness and diversity in morphological and ecological traits. Rapid diversification and multiple homoplasies have made the phylogeny of the family difficult to solve using morphological characters. Molecular data have contributed to shed light on the evolutionary history of phyllostomid bats, yet several relationships remain unresolved at the intra-familial level. Complete mitochondrial genomes have proven useful to deal with this kind of situation in other groups of mammals by providing access to a large number of molecular characters. At present, there are only two mitogenomes available for phyllostomid bats hinting at the need for further exploration of the mitogenomic approach in this group. We used both standard Sanger sequencing of PCR products and next-generation sequencing (NGS) of shotgun genomic DNA to obtain new complete mitochondrial genomes from 10 species of phyllostomid bats, including representatives of major subfamilies, plus one outgroup belonging to the closely-related mormoopids. We then evaluated the contribution of mitogenomics to the resolution of the phylogeny of leaf-nosed bats and compared the results to those based on mitochondrial genes and the RAG2 and VWF nuclear makers. Our results demonstrate the advantages of the Illumina NGS approach to efficiently obtain mitogenomes of phyllostomid bats. The phylogenetic signal provided by entire mitogenomes is highly comparable to the one of a concatenation of individual mitochondrial and nuclear markers, and allows increasing both resolution and statistical support for several clades. This enhanced phylogenetic signal is the result of combining markers with heterogeneous evolutionary rates representing a large number of nucleotide sites. Our results illustrate the potential of the NGS mitogenomic approach for resolving the evolutionary history of

  10. Development and evolution of the unique cetacean dentition

    Directory of Open Access Journals (Sweden)

    Brooke A. Armfield

    2013-02-01

    Full Text Available The evolutionary success of mammals is rooted in their high metabolic rate. A high metabolic rate is sustainable thanks to efficient food processing and that in turn is facilitated by precise occlusion of the teeth and the acquisition of rhythmic mastication. These major evolutionary innovations characterize most members of the Class Mammalia. Cetaceans are one of the few groups of mammals in which precise occlusion has been secondarily lost. Most toothed whales have an increased number of simple crowned teeth that are similar along the tooth row. Evolution toward these specializations began immediately after the time cetaceans transitioned from terrestrial-to-marine environments. The fossil record documents the critical aspects of occlusal evolution of cetaceans, and allows us to pinpoint the evolutionary timing of the macroevolutionary events leading to their unusual dental morphology among mammals. The developmental controls of tooth differentiation and tooth number have been studied in a few mammalian clades, but nothing is known about how these controls differ between cetaceans and mammals that retain functional occlusion. Here we show that pigs, a cetacean relative with regionalized tooth morphology and complex tooth crowns, retain the typical mammalian gene expression patterns that control early tooth differentiation, expressing Bmp4 in the rostral (mesial, anterior domain of the jaw, and Fgf8 caudally (distal, posterior. By contrast, dolphins have lost these regional differences in dental morphology and the Bmp4 domain is extended into the caudal region of the developing jaw. We hypothesize that the functional constraints underlying mammalian occlusion have been released in cetaceans, facilitating changes in the genetic control of early dental development. Such major developmental changes drive morphological evolution and are correlated with major shifts in diet and food processing during cetacean evolution.

  11. Spontaneous radiopathological evolution and after medical treatment in two models of localized irradiation

    International Nuclear Information System (INIS)

    Lefaix, J.L.; Daburon, F.; Tricaud, Y.

    1992-01-01

    Pathophysiological evolution of a 192 Ir γ-rays radio-induced muscular lesion was studied in experimental models developed in pigs and rabbits to simulate accidents which occurred among humans. Cutaneous and muscular radionecrosts started from early epithelial, microvascular and vascular lesions and late muscular and connective tissue lesions. Our therapeutic studies in pigs showed the interest of an early surgical treatment a minima. In rabbits, the association of non-steroidal anti-inflammatory (flurbiprofene) and haemorrheological agent (trimetazidine) among 10 other medical treatments, given for 8 weeks after an irradiation of a 80 Gy dose at the skin surface, involved a dose reduction factor of 2, with regards to the evolution of the skin injuries and the deep muscular fibronecrotic process. Tabs

  12. Complete mitochondrial genome of the stonefly Cryptoperla stilifera Sivec (Plecoptera: Peltoperlidae) and the phylogeny of Polyneopteran insects.

    Science.gov (United States)

    Wu, Hai-Yan; Ji, Xiao-Yu; Yu, Wei-Wei; Du, Yu-Zhou

    2014-03-10

    We present the complete mitogenome of a stonefly, Cryptoperla stilifera Sivec (Plecoptera; Peltoperlidae). The mitogenome was a circular molecule consisting of 15,633 nucleotides, 37 genes and a A+T-rich region. C. stilifera mitogenome was similar to Pteronarcys princeps mitogenome (Plecoptera; Pteronarcyidae). All transfer RNA genes (tRNAs) had typical cloverleaf secondary structures except for trnSer (AGN), where the stem-loop structure of the dihydrouridine (DHU) arm was missing. The A+T-rich region of C. stilifera had two stem-loops and each had two interlink. Three conserved sequence blocks (CSBs) were present in the A+T-rich regions of C. stilifera, Peltoperla tarteri and Peltoperla arcuata. Moreover, many polynucleotide stretches (Poly N, N=A, T and C) in the A+T-rich region of C. stilifera Phylogenetic relationships of Polyneopteran species were constructed based on the nucleotide sequences of 13 protein coding genes (PCGs). Both maximum likelihood (ML) and Bayesian inference (BI) analyses supported Grylloblattodea as the sister group to Plecoptera+Dermaptera and Embiidina and Phasmatodea as sister groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Comparative analyses of the complete mitochondrial genomes of Dosinia clams and their phylogenetic position within Veneridae.

    Science.gov (United States)

    Lv, Changda; Li, Qi; Kong, Lingfeng

    2018-01-01

    Mitochondrial genomes have proved to be a powerful tool in resolving phylogenetic relationship. In order to understand the mitogenome characteristics and phylogenetic position of the genus Dosinia, we sequenced the complete mitochondrial genomes of Dosinia altior and Dosinia troscheli (Bivalvia: Veneridae), compared them with that of Dosinia japonica and established a phylogenetic tree for Veneridae. The mitogenomes of D. altior (17,536 bp) and D. troscheli (17,229 bp) are the two smallest in Veneridae, which include 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and non-coding regions. The mitogenomes of the Dosinia species are similar in size, gene content, AT content, AT- and GC- skews, and gene arrangement. The phylogenetic relationships of family Veneridae were established based on 12 concatenated protein-coding genes using maximum likelihood and Bayesian analyses, which supported that Dosininae and Meretricinae have a closer relationship, with Tapetinae being the sister taxon. The information obtained in this study will contribute to further understanding of the molecular features of bivalve mitogenomes and the evolutionary history of the genus Dosinia.

  14. Innovators and Early Adopters of Distance Education in Social Work

    OpenAIRE

    Jo Ann Coe Regan

    2016-01-01

    This article highlights the innovators and early adopters of distance education in social work. The past, present and future is discussed as it relates to the evolution of technology innovation in social work education.

  15. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.

    Science.gov (United States)

    Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R

    2015-07-24

    Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana. Copyright © 2015, American Association for the Advancement of Science.

  16. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    International Nuclear Information System (INIS)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-01-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together

  17. The mitochondrial genome of the deep-sea glass sponge Lophophysema eversa (Porifera, Hexacinellida, Hyalonematidae).

    Science.gov (United States)

    Zhang, Yanjie; Sun, Jin; Li, Xinzheng; Qiu, Jian-Wen

    2016-01-01

    We reported a nearly complete mitochondrial genome (mitogenome) from the glass sponge Lophophysema eversa, the second mitogenome in the order Amphidiscosida and the ninth in the class Hexactinellida. It is 20,651 base pairs in length and contains 39 genes including 13 protein-coding genes, 2 ribosomal RNA subunit genes and 24 tRNA genes. The gene content and order of L. eversa are identical to those of Tabachnickia sp., the other species with a sequenced mitogenome in Amphidiscosida, except with two additional tRNAs and three tRNA translocations. The cob gene has a +1 translational frameshift. These results will contribute to a better understanding of the phylogeny of glass sponges.

  18. Complete mitochondrial genome of the spadenose shark (Scoliodon macrorhynchos).

    Science.gov (United States)

    Chen, Xiao; Peng, Xin; Zhang, Peng; Yang, Shenyun; Liu, Min

    2014-04-01

    We firstly presented the complete mitogenome of the spadenose shark Scoliodon macrorhynchos (Carcharhinidae, Carcharhiniformes). The mitogenome is 16,693 bp long and contains 13 protein-coding genes, two rRNAs, 22 tRNAs and one control region, a typical vertebrate arrangement. The codon usage bias was different between the H-strand and L-strand encoded protein genes. All tRNA genes have the typical cloverleaf secondary structure excepting tRNA-Ser2, in which the dihydrouridine (DHU) arm is replaced by a simple loop with 12 unpaired nucleotides. A termination associated sequence and three conserved sequence blocks (CSB I-III) were identified in the control region, which were considered associating with the replication and transcription of mitogenome.

  19. Complete mitochondrial genome of Yangtze River wild common carp (Cyprinus carpio haematopterus) and Russian scattered scale mirror carp (Cyprinus carpio carpio).

    Science.gov (United States)

    Hu, Guang Fu; Liu, Xiang Jiang; Zou, Gui Wei; Li, Zhong; Liang, Hong-Wei; Hu, Shao-Na

    2016-01-01

    We sequenced the complete mitogenomes of (Cyprinus carpio haematopterus) and Russian scattered scale mirror carp (Cyprinus carpio carpio). Comparison of these two mitogenomes revealed that the mitogenomes of these two common carp strains were remarkably similar in genome length, gene order and content, and AT content. There were only 55 bp variations in 16,581 nucleotides. About 1 bp variation was located in rRNAs, 2 bp in tRNAs, 9 bp in the control region and 43 bp in protein-coding genes. Furthermore, forty-three variable nucleotides in the protein-coding genes of the two strains led to four variable amino acids, which were located in the ND2, ATPase 6, ND5 and ND6 genes, respectively.

  20. Primordial and Stellar Nucleosynthesis Chemical Evolution of Galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    2010-01-01

    Following a brief introduction to early Universe cosmology, we present in some detail the results of primordial nucleosynthesis. Then we summarize the basic theory of nuclear reactions in stars and sketch the general rules of stellar evolution. We shortly review the subject of supernova explosions both by core collapse in massive stars (Type II) and carbon-deflagration in binary systems when one of the components is a White Dwarf accreting mass from the companion (Type Ia). We conclude the part dedicated to nucleosynthesis with elementary notions on the s- and r-process. Finally, we shortly address the topic of galactic chemical evolution and highlight some simple solutions aimed at understanding the main observational data on abundances and abundance ratios.

  1. The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes.

    Directory of Open Access Journals (Sweden)

    Audrius Menkis

    2008-03-01

    Full Text Available We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains, derived from one N. tetrasperma heterokaryon (mat A+mat a, was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first "evolutionary stratum", genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers.

  2. The Early Universe. Facts and fiction. 4. ed.

    International Nuclear Information System (INIS)

    Boerner, G.

    2003-01-01

    The following topics are covered in this completely new written textbook: The standard big bang model, thermodynamics of the Early universe, gauge theories and standard model, grand unification models, baryon synthesis, inflationary universe, dark matter and galaxy formation, evolution of small perturbations, non-linear structure formation (WL)

  3. Evolution of group-wise cooperation: Is direct reciprocity insufficient?

    Science.gov (United States)

    Kurokawa, Shun; Ihara, Yasuo

    2017-02-21

    Group-wise cooperation, or cooperation among three or more individuals, is an integral part of human societies. It is likely that group-wise cooperation also played a crucial role in the survival of early hominins, who were confronted with novel environmental challenges, long before the emergence of Homo sapiens. However, previous theoretical and empirical studies, focusing mainly on modern humans, have tended to suggest that evolution of cooperation in sizable groups cannot be explained by simple direct reciprocity and requires some additional mechanisms (reputation, punishment, etc.), which are cognitively too demanding for early hominins. As a partial resolution of the paradox, our recent analysis of a stochastic evolutionary model, which considers the effect of random drift, has revealed that evolution of group-wise cooperation is more likely to occur in larger groups when an individual's share of the benefit produced by one cooperator does not decrease with increasing group size (i.e., goods are non-rivalrous). In this paper, we further extend our previous analysis to explore possible consequences of introducing rare mistakes in behavior or imperfect information about behavior of others on the model outcome. Analyses of the extended models show that evolution of group-wise cooperation can be facilitated by large group size even when individuals intending to cooperate sometimes fail to do so or when all the information about the past behavior of group members is not available. We argue, therefore, that evolution of cooperation in sizable groups does not necessarily require other mechanisms than direct reciprocity if the goods to be produced via group-wise cooperation are non-rivalrous. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The evolution of coleoid cephalopods and their present biodiversity ...

    African Journals Online (AJOL)

    The present status of phylogeny and classification in coleoid cephalopods and the effect of evolution on the present ecology and biodiversity in the group are examined. The basis of knowledge of cephalopod phylogeny was formulated by Naef in the early 1920s, and his ideas and the progress made in the intervening 75 ...

  5. Analysis of a vinculin homolog in a sponge (phylum Porifera) reveals that vertebrate-like cell adhesions emerged early in animal evolution.

    Science.gov (United States)

    Miller, Phillip W; Pokutta, Sabine; Mitchell, Jennyfer M; Chodaparambil, Jayanth V; Clarke, D Nathaniel; Nelson, William; Weis, William I; Nichols, Scott A

    2018-06-07

    The evolution of cell adhesion mechanisms in animals facilitated the assembly of organized multicellular tissues. Studies in traditional animal models have revealed two predominant adhesion structures, the adherens junction (AJ) and focal adhesions (FAs), which are involved in the attachment of neighboring cells to each other and to the secreted extracellular matrix (ECM), respectively. The AJ (containing cadherins and catenins) and FAs (comprising integrins, talin, and paxillin) differ in protein composition, but both junctions contain the actin-binding protein vinculin. The near ubiquity of these structures in animals suggests that AJ and FAs evolved early, possibly coincident with multicellularity. However, a challenge to this perspective is that previous studies of sponges-a divergent animal lineage-indicate that their tissues are organized primarily by an alternative, sponge-specific cell adhesion mechanism called "aggregation factor." In this study, we examined the structure, biochemical properties, and tissue localization of a vinculin ortholog in the sponge Oscarella pearsei ( Op ). Our results indicate that Op vinculin localizes to both cell-cell and cell-ECM contacts and has biochemical and structural properties similar to those of vertebrate vinculin. We propose that Op vinculin played a role in cell adhesion and tissue organization in the last common ancestor of sponges and other animals. These findings provide compelling evidence that sponge tissues are indeed organized like epithelia in other animals and support the notion that AJ- and FA-like structures extend to the earliest periods of animal evolution. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Comparative Mitogenomics of Plant Bugs (Hemiptera: Miridae): Identifying the AGG Codon Reassignments between Serine and Lysine

    Science.gov (United States)

    Wang, Pei; Song, Fan; Cai, Wanzhi

    2014-01-01

    Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409

  7. Early crocodylomorph increases top tier predator diversity during rise of dinosaurs.

    Science.gov (United States)

    Zanno, Lindsay E; Drymala, Susan; Nesbitt, Sterling J; Schneider, Vincent P

    2015-03-19

    Triassic predatory guild evolution reflects a period of ecological flux spurred by the catastrophic end-Permian mass extinction and terminating with the global ecological dominance of dinosaurs in the early Jurassic. In responding to this dynamic ecospace, terrestrial predator diversity attained new levels, prompting unique trophic webs with a seeming overabundance of carnivorous taxa and the evolution of entirely new predatory clades. Key among these was Crocodylomorpha, the largest living reptiles and only one of two archosaurian lineages that survive to the present day. In contrast to their existing role as top, semi-aquatic predators, the earliest crocodylomorphs were generally small-bodied, terrestrial faunivores, occupying subsidiary (meso) predator roles. Here we describe Carnufex carolinensis a new, unexpectedly large-bodied taxon with a slender and ornamented skull from the Carnian Pekin Formation (~231 Ma), representing one of the oldest and earliest diverging crocodylomorphs described to date. Carnufex bridges a problematic gap in the early evolution of pseudosuchians by spanning key transitions in bauplan evolution and body mass near the origin of Crocodylomorpha. With a skull length of >50 cm, the new taxon documents a rare instance of crocodylomorphs ascending to top-tier predator guilds in the equatorial regions of Pangea prior to the dominance of dinosaurs.

  8. The complete mitochondrial genome of the pink stem borer, Sesamia inferens, in comparison with four other Noctuid moths.

    Science.gov (United States)

    Chai, Huan-Na; Du, Yu-Zhou

    2012-01-01

    The complete 15,413-bp mitochondrial genome (mitogenome) of Sesamia inferens (Walker) (Lepidoptera: Noctuidae) was sequenced and compared with those of four other noctuid moths. All of the mitogenomes analyzed displayed similar characteristics with respect to gene content, genome organization, nucleotide comparison, and codon usages. Twelve-one protein-coding genes (PCGs) utilized the standard ATN, but the cox1 gene used CGA as the initiation codon; cox1, cox2, and nad4 genes had the truncated termination codon T in the S. inferens mitogenome. All of the tRNA genes had typical cloverleaf secondary structures except for trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. Both the secondary structures of rrnL and rrnS genes inferred from the S. inferens mitogenome closely resembled those of other noctuid moths. In the A+T-rich region, the conserved motif "ATAGA" followed by a long T-stretch was observed in all noctuid moths, but other specific tandem-repeat elements were more variable. Additionally, the S. inferens mitogenome contained a potential stem-loop structure, a duplicated 17-bp repeat element, a decuplicated segment, and a microsatellite "(AT)(7)", without a poly-A element upstream of the trnM in the A+T-rich region. Finally, the phylogenetic relationships were reconstructed based on amino acid sequences of mitochondrial 13 PCGs, which support the traditional morphologically based view of relationships within the Noctuidae.

  9. An aegialodontid upper molar and the evolution of mammal dentition.

    Science.gov (United States)

    Lopatin, Alexey V; Averianov, Alexander O

    2006-08-25

    The most obvious key synapomorphy of the therian mammals is the tribosphenic pattern of their molars. Tribosphenic teeth are capable of both shearing and grinding, which substantially increase effectiveness of food processing and, in turn, permit evolution of a wide range of dietary specializations. Functional tribospheny developed repeatedly during mammalian evolution but was successful only in the Boreosphenida. The earliest stage in the development of boreosphenidan tribospheny has remained poorly understood, being documented only by lower molars of aegialodontids. Here, we report a known upper molar of an aegialodontid mammal, Kielantherium, from the Early Cretaceous of Mongolia.

  10. Molecular evolution of proopiomelanocortin in early vertebrates; Gensakudobutsu hoya no shinkeisen ni saguru fukujinhishitsu sigeki horumon no kigen to bunshi shinka

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akiyoshi [Kitasato University, Tokyo (Japan). School of Fishieries Sciences

    1998-12-16

    Proolpiomelanocortin (POMC) is a precursor for melanotrophin (MSH) and {beta}-endorphin that regulate stress and environmental adaptation. The present study was undertaken to provide insight into the molecular evolution of POMC in the early vertebrates by examining structures of POMCs in protochordates and in ancient and advanced fishes. Lungfish POMC is similar to tetrapods because they include three MSHs ({alpha}, {beta} and {gamma}) and {beta}-endorphin. In contrast to the consistent occurrence of three MSHs in tetrapods and dipnoans, fish POMC varies in the number of MSH types it contains. POMCs of tuna and sturgeon lack {gamma}-MSH whereas POMC of dogfish has a forth ({delta}) MSH in addition to {alpha}-, {beta}- and {gamma}-MSH. b-endorphin, however, occurs in all vertebrates. These results suggest that POMC has evolved by duplication, insertion and deletion of MSH genomic segments. The diversity of MSH may have contributed to development of the ability to adapt to different conditions. (author)

  11. Evolution of Lower Brachyceran Flies (Diptera and Their Adaptive Radiation with Angiosperms

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2017-04-01

    Full Text Available The Diptera (true flies is one of the most species-abundant orders of Insecta, and it is also among the most important flower-visiting insects. Dipteran fossils are abundant in the Mesozoic, especially in the Late Jurassic and Early Cretaceous. Here, we review the fossil record and early evolution of some Mesozoic lower brachyceran flies together with new records in Burmese amber, including Tabanidae, Nemestrinidae, Bombyliidae, Eremochaetidae, and Zhangsolvidae. The fossil records reveal that some flower-visiting groups had diversified during the mid-Cretaceous, consistent with the rise of angiosperms to widespread floristic dominance. These brachyceran groups played an important role in the origin of co-evolutionary relationships with basal angiosperms. Moreover, the rise of angiosperms not only improved the diversity of flower-visiting flies, but also advanced the turnover and evolution of other specialized flies.

  12. Galactic chemical evolution in hierarchical formation models

    Science.gov (United States)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  13. Computer models of vocal tract evolution: an overview and critique

    NARCIS (Netherlands)

    de Boer, B.; Fitch, W. T.

    2010-01-01

    Human speech has been investigated with computer models since the invention of digital computers, and models of the evolution of speech first appeared in the late 1960s and early 1970s. Speech science and computer models have a long shared history because speech is a physical signal and can be

  14. WMAP - A Glimpse of the Early Universe

    Science.gov (United States)

    Wollack, Edward

    2009-01-01

    The early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the "Big Bang" and the signature of the evolution of its contents. By exploiting these clues, precise constraints on the age, mass density, and geometry of the early Universe can be derived. The history of this intriguing cosmological detective story will be reviewed. Recent results from NASA's Wilkinson Microwave Anisotropy Probe (WMAP) will be presented.

  15. Baseline prevalence and longitudinal evolution of non-motor symptoms in early Parkinson's disease: the PPMI cohort.

    Science.gov (United States)

    Simuni, Tanya; Caspell-Garcia, Chelsea; Coffey, Christopher S; Weintraub, Daniel; Mollenhauer, Brit; Lasch, Shirley; Tanner, Caroline M; Jennings, Danna; Kieburtz, Karl; Chahine, Lana M; Marek, Kenneth

    2018-01-01

    To examine the baseline prevalence and longitudinal evolution in non-motor symptoms (NMS) in a prospective cohort of, at baseline, patients with de novo Parkinson's disease (PD) compared with healthy controls (HC). Parkinson's Progression Markers Initiative (PPMI) is a longitudinal, ongoing, controlled study of de novo PD participants and HC. NMS were rated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part I score and other validated NMS scales at baseline and after 2 years. Biological variables included cerebrospinal fluid (CSF) markers and dopamine transporter imaging. 423 PD subjects and 196 HC were enrolled and followed for 2 years. MDS-UPDRS Part I total mean (SD) scores increased from baseline 5.6 (4.1) to 7.7 (5.0) at year 2 in PD subjects (pbaseline NMS score was associated with female sex (p=0.008), higher baseline MDS-UPDRS Part II scores (pbaseline. There was no association with the dose or class of dopaminergic therapy. This study of NMS in early PD identified clinical and biological variables associated with both baseline burden and predictors of progression. The association of a greater longitudinal increase in NMS with lower baseline Aβ1-42 level is an important finding that will have to be replicated in other cohorts. ClinicalTrials.gov identifier: NCT01141023. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Evolution of galaxies

    International Nuclear Information System (INIS)

    Palous, J.

    1987-01-01

    The proceedings contain 87 papers divided into 8 chapters. The chapter Bipolar outflows and star formations contains papers on optical and infrared observations of young bipolar outflow objects and the theory thereof, and on observations of cometary nebulae. The chapter Masers and early stellar evolution discusses molecular masers and star forming regions. The following chapter contains papers on initial mass function and star formation rates in galaxies. The chapter Clusters and star formation contains data on OB associations and open star clusters, their development and observations, CO and H 2 in our galaxy, the four vector model of radio emission and an atlas of the wavelength dependence of ultraviolet extinction in the Galaxy. The most voluminous is the chapter Evolution of galaxies. It contains papers on the theories of the physical and chemodynamic development of galaxies of different types, rotation research and rotation velocities of galaxies and their arms, and on mathematical and laboratory models of morphological development. Chapter seven contains papers dealing with active extragalactic objects, quasars and active galactic nuclei. The last chapter discusses cosmological models, the theory of the inflationary universe, and presents an interpretation of the central void and X-ray background. (M.D.). 299 figs., 48 tabs., 1651 refs

  17. Characterization of the complete mitochondrial genome of the Rhinolophus sinicus sinicus (Chiroptera: Rhinolophidae) from Central China.

    Science.gov (United States)

    Xie, Lifen; Sun, Keping; Feng, Jiang

    2016-07-01

    We present a complete mitochondrial genome sequence of Rhinolophus sinicus sinicus from Central China and provide its annotation, as well as showed the phylogenetic relationship and mitogenomic variation with other published mitochondrial genomes of congeneric bat species. Our results revealed a relatively high mitogenomic variation between two R. s. sinucus from Central and East China, which is similar to interspecific divergence level.

  18. The complete mitochondrial genome of the greater horseshoe bat subspecies, Rhinolophus ferrumequinum korai (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Yoon, Kwang Bae; Kim, Ji Young; Cho, Jae Youl; Park, Yung Chul

    2011-08-01

    The total length of the mitogenome of Rhinolophus ferrumequinum korai is 16,839 bp with a total base composition of 31.8% A, 25.4% T, 28.7% C, and 14.0% G. The mitogenome consists of 13 protein-coding genes, 2 rRNA (12S and 16S RNA) genes, 22 tRNA genes, and 1 control region.

  19. Next generation sequencing yields the complete mitochondrial genome of the largescale mullet, Liza macrolepis (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Tsai, Shiou-Yi; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique

    2016-11-01

    In this study, the complete mitogenome sequence of largescale mullet (Teleostei: Mugilidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome, consisting of 16,832 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs genes, and a non-coding control region of D-loop. D-loop which has a length of 1094 bp is located between tRNA-Pro and tRNA-Phe. The overall base composition of largescale mullet is 27.8% for A, 30.1% for C, 16.2% for G, and 25.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for Mugilidae.

  20. Next generation sequencing yields the complete mitochondrial genome of the Hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,829 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop contains 1057 bp length is located between tRNA-Pro and tRNA-Phe. The overall base composition of P. labiosus is 28.0% for A, 29.3% for C, 15.5% for G and 27.2% for T. The complete mitogenome may provide essential and important DNA molecular data for further population, phylogenetic and evolutionary analysis for Mugilidae.

  1. Complete mitochondrial genome of Lutzomyia (Nyssomyia) umbratilis (Diptera: Psychodidae), the main vector of Leishmania guyanensis.

    Science.gov (United States)

    Kocher, Arthur; Gantier, Jean-Charles; Holota, Hélène; Jeziorski, Céline; Coissac, Eric; Bañuls, Anne-Laure; Girod, Romain; Gaborit, Pascal; Murienne, Jérôme

    2016-11-01

    The nearly complete mitochondrial genome of Lutzomyia umbratilis Ward & Fraiha, 1977 (Psychodidae: Phlebotominae), considered as the main vector of Leishmania guyanensis, is presented. The sequencing has been performed on an Illumina Hiseq 2500 platform, with a genome skimming strategy. The full nuclear ribosomal RNA segment was also assembled. The mitogenome of L. umbratilis was determined to be at least 15,717 bp-long and presents an architecture found in many mitogenomes of insect (13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and one non-coding region also referred as the control region). The control region contains a large repeated element of c. 370 bp and a poly-AT region of unknown length. This is the first mitogenome of Psychodidae to be described.

  2. Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation

    Science.gov (United States)

    Burbrink, Frank T.; Chen, Xin; Myers, Edward A.; Brandley, Matthew C.; Pyron, R. Alexander

    2012-01-01

    Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification. PMID:23034709

  3. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    Science.gov (United States)

    Mastichiadis, A.; Kazanas, D.

    2009-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approx. 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor Gamma and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have began to explore. In particular. one can this may obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the (nu)F(sub nu), spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  4. Social immunity and the evolution of group living in insects.

    Science.gov (United States)

    Meunier, Joël

    2015-05-26

    The evolution of group living requires that individuals limit the inherent risks of parasite infection. To this end, group living insects have developed a unique capability of mounting collective anti-parasite defences, such as allogrooming and corpse removal from the nest. Over the last 20 years, this phenomenon (called social immunity) was mostly studied in eusocial insects, with results emphasizing its importance in derived social systems. However, the role of social immunity in the early evolution of group living remains unclear. Here, I investigate this topic by first presenting the definitions of social immunity and discussing their applications across social systems. I then provide an up-to-date appraisal of the collective and individual mechanisms of social immunity described in eusocial insects and show that they have counterparts in non-eusocial species and even solitary species. Finally, I review evidence demonstrating that the increased risks of parasite infection in group living species may both decrease and increase the level of personal immunity, and discuss how the expression of social immunity could drive these opposite effects. By highlighting similarities and differences of social immunity across social systems, this review emphasizes the potential importance of this phenomenon in the early evolution of the multiple forms of group living in insects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Frozen Accident Pushing 50: Stereochemistry, Expansion, and Chance in the Evolution of the Genetic Code.

    Science.gov (United States)

    Koonin, Eugene V

    2017-05-23

    Nearly 50 years ago, Francis Crick propounded the frozen accident scenario for the evolution of the genetic code along with the hypothesis that the early translation system consisted primarily of RNA. Under the frozen accident perspective, the code is universal among modern life forms because any change in codon assignment would be highly deleterious. The frozen accident can be considered the default theory of code evolution because it does not imply any specific interactions between amino acids and the cognate codons or anticodons, or any particular properties of the code. The subsequent 49 years of code studies have elucidated notable features of the standard code, such as high robustness to errors, but failed to develop a compelling explanation for codon assignments. In particular, stereochemical affinity between amino acids and the cognate codons or anticodons does not seem to account for the origin and evolution of the code. Here, I expand Crick's hypothesis on RNA-only translation system by presenting evidence that this early translation already attained high fidelity that allowed protein evolution. I outline an experimentally testable scenario for the evolution of the code that combines a distinct version of the stereochemical hypothesis, in which amino acids are recognized via unique sites in the tertiary structure of proto-tRNAs, rather than by anticodons, expansion of the code via proto-tRNA duplication, and the frozen accident.

  6. Evolution of perturbations in distinct classes of canonical scalar field models of dark energy

    International Nuclear Information System (INIS)

    Jassal, H. K.

    2010-01-01

    Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modeled by either a scalar field or by a barotropic fluid. The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models. The dark energy equation of state evolves differently in these classes. In freezing models, the equation of state deviates from that of a cosmological constant at early times. For thawing models, the dark energy equation of state remains near that of the cosmological constant at early times and begins to deviate from it only at late times. Since the dark energy equation of state evolves differently in these classes, the dark energy perturbations too evolve differently. In freezing models, since the equation of state deviates from that of a cosmological constant at early times, there is a significant difference in evolution of matter perturbations from those in the cosmological constant model. In comparison, matter perturbations in thawing models differ from the cosmological constant only at late times. This difference provides an additional handle to distinguish between these classes of models and this difference should manifest itself in the integrated Sachs-Wolfe effect.

  7. Origin and Evolution of Planetary Atmospheres Implications for Habitability

    CERN Document Server

    Lammer, Helmut

    2013-01-01

    Based on the author’s own work and results obtained by international teams he coordinated, this SpringerBrief offers a concise discussion of the origin and early evolution of atmospheres of terrestrial planets during the active phase of their host stars, as well as of the environmental conditions which are necessary in order for planets like the Earth to obtain N_2-rich atmospheres. Possible thermal and non-thermal atmospheric escape processes are discussed in a comparative way between the planets in the Solar System and exoplanets. Lastly, a hypothesis for how to test and study the discussed atmosphere evolution theories using future UV transit observations of terrestrial exoplanets within the orbits of dwarf stars is presented.

  8. Molecular phylogeny of Systellognatha (Plecoptera: Arctoperlaria) inferred from mitochondrial genome sequences.

    Science.gov (United States)

    Chen, Zhi-Teng; Zhao, Meng-Yuan; Xu, Cheng; Du, Yu-Zhou

    2018-05-01

    The infraorder Systellognatha is the most species-rich clade in the insect order Plecoptera and includes six families in two superfamilies: Pteronarcyoidea (Pteronarcyidae, Peltoperlidae, and Styloperlidae) and Perloidea (Perlidae, Perlodidae, and Chloroperlidae). To resolve the debatable phylogeny of Systellognatha, we carried out the first mitochondrial phylogenetic analysis covering all the six families, including three newly sequenced mitogenomes from two families (Perlodidae and Peltoperlidae) and 15 published mitogenomes. The three newly reported mitogenomes share conserved mitogenomic features with other sequenced stoneflies. For phylogenetic analyses, we assembled five datasets with two inference methods to assess their influence on topology and nodal support within Systellognatha. The results indicated that inclusion of the third codon positions of PCGs, exclusion of rRNA genes, the use of nucleotide datasets and Bayesian inference could improve the phylogenetic reconstruction of Systellognatha. The monophyly of Perloidea was supported in the mitochondrial phylogeny, but Pteronarcyoidea was recovered as paraphyletic and remained controversial. In this mitochondrial phylogenetic study, the relationships within Systellognatha were recovered as (((Perlidae + (Perlodidae + Chloroperlidae)) + (Pteronarcyidae + Styloperlidae)) + Peltoperlidae). Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Digital Genesis: Computers, Evolution and Artificial Life

    OpenAIRE

    Taylor, Tim; Dorin, Alan; Korb, Kevin

    2015-01-01

    The application of evolution in the digital realm, with the goal of creating artificial intelligence and artificial life, has a history as long as that of the digital computer itself. We illustrate the intertwined history of these ideas, starting with the early theoretical work of John von Neumann and the pioneering experimental work of Nils Aall Barricelli. We argue that evolutionary thinking and artificial life will continue to play an integral role in the future development of the digital ...

  10. Launching "the evolution of cooperation".

    Science.gov (United States)

    Axelrod, Robert

    2012-04-21

    This article describes three aspects of the author's early work on the evolution of the cooperation. First, it explains how the idea for a computer tournament for the iterated Prisoner's Dilemma was inspired by the artificial intelligence research on computer checkers and computer chess. Second, it shows how the vulnerability of simple reciprocity of misunderstanding or misimplementation can be eliminated with the addition of some degree of generosity or contrition. Third, it recounts the unusual collaboration between the author, a political scientist, and William D. Hamilton, an evolutionary biologist. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Sedimentologic and paleoclimatic reconstructions of carbonate factory evolution in the Alborz Basin (northern Iran) indicate a global response to Early Carboniferous (Tournaisian) glaciations

    Science.gov (United States)

    Sardar Abadi, Mehrdad; Kulagina, Elena I.; Voeten, Dennis F. A. E.; Boulvain, Frédéric; Da Silva, Anne-Christine

    2017-03-01

    The Lower Carboniferous Mobarak Formation records the development of a storm-sensitive pervasive carbonate factory on the southern Paleo-Tethyan passive margin following the opening of the Paleo-Tethys Ocean into the Alborz Basin along the northern margin of Gondwana. Its depositional facies encompass inner ramp peritidal environments, peloidal to crinoidal shoals, storm to fair-weather influenced mid-ramps, proximal to distal shell beds and low energy outer ramps. Sedimentological analyses and foraminiferal biostratigraphy reveal four events affecting carbonate platform evolution in the Alborz Basin during the Lower Carboniferous: (1) A transgression following global temperature rise in the Early Tournaisian (middle Hastarian) caused the formation of thick-bedded argillaceous limestones. This interval correlates with Early Tournaisian nodular to argillaceous limestones in the Moravia Basin (Lisen Formation, Czech Republic), the Dinant Basin (Pont d'Arcole Formation, Belgium), and at the Rhenish Slate Mountains (Lower Alum shale, Germany). (2) Late Hastarian-early Ivorian glaciations previously identified in Southern Gondwana but had not yet recognized in Northern Gondwana were recorded through a sequence boundary. (3) During the Late Tournaisian-Early Visean?, a differential block faulting regime along the basin's margin caused uplift of the westernmost parts of the Alborz Basin and resulted in subsidence in the eastern part of the central basin. This tectonically controlled shift in depositional regime caused vast sub-aerial exposure and brecciation preserved in the top of the Mobarak Formation in the western portion of the Central Alborz Basin. (4) Tectonic activity coinciding with a progressive, multiphase sea level drop caused indirectly by the Viséan and Serpukhovian glaciations phases ultimately led to the stagnation of the carbonate factory. Paleothermometry proxies, the presence of foraminiferal taxa with a northern Paleo-Tethyan affinity and evidence for

  12. Time evolution of damage in thermally induced creep rupture

    KAUST Repository

    Yoshioka, N.

    2012-01-01

    We investigate the time evolution of a bundle of fibers subject to a constant external load. Breaking events are initiated by thermally induced stress fluctuations followed by load redistribution which subsequently leads to an avalanche of breakings. We compare analytic results obtained in the mean-field limit to the computer simulations of localized load redistribution to reveal the effect of the range of interaction on the time evolution. Focusing on the waiting times between consecutive bursts we show that the time evolution has two distinct forms: at high load values the breaking process continuously accelerates towards macroscopic failure, however, for low loads and high enough temperatures the acceleration is preceded by a slow-down. Analyzing the structural entropy and the location of consecutive bursts we show that in the presence of stress concentration the early acceleration is the consequence of damage localization. The distribution of waiting times has a power law form with an exponent switching between 1 and 2 as the load and temperature are varied.

  13. Tyrannosauroid integument reveals conflicting patterns of gigantism and feather evolution.

    Science.gov (United States)

    Bell, Phil R; Campione, Nicolás E; Persons, W Scott; Currie, Philip J; Larson, Peter L; Tanke, Darren H; Bakker, Robert T

    2017-06-01

    Recent evidence for feathers in theropods has led to speculations that the largest tyrannosaurids, including Tyrannosaurus rex , were extensively feathered. We describe fossil integument from Tyrannosaurus and other tyrannosaurids ( Albertosaurus, Daspletosaurus, Gorgosaurus and Tarbosaurus ), confirming that these large-bodied forms possessed scaly, reptilian-like skin. Body size evolution in tyrannosauroids reveals two independent occurrences of gigantism; specifically, the large sizes in Yutyrannus and tyrannosaurids were independently derived. These new findings demonstrate that extensive feather coverings observed in some early tyrannosauroids were lost by the Albian, basal to Tyrannosauridae. This loss is unrelated to palaeoclimate but possibly tied to the evolution of gigantism, although other mechanisms exist. © 2017 The Author(s).

  14. THE ROLE OF MERGERS IN EARLY-TYPE GALAXY EVOLUTION AND BLACK HOLE GROWTH

    International Nuclear Information System (INIS)

    Schawinski, Kevin; Dowlin, Nathan; Urry, C. Megan; Thomas, Daniel; Edmondson, Edward

    2010-01-01

    Models of galaxy formation invoke the major merger of gas-rich progenitor galaxies as the trigger for significant phases of black hole growth and the associated feedback that suppresses star formation to create red spheroidal remnants. However, the observational evidence for the connection between mergers and active galactic nucleus (AGN) phases is not clear. We analyze a sample of low-mass early-type galaxies known to be in the process of migrating from the blue cloud to the red sequence via an AGN phase in the green valley. Using deeper imaging from Sloan Digital Sky Survey Stripe 82, we show that the fraction of objects with major morphological disturbances is high during the early starburst phase, but declines rapidly to the background level seen in quiescent early-type galaxies by the time of substantial AGN radiation several hundred Myr after the starburst. This observation empirically links the AGN activity in low-redshift early-type galaxies to a significant merger event in the recent past. The large time delay between the merger-driven starburst and the peak of AGN activity allows for the merger features to decay to the background and hence may explain the weak link between merger features and AGN activity in the literature.

  15. Vorticity generation and evolution in shock-accelerated density-stratified interfaces

    International Nuclear Information System (INIS)

    Yang, X.; Chern, I.; Zabusky, N.J.; Samtaney, R.; Hawley, J.F.

    1992-01-01

    The results of direct numerical simulations of inviscid planar shock-accelerated density-stratified interfaces in two dimensions are presented and compared with shock tube experiments of Haas [(private communication, 1988)] and Sturtevant [in Shock Tubes and Waves, edited by H. Gronig (VCH, Berlin, 1987), p. 89] . Heavy-to-light (''slow/fast or s/f) and light-to-heavy (''fast/slow,'' or f/s) gas interfaces are examined and early-time impulsive vorticity deposition and the evolution of coherent vortex structures are emphasized and quantified. The present second-order Godunov scheme yields excellent agreement with shock-polar analyses at early time. A more physical vortex interpretation explains the commonly used (i.e., linear paradigm) designations of ''unstable'' and ''stable'' for the f/s and s/f interfaces, respectively. The later time events are Rayleigh--Taylor like and can be described in terms of the evolution of a vortex layer (large-scale translation and rotation): asymmetric tip vortex ''roll-up'' and ''binding;'' layer ''instability;'' convective mixing; and baroclinic vorticity generation from secondary shock--interface interactions

  16. Brain evolution relating to family, play, and the separation call.

    Science.gov (United States)

    MacLean, P D

    1985-04-01

    Mammals stem from the mammal-like reptiles (therapsids) that were widely prevalent in Pangaea 250 million years ago. In the evolutionary transition from reptiles to mammals, three key developments were (1) nursing, in conjunction with maternal care; (2) audiovocal communication for maintaining maternal-offspring contact; and (3) play. The separation call perhaps ranks as the earliest and most basic mammalian vocalization, while play may have functioned originally to promote harmony in the nest. How did such family related behavior develop? In its evolution, the forebrain of advanced mammals has expanded as a triune structure that anatomically and chemically reflects ancestral commonalities with reptiles, early mammals, and late mammals. Recent findings suggest that the development of the behavioral triad in question may have depended on the evolution of the thalamocingulate division of the limbic system, a derivative from early mammals. The thalamocingulate division (which has no distinctive counterpart in the reptilian brain) is, in turn, geared in with the prefrontal neocortex that, in human beings, may be inferred to play a key role in familial acculturation.

  17. A reconstruction of sexual modes throughout animal evolution.

    Science.gov (United States)

    Sasson, Daniel A; Ryan, Joseph F

    2017-12-06

    Although most extant animals have separate sexes, simultaneous hermaphrodites can be found in lineages throughout the animal kingdom. However, the sexual modes of key ancestral nodes including the last common ancestor (LCA) of all animals remain unclear. Without these data, it is difficult to infer the reproductive-state transitions that occurred early in animal evolution, and thus a broad understanding of the evolution of animal reproduction remains elusive. In this study, we use a composite phylogeny from four previously published studies, two alternative topologies (ctenophores or sponges as sister to the rest of animals), and multiple phylogenetic approaches to conduct the most extensive analysis to date of the evolution of animal sexual modes. Our analyses clarify the sexual mode of many ancestral animal nodes and allow for sound inferences of modal transitions that have occurred in animal history. Our results also indicate that the transition from separate sexes to hermaphroditism has been more common in animal history than the reverse. These results provide the most complete view of the evolution of animal sexual modes to date and provide a framework for future inquiries into the correlation of these transitions with genes, behaviors, and physiology. These results also suggest that mutations promoting hermaphroditism have historically been more likely to invade gonochoristic populations than vice versa.

  18. Biosynthesis of membrane lipids of thermophilic archaebacteria and its implication to early evolution of life

    International Nuclear Information System (INIS)

    Oshima, Tairo

    1995-01-01

    The unit lipid of cell membranes of archaebacteria is unique ether lipids, O-dialkylated glycerol with a polar head group at sn-1 position. The chirality of glycerol moiety of the lipids is opposite to that of other kingdoms. The hydrophobic potion consists of saturated C 20 isoprenoid hydrocarbon backbone and is connected to glycerol by an ether linkage. In addition, cell membrane of some of thermophilic archaebacteria are monolayer (in stead of bilayer) of tetraether lipids in which both tails of hydrocarbon chains of two diether lipids are covalently connected in a tail-to-tail fashion. Although the host cell from which contemporary eukaryotes have been derived by endosymbiosis, is speculated to be an archaebacterium, the unique ether lipids raised a serious question to the idea of archabacterial origin of eukaryote cells; why the unique ether lipids are not used to construct cytoplasmic membranes of eukaryotes? The author and his colleagues have studied biosynthesis of membrane liquids of two thermo-acidophilic archaebacteria, Thermoplasma and Sulfolobus. It was found that origins of stereospecificity of glycerol moiety of archaebacterial ether lipids differs form species to species. In Sulfolobus sn-glycerol-1-phosphate (the abnormal isomer of glycerol phosphate) seems to be directly synthesized from glycerol, whereas in Halobacterium stereospecificity of glycerol phosphate is inverted during the lipid synthesis. Recently we found that specific inhibitors for eukaryotes squalene epoxidase inhibit the condensation of diether lipids to tetraether lipids in cell-free extracts of these thermophilic archaebacteria. The results suggest evolutionary implication of archaebacterial tetraether condensing enzyme to eukaryote sterol biosynthesis. Relationships between chemical structures of membrane lipids and early evolution of life will be discussed. (author). Abstract only

  19. The Complete Mitochondrial Genome of the Longhorn Beetle Dorysthenes paradoxus (Coleoptera: Cerambycidae: Prionini) and the Implication for the Phylogenetic Relationships of the Cerambycidae Species

    Science.gov (United States)

    Chen, Dong-Bin; Liu, Huan-Huan; Hu, Hua-Lei; Bian, Hai-Xu; Zhang, Ru-Song; Yang, Rui-Sheng; Jiang, Xing-Fu; Shi, Sheng-Lin

    2018-01-01

    Abstract The longhorn beetle Dorysthenes paradoxus (Faldermann, 1833) (Coleoptera: Cerambycidae) is not only a serious agricultural pest but also a traditionally edible insect in China. However, no genetic information on this species has been acquired. In the present study, we report the mitochondrial genome (mitogenome) of Do. paradoxus, as the first complete mitogenome of Prioninae. The circular mitogenome of 15,922 bp encodes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs), and it contains an A+T-rich region. This mitogenome exhibits the lowest A+T content (71.13%) but harbors the largest AT skew (0.116) among the completely sequenced Cerambycidae species. Eleven of the 13 PCGs have a typical ATN start codon, whereas COI and ND1 are tentatively designated by AAT and TTG, respectively. Only 4 of the 13 PCGs harbor a complete termination codon, and the remaining 9 possess incomplete termination codons (T or TA). Apart from tRNASer(AGN), the other 21 tRNAs can fold into a typical clover-leaf secondary structures. The Do. paradoxus A+T-rich region contains two poly-T stretches and a tandem repeat that comprises two 47-bp-long copies. Both Bayesian inference and Maximum likelihood analyses confirmed the subfamily ranks of Cerambycidae ([Prioninae + Cerambycinae] + Lamiinae) and the close relationship between Philinae and Prioninae/Cerambycinae. However, the data did not support the monophyly of Prioninae and Cerambycinae. The mitogenome presented here provides basic genetic information for this economically important species. PMID:29718483

  20. Molecular outflows in protostellar evolution

    International Nuclear Information System (INIS)

    Fukui, Y.; Iwata, T.; Mizuno, A.; Ogawa, H.; Kawabata, K.; Sugitani, K.

    1989-01-01

    Molecular outflow is an energetic mass-ejection phenomenon associated with very early stage of stellar evolution. The large kinetic energy involved in the phenomenon indicates that outflow may play an essential role in the process of star formation, particularly by extracting angular momentum. Most of the previous searches have been strongly biased toward optical or near-infrared signposts of star formation. They are not able, therefore, to provide the complete database necessary for a statistical study of the evolutionary status of molecular outflow. To overcome this difficulty, it is of vital importance to make an unbiased search of single molecular clouds for molecular outflows; here we report the final result of such a survey of the Lynds 1641 dark cloud. We show that molecular outflows are characterized by a total luminosity significantly greater than that of T Tauri stars. This indicates that molecular outflow corresponds to the main accretion phase of protostellar evolution, in which the luminosity excess is due to the gravitational energy released by dynamical mass accretion onto the protostellar core. (author)

  1. The Evolution of Enterprise Organization Designs

    Directory of Open Access Journals (Sweden)

    Jay R. Galbraith

    2012-08-01

    Full Text Available This article extends Alfred Chandler's seminal ideas about strategy and organizational structure, and it predicts the next stage of organizational evolution. Chandler described the evolution of vertical integration and diversification strategies for which the functional and multidivisional structures are appropriate. He also explained how the dominant structure at any point in time is a concatenation or accumulation of all previous strategies and structures. I extend Chandler's ideas by describing how early "structures" became "organizations" (people, rewards, management processes, etc. and by discussing the more recent strategies of international expansion and customer focus. International expansion leads to organizations of three dimensions: functions, business units, and countries. Customer-focused strategies lead to four-dimensional organizations currently found in global firms such as IBM, Nike, and Procter & Gamble. I argue that the next major dimension along which organizations will evolve is emerging in firms which are experimenting with the use of "Big Data."

  2. Jupiter's evolution with primordial composition gradients

    Science.gov (United States)

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  3. Barium distributions in teeth reveal early-life dietary transitions in primates.

    Science.gov (United States)

    Austin, Christine; Smith, Tanya M; Bradman, Asa; Hinde, Katie; Joannes-Boyau, Renaud; Bishop, David; Hare, Dominic J; Doble, Philip; Eskenazi, Brenda; Arora, Manish

    2013-06-13

    Early-life dietary transitions reflect fundamental aspects of primate evolution and are important determinants of health in contemporary human populations. Weaning is critical to developmental and reproductive rates; early weaning can have detrimental health effects but enables shorter inter-birth intervals, which influences population growth. Uncovering early-life dietary history in fossils is hampered by the absence of prospectively validated biomarkers that are not modified during fossilization. Here we show that large dietary shifts in early life manifest as compositional variations in dental tissues. Teeth from human children and captive macaques, with prospectively recorded diet histories, demonstrate that barium (Ba) distributions accurately reflect dietary transitions from the introduction of mother's milk through the weaning process. We also document dietary transitions in a Middle Palaeolithic juvenile Neanderthal, which shows a pattern of exclusive breastfeeding for seven months, followed by seven months of supplementation. After this point, Ba levels in enamel returned to baseline prenatal levels, indicating an abrupt cessation of breastfeeding at 1.2 years of age. Integration of Ba spatial distributions and histological mapping of tooth formation enables novel studies of the evolution of human life history, dietary ontogeny in wild primates, and human health investigations through accurate reconstructions of breastfeeding history.

  4. Barium distributions in teeth reveal early life dietary transitions in primates

    Science.gov (United States)

    Austin, Christine; Smith, Tanya M.; Bradman, Asa; Hinde, Katie; Joannes-Boyau, Renaud; Bishop, David; Hare, Dominic J.; Doble, Philip; Eskenazi, Brenda; Arora, Manish

    2013-01-01

    Early life dietary transitions reflect fundamental aspects of primate evolution and are important determinants of health in contemporary human populations1,2. Weaning is critical to developmental and reproductive rates; early weaning can have detrimental health effects but enables shorter inter-birth intervals, which influences population growth3. Uncovering early life dietary history in fossils is hampered by the absence of prospectively-validated biomarkers that are not modified during fossilisation4. Here we show that major dietary shifts in early life manifest as compositional variations in dental tissues. Teeth from human children and captive macaques, with prospectively-recorded diet histories, demonstrate that barium (Ba) distributions accurately reflect dietary transitions from the introduction of mother’s milk and through the weaning process. We also document transitions in a Middle Palaeolithic juvenile Neanderthal, which shows a pattern of exclusive breastfeeding for seven months, followed by seven months of supplementation. After this point, Ba levels in enamel returned to baseline prenatal levels, suggesting an abrupt cessation of breastfeeding at 1.2 years of age. Integration of Ba spatial distributions and histological mapping of tooth formation enables novel studies of the evolution of human life history, dietary ontogeny in wild primates, and human health investigations through accurate reconstructions of breastfeeding history. PMID:23698370

  5. Pre-main-sequence evolution of the sun

    International Nuclear Information System (INIS)

    Gough, D.

    1980-01-01

    The phase of solar evolution after the dynamical collapse is considered. The physics of the Kelvin-Helmholtz phase of gravitational collapse is described, attention being given to the early stages of the star when it was completely convective. It is noted that subsequently, a radiative core developed and evolution was controlled by the rate at which heat can diffuse through it by radiative transfer. Since the study of the Kelvin-Helmholtz contraction alone does not give enough information regarding the state of the sun when it first settled down to approximate hydrostatic equilibrium, other stars are studied, and information on the sun is obtained by analogy. Many young solar-type stars, such as the T Tauri stars, are not in the completely convective Hayashi (1961) phase hence it is proposed that the sun was completely mixed soon after its formation, which has some bearing on the sun's chemical structure. It is suggested that the surface of the sun was very nonuniform compared with the photosphere of today. The simple solar evolution model presented gives a good guide to the general way in which the sun contracted to the main sequence

  6. Character evolution and missing (morphological) data across Asteridae.

    Science.gov (United States)

    Stull, Gregory W; Schori, Melanie; Soltis, Douglas E; Soltis, Pamela S

    2018-04-14

    Our current understanding of flowering plant phylogeny provides an excellent framework for exploring various aspects of character evolution through comparative analyses. However, attempts to synthesize this phylogenetic framework with extensive morphological data sets have been surprisingly rare. Here, we explore character evolution in Asteridae (asterids), a major angiosperm clade, using an extensive morphological data set and a well-resolved phylogeny. We scored 15 phenotypic characters (spanning chemistry, vegetative anatomy, and floral, fruit, and seed features) across 248 species for ancestral state reconstruction using a phylogenetic framework based on 73 plastid genes and the same 248 species. Iridoid production, unitegmic ovules, and cellular endosperm were all reconstructed as synapomorphic for Asteridae. Sympetaly, long associated with asterids, shows complex patterns of evolution, suggesting it arose several times independently within the clade. Stamens equal in number to the petals is likely a synapomorphy for Gentianidae, a major asterid subclade. Members of Lamianae, a major gentianid subclade, are potentially diagnosed by adnate stamens, unilacunar nodes, and simple perforation plates. The analyses presented here provide a greatly improved understanding of character evolution across Asteridae, highlighting multiple characters potentially synapomorphic for major clades. However, several important parts of the asterid tree are poorly known for several key phenotypic features (e.g., degree of petal fusion, integument number, nucellus type, endosperm type, iridoid production). Further morphological, anatomical, developmental, and chemical investigations of these poorly known asterids are critical for a more detailed understanding of early asterid evolution. © 2018 Botanical Society of America.

  7. Characterization and phylogenetic analysis of complete mitochondrial genomes for two desert cyprinodontoid fishes, Empetrichthys latos and Crenichthys baileyi.

    Science.gov (United States)

    Jimenez, Miguel; Goodchild, Shawn C; Stockwell, Craig A; Lema, Sean C

    2017-08-30

    The Pahrump poolfish (Empetrichthys latos) and White River springfish (Crenichthys baileyi) are small-bodied teleost fishes (order Cyprinodontiformes) endemic to the arid Great Basin and Mojave Desert regions of western North America. These taxa survive as small, isolated populations in remote streams and springs and evolved to tolerate extreme conditions of high temperature and low dissolved oxygen. Both species have experienced severe population declines over the last 50-60years that led to some subspecies being categorized with protected status under the U.S. Endangered Species Act. Here we report the first sequencing of the complete mitochondrial DNA genomes for both E. l. latos and the moapae subspecies of C. baileyi. Complete mitogenomes of 16,546bp nucleotides were obtained from two E. l. latos individuals collected from introduced populations at Spring Mountain Ranch State Park and Shoshone Ponds Natural Area, Nevada, USA, while a single mitogenome of 16,537bp was sequenced for C. b. moapae. The mitogenomes of both species contain 13 protein-encoding genes, twenty-two tRNAs, and two rRNAs (12S and 18S) following the syntenic arrangement typical of Actinopterygiian fish mitogenomes, as well as D-loop control regions of 858bp for E. latos and 842bp for C. baileyi moapae. The two E. latos individuals exhibited only 0.0181% nucleotide sequence divergence across the entire mitogenome, implying little intraspecific mtDNA genetic variation. Comparative phylogenetic analysis of the poolfish and springfish mitochondrial genomes to available mitogenomes of other Cyprinodontoid fishes confirmed the close relationship of these oviparous Empetrichthys and Crenichthys genera to the viviparous goodeid fishes of central Mexico, and showed the combined clade of these fishes to be a sister group to the Profundulidae killifishes. Despite several significant life history and morphological differences between the Empetrichthyinae and Goodienae, estimates of evolutionary genetic

  8. A critical reassessment of the reception of early jazz in Britain

    OpenAIRE

    Parsonage, Catherine

    2003-01-01

    The Original Dixieland Jazz Band's visit in 1919–1920 has been well documented as the beginning of jazz in Britain. This article illuminates a more complex evolution of the image and presence of jazz in Britain through consideration of the cultural and musical antecedents of the genre, including minstrel shows and black musical theatre, within the context of musical life in Britain in the late nineteenth to early twentieth centuries. The processes through which this evolution took place are c...

  9. Breaking the silence : Palaeontology and evolution in La Vanguardia Española (1939-1975)

    OpenAIRE

    Florensa, Clara

    2013-01-01

    All traces of evolutionary theories had been removed from the Spanish public sphere during the late stages of the Civil War and early Francoism. Darwin’s books were cleared from the shelves of libraries and bookshops and evolutionism was replaced by creationism in primary and higher education manuals. In the public sphere, there was a mixture of concepts concerning evolution that were borrowed from different evolutionary theories, some of them outdated. Talking about evolution in the press me...

  10. Breaking the silence : Palaeontology and evolution in La Vanguardia Española (1939-1975)

    OpenAIRE

    Florensa, Clara

    2013-01-01

    All traces of evolutionary theories had been removed from the Spanish public sphere during the late stages of the Civil War and early Francoism. Darwin's books were cleared from the shelves of libraries and bookshops and evolutionism was replaced by creationism in primary and higher education manuals. In the public sphere, there was a mixture of concepts concerning evolution that were borrowed from different evolutionary theories, some of them outdated. Talking about evolution in the press me...

  11. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals.

    Science.gov (United States)

    Popova, Olga V; Mikhailov, Kirill V; Nikitin, Mikhail A; Logacheva, Maria D; Penin, Aleksey A; Muntyan, Maria S; Kedrova, Olga S; Petrov, Nikolai B; Panchin, Yuri V; Aleoshin, Vladimir V

    2016-01-01

    Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.

  12. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals.

    Directory of Open Access Journals (Sweden)

    Olga V Popova

    Full Text Available Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida and Pycnophyes kielensis (Allomalorhagida. Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even

  13. Gravitational instability, evolution of galaxies and star formation

    International Nuclear Information System (INIS)

    Palous, J.

    1979-01-01

    The gravitational collapse is the key to the theories of galaxy and star formation. The observations, showing intrinsic differences between elliptical and spiral galaxies, guide our fundamental conceptions on the formation and evolution of systems in question. Stars in elliptical galaxies and in spherical components of spiral galaxies were formed in a short period of time during early phases of protogalactic collapse, at a time of violent star formation. The disc-like components of spiral galaxies, however, were built gradually in the course of galactic evolution. Star formation in elliptical galaxies is described by the collision model of interstellar clouds, while star formation in discs is characterised by several processes: the expansion of HII regions, the expansion of supernovae remnants and the shock wave related to the presence of the spiral structure. (author)

  14. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair.

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M; Zhang, Ya-Ping

    2008-08-23

    Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and resistant hair shafts. The KRTAP family was identified as being unique to mammals, and near-complete KRTAP gene repertoires for eight mammalian genomes were characterized in this study. An expanded KRTAP gene repertoire was found in rodents. Surprisingly, humans have a similar number of genes as other primates despite the relative hairlessness of humans. We identified several new subfamilies not previously reported in the high/ultrahigh cysteine KRTAP genes. Genes in many subfamilies of the high/ultrahigh cysteine KRTAP genes have evolved by concerted evolution with frequent gene conversion events, yielding a higher GC base content for these gene sequences. In contrast, the high glycine-tyrosine KRTAP genes have evolved more dynamically, with fewer gene conversion events and thus have a lower GC base content, possibly due to positive selection. Most of the subfamilies emerged early in the evolution of mammals, thus we propose that the mammalian ancestor should have a diverse KRTAP gene repertoire. We propose that hair content characteristics have evolved and diverged rapidly among mammals because of rapid divergent evolution of KRTAPs between species. In contrast, subfamilies of KRTAP genes have been homogenized within each species due to concerted evolution.

  15. EVOLUTION IN SCHOOL: REGENERATION OF THE LIBERAL REPUBLIC (1880-1930

    Directory of Open Access Journals (Sweden)

    Leonardo Tovar Bernal

    2016-09-01

    Full Text Available This article tries to clarify, based on the analysis of some representative texts from the time, the way that the evolution´s notions were materialized on classroom during the conservative dominance of the late nineteenth and early twentieth century, before liberalism took power again in 1930. It is not a definitive study; much less, intended to exhaust the topic. It describes a scene about the reaction, not infrequently acrimonious, that evolution and those explanations did not contemplate the divine idea faced within education profoundly affected by Catholic dogma. It also tries to explain the convoluted situation of this case, therefore, although the dominance of notions influenced by Catholicism, there was a small space for those lessons solved to the evolution, as well as others that conjugated elements of both, which is to show a problematic situation, in which the religious feud was not absolute.

  16. The complete mitochondrial genome of the cryptic "lineage B" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) in Indo-West Pacific.

    Science.gov (United States)

    Shen, Kang-Ning; Yen, Ta-Chi; Chen, Ching-Hung; Ye, Jeng-Jia; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of the cryptic "lineage B" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) has been sequenced by next-generation sequencing method. The assembled mitogenome consisting of 16,694 bp, includes 13 protein coding genes, 25 transfer RNAs, 2 ribosomal RNAs genes. The overall base composition of "lineage B" S. lessoniana is 36.7% for A, 18.9 % for C, 34.5 % for T and 9.8 % for G and show 90% identities to "lineage C" S. lessoniana. It is also exhibits high T + A content (71.2%), two non-coding regions with TA tandem repeats. The complete mitogenome of the cryptic "lineage B" S. lessoniana provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for big-fin reef squid species complex.

  17. The complete mitochondrial genome of the Antarctic stalked jellyfish, Haliclystus antarcticus Pfeffer, 1889 (Staurozoa: Stauromedusae

    Directory of Open Access Journals (Sweden)

    Hsing-Hui Li

    2016-06-01

    Full Text Available In present study, the complete mitogenome sequence of the Antarctic stalked jellyfish, Haliclystus antarcticus Pfeffer (Staurozoa: Stauromedusae has been sequenced by next-generation sequencing method. The assembled mitogenome comprises of 15,766 bp including 13 protein coding genes, 7 transfer RNAs, and 2 ribosomal RNA genes. The overall base of Antarctic stalked jellyfish constitutes of 26.5% for A, 19.6% for C, 19.8% for G, 34.1% for T and show 90% identity to Sessile Jelly, Haliclystus sanjuanensis, in the northeastern Pacific Ocean. The complete mitogenome of the Antarctic stalked jellyfish, contributes fundamental and significant DNA molecular data for further phylogeography and evolutionary analysis for seahorse phylogeny. The complete sequence was deposited in DBBJ/EMBL/GenBank under accession number KU947038.

  18. The search for and analysis of direct samples of early Solar System aqueous fluids.

    Science.gov (United States)

    Zolensky, Michael E; Bodnar, Robert J; Yurimoto, Hisayoshi; Itoh, Shoichi; Fries, Marc; Steele, Andrew; Chan, Queenie H-S; Tsuchiyama, Akira; Kebukawa, Yoko; Ito, Motoo

    2017-05-28

    We describe the current state of the search for direct, surviving samples of early, inner Solar System fluids-fluid inclusions in meteorites. Meteoritic aqueous fluid inclusions are not rare, but they are very tiny and their characterization is at the state of the art for most analytical techniques. Meteoritic fluid inclusions offer us a unique opportunity to study early Solar System brines in the laboratory. Inclusion-by-inclusion analyses of the trapped fluids in carefully selected samples will, in the immediate future, provide us detailed information on the evolution of fluids as they interacted with anhydrous solid materials. Thus, real data can replace calculated fluid compositions in thermochemical calculations of the evolution of water and aqueous reactions in comets, asteroids, moons and the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  19. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    Science.gov (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  20. [Basics of early intervention in children with autism spectrum disorders].

    Science.gov (United States)

    Zalaquett, Daniela F; Schönstedt, Marianne G; Angeli, Milagros; Herrrera, Claudia C; Moyano, Andrea C

    2015-01-01

    Autism Spectrum Disorders (ASD) are characterized by impairments in communication and social interaction, as well as restricted and repetitive patterns of behavior. They have a prevalence of 0.6% in the general population, although there are no national statistics. Even though their evolution is variable, it has been observed that early intervention is an important factor determining prognosis. The aim of this study is to update concepts regarding the current available evidence on the importance of early intervention. After analyzing the collected information, the importance of early intervention programs for children with ASD is confirmed, as well as the role of pediatricians and other health professionals in the early detection of these disorders. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  1. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto [Instituto de Radioastronomía y Astrofísica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert [Max-Planck-Institut für Astronomie Heidelberg, Königstuhl 17, D-69117 Heidelberg (Germany); Chandler, Claire J.; Pérez, Laura [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States); Anglada, Guillem; Macias, Enrique; Osorio, Mayra [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain); Flock, Mario [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Menten, Karl [Jansky Fellow of the National Radio Astronomy Observatory (United States); Testi, Leonardo [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Zhu, Zhaohuan, E-mail: c.carrasco@crya.unam.mx, E-mail: l.rodriguez@crya.unam.mx, E-mail: r.galvan@crya.unam.mx, E-mail: henning@mpia.de, E-mail: linz@mpia.de [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-04-10

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.

  2. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    International Nuclear Information System (INIS)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto; Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert; Chandler, Claire J.; Pérez, Laura; Anglada, Guillem; Macias, Enrique; Osorio, Mayra; Flock, Mario; Menten, Karl; Testi, Leonardo; Torrelles, José M.; Zhu, Zhaohuan

    2016-01-01

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10 −3 M ⊙ , depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings

  3. Global climate evolution during the last deglaciation

    OpenAIRE

    Clark, Peter U.; Shakun, Jeremy D.; Baker, Paul A.; Bartlein, Patrick J.; Brewer, Simon; Brook, Ed; Carlson, Anders E.; Cheng, Hai; Kaufman, Darrell S.; Liu, Zhengyu; Marchitto, Thomas M.; Mix, Alan C.; Morrill, Carrie; Otto-Bliesner, Bette L.; Pahnke, Katharina

    2012-01-01

    Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth’s climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to th...

  4. The teaching of evolution in Portugal in the early 20th century through the programs and textbooks of Zoology

    Directory of Open Access Journals (Sweden)

    Bento CAVADAS

    2011-11-01

    Full Text Available The teaching of evolution in the Portuguese secondary schools is not yet fully understood. This research aimed to contribute to this clarification, in the framework of the history of the curriculum and the biology subject, by showing the expressions of the evolutionism teaching in the first three decades of the twentieth century. To this end we analyzed the programs of Zoology of 1905 and 1919, as well as two textbooks, entitled «Lições de Zoologia» and written by Bernardo Aires in accordance with these programs. This analysis showed that the study of evolution, eliminated from the program in 1905, was again recognized in the program in 1919. In textbooks, the exposure of evolution focused on the subject of evolution, in the grounds of competition and natural selection, adaptation, the biogenetic law and the essential differences between Lamarckism and Darwinism. The comparative study of these textbooks showed that the text which addresses the evolution is essentially Darwinian. However, neoLamarckians sections have been identified that show the influence of the «eclipse of Darwinism» on the teaching of evolutionism.

  5. Early Age Fracture Mechanics and Cracking of Concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart

    2003-01-01

    . The reasons are the increased autogenous deformation, the high rate of heat evolution and a higher brittleness of these concretes. Due to these adverse mechanisms the interest in the full description of the behavior of early age concrete has increased dramatically in the last two or three decades. Almost all...... the fictitious crack model and the aim has been experimentally to determine the fracture mechanical properties related to this model. The results provide interesting and important insight into the development of the fracture properties in early age. It is found that the characteristic length has moments of low...... values in early age, which means that the cracking sensibility is higher at those time points. The possible influence of time-dependent effects in the fracture mechanical properties on the cracking behavior in early age has also been investigated. The reason for this has been the known fact...

  6. Abundances as tracers of the formation and evolution of (Dwarf) galaxies

    NARCIS (Netherlands)

    Tolstoy, E.; Randich, S; Pasquini, L

    2006-01-01

    This aims to be an overview of what detailed observations of individual stars in nearby dwarf galaxies may teach us about galaxy evolution. This includes some early results from the DART (Dwarf Abundances and Radial velocity Team) Large Programme at ESO. This project has used 2.2m/WFI and VLT/FLAMES

  7. Superheavy particles in cosmology and evolution of inhomogeneities in the early universe

    International Nuclear Information System (INIS)

    Khlopov, M. Yu.; Polnarev, A.G.

    1983-01-01

    The stages of dominance of superheavy metastable particles, predicted by GUTs, are shown to result in the formation of primordial black holes (PBH) in the course of evolution of small initial inhomogeneities. The minimal probability of PBH formation is estimated. The relationship between the spectrum of these PBH, the spectrum of initial metric fluctuations and the parameters of the GUTs is established. Observational astrophysical restrictions on the PBH spectrum then provide a number of restrictions on the parameters of the GUTs depending on the amplitude of initial metric perturbations. (author)

  8. WITNESSING THE KEY EARLY PHASE OF QUASAR EVOLUTION: AN OBSCURED ACTIVE GALACTIC NUCLEUS PAIR IN THE INTERACTING GALAXY IRAS 20210+1121

    International Nuclear Information System (INIS)

    Piconcelli, Enrico; Fiore, Fabrizio; Maiolino, Roberto; Nicastro, Fabrizio; Vignali, Cristian; Bianchi, Stefano; Mathur, Smita; Guainazzi, Matteo; Lanzuisi, Giorgio

    2010-01-01

    We report the discovery of an active galactic nucleus (AGN) pair in the interacting galaxy system IRAS 20210+1121 at z = 0.056. An XMM-Newton observation reveals the presence of an obscured (N H ∼ 5 x 10 23 cm -2 ), Seyfert-like (L 2-10keV = 4.7 x 10 42 erg s -1 ) nucleus in the northern galaxy, which lacks unambiguous optical AGN signatures. Our spectral analysis also provides strong evidence that the IR-luminous southern galaxy hosts a Type 2 quasar embedded in a bright starburst emission. In particular, the X-ray primary continuum from the nucleus appears totally depressed in the XMM-Newton band as expected in the case of a Compton-thick absorber, and only the emission produced by Compton scattering ('reflection') of the continuum from circumnuclear matter is seen. As such, IRAS 20210+1121 seems to provide an excellent opportunity to witness a key, early phase in the quasar evolution predicted by the theoretical models of quasar activation by galaxy collisions.

  9. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    OpenAIRE

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-01-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribo...

  10. Astrophysics and the evolution of the universe

    CERN Document Server

    Kisslinger, Leonard S

    2014-01-01

    The aim of this book is to teach undergraduate college or university students the basic physics concepts needed to understand the mathematics which describes the evolution of the universe, and based on this to teach the astrophysical theories behind evolution from very early times to the present. The book does not require students to have extensive knowledge of mathematics, like calculus, and includes material that explains concepts such as velocity, acceleration, and force. Based on this, fascinating topics such as Dark Matter, measuring Dark Energy via supernovae velocities, and the creation of mass via the Higgs mechanism are explained. All college students with an interest in science, especially astronomy, without extensive mathematical backgrounds should be able to use and learn from this book. Adults interested in topics like dark energy and the Higgs boson, which are in the news, can make use of this book as well.

  11. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  12. STELLAR POPULATIONS AND EVOLUTION OF EARLY-TYPE CLUSTER GALAXIES: CONSTRAINTS FROM OPTICAL IMAGING AND SPECTROSCOPY OF z = 0.5–0.9 GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Jørgensen, Inger; Chiboucas, Kristin

    2013-01-01

    has a mean metallicity [M/H] approximately 0.2 dex below that of the other clusters and our low-redshift sample. We confirm our previous result that RXJ0152.7–1357 has a mean abundance ratio [α/Fe] approximately 0.3 dex higher than that of the other clusters. The differences in [M/H] and [α/Fe] between the high-redshift clusters and the low-redshift sample are inconsistent with a passive evolution scenario for early-type cluster galaxies over the redshift interval studied. Low-level star formation may be able to bring the metallicity of MS0451.6–0305 in agreement with the low-redshift sample, while we speculate whether galaxy mergers can lead to sufficiently large changes in the abundance ratios for the RXJ0152.7–1357 galaxies to allow them to reach the low-redshift sample values in the time available.

  13. The Complete Mitochondrial Genome of the Pink Stem Borer, Sesamia inferens, in Comparison with Four Other Noctuid Moths

    OpenAIRE

    Chai, Huan-Na; Du, Yu-Zhou

    2012-01-01

    The complete 15,413-bp mitochondrial genome (mitogenome) of Sesamia inferens (Walker) (Lepidoptera: Noctuidae) was sequenced and compared with those of four other noctuid moths. All of the mitogenomes analyzed displayed similar characteristics with respect to gene content, genome organization, nucleotide comparison, and codon usages. Twelve-one protein-coding genes (PCGs) utilized the standard ATN, but the cox1 gene used CGA as the initiation codon; &...

  14. The origin and evolution of Homo sapiens.

    Science.gov (United States)

    Stringer, Chris

    2016-07-05

    If we restrict the use of Homo sapiens in the fossil record to specimens which share a significant number of derived features in the skeleton with extant H. sapiens, the origin of our species would be placed in the African late middle Pleistocene, based on fossils such as Omo Kibish 1, Herto 1 and 2, and the Levantine material from Skhul and Qafzeh. However, genetic data suggest that we and our sister species Homo neanderthalensis shared a last common ancestor in the middle Pleistocene approximately 400-700 ka, which is at least 200 000 years earlier than the species origin indicated from the fossils already mentioned. Thus, it is likely that the African fossil record will document early members of the sapiens lineage showing only some of the derived features of late members of the lineage. On that basis, I argue that human fossils such as those from Jebel Irhoud, Florisbad, Eliye Springs and Omo Kibish 2 do represent early members of the species, but variation across the African later middle Pleistocene/early Middle Stone Age fossils shows that there was not a simple linear progression towards later sapiens morphology, and there was chronological overlap between different 'archaic' and 'modern' morphs. Even in the late Pleistocene within and outside Africa, we find H. sapiens specimens which are clearly outside the range of Holocene members of the species, showing the complexity of recent human evolution. The impact on species recognition of late Pleistocene gene flow between the lineages of modern humans, Neanderthals and Denisovans is also discussed, and finally, I reconsider the nature of the middle Pleistocene ancestor of these lineages, based on recent morphological and genetic data.This article is part of the themed issue 'Major transitions in human evolution'. © 2016 The Author(s).

  15. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the othersa

    Directory of Open Access Journals (Sweden)

    Bernhardt Harold S

    2012-07-01

    Full Text Available Abstract The problems associated with the RNA world hypothesis are well known. In the following I discuss some of these difficulties, some of the alternative hypotheses that have been proposed, and some of the problems with these alternative models. From a biosynthetic – as well as, arguably, evolutionary – perspective, DNA is a modified RNA, and so the chicken-and-egg dilemma of “which came first?” boils down to a choice between RNA and protein. This is not just a question of cause and effect, but also one of statistical likelihood, as the chance of two such different types of macromolecule arising simultaneously would appear unlikely. The RNA world hypothesis is an example of a ‘top down’ (or should it be ‘present back’? approach to early evolution: how can we simplify modern biological systems to give a plausible evolutionary pathway that preserves continuity of function? The discovery that RNA possesses catalytic ability provides a potential solution: a single macromolecule could have originally carried out both replication and catalysis. RNA – which constitutes the genome of RNA viruses, and catalyzes peptide synthesis on the ribosome – could have been both the chicken and the egg! However, the following objections have been raised to the RNA world hypothesis: (i RNA is too complex a molecule to have arisen prebiotically; (ii RNA is inherently unstable; (iii catalysis is a relatively rare property of long RNA sequences only; and (iv the catalytic repertoire of RNA is too limited. I will offer some possible responses to these objections in the light of work by our and other labs. Finally, I will critically discuss an alternative theory to the RNA world hypothesis known as ‘proteins first’, which holds that proteins either preceded RNA in evolution, or – at the very least – that proteins and RNA coevolved. I will argue that, while theoretically possible, such a hypothesis is probably unprovable, and that the RNA

  16. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins.

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M; Ballard, Grant; Ainley, David G; Varsani, Arvind

    2017-07-01

    estimated the divergence time between Northern fulmar-associated papillomavirus and the other Sauropsid papillomaviruses be to around 250 million years ago, during the Paleozoic-Mesozoic transition and our analysis dates the root of the papillomavirus tree between 400 and 600 million years ago. Our analysis shows evidence for niche adaptation and that these non-mammalian viruses have highly divergent E6 and E7 proteins, providing insights into the evolution of the early viral (onco-)proteins.

  17. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M.; Ballard, Grant; Ainley, David G.; Varsani, Arvind

    2017-01-01

    divergence time between Northern fulmar-associated papillomavirus and the other Sauropsid papillomaviruses be to around 250 million years ago, during the Paleozoic-Mesozoic transition and our analysis dates the root of the papillomavirus tree between 400 and 600 million years ago. Our analysis shows evidence for niche adaptation and that these non-mammalian viruses have highly divergent E6 and E7 proteins, providing insights into the evolution of the early viral (onco-)proteins.

  18. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages

    Directory of Open Access Journals (Sweden)

    Mandoli Dina F

    2010-10-01

    Full Text Available Abstract Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants, lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense, and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels. We found one new indel and an inversion of a block of genes that unites the monilophytes. Conclusions Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns

  19. Relations between the galactic evolution and the stellar evolution

    International Nuclear Information System (INIS)

    Audouze, J.

    1984-01-01

    After a quick definition of the galactic evolution and a summary of the basic ingredients (namely the abundances of the chemical elements observed in different astrophysical sites), the parameters directly related to the stellar evolution which govern the galactic evolution are outlined. They are the rates of star formation, the initial mass functions and the various nucleosynthetic yields. The 'classical' models of chemical evolution of galaxies are then briefly recalled. Finally, attention is drawn to three recent contributions concerning both the galactic evolution and the stellar evolution. They are (i) some prediction of the rate of star formation for low mass stars made from the planetary nebula abundance distribution (ii) the chemical evolution of C, O and Fe and (iii) the chemical evolution of the galactic interstellar medium. (Auth.)

  20. Structural and Sequence Similarities of Hydra Xeroderma Pigmentosum A Protein to Human Homolog Suggest Early Evolution and Conservation

    Directory of Open Access Journals (Sweden)

    Apurva Barve

    2013-01-01

    Full Text Available Xeroderma pigmentosum group A (XPA is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1 and replication protein A 70 kDa subunit (RPA70 proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla.