WorldWideScience

Sample records for early mitogenomic evolution

  1. Marine turtle mitogenome phylogenetics and evolution

    DEFF Research Database (Denmark)

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Luis Alonso

    2012-01-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae...... distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses...... to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all...

  2. Life-history evolution and mitogenomic phylogeny of caecilian amphibians.

    Science.gov (United States)

    San Mauro, Diego; Gower, David J; Müller, Hendrik; Loader, Simon P; Zardoya, Rafael; Nussbaum, Ronald A; Wilkinson, Mark

    2014-04-01

    We analyze mitochondrial genomes to reconstruct a robust phylogenetic framework for caecilian amphibians and use this to investigate life-history evolution within the group. Our study comprises 45 caecilian mitochondrial genomes (19 of them newly reported), representing all families and 27 of 32 currently recognized genera, including some for which molecular data had never been reported. Support for all relationships in the inferred phylogenetic tree is high to maximal, and topology tests reject all investigated alternatives, indicating an exceptionally robust molecular phylogenetic framework of caecilian evolution consistent with current morphology-based supraspecific classification. We used the mitogenomic phylogenetic framework to infer ancestral character states and to assess correlation among three life-history traits (free-living larvae, viviparity, specialized pre-adult or vernal teeth), each of which occurs only in some caecilian species. Our results provide evidence that an ancestor of the Seychelles caecilians abandoned direct development and re-evolved a free-living larval stage. This study yields insights into the concurrent evolution of direct development and of vernal teeth in an ancestor of Teresomata that likely gave rise to skin-feeding (maternal dermatophagy) behavior and subsequently enabled evolution of viviparity, with skin feeding possibly a homologous precursor of oviduct feeding in viviparous caecilians. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Ancient mitogenomics

    DEFF Research Database (Denmark)

    Ho, Simon Y. W.; Gilbert, Tom

    2010-01-01

    the technical challenges that face researchers in the field. We catalogue the diverse sequencing methods and source materials used to obtain ancient mitogenomic sequences, summarise the associated genetic and phylogenetic studies that have been conducted, and evaluate the future prospects of the field.......The mitochondrial genome has been the traditional focus of most research into ancient DNA, owing to its high copy number and population-level variability. Despite this long-standing interest in mitochondrial DNA, it was only in 2001 that the first complete ancient mitogenomic sequences were...... obtained. As a result of various methodological developments, including the introduction of high-throughput sequencing techniques, the total number of ancient mitogenome sequences has increased rapidly over the past few years. In this review, we present a brief history of ancient mitogenomics and describe...

  4. Landscape genomics: natural selection drives the evolution of mitogenome in penguins

    OpenAIRE

    Ramos, Barbara; González-Acuña, Daniel; Loyola, David E.; Johnson, Warren E.; Parker, Patricia G.; Massaro, Melanie; Dantas, Gisele P. M.; Miranda, Marcelo D.; Vianna, Juliana A.

    2018-01-01

    Background Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin...

  5. Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous-Tertiary boundary.

    Science.gov (United States)

    Roos, Jonas; Aggarwal, Ramesh K; Janke, Axel

    2007-11-01

    The mitochondrial genomes of the dwarf crocodile, Osteolaemus tetraspis, and two species of dwarf caimans, the smooth-fronted caiman, Paleosuchus trigonatus, and Cuvier's dwarf caiman, Paleosuchus palpebrosus, were sequenced and included in a mitogenomic phylogenetic study. The phylogenetic analyses, which included a total of ten crocodylian species, yielded strong support to a basal split between Crocodylidae and Alligatoridae. Osteolaemus fell within the Crocodylidae as the sister group to Crocodylus. Gavialis and Tomistoma, which joined on a common branch, constituted a sister group to Crocodylus/Osteolaemus. This suggests that extant crocodylians are organized in two families: Alligatoridae and Crocodylidae. Within the Alligatoridae there was a basal split between Alligator and a branch that contained Paleosuchus and Caiman. The analyses also provided molecular estimates of various divergences applying recently established crocodylian and outgroup fossil calibration points. Molecular estimates based on amino acid data placed the divergence between Crocodylidae and Alligatoridae at 97-103 million years ago and that between Alligator and Caiman/Paleosuchus at 65-72 million years ago. Other crocodilian divergences were placed after the Cretaceous-Tertiary boundary. Thus, according to the molecular estimates, three extant crocodylian lineages have their roots in the Cretaceous. Considering the crocodylian diversification in the Cretaceous the molecular datings suggest that the extinction of the dinosaurs was also to some extent paralleled in the crocodylian evolution. However, for whatever reason, some crocodylian lineages survived into the Tertiary.

  6. Landscape genomics: natural selection drives the evolution of mitogenome in penguins.

    Science.gov (United States)

    Ramos, Barbara; González-Acuña, Daniel; Loyola, David E; Johnson, Warren E; Parker, Patricia G; Massaro, Melanie; Dantas, Gisele P M; Miranda, Marcelo D; Vianna, Juliana A

    2018-01-16

    Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin species distributed from the equator to Antarctica. Signatures of selection of 13 mitochondrial protein-coding genes were evaluated by comparing among species within and among genera (Spheniscus, Pygoscelis, Eudyptula, Eudyptes and Aptenodytes). The genetic data were correlated with environmental data obtained through remote sensing (sea surface temperature [SST], chlorophyll levels [Chl] and a combination of SST and Chl [COM]) through the distribution of these species. We identified the complete mtDNA genomes of several penguin species, including ND6 and 8 tRNAs on the light strand and 12 protein coding genes, 14 tRNAs and two rRNAs positioned on the heavy strand. The highest diversity was found in NADH dehydrogenase genes and the lowest in COX genes. The lowest evolutionary divergence among species was between Humboldt (Spheniscus humboldti) and Galapagos (S. mendiculus) penguins (0.004), while the highest was observed between little penguin (Eudyptula minor) and Adélie penguin (Pygoscelis adeliae) (0.097). We identified a signature of purifying selection (Ka/Ks penguins. In contrast, COX1 had a signature of strong negative selection. ND4 Ka/Ks ratios were highly correlated with SST (Mantel, p-value: 0.0001; GLM, p-value: 0.00001) and thus may be related to climate adaptation throughout penguin speciation. These results identify mtDNA candidate genes under selection which could be involved in broad-scale adaptations of penguins to their environment. Such knowledge may be

  7. Adaptive Patterns of Mitogenome Evolution Are Associated with the Loss of Shell Scutes in Turtles.

    Science.gov (United States)

    Escalona, Tibisay; Weadick, Cameron J; Antunes, Agostinho

    2017-10-01

    The mitochondrial genome encodes several protein components of the oxidative phosphorylation (OXPHOS) pathway and is critical for aerobic respiration. These proteins have evolved adaptively in many taxa, but linking molecular-level patterns with higher-level attributes (e.g., morphology, physiology) remains a challenge. Turtles are a promising system for exploring mitochondrial genome evolution as different species face distinct respiratory challenges and employ multiple strategies for ensuring efficient respiration. One prominent adaptation to a highly aquatic lifestyle in turtles is the secondary loss of keratenized shell scutes (i.e., soft-shells), which is associated with enhanced swimming ability and, in some species, cutaneous respiration. We used codon models to examine patterns of selection on mitochondrial protein-coding genes along the three turtle lineages that independently evolved soft-shells. We found strong evidence for positive selection along the branches leading to the pig-nosed turtle (Carettochelys insculpta) and the softshells clade (Trionychidae), but only weak evidence for the leatherback (Dermochelys coriacea) branch. Positively selected sites were found to be particularly prevalent in OXPHOS Complex I proteins, especially subunit ND2, along both positively selected lineages, consistent with convergent adaptive evolution. Structural analysis showed that many of the identified sites are within key regions or near residues involved in proton transport, indicating that positive selection may have precipitated substantial changes in mitochondrial function. Overall, our study provides evidence that physiological challenges associated with adaptation to a highly aquatic lifestyle have shaped the evolution of the turtle mitochondrial genome in a lineage-specific manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. The complete mitochondrial genome of the Chinese hook snout carp Opsariichthys bidens (Actinopterygii: Cypriniformes) and an alternative pattern of mitogenomic evolution in vertebrate

    DEFF Research Database (Denmark)

    Wang, Xuzhen; Wang, Jun; He, Shunping

    2007-01-01

    The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S), 22 tRNA genes, and a no......The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S), 22 tRNA genes...

  9. The Paleo-Indian Entry into South America According to Mitogenomes.

    Science.gov (United States)

    Brandini, Stefania; Bergamaschi, Paola; Cerna, Marco Fernando; Gandini, Francesca; Bastaroli, Francesca; Bertolini, Emilie; Cereda, Cristina; Ferretti, Luca; Gómez-Carballa, Alberto; Battaglia, Vincenza; Salas, Antonio; Semino, Ornella; Achilli, Alessandro; Olivieri, Anna; Torroni, Antonio

    2018-02-01

    Recent and compelling archaeological evidence attests to human presence ∼14.5 ka at multiple sites in South America and a very early exploitation of extreme high-altitude Andean environments. Considering that, according to genetic evidence, human entry into North America from Beringia most likely occurred ∼16 ka, these archeological findings would imply an extremely rapid spread along the double continent. To shed light on this issue from a genetic perspective, we first completely sequenced 217 novel modern mitogenomes of Native American ancestry from the northwestern area of South America (Ecuador and Peru); we then evaluated them phylogenetically together with other available mitogenomes (430 samples, both modern and ancient) from the same geographic area and, finally, with all closely related mitogenomes from the entire double continent. We detected a large number (N = 48) of novel subhaplogroups, often branching into further subclades, belonging to two classes: those that arose in South America early after its peopling and those that instead originated in North or Central America and reached South America with the first settlers. Coalescence age estimates for these subhaplogroups provide time boundaries indicating that early Paleo-Indians probably moved from North America to the area corresponding to modern Ecuador and Peru over the short time frame of ∼1.5 ka comprised between 16.0 and 14.6 ka. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Parallel Mitogenome Sequencing Alleviates Random Rooting Effect in Phylogeography.

    Science.gov (United States)

    Hirase, Shotaro; Takeshima, Hirohiko; Nishida, Mutsumi; Iwasaki, Wataru

    2016-04-28

    Reliably rooted phylogenetic trees play irreplaceable roles in clarifying diversification in the patterns of species and populations. However, such trees are often unavailable in phylogeographic studies, particularly when the focus is on rapidly expanded populations that exhibit star-like trees. A fundamental bottleneck is known as the random rooting effect, where a distant outgroup tends to root an unrooted tree "randomly." We investigated whether parallel mitochondrial genome (mitogenome) sequencing alleviates this effect in phylogeography using a case study on the Sea of Japan lineage of the intertidal goby Chaenogobius annularis Eighty-three C. annularis individuals were collected and their mitogenomes were determined by high-throughput and low-cost parallel sequencing. Phylogenetic analysis of these mitogenome sequences was conducted to root the Sea of Japan lineage, which has a star-like phylogeny and had not been reliably rooted. The topologies of the bootstrap trees were investigated to determine whether the use of mitogenomes alleviated the random rooting effect. The mitogenome data successfully rooted the Sea of Japan lineage by alleviating the effect, which hindered phylogenetic analysis that used specific gene sequences. The reliable rooting of the lineage led to the discovery of a novel, northern lineage that expanded during an interglacial period with high bootstrap support. Furthermore, the finding of this lineage suggested the existence of additional glacial refugia and provided a new recent calibration point that revised the divergence time estimation between the Sea of Japan and Pacific Ocean lineages. This study illustrates the effectiveness of parallel mitogenome sequencing for solving the random rooting problem in phylogeographic studies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Multiplicity in Early Stellar Evolution

    Science.gov (United States)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  12. The complete mitogenome of Fusarium gerlachii

    NARCIS (Netherlands)

    Kulik, Tomasz; Brankovics, Balázs; Sawicki, Jakub; van Diepeningen, Anne D

    2014-01-01

    Abstract The structure of the Fusarium gerlachii mitogenome is similar to that of closely related Fusarium graminearum; it has a total length of 93,428 bp, the base composition of the genome is: A (35.3%), T (32.8%), C (14.7%) and G (17.2%). The mitogenome contains 13 protein-coding genes, 2

  13. The complete mitogenome of Fusarium culmorum

    NARCIS (Netherlands)

    Kulik, Tomasz; Brankovics, Balázs; Sawicki, Jakub; van Diepeningen, A.D.

    2015-01-01

    The structure of the Fusarium culmorum mitogenome is similar to that of closely related Fusarium spp.: it has a total length of 103,844 bp, the base composition of the genome is the following: A (35.4%), T (32.9%), C (14.6%), and G (17.1%). The mitogenome contains 13 protein-coding genes, 2

  14. Early evolution without a tree of life.

    Science.gov (United States)

    Martin, William F

    2011-06-30

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.

  15. Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity analysis

    DEFF Research Database (Denmark)

    Liu, Shanlin; Wang, Xin; Xie, Lin

    2016-01-01

    Biodiversity analyses based on next-generation sequencing (NGS) platforms have developed by leaps and bounds in recent years. A PCR-free strategy, which can alleviate taxonomic bias, was considered as a promising approach to delivering reliable species compositions of targeted environments...... data is highly demanding on computing resources. Here, we present a mitogenome enrichment pipeline via a gene capture chip that was designed by virtue of the mitogenome sequences of the 1000 Insect Transcriptome Evolution project (1KITE, www.1kite.org). A mock sample containing 49 species was used...... in abundance. However, the frequencies of input taxa were largely maintained after capture (R2 = 0.81). We suggest that our mitogenome capture approach coupled with PCR-free shotgun sequencing could provide ecological researchers an efficient NGS method to deliver reliable biodiversity assessment....

  16. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes).

    Science.gov (United States)

    Amaral, Cesar R L; Pereira, Filipe; Silva, Dayse A; Amorim, António; de Carvalho, Elizeu F

    2017-09-20

    Here we present a mitogenomic perspective on the evolution of sharks and rays, being a first glance on the complete mitochondrial history of such an old and diversified group of vertebrates. The Elasmobranchii is a diverse subclass of Chondrichthyes, or cartilaginous fish, with about 1200 species of ocean- and freshwater-dwelling fishes spread all over the world's seas, including some of the ocean's largest fishes. The group dates back about 400 million years near the Devonian-Silurian boundary, being nowadays represented by several derivative lineages, mainly related to Mesozoic forms. Although considered of ecological, commercial and conservation importance, the phylogeny of this old group is poorly studied and still under debate. Here we apply a molecular systematic approach on 82 complete mitochondrial genomes to investigate the phylogeny of the Elasmobranchii. By using maximum likelihood (ML) and Bayesian analyses, we found a clear separation within the shark clade between the Galeomorphii and the Squalomorphii, as well as sister taxa relationships between the Carcharhiniformes and the Lamniformes. Moreover, we found that Pristoidei clusters within the Rhinobatoidei, having been recovered as the sister taxon of the Rhinobatos genus in a clade which also includes the basal Zapteryx. Our results also reject the Hypnosqualea hypothesis, which proposes that the Batoidea should be placed within the Selachii.

  17. Comparative Mitogenomic Analysis of Species Representing Six Subfamilies in the Family Tenebrionidae

    Directory of Open Access Journals (Sweden)

    Hong-Li Zhang

    2016-05-01

    Full Text Available To better understand the architecture and evolution of the mitochondrial genome (mitogenome, mitogenomes of ten specimens representing six subfamilies in Tenebrionidae were selected, and comparative analysis of these mitogenomes was carried out in this study. Ten mitogenomes in this family share a similar gene composition, gene order, nucleotide composition, and codon usage. In addition, our results show that nucleotide bias was strongly influenced by the preference of codon usage for A/T rich codons which significantly correlated with the G + C content of protein coding genes (PCGs. Evolutionary rate analyses reveal that all PCGs have been subjected to a purifying selection, whereas 13 PCGs displayed different evolution rates, among which ATPase subunit 8 (ATP8 showed the highest evolutionary rate. We inferred the secondary structure for all RNA genes of Tenebrio molitor (Te2 and used this as the basis for comparison with the same genes from other Tenebrionidae mitogenomes. Some conserved helices (stems and loops of RNA structures were found in different domains of ribosomal RNAs (rRNAs and the cloverleaf structure of transfer RNAs (tRNAs. With regard to the AT-rich region, we analyzed tandem repeat sequences located in this region and identified some essential elements including T stretches, the consensus motif at the flanking regions of T stretch, and the secondary structure formed by the motif at the 3′ end of T stretch in major strand, which are highly conserved in these species. Furthermore, phylogenetic analyses using mitogenomic data strongly support the relationships among six subfamilies: ((Tenebrionidae incertae sedis + (Diaperinae + Tenebrioninae + (Pimeliinae + Lagriinae, which is consistent with phylogenetic results based on morphological traits.

  18. New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha

    Directory of Open Access Journals (Sweden)

    Wei-Jen eChen

    2014-10-01

    Full Text Available The Acanthomorpha is the largest group of teleost fishes with about one third of extant vertebrate species. In the course of its evolution this lineage experienced several episodes of radiation, leading to a large number of descendant lineages differing profoundly in morphology, ecology, distribution and behavior. Although Acanthomorpha was recognized decades ago, we are only now beginning to decipher its large-scale, time-calibrated phylogeny, a prerequisite to test various evolutionary hypotheses explaining the tremendous diversity of this group. In this study, we provide new insights into the early evolution of the acanthomorphs and the euteleost allies based on the phylogenetic analysis of a newly developed dataset combining nine nuclear and mitochondrial gene markers. Our inferred tree is time-calibrated using 15 fossils, some of which have not been used before. While our phylogeny strongly supports a monophyletic Neoteleostei, Ctenosquamata (i.e., Acanthomorpha plus Myctophiformes, and Acanthopterygii, we find weak support (bootstrap value < 48% for the traditionally defined Acanthomorpha, as well as evidence of non-monophyly for the traditional Paracanthopterygii, Beryciformes, and Percomorpha. We corroborate the new Paracanthopterygii sensu Miya et al. (2005 including Polymixiiformes, Zeiformes, Gadiformes, Percopsiformes, and likely the enigmatic Stylephorus chordatus. Our timetree largely agrees with other recent studies based on nuclear loci in inferring an Early Cretaceous origin for the acanthomorphs followed by a Late Cretaceous/Early Paleogene radiation of major lineages. This is in contrast to mitogenomic studies mostly inferring Jurassic or even Triassic ages for the origin of the acanthomorphs. We compare our results to those of previous studies, and attempt to address some of the issues that may have led to incongruence between the fossil record and the molecular clock studies, as well as between the different molecular

  19. Early evolution without a tree of life

    Directory of Open Access Journals (Sweden)

    Martin William F

    2011-06-01

    Full Text Available Abstract Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre.

  20. Accretion and early evolution of Earth

    DEFF Research Database (Denmark)

    Saji, Nikitha Susan

    in solar system materials is found to be related to selective thermal processing of dust in the early nebula given the correlation observed for these eects with Fe-peak neutron-rich isotope anomalies, whose origin is attributed to distinct nucleosnythetic sites other than classical s-, r- or p......-sized dust, of which the early protoplanetary disk is initially composed of, coalesce over the course of several millions of years to form the precursors to planets that make up the solar system today. The final assembly of Earth-like planets is complete only after a protracted latestage evolution...... that extends over at least 100 Myr, characterized by violent collisions between Mars- to Moon-sized planetary embryos. Evidence for the many details of solar system evolution - such as the diverse stellar sources that contributed material to solar system bodies to what role disk processes and late...

  1. Chemical evolution of the early Martian hydrosphere

    International Nuclear Information System (INIS)

    Schaefer, M.W.

    1990-01-01

    The chemical evolution of the early Martian hydrosphere is discussed. The early Martian ocean can be modeled as a body of relatively pure water in equilibrium with a dense carbon dioxide atmosphere. The chemical weathering of lavas, pyroclastic deposits, and impact melt sheets would have the effect of neutralizing the acidity of the juvenile water. As calcium and other cations are added to the water by chemical weathering, they are quickly removed by the precipitation of calcium carbonate and other minerals, forming a deposit of limestone beneath the surface of the ocean. As the atmospheric carbon dioxide pressure and the temperature decrease, the Martian ocean would be completely frozen. Given the scenario for the chemical evolution of the northern lowland plains of Mars, it should be possible to draw a few conclusions about the expected mineralogy and geomorphology of this regions

  2. Early Microbial Evolution: The Age of Anaerobes.

    Science.gov (United States)

    Martin, William F; Sousa, Filipa L

    2015-12-18

    In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  3. Stochastic evolution of cosmological parameters in the early universe

    Indian Academy of Sciences (India)

    We develop a stochastic formulation of cosmology in the early universe, after considering the scatter in the redshift-apparent magnitude diagram in the early epochs as an observational evidence for the non-deterministic evolution of early universe. We consider the stochastic evolution of density parameter in the early ...

  4. The early thermal evolution of Mars

    Science.gov (United States)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  5. Evolutionary history of anglerfishes (Teleostei: Lophiiformes: a mitogenomic perspective

    Directory of Open Access Journals (Sweden)

    Shimazaki Mitsuomi

    2010-02-01

    -sea midwater dwellers (Ceratioidei cannot be reconciled with the molecular phylogeny. A relaxed molecular-clock Bayesian analysis of the divergence times suggests that all of the subordinal diversifications have occurred during a relatively short time period between 100 and 130 Myr ago (early to mid Cretaceous. Conclusions The mitogenomic analyses revealed previously unappreciated phylogenetic relationships among the lophiiform suborders and ceratioid familes. Although the latter relationships cannot be reconciled with the earlier hypotheses based on morphology, we found that simple exclusion of the reductive or simplified characters can alleviate some of the conflict. The acquisition of novel features, such as male dwarfism, bioluminescent lures, and unique reproductive modes allowed the deep-sea ceratioids to diversify rapidly in a largely unexploited, food-poor bathypelagic zone (200-2000 m depth relative to the other lophiiforms occurring in shallow coastal areas.

  6. Human evolution. Evolution of early Homo: an integrated biological perspective.

    Science.gov (United States)

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-04

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments. Copyright © 2014, American Association for the Advancement of Science.

  7. Environment and Climate of Early Human Evolution

    Science.gov (United States)

    Levin, Naomi E.

    2015-05-01

    Evaluating the relationships between climate, the environment, and human traits is a key part of human origins research because changes in Earth's atmosphere, oceans, landscapes, and ecosystems over the past 10 Myr shaped the selection pressures experienced by early humans. In Africa, these relationships have been influenced by a combination of high-latitude ice distributions, sea surface temperatures, and low-latitude orbital forcing that resulted in large oscillations in vegetation and moisture availability that were modulated by local basin dynamics. The importance of both climate and tectonics in shaping African landscapes means that integrated views of the ecological, environmental, and tectonic histories of a region are necessary in order to understand the relationships between climate and human evolution.

  8. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae and evaluation of potential DNA barcoding markers

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2017-08-01

    Full Text Available The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of Lygus pratenszs and re-sequenced the mitogenomes of four mirids (i.e., Apolygus lucorum, Adelphocoris suturalis, Ade. fasciaticollis and Ade. lineolatus. We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage were well conserved among these mirids. Four protein-coding genes (PCGs (cox1, cox3, nad1 and nad3 had no length variability, where nad5 showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs (nad4 and nad5 showed relatively high substitution rates at the nucleotide and amino acid levels, where cox1 had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than 1 (<0.59, but the Ka/Ks values of cox1-barcode sequences were always larger than 1 (1.34 –15.20, indicating that the 658 bp sequences of cox1 may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of Nesidiocoris + (Trigonotylus + (Adelphocoris + (Apolygus + Lygus, as revealed by nad4, nad5, rrnL and the combined 22 transfer RNA genes (tRNAs, respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes (nad4, nad5 and rrnL and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification

  9. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers.

    Science.gov (United States)

    Wang, Juan; Zhang, Li; Zhang, Qi-Lin; Zhou, Min-Qiang; Wang, Xiao-Tong; Yang, Xing-Zhuo; Yuan, Ming-Long

    2017-01-01

    The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of Lygus pratenszs and re-sequenced the mitogenomes of four mirids (i.e., Apolygus lucorum , Adelphocoris suturalis , Ade. fasciaticollis and Ade. lineolatus ). We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage) were well conserved among these mirids. Four protein-coding genes (PCGs) ( cox1 , cox3 , nad1 and nad3 ) had no length variability, where nad5 showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs ( nad4 and nad5 ) showed relatively high substitution rates at the nucleotide and amino acid levels, where cox1 had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than 1 (barcode sequences were always larger than 1 (1.34 -15.20), indicating that the 658 bp sequences of cox1 may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of Nesidiocoris + ( Trigonotylus + ( Adelphocoris + ( Apolygus + Lygus ))), as revealed by nad4 , nad5 , rrnL and the combined 22 transfer RNA genes (tRNAs), respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes ( nad4 , nad5 and rrnL ) and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification studies.

  10. Spinal cord evolution in early Homo.

    Science.gov (United States)

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Transformation and diversification in early mammal evolution.

    Science.gov (United States)

    Luo, Zhe-Xi

    2007-12-13

    Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.

  12. Hosting Early Evolution in Heated Pores of Rock

    Science.gov (United States)

    Mast, C. B.; Möller, F.; Lanzmich, S.; Keil, L.; Braun, D.

    2017-07-01

    Recent experiments with non-equilibrium micro­systems suggest that porous rock conditions drive early molecular evolution in many ways, including accumulation, polymerization, replication, length selection and gelation.

  13. Mitogenomes from type specimens, a genotyping tool for morphologically simple species: ten genomes of agar-producing red algae.

    Science.gov (United States)

    Boo, Ga Hun; Hughey, Jeffery R; Miller, Kathy Ann; Boo, Sung Min

    2016-10-14

    DNA sequences from type specimens provide independent, objective characters that enhance the value of type specimens and permit the correct application of species names to phylogenetic clades and specimens. We provide mitochondrial genomes (mitogenomes) from archival type specimens of ten species in agar-producing red algal genera Gelidium and Pterocladiella. The genomes contain 43-44 genes, ranging in size from 24,910 to 24,970 bp with highly conserved gene synteny. Low Ka/Ks ratios of apocytochrome b and cytochrome oxidase genes support their utility as markers. Phylogenies of mitogenomes and cox1+rbcL sequences clarified classification at the genus and species levels. Three species formerly in Gelidium and Pterocladia are transferred to Pterocladiella: P. media comb. nov., P. musciformis comb. nov., and P. luxurians comb. and stat. nov. Gelidium sinicola is merged with G. coulteri because they share identical cox1 and rbcL sequences. We describe a new species, Gelidium millariana sp. nov., previously identified as G. isabelae from Australia. We demonstrate that mitogenomes from type specimens provide a new tool for typifying species in the Gelidiales and that there is an urgent need for analyzing mitogenomes from type specimens of red algae and other morphologically simple organisms for insight into their nomenclature, taxonomy and evolution.

  14. The mitogenome of Onchocerca volvulus from the Brazilian Amazonia focus

    Directory of Open Access Journals (Sweden)

    James L Crainey

    2016-01-01

    Full Text Available We report here the first complete mitochondria genome of Onchocerca volvulus from a focus outside of Africa. An O. volvulus mitogenome from the Brazilian Amazonia focus was obtained using a combination of high-throughput and Sanger sequencing technologies. Comparisons made between this mitochondrial genome and publicly available mitochondrial sequences identified 46 variant nucleotide positions and suggested that our Brazilian mitogenome is more closely related to Cameroon-origin mitochondria than West African-origin mitochondria. As well as providing insights into the origins of Latin American onchocerciasis, the Brazilian Amazonia focus mitogenome may also have value as an epidemiological resource.

  15. Solar Radiation as Driving Force In Early Evolution

    Science.gov (United States)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  16. Silent innovation: corporate strategizing in early nanotechnology evolution

    DEFF Research Database (Denmark)

    Andersen, Maj Munch

    2011-01-01

    Nanotechnology offers a rare opportunity to study the early evolution of a new generic technology in real time. This paper suggests focusing more on the market formation side, rather than technology generation, when seeking to explain technology evolution. Applying an evolutionary capabilities...... perspective, the paper examines how firms organize innovation in the early embryonic stages of a technology and how the market as a selective device undergoes qualitative change as part of economic evolution. The traditional Danish window chain is used as a case. A model of nanotechnology evolution...... is proposed which suggests that nanotechnology commercialization is significantly driven by small and medium-sized firms based on their internal knowhow, with larger firms as important suppliers of know how. These smaller firms are adept at addressing social needs which appear to be key factors in the nano...

  17. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    International Nuclear Information System (INIS)

    Frey, H.

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics

  18. Mitogenomic evidence for an Indo-West Pacific origin of the Clupeoidei (Teleostei: Clupeiformes.

    Directory of Open Access Journals (Sweden)

    Sébastien Lavoué

    Full Text Available The clupeoid fishes are distributed worldwide, with marine, freshwater and euryhaline species living in either tropical or temperate environments. Regional endemism is important at the species and genus levels, and the highest species diversity is found in the tropical marine Indo-West Pacific region. The clupeoid distribution follows two general pattern of species richness, the longitudinal and latitudinal gradients. To test historical hypotheses explaining the formation of these two gradients, we have examined the early biogeography of the Clupeoidei in reconstructing the evolution of their habitat preferences along with their ancestral range distributions on a time-calibrated mitogenomic phylogeny. The phylogenetic results support the distinction of nine main lineages within the Clupeoidei, five of them new. We infer several independent transitions from a marine to freshwater environment and from a tropical to temperate environment that occurred after the initial diversification period of the Clupeoidei. These results combined with our ancestral range reconstruction hypothesis suggest that the probable region of origin and diversification of the Clupeoidei during the Cretaceous period was the tropical marine precursor to the present Indo-West Pacific region. Thus, our study favors the hypotheses of "Region of origin" and "Tropical conservatism" to explain the origins of the longitudinal and latitudinal gradients of clupeoid species richness, respectively. Additional geological and paleontological evidence further define the tropical marine paleo-region of origin as the eastern Tethys Sea region. The Cretaceous fossil record of the Clupeoidei is partially incongruent with the results here as it contains taxa found outside this region. We discuss three possible causes of conflict between our biogeographical hypothesis and the distributions of the Cretaceous clupeoid fossils: regional extinction, incomplete taxonomic sampling and incorrect

  19. The origin and early evolution of dinosaurs.

    Science.gov (United States)

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  20. The early evolution of the Archegoniatae: a re-appraisal

    NARCIS (Netherlands)

    Meeuse, A.D.J.

    1966-01-01

    After a re-appraisal of the alternative hypotheses concerning the origin and the early evolution of the archegoniate land plants, the postulation of a thalassiophytic group of precursors with free isomorphic alternating generations by Church, Zimmermann, and several others is rejected. Several

  1. Open Listening: Creative Evolution in Early Childhood Settings

    Science.gov (United States)

    Davies, Bronwyn

    2011-01-01

    This article sketches out a philosophy and practice of open listening, linking open listening to Bergson's (1998) concept of creative evolution. I draw on examples of small children at play from a variety of sources, including Reggio-Emilia-inspired preschools in Sweden. The article offers a challenge to early childhood educators to listen and to…

  2. Early Stages of the Evolution of Life: a Cybernetic Approach

    Science.gov (United States)

    Melkikh, Alexey V.; Seleznev, Vladimir D.

    2008-08-01

    Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.

  3. Early evolution of Tubulogenerina during the Paleogene of Europe

    Science.gov (United States)

    Gibson, T.G.; Barbin, V.; Poignant, A.; Sztrakos, K.

    1991-01-01

    The early evolution of Tubulogenerina took place in Europe where eight species occur in lower Eocene to uppermost Oligocene or lower Miocene strata. Species diversity within Tubulogenerina dropped significantly in the early Oligocne; only a single species persisted from the late Eocene, and it became extinct before the end of the early Oligocene. Morphologic changes during the European phylogeny of Tubulogenerina include (1) the development of costate and more complex tubulopore ornamentation, and (2) the change from a single elongated apertural slit with a single toothplate to multiple apertures and toothplates. Three new Tubulogenerina species are described. -from Authors

  4. The early evolution of the atmospheres of terrestrial planets

    CERN Document Server

    Raulin, François; Muller, Christian; Nixon, Conor; Astrophysics and Space Science Proceedings : Volume 35

    2013-01-01

    “The Early Evolution of the Atmospheres of Terrestrial Planets” presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth’s transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are ...

  5. Characterization of the complete mitochondrial genome of the storage mite pest Tyrophagus longior (Gervais) (Acari: Acaridae) and comparative mitogenomic analysis of four acarid mites.

    Science.gov (United States)

    Yang, Banghe; Li, Chaopin

    2016-02-01

    Mites of the genus Tyrophagus are economically important polyphagous pest commonly living on stored products and also responsible for allergic reactions to humans. Complete mitochondrial genomes (mitogenomes) and the gene features therein are widely used as molecular markers in the study of population genetics, phylogenetics as well as molecular evolution. However, scarcity on the sequence data has greatly impeded the studies in these areas pertaining to the Acari (mites and ticks). Information on the Tyrophagus mitogenomes is quite critical for phylogenetic evaluation and molecular evolution of the mitogenomes within Acariformes. Herein, we reported the complete mitogenome of the allergenic acarid storage mite Tyrophagus longior (Astigmata: Acaridae), an important member of stored food pests, and compared with those of other three acarid mites. The complete mitogenome of T. longior was a circular molecule of 13,271 bp. Unexpectedly, only 19 transfer RNA genes (tRNAs) were present, lacking trnF, trnS1 and trnQ. Furthermore, it also contained 13 protein-coding genes (PCGs) and 2 genes for rRNA (rrnS and rrnL) commonly detected in metazoans. The four mitogenomes displayed similar characteristics with respect to the gene content, nucleotide comparison, and codon usages. Yet, the gene order of T. longior was different from that in other Acari. The J-strands of the four mitogenomes possessed high A+T content (67.4-70.0%), and exhibited positive GC-skews and negative AT-skews. Most inferred tRNAs of T. longior were extremely truncated, lacking either a D- or T-arm, as found in other acarid mites. In T. longior mitogenome the A+T-rich region was just 50 bp in length and can be folded as a stable stem-loop structure, whereas in the region some structures of microsatellite-like (AT)n and palindromic sequences was not present. Besides, reconstructing of the phylogenetic relationship based on concatenated amino acid sequences of 13 PCGs supported that monophyly of the family

  6. Rates of morphological evolution are heterogeneous in Early Cretaceous birds

    Science.gov (United States)

    Lloyd, Graeme T.

    2016-01-01

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. PMID:27053742

  7. A new hypothesis of dinosaur relationships and early dinosaur evolution.

    Science.gov (United States)

    Baron, Matthew G; Norman, David B; Barrett, Paul M

    2017-03-22

    For 130 years, dinosaurs have been divided into two distinct clades-Ornithischia and Saurischia. Here we present a hypothesis for the phylogenetic relationships of the major dinosaurian groups that challenges the current consensus concerning early dinosaur evolution and highlights problematic aspects of current cladistic definitions. Our study has found a sister-group relationship between Ornithischia and Theropoda (united in the new clade Ornithoscelida), with Sauropodomorpha and Herrerasauridae (as the redefined Saurischia) forming its monophyletic outgroup. This new tree topology requires redefinition and rediagnosis of Dinosauria and the subsidiary dinosaurian clades. In addition, it forces re-evaluations of early dinosaur cladogenesis and character evolution, suggests that hypercarnivory was acquired independently in herrerasaurids and theropods, and offers an explanation for many of the anatomical features previously regarded as notable convergences between theropods and early ornithischians.

  8. Archean komatiite volcanism controlled by the evolution of early continents.

    Science.gov (United States)

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  9. Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns

    OpenAIRE

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-01-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. c...

  10. The Origin and Early Evolution of Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  11. Mitogenomes of polar bodies and corresponding oocytes.

    Directory of Open Access Journals (Sweden)

    Luca Gianaroli

    Full Text Available The objective of the present study was to develop an approach that could assess the chromosomal status and the mitochondrial DNA (mtDNA content of oocytes and their corresponding polar bodies (PBs with the goal of obtaining a comparative picture of the segregation process both for nuclear and mtDNA. After Whole Genome Amplification (WGA, sequencing of the whole mitochondrial genome was attempted to analyze the segregation of mutant and wild-type mtDNA during human meiosis. Three triads, composed of oocyte and corresponding PBs, were analyzed and their chromosome status was successfully assessed. The complete mitochondrial genome (mitogenome was almost entirely sequenced in the oocytes (95.99% compared to 98.43% in blood, while the percentage of sequences obtained in the corresponding PB1 and PB2 was lower (69.70% and 69.04% respectively. The comparison with the mtDNA sequence in blood revealed no changes in the D-loop region for any of the cells of each triad. In the coding region of blood mtDNA and oocyte mtDNA sequences showed full correspondence, whereas all PBs had at least one change with respect to the blood-oocyte pairs. In all, 9 changes were found, either in PB1 or PB2: 4 in MT-ND5, 2 in MT-RNR2, and 1 each in MT-ATP8, MT-ND4, MT-CYTB. The full concordance between oocyte and blood in the 3 triads, and the relegation of changes to PBs, revealed the unexpected coexistence of different variants, giving a refined estimation of mitochondrial heteroplasmy. Should these findings be confirmed by additional data, an active mechanism could be postulated in the oocyte to preserve a condition of 'normality'.

  12. The evolution of early-type galaxies in distant clusters

    International Nuclear Information System (INIS)

    Stanford, S.A.; Eisenhardt, P.R.; Dickinson, M.

    1998-01-01

    We present results from an optical-infrared photometric study of early-type (E+S0) galaxies in 19 galaxy clusters out to z=0.9. The galaxy sample is selected on the basis of morphologies determined from Hubble Space Telescope (HST) WFPC2 images and is photometrically defined in the K band in order to minimize redshift-dependent selection biases. Using new ground-based photometry in five optical and infrared bands for each cluster, we examine the evolution of the color-magnitude relation for early-type cluster galaxies, considering its slope, intercept, and color scatter around the mean relation. New multiwavelength photometry of galaxies in the Coma Cluster is used to provide a baseline sample at z∼0 with which to compare the distant clusters. The optical - IR colors of the early-type cluster galaxies become bluer with increasing redshift in a manner consistent with the passive evolution of an old stellar population formed at an early cosmic epoch. The degree of color evolution is similar for clusters at similar redshift and does not depend strongly on the optical richness or X-ray luminosity of the cluster, which suggests that the history of early-type galaxies is relatively insensitive to environment, at least above a certain density threshold. The slope of the color-magnitude relationship shows no significant change out to z=0.9, which provides evidence that it arises from a correlation between galaxy mass and metallicity, not age. Finally, the intrinsic scatter in the optical - IR colors of the galaxies is small and nearly constant with redshift, which indicates that the majority of giant, early-type galaxies in clusters share a common star formation history, with little perturbation due to uncorrelated episodes of later star formation. Taken together, our results are consistent with models in which most early-type galaxies in rich clusters are old, formed the majority of their stars at high redshift in a well-synchronized fashion, and evolved quiescently

  13. Complete nucleotide sequence and organization of the mitogenome ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-01

    Feb 1, 2010 ... In this study, the complete mitochondrial genome (mitogenome) of E. autonoe was .... skew” was calculated for the PCGs between two strands and the ..... codon stem and 7 bp in the anticodon loop, but also con- tained a ...

  14. Early galactic evolution and the nature of the first stars

    International Nuclear Information System (INIS)

    Jones, J.E.

    1985-05-01

    In this paper, the observational data relating to the early evolution of the Galaxy are reviewed in order to assess the plausibility of a number of models that have been proposed for the first stars. On the basis of standard fragmentation models, it is argued that primordial stars were very similar to normal stars, but that in some circumstances the formation of low mass primordial stars may be suppressed through the dissociation of molecular hydrogen by UV radiation. The existence of these conditions at the time of formation of the Galaxy could explain the absence of zero-metal stars. (orig./WL)

  15. The early evolution of Jean Piaget's clinical method.

    Science.gov (United States)

    Mayer, Susan Jean

    2005-11-01

    This article analyzes the early evolution of Jean Piaget's renowned "clinical method" in order to investigate the method's strikingly original and generative character. Throughout his 1st decade in the field, Piaget frequently discussed and justified the many different approaches to data collection he used. Analysis of his methodological progression during this period reveals that Piaget's determination to access the genuine convictions of children eventually led him to combine 3 distinct traditions in which he had been trained-naturalistic observation, psychometrics, and the psychiatric clinical examination. It was in this amalgam, first evident in his 4th text, that Piaget discovered the clinical dynamic that would drive the classic experiments for which he is most well known.

  16. The emergence and early evolution of biological carbon-fixation.

    Science.gov (United States)

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more

  17. The emergence and early evolution of biological carbon-fixation.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology

  18. Mass loss in early stages of stellar evolution

    International Nuclear Information System (INIS)

    Dearborn, D.S.P.; Kozlowski, M.; Schramm, D.

    1976-01-01

    It is known that stars lose mass between their birth on the main sequence and their death as white dwarfs, or as neutron stars or black holes for more massive stars. Solar wind considerations indicate that not all of the mass loss occurs in a 'last gasp' to form a planetary nebula. Mass loss has be observed in O-B stars and in red giants, but the mass loss observed in these stages do not appear sufficient to account for all the loss required for stars to become white dwarfs. The problem is at what stages and in what manner the excess mass is lost. Suggestions have tended to favour He flashes for stars with M < 2.25 M. and possibly double shell instability flashes for stars in the range from 2.25 M. to 8 M. Although is is possible that significant mass is lost during these stages, there appears to be no quantitative support for this suggestion, and in particular none for the He flash. It is shown here that there is increasing evidence for substantial mass loss during the immediate post main sequence stages when the star is moving from the main sequence to the giant branch. Mass loss at these early stages of evolution may have implications on the subsequent evolution of the star and the amount of nuclearly processed material that is ejected into the interstellar-medium. The behaviour of Arcturus is discussed in these connections. (U.K.)

  19. Origins and Early Evolution of the tRNA Molecule

    Directory of Open Access Journals (Sweden)

    Koji Tamura

    2015-12-01

    Full Text Available Modern transfer RNAs (tRNAs are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs. Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC. The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome.

  20. The Formation and Early Evolution of Embedded Massive Star Clusters

    Science.gov (United States)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  1. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    Science.gov (United States)

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  2. Early Human Evolution in the Western Palaearctic: Ecological Scenarios

    Science.gov (United States)

    Carrión, José S.; Rose, James; Stringer, Chris

    2011-06-01

    This review presents the themes of a special issue dealing with environmental scenarios of human evolution during the Early Pleistocene (2.6-0.78 Ma; MIS 103-MIS 19) and early Middle Pleistocene (0.78-0.47 Ma; MIS 19-base of MIS 12) within the western Palaearctic. This period is one of dramatic changes in the climates and the distribution of Palaearctic biota. These changes have played their role in generating adaptive and phyletic patterns within the human ancestry, involving several species such as Homo habilis, "Homo georgicus", Homo erectus, Homo antecessor and Homo heidelbergensis. In the archaeological record, these species include the Oldowan (Mode 1) and Acheulian (Mode 2) lithic technologies. Taphonomic considerations of palaeoecological research in hominin-bearing sites are provided and evaluated. Syntheses are provided for north Africa, western Asia, the Mediterranean Basin, Britain, and continental Europe. Palaeoenvironmental reconstructions based on multidisciplinary data are given for Ain Boucherit, Ain Hanech and El-Kherba in Algeria, Dmanisi in Georgia, Atapuerca, Cueva Negra, and the Orce Basin in Spain, Monte Poggiolo and Pirro Nord in Italy, Pont-de-Lavaud in France, and Mauer in Germany. The state of the art with the Out of Africa 1 dispersal model is reviewed. A source-sink dynamics model for Palaeolithic Europe is described to explain the morphological disparity of H. heidelbergensis (we will sometimes use the informal name "Heidelbergs") and early Neanderthals. Other aspects debated here are the selective value of habitat mosaics including reconstructions based on mammal and avian databases, and the role of geological instability combined with topographic complexity. This review is completed by addressing the question of whether the appearance of evolutionary trends within hominins is concentrated in regions of highest worldwide biological diversity (biodiversity hotspots). It is concluded that the keys for the activation of evolutionary

  3. SMRT Sequencing Revealed Mitogenome Characteristics and Mitogenome-Wide DNA Modification Pattern in Ophiocordyceps sinensis.

    Science.gov (United States)

    Kang, Xincong; Hu, Liqin; Shen, Pengyuan; Li, Rui; Liu, Dongbo

    2017-01-01

    Single molecule, real-time (SMRT) sequencing was used to characterize mitochondrial (mt) genome of Ophiocordyceps sinensis and to analyze the mt genome-wide pattern of epigenetic DNA modification. The complete mt genome of O. sinensis , with a size of 157,539 bp, is the fourth largest Ascomycota mt genome sequenced to date. It contained 14 conserved protein-coding genes (PCGs), 1 intronic protein rps3 , 27 tRNAs and 2 rRNA subunits, which are common characteristics of the known mt genomes in Hypocreales. A phylogenetic tree inferred from 14 PCGs in Pezizomycotina fungi supports O. sinensis as most closely related to Hirsutella rhossiliensis in Ophiocordycipitaceae. A total of 36 sequence sites in rps3 were under positive selection, with dN/dS >1 in the 20 compared fungi. Among them, 16 sites were statistically significant. In addition, the mt genome-wide base modification pattern of O. sinensis was determined in this study, especially DNA methylation. The methylations were located in coding and uncoding regions of mt PCGs in O. sinensis , and might be closely related to the expression of PCGs or the binding affinity of transcription factor A to mtDNA. Consequently, these methylations may affect the enzymatic activity of oxidative phosphorylation and then the mt respiratory rate; or they may influence mt biogenesis. Therefore, methylations in the mitogenome of O. sinensis might be a genetic feature to adapt to the cold and low PO 2 environment at high altitude, where O. sinensis is endemic. This is the first report on epigenetic modifications in a fungal mt genome.

  4. High mitogenomic evolutionary rates and time dependency.

    NARCIS (Netherlands)

    Subramanian, S.; Denver, D.R.; Millar, C.D.; Heupink, T.; Aschrafi, A.; Emslie, S.D.; Baroni, C.; Lambert, D.M.

    2009-01-01

    Using entire modern and ancient mitochondrial genomes of Adelie penguins (Pygoscelis adeliae) that are up to 44000 years old, we show that the rates of evolution of the mitochondrial genome are two to six times greater than those estimated from phylogenetic comparisons. Although the rate of

  5. Evolution of allosteric regulation in chorismate mutases from early plants

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Kourtney; Holland, Cynthia K.; Starks, Courtney M.; Jez, Joseph M.

    2017-09-28

    Plants, fungi, and bacteria synthesize the aromatic amino acids: l-phenylalanine, l-tyrosine, and l-tryptophan. Chorismate mutase catalyzes the branch point reaction of phenylalanine and tyrosine biosynthesis to generate prephenate. In Arabidopsis thaliana, there are two plastid-localized chorismate mutases that are allosterically regulated (AtCM1 and AtCM3) and one cytosolic isoform (AtCM2) that is unregulated. Previous analysis of plant chorismate mutases suggested that the enzymes from early plants (i.e. bryophytes/moss, lycophytes, and basal angiosperms) formed a clade distinct from the isoforms found in flowering plants; however, no biochemical information on these enzymes is available. To understand the evolution of allosteric regulation in plant chorismate mutases, we analyzed a basal lineage of plant enzymes homologous to AtCM1 based on sequence similarity. The chorismate mutases from the moss/bryophyte Physcomitrella patens (PpCM1 and PpCM2), the lycophyte Selaginella moellendorffii (SmCM), and the basal angiosperm Amborella trichopoda (AmtCM1 and AmtCM2) were characterized biochemically. Tryptophan was a positive effector for each of the five enzymes examined. Histidine was a weak positive effector for PpCM1 and AmtCM1. Neither tyrosine nor phenylalanine altered the activity of SmCM; however, tyrosine was a negative regulator of the other four enzymes. Phenylalanine down-regulates both moss enzymes and AmtCM2. The 2.0 Å X-ray crystal structure of PpCM1 in complex with the tryptophan identified the allosteric effector site and reveals structural differences between the R- (more active) and T-state (less active) forms of plant chorismate mutases. Molecular insight into the basal plant chorismate mutases guides our understanding of the evolution of allosteric regulation in these enzymes.

  6. Early resistance change and stress/electromigration evolution in near bamboo interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Dima, G.; Govoreanu, B.; Mitrea, O.; Profirescu, M.

    1997-01-01

    A complete description for early resistance change and mechanical stress evolution in near-bamboo interconnects, related to the electromigration, is given in this paper. The proposed model, for the first time, combines the stress/vacancy concentration evolution with the early resistance change of

  7. Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes

    DEFF Research Database (Denmark)

    Petersen, Gitte; Cuenca, Argelia; Zervas, Athanasios

    2017-01-01

    The order Alismatales is a hotspot for evolution of plant mitochondrial genomes characterized by remarkable differences in genome size, substitution rates, RNA editing, retrotranscription, gene loss and intron loss. Here we have sequenced the complete mitogenomes of Zostera marina and Stratiotes...... aloides, which together with previously sequenced mitogenomes from Butomus and Spirodela, provide new evolutionary evidence of genome size reduction, gene loss and transfer to the nucleus. The Zostera mitogenome includes a large portion of DNA transferred from the plastome, yet it is the smallest known...... mitogenome from a non-parasitic plant. Using a broad sample of the Alismatales, the evolutionary history of ribosomal protein gene loss is analyzed. In Zostera almost all ribosomal protein genes are lost from the mitogenome, but only some can be found in the nucleus....

  8. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences.

    Science.gov (United States)

    Poortvliet, Marloes; Olsen, Jeanine L; Croll, Donald A; Bernardi, Giacomo; Newton, Kelly; Kollias, Spyros; O'Sullivan, John; Fernando, Daniel; Stevens, Guy; Galván Magaña, Felipe; Seret, Bernard; Wintner, Sabine; Hoarau, Galice

    2015-02-01

    Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders

  9. Mitochondrial genome of the stonefly Kamimuria wangi (Plecoptera: Perlidae) and phylogenetic position of plecoptera based on mitogenomes.

    Science.gov (United States)

    Yu-Han, Qian; Hai-Yan, Wu; Xiao-Yu, Ji; Wei-Wei, Yu; Yu-Zhou, Du

    2014-01-01

    This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848-15651) and stem-loop 2 (15965-15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.

  10. Mitochondrial genome of the stonefly Kamimuria wangi (Plecoptera: Perlidae and phylogenetic position of plecoptera based on mitogenomes.

    Directory of Open Access Journals (Sweden)

    Qian Yu-Han

    Full Text Available This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848-15651 and stem-loop 2 (15965-15998. The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.

  11. The early evolution of stars and planets with varying mass

    International Nuclear Information System (INIS)

    Bhattacharjee, S.K.

    1980-09-01

    In this thesis some aspects of stellar and planetary evolution with varying mass are examined. It is divided into two sections. The first section deals with the evolution of stars in the pre-main-sequence phase with mass accretion while in the second section we discuss the spin angular momentum of the planets with mass loss. (author)

  12. The Nothoaspis amazoniensis Complete Mitogenome: A Comparative and Phylogenetic Analysis

    Directory of Open Access Journals (Sweden)

    Paulo H. C. Lima

    2018-03-01

    Full Text Available The molecular biology era, together with morphology, molecular phylogenetics, bioinformatics, and high-throughput sequencing technologies, improved the taxonomic identification of Argasidae family members, especially when considering specimens at different development stages, which remains a great difficulty for acarologists. These tools could provide important data and insights on the history and evolutionary relationships of argasids. To better understand these relationships, we sequenced and assembled the first complete mitochondrial genome of Nothoaspis amazoniensis. We used phylogenomics to identify the evolutionary history of this species of tick, comparing the data obtained with 26 complete mitochondrial sequences available in biological databases. The results demonstrated the absence of genetic rearrangements, high similarity and identity, and a close organizational link between the mitogenomes of N. amazoniensis and other argasids analyzed. In addition, the mitogenome had a monophyletic cladistic taxonomic arrangement, encompassed by representatives of the Afrotropical and Neotropical regions, with specific parasitism in bats, which may be indicative of an evolutionary process of cospeciation between vectors and the host.

  13. Comparative mitogenomics, phylogeny and evolutionary history of Leptogorgia (Gorgoniidae).

    Science.gov (United States)

    Poliseno, Angelo; Feregrino, Christian; Sartoretto, Stéphane; Aurelle, Didier; Wörheide, Gert; McFadden, Catherine S; Vargas, Sergio

    2017-10-01

    Molecular analyses of the ecologically important gorgonian octocoral genus Leptogorgia are scant and mostly deal with few species from restricted geographical regions. Here we explore the phylogenetic relationships and the evolutionary history of Leptogorgia using the complete mitochondrial genomes of six Leptogorgia species from different localities in the Atlantic, Mediterranean and eastern Pacific as well as four other genera of Gorgoniidae and Plexauridae. Our mitogenomic analyses showed high inter-specific diversity, variable nucleotide substitution rates and, for some species, novel genomic features such as ORFs of unknown function. The phylogenetic analyses using complete mitogenomes and an extended mtMutS dataset recovered Leptogorgia as polyphyletic, and the species considered in the analyses were split into two defined groups corresponding to different geographic regions, namely the eastern Pacific and the Atlantic-Mediterranean. Our phylogenetic analysis based on mtMutS also showed a clear separation between the eastern Atlantic and South African Leptogorgia, suggesting the need of a taxonomic revision for these forms. A time-calibrated phylogeny showed that the separation of eastern Pacific and western Atlantic species started ca. 20Mya and suggested a recent divergence for eastern Pacific species and for L. sarmentosa-L. capverdensis. Our results also revealed high inter-specific diversity among eastern Atlantic and South African species, highlighting a potential role of the geographical diversification processes and geological events occurring during the last 30Ma in the Atlantic on the evolutionary history of these organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Next generation sequencing and comparative analyses of Xenopus mitogenomes

    Directory of Open Access Journals (Sweden)

    Lloyd Rhiannon E

    2012-09-01

    Full Text Available Abstract Background Mitochondrial genomes comprise a small but critical component of the total DNA in eukaryotic organisms. They encode several key proteins for the cell’s major energy producing apparatus, the mitochondrial respiratory chain. Additonally, their nucleotide and amino acid sequences are of great utility as markers for systematics, molecular ecology and forensics. Their characterization through nucleotide sequencing is a fundamental starting point in mitogenomics. Methods to amplify complete mitochondrial genomes rapidly and efficiently from microgram quantities of tissue of single individuals are, however, not always available. Here we validate two approaches, which combine long-PCR with Roche 454 pyrosequencing technology, to obtain two complete mitochondrial genomes from individual amphibian species. Results We obtained two new xenopus frogs (Xenopus borealis and X. victorianus complete mitochondrial genome sequences by means of long-PCR followed by 454 of individual genomes (approach 1 or of multiple pooled genomes (approach 2, the mean depth of coverage per nucleotide was 9823 and 186, respectively. We also characterised and compared the new mitogenomes against their sister taxa; X. laevis and Silurana tropicalis, two of the most intensely studied amphibians. Our results demonstrate how our approaches can be used to obtain complete amphibian mitogenomes with depths of coverage that far surpass traditional primer-walking strategies, at either the same cost or less. Our results also demonstrate: that the size, gene content and order are the same among xenopus mitogenomes and that S. tropicalis form a separate clade to the other xenopus, among which X. laevis and X. victorianus were most closely related. Nucleotide and amino acid diversity was found to vary across the xenopus mitogenomes, with the greatest diversity observed in the Complex 1 gene nad4l and the least diversity observed in Complex 4 genes (cox1-3. All protein

  15. A Mitogenomic Phylogeny of Living Primates

    Science.gov (United States)

    Finstermeier, Knut; Zinner, Dietmar; Brameier, Markus; Meyer, Matthias; Kreuz, Eva; Hofreiter, Michael; Roos, Christian

    2013-01-01

    Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels. PMID:23874967

  16. Early evolution of the LIM homeobox gene family

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  17. Early evolution of the LIM homeobox gene family

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2010-01-01

    Full Text Available Abstract Background LIM homeobox (Lhx transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. Results We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. Conclusions The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In

  18. Early human communication helps in understanding language evolution.

    Science.gov (United States)

    Lenti Boero, Daniela

    2014-12-01

    Building a theory on extant species, as Ackermann et al. do, is a useful contribution to the field of language evolution. Here, I add another living model that might be of interest: human language ontogeny in the first year of life. A better knowledge of this phase might help in understanding two more topics among the "several building blocks of a comprehensive theory of the evolution of spoken language" indicated in their conclusion by Ackermann et al., that is, the foundation of the co-evolution of linguistic motor skills with the auditory skills underlying speech perception, and the possible phylogenetic interactions of protospeech production with referential capabilities.

  19. Reconstruction of mitogenomes by NGS and phylogenetic implications for leaf beetles.

    Science.gov (United States)

    Song, Nan; Yin, Xinming; Zhao, Xincheng; Chen, Junhua; Yin, Jian

    2017-11-30

    Mitochondrial genome (mitogenome) sequences are frequently used to infer phylogenetic relationships of insects at different taxonomic levels. Next-generation sequencing (NGS) techniques are revolutionizing many fields of biology, and allow for acquisition of insect mitogenomes for large number of species simultaneously. In this study, 20 full or partial mitogenomes were sequenced from pooled genomic DNA samples by NGS for leaf beetles (Chrysomelidae). Combined with published mitogenome sequences, a higher level phylogeny of Chrysomelidae was reconstructed under maximum likelihood and Bayesian inference with different models and various data treatments. The results revealed support for a basal position of Bruchinae within Chrysomelidae. In addition, two major subfamily groupings were recovered: one including seven subfamilies, namely Donaciinae, Criocerinae, Spilopyrinae, Cassidinae, Cryptocephalinae, Chlamisinae and Eumolpinae, another containing a non-monophyletic Chrysomelinae and a monophyletic Galerucinae.

  20. A South American Prehistoric Mitogenome: Context, Continuity, and the Origin of Haplogroup C1d

    Science.gov (United States)

    Sans, Mónica; Figueiro, Gonzalo; Hughes, Cris E.; Lindo, John; Hidalgo, Pedro C.; Malhi, Ripan S.

    2015-01-01

    Based on mitochondrial DNA (mtDNA), it has been estimated that at least 15 founder haplogroups peopled the Americas. Subhaplogroup C1d3 was defined based on the mitogenome of a living individual from Uruguay that carried a lineage previously identified in hypervariable region I sequences from ancient and modern Uruguayan individuals. When complete mitogenomes were studied, additional substitutions were found in the coding region of the mitochondrial genome. Using a complete ancient mitogenome and three modern mitogenomes, we aim to clarify the ancestral state of subhaplogroup C1d3 and to better understand the peopling of the region of the Río de la Plata basin, as well as of the builders of the mounds from which the ancient individuals were recovered. The ancient mitogenome, belonging to a female dated to 1,610±46 years before present, was identical to the mitogenome of one of the modern individuals. All individuals share the mutations defining subhaplogroup C1d3. We estimated an age of 8,974 (5,748–12,261) years for the most recent common ancestor of C1d3, in agreement with the initial peopling of the geographic region. No individuals belonging to the defined lineage were found outside of Uruguay, which raises questions regarding the mobility of the prehistoric inhabitants of the country. Moreover, the present study shows the continuity of Native lineages over at least 6,000 years. PMID:26509686

  1. Mathematics in Early Childhood Education: Revolution or Evolution?

    Science.gov (United States)

    Stipek, Deborah

    2013-01-01

    Hachey (2013) aptly describes a recent surge in attention to mathematics for young children. The value of math for children as young as preschool age, however, was discovered before the 21st century. This is presently not a revolution but rather a potentially important step in an evolution of work that began at least a half century ago. Some…

  2. Morphological characters are compatible with mitogenomic data in resolving the phylogeny of nymphalid butterflies (lepidoptera: papilionoidea: nymphalidae).

    Science.gov (United States)

    Shi, Qing-Hui; Sun, Xiao-Yan; Wang, Yun-Liang; Hao, Jia-Sheng; Yang, Qun

    2015-01-01

    Nymphalidae is the largest family of butterflies with their phylogenetic relationships not adequately approached to date. The mitochondrial genomes (mitogenomes) of 11 new nymphalid species were reported and a comparative mitogenomic analysis was conducted together with other 22 available nymphalid mitogenomes. A phylogenetic analysis of the 33 species from all 13 currently recognized nymphalid subfamilies was done based on the mitogenomic data set with three Lycaenidae species as the outgroups. The mitogenome comparison showed that the eleven new mitogenomes were similar with those of other butterflies in gene content and order. The reconstructed phylogenetic trees reveal that the nymphalids are made up of five major clades (the nymphaline, heliconiine, satyrine, danaine and libytheine clades), with sister relationship between subfamilies Cyrestinae and Biblidinae, and most likely between subfamilies Morphinae and Satyrinae. This whole mitogenome-based phylogeny is generally congruent with those of former studies based on nuclear-gene and mitogenomic analyses, but differs considerably from the result of morphological cladistic analysis, such as the basal position of Libytheinae in morpho-phylogeny is not confirmed in molecular studies. However, we found that the mitogenomic phylogeny established herein is compatible with selected morphological characters (including developmental and adult morpho-characters).

  3. Multiple independent structural dynamic events in the evolution of snake mitochondrial genomes.

    Science.gov (United States)

    Qian, Lifu; Wang, Hui; Yan, Jie; Pan, Tao; Jiang, Shanqun; Rao, Dingqi; Zhang, Baowei

    2018-05-10

    Mitochondrial DNA sequences have long been used in phylogenetic studies. However, little attention has been paid to the changes in gene arrangement patterns in the snake's mitogenome. Here, we analyzed the complete mitogenome sequences and structures of 65 snake species from 14 families and examined their structural patterns, organization and evolution. Our purpose was to further investigate the evolutionary implications and possible rearrangement mechanisms of the mitogenome within snakes. In total, eleven types of mitochondrial gene arrangement patterns were detected (Type I, II, III, III-A, III-B, III-B1, III-C, III-D, III-E, III-F, III-G), with mitochondrial genome rearrangements being a major trend in snakes, especially in Alethinophidia. In snake mitogenomes, the rearrangements mainly involved three processes, gene loss, translocation and duplication. Within Scolecophidia, the O L was lost several times in Typhlopidae and Leptotyphlopidae, but persisted as a plesiomorphy in the Alethinophidia. Duplication of the control region and translocation of the tRNA Leu gene are two visible features in Alethinophidian mitochondrial genomes. Independently and stochastically, the duplication of pseudo-Pro (P*) emerged in seven different lineages of unequal size in three families, indicating that the presence of P* was a polytopic event in the mitogenome. The WANCY tRNA gene cluster and the control regions and their adjacent segments were hotspots for mitogenome rearrangement. Maintenance of duplicate control regions may be the source for snake mitogenome structural diversity.

  4. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny

    Directory of Open Access Journals (Sweden)

    Talavera Gerard

    2011-10-01

    Full Text Available Abstract Background Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. Results Long-branch attraction (LBA artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the

  5. Isotopes and the early evolution of the earth

    International Nuclear Information System (INIS)

    Russell, R.D.

    1980-01-01

    The observed isotopic ratios of lead, strontium, neodymium, helium, and argon contain information about the chemical abundances of selected parent and daughter elements in the outer parts of the Earth. By necessity, we observe these isotopic ratios at the Earth's surface, which is a small, highly evolved part of the Earth. The studies of such isotopic ratios permit inferences to be made about interactions between this crust and the upper mantle. Helium has been especially valuable for demonstrating that primordial materials are still being outgassed from the earth. Models based on the observed argon isotopic ratios have lead to contradictory conclusions about the existence of an early period of extensive outgassing of the Earth. Lead has been a particularly interesting element because the ratio of the parents, 235 U/ 238 U, was very different in the Earth's early history than it is now. Therefore there is the potential for determining constraints on the early history of the Earth. A number of recently published papers offering lead isotope interpretations that reflect on the Earth's early history are reviewed, with special reference to models that are based upon uni-directional and bi-directional exchange between a protocrust and a residual mantle. Geochemical parameters for uranium, thorium and lead can be inferred for two evolving systems, as well as rate constants for differentiation. The principal conclusions are that the differentiation process extended beyond the first quarter of the Earth's history, and that it is possible to reproduce exactly the apparent oceanic basalt isochron by a simple two-reservoir model. In particular, such a model can explain quantitatively the observed lead-207 deficiency in the oceanic basalts

  6. The Interwoven Evolution of the Early Keyboard and Baroque Culture

    Directory of Open Access Journals (Sweden)

    Rachel Stevenson

    2016-04-01

    Full Text Available The purpose of this paper is to analyze the impact that Baroque society had in the development of the early keyboard. While the main timeframe is Baroque, a few references are made to the late Medieval Period in determining the reason for the keyboard to more prominently emerge in the musical scene. As Baroque society develops and new genres are formed, different keyboard instruments serve vital roles unique to their construction. These new roles also affect the way music was written for the keyboard as well. Advantages and disadvantages of each instrument are discussed, providing an analysis of what would have been either accepted or rejected by Baroque culture. While music is the main focus, other fine arts are mentioned, including architecture, poetry, politics, and others. My research includes primary and secondary resources retrieved from databases provided by Cedarville University. By demonstrating the relationship between Baroque society and early keyboard development, roles and music, this will be a helpful source in furthering the pianist's understanding of the instrument he or she plays. It also serves pedagogical purposes in its analysis of context in helping a student interpret a piece written during this time period with these early keyboard instruments.

  7. The early-stage structural evolution of the Barmer Basin rift, Rajasthan, northwest India

    OpenAIRE

    Bladon, Andrew John

    2015-01-01

    The structural evolution of the Barmer Basin and the context of the rift within the northwest Indian region are poorly understood, despite being a prolific hydrocarbon province. In this work an integrated basin analysis is presented covering the outcrop-, seismic-, and lithosphere-scales. The early-stage structural evolution and the origin of poorly understood structural complications in the Barmer Basin subsurface are assessed. Subsequently, the findings are placed within the wider context o...

  8. Some remarks on the early evolution of Enceladus

    Science.gov (United States)

    Czechowski, Leszek

    2014-12-01

    Thermal history of Enceladus is investigated from the beginning of accretion to formation of its core (~400 My). We consider model with solid state convection (in a solid layer) as well as liquid state convection (in molten parts of the satellite). The numerical model of convection uses full conservative finite difference method. The roles of two modes of convection are considered using the parameterized theory of convection. The following heat sources are included: short lived and long lived radioactive isotopes, accretion, serpentinization, and phase changes. Heat transfer processes are: conduction, solid state convection, and liquid state convection. It is found that core formation was completed only when liquid state convection had slowed down. Eventually, the porous core with pores filled with water was formed. Recent data concerning gravity field of Enceladus confirm low density of the core. We investigated also thermal history for different values of the following parameters: time of beginning of accretion tini, duration of accretion tacr, viscosity of ice close to the melting point ηm, activation energy in formula for viscosity E, thermal conductivity of silicate component ksil, ammonia content XNH3, and energy of serpentinization cserp. All these parameters are important for evolution, but not dramatic differences are found for realistic values. Moreover, the hypothesis of proto-Enceladus (stating that initially Enceladus was substantially larger) is considered and thermal history of such body is calculated. The last subject is the Mimas-Enceladus paradox. Comparison of thermal models of Mimas and Enceladus indicates that period favorable for 'excited path of evolution' was significantly shorter for Mimas than for Enceladus.

  9. ON THE SIZE AND COMOVING MASS DENSITY EVOLUTION OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Van der Wel, Arjen; Bell, Eric F.; Van den Bosch, Frank C.; Gallazzi, Anna; Rix, Hans-Walter

    2009-01-01

    We present a simple, empirically motivated model that simultaneously predicts the evolution of the mean size and the comoving mass density of massive (>10 11 M sun ) early-type galaxies from z = 2 to the present. First, we demonstrate that some size evolution of the population can be expected simply due to the continuous emergence of early-type galaxies. The Sloan Digital Sky Survey (SDSS) data reveal that in the present-day universe more compact early-type galaxies with a given dynamical mass have older stellar populations. This implies that with increasing look-back time, the more extended galaxies will be more and more absent from the population. In contrast, at a given stellar velocity dispersion, SDSS data show that there is no relation between size and age, which implies that the velocity dispersion can be used to estimate the epoch at which galaxies stopped forming stars, turning into early-type galaxies. Based on this, we define an empirically motivated, redshift-dependent velocity dispersion threshold above which galaxies do not form stars at a significant rate, which we associate with the transformation into early-type galaxies. Applying this 'formation' criterion to a large sample of nearby early-type galaxies, we predict the redshift evolution in the size distribution and the comoving mass density. The resulting evolution in the mean size is roughly half of the observed evolution. Then we include a prescription for the merger histories of galaxies between the 'formation' redshift and the present, based on cosmological simulations of the assembly of dark matter halos. Such mergers after the transformation into an early-type galaxy are presumably dissipationless ('dry'), where the increase in size is expected to be approximately proportional to the increase in mass. This model successfully reproduces the observed evolution since z ∼ 2 in the mean size and in the comoving mass density of early-type galaxies with mass M > 10 11 M sun . We conclude that

  10. Mitogenomic perspectives on the origin and phylogeny of living amphibians.

    Science.gov (United States)

    Zhang, Peng; Zhou, Hui; Chen, Yue-Qin; Liu, Yi-Fei; Qu, Liang-Hu

    2005-06-01

    Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution.

  11. A Geological Model for the Evolution of Early Continents (Invited)

    Science.gov (United States)

    Rey, P. F.; Coltice, N.; Flament, N. E.; Thébaud, N.

    2013-12-01

    Geochemical probing of ancient sediments (REE in black shales, strontium composition of carbonates, oxygen isotopes in zircons...) suggests that continents were a late Archean addition at Earth's surface. Yet, geochemical probing of ancient basalts reveals that they were extracted from a mantle depleted of its crustal elements early in the Archean. Considerations on surface geology, the early Earth hypsometry and the rheology and density structure of Archean continents can help solve this paradox. Surface geology: The surface geology of Archean cratons is characterized by thick continental flood basalts (CFBs, including greenstones) emplaced on felsic crusts dominated by Trondhjemite-Tonalite-Granodiorite (TTG) granitoids. This simple geology is peculiar because i/ most CFBs were emplaced below sea level, ii/ after their emplacement, CFBs were deformed into relatively narrow, curviplanar belts (greenstone basins) wrapping around migmatitic TTG domes, and iii/ Archean greenstone belts are richly endowed with gold and other metals deposits. Flat Earth hypothesis: From considerations on early Earth continental geotherm and density structure, Rey and Coltice (2008) propose that, because of the increased ability of the lithosphere to flow laterally, orogenic processes in the Archean produced only subdued topography (early Earth showing that, until the late Archean, most continents were flooded and Earth was largely a water world. From this, a model consistent with many of the peculiar attributes of Archean geology, can be proposed: 1/ Continents appeared at Earth's surface at an early stage during the Hadean/Archean. However, because they were i/ covered by continental flood basalts, ii/ below sea level, and iii/ deprived of modern-style mountain belts and orogenic plateaux, early felsic

  12. A Cretaceous eutriconodont and integument evolution in early mammals.

    Science.gov (United States)

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  13. Mitogenomes from The 1000 Genome Project reveal new Near Eastern features in present-day Tuscans.

    Directory of Open Access Journals (Sweden)

    Alberto Gómez-Carballa

    Full Text Available Genetic analyses have recently been carried out on present-day Tuscans (Central Italy in order to investigate their presumable recent Near East ancestry in connection with the long-standing debate on the origins of the Etruscan civilization. We retrieved mitogenomes and genome-wide SNP data from 110 Tuscans analyzed within the context of The 1000 Genome Project. For phylogeographic and evolutionary analysis we made use of a large worldwide database of entire mitogenomes (>26,000 and partial control region sequences (>180,000.Different analyses reveal the presence of typical Near East haplotypes in Tuscans representing isolated members of various mtDNA phylogenetic branches. As a whole, the Near East component in Tuscan mitogenomes can be estimated at about 8%; a proportion that is comparable to previous estimates but significantly lower than admixture estimates obtained from autosomal SNP data (21%. Phylogeographic and evolutionary inter-population comparisons indicate that the main signal of Near Eastern Tuscan mitogenomes comes from Iran.Mitogenomes of recent Near East origin in present-day Tuscans do not show local or regional variation. This points to a demographic scenario that is compatible with a recent arrival of Near Easterners to this region in Italy with no founder events or bottlenecks.

  14. Early evolution of efficient enzymes and genome organization

    Directory of Open Access Journals (Sweden)

    Szilágyi András

    2012-10-01

    Full Text Available Abstract Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight.

  15. THE STRUCTURAL EVOLUTION OF FORMING AND EARLY STAGE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Jaehnig, Karl O.; Da Rio, Nicola; Tan, Jonathan C.

    2015-01-01

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (∼1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray Survey and the statistical analysis of the angular dispersion parameter, δ ADP, N . We find statistically significant correlation between δ ADP, N and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters

  16. Topics in Galaxy Evolution: Early Star Formation and Quenching

    Science.gov (United States)

    Goncalves, Thiago Signorini

    In this thesis, we present three projects designed to shed light on yet unanswered questions on galaxy formation and evolution. The first two concern a sample of UV-bright starburst galaxies in the local universe (z ˜0.2). These objects are remarkably similar to star-forming galaxies that were abundant at high redshifts (2 manipulating our observations to mimic our objects at greater distances, we show how low resolution and signal-to-noise ratios can lead to erroneous conclusions, in particular when attempting to diagnose mergers as the origin of the starburst. Then, we present results from a pilot survey to study the cold, molecular gas reservoir in such objects. Again, we show that the observed properties are analogous to those observed at high redshift, in particular with respect to baryonic gas fractions in the galaxy, higher than normally found in low-extinction objects in the local universe. Furthermore, we show how gas surface density and star-formation surface density follow the same relation as local galaxies, albeit at much higher values. Finally, we discuss an observational project designed to measure the mass flux density from the blue sequence to the red sequence across the so-called green valley. We obtain the deepest spectra ever observed of green valley galaxies at intermediate redshifts (z˜0.8) in order to measure spectral features from which we can measure the star formation histories of individual galaxies. We measure a mass flux ratio that is higher than observed in the local universe, indicating the red sequence was growing faster when the universe was half its present age than today.

  17. Formation and Evolution of the Atmosphere on Early Titan

    Science.gov (United States)

    Marounina, N.; Tobie, G.; Carpy, S.; Monteux, J.; Charnay, B.; Grasset, O.

    2014-12-01

    The mass and composition of Titan's massive atmosphere, which is dominated by N2 and CH4 at present, have probably varied all along its history owing to a combination of exogenous and endogenous processes. In a recent study, we investigated its fate during the Late Heavy Bombardment (LHB) by modeling the competitive loss and supply of volatiles by cometary impacts and their consequences on the atmospheric balance. We examine the emergence of an atmosphere as well as the evolution of a primitive atmosphere of various sizes and compositions. By considering an impactor population characteristic of the LHB, we showed that an atmosphere with a mass equivalent to the present-day one cannot be formed during the LHB era. Our calculations indicated that the high-velocity impacts during the LHB led to a strong atmospheric erosion, so that the pre-LHB atmosphere should be 5 to 7 times more massive than at present (depending mostly on the albedo), in order to sustain an atmosphere equivalent to the present-day one. This implies that either a massive atmosphere was formed on Titan during its accretion or that the nitrogen-rich atmosphere was generated after the LHB.To investigate the primitive atmosphere of the satellite, we consider chemical exchanges of volatils between a global water ocean at Titan's surface, generated by impact heating during the accretion and an atmosphere. We are currently developing a liquid-vapor equilibrium model for various initial oceanic composition to investigate how a massive atmosphere may be generated during the satellite growth and how it may evolve toward a composition dominated by N2. More generally, our model address how atmosphere may be generated in water-rich objects, which may be common around other stars.

  18. Early events in the evolution of spider silk genes.

    Directory of Open Access Journals (Sweden)

    James Starrett

    Full Text Available Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers, from the suborder Araneomorphae ('true spiders'. Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs, is known only from the orbicularian species, Lactrodectus hesperus (Western black widow. In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders, which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae. We use the spidroin gene tree to reconstruct the evolution of amino acid

  19. Second generation DNA sequencing of the mitogenome of the Chinstrap penguin and comparative genomics of Antarctic penguins.

    Science.gov (United States)

    Subramanian, Sankar; Lingala, Syamala Gowri; Swaminathan, Siva; Huynen, Leon; Lambert, David

    2014-08-01

    The complete mitochondrial genome of the Chinstrap penguin (Pygoscelis antarcticus) was sequenced and compared with other penguin mitogenomes. The genome is 15,972 bp in length with the number and order of protein coding genes and RNAs being very similar to that of other known penguin mitogenomes. Comparative nucleotide analysis showed the Chinstrap mitogenome shares 94% homology with the mitogenome of its sister species, Pygoscelis adelie (Adélie penguin). Divergence at nonsynonymous nucleotide positions was found to be up to 23 times less than that observed in synonymous positions of protein coding genes, suggesting high selection constraints. The complete mitogenome data will be useful for genetic and evolutionary studies of penguins.

  20. Evolution of attention mechanisms for early visual processing

    Science.gov (United States)

    Müller, Thomas; Knoll, Alois

    2011-03-01

    Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism

  1. Revisiting the mitogenomic phylogeny of Salmoninae: new insights thanks to recent sequencing advances

    Directory of Open Access Journals (Sweden)

    Jose L. Horreo

    2017-09-01

    Full Text Available The phylogeny of the Salmonidae family, the only living one of the Order Salmoniformes, remains still unclear because of several reasons. Such reasons include insufficient taxon sampling and/or DNA information. The use of complete mitochondrial genomes (mitogenomics could provide some light on it, but despite the high number of mitogenomes of species belonging to this family published during last years, an integrative work containing all this information has not been done. In this work, the phylogeny of 46 Salmonidae species was inferred from their mitogenomic sequences. Results include a Bayesian molecular-dated phylogenetic tree with very high statistical support showing Coregoninae and Salmoninae as sister subfamilies, as well as several new phylogenetic relationships among species and genus of the family. All these findings contribute to improve our understanding of the Salmonidae systematics and could have consequences on related evolutionary studies, as well as highlight the importance of revisiting phylogenies with integrative studies.

  2. The complete mitogenome of brown trout (Salmo trutta fario) and its phylogeny.

    Science.gov (United States)

    Sahoo, Prabhati K; Singh, Lalit; Sharma, Lata; Kumar, Rohit; Singh, Vijay K; Ali, S; Singh, Atul K; Barat, Ashoktaru

    2016-11-01

    The complete mitochondrial genome of Salmo trutta fario, commonly known as brown trout, was sequenced using NGS technology. The mitochondrial genome size was determined to be 16 677 bp and composed of 13 protein-coding gene (PCG), 22 tRNAs, 2 rRNA genes, and 1 putative control region. The overall mitogenome composition of S. trutta fario is A: 28.13%, G: 16.44%, C: 29.47%, and T: 25.96% with A + T content of 54.09% and G + C content of 45.91%. The gene arrangement and the order are similar to other vertebrates. The phylogenetic tree constructed using 42 complete mitogenomes of Salmonidae fishes confirmed the position of the present species under the genus Salmo of subfamily Salmoninae. NGS platform was proved to be a rapid and time-saving technology to reveal complete mitogenomes.

  3. Stardust in Laboratory & Evolution of Early Solar System f y S Sy

    Indian Academy of Sciences (India)

    kkmarhas

    2008-09-13

    Sep 13, 2008 ... Picture book of presolar grains! Graphite grains. Silicon carbide. Corundum. 500nm. Spinel grains. Silicate grain. Silicon Nitride. Spinel grains. Silicate grain. Silicon Nitride. Presolar Grains &. Evolution of Early Solar System. Kuljeet K. Marhas. 13th September 2008. Physical Research Laboratory ...

  4. Numerical modeling of hydration process and temperature evolution in early age concrete

    NARCIS (Netherlands)

    Caggiano, A.; Pepe, M.; Koenders, E.A.B.; Martinelli, E.; Etse, G.J.

    2012-01-01

    Heat production induced by the hydration reaction and the resulting temperature evolution in the early phases of setting and hardening processes are critical phenomena, often leading to premature cracking of concrete members. However, the interest for simulating such phenomena is also related to the

  5. Galactic chemical evolution in hierarchical formation models - I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matías; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  6. Galactic chemical evolution in hierarchical formation models : I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matias; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    2010-01-01

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  7. Microphysics and the evolution of the early universe

    International Nuclear Information System (INIS)

    Rothman, A.R.

    1981-01-01

    Four nonstandard cosmological models of the early Universe are investigated. The first considers the effects of anisotropy and dissipative effects on the baryon-to-photon ratio in the context of Grand Unified Theories. A detailed model of an anisotropic universe is developed and the Kolb-Wolfram equations governing baryosynthesis are evolved in this model. Contrary to recent claims of Bond, Kolb, and Silk, no limits are found on anisotropy during this epoch. The second investigation examines the effects caused by evaporating 10 10 gm primordial black holes on cosmic nucleosynthesis of the light elements. By requiring that the final deuterium produced by nucleosynthesis not be greater than 5 x 10 -5 parts by mass, it is found that rho/sub H//rho/sub b/ less than or equal to 10 -7 , where rho/sub H/ is the mass density of 10 10 gm black holes and rho/sub b/ is the mass density of baryons during nucleosynthesis. In the third chapter limits are placed on G/G by examining the effect a larger value of G in the past would have had on primordial nucleosynthesis. This is done by taking into account the new conservation laws and Einstein equations a variable-G theory would have. Assuming a power law for G, it is found that /G/G/ less than or equal to 1.7 x 10 -13 yr -1 . This result is approximately a factor of two stronger than limits found in naive models where the new conservation laws are not taken into account. The fourth investigation concerns the effects of anisotropy and dissipation on primordial nucleosynthesis. A detailed numerical model is developed. Contrary to models in which dissipation is not considered it is found that anisotropy in many cases actually lowers the final helium abundance

  8. The complete mitogenome of a 500-year-old Inca child mummy

    OpenAIRE

    G?mez-Carballa, Alberto; Catelli, Laura; Pardo-Seco, Jacobo; Martin?n-Torres, Federico; Roewer, Lutz; Vullo, Carlos; Salas, Antonio

    2015-01-01

    In 1985, a frozen mummy was found in Cerro Aconcagua (Argentina). Archaeological studies identified the mummy as a seven-year-old Inca sacrifice victim who lived >500 years ago, at the time of the expansion of the Inca Empire towards the southern cone. The sequence of its entire mitogenome was obtained. After querying a large worldwide database of mitogenomes (>28,000) we found that the Inca haplotype belonged to a branch of haplogroup C1b (C1bi) that has not yet been identified in modern Nat...

  9. Early-stage evolution of particle size distribution with Johnson's SB function due to Brownian coagulation

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2013-01-01

    The moment method can be used to determine the time evolution of particle size distribution due to Brownian coagulation based on the general dynamic equation (GDE). But the function form of the initial particle size distribution must be determined beforehand for the moment method. If the assumed function type of the initial particle size distribution has an obvious deviation from the true particle population, the evolution of particle size distribution may be different from the real evolution tendency. Thus, a simple and general method is proposed based on the moment method. In this method, the Johnson's S B function is chosen as a general distribution function to fit the initial distributions including the log normal (L-N), Rosin–Rammler (R-R), normal (N-N) and gamma distribution functions, respectively. Meanwhile, using the modified beta function to fit the L-N, R-R, N-N and gamma functions is also conducted as a comparison in order to present the advantage of the Johnson's S B function as the general distribution function. And then, the time evolution of particle size distributions using the Johnson's S B function as the initial distribution can be obtained by several lower order moment equations of the Johnson's S B function in conjunction with the GDE during the Brownian coagulation process. Simulation experiments indicate that fairly reasonable results of the time evolution of particle size distribution can be obtained with this proposed method in the free molecule regime, transition regime and continuum plus near continuum regime, respectively, at the early time stage of evolution. The Johnson's S B function has the ability of describing the early time evolution of different initial particle size distributions. (paper)

  10. Low diversity in the mitogenome of sperm whales revealed by next-generation sequencing

    Science.gov (United States)

    Alana Alexander; Debbie Steel; Beth Slikas; Kendra Hoekzema; Colm Carraher; Matthew Parks; Richard Cronn; C. Scott Baker

    2012-01-01

    Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20...

  11. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences

    NARCIS (Netherlands)

    Poortvliet, Marloes; Olsen, Jeanine; Croll, Donald A.; Bernardi, Giacomo; Newton, Kelly; Kollias, Spyros; O'Sullivan, John; Fernando, Daniel; Stevens, Guy; Galván Magaña, Felipe; Seret, Bernard; Wintner, Sabine; Hoarau, Galice

    Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two

  12. Line Evolution of the Nova V5587 Sgr from Early to Nebula Phase

    Directory of Open Access Journals (Sweden)

    T. Kajikawa

    2015-02-01

    Full Text Available The spectral evolution of the nova V5587 Sgr has been monitored at Koyama Astronomical Observatory and Higashi-Hiroshima Observatory, Japan, from the early to nebula phase. The nova rebrightened several times. The spectra during the early phase showed emission lines of H α, H β, O I, He I, He II, N II, Fe II. Nova V5587 Sgr is classified into the Fe II type. The helium abundance of the nova is estimated as N(He/N(H = 0.134 ± 0.09. The light curve, the spectral evolution, and the helium abundance in V5587 Sgr are similar to those of the nova PW Vul.

  13. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    Science.gov (United States)

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily

  14. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds

    OpenAIRE

    Motani, R; Chen, XH; Jiang, DY; Cheng, L; Tintori, A; Rieppel, O

    2015-01-01

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus ...

  15. A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales

    OpenAIRE

    Fitzgerald, Erich M.G

    2006-01-01

    Extant baleen whales (Cetacea, Mysticeti) are all large filter-feeding marine mammals that lack teeth as adults, instead possessing baleen, and feed on small marine animals in bulk. The early evolution of these superlative mammals, and their unique feeding method, has hitherto remained enigmatic. Here, I report a new toothed mysticete from the Late Oligocene of Australia that is more archaic than any previously described. Unlike all other mysticetes, this new whale was small, had enormous eye...

  16. Mitogenomics of 'Old World Acraea' butterflies reveals a highly divergent 'Bematistes'.

    Science.gov (United States)

    Timmermans, M J T N; Lees, D C; Thompson, M J; Sáfián, Sz; Brattström, O

    2016-04-01

    Afrotropical Acraeini butterflies provide a fascinating potential model system to contrast with the Neotropical Heliconiini, yet their phylogeny remains largely unexplored by molecular methods and their generic level nomenclature is still contentious. To test the potential of mitogenomes in a simultaneous analysis of the radiation, we sequenced the full mitochondrial genomes of 19 African species. Analyses show the potential of mitogenomic phylogeny reconstruction in this group. Inferred relationships are largely congruent with a previous multilocus study. We confirm a monophyletic Telchinia to include the Asiatic Pareba with a complicated paraphylum, traditional (sub)genus Acraea, toward the base. The results suggest that several proposed subgenera and some species groups within Telchinia are not monophyletic, while two other (sub)genera could possibly be combined. Telchinia was recovered without strong support as sister to the potentially interesting system of distasteful model butterflies known as Bematistes, a name that is suppressed in some treatments. Surprisingly, we find that this taxon has remarkably divergent mitogenomes and unexpected synapomorphic tRNA rearrangements. These gene order changes, combined with evidence for deviating dN/dS ratios and evidence for episodal diversifying selection, suggest that the ancestral Bematistes mitogenome has had a turbulent past. Our study adds genetic support for treating this clade as a distinct genus, while the alternative option, adopted by some authors, of Acraea being equivalent to Acraeini merely promotes redundancy. We pave the way for more detailed mitogenomic and multi-locus molecular analyses which can determine how many genera are needed (possibly at least six) to divide Acraeini into monophyletic groups that also facilitate communication about their biology. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The mitogenome of a 35,000-year-old Homo sapiens from Europe supports a Palaeolithic back-migration to Africa.

    Science.gov (United States)

    Hervella, M; Svensson, E M; Alberdi, A; Günther, T; Izagirre, N; Munters, A R; Alonso, S; Ioana, M; Ridiche, F; Soficaru, A; Jakobsson, M; Netea, M G; de-la-Rua, C

    2016-05-19

    After the dispersal of modern humans (Homo sapiens) Out of Africa, hominins with a similar morphology to that of present-day humans initiated the gradual demographic expansion into Eurasia. The mitogenome (33-fold coverage) of the Peştera Muierii 1 individual (PM1) from Romania (35 ky cal BP) we present in this article corresponds fully to Homo sapiens, whilst exhibiting a mosaic of morphological features related to both modern humans and Neandertals. We have identified the PM1 mitogenome as a basal haplogroup U6*, not previously found in any ancient or present-day humans. The derived U6 haplotypes are predominantly found in present-day North-Western African populations. Concomitantly, those found in Europe have been attributed to recent gene-flow from North Africa. The presence of the basal haplogroup U6* in South East Europe (Romania) at 35 ky BP confirms a Eurasian origin of the U6 mitochondrial lineage. Consequently, we propose that the PM1 lineage is an offshoot to South East Europe that can be traced to the Early Upper Paleolithic back migration from Western Asia to North Africa, during which the U6 lineage diversified, until the emergence of the present-day U6 African lineages.

  18. THE ROLE OF DUST IN THE EARLY UNIVERSE. I. PROTOGALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Yamasawa, Daisuke; Habe, Asao; Kozasa, Takashi; Nozawa, Takaya; Nomoto, Ken'ichi; Hirashita, Hiroyuki; Umeda, Hideyuki

    2011-01-01

    We develop one-zone galaxy formation models in the early universe, taking into account dust formation and evolution by supernova (SN) explosions. We focus on the time evolution of dust size distribution, because H 2 formation on the dust surface plays a critical role in the star formation process in the early universe. In the model, we assume that star formation rate (SFR) is proportional to the total amount of H 2 . We consistently treat (1) the formation and size evolution of dust, (2) the chemical reaction networks including H 2 formation both on the surface of dust and in gas phase, and (3) the SFR in the model. First, we find that, because of dust destruction due to both reverse and forward shocks driven by SNe, H 2 formation is more suppressed than in situations without such dust destruction. At the galaxy age of ∼0.8 Gyr, for galaxy models with virial mass M vir = 10 9 M sun and formation redshift z vir = 10, the molecular fraction is 2.5 orders of magnitude less in the model with dust destruction by both shocks than that in the model without dust destruction. Second, we show that the H 2 formation rate strongly depends on the interstellar medium (ISM) density around SN progenitors. The SFR in higher ISM density is lower, since dust destruction by reverse shocks is more effective in higher ISM density. We conclude that not only the amount but also the size distribution of dust related to star formation activity strongly affects the evolution of galaxies in the early universe.

  19. Origin and evolution of the atmospheres of early Venus, Earth and Mars

    Science.gov (United States)

    Lammer, Helmut; Zerkle, Aubrey L.; Gebauer, Stefanie; Tosi, Nicola; Noack, Lena; Scherf, Manuel; Pilat-Lohinger, Elke; Güdel, Manuel; Grenfell, John Lee; Godolt, Mareike; Nikolaou, Athanasia

    2018-05-01

    We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥ 0.5 M_Earth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H_2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun's more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N_2 atmospheres. The buildup of atmospheric N_2, O_2, and the role of greenhouse gases such as CO_2 and CH_4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth's geophysical and related atmospheric evolution in relation

  20. Evolution of an Early Illness Warning System to Monitor Frail Elders in Independent Living

    Directory of Open Access Journals (Sweden)

    Gregory L. Alexander

    2011-01-01

    Full Text Available This paper describes the evolution of an early illness warning system used by an interdisciplinary team composed of clinicians and engineers in an independent living facility. The early illness warning system consists of algorithms which analyze resident activity patterns obtained from sensors embedded in residents' apartments. The engineers designed an automated reasoning system to generate clinically relevant alerts which are sent to clinicians when significant changes occur in the sensor data, for example declining activity levels. During January 2010 through July 2010, clinicians and engineers conducted weekly iterative review cycles of the early illness warning system to discuss concerns about the functionality of the warning system, to recommend solutions for the concerns, and to evaluate the implementation of the solutions. A total of 45 concerns were reviewed during this period. Iterative reviews resulted in greater efficiencies and satisfaction for clinician users who were monitoring elder activity patterns.

  1. The early Miocene balaenid Morenocetus parvus from Patagonia (Argentina and the evolution of right whales

    Directory of Open Access Journals (Sweden)

    Mónica R. Buono

    2017-12-01

    Full Text Available Balaenidae (right and bowhead whales are a key group in understanding baleen whale evolution, because they are the oldest surviving lineage of crown Mysticeti, with a fossil record that dates back ∼20 million years. However, this record is mostly Pliocene and younger, with most of the Miocene history of the clade remaining practically unknown. The earliest recognized balaenid is the early Miocene Morenocetus parvus Cabrera, 1926 from Argentina. M. parvus was originally briefly described from two incomplete crania, a mandible and some cervical vertebrae collected from the lower Miocene Gaiman Formation of Patagonia. Since then it has not been revised, thus remaining a frequently cited yet enigmatic fossil cetacean with great potential for shedding light on the early history of crown Mysticeti. Here we provide a detailed morphological description of this taxon and revisit its phylogenetic position. The phylogenetic analysis recovered the middle Miocene Peripolocetus as the earliest diverging balaenid, and Morenocetus as the sister taxon of all other balaenids. The analysis of cranial and periotic morphology of Morenocetus suggest that some of the specialized morphological traits of modern balaenids were acquired by the early Miocene and have remained essentially unchanged up to the present. Throughout balaenid evolution, morphological changes in skull arching and ventral displacement of the orbits appear to be coupled and functionally linked to mitigating a reduction of the field of vision. The body length of Morenocetus and other extinct balaenids was estimated and the evolution of body size in Balaenidae was reconstructed. Optimization of body length on our phylogeny of Balaenidae suggests that the primitive condition was a relatively small body length represented by Morenocetus, and that gigantism has been acquired independently at least twice (in Balaena mysticetus and Eubalaena spp., with the earliest occurrence of this trait in the late

  2. The early Miocene balaenid Morenocetus parvus from Patagonia (Argentina) and the evolution of right whales

    Science.gov (United States)

    Cozzuol, Mario A.; Fitzgerald, Erich M.G.

    2017-01-01

    Balaenidae (right and bowhead whales) are a key group in understanding baleen whale evolution, because they are the oldest surviving lineage of crown Mysticeti, with a fossil record that dates back ∼20 million years. However, this record is mostly Pliocene and younger, with most of the Miocene history of the clade remaining practically unknown. The earliest recognized balaenid is the early Miocene Morenocetus parvus Cabrera, 1926 from Argentina. M. parvus was originally briefly described from two incomplete crania, a mandible and some cervical vertebrae collected from the lower Miocene Gaiman Formation of Patagonia. Since then it has not been revised, thus remaining a frequently cited yet enigmatic fossil cetacean with great potential for shedding light on the early history of crown Mysticeti. Here we provide a detailed morphological description of this taxon and revisit its phylogenetic position. The phylogenetic analysis recovered the middle Miocene Peripolocetus as the earliest diverging balaenid, and Morenocetus as the sister taxon of all other balaenids. The analysis of cranial and periotic morphology of Morenocetus suggest that some of the specialized morphological traits of modern balaenids were acquired by the early Miocene and have remained essentially unchanged up to the present. Throughout balaenid evolution, morphological changes in skull arching and ventral displacement of the orbits appear to be coupled and functionally linked to mitigating a reduction of the field of vision. The body length of Morenocetus and other extinct balaenids was estimated and the evolution of body size in Balaenidae was reconstructed. Optimization of body length on our phylogeny of Balaenidae suggests that the primitive condition was a relatively small body length represented by Morenocetus, and that gigantism has been acquired independently at least twice (in Balaena mysticetus and Eubalaena spp.), with the earliest occurrence of this trait in the late Miocene–early

  3. New hominin fossils from Kanapoi, Kenya, and the mosaic evolution of canine teeth in early hominins

    Directory of Open Access Journals (Sweden)

    J. Michael Plavcan

    2012-03-01

    Full Text Available Whilst reduced size, altered shape and diminished sexual dimorphism of the canine–premolar complex are diagnostic features of the hominin clade, little is known about the rate and timing of changes in canine size and shape in early hominins. The earliest Australopithecus, Australopithecus anamensis, had canine crowns similar in size to those of its descendant Australopithecus afarensis, but a single large root alveolus has suggested that this species may have had larger and more dimorphic canines than previously recognised. Here we present three new associated dentitions attributed to A. anamensis, recently recovered from the type site of Kanapoi, Kenya, that provide evidence of canine evolution in early Australopithecus. These fossils include the largest mandibular canine root in the hominin fossil record. We demonstrate that, although canine crown height did not differ between these species, A. anamensis had larger and more dimorphic roots, more like those of extant great apes and Ardipithecus ramidus, than those of A. afarensis. The canine and premolar occlusal shapes of A. anamensis also resemble those of Ar. ramidus, and are intermediary between extant great apes and A. afarensis. A. afarensis achieved Homo-like maxillary crown basal proportions without a reduction in crown height. Thus, canine crown size and dimorphism remained stable during the early evolution of Australopithecus, but mandibular root dimensions changed only later within the A. anamensis–afarensis lineage, coincident with morphological changes in the canine–premolar complex. These observations suggest that selection on canine tooth crown height, shape and root dimensions was not coupled in early hominin evolution, and was not part of an integrated adaptive package.

  4. Application of RNA-seq for mitogenome reconstruction, and reconsideration of long-branch artifacts in Hemiptera phylogeny

    Science.gov (United States)

    Song, Nan; An, Shiheng; Yin, Xinming; Cai, Wanzhi; Li, Hu

    2016-01-01

    Hemiptera make up the largest nonholometabolan insect assemblage. Despite previous efforts to elucidate phylogeny within this group, relationships among the major sub-lineages remain uncertain. In particular, mitochondrial genome (mitogenome) data are still sparse for many important hemipteran insect groups. Recent mitogenomic analyses of Hemiptera have usually included no more than 50 species, with conflicting hypotheses presented. Here, we determined the nearly complete nucleotide sequence of the mitogenome for the aphid species of Rhopalosiphum padi using RNA-seq plus gap filling. The 15,205 bp mitogenome included all mitochondrial genes except for trnF. The mitogenome organization and size for R. padi are similar to previously reported aphid species. In addition, the phylogenetic relationships for Hemiptera were examined using a mitogenomic dataset which included sequences from 103 ingroup species and 19 outgroup species. Our results showed that the seven species representing the Aleyrodidae exhibit extremely long branches, and always cluster with long-branched outgroups. This lead to the failure of recovering a monophyletic Hemiptera in most analyses. The data treatment of Degen-coding for protein-coding genes and the site-heterogeneous CAT model show improved suppression of the long-branch effect. Under these conditions, the Sternorrhyncha was often recovered as the most basal clade in Hemiptera. PMID:27633117

  5. Constrained pattern of viral evolution in acute and early HCV infection limits viral plasticity.

    Directory of Open Access Journals (Sweden)

    Katja Pfafferott

    2011-02-01

    Full Text Available Cellular immune responses during acute Hepatitis C virus (HCV and HIV infection are a known correlate of infection outcome. Viral adaptation to these responses via mutation(s within CD8+ T-cell epitopes allows these viruses to subvert host immune control. This study examined HCV evolution in 21 HCV genotype 1-infected subjects to characterise the level of viral adaptation during acute and early HCV infection. Of the total mutations observed 25% were within described CD8+ T-cell epitopes or at viral adaptation sites. Most mutations were maintained into the chronic phase of HCV infection (75%. The lack of reversion of adaptations and high proportion of silent substitutions suggests that HCV has structural and functional limitations that constrain evolution. These results were compared to the pattern of viral evolution observed in 98 subjects during a similar phase in HIV infection from a previous study. In contrast to HCV, evolution during acute HIV infection is marked by high levels of amino acid change relative to silent substitutions, including a higher proportion of adaptations, likely reflecting strong and continued CD8+ T-cell pressure combined with greater plasticity of the virus. Understanding viral escape dynamics for these two viruses is important for effective T cell vaccine design.

  6. Symbiosis in cell evolution: Life and its environment on the early earth

    Science.gov (United States)

    Margulis, L.

    1981-01-01

    The book treats cell evolution from the viewpoint of the serial endosymbiosis theory of the origin of organelles. Following a brief outline of the symbiotic theory, which holds that eukaryotes evolved by the association of free-living bacteria with a host prokaryote, the diversity of life is considered, and five kingdoms of organisms are distinguished: the prokaryotic Monera and the eukaryotic Protoctista, Animalia, Fungi and Plantae. Symbiotic and traditional direct filiation theories of cell evolution are compared. Recent observations of cell structure and biochemistry are reviewed in relation to early cell evolution, with attention given to the geological context for the origin of eukaryotic cells, the origin of major bacterial anaerobic pathways, the relationship between aerobic metabolism and atmospheric oxygen, criteria for distinguishing symbiotic organelles from those that originated by differentiation, and the major classes of eukaryotic organelles: mitochondria, cilia, microtubules, the mitotic and meiotic apparatuses, and pastids. Cell evolution during the Phanerozoic is also discussed with emphasis on the effects of life on the biosphere

  7. Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation.

    Science.gov (United States)

    Martin, William F

    2012-03-09

    Life is a persistent, self-specified set of far from equilibrium chemical reactions. In modern microbes, core carbon and energy metabolism are what keep cells alive. In very early chemical evolution, the forerunners of carbon and energy metabolism were the processes of generating reduced carbon compounds from CO(2) and the mechanisms of harnessing energy as compounds capable of doing some chemical work. The process of serpentinization at alkaline hydrothermal vents holds promise as a model for the origin of early reducing power, because Fe(2+) in the Earth's crust reduces water to H(2) and inorganic carbon to methane. The overall geochemical process of serpentinization is similar to the biochemical process of methanogenesis, and methanogenesis is similar to acetogenesis in that both physiologies allow energy conservation from the reduction of CO(2) with electrons from H(2). Electron bifurcation is a newly recognized cytosolic process that anaerobes use generate low potential electrons, it plays an important role in some forms of methanogenesis and, via speculation, possibly in acetogenesis. Electron bifurcation likely figures into the early evolution of biological energy conservation. Copyright © 2011. Published by Elsevier B.V.

  8. Body size and premolar evolution in the early-middle eocene euprimates of Wyoming.

    Science.gov (United States)

    Jones, Katrina E; Rose, Kenneth D; Perry, Jonathan M G

    2014-01-01

    The earliest euprimates to arrive in North America were larger-bodied notharctids and smaller-bodied omomyids. Through the Eocene, notharctids generally continued to increase in body size, whereas omomyids generally radiated within small- and increasingly mid-sized niches in the middle Eocene. This study examines the influence of changing body size and diet on the evolution of the lower fourth premolar in Eocene euprimates. The P4 displays considerable morphological variability in these taxa. Despite the fact that most studies of primate dental morphology have focused on the molars, P4 can also provide important paleoecological insights. We analyzed the P4 from 177 euprimate specimens, representing 35 species (11 notharctids and 24 omomyids), in three time bins of approximately equal duration: early Wasatchian, late Wasatchian, and Bridgerian. Two-dimensional surface landmarks were collected from lingual photographs, capturing important variation in cusp position and tooth shape. Disparity metrics were calculated and compared for the three time bins. In the early Eocene, notharctids have a more molarized P4 than omomyids. During the Bridgerian, expanding body size range of omomyids was accompanied by a significant increase in P4 disparity and convergent evolution of the semimolariform condition in the largest omomyines. P4 morphology relates to diet in early euprimates, although patterns vary between families. Copyright © 2013 Wiley Periodicals, Inc.

  9. The TIM Barrel Architecture Facilitated the Early Evolution of Protein-Mediated Metabolism.

    Science.gov (United States)

    Goldman, Aaron David; Beatty, Joshua T; Landweber, Laura F

    2016-01-01

    The triosephosphate isomerase (TIM) barrel protein fold is a structurally repetitive architecture that is present in approximately 10% of all enzymes. It is generally assumed that this ubiquity in modern proteomes reflects an essential historical role in early protein-mediated metabolism. Here, we provide quantitative and comparative analyses to support several hypotheses about the early importance of the TIM barrel architecture. An information theoretical analysis of protein structures supports the hypothesis that the TIM barrel architecture could arise more easily by duplication and recombination compared to other mixed α/β structures. We show that TIM barrel enzymes corresponding to the most taxonomically broad superfamilies also have the broadest range of functions, often aided by metal and nucleotide-derived cofactors that are thought to reflect an earlier stage of metabolic evolution. By comparison to other putatively ancient protein architectures, we find that the functional diversity of TIM barrel proteins cannot be explained simply by their antiquity. Instead, the breadth of TIM barrel functions can be explained, in part, by the incorporation of a broad range of cofactors, a trend that does not appear to be shared by proteins in general. These results support the hypothesis that the simple and functionally general TIM barrel architecture may have arisen early in the evolution of protein biosynthesis and provided an ideal scaffold to facilitate the metabolic transition from ribozymes, peptides, and geochemical catalysts to modern protein enzymes.

  10. Novel scenarios of early animal evolution--is it time to rewrite textbooks?

    Science.gov (United States)

    Dohrmann, Martin; Wörheide, Gert

    2013-09-01

    Understanding how important phenotypic, developmental, and genomic features of animals originated and evolved is essential for many fields of biological research, but such understanding depends on robust hypotheses about the phylogenetic interrelationships of the higher taxa to which the studied species belong. Molecular approaches to phylogenetics have proven able to revolutionize our knowledge of organismal evolution. However, with respect to the deepest splits in the metazoan Tree of Life-the relationships between Bilateria and the four non-bilaterian phyla (Porifera, Placozoa, Ctenophora, and Cnidaria)-no consensus has been reached yet, since a number of different, often contradictory, hypotheses with sometimes spectacular implications have been proposed in recent years. Here, we review the recent literature on the topic and contrast it with more classical perceptions based on analyses of morphological characters. We conclude that the time is not yet ripe to rewrite zoological textbooks and advocate a conservative approach when it comes to developing scenarios of the early evolution of animals.

  11. Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe

    Science.gov (United States)

    Cote, Benoit; JINA-CEE, NuGrid, ChETEC

    2018-06-01

    Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.

  12. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds.

    Science.gov (United States)

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-03-10

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.

  13. COSMIC EVOLUTION OF SIZE AND VELOCITY DISPERSION FOR EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Fan, L.; Lapi, A.; Bressan, A.; De Zotti, G.; Danese, L.; Bernardi, M.

    2010-01-01

    Massive (stellar mass M * ∼> 3 x 10 10 M sun ), passively evolving galaxies at redshifts z ∼> 1 exhibit on average physical sizes smaller, by factors ∼3, than local early-type galaxies (ETGs) endowed with the same stellar mass. Small sizes are in fact expected on theoretical grounds, if dissipative collapse occurs. Recent results show that the size evolution at z ∼ 1, where both compact and already extended galaxies are observed and the scatter in size is remarkably larger than it is locally. The presence at high redshift of a significant number of ETGs with the same size as their local counterparts, as well as ETGs with quite small size (∼ H (z). We demonstrate that the projected mass of compact, high-redshift galaxies and that of local ETGs within the same physical radius, the nominal half-luminosity radius of high-redshift ETGs, differ substantially in that the high-redshift ETGs are on average significantly denser. This result suggests that the physical mechanism responsible for the size increase should also remove mass from central galaxy regions (r ∼ 1, we predict the local velocity dispersion distribution function. On comparing it to the observed one, we show that velocity dispersion evolution of massive ETGs is fully compatible with the observed average evolution in size at constant stellar mass. Less massive ETGs (with stellar masses M * ∼ 10 M sun ) are expected to evolve less both in size and in velocity dispersion, because their evolution is essentially determined by supernova feedback, which cannot yield winds as powerful as those triggered by quasars. The differential evolution is expected to leave imprints in the size versus luminosity/mass, velocity dispersion versus luminosity/mass, and central black hole mass versus velocity dispersion relationships, as observed in local ETGs.

  14. Complete mitogenomic sequence of the Critically Endangered Northern River Shark Glyphis garricki (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Feutry, Pierre; Grewe, Peter M; Kyne, Peter M; Chen, Xiao

    2015-01-01

    In this study we describe the first complete mitochondrial sequence for the Critically Endangered Northern River shark Glyphis garricki. The complete mitochondrial sequence is 16,702 bp in length, contains 37 genes and one control region with the typical gene order and transcriptional direction of vertebrate mitogenomes. The overall base composition is 31.5% A, 26.3% C, 12.9% G and 29.3% T. The length of 22 tRNA genes ranged from 68 (tRNA-Ser2 and tRNA-Cys) to 75 (tRNA-Leu1) bp. The control region of G. garricki was 1067 bp in length with high A+T (67.9%) and poor G (12.6%) content. The mitogenomic characters (base composition, codon usage and gene length) of G. garricki were very similar to Glyphis glyphis.

  15. Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    Science.gov (United States)

    Grandin, Robert John

    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material's operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material's life, and this early-stage damage occurs on length scales at which the material may be considered "granular'' in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and

  16. Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny

    OpenAIRE

    Maddock, Simon T.; Briscoe, Andrew G.; Wilkinson, Mark; Waeschenbach, Andrea; San Mauro, Diego; Day, Julia J.; Littlewood, D. Tim J.; Foster, Peter G.; Nussbaum, Ronald A.; Gower, David J.

    2016-01-01

    Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a ‘traditional’ Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing pla...

  17. Mitogenomic phylogenetic analyses of the Delphinidae with an emphasis on the Globicephalinae

    Directory of Open Access Journals (Sweden)

    de Stephanis Renaud

    2011-03-01

    Full Text Available Abstract Background Previous DNA-based phylogenetic studies of the Delphinidae family suggest it has undergone rapid diversification, as characterised by unresolved and poorly supported taxonomic relationships (polytomies for some of the species within this group. Using an increased amount of sequence data we test between alternative hypotheses of soft polytomies caused by rapid speciation, slow evolutionary rate and/or insufficient sequence data, and hard polytomies caused by simultaneous speciation within this family. Combining the mitogenome sequences of five new and 12 previously published species within the Delphinidae, we used Bayesian and maximum-likelihood methods to estimate the phylogeny from partitioned and unpartitioned mitogenome sequences. Further ad hoc tests were then conducted to estimate the support for alternative topologies. Results We found high support for all the relationships within our reconstructed phylogenies, and topologies were consistent between the Bayesian and maximum-likelihood trees inferred from partitioned and unpartitioned data. Resolved relationships included the placement of the killer whale (Orcinus orca as sister taxon to the rest of the Globicephalinae subfamily, placement of the Risso's dolphin (Grampus griseus within the Globicephalinae subfamily, removal of the white-beaked dolphin (Lagenorhynchus albirostris from the Delphininae subfamily and the placement of the rough-toothed dolphin (Steno bredanensis as sister taxon to the rest of the Delphininae subfamily rather than within the Globicephalinae subfamily. The additional testing of alternative topologies allowed us to reject all other putative relationships, with the exception that we were unable to reject the hypothesis that the relationship between L. albirostris and the Globicephalinae and Delphininae subfamilies was polytomic. Conclusion Despite their rapid diversification, the increased sequence data yielded by mitogenomes enables the

  18. Phylogenetic inference of calyptrates, with the first mitogenomes for Gasterophilinae (Diptera: Oestridae) and Paramacronychiinae (Diptera: Sarcophagidae)

    Science.gov (United States)

    Zhang, Dong; Yan, Liping; Zhang, Ming; Chu, Hongjun; Cao, Jie; Li, Kai; Hu, Defu; Pape, Thomas

    2016-01-01

    The complete mitogenome of the horse stomach bot fly Gasterophilus pecorum (Fabricius) and a near-complete mitogenome of Wohlfahrt's wound myiasis fly Wohlfahrtia magnifica (Schiner) were sequenced. The mitogenomes contain the typical 37 mitogenes found in metazoans, organized in the same order and orientation as in other cyclorrhaphan Diptera. Phylogenetic analyses of mitogenomes from 38 calyptrate taxa with and without two non-calyptrate outgroups were performed using Bayesian Inference and Maximum Likelihood. Three sub-analyses were performed on the concatenated data: (1) not partitioned; (2) partitioned by gene; (3) 3rd codon positions of protein-coding genes omitted. We estimated the contribution of each of the mitochondrial genes for phylogenetic analysis, as well as the effect of some popular methodologies on calyptrate phylogeny reconstruction. In the favoured trees, the Oestroidea are nested within the muscoid grade. Relationships at the family level within Oestroidea are (remaining Calliphoridae (Sarcophagidae (Oestridae, Pollenia + Tachinidae))). Our mito-phylogenetic reconstruction of the Calyptratae presents the most extensive taxon coverage so far, and the risk of long-branch attraction is reduced by an appropriate selection of outgroups. We find that in the Calyptratae the ND2, ND5, ND1, COIII, and COI genes are more phylogenetically informative compared with other mitochondrial protein-coding genes. Our study provides evidence that data partitioning and the inclusion of conserved tRNA genes have little influence on calyptrate phylogeny reconstruction, and that the 3rd codon positions of protein-coding genes are not saturated and therefore should be included. PMID:27019632

  19. The mitochondrial genomes of Atlas Geckos (Quedenfeldtia): mitogenome assembly from transcriptomes and anchored hybrid enrichment datasets

    OpenAIRE

    Lyra, Mariana L.; Joger, Ulrich; Schulte, Ulrich; Slimani, Tahar; El Mouden, El Hassan; Bouazza, Abdellah; Künzel, Sven; Lemmon, Alan R.; Moriarty Lemmon, Emily; Vences, Miguel

    2017-01-01

    The nearly complete mitogenomes of the two species of North African Atlas geckos, Quedenfeldtia moerens and Q. trachyblepharus were assembled from anchored hybrid enrichment data and RNAseq data. Congruent assemblies were obtained for four samples included in both datasets. We recovered the 13 protein-coding genes, 22 tRNA genes, and two rRNA genes for both species, including partial control region. The order of genes agrees with that of other geckos.

  20. Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny.

    Directory of Open Access Journals (Sweden)

    Simon T Maddock

    Full Text Available Mitochondrial genome (mitogenome sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a 'traditional' Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing on four different sequencing platforms (Illumina's HiSeq and MiSeq, Roche's 454 GS FLX, and Life Technologies' Ion Torrent to produce seven (near- complete mitogenomes from six species that form a small radiation of caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun sequencing using the MiSeq platform. Bayesian inference and maximum likelihood analyses using seven different partitioning strategies were unable to resolve compellingly all phylogenetic relationships among the Seychelles caecilian species, indicating the need for additional data in this case.

  1. The complete mitogenome of a 500-year-old Inca child mummy.

    Science.gov (United States)

    Gómez-Carballa, Alberto; Catelli, Laura; Pardo-Seco, Jacobo; Martinón-Torres, Federico; Roewer, Lutz; Vullo, Carlos; Salas, Antonio

    2015-11-12

    In 1985, a frozen mummy was found in Cerro Aconcagua (Argentina). Archaeological studies identified the mummy as a seven-year-old Inca sacrifice victim who lived >500 years ago, at the time of the expansion of the Inca Empire towards the southern cone. The sequence of its entire mitogenome was obtained. After querying a large worldwide database of mitogenomes (>28,000) we found that the Inca haplotype belonged to a branch of haplogroup C1b (C1bi) that has not yet been identified in modern Native Americans. The expansion of C1b into the Americas, as estimated using 203 C1b mitogenomes, dates to the initial Paleoindian settlements (~18.3 thousand years ago [kya]); however, its internal variation differs between Mesoamerica and South America. By querying large databases of control region haplotypes (>150,000), we found only a few C1bi members in Peru and Bolivia (e.g. Aymaras), including one haplotype retrieved from ancient DNA of an individual belonging to the Wari Empire (Peruvian Andes). Overall, the results suggest that the profile of the mummy represents a very rare sub-clade that arose 14.3 (5-23.6) kya and could have been more frequent in the past. A Peruvian Inca origin for present-day C1bi haplotypes would satisfy both the genetic and paleo-anthropological findings.

  2. Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny.

    Science.gov (United States)

    Maddock, Simon T; Briscoe, Andrew G; Wilkinson, Mark; Waeschenbach, Andrea; San Mauro, Diego; Day, Julia J; Littlewood, D Tim J; Foster, Peter G; Nussbaum, Ronald A; Gower, David J

    2016-01-01

    Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a 'traditional' Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing platforms (Illumina's HiSeq and MiSeq, Roche's 454 GS FLX, and Life Technologies' Ion Torrent) to produce seven (near-) complete mitogenomes from six species that form a small radiation of caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun sequencing) using the MiSeq platform. Bayesian inference and maximum likelihood analyses using seven different partitioning strategies were unable to resolve compellingly all phylogenetic relationships among the Seychelles caecilian species, indicating the need for additional data in this case.

  3. Ancient mitogenomes of Phoenicians from Sardinia and Lebanon: A story of settlement, integration, and female mobility.

    Science.gov (United States)

    Matisoo-Smith, E; Gosling, A L; Platt, D; Kardailsky, O; Prost, S; Cameron-Christie, S; Collins, C J; Boocock, J; Kurumilian, Y; Guirguis, M; Pla Orquín, R; Khalil, W; Genz, H; Abou Diwan, G; Nassar, J; Zalloua, P

    2018-01-01

    The Phoenicians emerged in the Northern Levant around 1800 BCE and by the 9th century BCE had spread their culture across the Mediterranean Basin, establishing trading posts, and settlements in various European Mediterranean and North African locations. Despite their widespread influence, what is known of the Phoenicians comes from what was written about them by the Greeks and Egyptians. In this study, we investigate the extent of Phoenician integration with the Sardinian communities they settled. We present 14 new ancient mitogenome sequences from pre-Phoenician (~1800 BCE) and Phoenician (~700-400 BCE) samples from Lebanon (n = 4) and Sardinia (n = 10) and compare these with 87 new complete mitogenomes from modern Lebanese and 21 recently published pre-Phoenician ancient mitogenomes from Sardinia to investigate the population dynamics of the Phoenician (Punic) site of Monte Sirai, in southern Sardinia. Our results indicate evidence of continuity of some lineages from pre-Phoenician populations suggesting integration of indigenous Sardinians in the Monte Sirai Phoenician community. We also find evidence of the arrival of new, unique mitochondrial lineages, indicating the movement of women from sites in the Near East or North Africa to Sardinia, but also possibly from non-Mediterranean populations and the likely movement of women from Europe to Phoenician sites in Lebanon. Combined, this evidence suggests female mobility and genetic diversity in Phoenician communities, reflecting the inclusive and multicultural nature of Phoenician society.

  4. Ancient mitogenomes of Phoenicians from Sardinia and Lebanon: A story of settlement, integration, and female mobility

    Science.gov (United States)

    Gosling, A. L.; Platt, D.; Kardailsky, O.; Prost, S.; Cameron-Christie, S.; Collins, C. J.; Boocock, J.; Kurumilian, Y.; Guirguis, M.; Pla Orquín, R.; Khalil, W.; Genz, H.; Abou Diwan, G.; Nassar, J.; Zalloua, P.

    2018-01-01

    The Phoenicians emerged in the Northern Levant around 1800 BCE and by the 9th century BCE had spread their culture across the Mediterranean Basin, establishing trading posts, and settlements in various European Mediterranean and North African locations. Despite their widespread influence, what is known of the Phoenicians comes from what was written about them by the Greeks and Egyptians. In this study, we investigate the extent of Phoenician integration with the Sardinian communities they settled. We present 14 new ancient mitogenome sequences from pre-Phoenician (~1800 BCE) and Phoenician (~700–400 BCE) samples from Lebanon (n = 4) and Sardinia (n = 10) and compare these with 87 new complete mitogenomes from modern Lebanese and 21 recently published pre-Phoenician ancient mitogenomes from Sardinia to investigate the population dynamics of the Phoenician (Punic) site of Monte Sirai, in southern Sardinia. Our results indicate evidence of continuity of some lineages from pre-Phoenician populations suggesting integration of indigenous Sardinians in the Monte Sirai Phoenician community. We also find evidence of the arrival of new, unique mitochondrial lineages, indicating the movement of women from sites in the Near East or North Africa to Sardinia, but also possibly from non-Mediterranean populations and the likely movement of women from Europe to Phoenician sites in Lebanon. Combined, this evidence suggests female mobility and genetic diversity in Phoenician communities, reflecting the inclusive and multicultural nature of Phoenician society. PMID:29320542

  5. Ancient mitogenomes of Phoenicians from Sardinia and Lebanon: A story of settlement, integration, and female mobility.

    Directory of Open Access Journals (Sweden)

    E Matisoo-Smith

    Full Text Available The Phoenicians emerged in the Northern Levant around 1800 BCE and by the 9th century BCE had spread their culture across the Mediterranean Basin, establishing trading posts, and settlements in various European Mediterranean and North African locations. Despite their widespread influence, what is known of the Phoenicians comes from what was written about them by the Greeks and Egyptians. In this study, we investigate the extent of Phoenician integration with the Sardinian communities they settled. We present 14 new ancient mitogenome sequences from pre-Phoenician (~1800 BCE and Phoenician (~700-400 BCE samples from Lebanon (n = 4 and Sardinia (n = 10 and compare these with 87 new complete mitogenomes from modern Lebanese and 21 recently published pre-Phoenician ancient mitogenomes from Sardinia to investigate the population dynamics of the Phoenician (Punic site of Monte Sirai, in southern Sardinia. Our results indicate evidence of continuity of some lineages from pre-Phoenician populations suggesting integration of indigenous Sardinians in the Monte Sirai Phoenician community. We also find evidence of the arrival of new, unique mitochondrial lineages, indicating the movement of women from sites in the Near East or North Africa to Sardinia, but also possibly from non-Mediterranean populations and the likely movement of women from Europe to Phoenician sites in Lebanon. Combined, this evidence suggests female mobility and genetic diversity in Phoenician communities, reflecting the inclusive and multicultural nature of Phoenician society.

  6. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    Science.gov (United States)

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  7. Revalidation of the genus Chiloguembelitria Hofker: Implications for the evolution of early Danian planktonic foraminifera

    Science.gov (United States)

    Arenillas, Ignacio; Arz, José A.; Gilabert, Vicente

    2017-10-01

    Guembelitria is the only planktonic foraminiferal genus whose survival from the mass extinction event of the Cretaceous/Paleogene (K/Pg) boundary has been clearly proven. The evolution of Guembelitria after the K/Pg boundary led to the appearance of two guembelitriid lineages in the early Danian: one biserial, represented by Woodringina and culminating in Chiloguembelina, and the other trochospiral, represented by Trochoguembelitria and culminating in Globoconusa. We have re-examined the genus Chiloguembelitria, another guembelitriid descended from Guembelitria and whose taxonomic validity had been questioned, it being considered a junior synonym of the latter. Nevertheless, Chiloguembelitria differs from Guembelitria mainly in the wall texture (pustulate to rugose vs. pore-mounded) and the position of the aperture (umbilical-extraumbilical to extraumbilical vs. umbilical). Chiloguembelitria shares its wall texture with Trochoguembelitria and some of the earliest specimens of Woodringina, suggesting that it played an important role in the evolution of early Danian guembelitriids, as it seems to be the most immediate ancestor of both trochospiral and biserial lineages. Morphological and morphostatistical analyses of Chiloguembelitria discriminate at least five species: Chg. danica, Chg. irregularis, and three new species: Chg. hofkeri, Chg. trilobata and Chg. biseriata.

  8. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates.

    Science.gov (United States)

    Sallan, Lauren Cole; Coates, Michael I

    2010-06-01

    The Devonian marks a critical stage in the early evolution of vertebrates: It opens with an unprecedented diversity of fishes and closes with the earliest evidence of limbed tetrapods. However, the latter part of the Devonian has also been characterized as a period of global biotic crisis marked by two large extinction pulses: a "Big Five" mass extinction event at the Frasnian-Famennian stage boundary (374 Ma) and the less well-documented Hangenberg event some 15 million years later at the Devonian-Carboniferous boundary (359 Ma). Here, we report the results of a wide-ranging analysis of the impact of these events on early vertebrate evolution, which was obtained from a database of vertebrate occurrences sampling over 1,250 taxa from 66 localities spanning Givetian to Serpukhovian stages (391 to 318 Ma). We show that major vertebrate clades suffered acute and systematic effects centered on the Hangenberg extinction involving long-term losses of over 50% of diversity and the restructuring of vertebrate ecosystems worldwide. Marine and nonmarine faunas were equally affected, precluding the existence of environmental refugia. The subsequent recovery of previously diverse groups (including placoderms, sarcopterygian fish, and acanthodians) was minimal. Tetrapods, actinopterygians, and chondrichthyans, all scarce within the Devonian, undergo large diversification events in the aftermath of the extinction, dominating all subsequent faunas. The Hangenberg event represents a previously unrecognized bottleneck in the evolutionary history of vertebrates as a whole and a historical contingency that shaped the roots of modern biodiversity.

  9. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    Science.gov (United States)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  10. The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies

    Science.gov (United States)

    Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L.

    2018-04-01

    We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size R e , on the ratio v/σ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j ⋆ of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z ∼ 1–2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan

  11. Origin and Evolution of The Early- Silurian Land Vascular Plants: Evidence From Biomarkers

    Science.gov (United States)

    Jin, R.

    2016-12-01

    Origin and early evolution of land vascular plants, is one of the most intriguing hotspots in the life science research. During the 1970s and 1980s,Pinnatiramosus qianensis was found in early-Silurian strata in guizhou of south China.43 years have passed. But so far, the biological characteristics and belonging of the age of this unique plant have been debated again and again, up in the air.Biomarkers have a good stability in the process of organic evolution, no more or less changed, so they have a special `function of mark'. While biomarkers can provide information about organic matter of hydrocarbon source rock (the source), the period of deposition and burial (diagenesis) environmental conditions, and many other aspects of information.This paper obtained the sedimentary environment, source of organic matter input and other relevant information, through extracting and analyzing biomarkers of the 26 samples in the late Ordovician to early Silurian strata in NorthGuizhou areas. According to the results, Pr/Ph of late Ordovician Meitan Fm-early Silurian Hanjiadian Fm is high.It manifests more pristane, characterized by reductive environment. At the bottom of the Hanjiadian Fm, Pr/Ph has a volatility.Some huge environmental changes may have taken place in the corresponding period. N-alkanes do not have parity advantage or has even carbon advantage slightly.The peak carbon is mainly in low carbon number.(C21 + C22)/(C28 + C29) is high.Aquatic organisms is a major source of organic matter during this period,C21-/C22+ is low.This may be caused by the relatively serious loss of light hydrocarbon during the separation of components. In the Hanjiadian Fm,information of C29/C27 sterane ratios and oleanane index showed a trend of rising at the same time, indicating that during this period, there was a gradual increase input in the number of higher plants.The stable carbon isotope of saturated hydrocarbon and aromatic hydrocarbon in the Hanjiadian Fm also gradually become

  12. Toward a better understanding of nearshore meteotsunami evolution, and effective meteotsunami early-warning systems

    Science.gov (United States)

    Sheremet, A.; Li, C.; Shrira, V. I.

    2017-12-01

    We present high-resolution observations collected in 2008 on the Atcahfalaya shelf that capture the shoaling evolution of a meteotsunami (MT), including the disintegration into the train of solitons (solibore). One of the intriguing elements of this process is a spectacular 1.5-m solitary-wave (soliton), that precedes the arrival of the MT solibore by approximately 5 min, reaching the observation site propagating through a background of nearly-calm waters (20-cm height wind waves). Solitons, products of the MT disintegration process, are observed at all experiment sites, covering approx. 200 km shoreline. We interpret observations employing numerical simulations of a simplified hydrodynamic model based on the variable coefficient KdV equation. The analysis shows that observed wide-spread soliton presence and the soliton/solibore formation are the result of a complicated evolution process involving refraction, collision, and nonlinear interaction of multiple meteotsunami waves.Our results highlight the substantial lack of detail of the current picture of the nonlinear transformation of a MT from generation to its shoreline manifestation. A realistic reconstruction of MT evolution is at present almost impossible based on the current poor spatial and temporal resolution MT observations, overwhelmingly confined to the shoreline. Since the MTs tend to disintegrate into very short (down to 10s) pulses, even modern tidal gauges (1 min resolution) fail to capture essential features of its evolution. We also briefly discuss an ongoing field experiment that carries further the effort to collect high-resolution MT measurements, and that will investigate and test methodologies for early warning systems.

  13. Environmental oxygen conditions during the origin and early evolution of life

    Science.gov (United States)

    Towe, Kenneth M.

    The well-known sensitivity of proteins and nucleic acids to UV-radiation requires that some internally consistent protection scenario be envisioned for the origin and early evolution of life on Earth. Although a variety of ozone-surrogates has been proposed, the available biochemical, geochemical and geological evidence best supports the conclusion that free oxygen was available at levels capable of providing at least a moderate ozone screen. Levels of oxygen near 1-2% of the present atmospheric level are consistent with such a screen, and with: (1) the biochemical needs of early procaryotes considered phylogenetically more primitive than the oxygen-producing Cyanobacteria; (2) the rare-earth element data from the oxide facies of the 3.8 Byr-old Isua banded-iron formations; (3) the nature and phylogenetic distribution of superoxide dismutases; (4) the need for aerobic recycling of early photosynthetic productivity dictated by the distribution of ancient sedimentary iron and organic carbon; (5) the incompatibility of dissolved reduced sulfur (to support anoxygenic photosynthesis) and ferrous iron (to support banded iron-formations) in the surface waters of the world oceans; and (6) the comparative oxygen and UV-sensitivities of modern procaryotes.

  14. ON THE PROGENITOR AND EARLY EVOLUTION OF THE TYPE II SUPERNOVA 2009kr

    International Nuclear Information System (INIS)

    Fraser, M.; Takats, K.; Pastorello, A.; Smartt, S. J.; Botticella, M-T.; Valenti, S.; Mattila, S.; Ergon, M.; Sollerman, J.; Arcavi, I.; Gal-Yam, A.; Benetti, S.; Bufano, F.; Crockett, R. M.; Danziger, I. J.; Maund, J. R.; Taubenberger, S.; Turatto, M.

    2010-01-01

    We identify a source coincident with SN 2009kr in Hubble Space Telescope pre-explosion images. The object appears to be a single point source with an intrinsic color V - I = 1.1 ± 0.25 and M V = -7.6 ± 0.6. If this is a single star, it would be a yellow supergiant of log L/L sun ∼ 5.1 and a mass of 15 +5 -4 M sun . The spatial resolution does not allow us yet to definitively determine if the progenitor object is a single star, a binary system, or a compact cluster. We show that the early light curve is similar to a Type IIL SN, but the prominent Hα P-Cygni profiles and the signature of the end of a recombination phase are reminiscent of a Type IIP. The evolution of the expanding ejecta will play an important role in understanding the progenitor object.

  15. A complete skull of an early cretaceous sauropod and the evolution of advanced titanosaurians.

    Directory of Open Access Journals (Sweden)

    Hussam Zaher

    Full Text Available Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.

  16. The Importance of Lake Overflow Floods for Early Martian Landscape Evolution: Insights From Licus Vallis

    Science.gov (United States)

    Goudge, T. A.; Fassett, C. I.

    2017-01-01

    Open-basin lake outlet valleys are incised when water breaches the basin-confining topography and overflows. Outlet valleys record this flooding event and provide insight into how the lake and surrounding terrain evolved over time. Here we present a study of the paleolake outlet Licus Vallis, a >350 km long, >2 km wide, >100 m deep valley that heads at the outlet breach of an approx.30 km diameter impact crater. Multiple geomorphic features of this valley system suggest it records a more complex evolution than formation from a single lake overflow flood. This provides unique insight into the paleohydrology of lakes on early Mars, as we can make inferences beyond the most recent phase of activity..

  17. A dinosaur missing-link? Chilesaurus and the early evolution of ornithischian dinosaurs.

    Science.gov (United States)

    Baron, Matthew G; Barrett, Paul M

    2017-08-01

    The enigmatic dinosaur taxon Chilesaurus diegosuarezi was originally described as a tetanuran theropod, but this species possesses a highly unusual combination of features that could provide evidence of alternative phylogenetic positions within the clade. In order to test the relationships of Chilesaurus , we added it to a new dataset of early dinosaurs and other dinosauromorphs. Our analyses recover Chilesaurus in a novel position, as the earliest diverging member of Ornithischia, rather than a tetanuran theropod. The basal position of Chilesaurus within the clade and its suite of anatomical characters suggest that it might represent a 'transitional' taxon, bridging the morphological gap between Theropoda and Ornithischia, thereby offering potential insights into the earliest stages of ornithischian evolution, which were previously obscure. For example, our results suggest that pubic retroversion occurred prior to some of the craniodental and postcranial modifications that previously diagnosed the clade (e.g. the presence of a predentary bone and ossified tendons). © 2017 The Author(s).

  18. Early descriptions of acromegaly and gigantism and their historical evolution as clinical entities.

    Science.gov (United States)

    Mammis, Antonios; Eloy, Jean Anderson; Liu, James K

    2010-10-01

    Giants have been a subject of fascination throughout history. Whereas descriptions of giants have existed in the lay literature for millennia, the first attempt at a medical description was published by Johannes Wier in 1567. However, it was Pierre Marie, in 1886, who established the term "acromegaly" for the first time and established a distinct clinical diagnosis with clear clinical descriptions in 2 patients with the characteristic presentation. Multiple autopsy findings revealed a consistent correlation between acromegaly and pituitary enlargement. In 1909, Harvey Cushing postulated a “hormone of growth" as the underlying pathophysiological trigger involved in pituitary hypersecretion in patients with acromegaly. This theory was supported by his observations of clinical remission in patients with acromegaly in whom he had performed hypophysectomy. In this paper, the authors present some of the early accounts of acromegaly and gigantism, and describe its historical evolution as a medical and surgical entity.

  19. Early Stages of Microstructure and Texture Evolution during Beta Annealing of Ti-6Al-4V

    Science.gov (United States)

    Pilchak, A. L.; Sargent, G. A.; Semiatin, S. L.

    2018-03-01

    The early stages of microstructure evolution during annealing of Ti-6Al-4V in the beta phase field were established. For this purpose, a series of short-time heat treatments was performed using sheet samples that had a noticeable degree of alpha-phase microtexture in the as-received condition. Reconstruction of the beta-grain structure from electron-backscatter-diffraction measurements of the room-temperature alpha-phase texture revealed that microstructure evolution at short times was controlled not by general grain growth, but rather by nucleation-and-growth events analogous to discontinuous recrystallization. The nuclei comprised a small subset of beta grains that were highly misoriented relative to those comprising the principal texture component of the beta matrix. From a quantitative standpoint, the transformation kinetics were characterized by an Avrami exponent of approximately unity, thus suggestive of metadynamic recrystallization. The recrystallization process led to the weakening and eventual elimination of the initial beta texture through the growth of a population of highly misoriented grains.

  20. Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation

    Science.gov (United States)

    Choi, Hoseung; Yi, Sukyoung K.; Dubois, Yohan; Kimm, Taysun; Devriendt, Julien. E. G.; Pichon, Christophe

    2018-04-01

    Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z ≃ 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than {10}10 {M}ȯ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, f SR, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of f SR, a weak trend is seen in the mean value of the spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of the central ETGs of halos with {M}vir}> {10}12.5 {M}ȯ , but only 22% of satellite and field ETGs. We find that non-merger-induced tidal perturbations better correlate with the galaxy spin down in satellite ETGs than in mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  1. A new basal sauropod dinosaur from the middle Jurassic of Niger and the early evolution of sauropoda.

    Directory of Open Access Journals (Sweden)

    Kristian Remes

    2009-09-01

    Full Text Available The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification.A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography.Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification.

  2. Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems.

    Science.gov (United States)

    Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D; Fortey, Richard A; Land, Michael F; Liu, Yu; Cong, Peiyun; Hou, Xianguang

    2016-03-01

    Four types of eyes serve the visual neuropils of extant arthropods: compound retinas composed of adjacent facets; a visual surface populated by spaced eyelets; a smooth transparent cuticle providing inwardly directed lens cylinders; and single-lens eyes. The first type is a characteristic of pancrustaceans, the eyes of which comprise lenses arranged as hexagonal or rectilinear arrays, each lens crowning 8-9 photoreceptor neurons. Except for Scutigeromorpha, the second type typifies Myriapoda whose relatively large eyelets surmount numerous photoreceptive rhabdoms stacked together as tiers. Scutigeromorph eyes are facetted, each lens crowning some dozen photoreceptor neurons of a modified apposition-type eye. Extant chelicerate eyes are single-lensed except in xiphosurans, whose lateral eyes comprise a cuticle with a smooth outer surface and an inner one providing regular arrays of lens cylinders. This account discusses whether these disparate eye types speak for or against divergence from one ancestral eye type. Previous considerations of eye evolution, focusing on the eyes of trilobites and on facet proliferation in xiphosurans and myriapods, have proposed that the mode of development of eyes in those taxa is distinct from that of pancrustaceans and is the plesiomorphic condition from which facetted eyes have evolved. But the recent discovery of enormous regularly facetted compound eyes belonging to early Cambrian radiodontans suggests that high-resolution facetted eyes with superior optics may be the ground pattern organization for arthropods, predating the evolution of arthrodization and jointed post-protocerebral appendages. Here we provide evidence that compound eye organization in stem-group euarthropods of the Cambrian can be understood in terms of eye morphologies diverging from this ancestral radiodontan-type ground pattern. We show that in certain Cambrian groups apposition eyes relate to fixed or mobile eyestalks, whereas other groups reveal concomitant

  3. New Views on the Early Evolution of Oxygen in the Galaxy

    Science.gov (United States)

    Rebolo, R.; Israelian, G.; García López, R. J.

    We have performed a detailed oxygen abundance analysis of 23 metal-poor (-3.0 Abia & Rebolo 1989; Tomkin et al. 1992; Cavallo, Pilachowski, & Rebolo 1997). Contrary to the previously accepted picture, our oxygen abundances, derived from low-excitation OH lines, agree well with those derived from high-excitation lines of the triplet. For nine stars in common with Tomkin et al. we obtain a mean difference of 0.00 plus or minus 0.11dex with respect to the abundances determined from the triplet using the same stellar parameters and model photospheres. Our new results show a smooth extension of the Edvardsson et al.'s (1993) [O/Fe] versus metallicity curve to much lower abundances. The oxygen abundances of unevolved stars when compared with values in the literature for giants of similar metallicity imply that the latter may have suffered a process of oxygen depletion. It appears that unevolved metal-poor stars are better tracers of the early chemical evolution of the Galaxy. The extrapolation of our results to very low metallicities indicates that the ratio of oxygen to iron emerging from the first Type II SNe in the early Galaxy was indeed close to unity. The higher [O/Fe] ratios we find in dwarfs has an impact on the age determination of globular clusters, and suggest that current age estimates have to be reduced by about 1-2 Gyr.

  4. Possible role of radon in prebiotic chemistry and in early evolution of life on earth

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2010-01-01

    Radon in the environment of early Earth was present in sites, determined by location of deposits of uranium, in very different geological formations. According to the decay of uranium-238, the total production of radon at the beginnings was twice as high as now and was continuously diminishing to the present levels. This nuclide could not play as big a role as do radioactive elements connected with the presence of high concentration of 235 U, which was high enough in some places to give rise to formation of natural nuclear fission reactors (e.g. Oklo phenomenon in Africa). The main role of ionizing radiation in prebiotic chemistry and biological evolution was played by low LET (linear energy transfer) radiations, as deep penetrating sources of external energy. High LET radiations are of low penetration and could act only superficially. Radon is an exception, due to its easy transfer in the air. Therefore, it could play a role already in the cases of these early organisms which exhibited the gaseous exchange of chemical compounds with the surrounding atmosphere. The action was destructive, but, on the other hand, was also mutagenic. Nevertheless, the general quantitative effect of radon on the global scale could not be larger than of other radioactive nuclides. Presented considerations are part of the chapter by the present author on the role of nuclear and radiation chemistry in astrobiology, in the monograph published by American Scientific Publishers. (author)

  5. Tertiary evolution of the Shimanto belt (Japan): A large-scale collision in Early Miocene

    Science.gov (United States)

    Raimbourg, Hugues; Famin, Vincent; Palazzin, Giulia; Yamaguchi, Asuka; Augier, Romain

    2017-07-01

    To decipher the Miocene evolution of the Shimanto belt of southwestern Japan, structural and paleothermal studies were carried out in the western area of Shikoku Island. All units constituting the belt, both in its Cretaceous and Tertiary domains, are in average strongly dipping to the NW or SE, while shortening directions deduced from fault kinematics are consistently orientated NNW-SSE. Peak paleotemperatures estimated with Raman spectra of organic matter increase strongly across the southern, Tertiary portion of the belt, in tandem with the development of a steeply dipping metamorphic cleavage. Near the southern tip of Ashizuri Peninsula, the unconformity between accreted strata and fore-arc basin, present along the whole belt, corresponds to a large paleotemperature gap, supporting the occurrence of a major collision in Early Miocene. This tectonic event occurred before the magmatic event that affected the whole belt at 15 Ma. The associated shortening was accommodated in two opposite modes, either localized on regional-scale faults such as the Nobeoka Tectonic Line in Kyushu or distributed through the whole belt as in Shikoku. The reappraisal of this collision leads to reinterpret large-scale seismic refraction profiles of the margins, where the unit underlying the modern accretionary prism is now attributed to an older package of deformed and accreted sedimentary units belonging to the Shimanto belt. When integrated into reconstructions of Philippine Sea Plate motion, the collision corresponds to the oblique collision of a paleo Izu-Bonin-Mariana Arc with Japan in Early Miocene.

  6. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda.

    Science.gov (United States)

    Yang, Jie; Ortega-Hernández, Javier; Butterfield, Nicholas J; Liu, Yu; Boyan, George S; Hou, Jin-Bo; Lan, Tian; Zhang, Xi-Guang

    2016-03-15

    Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda.

  7. Aural exostoses (surfer's ear) provide vital fossil evidence of an aquatic phase in Man's early evolution.

    Science.gov (United States)

    Rhys Evans, P H; Cameron, M

    2017-11-01

    For over a century, otolaryngologists have recognised the condition of aural exostoses, but their significance and aetiology remains obscure, although they tend to be associated with frequent swimming and cold water immersion of the auditory canal. The fact that this condition is usually bilateral is predictable since both ears are immersed in water. However, why do exostoses only grow in swimmers and why do they grow in the deep bony meatus at two or three constant sites? Furthermore, from an evolutionary point of view, what is or was the purpose and function of these rather incongruous protrusions? In recent decades, paleoanthropological evidence has challenged ideas about early hominid evolution. In 1992 the senior author suggested that aural exostoses were evolved in early hominid Man for protection of the delicate tympanic membrane during swimming and diving by narrowing the ear canal in a similar fashion to other semiaquatic species. We now provide evidence for this theory and propose an aetiological explanation for the formation of exostoses.

  8. Evolution of care indicators after an early discharge intervention in preterm infants.

    Science.gov (United States)

    Toral-López, Isabel; González-Carrión, María Pilar; Rivas-Campos, Antonio; Lafuente-Lorca, Justa; Castillo-Vera, Josefa; de Casas, Carmen; Peña-Caballero, Manuela

    To evaluate the evolution of health outcomes in preterm infants included in an early discharge programme. Controlled, non-randomised trial with an intervention group and a control group children admitted to the Neonatal Intensive Care Unit of the University Hospital Virgen de las Nieves of Granada were included in the study. The intervention group comprised preterm infants admitted to the neonatal unit clinically stable, whose family home was located within 20km. from the hospital. They were discharged two weeks before the established time and a skilled nurse in neonatal care monitored them at home. The control group comprised infants who could not be included in home monitoring due to the distance to the hospital criterion or because their families did not give their consent and who received the usual care until their discharge. The study variables were the outcome indicators of the Nursing Outcomes Classification. Differences were found in the Nursing Outcomes Classification scores in the intervention group compared to the control group. The early discharge of preterm infants followed up at home by an expert nurse in neonatal care is a health service that achieves results in preparating parents for the care of their child, enabling them to learn about the health services, adapt to their new life, and establishbreastfeeding times. It constitutes safe intervention for children and is beneficial to parents. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  9. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  10. Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs.

    Science.gov (United States)

    Fong, Raymond K M; LeBlanc, Aaron R H; Berman, David S; Reisz, Robert R

    2016-07-01

    Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian- 209-201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916-924, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.

    Science.gov (United States)

    Proffitt, J V; Clarke, J A; Scofield, R P

    2016-08-01

    Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy. © 2016 Anatomical Society.

  12. Tracing the phylogeographic history of Southeast Asian long-tailed macaques through mitogenomes of museum specimens.

    Science.gov (United States)

    Yao, Lu; Li, Hongjie; Martin, Robert D; Moreau, Corrie S; Malhi, Ripan S

    2017-11-01

    The biogeographical history of Southeast Asia is complicated due to the continuous emergences and disappearances of land bridges throughout the Pleistocene. Here, we use long-tailed macaques (Macaca fascicularis), which are widely distributed throughout the mainland and islands of Southeast Asia, asa model for better understanding the biogeographical patterns of diversification in this geographically complex region. A reliable intraspecific phylogeny including individuals from localities on oceanic islands, continental islands, and the mainland is needed to trace relatedness along with the pattern and timing of colonization in this region. We used high-throughput sequencing techniques to sequence mitochondrial genomes (mitogenomes) from 95 Southeast Asian M. fascicularis specimens housed at natural history museums around the world. To achieve a comprehensive picture, we more than tripled the mitogenome sample size for M. fascicularis from previous studies, and for the first time included documented samples from the Philippines and several small Indonesian islands. Confirming the result from a previous, recent intraspecific phylogeny for M. fascicularis, the newly reconstructed phylogeny of 135 specimens divides the samples into two major clades: Clade A includes haplotypes from the mainland and some from northern Sumatra, while Clade B includes all insular haplotypes along with lineages from southern Sumatra. This study resolves a previous disparity by revealing a disjunction in the origin of Sumatran macaques, with separate lineages originating within the two major clades, suggesting that at least two major migrations to Sumatra occurred. However, our dated phylogeny reveals that the two major clades split ∼1.88Ma, which is earlier than in previously published phylogenies. Our new data reveal that most Philippine macaque lineages diverged from the Borneo stock within the last ∼0.06-0.43Ma. Finally, our study provides insight into successful sequencing of DNA

  13. The elusive nature of adaptive mitochondrial DNA evolution of an Arctic lineage prone to frequent introgression

    DEFF Research Database (Denmark)

    Melo-Ferreira, Jose; Vilela, Joana; Fonseca, Miguel M.

    2014-01-01

    understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread...

  14. Early evolution and dynamics of Earth from a molten initial stage

    Science.gov (United States)

    Louro Lourenço, Diogo; Tackley, Paul J.

    2016-04-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower

  15. Proboscidean mitogenomics: chronology and mode of elephant evolution using mastodon as outgroup.

    Directory of Open Access Journals (Sweden)

    Nadin Rohland

    2007-08-01

    Full Text Available We have sequenced the complete mitochondrial genome of the extinct American mastodon (Mammut americanum from an Alaskan fossil that is between 50,000 and 130,000 y old, extending the age range of genomic analyses by almost a complete glacial cycle. The sequence we obtained is substantially different from previously reported partial mastodon mitochondrial DNA sequences. By comparing those partial sequences to other proboscidean sequences, we conclude that we have obtained the first sequence of mastodon DNA ever reported. Using the sequence of the mastodon, which diverged 24-28 million years ago (mya from the Elephantidae lineage, as an outgroup, we infer that the ancestors of African elephants diverged from the lineage leading to mammoths and Asian elephants approximately 7.6 mya and that mammoths and Asian elephants diverged approximately 6.7 mya. We also conclude that the nuclear genomes of the African savannah and forest elephants diverged approximately 4.0 mya, supporting the view that these two groups represent different species. Finally, we found the mitochondrial mutation rate of proboscideans to be roughly half of the rate in primates during at least the last 24 million years.

  16. Mitogenomics does not resolve deep molluscan relationships (yet?).

    Science.gov (United States)

    Stöger, I; Schrödl, M

    2013-11-01

    The origin of molluscs among lophotrochozoan metazoans is unresolved and interclass relationships are contradictory between morphology-based, multi-locus, and recent phylogenomic analyses. Within the "Deep Metazoan Phylogeny" framework, all available molluscan mitochondrial genomes were compiled, covering 6 of 8 classes. Genomes were reannotated, and 13 protein coding genes (PCGs) were analyzed in various taxon settings, under multiple masking and coding regimes. Maximum Likelihood based methods were used for phylogenetic reconstructions. In all cases, molluscs result mixed up with lophotrochozoan outgroups, and most molluscan classes with more than single representatives available are non-monophyletic. We discuss systematic errors such as long branch attraction to cause aberrant, basal positions of fast evolving ingroups such as scaphopods, patellogastropods and, in particular, the gastropod subgroup Heterobranchia. Mitochondrial sequences analyzed either as amino acids or nucleotides may perform well in some (Cephalopoda) but not in other palaeozoic molluscan groups; they are not suitable to reconstruct deep (Cambrian) molluscan evolution. Supposedly "rare" mitochondrial genome level features have long been promoted as phylogenetically informative. In our newly annotated data set, features such as genome size, transcription on one or both strands, and certain coupled pairs of PCGs show a homoplastic, but obviously non-random distribution. Apparently congruent (but not unambiguous) signal for non-trivial subclades, e.g. for a clade composed of pteriomorph and heterodont bivalves, needs confirmation from a more comprehensive bivalve sampling. We found that larger clusters not only of PCGs but also of rRNAs and even tRNAs can bear local phylogenetic signal; adding trnG-trnE to the end of the ancestral cluster trnM-trnC-trnY-trnW-trnQ might be synapomorphic for Mollusca. Mitochondrial gene arrangement and other genome level features explored and reviewed herein thus

  17. Deposition and early hydrologic evolution of Westwater Canyon wet alluvial-fan system

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1980-01-01

    The Westwater Canyon Member is one of several large, low-gradient alluvial fans that compose the Morrison Formation in the Four Corners area. Morrison fans were deposited by major laterally migrating streams entering a broad basin bounded by highlands to the west and south. The Westwater Canyon sand framework consists of a downfan succession of 1) proximal braided channel, 2) straight bed-load channel, 3) sinuous mixed-load channel, and 4) distributary mixed-load-channel sand bodies. Regional sand distribution and facies patterns are highly digitate and radiate from a point source located northwest of Gallup, New Mexico. Early ground-water flow evolution within the Westwater Canyon fan aquifer system can be inferred by analogy with Quaternary wet-fan deposits and by the interpreted paragenetic sequence of diagenetic features present. Syndepositional flow was controlled by the downfan hydrodynamic gradient and the high horizontal and vertical transmissivity of the sand-rich fan aquifer. Dissolution and transport of soluble humate would be likely in earliest ground water, which was abundant, fresh, and slightly alkaline. With increasing confinement of the aquifer below less permeable tuffaceous Brushy Basin deposits and release of soluble constituents from volcanic ash, flow patterns stabilized, and relatively more saline, uranium-rich ground water permeated the aquifer. Uranium mineralization occurred during this early postdepositional, semiconfined flow phase. Development of overlying Dakota swamps suggests a shallow water table indicative of regional dischare or stagnation. In either event, only limited downward flux of acidic water is recorded by local, bleached, kaolinized zones where the Westwater Canyon directly underlies the Dakota swamps. Subsequent ground-water flow phases have further obscured primary alteration patterns and caused local oxidation and redistribution of uranium

  18. The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae).

    Science.gov (United States)

    Kim, Seong Ryeol; Kim, Man Il; Hong, Mee Yeon; Kim, Kee Young; Kang, Pil Don; Hwang, Jae Sam; Han, Yeon Soo; Jin, Byung Rae; Kim, Iksoo

    2009-09-01

    The 15,338-bp long complete mitochondrial genome (mitogenome) of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae) was determined. This genome has a gene arrangement identical to those of all other sequenced lepidopteran insects, but differs from the most common type, as the result of the movement of tRNA(Met) to a position 5'-upstream of tRNA(Ile). No typical start codon of the A. yamamai COI gene is available. Instead, a tetranucleotide, TTAG, which is found at the beginning context of all sequenced lepidopteran insects was tentatively designated as the start codon for A. yamamai COI gene. Three of the 13 protein-coding genes (PCGs) harbor the incomplete termination codon, T or TA. All tRNAs formed stable stem-and-loop structures, with the exception of tRNA(Ser)(AGN), the DHU arm of which formed a simple loop as has been observed in many other metazoan mt tRNA(Ser)(AGN). The 334-bp long A + T-rich region is noteworthy in that it harbors tRNA-like structures, as has also been seen in the A + T-rich regions of other insect mitogenomes. Phylogenetic analyses of the available species of Bombycoidea, Pyraloidea, and Tortricidea bolstered the current morphology-based hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As has been previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (A. yamamai and Caligula boisduvalii) formed a reciprocal monophyletic group.

  19. Early evolution of an X-ray emitting solar active region

    International Nuclear Information System (INIS)

    Wolfson, C.J.; Acton, L.W.; Leibacher, J.W.; Roethig, D.T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the Lockheed Mapping X-Ray Heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of Hα plage. At that time, a plasma temperature of 4 x 10 6 K in a region having a density of the order of 10 10 cm -3 is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by plasma with a temperature of the order 3 x 10 6 K. If it is assumed that the X-rays result from heating due to dissipation of current systems or magnetic field reconnection, it can be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration. (Auth.)

  20. The light up and early evolution of high redshift Supermassive Black Holes

    Science.gov (United States)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  1. Analysis of the Early Stages and Evolution of Dental Enamel Erosion.

    Science.gov (United States)

    Derceli, Juliana Dos Reis; Faraoni, Juliana Jendiroba; Pereira-da-Silva, Marcelo Assumpção; Palma-Dibb, Regina Guenka

    2016-01-01

    The aim of this study was to evaluate by atomic force microscopy (AFM) the early phases and evolution of dental enamel erosion caused by hydrochloric acid exposure, simulating gastroesophageal reflux episodes. Polished bovine enamel slabs (4x4x2 mm) were selected and exposed to 0.1 mL of 0.01 M hydrochloric acid (pH=2) at 37 ?#61472;?#61616;C using five different exposure intervals (n=1): no acid exposure (control), 10 s, 20 s, 30 s and 40 s. The exposed area was analyzed by AFM in 3 regions to measure the roughness, surface area and morphological surface. The data were analyzed qualitatively. Roughness started as low as that of the control sample, Rrms=3.5 nm, and gradually increased at a rate of 0.3 nm/s, until reaching Rrms=12.5 nm at 30 s. After 40 s, the roughness presented increment of 0.40 nm only. Surface area (SA) increased until 20 s, and for longer exposures, the surface area was constant (at 30 s, SA=4.40 μm2 and at 40 s, SA=4.43 μm2). As regards surface morphology, the control sample presented smaller hydroxyapatite crystals (22 nm) and after 40 s the crystal size was approximately 60 nm. Short periods of exposure were sufficient to produce enamel demineralization in different patterns and the morphological structure was less affected by exposure to hydrochloric acid over 30 s.

  2. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology

    Science.gov (United States)

    Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng

    2018-03-01

    The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a

  3. Mitogenome sequencing reveals shallow evolutionary histories and recent divergence time between morphologically and ecologically distinct European whitefish (Coregonus spp.)

    DEFF Research Database (Denmark)

    Jacobsen, Magnus W.; Hansen, Michael Møller; Orlando, Ludovic

    2012-01-01

    colonized Denmark following the last glacial maximum, Bayesian Serial SimCoal analysis showed consistency with a scenario of long-term stability, resulting from a rapid initial sixfold population expansion. The findings illustrate the utility of mitogenome data for resolving recent intraspecific divergence...

  4. Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe

    Czech Academy of Sciences Publication Activity Database

    Filipi, Karolína; Marková, Silvia; Searle, J. B.; Kotlík, Petr

    2015-01-01

    Roč. 82, PA (2015), s. 245-257 ISSN 1055-7903 R&D Projects: GA ČR GAP506/11/1872 Institutional support: RVO:67985904 Keywords : adaptation * glacial refugia * mitogenome * mtDNA * Myodes glareolus * Numt Subject RIV: EG - Zoology Impact factor: 3.792, year: 2015

  5. Analyses of Mitogenome Sequences Revealed that Asian Citrus Psyllids (Diaphorina citri) from California Were Related to Those from Florida.

    Science.gov (United States)

    Wu, Fengnian; Kumagai, Luci; Cen, Yijing; Chen, Jianchi; Wallis, Christopher M; Polek, MaryLou; Jiang, Hongyan; Zheng, Zheng; Liang, Guangwen; Deng, Xiaoling

    2017-08-31

    Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) transmits "Candidatus Liberibacter asiaticus" (CLas), an unculturable alpha-proteobacterium associated with citrus Huanglongbing (HLB). CLas has recently been found in California. Understanding ACP population diversity is necessary for HLB regulatory practices aimed at reducing CLas spread. In this study, two circular ACP mitogenome sequences from California (mt-CApsy, ~15,027 bp) and Florida (mt-FLpsy, ~15,012 bp), USA, were acquired. Each mitogenome contained 13 protein coding genes, 2 ribosomal RNA and 22 transfer RNA genes, and a control region varying in sizes. The Californian mt-CApsy was identical to the Floridian mt-FLpsy, but different from the mitogenome (mt-GDpsy) of Guangdong, China, in 50 single nucleotide polymorphisms (SNPs). Further analyses were performed on sequences in cox1 and trnAsn regions with 100 ACPs, SNPs in nad1-nad4-nad5 locus through PCR with 252 ACP samples. All results showed the presence of a Chinese ACP cluster (CAC) and an American ACP cluster (AAC). We proposed that ACP in California was likely not introduced from China based on our current ACP collection but somewhere in America. However, more studies with ACP samples from around the world are needed. ACP mitogenome sequence analyses will facilitate ACP population research.

  6. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples.

    Science.gov (United States)

    Peck, Michelle A; Sturk-Andreaggi, Kimberly; Thomas, Jacqueline T; Oliver, Robert S; Barritt-Ross, Suzanne; Marshall, Charla

    2018-05-01

    Generating mitochondrial genome (mitogenome) data from reference samples in a rapid and efficient manner is critical to harnessing the greater power of discrimination of the entire mitochondrial DNA (mtDNA) marker. The method of long-range target enrichment, Nextera XT library preparation, and Illumina sequencing on the MiSeq is a well-established technique for generating mitogenome data from high-quality samples. To this end, a validation was conducted for this mitogenome method processing up to 24 samples simultaneously along with analysis in the CLC Genomics Workbench and utilizing the AQME (AFDIL-QIAGEN mtDNA Expert) tool to generate forensic profiles. This validation followed the Federal Bureau of Investigation's Quality Assurance Standards (QAS) for forensic DNA testing laboratories and the Scientific Working Group on DNA Analysis Methods (SWGDAM) validation guidelines. The evaluation of control DNA, non-probative samples, blank controls, mixtures, and nonhuman samples demonstrated the validity of this method. Specifically, the sensitivity was established at ≥25 pg of nuclear DNA input for accurate mitogenome profile generation. Unreproducible low-level variants were observed in samples with low amplicon yields. Further, variant quality was shown to be a useful metric for identifying sequencing error and crosstalk. Success of this method was demonstrated with a variety of reference sample substrates and extract types. These studies further demonstrate the advantages of using NGS techniques by highlighting the quantitative nature of heteroplasmy detection. The results presented herein from more than 175 samples processed in ten sequencing runs, show this mitogenome sequencing method and analysis strategy to be valid for the generation of reference data. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto [Instituto de Radioastronomía y Astrofísica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert [Max-Planck-Institut für Astronomie Heidelberg, Königstuhl 17, D-69117 Heidelberg (Germany); Chandler, Claire J.; Pérez, Laura [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States); Anglada, Guillem; Macias, Enrique; Osorio, Mayra [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain); Flock, Mario [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Menten, Karl [Jansky Fellow of the National Radio Astronomy Observatory (United States); Testi, Leonardo [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Zhu, Zhaohuan, E-mail: c.carrasco@crya.unam.mx, E-mail: l.rodriguez@crya.unam.mx, E-mail: r.galvan@crya.unam.mx, E-mail: henning@mpia.de, E-mail: linz@mpia.de [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-04-10

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.

  8. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    International Nuclear Information System (INIS)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto; Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert; Chandler, Claire J.; Pérez, Laura; Anglada, Guillem; Macias, Enrique; Osorio, Mayra; Flock, Mario; Menten, Karl; Testi, Leonardo; Torrelles, José M.; Zhu, Zhaohuan

    2016-01-01

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10 −3 M ⊙ , depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings

  9. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution

    Science.gov (United States)

    McConnell, Sean C.; Hernandez, Kyle M.; Wcisel, Dustin J.; Kettleborough, Ross N.; Stemple, Derek L.; Andrade, Jorge; de Jong, Jill L. O.

    2016-01-01

    Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218

  10. Biosynthesis of membrane lipids of thermophilic archaebacteria and its implication to early evolution of life

    International Nuclear Information System (INIS)

    Oshima, Tairo

    1995-01-01

    The unit lipid of cell membranes of archaebacteria is unique ether lipids, O-dialkylated glycerol with a polar head group at sn-1 position. The chirality of glycerol moiety of the lipids is opposite to that of other kingdoms. The hydrophobic potion consists of saturated C 20 isoprenoid hydrocarbon backbone and is connected to glycerol by an ether linkage. In addition, cell membrane of some of thermophilic archaebacteria are monolayer (in stead of bilayer) of tetraether lipids in which both tails of hydrocarbon chains of two diether lipids are covalently connected in a tail-to-tail fashion. Although the host cell from which contemporary eukaryotes have been derived by endosymbiosis, is speculated to be an archaebacterium, the unique ether lipids raised a serious question to the idea of archabacterial origin of eukaryote cells; why the unique ether lipids are not used to construct cytoplasmic membranes of eukaryotes? The author and his colleagues have studied biosynthesis of membrane liquids of two thermo-acidophilic archaebacteria, Thermoplasma and Sulfolobus. It was found that origins of stereospecificity of glycerol moiety of archaebacterial ether lipids differs form species to species. In Sulfolobus sn-glycerol-1-phosphate (the abnormal isomer of glycerol phosphate) seems to be directly synthesized from glycerol, whereas in Halobacterium stereospecificity of glycerol phosphate is inverted during the lipid synthesis. Recently we found that specific inhibitors for eukaryotes squalene epoxidase inhibit the condensation of diether lipids to tetraether lipids in cell-free extracts of these thermophilic archaebacteria. The results suggest evolutionary implication of archaebacterial tetraether condensing enzyme to eukaryote sterol biosynthesis. Relationships between chemical structures of membrane lipids and early evolution of life will be discussed. (author). Abstract only

  11. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.

    Science.gov (United States)

    Orlando, Ludovic; Ginolhac, Aurélien; Zhang, Guojie; Froese, Duane; Albrechtsen, Anders; Stiller, Mathias; Schubert, Mikkel; Cappellini, Enrico; Petersen, Bent; Moltke, Ida; Johnson, Philip L F; Fumagalli, Matteo; Vilstrup, Julia T; Raghavan, Maanasa; Korneliussen, Thorfinn; Malaspinas, Anna-Sapfo; Vogt, Josef; Szklarczyk, Damian; Kelstrup, Christian D; Vinther, Jakob; Dolocan, Andrei; Stenderup, Jesper; Velazquez, Amhed M V; Cahill, James; Rasmussen, Morten; Wang, Xiaoli; Min, Jiumeng; Zazula, Grant D; Seguin-Orlando, Andaine; Mortensen, Cecilie; Magnussen, Kim; Thompson, John F; Weinstock, Jacobo; Gregersen, Kristian; Røed, Knut H; Eisenmann, Véra; Rubin, Carl J; Miller, Donald C; Antczak, Douglas F; Bertelsen, Mads F; Brunak, Søren; Al-Rasheid, Khaled A S; Ryder, Oliver; Andersson, Leif; Mundy, John; Krogh, Anders; Gilbert, M Thomas P; Kjær, Kurt; Sicheritz-Ponten, Thomas; Jensen, Lars Juhl; Olsen, Jesper V; Hofreiter, Michael; Nielsen, Rasmus; Shapiro, Beth; Wang, Jun; Willerslev, Eske

    2013-07-04

    The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.

  12. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution

    KAUST Repository

    Yasumura, Yuki

    2012-10-18

    Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh-water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence-induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land. © 2012 Blackwell Publishing Ltd.

  13. Biologist Edwin Grant Conklin and the idea of the religious direction of human evolution in the early 1920s.

    Science.gov (United States)

    Pavuk, Alexander

    2017-01-01

    Edwin Grant Conklin, renowned US embryologist and evolutionary popularizer, publicly advocated a social vision of evolution that intertwined science and modernist Protestant theology in the early 1920s. The moral prestige of professional science in American culture - along with Conklin's own elite scientific status - diverted attention from the frequency with which his work crossed boundaries between natural science, religion and philosophy. Writing for broad audiences, Conklin was one of the most significant of the religious and modernist biological scientists whose rhetoric went well beyond simply claiming that certain kinds of religion were amenable to evolutionary science; he instead incorporated religion itself into evolution's broadest workings. A sampling of Conklin's widely-resonant discourse suggests that there was substantially more to the religion-evolution story in the 1920s US than many creationist-centred narratives of the era imply.

  14. Three neuropeptide Y receptor genes in the spiny dogfish, Squalus acanthias, support en bloc duplications in early vertebrate evolution.

    Science.gov (United States)

    Salaneck, Erik; Ardell, David H; Larson, Earl T; Larhammar, Dan

    2003-08-01

    It has been debated whether the increase in gene number during early vertebrate evolution was due to multiple independent gene duplications or synchronous duplications of many genes. We describe here the cloning of three neuropeptide Y (NPY) receptor genes belonging to the Y1 subfamily in the spiny dogfish, Squalus acanthias, a cartilaginous fish. The three genes are orthologs of the mammalian subtypes Y1, Y4, and Y6, which are located in paralogous gene regions on different chromosomes in mammals. Thus, these genes arose by duplications of a chromosome region before the radiation of gnathostomes (jawed vertebrates). Estimates of duplication times from linearized trees together with evidence from other gene families supports two rounds of chromosome duplications or tetraploidizations early in vertebrate evolution. The anatomical distribution of mRNA was determined by reverse-transcriptase PCR and was found to differ from mammals, suggesting differential functional diversification of the new gene copies during the radiation of the vertebrate classes.

  15. Indian signatures in the westernmost edge of the European Romani diaspora: new insight from mitogenomes.

    Science.gov (United States)

    Gómez-Carballa, Alberto; Pardo-Seco, Jacobo; Fachal, Laura; Vega, Ana; Cebey, Miriam; Martinón-Torres, Nazareth; Martinón-Torres, Federico; Salas, Antonio

    2013-01-01

    In agreement with historical documentation, several genetic studies have revealed ancestral links between the European Romani and India. The entire mitochondrial DNA (mtDNA) of 27 Spanish Romani was sequenced in order to shed further light on the origins of this population. The data were analyzed together with a large published dataset (mainly hypervariable region I [HVS-I] haplotypes) of Romani (N=1,353) and non-Romani worldwide populations (N>150,000). Analysis of mitogenomes allowed the characterization of various Romani-specific clades. M5a1b1a1 is the most distinctive European Romani haplogroup; it is present in all Romani groups at variable frequencies (with only sporadic findings in non-Romani) and represents 18% of their mtDNA pool. Its phylogeographic features indicate that M5a1b1a1 originated 1.5 thousand years ago (kya; 95% CI: 1.3-1.8) in a proto-Romani population living in Northwest India. U3 represents the most characteristic Romani haplogroup of European/Near Eastern origin (12.4%); it appears at dissimilar frequencies across the continent (Iberia: ≈ 31%; Eastern/Central Europe: ≈ 13%). All U3 mitogenomes of our Iberian Romani sample fall within a new sub-clade, U3b1c, which can be dated to 0.5 kya (95% CI: 0.3-0.7); therefore, signaling a lower bound for the founder event that followed admixture in Europe/Near East. Other minor European/Near Eastern haplogroups (e.g. H24, H88a) were also assimilated into the Romani by introgression with neighboring populations during their diaspora into Europe; yet some show a differentiation from the phylogenetically closest non-Romani counterpart. The phylogeny of Romani mitogenomes shows clear signatures of low effective population sizes and founder effects. Overall, these results are in good agreement with historical documentation, suggesting that cultural identity and relative isolation have allowed the Romani to preserve a distinctive mtDNA heritage, with some features linking them unequivocally to their

  16. The mitogenome of a 35,000-year-old Homo sapiens from Europe supports a Palaeolithic back-migration to Africa

    OpenAIRE

    Hervella, M.; Svensson, E. M.; Alberdi, A.; G?nther, T.; Izagirre, N.; Munters, A. R.; Alonso, S.; Ioana, M.; Ridiche, F.; Soficaru, A.; Jakobsson, M.; Netea, M. G.; de-la-Rua, C.

    2016-01-01

    After the dispersal of modern humans (Homo sapiens) Out of Africa, hominins with a similar morphology to that of present-day humans initiated the gradual demographic expansion into Eurasia. The mitogenome (33-fold coverage) of the Pestera Muierii 1 individual (PM1) from Romania (35 ky cal BP) we present in this article corresponds fully to Homo sapiens, whilst exhibiting a mosaic of morphological features related to both modern humans and Neandertals. We have identified the PM1 mitogenome as ...

  17. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    Science.gov (United States)

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  18. A revision of Sanpasaurus yaoi Young, 1944 from the Early Jurassic of China, and its relevance to the early evolution of Sauropoda (Dinosauria

    Directory of Open Access Journals (Sweden)

    Blair W. McPhee

    2016-10-01

    Full Text Available The Early Jurassic of China has long been recognized for its diverse array of sauropodomorph dinosaurs. However, the contribution of this record to our understanding of early sauropod evolution is complicated by a dearth of information on important transitional taxa. We present a revision of the poorly known taxon Sanpasaurus yaoi Young, 1944 from the late Early Jurassic Ziliujing Formation of Sichuan Province, southwest China. Initially described as the remains of an ornithopod ornithischian, we demonstrate that the material catalogued as IVPP V156 is unambiguously referable to Sauropoda. Although represented by multiple individuals of equivocal association, Sanpasaurus is nonetheless diagnosable with respect to an autapomorphic feature of the holotypic dorsal vertebral series. Additional material thought to be collected from the type locality is tentatively referred to Sanpasaurus. If correctly attributed, a second autapomorphy is present in a referred humerus. The presence of a dorsoventrally compressed pedal ungual in Sanpasaurus is of particular interest, with taxa possessing this typically ‘vulcanodontid’ character exhibiting a much broader geographic distribution than previously thought. Furthermore, the association of this trait with other features of Sanpasaurus that are broadly characteristic of basal eusauropods underscores the mosaic nature of the early sauropod–eusauropod transition. Our revision of Sanpasaurus has palaeobiogeographic implications for Early Jurassic sauropods, with evidence that the group maintained a cosmopolitan Pangaean distribution.

  19. Arrival of Paleo-Indians to the southern cone of South America: new clues from mitogenomes.

    Directory of Open Access Journals (Sweden)

    Michelle de Saint Pierre

    Full Text Available With analyses of entire mitogenomes, studies of Native American mitochondrial DNA (MTDNA variation have entered the final phase of phylogenetic refinement: the dissection of the founding haplogroups into clades that arose in America during and after human arrival and spread. Ages and geographic distributions of these clades could provide novel clues on the colonization processes of the different regions of the double continent. As for the Southern Cone of South America, this approach has recently allowed the identification of two local clades (D1g and D1j whose age estimates agree with the dating of the earliest archaeological sites in South America, indicating that Paleo-Indians might have reached that region from Beringia in less than 2000 years. In this study, we sequenced 46 mitogenomes belonging to two additional clades, termed B2i2 (former B2l and C1b13, which were recently identified on the basis of mtDNA control-region data and whose geographical distributions appear to be restricted to Chile and Argentina. We confirm that their mutational motifs most likely arose in the Southern Cone region. However, the age estimate for B2i2 and C1b13 (11-13,000 years appears to be younger than those of other local clades. The difference could reflect the different evolutionary origins of the distinct South American-specific sub-haplogroups, with some being already present, at different times and locations, at the very front of the expansion wave in South America, and others originating later in situ, when the tribalization process had already begun. A delayed origin of a few thousand years in one of the locally derived populations, possibly in the central part of Chile, would have limited the geographical and ethnic diffusion of B2i2 and explain the present-day occurrence that appears to be mainly confined to the Tehuelche and Araucanian-speaking groups.

  20. Evolutionary and functional mitogenomics associated with the genetic restoration of the Florida panther

    Science.gov (United States)

    Ochoa, Alexander; Onorato, David P.; Fitak, Robert R.; Roelke-Parker, Melody; Culver, Melanie

    2017-01-01

    Florida panthers are endangered pumas that currently persist in reduced patches of habitat in South Florida, USA. We performed mitogenome reference-based assemblies for most parental lines of the admixed Florida panthers that resulted from the introduction of female Texas pumas into South Florida in 1995. With the addition of 2 puma mitogenomes, we characterized 174 single nucleotide polymorphisms (SNPs) across 12 individuals. We defined 5 haplotypes (Pco1–Pco5), one of which (Pco1) had a geographic origin exclusive to Costa Rica and Panama and was possibly introduced into the Everglades National Park, Florida, prior to 1995. Haplotype Pco2 was native to Florida. Haplotypes Pco3 and Pco4 were exclusive to Texas, whereas haplotype Pco5 had an undetermined geographic origin. Phylogenetic inference suggests that haplotypes Pco1–Pco4 diverged ~202000 (95% HPDI = 83000–345000) years ago and that haplotypes Pco2–Pco4 diverged ~61000 (95% HPDI = 9000–127000) years ago. These results are congruent with a south-to-north continental expansion and with a recent North American colonization by pumas. Furthermore, pumas may have migrated from Texas to Florida no earlier than ~44000 (95% HPDI = 2000–98000) years ago. Synonymous mutations presented a greater mean substitution rate than other mitochondrial functional regions: nonsynonymous mutations, tRNAs, rRNAs, and control region. Similarly, all protein-coding genes were under predominant negative selection constraints. We directly and indirectly assessed the presence of potential deleterious SNPs in the ND2 and ND5 genes in Florida panthers prior to and as a consequence of the introduction of Texas pumas. Screenings for such variants are recommended in extant Florida panthers.

  1. Tracing early stellar evolution with asteroseismology: pre-main sequence stars in NGC 2264

    Directory of Open Access Journals (Sweden)

    Zwintz Konstanze

    2015-01-01

    Full Text Available Asteroseismology has been proven to be a successful tool to unravel details of the internal structure for different types of stars in various stages of their main sequence and post-main sequence evolution. Recently, we found a relation between the detected pulsation properties in a sample of 34 pre-main sequence (pre-MS δ Scuti stars and the relative phase in their pre-MS evolution. With this we are able to demonstrate that asteroseismology is similarly powerful if applied to stars in the earliest stages of evolution before the onset of hydrogen core burning.

  2. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.

    Science.gov (United States)

    Matthewman, Richard; Court, Richard W; Crawford, Ian A; Jones, Adrian P; Joy, Katherine H; Sephton, Mark A

    2015-02-01

    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.

  3. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: barman@lpl.arizona.edu [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2014-10-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation and evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t {sup –1}. Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.

  4. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    International Nuclear Information System (INIS)

    Shkolnik, Evgenya L.; Barman, Travis S.

    2014-01-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation and evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t –1 . Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.

  5. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    International Nuclear Information System (INIS)

    Ryan, R. E. Jr.; McCarthy, P. J.; Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Bond, H. E.; Bushouse, H.; O'Connell, R. W.; Balick, B.; Calzetti, D.; Crockett, R. M.; Disney, M.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.

    2012-01-01

    We present the size evolution of passively evolving galaxies at z ∼ 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z ∼> 1.5. We identify 30 galaxies in ∼40 arcmin 2 to H obs ∼ * ∼ 10 11 M ☉ ) undergo the strongest evolution from z ∼ 2 to the present. Parameterizing the size evolution as (1 + z) –α , we find a tentative scaling of α ≈ (– 0.6 ± 0.7) + (0.9 ± 0.4)log (M * /10 9 M ☉ ), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M * -R e relation for red galaxies.

  6. Molecular evolution of glutamine synthetase II: Phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution

    Directory of Open Access Journals (Sweden)

    Tartar Aurélien

    2010-06-01

    Full Text Available Abstract Background Glutamine synthetase (GS is essential for ammonium assimilation and the biosynthesis of glutamine. The three GS gene families (GSI, GSII, and GSIII are represented in both prokaryotic and eukaryotic organisms. In this study, we examined the evolutionary relationship of GSII from eubacterial and eukaryotic lineages and present robust phylogenetic evidence that GSII was transferred from γ-Proteobacteria (Eubacteria to the Chloroplastida. Results GSII sequences were isolated from four species of green algae (Trebouxiophyceae, and additional green algal (Chlorophyceae and Prasinophytae and streptophyte (Charales, Desmidiales, Bryophyta, Marchantiophyta, Lycopodiophyta and Tracheophyta sequences were obtained from public databases. In Bayesian and maximum likelihood analyses, eubacterial (GSIIB and eukaryotic (GSIIE GSII sequences formed distinct clades. Both GSIIB and GSIIE were found in chlorophytes and early-diverging streptophytes. The GSIIB enzymes from these groups formed a well-supported sister clade with the γ-Proteobacteria, providing evidence that GSIIB in the Chloroplastida arose by horizontal gene transfer (HGT. Bayesian relaxed molecular clock analyses suggest that GSIIB and GSIIE coexisted for an extended period of time but it is unclear whether the proposed HGT happened prior to or after the divergence of the primary endosymbiotic lineages (the Archaeplastida. However, GSIIB genes have not been identified in glaucophytes or red algae, favoring the hypothesis that GSIIB was gained after the divergence of the primary endosymbiotic lineages. Duplicate copies of the GSIIB gene were present in Chlamydomonas reinhardtii, Volvox carteri f. nagariensis, and Physcomitrella patens. Both GSIIB proteins in C. reinhardtii and V. carteri f. nagariensis had N-terminal transit sequences, indicating they are targeted to the chloroplast or mitochondrion. In contrast, GSIIB proteins of P. patens lacked transit sequences, suggesting

  7. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae

    Directory of Open Access Journals (Sweden)

    Neil Brocklehurst

    2016-01-01

    Full Text Available Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact, it is those which experience a size decrease which evolve at higher rates. It is possible the shift in rates of evolution is related to the improved food processing ability of

  8. Early 20th-century research at the interfaces of genetics, development, and evolution: reflections on progress and dead ends.

    Science.gov (United States)

    Deichmann, Ute

    2011-09-01

    Three early 20th-century attempts at unifying separate areas of biology, in particular development, genetics, physiology, and evolution, are compared in regard to their success and fruitfulness for further research: Jacques Loeb's reductionist project of unifying approaches by physico-chemical explanations; Richard Goldschmidt's anti-reductionist attempts to unify by integration; and Sewall Wright's combination of reductionist research and vision of hierarchical genetic systems. Loeb's program, demanding that all aspects of biology, including evolution, be studied by the methods of the experimental sciences, proved highly successful and indispensible for higher level investigations, even though evolutionary change and properties of biological systems up to now cannot be fully explained on the molecular level alone. Goldschmidt has been appraised as pioneer of physiological and developmental genetics and of a new evolutionary synthesis which transcended neo-Darwinism. However, this study concludes that his anti-reductionist attempts to integrate genetics, development and evolution have to be regarded as failures or dead ends. His grand speculations were based on the one hand on concepts and experimental systems that were too vague in order to stimulate further research, and on the other on experiments which in their core parts turned out not to be reproducible. In contrast, Sewall Wright, apart from being one of the architects of the neo-Darwinian synthesis of the 1930s, opened up new paths of testable quantitative developmental genetic investigations. He placed his research within a framework of logical reasoning, which resulted in the farsighted speculation that examinations of biological systems should be related to the regulation of hierarchical genetic subsystems, possibly providing a mechanism for development and evolution. I argue that his suggestion of basing the study of systems on clearly defined properties of the components has proved superior to

  9. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    Science.gov (United States)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  10. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    Science.gov (United States)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  11. Loess deposits since early Pleistocene in northeast China and implications for desert evolution in east China

    Science.gov (United States)

    Sun, Miao; Zhang, Xujiao; Tian, Mingzhong; Liu, Ru; He, Zexin; Qi, Lin; Qiao, Yansong

    2018-04-01

    Loess deposits and deserts are regarded as coupled geological systems and loess deposits on the periphery of deserts can often be used to reconstruct desert evolution. Previous studies of desert evolution in Asia are mainly concentrated in northwest China and the China Loess Plateau, and little is known about long-term desert evolution in east China. In this study, we selected the Sishijiazi loess section in the Chifeng area in northeast China to study the long-term evolution of the desert in east China. A high-resolution magnetostratigraphy combined with optically stimulated luminescence dating indicated that the age of the section base is approximately 1.02 Ma. The Brunhes-Matuyama boundary is at the depth of 39.8 m in loess unit L8, and the upper boundary of the Jaramillo Subchron is at the depth of 60.8 m in paleosol S10. The results of grain-size analysis indicate a coarsening grain-size trend in the past 1.0 Ma. In addition, based on grain-size variations, the desert evolution in east China since ∼1.0 Ma can be divided into three stages: stability from 1.0 to 0.8 Ma, desert recession from 0.8 to 0.5 Ma, and gradual expansion since 0.5 Ma. Our results further indicate that the evolution of desert in east China was mainly controlled by changes in global ice volume, and that the uplift of the Tibetan Plateau may have had an additional effect.

  12. Neuromuscular study of early branching Diuronotus aspetos (Paucitubulatina) yields insights into the evolution of organs systems in Gastrotricha

    DEFF Research Database (Denmark)

    Bekkouche, Nicolas Tarik; Worsaae, Katrine

    2016-01-01

    BACKGROUND: Diuronotus is one of the most recently described genera of Paucitubulatina, one of the three major clades in Gastrotricha. Its morphology suggests that Diuronotus is an early branch of Paucitubulatina, making it a key taxon for understanding the evolution of this morphologically...... constitute new apomorphies of Paucitubulatina, or even Gastrotricha. In order to test these new evolutionary hypotheses, comparable morphological data from other understudied gastrotrich branches and a better resolution of the basal nodes of the gastrotrich phylogeny are warranted. Nonetheless, the present...

  13. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R. E. Jr. [Physics Department, University of California, Davis, CA 95616 (United States); McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Hathi, N. P. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Koekemoer, A. M.; Bond, H. E.; Bushouse, H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Crockett, R. M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Disney, M. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Frogel, J. A. [Galaxies Unlimited, Lutherville, MD 21093 (United States); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Holtzman, J. A., E-mail: rryan@physics.ucdavis.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2012-04-10

    We present the size evolution of passively evolving galaxies at z {approx} 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z {approx}> 1.5. We identify 30 galaxies in {approx}40 arcmin{sup 2} to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 {mu}m {approx}< {lambda}{sub obs} {approx}< 1.6 {mu}m with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of {approx}0.033(1 + z). We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M{sub *} {approx} 10{sup 11} M{sub Sun }) undergo the strongest evolution from z {approx} 2 to the present. Parameterizing the size evolution as (1 + z){sup -{alpha}}, we find a tentative scaling of {alpha} Almost-Equal-To (- 0.6 {+-} 0.7) + (0.9 {+-} 0.4)log (M{sub *}/10{sup 9} M{sub Sun }), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M{sub *}-R{sub e} relation for red galaxies.

  14. Hybrid Differential Evolution Optimisation for Earth Observation Satellite Scheduling with Time-Dependent Earliness-Tardiness Penalties

    Directory of Open Access Journals (Sweden)

    Guoliang Li

    2017-01-01

    Full Text Available We study the order acceptance and scheduling (OAS problem with time-dependent earliness-tardiness penalties in a single agile earth observation satellite environment where orders are defined by their release dates, available processing time windows ranging from earliest start date to deadline, processing times, due dates, sequence-dependent setup times, and revenues. The objective is to maximise total revenue, where the revenue from an order is a piecewise linear function of its earliness and tardiness with reference to its due date. We formulate this problem as a mixed integer linear programming model and develop a novel hybrid differential evolution (DE algorithm under self-adaptation framework to solve this problem. Compared with classical DE, hybrid DE employs two mutation operations, scaling factor adaptation and crossover probability adaptation. Computational tests indicate that the proposed algorithm outperforms classical DE in addition to two other variants of DE.

  15. Post-early cretaceous landform evolution along the western margin of the banca~nnia trough, western nsw

    Science.gov (United States)

    Gibson, D.L.

    2000-01-01

    Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.

  16. Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan.

    Science.gov (United States)

    Webster, Bonnie L; Copley, Richard R; Jenner, Ronald A; Mackenzie-Dodds, Jacqueline A; Bourlat, Sarah J; Rota-Stabelli, Omar; Littlewood, D T J; Telford, Maximilian J

    2006-01-01

    Research into arthropod evolution is hampered by the derived nature and rapid evolution of the best-studied out-group: the nematodes. We consider priapulids as an alternative out-group. Priapulids are a small phylum of bottom-dwelling marine worms; their tubular body with spiny proboscis or introvert has changed little over 520 million years and recognizable priapulids are common among exceptionally preserved Cambrian fossils. Using the complete mitochondrial genome and 42 nuclear genes from Priapulus caudatus, we show that priapulids are slowly evolving ecdysozoans; almost all these priapulid genes have evolved more slowly than nematode orthologs and the priapulid mitochondrial gene order may be unchanged since the Cambrian. Considering their primitive bodyplan and embryology and the great conservation of both nuclear and mitochondrial genomes, priapulids may deserve the popular epithet of "living fossil." Their study is likely to yield significant new insights into the early evolution of the Ecdysozoa and the origins of the arthropods and their kin as well as aiding inference of the morphology of ancestral Ecdysozoa and Bilateria and their genomes.

  17. Evolution of the Southern Margin of the Donbas (Ukraine) from Devonian to early Carboniferous Times.

    NARCIS (Netherlands)

    McCann, T.; Saintot, A.N.

    2003-01-01

    A Devonian-Early Carboniferous succession comprising thick clastic and carbonate sediments with interbedded volcanics was examined along the southern margin of the Donbas fold belt. Ukraine. Following initial rifting and subsidence, a continental (fluvial, lacustrine) succession was established.

  18. A first-principles model of early evolution: emergence of gene families, species, and preferred protein folds.

    Directory of Open Access Journals (Sweden)

    Konstantin B Zeldovich

    2007-07-01

    Full Text Available In this work we develop a microscopic physical model of early evolution where phenotype--organism life expectancy--is directly related to genotype--the stability of its proteins in their native conformations-which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the "Big Bang" scenario whereby exponential population growth ensues as soon as favorable sequence-structure combinations (precursors of stable proteins are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species--subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution.

  19. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires.

    Science.gov (United States)

    Bertrand, Ornella C; Amador-Mughal, Farrah; Silcox, Mary T

    2016-01-27

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. © 2016 The Author(s).

  20. Phanerozoic pO2 and the early evolution of terrestrial animals.

    Science.gov (United States)

    Schachat, Sandra R; Labandeira, Conrad C; Saltzman, Matthew R; Cramer, Bradley D; Payne, Jonathan L; Boyce, C Kevin

    2018-01-31

    Concurrent gaps in the Late Devonian/Mississippian fossil records of insects and tetrapods (i.e. Romer's Gap) have been attributed to physiological suppression by low atmospheric p O 2 Here, updated stable isotope inputs inform a reconstruction of Phanerozoic oxygen levels that contradicts the low oxygen hypothesis (and contradicts the purported role of oxygen in the evolution of gigantic insects during the late Palaeozoic), but reconciles isotope-based calculations with other proxies, like charcoal. Furthermore, statistical analysis demonstrates that the gap between the first Devonian insect and earliest diverse insect assemblages of the Pennsylvanian (Bashkirian Stage) requires no special explanation if insects were neither diverse nor abundant prior to the evolution of wings. Rather than tracking physiological constraint, the fossil record may accurately record the transformative evolutionary impact of insect flight. © 2018 The Author(s).

  1. A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds

    Directory of Open Access Journals (Sweden)

    Jiandong Huang

    2016-03-01

    Full Text Available Despite the increasing number of exceptional feathered fossils discovered in the Late Jurassic and Cretaceous of northeastern China, representatives of Ornithurae, a clade that includes comparatively-close relatives of crown clade Aves (extant birds and that clade, are still comparatively rare. Here, we report a new ornithurine species Changzuiornis ahgmi from the Early Cretaceous Jiufotang Formation. The new species shows an extremely elongate rostrum so far unknown in basal ornithurines and changes our understanding of the evolution of aspects of extant avian ecology and cranial evolution. Most of this elongate rostrum in Changzuiornis ahgmi is made up of maxilla, a characteristic not present in the avian crown clade in which most of the rostrum and nearly the entire facial margin is made up by premaxilla. The only other avialans known to exhibit an elongate rostrum with the facial margin comprised primarily of maxilla are derived ornithurines previously placed phylogenetically as among the closest outgroups to the avian crown clade as well as one derived enantiornithine clade. We find that, consistent with a proposed developmental shift in cranial ontogeny late in avialan evolution, this elongate rostrum is achieved through elongation of the maxilla while the premaxilla remains only a small part of rostral length. Thus, only in Late Cretaceous ornithurine taxa does the premaxilla begin to play a larger role. The rostral and postcranial proportions of Changzuiornis suggest an ecology not previously reported in Ornithurae; the only other species with an elongate rostrum are two marine Late Cretacous taxa interpreted as showing a derived picivorous diet.

  2. The worldwide spread of the tiger mosquito as revealed by mitogenome haplogroup diversity

    Directory of Open Access Journals (Sweden)

    Vincenza Battaglia

    2016-11-01

    Full Text Available In the last 40 years, the Asian tiger mosquito Aedes albopictus, indigenous to East Asia, has colonized every continent except Antarctica. Its spread is a major public health concern, given that this species is a competent vector for numerous arboviruses, including those causing dengue, chikungunya, West Nile and the recently emerged Zika fever. To acquire more information on the ancestral source(s of adventive populations and the overall diffusion process from its native range, we analyzed the mitogenome variation of 27 individuals from representative populations of Asia, the Americas and Europe. Phylogenetic analyses revealed five haplogroups in Asia, but population surveys appear to indicate that only three of these (A1a1, A1a2 and A1b were involved in the recent worldwide spread. We also found out that a derived lineage (A1a1a1 within A1a1, which is now common in Italy, most likely arose in North America from an ancestral Japanese source. These different genetic sources now coexist in many of the recently colonized areas, thus probably creating novel genomic combinations which might be one of the causes of the apparently growing ability of Ae. albopictus to expand its geographical range.

  3. Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia.

    Science.gov (United States)

    Tobler, Ray; Rohrlach, Adam; Soubrier, Julien; Bover, Pere; Llamas, Bastien; Tuke, Jonathan; Bean, Nigel; Abdullah-Highfold, Ali; Agius, Shane; O'Donoghue, Amy; O'Loughlin, Isabel; Sutton, Peter; Zilio, Fran; Walshe, Keryn; Williams, Alan N; Turney, Chris S M; Williams, Matthew; Richards, Stephen M; Mitchell, Robert J; Kowal, Emma; Stephen, John R; Williams, Lesley; Haak, Wolfgang; Cooper, Alan

    2017-04-13

    Aboriginal Australians represent one of the longest continuous cultural complexes known. Archaeological evidence indicates that Australia and New Guinea were initially settled approximately 50 thousand years ago (ka); however, little is known about the processes underlying the enormous linguistic and phenotypic diversity within Australia. Here we report 111 mitochondrial genomes (mitogenomes) from historical Aboriginal Australian hair samples, whose origins enable us to reconstruct Australian phylogeographic history before European settlement. Marked geographic patterns and deep splits across the major mitochondrial haplogroups imply that the settlement of Australia comprised a single, rapid migration along the east and west coasts that reached southern Australia by 49-45 ka. After continent-wide colonization, strong regional patterns developed and these have survived despite substantial climatic and cultural change during the late Pleistocene and Holocene epochs. Remarkably, we find evidence for the continuous presence of populations in discrete geographic areas dating back to around 50 ka, in agreement with the notable Aboriginal Australian cultural attachment to their country.

  4. Mitogenomic phylogenetics of fin whales (Balaenoptera physalus spp.: genetic evidence for revision of subspecies.

    Directory of Open Access Journals (Sweden)

    Frederick I Archer

    Full Text Available There are three described subspecies of fin whales (Balaenoptera physalus: B. p. physalus Linnaeus, 1758 in the Northern Hemisphere, B. p. quoyi Fischer, 1829 in the Southern Hemisphere, and a recently described pygmy form, B. p. patachonica Burmeister, 1865. The discrete distribution in the North Pacific and North Atlantic raises the question of whether a single Northern Hemisphere subspecies is valid. We assess phylogenetic patterns using ~16 K base pairs of the complete mitogenome for 154 fin whales from the North Pacific, North Atlantic--including the Mediterranean Sea--and Southern Hemisphere. A Bayesian tree of the resulting 136 haplotypes revealed several well-supported clades representing each ocean basin, with no haplotypes shared among ocean basins. The North Atlantic haplotypes (n = 12 form a sister clade to those from the Southern Hemisphere (n = 42. The estimated time to most recent common ancestor (TMRCA for this Atlantic/Southern Hemisphere clade and 81 of the 97 samples from the North Pacific was approximately 2 Ma. 14 of the remaining North Pacific samples formed a well-supported clade within the Southern Hemisphere. The TMRCA for this node suggests that at least one female from the Southern Hemisphere immigrated to the North Pacific approximately 0.37 Ma. These results provide strong evidence that North Pacific and North Atlantic fin whales should not be considered the same subspecies, and suggest the need for revision of the global taxonomy of the species.

  5. THE POTENTIAL IMPORTANCE OF BINARY EVOLUTION IN ULTRAVIOLET-OPTICAL SPECTRAL FITTING OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian; Li, Maocai

    2013-01-01

    Most galaxies possibly contain some binaries, and more than half of Galactic hot subdwarf stars, which are thought to be a possible origin of the UV-upturn of old stellar populations, are found in binaries. However, the effect of binary evolution has not been taken into account in most works on the spectral fitting of galaxies. This paper studies the role of binary evolution in the spectral fitting of early-type galaxies, via a stellar population synthesis model including both single and binary star populations. Spectra from ultraviolet to optical bands are fitted to determine a few galaxy parameters. The results show that the inclusion of binaries in stellar population models may lead to obvious change in the determination of some parameters of early-type galaxies and therefore it is potentially important for spectral studies. In particular, the ages of young components of composite stellar populations become much older when using binary star population models instead of single star population models. This implies that binary star population models will measure significantly different star formation histories for early-type galaxies compared to single star population models. In addition, stellar population models with binary interactions on average measure larger dust extinctions than single star population models. This suggests that when binary star population models are used, negative extinctions are possibly no longer necessary in the spectral fitting of galaxies (see previous works, e.g., Cid Fernandes et al. for comparison). Furthermore, it is shown that optical spectra have strong constraints on stellar age while UV spectra have strong constraints on binary fraction. Finally, our results suggest that binary star population models can provide new insight into the stellar properties of globular clusters

  6. Superheavy particles in cosmology and evolution of inhomogeneities in the early universe

    International Nuclear Information System (INIS)

    Khlopov, M. Yu.; Polnarev, A.G.

    1983-01-01

    The stages of dominance of superheavy metastable particles, predicted by GUTs, are shown to result in the formation of primordial black holes (PBH) in the course of evolution of small initial inhomogeneities. The minimal probability of PBH formation is estimated. The relationship between the spectrum of these PBH, the spectrum of initial metric fluctuations and the parameters of the GUTs is established. Observational astrophysical restrictions on the PBH spectrum then provide a number of restrictions on the parameters of the GUTs depending on the amplitude of initial metric perturbations. (author)

  7. Phylogenetic ctDNA analysis depicts early stage lung cancer evolution

    DEFF Research Database (Denmark)

    Abbosh, Christopher; Birkbak, Nicolai Juul; Wilson, Gareth A.

    2017-01-01

    The early detection of relapse following primary surgery for non-small cell lung cancer and the characterization of emerging subclones seeding metastatic sites might offer new therapeutic approaches to limit tumor recurrence. The potential to non-invasively track tumor evolutionary dynamics in ct...

  8. THE ROLE OF MERGERS IN EARLY-TYPE GALAXY EVOLUTION AND BLACK HOLE GROWTH

    International Nuclear Information System (INIS)

    Schawinski, Kevin; Dowlin, Nathan; Urry, C. Megan; Thomas, Daniel; Edmondson, Edward

    2010-01-01

    Models of galaxy formation invoke the major merger of gas-rich progenitor galaxies as the trigger for significant phases of black hole growth and the associated feedback that suppresses star formation to create red spheroidal remnants. However, the observational evidence for the connection between mergers and active galactic nucleus (AGN) phases is not clear. We analyze a sample of low-mass early-type galaxies known to be in the process of migrating from the blue cloud to the red sequence via an AGN phase in the green valley. Using deeper imaging from Sloan Digital Sky Survey Stripe 82, we show that the fraction of objects with major morphological disturbances is high during the early starburst phase, but declines rapidly to the background level seen in quiescent early-type galaxies by the time of substantial AGN radiation several hundred Myr after the starburst. This observation empirically links the AGN activity in low-redshift early-type galaxies to a significant merger event in the recent past. The large time delay between the merger-driven starburst and the peak of AGN activity allows for the merger features to decay to the background and hence may explain the weak link between merger features and AGN activity in the literature.

  9. A Convenient Model for the Evolution of Early Psychology as a Scientific Discipline.

    Science.gov (United States)

    Epstein, Robert

    1981-01-01

    To help college students understand psychology, the article suggests that instructors develop curriculum based on the relationship between scientific and technological advances and the development of early psychology. Views of many nineteenth century psychologists are summarized, including Johann Friedrich Herbart, Hermann Lotze, and Georg…

  10. Formation and evolution of dwarf early-type galaxies in the Virgo cluster I. Internal kinematics

    NARCIS (Netherlands)

    Toloba, E.; Boselli, A.; Cenarro, A. J.; Peletier, R. F.; Gorgas, J.; Gil de Paz, A.; Munoz-Mateos, J. C.

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy

  11. Reconstructing the early evolution of the fungi using a six gene phylogeny

    NARCIS (Netherlands)

    James, T.Y.; Kauff, F.; Schoch, C.L.; Matheny, P.B.; Hofstetter, V.; Cox, C.J.; Celio, G.; Gueidan, C.; Fraker, E.; Miadlikowska, J.; Lumbsch, H.T.; Rauhut, A.; Reeb, V.; Arnold, A.E.; Amtoft, A.; Stajich, J.E.; Hosaka, K.; Sung, G.H.; Johnson, D.; O'Rourke, B.; Binder, M.; Curtis, J.M.; Slot, J.C.; Wang, Z.; Wilson, A.W.; Schüßler, A.; Longcore, J.E.; O'Donnell, K.; Mozley-Standridge, S.; Porter, D.; Letcher, P.M.; Powell, M.J.; Taylor, J.W.; White, M.M.; Griffith, G.W.; Davies, D.R.; Sugiyama, J.; Rossman, A.Y.; Rogers, J.D.; Pfister, D.H.; Hewitt, D.; Hansen, K.; Hambleton, S.; Shoemaker, R.A.; Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Spotts, R.A.; Serdani, M.; Crous, P.W.; Hughes, K.W.; Matsuura, K.; Langer, E.; Langer, G.; Untereiner, W.A.; Lücking, R.; Büdel, B.; Geiser, D.M.; Aptroot, A.; Diederich, P.; Schmitt, I.; Schultz, M.; Yahr, R.; Hibbett, D.S.; Lutzoni, F.; McLaughlin, D.J.; Spatafora, J.W.; Vilgalys, R.

    2006-01-01

    The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore

  12. The evolution of the manus of early theropod dinosaurs is characterized by high inter- and intraspecific variation.

    Science.gov (United States)

    Barta, Daniel E; Nesbitt, Sterling J; Norell, Mark A

    2018-01-01

    The origin of the avian hand, with its reduced and fused carpals and digits, from the five-fingered hands and complex wrists of early dinosaurs represents one of the major transformations of manus morphology among tetrapods. Much attention has been directed to the later part of this transition, from four- to three-fingered taxa. However, earlier anatomical changes may have influenced these later modifications, possibly paving the way for a later frameshift in digit identities. We investigate the five- to four-fingered transition among early dinosaurs, along with changes in carpus morphology. New three-dimensional reconstructions from computed tomography data of the manus of the Triassic and Early Jurassic theropod dinosaurs Coelophysis bauri and Megapnosaurus rhodesiensis are described and compared intra- and interspecifically. Several novel findings emerge from these reconstructions and comparisons, including the first evidence of an ossified centrale and a free intermedium in some C. bauri specimens, as well as confirmation of the presence of a vestigial fifth metacarpal in this taxon. Additionally, a specimen of C. bauri and an unnamed coelophysoid from the Upper Triassic Hayden Quarry, New Mexico, are to our knowledge the only theropods (other than alvarezsaurs and birds) in which all of the distal carpals are completely fused together into a single unit. Several differences between the manus of C. bauri and M. rhodesiensis are also identified. We review the evolution of the archosauromorph manus more broadly in light of these new data, and caution against incorporating carpal characters in phylogenetic analyses of fine-scale relationships of Archosauromorpha, in light of the high degree of observed polymorphism in taxa for which large sample sizes are available, such as the theropod Coelophysis and the sauropodomorph Plateosaurus. We also find that the reduction of the carpus and ultimate loss of the fourth and fifth digits among early dinosaurs did not

  13. Early Mars serpentinization-derived CH4 reservoirs, H2 induced warming and paleopressure evolution

    Science.gov (United States)

    Lasue, J.; Chassefiere, E.; Langlais, B.; Quesnel, Y.

    2016-12-01

    CH4 has been observed on Mars both by remote sensing and in situ during the past 15 years. Early Mars serpentinization is one possible abiotic mechanism that could not only produce methane, but also explain the observed Martian remanent magnetic field. Assuming a cold early Mars, a cryosphere could trap such CH4 as clathrates in stable form at depth. We recently estimated the maximum storage capacity of such clathrate layer to be about 2x1019 to 2x1020 moles of methane. Such reservoirs may be stable or unstable, depending on many factors that are poorly constrained: major and sudden geological events such as the Tharsis bulge formation, the Hellas impact or the martian polar wander, could have destabilized the clathrates early in the history of the planet and released large quantities of gas in the atmosphere. Here we estimate the associated amounts of serpentinization-derived CH4 stored in the cryosphere that have been released to the atmosphere at the end of the Noachian and the beginning of the Hesperian. Due to rapid clathrate dissociation and photochemical conversion of CH4 to H2, these episodes of massive CH4 release may have resulted in transient H2-rich atmospheres, at typical levels of 10-20% in a background 1-2 bar CO2 atmosphere. We propose that the early Mars cryosphere had a sufficient CH4 storage capacity to have maintained H2-rich transient atmospheres during a total time period up to several Myr or tens of Myr, having potentially contributed - by collision-induced heating effect of atmospheric H2 - to the formation of valley networks during the late Noachian and early Hesperian.

  14. Characterization of microstructural evolution in Fe-C(-Mn) alloys during early stages of ageing using atom probe

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Tran, P.; Pereloma, E.; Ringer, S.P.

    2004-01-01

    Full text: Extensive studies on the effect of ageing treatment on the micro structure and mechanical properties of most commercial ferritic (a) Fe-C(-X) alloys reveal age-hardening characteristics that involve a monotonic increase towards a peak hardness after several hours of ageing. Peak hardness is always associated with the formation of precipitate particles (e.g: MnC 3 ). However, there is relatively little systematic work on the very early stages of ageing using direct nanostructural analysis and many questions remain on the potential for clustering of interstitial C atoms prior to the precipitation reaction. In this experimental work, we report a small but significant hardness peak within 300 sec during ageing at 550 deg C. High resolution transmission electron microscopy (HRTEM) observations did not show any microstructural change during this early stage of ageing. In order to understand the microstructural evolution in ultra-low carbon a-Fe-C(-Mn) alloys during these early stages of ageing, 3-dimensional atom probe (3DAP) has been used to examine the C atom distribution and possible segregation of C and Mn atoms in these alloys. In this report, the 3DAP analyses and HRTEM observations of Fe-C and Fe-C-Mn alloys are correlated with age hardening measurements and possible mechanisms of the initial hardening phenomenon will be discussed

  15. EARLY DYNAMICAL EVOLUTION OF THE SOLAR SYSTEM: PINNING DOWN THE INITIAL CONDITIONS OF THE NICE MODEL

    International Nuclear Information System (INIS)

    Batygin, Konstantin; Brown, Michael E.

    2010-01-01

    In the recent years, the 'Nice' model of solar system formation has attained an unprecedented level of success in reproducing much of the observed orbital architecture of the solar system by evolving the planets to their current locations from a more compact configuration. Within the context of this model, the formation of the classical Kuiper Belt requires a phase during which the ice giants have a high eccentricity. An outstanding question of this model is the initial configuration from which the solar system started out. Recent work has shown that multi-resonant initial conditions can serve as good candidates, as they naturally prevent vigorous type-II migration. In this paper, we use analytical arguments, as well as self-consistent numerical N-body simulations to identify fully resonant initial conditions, whose dynamical evolution is characterized by an eccentric phase of the ice giants, as well as planetary scattering. We find a total of eight such initial conditions. Four of these primordial states are compatible with the canonical 'Nice' model, while the others imply slightly different evolutions. The results presented here should prove useful in further development of a comprehensive model for solar system formation.

  16. Size, Composition, and Evolution of HIV DNA Populations during Early Antiretroviral Therapy and Intensification with Maraviroc.

    Science.gov (United States)

    Chaillon, Antoine; Gianella, Sara; Lada, Steven M; Perez-Santiago, Josué; Jordan, Parris; Ignacio, Caroline; Karris, Maile; Richman, Douglas D; Mehta, Sanjay R; Little, Susan J; Wertheim, Joel O; Smith, Davey M

    2018-02-01

    Residual viremia is common during antiretroviral therapy (ART) and could be caused by ongoing low-level virus replication or by release of viral particles from infected cells. ART intensification should impact ongoing viral propagation but not virion release. Eighteen acutely infected men were enrolled in a randomized controlled trial and monitored for a median of 107 weeks. Participants started ART with ( n = 9) or without ( n = 9) intensification with maraviroc (MVC) within 90 days of infection. Levels of HIV DNA and cell-free RNA were quantified by droplet digital PCR. Deep sequencing of C2-V3 env , gag , and pol (454 Roche) was performed on longitudinally collected plasma and peripheral blood mononuclear cell (PBMC) samples while on ART. Sequence data were analyzed for evidence of evolution by (i) molecular diversity analysis, (ii) nonparametric test for panmixia, and (iii) tip date randomization within a Bayesian framework. There was a longitudinal decay of HIV DNA after initiation of ART with no difference between MVC intensification groups (-0.08 ± 0.01 versus -0.09 ± 0.01 log 10 copies/week in MVC + versus MVC - groups; P = 0.62). All participants had low-level residual viremia (median, 2.8 RNA copies/ml). Across participants, medians of 56 (interquartile range [IQR], 36 to 74), 29 (IQR, 25 to 35), and 40 (IQR, 31 to 54) haplotypes were generated for env , gag , and pol regions, respectively. There was no clear evidence of viral evolution during ART and no difference in viral diversity or population structure from individuals with or without MVC intensification. Further efforts focusing on elucidating the mechanism(s) of viral persistence in various compartments using recent sequencing technologies are still needed, and potential low-level viral replication should always be considered in cure strategies. IMPORTANCE Residual viremia is common among HIV-infected people on ART. It remains controversial if this viremia is a consequence of propagating

  17. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Explore the Origin and Evolution of the Early Solar System

    Science.gov (United States)

    Bell, J. F., III; Olkin, C.; Castillo, J. C.

    2015-12-01

    The orbital properties, compositions, and physical properties of the diverse populations of small outer solar system bodies provide a forensic map of how our solar system formed and evolved. Perhaps the most potentially diagnostic, but least explored, of those populations are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. More than 6200 Jupiter Trojans are presently known, but these are predicted to be only a small fraction of the 500,000 to 1 million Trojans >1 km in size. The Trojans are hypothesized to be either former Kuiper Belt Objects (KBOs) that were scattered into the inner solar system by early giant planet migration and then trapped in the 1:1 Jupiter mean motion resonance, or bodies formed near 5 AU in a much more quiescent early solar system, and then trapped at L4 and L5. The 2011 Planetary Science Decadal Survey identified important questions about the origin and evolution of the solar system that can be addressed by studying of the Trojan asteroids, including: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft? The Trojan Tour and Rendezvous (TTR) is a New Frontiers-class mission designed to answer these questions, and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of a large number of these objects,, and orbital characterization of at least one large Trojan, TTR will enable the first-time exploration of this population. Our primary mission goals are to characterize the overall surface geology

  18. STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO z = 2.5 IN CANDELS

    International Nuclear Information System (INIS)

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter; Holden, Bradford; Faber, S. M.; Mozena, Mark; Guo Yicheng; Kocevski, Dale D.; Bell, Eric F.; McGrath, Elizabeth J.; Wuyts, Stijn; Häussler, Boris; Barden, Marco; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Huang, Kuang-Han; Galametz, Audrey; Dekel, Avishai; Hathi, Nimish P.

    2013-01-01

    Projected axis ratio measurements of 880 early-type galaxies at redshifts 1 1 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by the random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a ∼ 0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z > 1 early-type galaxies. We find that the proportion of oblate versus triaxial galaxies depends both on the galaxies' stellar mass, and—at a given mass—on redshift. For present-day and z 1, this trend is much weaker over the mass range explored here (10 10 * /M ☉ 11 ), because the oblate fraction among massive (M * ∼ 10 11 M ☉ ) was much higher in the past: 0.59 ± 0.10 at z > 1, compared to 0.20 ± 0.02 at z ∼ 0.1. When combined with previous findings that the number density and sizes of early-type galaxies substantially increase over the same redshift range, this can be explained by the gradual emergence of merger-produced elliptical galaxies, at the expense of the destruction of pre-existing disks that were common among their high-redshift progenitors. In contrast, the oblate fraction among low-mass early-type galaxies (log (M * /M ☉ ) 1 to 0.72 ± 0.06 at z = 0. We speculate that this lower incidence of disks at early cosmic times can be attributed to two factors: low-mass, star-forming progenitors at z > 1 were not settled into stable disks to the same degree as at later cosmic times, and the stripping of gas from star-forming disk galaxies in dense environments is an increasingly important process at lower redshifts

  19. STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO z = 2.5 IN CANDELS

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Holden, Bradford; Faber, S. M.; Mozena, Mark; Guo Yicheng; Kocevski, Dale D. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); McGrath, Elizabeth J. [Department of Physics and Astronomy, Colby College, Waterville, ME 04901 (United States); Wuyts, Stijn [Max-Planck-Institut fuer Extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching (Germany); Haeussler, Boris [Schools of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Barden, Marco [Institute of Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Huang, Kuang-Han [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Galametz, Audrey [INAF-Osservatorio di Roma, Via Frascati 33, I-00040 Monteporzio (Italy); Dekel, Avishai [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Hathi, Nimish P., E-mail: chang@mpia.de [Observatories of the Carnegie Institution for Science, Pasadena, CA (United States); and others

    2013-08-20

    Projected axis ratio measurements of 880 early-type galaxies at redshifts 1 < z < 2.5 selected from CANDELS are used to reconstruct and model their intrinsic shapes. The sample is selected on the basis of multiple rest-frame colors to reflect low star-formation activity. We demonstrate that these galaxies as an ensemble are dust-poor and transparent and therefore likely have smooth light profiles, similar to visually classified early-type galaxies. Similar to their present-day counterparts, the z > 1 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by the random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a {approx} 0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z > 1 early-type galaxies. We find that the proportion of oblate versus triaxial galaxies depends both on the galaxies' stellar mass, and-at a given mass-on redshift. For present-day and z < 1 early-type galaxies the oblate fraction strongly depends on galaxy mass. At z > 1, this trend is much weaker over the mass range explored here (10{sup 10} < M{sub *}/M{sub Sun} < 10{sup 11}), because the oblate fraction among massive (M{sub *} {approx} 10{sup 11} M{sub Sun }) was much higher in the past: 0.59 {+-} 0.10 at z > 1, compared to 0.20 {+-} 0.02 at z {approx} 0.1. When combined with previous findings that the number density and sizes of early-type galaxies substantially increase over the same redshift range, this can be explained by the gradual emergence of merger-produced elliptical galaxies, at the expense of the destruction of pre-existing disks that were common among their high-redshift progenitors. In contrast, the oblate fraction among low-mass early-type galaxies (log (M{sub *}/M{sub Sun }) < 10

  20. Unique caudal plumage of Jeholornis and complex tail evolution in early birds

    OpenAIRE

    O’Connor, Jingmai; Wang, Xiaoli; Sullivan, Corwin; Zheng, Xiaoting; Tubaro, Pablo; Zhang, Xiaomei; Zhou, Zhonghe

    2013-01-01

    The Early Cretaceous bird Jeholornis was previously only known to have a distally restricted ornamental frond of tail feathers. We describe a previously unrecognized fan-shaped tract of feathers situated dorsal to the proximal caudal vertebrae. The position and morphology of these feathers is reminiscent of the specialized upper tail coverts observed in males of some sexually dimorphic neornithines. As in the neornithine tail, the unique “two-tail” plumage in Jeholornis probably evolved as th...

  1. The evolution of Early Cretaceous shallow-water carbonate platforms in times of frequent oceanic anoxia

    Science.gov (United States)

    Föllmi, Karl; Morales, Chloé; Stein, Melody; Bonvallet, Lucie; Antoine, Pictet

    2014-05-01

    The Early Cretaceous greenhouse world witnessed different episodes of pronounced paleoenvironmental change, which were associated with substantial shifts in the global carbon and phosphorus cycles. They impacted the growth of carbonate platforms on the shelf, lead to the development of widespread anoxic zones in deeper water, and influenced evolutionary pattern in general. A first phase (the Weissert episode) occurred during the Valanginian, which is indicated by a positive shift in the carbon-isotope record, widespread platform drowning, and evolutionary change. The spreading of anoxic conditions was limited to marginal basins and the positive change in carbon isotopes is linked to the storage of vegetal carbon in coal deposits rather than to organic matter in marine sediments. A second phase (the Faraoni episode) of important environmental change is observed near the end of the Hauterivian, where short and repetitive episodes of anoxia occurred in the Tethyan realm. This phase goes along with a decline in platform growth, but is barely documented in the carbon-isotope record. A third and most important episode (the Selli episode) took place in the early Aptian, and resulted in the widespread deposition of organic-rich sediments, a positive carbon-isotope excursion and the disappearance of Urgonian-type carbonate platforms. Often considered to represent short and singular events, these Early Cretaceous phases are in fact preceded by periods of warming, increased continental weathering, and increased nutrient throughput. These preludes in environmental change are important in that they put these three Early Cretaceous episodes into a longer-term, historic perspective, which allow us to better understand the mechanisms leading to these periods of pronounced global change.

  2. Early time evolution of high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [Cyclotron Institute and Department of Physics, Texas A and M University, College Station, TX 77843 (United States); RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2007-08-15

    We solve the Yang-Mills equations in the framework of the McLerran-Venugopalan model for small times {tau} after a collision of two nuclei. An analytic expansion around {tau} = 0 leads to explicit results for the field strength and the energy-momentum tensor of the gluon field at early times. We then discuss constraints for the energy density, pressure and flow of the plasma phase that emerges after thermalization of the gluon field.

  3. Leaf wax biomarker reconstruction of Early Pleistocene hydrological variation during hominin evolution in West Turkana, Kenya

    Science.gov (United States)

    Lupien, R.; Russell, J. M.; Cohen, A. S.; Feibel, C. S.; Beck, C.; Castañeda, I. S.

    2016-12-01

    Climate change is thought to play a critical role in human evolution; however, this hypothesis is difficult to test due to a lack of long, high-quality paleoclimate records from key hominin fossil locales. To address this issue, we examine Plio-Pleistocene lake sediment drill cores from East Africa that were recovered by the Hominin Sites and Paleolakes Drilling Project, an international effort to study the environment in which our hominin ancestors evolved and dispersed. With new data we test various evolutionary hypotheses, such as the "variability selection" hypothesis, which posits that high-frequency environmental variations selected for generalist traits that allowed hominins to expand into variable environments. We analyzed organic geochemical signals of climate in lake cores from West Turkana, Kenya, which span 1.87-1.38 Ma and contain the first fossils from Homo erectus. In particular, we present a compound-specific hydrogen isotopic analysis of terrestrial plant waxes (δDwax) that records regional hydrology. The amount effect dominates water isotope fractionation in the tropics; therefore, these data are interpreted to reflect mean annual rainfall, which affects vegetation structure and thus, hominin habitats. The canonical view of East Africa is that climate became drier and increasingly felt high-latitude glacial-interglacial cycles during the Plio-Pleistocene. However, the drying trend seen in some records is not evident in Turkana δDwax, signifying instead a climate with a steady mean state. Spectral and moving variance analyses indicate paleohydrological variations related to both high-latitude glaciation (41 ky cycle) and local insolation-forced monsoons (21 ky cycle). An interval of particularly high-amplitude rainfall variation occurs at 1.7 Ma, which coincides with the intensification of the Walker Circulation. These results identify high- and low-latitude controls on East African paleohydrology during Homo erectus evolution. In particular, the

  4. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.

    Science.gov (United States)

    Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R

    2015-07-24

    Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana. Copyright © 2015, American Association for the Advancement of Science.

  5. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages

    OpenAIRE

    Karol, Kenneth G; Arumuganathan, Kathiravetpillai; Boore, Jeffrey L; Duffy, Aaron M; Everett, Karin DE; Hall, John D; Hansen, S Kellon; Kuehl, Jennifer V; Mandoli, Dina F; Mishler, Brent D; Olmstead, Richard G; Renzaglia, Karen S; Wolf, Paul G

    2010-01-01

    Abstract Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined...

  6. Evolution of the placenta during the early radiation of placental mammals

    DEFF Research Database (Denmark)

    Mess, Andrea; Carter, Anthony M

    2007-01-01

    The chorioallantoic placenta is an organ of gaseous exchange that exhibits a high degree of structural diversity. One factor determining oxygen transfer across the placenta, the diffusion distance, is in part dependent on the number of cell layers separating maternal from fetal blood. This interh......The chorioallantoic placenta is an organ of gaseous exchange that exhibits a high degree of structural diversity. One factor determining oxygen transfer across the placenta, the diffusion distance, is in part dependent on the number of cell layers separating maternal from fetal blood...... of placental mammals, derived from molecular phylogenetics. We show that epitheliochorial placentation, the least invasive type, is a derived state and discuss factors that may have determined its evolution with reference to conflict theory, as applied to the allocation of resources between mother and fetus...

  7. The complete mitogenome of the whale shark parasitic copepod Pandarus rhincodonicus norman, Newbound & Knott (Crustacea; Siphonostomatoida; Pandaridae)--a new gene order for the copepoda.

    Science.gov (United States)

    Austin, Christopher M; Tan, Mun Hua; Lee, Yin Peng; Croft, Laurence J; Meekan, Mark G; Pierce, Simon J; Gan, Han Ming

    2016-01-01

    The complete mitochondrial genome of the parasitic copepod Pandarus rhincodonicus was obtained from a partial genome scan using the HiSeq sequencing system. The Pandarus rhincodonicus mitogenome has 14,480 base pairs (62% A+T content) made up of 12 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 384 bp non-coding AT-rich region. This Pandarus mitogenome sequence is the first for the family Pandaridae, the second for the order Siphonostomatoida and the sixth for the Copepoda.

  8. Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution?

    Science.gov (United States)

    Kay, Richard F

    2015-01-01

    Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South

  9. Evolution of Electron Transport Chains During the Anaerobic to Aerobic Transition on Early Earth

    Science.gov (United States)

    Sepúlveda, R.; Ortiz, R.; Holmes, D. S.

    2015-12-01

    Sepulveda, R., Ortiz R. and Holmes DS. Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida, and Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.According to several models, life emerged on earth in an anoxic environment where oxygen was not available as a terminal electron acceptor for energy generating reactions. After the Great Oxidation Event (GOE) about 2.4 billion years ago, or perhaps even before the GOE, oxygen became the most widespread and efficient terminal electron acceptor and was accompanied by the evolution of a number of redox proteins that could deliver electrons to reduce oxygen to water. Where did these proteins come from? One hypothesis is that they evolved by the neofunctionalization of previously existing redox proteins that had been used in anaerobic conditions as terminal electron donors to reduce compounds such as perchlorate, nitric oxide or iron. We have used a number of bioinformatic tools to explore a large number of genomes looking for discernable signals of such redeployment of function. A Perl pipeline was designed to detect sequence similarity, conserved gene context, remote homology detection, identification of domains and functional evolution of electron carrier proteins from extreme acidophiles, including the small blue copper protein rusticyanin (involved in FeII oxidation), cytochrome oxidase subunit II and quinol-dependent nitric oxide reductase (qNOR). The protein folds and copper binding sites of rusticyanin are conserved in cytochrome oxidase aa3 subunit II, a protein complex that is responsible for the final passage of electrons to reduce oxygen. Therefore, we hypothesize that rusticyanin, cytochrome oxidase II and qNOR are evolutionarily related. Acknowledgments: Fondecyt 1130683.

  10. Neonatal mucolipidosis 2. The spontaneous evolution of early bone lesions and the effect of vitamin D treatment

    International Nuclear Information System (INIS)

    Pazzaglia, U.E.; Zatti, G.; Pagani, G.

    1989-01-01

    Evolution of the early bone lesions in two children with mucolipidosis 2 was followed from birth. The progression of the bone changes did not differ from healing of rickets. Low levels of 1,25-OH 2 -D3 were found in one child and he was treated with vitamin D; resolution of the rachitic changes was more rapid than in the untreated child. It is suggested that in mucolipidosis 2 bone reacts to two independent factors, one controlling calcium metabolism, the other depending on the primary lysosomal enzyme defect. Since ricket-like features are not present in the other mucolipidoses or mucopolysaccharidoses, the defect of calcium metabolism seems to be related to the specific enzyme defect of mucolipidosis 2. (orig.)

  11. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of apobec

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Bhattacharya, Tanmoy [Los Alamos National Laboratory; Giorgi, Elena [Los Alamos National Laboratory; Gaschen, B [Los Alamos National Laboratory; Daniels, M [Los Alamos National Laboratory

    2009-01-01

    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, represent adaptation for rapid growth in a newly infected host, or reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV -I env coding sequences in 81 very early B SUbtype infections previously shown to have resulted from transmission or expansion of single viruses (n=78) or two closely related viruses (n=3). In these cases the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 envand identified a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either (i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or (ii) in a nucleotide context indicative of APOBEC mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was both embedded in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp4l. We also examined the distribution, extent, and sequence context of insertions and deletions and provide evidence that the length

  12. The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans.

    Science.gov (United States)

    Liu, Yunhuan; Xiao, Shuhai; Shao, Tiequan; Broce, Jesse; Zhang, Huaqiao

    2014-05-01

    Morphological phylogenetic analyses suggest that scalidophorans (priapulids, loriciferans, and kinorhynchs) and nematoids (nematodes and nematomorphs) form the ecdysozoan clade Cycloneuralia, which is a sister group to panarthropods. It has been proposed that extant priapulids and Cambrian priapulid-like scalidophorans, because of their conserved evolution, have the potential to illuminate the ancestral morphology, ecology, and developmental biology of highly derived ecdysozoans such as nematods and arthropods. As such, Cambrian fossils, particularly Markuelia and possibly olivooids, can inform the early evolution of scalidophorans, cycloneuralians, and ecdysozoans. However, the scalidophoran Markuelia is known exclusively as embryo fossils, and the olivooids have been alternatively interpreted as cnidarians or cycloneuralians. Here, we describe a post-embryonic scalidophoran fossil Eopriapulites sphinx new genus and species, which represents the oldest known scalidophoran, from the early Cambrian Period (∼535 Ma) in South China. E. sphinx is similar to modern scalidophorans in having an introvert armed with hollow scalids, a collar with coronal scalids, and a pharynx with pharyngeal teeth, but its scalids and pharyngeal teeth are arranged in a hexaradial pattern. Phylogenetically resolved as a stem-group scalidophoran, E. sphinx shares a hexaradial pattern with the hexaradial arrangement of certain anatomical structures in kinorhynchs, loriciferans, nematoids, and Cambrian fossils such as Eolympia pediculata, which could also be a scalidophoran. Thus, the bodyplan of ancestral cycloneuralians may have had a component of hexaradial symmetry (i.e., some but not necessarily all anatomical parts are hexaradially arranged). If panarthropods are nested within paraphyletic cycloneuralians, as several molecular phylogenetic analyses suggest, the ancestral ecdysozoans may have been a legless worm possibly with a component of hexaradial symmetry. © 2014 Wiley

  13. Negative association between parental care and sibling cooperation in earwigs: a new perspective on the early evolution of family life?

    Science.gov (United States)

    Kramer, J; Thesing, J; Meunier, J

    2015-07-01

    The evolution of family life requires net fitness benefits for offspring, which are commonly assumed to mainly derive from parental care. However, an additional source of benefits for offspring is often overlooked: cooperative interactions among juvenile siblings. In this study, we examined how sibling cooperation and parental care could jointly contribute to the early evolution of family life. Specifically, we tested whether the level of food transferred among siblings (sibling cooperation) in the European earwig Forficula auricularia (1) depends on the level of maternal food provisioning (parental care) and (2) is translated into offspring survival, as well as female investment into future reproduction. We show that higher levels of sibling food transfer were associated with lower levels of maternal food provisioning, possibly reflecting a compensatory relationship between sibling cooperation and maternal care. Furthermore, the level of sibling food transfer did not influence offspring survival, but was associated with negative effects on the production of the second and terminal clutch by the tending mothers. These findings indicate that sibling cooperation could mitigate the detrimental effects on offspring survival that result from being tended by low-quality mothers. More generally, they are in line with the hypothesis that sibling cooperation is an ancestral behaviour that can be retained to compensate for insufficient levels of parental investment. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  14. Plastid Genome Evolution in the Early-Diverging Legume Subfamily Cercidoideae (Fabaceae

    Directory of Open Access Journals (Sweden)

    Yin-Huan Wang

    2018-02-01

    Full Text Available The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.

  15. Evolution and homology of the astragalus in early amniotes: new fossils, new perspectives.

    Science.gov (United States)

    O'Keefe, F Robin; Sidor, Christian A; Larsson, Hans C E; Maga, Abdoudaye; Ide, Oumarou

    2006-04-01

    The reorganization of the ankle in basal amniotes has long been considered a key innovation allowing the evolution of more terrestrial and cursorial behavior. Understanding how this key innovation arose is a complex problem that largely concerns the homologizing of the amniote astragalus with the various ossifications in the anamniote tarsus. Over the last century, several hypotheses have been advanced homologizing the amniote astragalus with the many ossifications in the ankle of amphibian-grade tetrapods. There is an emerging consensus that the amniote astragalus is a complex structure emerging via the co-ossification of several originally separate elements, but the identities of these elements remain unclear. Here we present new fossil evidence bearing on this contentious question. A poorly ossified, juvenile astragalus of the large captorhinid Moradisaurus grandis shows clear evidence of four ossification centers, rather than of three centers or one center as posited in previous models of astragalus homology. Comparative material of the captorhinid Captorhinikos chozaensis is also interpretable as demonstrating four ossification centers. A new, four-center model for the homology of the amniote astragalus is advanced, and is discussed in the context of the phylogeny of the Captorhinidae in an attempt to identify the developmental transitions responsible for the observed pattern of ossification within this clade. Lastly, the broader implications for amniote phylogeny are discussed, concluding that the neomorphic pattern of astragalus ossification seen in all extant reptiles (including turtles) arose within the clade Diapsida.

  16. A primitive endogenous lentivirus in a colugo: insights into the early evolution of lentiviruses.

    Science.gov (United States)

    Han, Guan-Zhu; Worobey, Michael

    2015-01-01

    Lentiviruses infect a wide range of mammal species. Much remains unknown about their deep history and host distribution. Here, we report the discovery of an endogenous lentivirus within the genome of the Sunda flying lemur (Galeopterus variegatus) (which we designate "Galeopterus variegatus endogenous lentivirus" [GvaELV]). We estimate the GvaELV genome invasion to have occurred more than 14 Ma, supporting an ancient origin of the lentivirus clade and an ancient lentiviral infection in colugo. Phylogenetic analyses show that GvaELV is a sister group of all previously known lentiviruses. The GvaELV genome appears to possess some primitive genomic features of a lentivirus, encoding not only a trans-activator of transcription (tat) gene but also two additional putative accessory genes that share no discernible similarity with other lentiviral accessory genes. The discovery of GvaELV provides novel insights into the prehistory and host distribution of lentivirus. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Concatenated analysis sheds light on early metazoan evolution and fuels a modern "urmetazoon" hypothesis.

    Directory of Open Access Journals (Sweden)

    Bernd Schierwater

    2009-01-01

    Full Text Available For more than a century, the origin of metazoan animals has been debated. One aspect of this debate has been centered on what the hypothetical "urmetazoon" bauplan might have been. The morphologically most simply organized metazoan animal, the placozoan Trichoplax adhaerens, resembles an intriguing model for one of several "urmetazoon" hypotheses: the placula hypothesis. Clear support for a basal position of Placozoa would aid in resolving several key issues of metazoan-specific inventions (including, for example, head-foot axis, symmetry, and coelom and would determine a root for unraveling their evolution. Unfortunately, the phylogenetic relationships at the base of Metazoa have been controversial because of conflicting phylogenetic scenarios generated while addressing the question. Here, we analyze the sum of morphological evidence, the secondary structure of mitochondrial ribosomal genes, and molecular sequence data from mitochondrial and nuclear genes that amass over 9,400 phylogenetically informative characters from 24 to 73 taxa. Together with mitochondrial DNA genome structure and sequence analyses and Hox-like gene expression patterns, these data (1 provide evidence that Placozoa are basal relative to all other diploblast phyla and (2 spark a modernized "urmetazoon" hypothesis.

  18. Concatenated analysis sheds light on early metazoan evolution and fuels a modern "urmetazoon" hypothesis.

    Science.gov (United States)

    Schierwater, Bernd; Eitel, Michael; Jakob, Wolfgang; Osigus, Hans-Jürgen; Hadrys, Heike; Dellaporta, Stephen L; Kolokotronis, Sergios-Orestis; Desalle, Rob

    2009-01-27

    For more than a century, the origin of metazoan animals has been debated. One aspect of this debate has been centered on what the hypothetical "urmetazoon" bauplan might have been. The morphologically most simply organized metazoan animal, the placozoan Trichoplax adhaerens, resembles an intriguing model for one of several "urmetazoon" hypotheses: the placula hypothesis. Clear support for a basal position of Placozoa would aid in resolving several key issues of metazoan-specific inventions (including, for example, head-foot axis, symmetry, and coelom) and would determine a root for unraveling their evolution. Unfortunately, the phylogenetic relationships at the base of Metazoa have been controversial because of conflicting phylogenetic scenarios generated while addressing the question. Here, we analyze the sum of morphological evidence, the secondary structure of mitochondrial ribosomal genes, and molecular sequence data from mitochondrial and nuclear genes that amass over 9,400 phylogenetically informative characters from 24 to 73 taxa. Together with mitochondrial DNA genome structure and sequence analyses and Hox-like gene expression patterns, these data (1) provide evidence that Placozoa are basal relative to all other diploblast phyla and (2) spark a modernized "urmetazoon" hypothesis.

  19. Sensory Evolution and Ecology of Early Turtles Revealed by Digital Endocranial Reconstructions

    Directory of Open Access Journals (Sweden)

    Stephan Lautenschlager

    2018-02-01

    Full Text Available In the past few years, new fossil finds and novel methodological approaches have prompted intensive discussions about the phylogenetic affinities of turtles and rekindled the debate on their ecological origin, with very distinct scenarios, such as fossoriality and aquatic habitat occupation, proposed for the earliest stem-turtles. While research has focused largely on the origin of the anapsid skull and unique postcranial anatomy, little is known about the endocranial anatomy of turtles. Here, we provide 3D digital reconstructions and comparative descriptions of the brain, nasal cavity, neurovascular structures and endosseous labyrinth of Proganochelys quenstedti, one of the earliest stem-turtles, as well as other turtle taxa. Our results demonstrate that P. quenstedti retained a simple tube-like brain morphology with poorly differentiated regions and mediocre hearing and vision, but a well-developed olfactory sense. Endocast shape analysis indicates that an increase in size and regionalization of the brain took place in the course of turtle evolution, achieving an endocast diversity comparable to other amniote groups. Based on the new evidence presented herein, we further conclude that P. quenstedti was a highly terrestrial, but most likely not fossorial, taxon.

  20. A multi-wavelength study of the evolution of early-type galaxies in groups: the ultraviolet view

    Science.gov (United States)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Bianchi, L.; Plana, H.; Trinchieri, G.; Uslenghi, M.; Wolter, A.

    2018-04-01

    The ultraviolet-optical colour magnitude diagram of rich galaxy groups is characterised by a well developed Red Sequence, a Blue Cloud and the so-called Green Valley. Loose, less evolved groups of galaxies which are probably not virialised yet may lack a well defined Red Sequence. This is actually explained in the framework of galaxy evolution. We are focussing on understanding galaxy migration towards the Red Sequence, checking for signatures of such a transition in their photometric and morphological properties. We report on the ultraviolet properties of a sample of early-type (ellipticals+S0s) galaxies inhabiting the Red Sequence. The analysis of their structures, as derived by fitting a Sérsic law to their ultraviolet luminosity profiles, suggests the presence of an underlying disk. This is the hallmark of dissipation processes that still must have a role to play in the evolution of this class of galaxies. Smooth particle hydrodynamic simulations with chemo-photometric implementations able to match the global properties of our targets are used to derive their evolutionary paths through ultraviolet-optical colour magnitude diagrams, providing some fundamental information such as the crossing time through the Green Valley, which depends on their luminosity. The transition from the Blue Cloud to the Red Sequence takes several Gyrs, being about 3-5 Gyr for the brightest galaxies and longer for fainter ones, if occurring. The photometric study of nearby galaxy structures in the ultraviolet is seriously hampered by either the limited field of view of the cameras (e.g., in Hubble Space Telescope) or by the low spatial resolution of the images (e.g., in the Galaxy Evolution Explorer). Current missions equipped with telescopes and cameras sensitive to ultraviolet wavelengths, such as Swift- UVOT and Astrosat-UVIT, provide a relatively large field of view and a better resolution than the Galaxy Evolution Explorer. More powerful ultraviolet instruments (size, resolution

  1. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    Science.gov (United States)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  2. The Evolution of Early-Stage Entrepreneurial Activity Influencing Factors in Romania

    Directory of Open Access Journals (Sweden)

    Tünde Petra PETRU

    2010-07-01

    Full Text Available The aim of the article is to analyze the main influencing factors of the probability of becoming an early-stage entrepreneur in Romania. The analyzed factors are: gender, age, education, household income, work status, network, opportunity perception, perception regarding the trust in own entrepreneurial skills, perception on the society’s appreciation regarding the principle of equality in life standard, perception on the society’s appreciation regarding the entrepreneurial career, perception on the proper promotion of entrepreneurial successes by mass media. We estimate a logit model for each year of the 2007-2009 period and we study the main influencing perceptional and sociodemographic factors, based on the Global Entrepreneurship Monitor (GEM Adult Population Survey database for Romania.

  3. Primordial black holes from scalar field evolution in the early universe

    Science.gov (United States)

    Cotner, Eric; Kusenko, Alexander

    2017-11-01

    Scalar condensates with large expectation values can form in the early universe, for example, in theories with supersymmetry. The condensate can undergo fragmentation into Q-balls before decaying. If the Q-balls dominate the energy density for some period of time, statistical fluctuations in their number density can lead to formation of primordial black holes (PBH). In the case of supersymmetry the mass range is limited from above by 1 023 g . For a general charged scalar field, this robust mechanism can generate black holes over a much broader mass range, including the black holes with masses of 1-100 solar masses, which is relevant for LIGO observations of gravitational waves. Topological defects can lead to formation of PBH in a similar fashion.

  4. Was skin cancer a selective force for black pigmentation in early hominin evolution?

    Science.gov (United States)

    Greaves, Mel

    2014-01-01

    Melanin provides a crucial filter for solar UV radiation and its genetically determined variation influences both skin pigmentation and risk of cancer. Genetic evidence suggests that the acquisition of a highly stable melanocortin 1 receptor allele promoting black pigmentation arose around the time of savannah colonization by hominins at some 1–2 Ma. The adaptive significance of dark skin is generally believed to be protection from UV damage but the pathologies that might have had a deleterious impact on survival and/or reproductive fitness, though much debated, are uncertain. Here, I suggest that data on age-associated cancer incidence and lethality in albinos living at low latitudes in both Africa and Central America support the contention that skin cancer could have provided a potent selective force for the emergence of black skin in early hominins. PMID:24573849

  5. About the role of Higgs boson in the evolution of the early universe

    International Nuclear Information System (INIS)

    Jegerlehner, Fred

    2014-06-01

    After the discovery of the Higgs particle the most relevant structures of the SM have been verified and for the first time we know all parameters of the SM within remarkable accuracy. Together with recent calculations of the SM renormalization group coefficients up to three loops we can safely extrapolate running couplings high up in energy. Assuming that the SM is a low energy effective theory of a cutoff theory residing at the Planck scale, we are able to calculate the effective bare parameters of the underlying cutoff system. It turns out that the effective bare mass term changes sign not far below the Planck scale, which means that in the early universe the SM was in the symmetric phase. The sign-flip, which is a result of a conspiracy between the SM couplings and their screening/antiscreening behavior, triggers the Higgs mechanism. Above the Higgs phase transition the bare mass term in the Higgs potential must have had a large positive value, enhanced by the quadratic divergence of the bare Higgs mass. Likewise the quartically enhanced positive vacuum energy density is present in the symmetric phase. The Higgs system thus provides the large dark energy density in the early universe, which triggers slow-roll inflation, i.e. the SM Higgs is the inflaton scalar field. Reheating is dominated by the decay of the heavy Higgses into (in the symmetric phase) massless top/anti-top quark pairs. The new scenario possibly could explain the baryon-asymmetry essentially in terms of SM physics.

  6. Aqueous magnesium as an environmental selection pressure in the evolution of phospholipid membranes on early earth

    Science.gov (United States)

    Dalai, Punam; Ustriyana, Putu; Sahai, Nita

    2018-02-01

    Early compartmentalization of simple biomolecules by membrane bilayers was, presumably, a critical step in the emergence of the first cell-like entities, protocells. Their membranes were likely composed of single chain amphiphiles (SCAs), but pure SCA membranes especially those with short-chains are highly unstable towards divalent cations, which are ubiquitous in aqueous environments. The prebiotic synthesis of phospholipids (PLs), even in only trace amounts, may also have been possible. PL membranes are much more stable towards divalent cations. Here, we show the transition of fatty acid membranes to mixed fatty acid-PL and, finally, to PL membranes in the presence of Mg2+, which acts as an environmental selection pressure, and we propose different mechanisms for the observed increased Mg2+-immunity. The "fatal" concentration ([Mg2+]fatal) at which vesicles are disrupted increased dramatically by an order of magnitude from OA to mixed to POPC vesicles. Two mechanisms for the increasing immunity were determined. The negative charge density of the vesicles decreased with increasing POPC content, so more Mg2+ was required for disruption. More interestingly, Mg2+ preferentially bound to and abstracted OA from mixed lipid membranes, resulting in relatively POPC-enriched vesicles compared to the initial ratio. The effect was the most dramatic for the largest initial OA-POPC ratio representing the most primitive protocells. Thus, Mg2+ acted to evolve the mixed membrane composition towards PL enrichment. To the best of our knowledge, this is the first report of selective lipid abstraction from mixed SCA-PL vesicles. These results may hold implications for accommodating prebiotic Mg2+-promoted processes such as non-enzymatic RNA polymerization on early Earth.

  7. The origin and early evolution of metatherian mammals: the Cretaceous record

    Directory of Open Access Journals (Sweden)

    Thomas E. Williamson

    2014-12-01

    Full Text Available Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  8. The early evolution of southwestern Pennsylvania's regional math/science collaborative from the leadership perspective

    Science.gov (United States)

    Bunt, Nancy R.

    Designed as a regional approach to the coordination of efforts and focusing of resources in fragmented southwestern Pennsylvania, the Collaborative's story is narrated by its founding director. Drawing from office archives, including letters of invitation, meeting notes, and participant evaluations of each event, the study describes the genesis of the Collaborative. It begins with identification of the problem and the resulting charge by a founding congress. It details the building of an organizational framework, the creation of a shared vision, the development of a blueprint for action, and the decision-making involved in determining how to strengthen mathematics and science education in the region. The study notes several influences on the Collaborative's leadership. Considering the role of other collaboratives, the study notes that knowledge of the Los Angeles Educational Partnership's LA SMART jump-started the Collaborative's initial planning process. Knowledge of San Francisco's SEABA influenced the size and naming of the Collaborative's Journal. Fred Newmann's definition of authentic instruction, learning and assessment are reflected in the shared vision and belief statements of the Collaborative. The five disciplines of Peter Senge influenced the nature of the organizational framework as well as the day-to-day operations of the Collaborative. The study also notes that the five organizational tensions identified in Ann Lieberman's work on "intentional learning communities" were present in every aspect of the evolution of the Collaborative. The study suggests that leaders of evolving collaboratives: (1) engage all relevant stakeholders in assessing the current situation and defining a desired future state, (2) take advantage of the lessons learned by others and the resources available at the state and national levels to design strategies and build action plans, (3) model the practices to be inspired in the learning community, (4) constantly gather feedback on

  9. Insight as a social identity process in the evolution of psychosocial functioning in the early phase of psychosis.

    Science.gov (United States)

    Klaas, H S; Clémence, A; Marion-Veyron, R; Antonietti, J-P; Alameda, L; Golay, P; Conus, P

    2017-03-01

    Awareness of illness (insight) has been found to have contradictory effects for different functional outcomes after the early course of psychosis. Whereas it is related to psychotic symptom reduction and medication adherence, it is also associated with increased depressive symptoms. In this line, the specific effects of insight on the evolution of functioning over time have not been identified, and social indicators, such as socio-occupational functioning have barely been considered. Drawing from social identity theory we investigated the impact of insight on the development of psychosocial outcomes and the interactions of these variables over time. The participants, 240 patients in early phase of psychosis from the Treatment and Early Intervention in Psychosis Program (TIPP) of the University Hospital of Lausanne, Switzerland, were assessed at eight time points over 3 years. Cross-lagged panel analyses and multilevel analyses were conducted on socio-occupational and general functioning [Social and Occupational Functioning Assessment Scale (SOFAS) and Global Assessment of Functioning (GAF)] with insight, time and depressive symptoms as independent variables. Results from multilevel analyses point to an overall positive impact of insight on psychosocial functioning, which increases over time. Yet the cross-lagged panel analysis did not reveal a systematic positive and causal effect of insight on SOFAS and GAF scores. Depressive symptoms seem only to be relevant in the beginning of the treatment process. Our results point to a complex process in which the positive impact of insight on psychosocial functioning increases over time, even when considering depressive symptoms. Future studies and treatment approaches should consider the procedural aspect of insight.

  10. Evolution of the Early Triassic marine depositional environment in the Croatian Dinarides

    Science.gov (United States)

    Aljinović, Dunja; Smirčić, Duje; Horacek, Micha; Richoz, Sylvain; Krystyn, Leopold; Kolar-Jurkovšek, Tea; Jurkovšek, Bogdan

    2014-05-01

    In the central part of the Dinarides in Croatia, the Early Triassic depositional sequence was investigated by means of litho-, bio- and chemostratigraphy at locality Plavno (ca. 1.000m thick). Conodont and δ13C-isotope analysis were a powerfull tool to determine stage and substage boundaries. The succession begins with the second conodont zone of the Griesbachian Isarcicella staeschei and I. isarcica with low δ13C-values and a steadily increase towards the Griesbachian-Dienerian boundary. Around that boundary a minor, short, negative excursion occurs. In the Dienerian the δ13C-values increase with a steepening of the slope towards the Dienerian-Smithian boundary. Around that boundary a maximum of +5o in shallow water carbonate occurs followed by a steep and continuous drop to low, often negative values in the Smithian. Just before the Smithian-Spathian boundary a steep rise to a second maximum is documented. It is followed by decline in the Spathian and a gentle increase to a rounded peak at the Spathian-Anisian boundary. In lithological sense Plavno succession has threefold division: 1) carbonates representing the oldest Early Triassic strata (early Griesbachian); 2) dominantly red clastics (shales, siltstones and sandstones) with intercalation of oncoid/ooid or bioclast rich grainstones (uppermost Griesbachian, Dienerian and Smithian) and 3) dominantly grey carbonaceous lime mudstones, marls and calcisiltites with ammonoids representing Spathian strata. In the oldest strata (Griesbachian) in macrocrystalline subhedral dolomites rare microspheres and foraminifers Earlandia and Cornuspira point to the stressful conditions related to the end Permian mass extinction. In the uppermost Griesbachian and Dienerian strata, within dominantly clastic deposition, rare coarse oncoliths with typical microbial cortices occur. Their presence fits to the interpretation of biotical-induced precipitation related to PTB extinction and can suggest still stressful condition. The

  11. Comparison of the complete mitochondrial genome of the stonefly Sweltsa longistyla (Plecoptera: Chloroperlidae) with mitogenomes of three other stoneflies.

    Science.gov (United States)

    Chen, Zhi-Teng; Du, Yu-Zhou

    2015-03-01

    The complete mitochondrial genome of the stonefly, Sweltsa longistyla Wu (Plecoptera: Chloroperlidae), was sequenced in this study. The mitogenome of S. longistyla is 16,151bp and contains 37 genes including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a large non-coding region. S. longistyla, Pteronarcys princeps Banks, Kamimuria wangi Du and Cryptoperla stilifera Sivec belong to the Plecoptera, and the gene order and orientation of their mitogenomes were similar. The overall AT content for the four stoneflies was below 72%, and the AT content of tRNA genes was above 69%. The four genomes were compact and contained only 65-127bp of non-coding intergenic DNAs. Overlapping nucleotides existed in all four genomes and ranged from 24 (P. princeps) to 178bp (K. wangi). There was a 7-bp motif ('ATGATAA') of overlapping DNA and an 8-bp motif (AAGCCTTA) conserved in three stonefly species (P. princeps, K. wangi and C. stilifera). The control regions of four stoneflies contained a stem-loop structure. Four conserved sequence blocks (CSBs) were present in the A+T-rich regions of all four stoneflies. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The Asian Rice Gall Midge (Orseolia oryzae Mitogenome Has Evolved Novel Gene Boundaries and Tandem Repeats That Distinguish Its Biotypes.

    Directory of Open Access Journals (Sweden)

    Isha Atray

    Full Text Available The complete mitochondrial genome of the Asian rice gall midge, Orseolia oryzae (Diptera; Cecidomyiidae was sequenced, annotated and analysed in the present study. The circular genome is 15,286 bp with 13 protein-coding genes, 22 tRNAs and 2 ribosomal RNA genes, and a 578 bp non-coding control region. All protein coding genes used conventional start codons and terminated with a complete stop codon. The genome presented many unusual features: (1 rearrangement in the order of tRNAs as well as protein coding genes; (2 truncation and unusual secondary structures of tRNAs; (3 presence of two different repeat elements in separate non-coding regions; (4 presence of one pseudo-tRNA gene; (5 inversion of the rRNA genes; (6 higher percentage of non-coding regions when compared with other insect mitogenomes. Rearrangements of the tRNAs and protein coding genes are explained on the basis of tandem duplication and random loss model and why intramitochondrial recombination is a better model for explaining rearrangements in the O. oryzae mitochondrial genome is discussed. Furthermore, we evaluated the number of iterations of the tandem repeat elements found in the mitogenome. This led to the identification of genetic markers capable of differentiating rice gall midge biotypes and the two Orseolia species investigated.

  13. Molecular evolution of ependymin and the phylogenetic resolution of early divergences among euteleost fishes.

    Science.gov (United States)

    Ortí, G; Meyer, A

    1996-04-01

    The rate and pattern of DNA evolution of ependymin, a single-copy gene coding for a highly expressed glycoprotein in the brain matrix of teleost fishes, is characterized and its phylogenetic utility for fish systematics is assessed. DNA sequences were determined from catfish, electric fish, and characiforms and compared with published ependymin sequences from cyprinids, salmon, pike, and herring. Among these groups, ependymin amino acid sequences were highly divergent (up to 60% sequence difference), but had surprisingly similar hydropathy profiles and invariant glycosylation sites, suggesting that functional properties of the proteins are conserved. Comparison of base composition at third codon positions and introns revealed AT-rich introns and GC-rich third codon positions, suggesting that the biased codon usage observed might not be due to mutational bias. Phylogenetic information content of third codon positions was surprisingly high and sufficient to recover the most basal nodes of the tree, in spite of the observation that pairwise distances (at third codon positions) were well above the presumed saturation level. This finding can be explained by the high proportion of phylogenetically informative nonsynonymous changes at third codon positions among these highly divergent proteins. Ependymin DNA sequences have established the first molecular evidence for the monophyly of a group containing salmonids and esociforms. In addition, ependymin suggests a sister group relationship of electric fish (Gymnotiformes) and Characiformes, constituting a significant departure from currently accepted classifications. However, relationships among characiform lineages were not completely resolved by ependymin sequences in spite of seemingly appropriate levels of variation among taxa and considerably low levels of homoplasy in the data (consistency index = 0.7). If the diversification of Characiformes took place in an "explosive" manner, over a relatively short period of time

  14. Oxygen as a driver of early arthropod micro-benthos evolution.

    Directory of Open Access Journals (Sweden)

    Mark Williams

    Full Text Available BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2 of modern normoxic seawater is 21 kPa (air-equilibrated water, a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2 of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2. Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2 levels. The PO(2 of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2. Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian oxygen-levels that increased the PO(2 gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2. Ostracods became the numerically

  15. Evolution and acceptability of medical applications of RFID implants among early users of technology.

    Science.gov (United States)

    Smith, Alan D

    2007-01-01

    RFID as a wireless identification technology that may be combined with microchip implants have tremendous potential in today's market. Although these implants have their advantages and disadvantages, recent improvements how allowed for implants designed for humans. Focus was given to the use of RFID tags and its effects on technology and CRM through a case study on VeriChip, the only corporation to hold the rights and the patent to the implantable chip for humans, and an empirically based study on working professionals to measure perceptions by early adopters of such technology. Through hypotheses-testing procedures, it was found that although some resistance to accept microchip implants was found in several applications, especially among gender, it was totally expected that healthcare and medical record keeping activities would be universally treated in a positive light and the use of authorities (namely governmental agencies) would be equally treated in a negative light by both sexes. Future trends and recommendations are presented along with statistical results collected through personal interviews.

  16. The evolution of the equatorial thermocline and the early Pliocene El Padre mean state

    Science.gov (United States)

    Ford, Heather L.; Ravelo, A. Christina; Dekens, Petra S.; LaRiviere, Jonathan P.; Wara, Michael W.

    2015-06-01

    The tropical Pacific thermocline strength, depth, and tilt are critical to tropical mean state and variability. During the early Pliocene (~3.5 to 4.5 Ma), the Eastern Equatorial Pacific (EEP) thermocline was deeper and the cold tongue was warmer than today, which resulted in a mean state with a reduced zonal sea surface temperature gradient or El Padre. However, it is unclear whether the deep thermocline was a local feature of the EEP or a basin-wide condition with global implications. Our measurements of Mg/Ca of Globorotalia tumida in a western equatorial Pacific site indicate Pliocene subsurface temperatures warmer than today; thus, El Padre included a basin-wide thermocline that was relatively warm, deep, and weakly tilted. At ~4 Ma, thermocline steepening was coupled to cooling of the cold tongue. Since ~4 Ma, the basin-wide thermocline cooled/shoaled gradually, with implications for thermocline feedbacks in tropical dynamics and the interpretation of TEX86-derived temperatures.

  17. Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments.

    Science.gov (United States)

    Borges, Rui; Johnson, Warren E; O'Brien, Stephen J; Gomes, Cidália; Heesy, Christopher P; Antunes, Agostinho

    2018-02-05

    Based on evolutionary patterns of the vertebrate eye, Walls (1942) hypothesized that early placental mammals evolved primarily in nocturnal habitats. However, not only Eutheria, but all mammals show photic characteristics (i.e. dichromatic vision, rod-dominated retina) suggestive of a scotopic eye design. Here, we used integrative comparative genomic and phylogenetic methodologies employing the photoreceptive opsin gene family in 154 mammals to test the likelihood of a nocturnal period in the emergence of all mammals. We showed that mammals possess genomic patterns concordant with a nocturnal ancestry. The loss of the RH2, VA, PARA, PARIE and OPN4x opsins in all mammals led us to advance a probable and most-parsimonious hypothesis of a global nocturnal bottleneck that explains the loss of these genes in the emerging lineage (> > 215.5 million years ago). In addition, ancestral character reconstruction analyses provided strong evidence that ancestral mammals possessed a nocturnal lifestyle, ultra-violet-sensitive vision, low visual acuity and low orbit convergence (i.e. panoramic vision). Overall, this study provides insight into the evolutionary history of the mammalian eye while discussing important ecological aspects of the photic paleo-environments ancestral mammals have occupied.

  18. The mitogenome of a 35,000-year-old Homo sapiens from Europe supports a Palaeolithic back-migration to Africa

    NARCIS (Netherlands)

    Hervella, M.; Svensson, E.M.; Alberdi, A.; Gunther, T.; Izagirre, N.; Munters, A.R.; Alonso, S.; Ioana, M.; Ridiche, F.; Soficaru, A.; Jakobsson, M.; Netea, M.G.; Rua, C. de la

    2016-01-01

    After the dispersal of modern humans (Homo sapiens) Out of Africa, hominins with a similar morphology to that of present-day humans initiated the gradual demographic expansion into Eurasia. The mitogenome (33-fold coverage) of the Pestera Muierii 1 individual (PM1) from Romania (35 ky cal BP) we

  19. A performance evaluation of Nextera XT and KAPA HyperPlus for rapid Illumina library preparation of long-range mitogenome amplicons.

    Science.gov (United States)

    Ring, Joseph D; Sturk-Andreaggi, Kimberly; Peck, Michelle A; Marshall, Charla

    2017-07-01

    Next-generation sequencing (NGS) facilitates the rapid and high-throughput generation of human mitochondrial genome (mitogenome) data to build population and reference databases for forensic comparisons. To this end, long-range amplification provides an effective method of target enrichment that is amenable to library preparation assays employing DNA fragmentation. This study compared the Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA) and the KAPA HyperPlus Library Preparation Kit (Kapa Biosystems, Wilmington, MA) for enzymatic fragmentation and indexing of ∼8500bp mitogenome amplicons for Illumina sequencing. The Nextera XT libraries produced low-coverage regions that were consistent across all samples, while the HyperPlus libraries resulted in uniformly high coverage across the mitogenome, even with reduced-volume reaction conditions. The balanced coverage observed from KAPA HyperPlus libraries enables not only low-level variant calling across the mitogenome but also increased sample multiplexing for greater processing efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nearly complete mitogenome of hairy sawfly, Corynis lateralis (Brullé, 1832) (Hymenoptera: Cimbicidae): rearrangements in the IQM and ARNS1EF gene clusters.

    Science.gov (United States)

    Doğan, Özgül; Korkmaz, E Mahir

    2017-10-01

    The Cimbicidae is a small family of the primitive and relatively less diverse suborder Symphyta (Hymenoptera). Here, nearly complete mitochondrial genome (mitogenome) of hairy sawfly, Corynis lateralis (Hymenoptera: Cimbicidae) was sequenced using next generation sequencing and comparatively analysed with the mitogenome of Trichiosoma anthracinum. The sequenced length of C. lateralis mitogenome was 14,899 bp with an A+T content of 80.60%. All protein coding genes (PCGs) are initiated by ATN codons and all are terminated with TAR or T- stop codon. All tRNA genes preferred usual anticodons. Compared with the inferred insect ancestral mitogenome, two tRNA rearrangements were observed in the IQM and ARNS1EF gene clusters, representing a new event not previously reported in Symphyta. An illicit priming of replication and/or intra/inter-mitochondrial recombination and TDRL seem to be responsible mechanisms for the rearrangement events in these gene clusters. Phylogenetic analyses confirmed the position of Corynis within Cimbicidae and recovered a relationship of Tenthredinoidea + (Cephoidea + Orussoidea) in Symphyta.

  1. The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution

    Science.gov (United States)

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D.; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but

  2. Conserved relative timing of cranial ossification patterns in early mammalian evolution.

    Science.gov (United States)

    Sánchez-Villagra, Marcelo R; Goswami, Anjali; Weisbecker, Vera; Mock, Orin; Kuratani, Shigeru

    2008-01-01

    We analyzed a comprehensive data set of ossification sequences including seven marsupial, 13 placental and seven sauropsid species. Data are provided for the first time for two major mammalian clades, Chiroptera and Soricidae, and for two rodent species; the published sequences of three species were improved with additional sampling. The relative timing of the onset of ossification in 17 cranial elements was recorded, resulting in 136 event pairs, which were treated as characters for each species. Half of these characters are constant across all taxa, 30% are variable but phylogenetically uninformative, and 19% potentially deliver diagnostic features for clades of two or more taxa. Using the conservative estimate of heterochronic changes provided by the program Parsimov, only a few heterochronies were found to diagnose mammals, marsupials, or placentals. A later onset of ossification of the pterygoid with respect to six other cranial bones characterizes therian mammals. This result may relate to the relatively small size of this bone in this clade. One change in relative onset of ossification is hypothesized as a potential human autapomorphy in the context of the sampling made: the earlier onset of the ossification of the periotic with respect to the lacrimal and to three basicranial bones. Using the standard error of scaled ranks across all species as a measure of each element's lability in developmental timing, we found that ossification of early, middle, and late events are similarly labile, with basicranial traits the most labile in timing of onset of ossification. Despite marsupials and placental mammals diverging at least 130 Ma, few heterochronic shifts in cranial ossification diagnose these clades.

  3. Mineralogic and Petrofabric Clues to Evolution of the Early Tertiary Amaga Basin, Colombian Andes

    Science.gov (United States)

    Sierra, G. M.; MacDonald, W. D.

    2002-05-01

    The Amaga Basin is a coal-bearing early to mid Tertiary Basin located in the Cauca Valley between the Cordillera Oriental and Cordillera Central of Colombia. The main sedimentary filling, the Late Oligocene to Late Miocene Amaga Formation, has been divided into two Members (Lower and Upper). This division was made possible 1) by identifying stratigraphic base level fluctuations through petrographic characteristics of the associated sandstones and 2) by the distinctive regional variations in magnetic anisotropic susceptibility (AMS). The latter is particularly effective in indicating areas in which tectonic effects overprint sedimentary fabric. Three tectonic stages have affected the Amaga Coal basin: 1. An extensional event during dry seasons that accompanied strike-slip movements along the Cauca-Pat¡a and Romeral faults systems, associated with the eastward approach of the Nazca plate toward the South America plate at 25 m.a.; this extension event was accompanied by highly aggraded braided river deposits whose stacking patterns show a low accumulation/supply (A/S) ratio 2. A rapid subsidence event (prior to 10 m.a.) accompanied by a strong climatic influence (humid, with rainy seasons), representing extensional movements across the Cauca depression and related to the initial eastward migration of a magmatic arc from the Western Cordillera; this allowed the formation of swamps representing epochs of high A/S ratio. 3. A thrusting and folding episode along the Cauca depression coeval with an incipient phase of Combia Formation volcanism (10-7m.a.), during periods of both dry and wet seasons, related to the eastward migration of the magmatic arc into the Central Cordillera; this permitted the development of highly aggraded braided rivers whose stacking patterns represent the lowest A/S ratio of the Amaga Formation. Mineralogic variations and ratios reflect source area contributions and are useful in diagnosing relative uplift and subsidence of the continental shield

  4. DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yi; Horesh, Assaf; Kulkarni, S. R. [Astronomy Department, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Arcavi, Iair; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Hancock, Paul [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Valenti, Stefano; Graham, Melissa; Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Sand, David [Department of Physics, Texas Tech University, Lubbock, TX 79409 (United States); Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Walker, Emma S. [Department of Physics, Yale University, New Haven, CT 06511-8499 (United States); Mazzali, Paolo, E-mail: ycao@astro.caltech.edu [INAF-Padova Astronomical Observatory, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2013-09-20

    The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an M{sub B} luminosity of –5.52 ± 0.39 mag and a B – I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×10{sup 12} g cm{sup –1}. Assuming a wind velocity of 10{sup 3} km s{sup –1}, we derive a progenitor mass-loss rate of 3 × 10{sup –5} M {sub ☉} yr{sup –1}. Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn.

  5. Paleogeographic Evolution of the Late Neoproterozoic and Early Phanerozoic with New Paleomagnetic Constraints from West African Craton

    Science.gov (United States)

    Robert, B.; Besse, J.; Blein, O.; Greff-Lefftz, M.; Baudin, T.; Fernando, L.; Meslouh, S.; Belbadaoui, M.

    2015-12-01

    The paleogeographic evolution of the late Neoproterozoic and early Phanerozoic is dominated by the dispersion of Rodinia and the assembly of Gondwana. The timing of these two episodes is still highly debated, partly due to the low number of good quality paleomagnetic data. In order to better constrain the paleogeography for this epoch, we bring new paleomagnetic data on volcanic series from the West African Craton (WAC), which is a key block to understand the evolution of these two supercontinents. We have sampled well dated pyroclastic and lava flows from the groups of Ouarzazate (upper Ediacaran) and Taroudant (lower Cambrian) in the Anti-Atlas (Morocco). 500 samples from 105 sites were thermally demagnetized in laboratory. Our results highlight two major groups of directions, mainly carried by minerals of the titano-hematite family. Magnetite may also contribute sometimes to the magnetization. The first group displays a single polarity direction, with a shallow inclination and a south-east declination. This direction close to the expected direction derived from the Permo-Carboniferous segment of the Gondwana apparent polar wander path (APWP) is due to a remagnetization acquired during the Kiaman reversed polarity superchron (320-262Ma). The second group, observed in the Ouarzazate and Taroudant groups, consists of a dual polarity high inclination direction and may represent the characteristic magnetization. On the basis of geologic and paleomagnetic data from literature, we constructed an APWP for both WAC and Amazonia between 615 and 530Ma, assuming these two blocks were already accreted. We found a paleomagnetic solution in which Laurentia and WAC-Amazonia remained attached from ~615Ma up to the late Ediacaran, Laurentia remaining at low latitude during this period. Around ~550Ma, WAC-Amazonia separated from Laurentia and finally collided with the other Gondwanan blocks during the lower Cambrian, marking the final accretion of Gondwana.

  6. The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes.

    Directory of Open Access Journals (Sweden)

    Audrius Menkis

    2008-03-01

    Full Text Available We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains, derived from one N. tetrasperma heterokaryon (mat A+mat a, was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first "evolutionary stratum", genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers.

  7. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event.

    Science.gov (United States)

    Kyndt, Tina; Haegeman, Annelies; Gheysen, Godelieve

    2008-11-03

    Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5) have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN). The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria) or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea); all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida). Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. We conclude that the ancestral PPN GHF5 endoglucanase gene most probably consisted of

  8. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event

    Directory of Open Access Journals (Sweden)

    Gheysen Godelieve

    2008-11-01

    Full Text Available Abstract Background Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5 have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN. The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Results Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea; all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida. Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. Conclusion We conclude that the ancestral

  9. Mitogenomes of Giant-Skipper Butterflies reveal an ancient split between deep and shallow root feeders [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-03-01

    Full Text Available Background: Giant-Skipper butterflies from the genus Megathymus are North American endemics. These large and thick-bodied Skippers resemble moths and are unique in their life cycles. Grub-like at the later stages of development, caterpillars of these species feed and live inside yucca roots. Adults do not feed and are mostly local, not straying far from the patches of yucca plants. Methods: Pieces of muscle were dissected from the thorax of specimens and genomic DNA was extracted (also from the abdomen of a specimen collected nearly 60 years ago. Paired-end libraries were prepared and sequenced for 150bp from both ends. The mitogenomes were assembled from the reads followed by a manual gap-closing procedure and a phylogenetic tree was constructed using a maximum likelihood method from an alignment of the mitogenomes. Results: We determined mitogenome sequences of nominal subspecies of all five known species of Megathymus and Agathymus mariae to confidently root the phylogenetic tree. Pairwise sequence identity indicates the high similarity, ranging from 88-96% among coding regions for 13 proteins, 22 tRNAs and 2 rRNA, with a gene order typical for mitogenomes of Lepidoptera. Phylogenetic analysis confirms that Giant-Skippers (Megathymini originate within the subfamily Hesperiinae and do not warrant a subfamily rank. Genus Megathymus is monophyletic and splits into two species groups. M. streckeri and M. cofaqui caterpillars feed deep in the main root system of yucca plants and deposit frass underground. M. ursus, M. beulahae and M. yuccae feed in the yucca caudex and roots near the ground, and deposit frass outside through a "tent" (a silk tube projecting from the center of yucca plant. M. yuccae and M. beulahae are sister species consistently with morphological similarities between them. Conclusions: We constructed the first DNA-based phylogeny of the genus Megathymus from their mitogenomes. The phylogeny agrees with morphological

  10. Early evolution of the southern margin of the Neuquén Basin, Argentina: Tectono-stratigraphic implications for rift evolution and exploration of hydrocarbon plays

    Science.gov (United States)

    D'Elia, Leandro; Bilmes, Andrés; Franzese, Juan R.; Veiga, Gonzalo D.; Hernández, Mariano; Muravchik, Martín

    2015-12-01

    Long-lived rift basins are characterized by a complex structural and tectonic evolution. They present significant lateral and vertical stratigraphic variations that determine diverse basin-patterns at different timing, scale and location. These issues cause difficulties to establish facies models, correlations and stratal stacking patterns of the fault-related stratigraphy, specially when exploration of hydrocarbon plays proceeds on the subsurface of a basin. The present case study corresponds to the rift-successions of the Neuquén Basin. This basin formed in response to continental extension that took place at the western margin of Gondwana during the Late Triassic-Early Jurassic. A tectono-stratigraphic analysis of the initial successions of the southern part of the Neuquén Basin was carried out. Three syn-rift sequences were determined. These syn-rift sequences were located in different extensional depocentres during the rifting phases. The specific periods of rifting show distinctly different structural and stratigraphic styles: from non-volcanic to volcanic successions and/or from continental to marine sedimentation. The results were compared with surface and subsurface interpretations performed for other depocentres of the basin, devising an integrated rifting scheme for the whole basin. The more accepted tectono-stratigraphic scheme that assumes the deposits of the first marine transgression (Cuyo Cycle) as indicative of the onset of a post-rift phase is reconsidered. In the southern part of the basin, the marine deposits (lower Cuyo Cycle) were integrated into the syn-rift phase, implying the existence of different tectonic signatures for Cuyo Cycle along the basin. The rift climax becomes younger from north to south along the basin. The post-rift initiation followed the diachronic ending of the main syn-rift phase throughout the Neuquén Basin. Thus, initiation of the post-rift stage started in the north and proceeded towards the south, constituting a

  11. Structural and Sequence Similarities of Hydra Xeroderma Pigmentosum A Protein to Human Homolog Suggest Early Evolution and Conservation

    Directory of Open Access Journals (Sweden)

    Apurva Barve

    2013-01-01

    Full Text Available Xeroderma pigmentosum group A (XPA is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1 and replication protein A 70 kDa subunit (RPA70 proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla.

  12. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the othersa

    Directory of Open Access Journals (Sweden)

    Bernhardt Harold S

    2012-07-01

    Full Text Available Abstract The problems associated with the RNA world hypothesis are well known. In the following I discuss some of these difficulties, some of the alternative hypotheses that have been proposed, and some of the problems with these alternative models. From a biosynthetic – as well as, arguably, evolutionary – perspective, DNA is a modified RNA, and so the chicken-and-egg dilemma of “which came first?” boils down to a choice between RNA and protein. This is not just a question of cause and effect, but also one of statistical likelihood, as the chance of two such different types of macromolecule arising simultaneously would appear unlikely. The RNA world hypothesis is an example of a ‘top down’ (or should it be ‘present back’? approach to early evolution: how can we simplify modern biological systems to give a plausible evolutionary pathway that preserves continuity of function? The discovery that RNA possesses catalytic ability provides a potential solution: a single macromolecule could have originally carried out both replication and catalysis. RNA – which constitutes the genome of RNA viruses, and catalyzes peptide synthesis on the ribosome – could have been both the chicken and the egg! However, the following objections have been raised to the RNA world hypothesis: (i RNA is too complex a molecule to have arisen prebiotically; (ii RNA is inherently unstable; (iii catalysis is a relatively rare property of long RNA sequences only; and (iv the catalytic repertoire of RNA is too limited. I will offer some possible responses to these objections in the light of work by our and other labs. Finally, I will critically discuss an alternative theory to the RNA world hypothesis known as ‘proteins first’, which holds that proteins either preceded RNA in evolution, or – at the very least – that proteins and RNA coevolved. I will argue that, while theoretically possible, such a hypothesis is probably unprovable, and that the RNA

  13. Mitogenome evolution in the last surviving woolly mammoth population reveals neutral and functional consequences of small population size

    NARCIS (Netherlands)

    Pecnerova, Patricia; Palkopoulou, E.; Wheat, Christopher W.; Skoglund, Pontus; Vartanyan, Sergey; Tikhonov, Alexei; Nikolskiy, Pavel; van der Plicht, Johannes; Diez-del-Molino, David; Dalen, Love

    2017-01-01

    The onset of the Holocene was associated with a global temperature increase, which led to a rise in sea levels and isolation of the last surviving population of woolly mammoths on Wrangel Island. Understanding what happened with the population’s genetic diversity at the time of the isolation and

  14. Performance of single and concatenated sets of mitochondrial genes at inferring metazoan relationships relative to full mitogenome data.

    Directory of Open Access Journals (Sweden)

    Justin C Havird

    Full Text Available Mitochondrial (mt genes are some of the most popular and widely-utilized genetic loci in phylogenetic studies of metazoan taxa. However, their linked nature has raised questions on whether using the entire mitogenome for phylogenetics is overkill (at best or pseudoreplication (at worst. Moreover, no studies have addressed the comparative phylogenetic utility of mitochondrial genes across individual lineages within the entire Metazoa. To comment on the phylogenetic utility of individual mt genes as well as concatenated subsets of genes, we analyzed mitogenomic data from 1865 metazoan taxa in 372 separate lineages spanning genera to subphyla. Specifically, phylogenies inferred from these datasets were statistically compared to ones generated from all 13 mt protein-coding (PC genes (i.e., the "supergene" set to determine which single genes performed "best" at, and the minimum number of genes required to, recover the "supergene" topology. Surprisingly, the popular marker COX1 performed poorest, while ND5, ND4, and ND2 were most likely to reproduce the "supergene" topology. Averaged across all lineages, the longest ∼2 mt PC genes were sufficient to recreate the "supergene" topology, although this average increased to ∼5 genes for datasets with 40 or more taxa. Furthermore, concatenation of the three "best" performing mt PC genes outperformed that of the three longest mt PC genes (i.e, ND5, COX1, and ND4. Taken together, while not all mt PC genes are equally interchangeable in phylogenetic studies of the metazoans, some subset can serve as a proxy for the 13 mt PC genes. However, the exact number and identity of these genes is specific to the lineage in question and cannot be applied indiscriminately across the Metazoa.

  15. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins.

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M; Ballard, Grant; Ainley, David G; Varsani, Arvind

    2017-07-01

    estimated the divergence time between Northern fulmar-associated papillomavirus and the other Sauropsid papillomaviruses be to around 250 million years ago, during the Paleozoic-Mesozoic transition and our analysis dates the root of the papillomavirus tree between 400 and 600 million years ago. Our analysis shows evidence for niche adaptation and that these non-mammalian viruses have highly divergent E6 and E7 proteins, providing insights into the evolution of the early viral (onco-)proteins.

  16. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M.; Ballard, Grant; Ainley, David G.; Varsani, Arvind

    2017-01-01

    divergence time between Northern fulmar-associated papillomavirus and the other Sauropsid papillomaviruses be to around 250 million years ago, during the Paleozoic-Mesozoic transition and our analysis dates the root of the papillomavirus tree between 400 and 600 million years ago. Our analysis shows evidence for niche adaptation and that these non-mammalian viruses have highly divergent E6 and E7 proteins, providing insights into the evolution of the early viral (onco-)proteins.

  17. Spray cryotherapy (SCT): institutional evolution of techniques and clinical practice from early experience in the treatment of malignant airway disease.

    Science.gov (United States)

    Browning, Robert; Turner, J Francis; Parrish, Scott

    2015-12-01

    Spray cryotherapy (SCT) was initially developed for gastroenterology (GI) endoscopic use in the esophagus. In some institutions where a device has been utilized by GI, transition to use in the airways by pulmonologists and thoracic surgeons occurred. Significant differences exist, however, in the techniques for safely using SCT in the airways. We describe the early experience at Walter Reed National Military Medical Center from 2011 to 2013 using SCT in patients with malignant airway disease and the evolution of our current techniques and clinical practice patterns for SCT use in patients. In November 2013 enrollment began in a multi-institutional prospective SCT registry in which we are still enrolling and will be reported on separately. Twenty-seven patients that underwent 80 procedures (2.96 procedures/patient). The average age was 63 years with a range of 20 to 87 years old. The average Eastern Cooperative Oncology Group (ECOG) status was 1.26. All malignancies were advanced stage disease. All procedures were performed in the central airways. Other modalities were used in combination with SCT in 31 (39%) of procedures. Additionally 45 of the 80 (56%) procedures were performed in proximity to a silicone, hybrid, or metal stent. Three complications occurred out of the 80 procedures. All three were transient hypoxia that limited continued SCT treatments. These patients were all discharged from the bronchoscopy recovery room to their pre-surgical state. SCT can be safely used for treatment of malignant airway tumor (MAT) in the airways. Understanding passive venting of the nitrogen gas produced as the liquid nitrogen changes to gas is important for safe use of the device. Complications can be minimized by adopting strict protocols to maximize passive venting and to allow for adequate oxygenation in between sprays.

  18. Thermal evolution of trans-Neptunian objects, icy satellites, and minor icy planets in the early solar system

    Science.gov (United States)

    Bhatia, Gurpreet Kaur; Sahijpal, Sandeep

    2017-12-01

    Numerical simulations are performed to understand the early thermal evolution and planetary scale differentiation of icy bodies with the radii in the range of 100-2500 km. These icy bodies include trans-Neptunian objects, minor icy planets (e.g., Ceres, Pluto); the icy satellites of Jupiter, Saturn, Uranus, and Neptune; and probably the icy-rocky cores of these planets. The decay energy of the radionuclides, 26Al, 60Fe, 40K, 235U, 238U, and 232Th, along with the impact-induced heating during the accretion of icy bodies were taken into account to thermally evolve these planetary bodies. The simulations were performed for a wide range of initial ice and rock (dust) mass fractions of the icy bodies. Three distinct accretion scenarios were used. The sinking of the rock mass fraction in primitive water oceans produced by the substantial melting of ice could lead to planetary scale differentiation with the formation of a rocky core that is surrounded by a water ocean and an icy crust within the initial tens of millions of years of the solar system in case the planetary bodies accreted prior to the substantial decay of 26Al. However, over the course of billions of years, the heat produced due to 40K, 235U, 238U, and 232Th could have raised the temperature of the interiors of the icy bodies to the melting point of iron and silicates, thereby leading to the formation of an iron core. Our simulations indicate the presence of an iron core even at the center of icy bodies with radii ≥500 km for different ice mass fractions.

  19. Baseline prevalence and longitudinal evolution of non-motor symptoms in early Parkinson's disease: the PPMI cohort.

    Science.gov (United States)

    Simuni, Tanya; Caspell-Garcia, Chelsea; Coffey, Christopher S; Weintraub, Daniel; Mollenhauer, Brit; Lasch, Shirley; Tanner, Caroline M; Jennings, Danna; Kieburtz, Karl; Chahine, Lana M; Marek, Kenneth

    2018-01-01

    To examine the baseline prevalence and longitudinal evolution in non-motor symptoms (NMS) in a prospective cohort of, at baseline, patients with de novo Parkinson's disease (PD) compared with healthy controls (HC). Parkinson's Progression Markers Initiative (PPMI) is a longitudinal, ongoing, controlled study of de novo PD participants and HC. NMS were rated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part I score and other validated NMS scales at baseline and after 2 years. Biological variables included cerebrospinal fluid (CSF) markers and dopamine transporter imaging. 423 PD subjects and 196 HC were enrolled and followed for 2 years. MDS-UPDRS Part I total mean (SD) scores increased from baseline 5.6 (4.1) to 7.7 (5.0) at year 2 in PD subjects (pbaseline NMS score was associated with female sex (p=0.008), higher baseline MDS-UPDRS Part II scores (pbaseline. There was no association with the dose or class of dopaminergic therapy. This study of NMS in early PD identified clinical and biological variables associated with both baseline burden and predictors of progression. The association of a greater longitudinal increase in NMS with lower baseline Aβ1-42 level is an important finding that will have to be replicated in other cohorts. ClinicalTrials.gov identifier: NCT01141023. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution

    KAUST Repository

    Yasumura, Yuki; Pierik, Ronald; Fricker, Mark D.; Voesenek, Laurentius A. C. J.; Harberd, Nicholas P.

    2012-01-01

    in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a

  1. Complete mitochondrial genome of the giant African snail, Achatina fulica (Mollusca: Achatinidae): a novel location of putative control regions (CR) in the mitogenome within Pulmonate species.

    Science.gov (United States)

    He, Zhang-Ping; Dai, Xia-Bin; Zhang, Shuai; Zhi, Ting-Ting; Lun, Zhao-Rong; Wu, Zhong-Dao; Yang, Ting-Bao

    2016-01-01

    The whole sequence (15,057 bp) of the mitochondrial DNA (mtDNA) of the terrestrial snail Achatina fulica (order Stylommatophora) was determined. The mitogenome, as the typical metazoan mtDNA, contains 13 protein-coding genes (PCG), 2 ribosomal RNA genes (rRNA) and 22 transfer RNA genes (tRNA). The tRNA genes include two trnS without standard secondary structure. Interestingly, among the known mitogenomes of Pulmonata species, we firstly characterized an unassigned lengthy sequence (551 bp) between the cox1 and the trnV which may be the CR for the sake of its AT bases usage bias (65.70%) and potential hairpin structure.

  2. Late Carboniferous to early Permian sedimentary–tectonic evolution of the north of Alxa, Inner Mongolia, China: Evidence from the Amushan Formation

    Directory of Open Access Journals (Sweden)

    Haiquan Yin

    2016-09-01

    Full Text Available The late Paleozoic evolution of the Wulijishanhen (WSH-Shangdan (SD area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biological associations, detrital materials, sandstone geochemistry and volcanic rocks indicates that the SD area was an epicontinental sea and rift during the late Paleozoic rather than a large-scale ocean undergoing spreading and closure. This study reveals that the actual evolution of the study area is from the late Carboniferous to the early Permian. The fusulinids Triticites sp. and Pseudoschwagerina sp. in the limestones demonstrate that the Amushan Formation develops during the late Carboniferous to the early Permian. The limestones at the base of the SD section indicate that it is a stable carbonate platform environment, the volcanic rocks in the middle of the sequence support a rift tectonic background, and the overlying conglomerates and sandstones are characteristic of an epicontinental sea or marine molasse setting. The rift volcanism made the differences in the fossil content of the SD and WSH sections and led to two sections expose different levels within the Amushan Formation and different process of tectonic evolution. Moreover, the geochemical characteristics and detrital materials of the sandstones show that the provenance and formation of the sandstones were related to the setting of active continental margin. The quartz-feldspar-lithic fragments distribution diagram indicates that the material source for the sandstones was a recycled orogenic belt. Thus, the source area of the sandstones may have been an active continental margin before the late Carboniferous–early Permian. The characteristics of the regional tectonic evolution of the area indicate that the region may form a small part of the Gobi–Tianshan rift of southern Mongolia.

  3. Pegylated interferon and ribavirin promote early evolution of nonstructural 5A protein in individuals with hepatitis C who demonstrate a response to treatment.

    Science.gov (United States)

    Jain, Mamta K; Yuan, He-Jun; Adams-Huet, Beverley; Reeck, Amanda; Shelton, Janel; Attar, Nahid; Zhang, Song; Neumann, Avidan U; Carney, David S; Gale, Michael; Lee, William M

    2009-09-15

    Hepatitis C virus (HCV) quasispecies diversity is more likely to affect early viral decline during treatment of hepatitis C than is having human immunodeficiency virus (HIV) infection. We evaluated the influence of HCV therapy on changes in the nonstructural 5A (NS5A) protein. Fifteen patients with HCV genotype 1 infection with or without HIV infection were recruited for the present study, and the decrease in the HCV RNA level was measured at early time points. The evolution of HCV NS5A quasispecies within the first week was analyzed by comparing the clones observed at later times in the study with the baseline consensus sequence of individual patients. The response to therapy was defined as an early response (ER; ie, an HCV RNA level <615 IU/mL at week 4) or a slow response (SR; ie, a detectable HCV RNA level at week 4). HIV infection did not affect early viral kinetics. At baseline, lower diversity was seen in NS5A and in the amino and carboxyl termini of patients with an ER, compared with those with an SR. Rapid evolution of the NS5A genetic region occurred in patients with an ER (P = .01) but not in those with an SR (P = .73). The evolution was the result of an increase in the number of amino acid substitutions in the carboxyl region (P = .02) in patients with an ER. Selective pressure appears to result in more-marked changes in individuals with an ER than in those with an SR. The carboxyl terminus was subject to the most change and may be an important determinant of phenotypic resistance to interferon-based therapy.

  4. EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H-R DIAGRAMS?

    International Nuclear Information System (INIS)

    Baraffe, I.; Chabrier, G.; Gallardo, J.

    2009-01-01

    We present evolutionary models for young low-mass stars and brown dwarfs taking into account episodic phases of accretion at early stages of the evolution, a scenario supported by recent large surveys of embedded protostars. An evolution including short episodes of vigorous accretion followed by longer quiescent phases can explain the observed luminosity spread in H-R diagrams of star-forming regions at ages of a few Myr, for objects ranging from a few Jupiter masses to a few tenths of a solar mass. The gravitational contraction of these accreting objects strongly departs from the standard Hayashi track at constant T eff . The best agreement with the observed luminosity scatter is obtained if most of the accretion shock energy is radiated away. The obtained luminosity spread at 1 Myr in the H-R diagram is equivalent to what can be misinterpreted as an ∼10 Myr age spread for non-accreting objects. We also predict a significant spread in radius at a given T eff , as suggested by recent observations. These calculations bear important consequences for our understanding of star formation and early stages of evolution and on the determination of the initial mass function for young (≤ a few Myr) clusters. Our results also show that the concept of a stellar birthline for low-mass objects has no valid support.

  5. Contrasting Patterns of Nucleotide Substitution Rates Provide Insight into Dynamic Evolution of Plastid and Mitochondrial Genomes of Geranium.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Weng, Mao-Lun; Hajrah, Nahid H; Sabir, Jamal S M; Jansen, Robert K

    2017-06-01

    Geraniaceae have emerged as a model system for investigating the causes and consequences of variation in plastid and mitochondrial genomes. Incredible structural variation in plastid genomes (plastomes) and highly accelerated evolutionary rates have been reported in selected lineages and functional groups of genes in both plastomes and mitochondrial genomes (mitogenomes), and these phenomena have been implicated in cytonuclear incompatibility. Previous organelle genome studies have included limited sampling of Geranium, the largest genus in the family with over 400 species. This study reports on rates and patterns of nucleotide substitutions in plastomes and mitogenomes of 17 species of Geranium and representatives of other Geraniaceae. As detected across other angiosperms, substitution rates in the plastome are 3.5 times higher than the mitogenome in most Geranium. However, in the branch leading to Geranium brycei/Geranium incanum mitochondrial genes experienced significantly higher dN and dS than plastid genes, a pattern that has only been detected in one other angiosperm. Furthermore, rate accelerations differ in the two organelle genomes with plastomes having increased dN and mitogenomes with increased dS. In the Geranium phaeum/Geranium reflexum clade, duplicate copies of clpP and rpoA genes that experienced asymmetric rate divergence were detected in the single copy region of the plastome. In the case of rpoA, the branch leading to G. phaeum/G. reflexum experienced positive selection or relaxation of purifying selection. Finally, the evolution of acetyl-CoA carboxylase is unusual in Geraniaceae because it is only the second angiosperm family where both prokaryotic and eukaryotic ACCases functionally coexist in the plastid. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B

    2011-01-01

    occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic......The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid...... replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered...

  7. The teaching of evolution in Portugal in the early 20th century through the programs and textbooks of Zoology

    Directory of Open Access Journals (Sweden)

    Bento CAVADAS

    2011-11-01

    Full Text Available The teaching of evolution in the Portuguese secondary schools is not yet fully understood. This research aimed to contribute to this clarification, in the framework of the history of the curriculum and the biology subject, by showing the expressions of the evolutionism teaching in the first three decades of the twentieth century. To this end we analyzed the programs of Zoology of 1905 and 1919, as well as two textbooks, entitled «Lições de Zoologia» and written by Bernardo Aires in accordance with these programs. This analysis showed that the study of evolution, eliminated from the program in 1905, was again recognized in the program in 1919. In textbooks, the exposure of evolution focused on the subject of evolution, in the grounds of competition and natural selection, adaptation, the biogenetic law and the essential differences between Lamarckism and Darwinism. The comparative study of these textbooks showed that the text which addresses the evolution is essentially Darwinian. However, neoLamarckians sections have been identified that show the influence of the «eclipse of Darwinism» on the teaching of evolutionism.

  8. Evidence for ancient atmospheric xenon in Archean rocks and implications for the early evolution of the atmosphere

    Science.gov (United States)

    Pujol, M.; Marty, B.; Burnard, P.; Hofmann, A.

    2012-12-01

    The initial atmospheric xenon isotopic composition has been much debated over the last 4 decades. A Non radiogenic Earth Atmospheric xenon (NEA-Xe) composition has been proposed to be the best estimate of the initial signature ([1]). NEA-Xe consists of modern atmospheric Xe without fission (131-136Xe) or radioactive decay (129Xe) products. However, the isotope composition of such non-radiogenic xenon is very different to that of potential cosmochemical precursors such as solar or meteoritic Xe, as it is mass-fractionated by up to 3-4 % per amu relative to the potential precursors, and it is also elementally depleted relative to other noble gases. Because the Xe isotopic composition of the Archean appears to be intermediate between that of these cosmochemical end-members and that of the modern atmosphere, we argued that isotopic fractionation of atmospheric xenon did not occur early in Earth's history by hydrodynamic escape, as postulated by all other models ([1], [2], [3]), but instead was a continuous, long term process that lasted during at least the Hadean and Archean eons. Taken at face value, the decrease of the Xe isotopic fractionation from 1.6-2.1 % amu-1 3.5 Ga ago ([4]) to 1 % amu-1 3.0 Ga ago (Ar-Ar age in fluid inclusions trapped in quartz from the same Dresser Formation, [5]) could reflect a secular variation of the atmospheric Xe signature. Nevertheless, up until now, all data showing an isotopic mass fractionation have been measured in rocks and fluids from the same formation (Dresser Formation, Western Australia, aged 3.5 Ga), and have yet to be confirmed in rocks from different locations. In order to better constrain xenon isotopic fractionation of the atmosphere through time, we decided to analyze barites from different ages, geological environments and metamorphism grade. We started this study with barite from the Fig Tree Formation (South Africa, aged 3.26 Ga). This barite was sampled in old mines so have negligible modern exposure time. It is

  9. Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics

    NARCIS (Netherlands)

    Paijmans, Johanna L.A.; Barnett, Ross; Gilbert, M. Thomas P.; Zepeda-Mendoza, M. Lisandra; Reumer, Jelle W.F.; de Vos, John; Zazula, Grant; Nagel, Doris; Baryshnikov, Gennady F.; Leonard, Jennifer A.; Rohland, Nadin; Westbury, Michael V.; Barlow, Axel; Hofreiter, Michael

    2017-01-01

    Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of

  10. Evolution of Late-type Galaxies in a Cluster Environment: Effects of High-speed Multiple Encounters with Early-type Galaxies

    Science.gov (United States)

    Hwang, Jeong-Sun; Park, Changbom; Banerjee, Arunima; Hwang, Ho Seong

    2018-04-01

    Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way–like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15–65 h ‑1 kpc at the relative velocities of 1500–1600 km s‑1. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy–cluster interactions, we claim that the role of the galaxy–galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy–cluster interactions, depending on the dynamical history.

  11. The evolution and adaptation of clinical Pseudomonas aeruginosa isolates from early cystic fibrosis infections

    DEFF Research Database (Denmark)

    Lindegaard, Mikkel

    system (T3SS). This suggests that the current dogma of this regulatory system does not adequately explain the biological significance of this system, as the opposite mutation pattern would be expected if this dogma were true. Furthermore, we show that the residual evolution caused by other mutations also...

  12. Comparative Mitogenomics of Plant Bugs (Hemiptera: Miridae): Identifying the AGG Codon Reassignments between Serine and Lysine

    Science.gov (United States)

    Wang, Pei; Song, Fan; Cai, Wanzhi

    2014-01-01

    Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409

  13. Five-year evolution of reperfusion strategies and early mortality in patients with ST-segment elevation myocardial infarction in France.

    Science.gov (United States)

    El Khoury, Carlos; Bochaton, Thomas; Flocard, Elodie; Serre, Patrice; Tomasevic, Danka; Mewton, Nathan; Bonnefoy-Cudraz, Eric

    2017-10-01

    To assess 5-year evolutions in reperfusion strategies and early mortality in patients with ST-segment elevation myocardial infarction. Using data from the French RESCUe network, we studied patients with ST-segment elevation myocardial infarction treated in mobile intensive care units between 2009 and 2013. Among 2418 patients (median age 62 years; 78.5% male), 2119 (87.6%) underwent primary percutaneous coronary intervention and 299 (12.4%) pre-hospital thrombolysis (94.0% of whom went on to undergo percutaneous coronary intervention). Use of primary percutaneous coronary intervention increased from 78.4% in 2009 to 95.9% in 2013 ( P trend 90 minutes delay group (83.0% in 2009 to 97.7% in 2013; P trend <0.001 versus 34.1% in 2009 to 79.2% in 2013; P trend <0.001). In-hospital (4-6%) and 30-day (6-8%) mortalities remained stable from 2009 to 2013. In the RESCUe network, the use of primary percutaneous coronary intervention increased from 2009 to 2013, in line with guidelines, but there was no evolution in early mortality.

  14. Universal sequence replication, reversible polymerization and early functional biopolymers: a model for the initiation of prebiotic sequence evolution.

    Directory of Open Access Journals (Sweden)

    Sara Imari Walker

    Full Text Available Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for

  15. The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals

    Science.gov (United States)

    Lichtenberg, Tim; Golabek, Gregor J.; Gerya, Taras V.; Meyer, Michael R.

    2016-08-01

    The thermal history and internal structure of chondritic planetesimals, assembled before the giant impact phase of chaotic growth, potentially yield important implications for the final composition and evolution of terrestrial planets. These parameters critically depend on the internal balance of heating versus cooling, which is mostly determined by the presence of short-lived radionuclides (SLRs), such as 26Al and 60Fe, as well as the heat conductivity of the material. The heating by SLRs depends on their initial abundances, the formation time of the planetesimal and its size. It has been argued that the cooling history is determined by the porosity of the granular material, which undergoes dramatic changes via compaction processes and tends to decrease with time. In this study we assess the influence of these parameters on the thermo-mechanical evolution of young planetesimals with both 2D and 3D simulations. Using the code family I2ELVIS/I3ELVIS we have run numerous 2D and 3D numerical finite-difference fluid dynamic models with varying planetesimal radius, formation time and initial porosity. Our results indicate that powdery materials lowered the threshold for melting and convection in planetesimals, depending on the amount of SLRs present. A subset of planetesimals retained a powdery surface layer which lowered the thermal conductivity and hindered cooling. The effect of initial porosity was small, however, compared to those of planetesimal size and formation time, which dominated the thermo-mechanical evolution and were the primary factors for the onset of melting and differentiation. We comment on the implications of this work concerning the structure and evolution of these planetesimals, as well as their behavior as possible building blocks of terrestrial planets.

  16. Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates

    Czech Academy of Sciences Publication Activity Database

    Kozmiková, Iryna; Candiani, S.; Fabian, Peter; Gurská, Daniela; Kozmik, Zbyněk

    2013-01-01

    Roč. 382, č. 2 (2013), s. 538-554 ISSN 0012-1606 R&D Projects: GA ČR GCP305/10/J064; GA MŠk EE2.3.30.0027 Institutional support: RVO:68378050 Keywords : Bmp signaling * axial patterning * cell fate * chordates * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.637, year: 2013

  17. Effect of site-specific heterogeneous evolution on phylogenetic reconstruction: a simple evaluation.

    Science.gov (United States)

    Cheng, Qiqun; Su, Zhixi; Zhong, Yang; Gu, Xun

    2009-07-15

    Recent studies have shown that heterogeneous evolution may mislead phylogenetic analysis, which has been neglected for a long time. We evaluate the effect of heterogeneous evolution on phylogenetic analysis, using 18 fish mitogenomic coding sequences as an example. Using the software DIVERGE, we identify 198 amino acid sites that have experienced heterogeneous evolution. After removing these sites, the rest of sites are shown to be virtually homogeneous in the evolutionary rate. There are some differences between phylogenetic trees built with heterogeneous sites ("before tree") and without heterogeneous sites ("after tree"). Our study demonstrates that for phylogenetic reconstruction, an effective approach is to identify and remove sites with heterogeneous evolution, and suggests that researchers can use the software DIVERGE to remove the influence of heterogeneous evolution before reconstructing phylogenetic trees.

  18. Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill

    International Nuclear Information System (INIS)

    Dudina, Dina V.; Lomovsky, Oleg I.; Valeev, Konstantin R.; Tikhov, Serguey F.; Boldyreva, Natalya N.; Salanov, Aleksey N.; Cherepanova, Svetlana V.; Zaikovskii, Vladimir I.; Andreev, Andrey S.; Lapina, Olga B.; Sadykov, Vladislav A.

    2015-01-01

    Highlights: • Phase formation during early stages of Cu–Al mechanical alloying was studied. • The products of mechanical alloying are of highly non-equilibrium character. • X-ray amorphous phases are present in the products of mechanical alloying. • An Al-rich X-ray amorphous phase is distributed between the crystallites. - Abstract: We report the phase and microstructure evolution of the Cu–13 wt.% Al mixture during treatment in a high-energy planetary ball mill with a particular focus on the early stages of mechanical alloying. Several characterization techniques, including X-ray diffraction phase analysis, nuclear magnetic resonance spectroscopy, differential dissolution, thermal analysis, and electron microscopy/elemental analysis, have been combined to study the evolution of the phase composition of the mechanically alloyed powders and describe the microstructure of the multi-phase products of mechanical alloying at different length scales. The following reaction sequence has been confirmed: Cu + Al → CuAl 2 (+Cu) → Cu 9 Al 4 + (Cu) → Cu(Al). The phase evolution was accompanied by the microstructure changes, the layered structure of the powder agglomerates disappearing with milling time. This scheme is further complicated by the processes of copper oxidation, reduction of copper oxides by metallic aluminum, and by variation of the stoichiometry of Cu(Al) solid solutions with milling time. Substantial amounts of X-ray amorphous phases were detected as well. Differential dissolution technique has revealed that a high content of aluminum in the Cu(Al) solid solution-based powders is due to the presence of Al-rich phases distributed between the Cu(Al) crystallites

  19. Modern Microbial Ecosystems are a Key to Understanding Our Biosphere's Early Evolution and its Contributions To The Atmosphere and Rock Record

    Science.gov (United States)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The survival of our early biosphere depended upon efficient coordination anion- diverse microbial populations. Microbial mats exhibit a 3.46-billion-year fossil record, thus they are the oldest known ecosystems. Photosynthetic microbial mats were key because, today, sunlight powers more than 99 percent of global primary productivity. Thus photosynthetic ecosystems have affected the atmosphere profoundly and have created the most pervasive, easily-detected fossils. Photosynthetic biospheres elsewhere will be most detectible via telescopes or spacecraft. As a part of the Astrobiology Institute, our Ames Microbial Ecosystems group examines the roles played by ecological processes in the early evolution of our biosphere, as recorded in geologic fossils and in the macromolecules of living cells: (1) We are defining the microbial mat microenvironment, which was an important milieu for early evolution. (2) We are comparing mats in contrasting environments to discern strategies of adaptation and diversification, traits that were key for long-term survival. (3) We have selected sites that mimic key environmental attributes of early Earth and thereby focus upon evolutionary adaptations to long-term changes in the global environment. (4) Our studies of gas exchange contribute to better estimates of biogenic gases in Earth's early atmosphere. This group therefore directly addresses the question: How have the Earth and its biosphere influenced each other over time Our studies strengthen the systematics for interpreting the microbial fossil record and thereby enhance astrobiological studies of martian samples. Our models of biogenic gas emissions will enhance models of atmospheres that might be detected on inhabited extrasolar planets. This work therefore also addresses the question: How can other biospheres be recogniZed" Our choice of field sites helps us explore Earth's evolving early environment. For example, modern mats that occupy thermal springs and certain freshwater

  20. The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr)

    Science.gov (United States)

    Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.

    2018-03-01

    There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.

  1. Key science questions from the second conference on early Mars: geologic, hydrologic, and climatic evolution and the implications for life.

    Science.gov (United States)

    Beaty, David W; Clifford, Stephen M; Borg, Lars E; Catling, David C; Craddock, Robert A; Des Marais, David J; Farmer, Jack D; Frey, Herbert V; Haberle, Robert M; McKay, Christopher P; Newsom, Horton E; Parker, Timothy J; Segura, Teresa; Tanaka, Kenneth L

    2005-12-01

    In October 2004, more than 130 terrestrial and planetary scientists met in Jackson Hole, WY, to discuss early Mars. The first billion years of martian geologic history is of particular interest because it is a period during which the planet was most active, after which a less dynamic period ensued that extends to the present day. The early activity left a fascinating geological record, which we are only beginning to unravel through direct observation and modeling. In considering this time period, questions outnumber answers, and one of the purposes of the meeting was to gather some of the best experts in the field to consider the current state of knowledge, ascertain which questions remain to be addressed, and identify the most promising approaches to addressing those questions. The purpose of this report is to document that discussion. Throughout the planet's first billion years, planetary-scale processes-including differentiation, hydrodynamic escape, volcanism, large impacts, erosion, and sedimentation-rapidly modified the atmosphere and crust. How did these processes operate, and what were their rates and interdependencies? The early environment was also characterized by both abundant liquid water and plentiful sources of energy, two of the most important conditions considered necessary for the origin of life. Where and when did the most habitable environments occur? Did life actually occupy them, and if so, has life persisted on Mars to the present? Our understanding of early Mars is critical to understanding how the planet we see today came to be.

  2. Osteology of Carnufex carolinensis (Archosauria: Psuedosuchia from the Pekin Formation of North Carolina and Its Implications for Early Crocodylomorph Evolution.

    Directory of Open Access Journals (Sweden)

    Susan M Drymala

    Full Text Available Crocodylomorphs originated in the Late Triassic and were the only crocodile-line archosaurs to survive the end-Triassic extinction. Recent phylogenetic analyses suggest that the closest relatives of these generally gracile, small-bodied taxa were a group of robust, large-bodied predators known as rauisuchids implying a problematic morphological gap between early crocodylomorphs and their closest relatives. Here we provide a detailed osteological description of the recently named early diverging crocodylomorph Carnufex carolinensis from the Upper Triassic Pekin Formation of North Carolina and assess its phylogenetic position within the Paracrocodylomorpha. Carnufex displays a mosaic of crocodylomorph, rauisuchid, and dinosaurian characters, as well as highly laminar cranial elements and vertebrae, ornamented dermal skull bones, a large, subtriangular antorbital fenestra, and a reduced forelimb. A phylogenetic analysis utilizing a comprehensive dataset of early paracrocodylomorphs and including seven new characters and numerous modifications to characters culled from the literature recovers Carnufex carolinensis as one of the most basal members of Crocodylomorpha, in a polytomy with two other large bodied taxa (CM 73372 and Redondavenator. The analysis also resulted in increased resolution within Crocodylomorpha and a monophyletic clade containing the holotype and two referred specimens of Hesperosuchus as well as Dromicosuchus. Carnufex occupies a key transition at the origin of Crocodylomorpha, indicating that the morphology typifying early crocodylomorphs appeared before the shift to small body size.

  3. Shoshonitic- and adakitic magmatism of the Early Paleozoic age in the Western Kunlun orogenic belt, NW China: Implications for the early evolution of the northwestern Tibetan plateau

    Science.gov (United States)

    Wang, Jian; Hattori, Keiko; Liu, Jianguo; Song, Yue; Gao, Yongbao; Zhang, Han

    2017-08-01

    The Western Kunlun orogenic belt in the northwestern margin of the Tibetan plateau contains two magmatic belts; early Paleozoic belt in the northern part of Western Kunlun Terrane (WKT), and early Mesozoic belt in the southern part of WKT. Both formed from northward subduction of the Paleo-Tethys. The early Paleozoic belt contains large Datong and Qiukesu igneous complexes and many smaller plutons. The Datong complex is mainly composed of dark-colored porphyritic syenite and monzonite with minor light-colored dykes of granite and monzonite. The dark-colored rocks are characterized by moderate SiO2 (58.2-69.3 wt.%), and high Al2O3 (15.3-17.1 wt.%), total alkali (Na2O + K2O = 8.07-10.2 wt.%) and ratios of K2O/Na2O (0.77-1.83). They plot in "shoshonite" field, and show high abundances of LILE including LREE ((La/Yb)n = 15.4-26.2; mean 20.2) with pronounced negative anomalies of Nb-Ta-P-Ti in normalized trace elemental patterns and weak negative anomalies of Eu (δEu = 2Eun/(Smn + Gdn) = 0.68-0.80). The light-colored rocks contain slightly higher concentrations of SiO2 (60.3-72.0 wt.%), similar Al2O3 (14.7-17.6 wt.%), and slightly lower total alkalis (6.57-9.14 wt.%) than dark-colored rocks. They show adakitic geochemical signatures with low Y (5.80-17.2 ppm) and Yb (0.63-1.59 ppm), and high Sr/Y (> 40). U-Pb zircon dating indicates that shoshonitic rocks and adakitic dykes formed at 444 Ma to 443 Ma, and a separate small adakitic plug at 462 Ma. The mean εHf(t) values of zircon range from - 1.6 to - 0.94 (n = 14) with TDM2 of 1.5 Ga for shoshonitic rocks and εHf(t) values from - 1.8 to + 0.72 (n = 12) with TDM2 of 1.4 to 1.5 Ga for adakitic rocks. Shoshonitic rocks show initial 87Sr/86Sr and εNd(t) of 0.7092-0.7100 and - 3.9 to - 3.2, respectively, and adakitic rocks yield initial 87Sr/86Sr and εNd(t) of 0.7099-0.7134 and - 3.6 to - 3.1, respectively. Similar Sr, Nd, and Hf isotope compositions for the shoshonitic and adakitic rocks suggest similar ancient rocks

  4. Early Cretaceous I-type granites in the Tengchong terrane: New constraints on the late Mesozoic tectonic evolution of southwestern China

    Directory of Open Access Journals (Sweden)

    Yi Fang

    2018-03-01

    Full Text Available The Early Cretaceous granitoids that are widespread in the Tengchong terrane of Southwest China play a critical role in understanding the tectonic framework associated with the Tethyan oceans. In this study, we present a detailed description of zircon U–Pb ages, whole-rock geochemistry and Hf isotopes for the Laoxiangkeng pluton in the eastern Tengchong terrane and elucidate their petrogenesis and geodynamic implications. Zircon U–Pb dating of the Laoxiangkeng pluton yields ages of 114 ± 1 Ma and 115 ± 1 Ma, which imply an Early Cretaceous magmatic event. The Laoxiangkeng pluton enriched in Si and Na, is calc-alkaline and metaluminous, and has the characteristics of highly fractionated I-type granites. Zircons from the pluton have calculated εHf(t values of −12.7 to −3.7 and two-stage model ages of 1327–1974 Ma, respectively, indicating a mixed source of partial melting of Paleo-Neoproterozoic crust-derived compositions with some inputs of mantle-derived magmas. By integrating all available data for the regional tectonic evolution of the eastern Tethys tectonic domain, we conclude that the Early Cretaceous magmatism in the Tengchong terrane was produced by the northeastward subduction of the Meso-Tethyan Bangong–Nujiang Ocean.

  5. Mitogenomes from two uncommon haplogroups mark late glacial/postglacial expansions from the near east and neolithic dispersals within Europe.

    Directory of Open Access Journals (Sweden)

    Anna Olivieri

    Full Text Available The current human mitochondrial (mtDNA phylogeny does not equally represent all human populations but is biased in favour of representatives originally from north and central Europe. This especially affects the phylogeny of some uncommon West Eurasian haplogroups, including I and W, whose southern European and Near Eastern components are very poorly represented, suggesting that extensive hidden phylogenetic substructure remains to be uncovered. This study expanded and re-analysed the available datasets of I and W complete mtDNA genomes, reaching a comprehensive 419 mitogenomes, and searched for precise correlations between the ages and geographical distributions of their numerous newly identified subclades with events of human dispersal which contributed to the genetic formation of modern Europeans. Our results showed that haplogroups I (within N1a1b and W originated in the Near East during the Last Glacial Maximum or pre-warming period (the period of gradual warming between the end of the LGM, ∼19 ky ago, and the beginning of the first main warming phase, ∼15 ky ago and, like the much more common haplogroups J and T, may have been involved in Late Glacial expansions starting from the Near East. Thus our data contribute to a better definition of the Late and postglacial re-peopling of Europe, providing further evidence for the scenario that major population expansions started after the Last Glacial Maximum but before Neolithic times, but also evidencing traces of diffusion events in several I and W subclades dating to the European Neolithic and restricted to Europe.

  6. Testing for the Occurrence of Selective Episodes During the Divergence of Otophysan Fishes: Insights from Mitogenomics.

    Science.gov (United States)

    D'Anatro, Alejandro; Giorello, Facundo; Feijoo, Matías; Lessa, Enrique P

    2017-04-01

    How natural selection shapes biodiversity constitutes a topic of renewed interest during the last few decades. The division Otophysi comprises approximately two-thirds of freshwater fish diversity and probably underwent an extensive adaptive radiation derived from a single invasion of the supercontinent Pangaea, giving place to the evolution of the main five Otophysan lineages during a short period of time. Little is known about the factors involved in the processes that lead to lineage diversification among this group of fishes and identifying directional selection acting over protein-coding genes could offer clues about the processes acting on species diversification. The main objective of this study was to explore the otophysan mitochondrial genome evolution, in order to account for the possible signatures of selective events in this lineage, and to explore for the functional connotations of these molecular substitutions. Mainly, three different approaches were used: the "ω-based" BS-REL and MEME methods, implemented in the DATAMONKEY web server, and analysis of selection on amino acid properties, implemented in the software TreeSAAP. We found evidence of selective episodes along several branches of the evolutionary history of othophysan fishes. Analyses carried out using the BS-REL algorithm suggest episodic diversifying selection at basal branches of the otophysan lineage, which was also supported by analyses implemented in MEME and TreeSAAP. These results suggest that throughout the Siluriformes radiation, an important number of adaptive changes occurred in their mitochondrial genome. The metabolic consequences and ecological correlates of these molecular substitutions should be addressed in future studies.

  7. Neonatal mucolipidosis 2. The spontaneous evolution of early bone lesions and the effect of vitamin D treatment. Report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Pazzaglia, U.E.; Zatti, G. (Pavia Univ. (Italy). Clinica Ortopedica); Beluffi, G. (Policlinico San Matteo, Pavia (Italy). Servizio di Radiodiagnostica); Danesino, C. (Sassari Univ. (Italy). Cattedra di Genetica Umana); Frediani, P.V. (Ospedale dei Bambini Umberto I, Brescia (Italy)); Pagani, G. (Ospedale Santa Anna, Como (Italy). Div. di Patologia Neonatale)

    1989-11-01

    Evolution of the early bone lesions in two children with mucolipidosis 2 was followed from birth. The progression of the bone changes did not differ from healing of rickets. Low levels of 1,25-OH{sub 2}-D3 were found in one child and he was treated with vitamin D; resolution of the rachitic changes was more rapid than in the untreated child. It is suggested that in mucolipidosis 2 bone reacts to two independent factors, one controlling calcium metabolism, the other depending on the primary lysosomal enzyme defect. Since ricket-like features are not present in the other mucolipidoses or mucopolysaccharidoses, the defect of calcium metabolism seems to be related to the specific enzyme defect of mucolipidosis 2. (orig.).

  8. Molecular evolution of proopiomelanocortin in early vertebrates; Gensakudobutsu hoya no shinkeisen ni saguru fukujinhishitsu sigeki horumon no kigen to bunshi shinka

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akiyoshi [Kitasato University, Tokyo (Japan). School of Fishieries Sciences

    1998-12-16

    Proolpiomelanocortin (POMC) is a precursor for melanotrophin (MSH) and {beta}-endorphin that regulate stress and environmental adaptation. The present study was undertaken to provide insight into the molecular evolution of POMC in the early vertebrates by examining structures of POMCs in protochordates and in ancient and advanced fishes. Lungfish POMC is similar to tetrapods because they include three MSHs ({alpha}, {beta} and {gamma}) and {beta}-endorphin. In contrast to the consistent occurrence of three MSHs in tetrapods and dipnoans, fish POMC varies in the number of MSH types it contains. POMCs of tuna and sturgeon lack {gamma}-MSH whereas POMC of dogfish has a forth ({delta}) MSH in addition to {alpha}-, {beta}- and {gamma}-MSH. b-endorphin, however, occurs in all vertebrates. These results suggest that POMC has evolved by duplication, insertion and deletion of MSH genomic segments. The diversity of MSH may have contributed to development of the ability to adapt to different conditions. (author)

  9. Sedimentologic and paleoclimatic reconstructions of carbonate factory evolution in the Alborz Basin (northern Iran) indicate a global response to Early Carboniferous (Tournaisian) glaciations

    Science.gov (United States)

    Sardar Abadi, Mehrdad; Kulagina, Elena I.; Voeten, Dennis F. A. E.; Boulvain, Frédéric; Da Silva, Anne-Christine

    2017-03-01

    The Lower Carboniferous Mobarak Formation records the development of a storm-sensitive pervasive carbonate factory on the southern Paleo-Tethyan passive margin following the opening of the Paleo-Tethys Ocean into the Alborz Basin along the northern margin of Gondwana. Its depositional facies encompass inner ramp peritidal environments, peloidal to crinoidal shoals, storm to fair-weather influenced mid-ramps, proximal to distal shell beds and low energy outer ramps. Sedimentological analyses and foraminiferal biostratigraphy reveal four events affecting carbonate platform evolution in the Alborz Basin during the Lower Carboniferous: (1) A transgression following global temperature rise in the Early Tournaisian (middle Hastarian) caused the formation of thick-bedded argillaceous limestones. This interval correlates with Early Tournaisian nodular to argillaceous limestones in the Moravia Basin (Lisen Formation, Czech Republic), the Dinant Basin (Pont d'Arcole Formation, Belgium), and at the Rhenish Slate Mountains (Lower Alum shale, Germany). (2) Late Hastarian-early Ivorian glaciations previously identified in Southern Gondwana but had not yet recognized in Northern Gondwana were recorded through a sequence boundary. (3) During the Late Tournaisian-Early Visean?, a differential block faulting regime along the basin's margin caused uplift of the westernmost parts of the Alborz Basin and resulted in subsidence in the eastern part of the central basin. This tectonically controlled shift in depositional regime caused vast sub-aerial exposure and brecciation preserved in the top of the Mobarak Formation in the western portion of the Central Alborz Basin. (4) Tectonic activity coinciding with a progressive, multiphase sea level drop caused indirectly by the Viséan and Serpukhovian glaciations phases ultimately led to the stagnation of the carbonate factory. Paleothermometry proxies, the presence of foraminiferal taxa with a northern Paleo-Tethyan affinity and evidence for

  10. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    Science.gov (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  11. A new sauropodomorph dinosaur from the Early Jurassic of Patagonia and the origin and evolution of the sauropod-type sacrum.

    Directory of Open Access Journals (Sweden)

    Diego Pol

    2011-01-01

    Full Text Available The origin of sauropod dinosaurs is one of the major landmarks of dinosaur evolution but is still poorly understood. This drastic transformation involved major skeletal modifications, including a shift from the small and gracile condition of primitive sauropodomorphs to the gigantic and quadrupedal condition of sauropods. Recent findings in the Late Triassic-Early Jurassic of Gondwana provide critical evidence to understand the origin and early evolution of sauropods.A new sauropodomorph dinosaur, Leonerasaurus taquetrensis gen. et sp. nov., is described from the Las Leoneras Formation of Central Patagonia (Argentina. The new taxon is diagnosed by the presence of anterior unserrated teeth with a low spoon-shaped crown, amphicoelous and acamerate vertebral centra, four sacral vertebrae, and humeral deltopectoral crest low and medially deflected along its distal half. The phylogenetic analysis depicts Leonerasaurus as one of the closest outgroups of Sauropoda, being the sister taxon of a clade of large bodied taxa composed of Melanorosaurus and Sauropoda.The dental and postcranial anatomy of Leonerasaurus supports its close affinities with basal sauropods. Despite the small size and plesiomorphic skeletal anatomy of Leonerasaurus, the four vertebrae that compose its sacrum resemble that of the large-bodied primitive sauropods. This shows that the appearance of the sauropod-type of sacrum predated the marked increase in body size that characterizes the origins of sauropods, rejecting a causal explanation and evolutionary linkage between this sacral configuration and body size. Alternative phylogenetic placements of Leonerasaurus as a basal anchisaurian imply a convergent acquisition of the sauropod-type sacrum in the new small-bodied taxon, also rejecting an evolutionary dependence of sacral configuration and body size in sauropodomorphs. This and other recent discoveries are showing that the characteristic sauropod body plan evolved gradually

  12. Refining the Formation and Early Evolution of the Eastern North American Margin: New Insights From Multiscale Magnetic Anomaly Analyses

    Science.gov (United States)

    Greene, John A.; Tominaga, Masako; Miller, Nathaniel C.; Hutchinson, Deborah R.; Karl, Matthew R.

    2017-11-01

    To investigate the oceanic lithosphere formation and early seafloor spreading history of the North Atlantic Ocean, we examine multiscale magnetic anomaly data from the Jurassic/Early Cretaceous age Eastern North American Margin (ENAM) between 31 and 40°N. We integrate newly acquired sea surface magnetic anomaly and seismic reflection data with publicly available aeromagnetic and composite magnetic anomaly grids, satellite-derived gravity anomaly, and satellite-derived and shipboard bathymetry data. We evaluate these data sets to (1) refine magnetic anomaly correlations throughout the ENAM and assign updated ages and chron numbers to M0-M25 and eight pre-M25 anomalies; (2) identify five correlatable magnetic anomalies between the East Coast Magnetic Anomaly (ECMA) and Blake Spur Magnetic Anomaly (BSMA), which may document the earliest Atlantic seafloor spreading or synrift magmatism; (3) suggest preexisting margin structure and rifting segmentation may have influenced the seafloor spreading regimes in the Atlantic Jurassic Quiet Zone (JQZ); (4) suggest that, if the BSMA source is oceanic crust, the BSMA may be M series magnetic anomaly M42 ( 168.5 Ma); (5) examine the along and across margin variation in seafloor spreading rates and spreading center orientations from the BSMA to M25, suggesting asymmetric crustal accretion accommodated the straightening of the ridge from the bend in the ECMA to the more linear M25; and (6) observe anomalously high-amplitude magnetic anomalies near the Hudson Fan, which may be related to a short-lived propagating rift segment that could have helped accommodate the crustal alignment during the early Atlantic opening.

  13. Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects.

    Science.gov (United States)

    Hong, Mee Yeon; Lee, Eun Mee; Jo, Yong Hun; Park, Hae Chul; Kim, Seong Ryul; Hwang, Jae Sam; Jin, Byung Rae; Kang, Pil Don; Kim, Ki-Gyoung; Han, Yeon Soo; Kim, Iksoo

    2008-04-30

    The 15,360-bp long complete mitogenome of Caligula boisduvalii possesses a gene arrangement and content identical to other completely sequenced lepidopteran mitogenomes, but different from the common arrangement found in most insect order, as the result of the movement of tRNA(Met) to a position 5'-upstream of tRNA Ile. The 330-bp A+T-rich region is apparently capable of forming a stem-and-loop structure, which harbors the conserved flanking sequences at both ends. Dissimilar to what has been seen in other sequenced lepidopteran insects, the initiation codon for C. boisduvalii COI appears to be TTG, which is a rare, but apparently possible initiation codon. The ATP8, ATP6, ND4L, and ND6 genes, which neighbor another PCG at their 3' end, all harbored potential sequences for the formation of a hairpin structure. This is suggestive of the importance of such structures for the precise cleavage of the mRNA of mature PCGs. Phylogenetic analyses of available sequenced species of Bombycoidea, Pyraloidea, and Tortricidea supported the morphology-based current hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (Antheraea pernyi and C. boisduvalii) formed a reciprocal monophyletic group.

  14. Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics.

    Science.gov (United States)

    Paijmans, Johanna L A; Barnett, Ross; Gilbert, M Thomas P; Zepeda-Mendoza, M Lisandra; Reumer, Jelle W F; de Vos, John; Zazula, Grant; Nagel, Doris; Baryshnikov, Gennady F; Leonard, Jennifer A; Rohland, Nadin; Westbury, Michael V; Barlow, Axel; Hofreiter, Michael

    2017-11-06

    Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1-3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (∼18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The effects of heavy meteorite bombardment on the early evolution — The emergence of the three Domains of life

    Science.gov (United States)

    Gogarten-Boekels, Maria; Hilario, Elena; Gogarten, J. Peter

    1995-06-01

    A characteristic of many molecular phylogenies is that the three domains of life (Bacteria, Archaea, Eucarya) are clearly separated from each other. The analyses of ancient duplicated genes suggest that the last common ancestor of all presently known life forms already had been a sophisticated cellular prokaryote. These findings are in conflict with theories that have been proposed to explain the absence of deep branching lineages. In this paper we propose an alternative scenario, namely, a large meteorite impact that wiped out almost all life forms present on the early Earth. Following this nearly complete frustation of life on Earth, two surviving extreme thermophilic species gave rise to the now existing major groups of living organisms, the Bacteria and Archaea. [The latter also contributed the major portion to the nucleo-cytoplasmic component of the Eucarya]. An exact calibration of the molecular record with regard to time is not yet possible. The emergence of Eucarya in fossil and molecular records suggests that the proposed late impact should have occurred before 2100 million years before present (BP). If the 3500 million year old microfossils [Schopf, J. W. 1993: Science 260: 640 646] are interpreted as representatives of present day existing groups of bacteria (i.e., as cyanobacteria), then the impact is dated to around 3700 million years BP. The analysis of molecular sequences suggests that the separation between the Eucarya and the two prokaryotic domains is less deep then the separation between Bacteria and Archaea. The fundamental cell biological differences between Archaea and Eucarya were obtained over a comparatively short evolutionary distance (as measured in number of substitution events in biological macromolecules). Our interpretation of the molecular record suggests that life emerged early in Earth's history even before the time of the heavy bombardment was over. Early life forms already had colonized extreme habitats which allowed at least two

  16. What is in a word? Neuron: Early usage and evolution in antiquity to its long-lasting current significance.

    Science.gov (United States)

    Frixione, Eugenio

    2017-01-01

    Neuron, a Greek term with a rustic background, made much of its way to its current significance since antiquity, when full recognition was achieved that sensory and motor signals travel through the animal body along nerves (neura, plural). Drawing from classic and recent historical scholarship, this study identifies the successive steps toward such a major breakthrough, starting from the usage of the expression in archaic times and continuing up to the much later transference of a mature theory into the modern world. It is shown that four main consecutive stages may be distinguished in the process: (a) incorporation of the word into early anatomical terminology; (b) theorizing on material composition, origin, properties, and role of the neura in animal bodies; (c) functional association of the neura with a transmitting vehicle; (d) identification of true anatomical and physiological correspondences. Upon this over 2000-year-old foundation is still being built one of the most relevant and fascinating scientific adventures of all time.

  17. Origin and Early Evolution of Comet Nuclei Workshop honouring Johannes Geiss on the occasion of his 80th birthday

    CERN Document Server

    Balsiger, H; Huebner, W; Owen, T; Schulz, R

    2008-01-01

    Comet nuclei are the most primitive bodies in the solar system. They have been created far away from the early Sun and it is supposed that their material has been altered the least since their formation. This volume presents the results of a scientific workshop on comet nuclei and is written by experts working on interstellar clouds, star-forming regions, the solar nebula, and comets. The articles formulate the current understanding and interconnectivity of the various source regions of comet nuclei and their associated compositions and orbital characteristics. This includes a discussion on the transport of materials into the Kuiper belt and Oort cloud regions of the solar system. The distinction between direct measurements of cometary material properties and properties derived from indirect means are emphasized with the aim to guide future investigations. This book serves as a guide for researchers and graduate students working in the field of planetology and solar system exploration. It should also help to ...

  18. Evolution of volcanically-induced palaeoenvironmental changes leading to the onset of OAE1a (early Aptian, Cretaceous)

    Science.gov (United States)

    Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut

    2010-05-01

    During the Cretaceous, several major volcanic events occurred that initiated climate warming, altered marine circulation and increased marine productivity, which in turn often resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Therefore the negative C-isotope excursion covers the interval between the time, when volcanic activity became important enough to be recorded in the C-isotope composition of the oceans to the onset of widespread anoxic conditions (OAE1a). We chose this interval at the locality of Pusiano (N-Italy) to study the effect of a volcanically-induced increase in pCO2 on the marine palaeoenvironment and to observe the evolving palaeoenvironmental conditions that finally led to OAE1a. The Pusiano section (Maiolica Formation) was deposited at the southern continental margin of the alpine Tethys Ocean and has been bio- and magnetostratigraphically dated by Channell et al. (1995). We selected 18 samples from 12 black shale horizons for palynofacies analyses. Palynofacies assemblages consist of several types of particulate organic matter, providing information on the origin of the organic matter (terrestrial/marine) and conditions during deposition (oxic/anoxic). We then linked the palynofacies results to high-resolution inorganic and organic C-isotope values and total organic carbon content measurements. The pelagic Pusiano section consists of repeated limestone-black shale couplets, which are interpreted to be the result of changes in oxygenation of bottom waters. Towards the end of the negative C-isotope excursion we observe enhanced preservation of the fragile amorphous organic matter resulting in increased

  19. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    Science.gov (United States)

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  20. A basal sauropodomorph (Dinosauria: Saurischia from the Ischigualasto Formation (Triassic, Carnian and the early evolution of Sauropodomorpha.

    Directory of Open Access Journals (Sweden)

    Ricardo N Martinez

    Full Text Available BACKGROUND: The earliest dinosaurs are from the early Late Triassic (Carnian of South America. By the Carnian the main clades Saurischia and Ornithischia were already established, and the presence of the most primitive known sauropodomorph Saturnalia suggests also that Saurischia had already diverged into Theropoda and Sauropodomorpha. Knowledge of Carnian sauropodomorphs has been restricted to this single species. METHODOLOGY/PRINCIPAL FINDINGS: We describe a new small sauropodomorph dinosaur from the Ischigualsto Formation (Carnian in northwest Argentina, Panphagia protos gen. et sp. nov., on the basis of a partial skeleton. The genus and species are characterized by an anteroposteriorly elongated fossa on the base of the anteroventral process of the nasal; wide lateral flange on the quadrate with a large foramen; deep groove on the lateral surface of the lower jaw surrounded by prominent dorsal and ventral ridges; bifurcated posteroventral process of the dentary; long retroarticular process transversally wider than the articular area for the quadrate; oval scars on the lateral surface of the posterior border of the centra of cervical vertebrae; distinct prominences on the neural arc of the anterior cervical vertebra; distal end of the scapular blade nearly three times wider than the neck; scapular blade with an expanded posterodistal corner; and medial lamina of brevis fossa twice as wide as the iliac spine. CONCLUSIONS/SIGNIFICANCE: We regard Panphagia as the most basal sauropodomorph, which shares the following apomorphies with Saturnalia and more derived sauropodomorphs: basally constricted crowns; lanceolate crowns; teeth of the anterior quarter of the dentary higher than the others; and short posterolateral flange of distal tibia. The presence of Panphagia at the base of the early Carnian Ischigualasto Formation suggests an earlier origin of Sauropodomorpha during the Middle Triassic.

  1. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  2. Petrogenesis of the late Early Cretaceous granodiorite - Quartz diorite from eastern Guangdong, SE China: Implications for tectono-magmatic evolution and porphyry Cu-Au-Mo mineralization

    Science.gov (United States)

    Jia, Lihui; Mao, Jingwen; Liu, Peng; Li, Yang

    2018-04-01

    Comprehensive petrological, zircon U-Pb dating, Hf-O isotopes, whole rock geochemistry and Sr-Nd isotopes data are presented for the Xinwei and Sanrao intrusions in the eastern Guangdong Province, Southeast (SE) China, with an aim to constrain the petrogenesis, tectono-magmatic evolution and evaluate the implication for porphyry Cu-Au-Mo mineralization. The Xinwei intrusion is composed of granodiorite and quartz diorite, whilst the Sanrao intrusion consists of granodiorite. Zircon U-Pb ages show that both intrusions were emplaced at ca. 106-102 Ma. All rocks are metaluminous to weakly peraluminous, high-K calc-alkaline in composition, and they are characterized by LREEs enrichment, depletion in Nb, Ta, P, and Ti, and strongly fractionated LREEs to HREEs. The initial 87Sr/86Sr ratios range from 0.7055 to 0.7059, and εNd(t) values range from -3.9 to -3.0. Together with the relatively high εHf(t) values (-3.2 to 3.3) and low δ18O values (4.9‰ to 6.6‰), these data suggest that the Xinwei and Sanrao intrusions were derived from a mixed source: including the mantle-derived mafic magmas and lower continental crustal magmas. Fractional crystallization played an important role in the magmatic evolution of the Xinwei and Sanrao intrusions. The elemental and isotopic compositions of the Xinwei and Sanrao intrusions, as well as the high water content and oxidation state of their parental magmas, are similar to those of the ore-bearing granodiorites of the Luoboling porphyry Cu-Mo deposit in the Fujian Province, neighbouring east to the Guangdong Province, indicating that the late Early Cretaceous granodioritic intrusions in the eastern Guangdong Province may also have Cu-Au-Mo mineralization potential. The late Early Cretaceous magmatic event is firstly reported in eastern Guangdong, and represents a positive response of large-scale lithosphere extension and thinning, triggered by the changing subduction direction of the Paleo-Pacific plate from oblique subduction to

  3. Reassessment of the evidence for postcranial skeletal pneumaticity in Triassic archosaurs, and the early evolution of the avian respiratory system.

    Directory of Open Access Journals (Sweden)

    Richard J Butler

    Full Text Available Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP. PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs. However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina is found only in bird-line (ornithodiran archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs. The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have

  4. 87Rb-87Sr chronology of H chondrites: constraint and speculations on the early evolution of their parent body

    International Nuclear Information System (INIS)

    Minster, J.-F.; Allegre, C.J.

    1979-01-01

    A precise 87 Rb- 87 Sr whole-rock isochron for H chrondrites and an internal isochron for Tieschitz (H3) have been determined. The age and 87 Sr/ 86 Sr initial ratio of the whole rocks are 4.25 +- 0.05 b.y. and 0.69876 +- 0.00040 (lambda( 87 Rb) = 1.42 X 10 -11 yr -1 ). For Tieschitz, whereas handipicked separates plot on a well-defined line, heavy liquid separates scatter in the 87 Rb/ 86 Sr vs. 87 Sr/ 86 Sr diagram. Leaching experiments by heavy liquids indicate that they might have a sizeable effect on Tieschitz minerals. The age and 87 Sr/ 86 Sr initial ratio as determined by handpicked separates are 4.53 +- 0.06 b.y. and 0.69880 +- 0.00020, indistinguishable from the whole-rock isochron. These results are interpreted as 'primitive isochrons' dating the condensation of chondrites from the solar nebula. The best value of this event is given by joining both isochrons together at 4.518 +- 0.026 b.y. and 87 Sr/ 86 Sr = 0.69881 +- 0.00016. The near identity of this initial ratio with the one of Allende white inclusions argues in favor of a sharp isochronism of condensation from a 87 Sr/ 86 Sr homogeneous nebula. Data from Guarena and Richardton are interpreted as secondary internal isochrons, 100 m.y. after the condensation of the whole rocks. The data are then used to constrain a thermal evolution model of the H chondrite parent body. This body might have a 150-175 km radius, and might have been heated by 26 Al. An 26 Al/ 27 Al ratio of 4-6 X 10 -6 is enough for heating such a body. Further tests for this model are proposed. (Auth.)

  5. Magmatic record of Late Devonian arc-continent collision in the northern Qiangtang, Tibet: Implications for the early evolution of East Paleo-Tethys Ocean

    Science.gov (United States)

    Dan, Wei; Wang, Qiang; Zhang, Xiu-Zheng; Zhang, Chunfu; Tang, Gong-Jian; Wang, Jun; Ou, Quan; Hao, Lu-Lu; Qi, Yue

    2018-05-01

    Recognizing the early-developed intra-oceanic arc is important in revealing the early evolution of East Paleo-Tethys Ocean. In this study, new SIMS zircon U-Pb dating, O-Hf isotopes, and whole-rock geochemical data are reported for the newly-discovered Late Devonian-Early Carboniferous arc in Qiangtang, central Tibet. New dating results reveal that the eastern Riwanchaka volcanic rocks were formed at 370-365 Ma and were intruded by the 360 Ma Gangma Co alkali feldspar granites. The volcanic rocks consist of basalts, andesites, dacites, and rhyodacites, whose geochemistry is similar to that typical of subduction-related volcanism. The basalts and andesites were generated by partial melting of the fluid and sediment-melt metasomatized mantle, respectively. The rhyodacites and dacites were probably derived from the fractional crystallization of andesites and from partial melting of the juvenile underplated mafic rocks, respectively. The Gangma Co alkali feldspar granites are A-type granites, and were possibly derived by partial melting of juvenile underplated mafic rocks in a post-collisional setting. The 370-365 Ma volcanic arc was characterized by basalts with oceanic arc-like Ce/Yb ratios and by rhyodacites with mantle-like or slightly higher zircon δ18O values, and it was associated with the contemporary ophiolites. Thus, we propose that it is the earliest intra-oceanic arc in the East Paleo-Tethys Ocean, and was accreted to the Northern Qiangtang Terrane during 365-360 Ma.

  6. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt

    Science.gov (United States)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin

    2018-03-01

    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  7. STELLAR POPULATIONS AND EVOLUTION OF EARLY-TYPE CLUSTER GALAXIES: CONSTRAINTS FROM OPTICAL IMAGING AND SPECTROSCOPY OF z = 0.5–0.9 GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Jørgensen, Inger; Chiboucas, Kristin

    2013-01-01

    has a mean metallicity [M/H] approximately 0.2 dex below that of the other clusters and our low-redshift sample. We confirm our previous result that RXJ0152.7–1357 has a mean abundance ratio [α/Fe] approximately 0.3 dex higher than that of the other clusters. The differences in [M/H] and [α/Fe] between the high-redshift clusters and the low-redshift sample are inconsistent with a passive evolution scenario for early-type cluster galaxies over the redshift interval studied. Low-level star formation may be able to bring the metallicity of MS0451.6–0305 in agreement with the low-redshift sample, while we speculate whether galaxy mergers can lead to sufficiently large changes in the abundance ratios for the RXJ0152.7–1357 galaxies to allow them to reach the low-redshift sample values in the time available.

  8. New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto.

    Science.gov (United States)

    Kinkar, Liina; Laurimäe, Teivi; Sharbatkhori, Mitra; Mirhendi, Hossein; Kia, Eshrat Beigom; Ponce-Gordo, Francisco; Andresiuk, Vanessa; Simsek, Sami; Lavikainen, Antti; Irshadullah, Malik; Umhang, Gérald; Oudni-M'rad, Myriam; Acosta-Jamett, Gerardo; Rehbein, Steffen; Saarma, Urmas

    2017-08-01

    Cystic echinococcosis, a zoonotic disease caused by Echinococcus granulosus sensu lato (s. l.), is a significant global public health concern. Echinococcus granulosus s. l. is currently divided into numerous genotypes (G1-G8 and G10) of which G1-G3 are the most frequently implicated genotypes in human infections. Although it has been suggested that G1-G3 could be regarded as a distinct species E. granulosus sensu stricto (s. s.), the evidence to support this is inconclusive. Most importantly, data from nuclear DNA that provide means to investigate the exchange of genetic material between G1-G3 is lacking as none of the published nuclear DNA studies have explicitly included G2 or G3. Moreover, the commonly used relatively short mtDNA sequences, including the complete cox1 gene, have not allowed unequivocal differentiation of genotypes G1-G3. Therefore, significantly longer mtDNA sequences are required to distinguish these genotypes with confidence. The main aim of this study was to evaluate the phylogenetic relations and taxonomy of genotypes G1-G3 using sequences of nearly complete mitogenomes (11,443bp) and three nuclear loci (2984bp). A total of 23 G1-G3 samples were analysed, originating from 5 intermediate host species in 10 countries. The mtDNA data demonstrate that genotypes G1 and G3 are distinct mitochondrial genotypes (separated by 37 mutations), whereas G2 is not a separate genotype or even a monophyletic cluster, but belongs to G3. Nuclear data revealed no genetic separation of G1 and G3, suggesting that these genotypes form a single species due to ongoing gene flow. We conclude that: (a) in the taxonomic sense, genotypes G1 and G3 can be treated as a single species E. granulosus s. s.; (b) genotypes G1 and G3 should be regarded as distinct genotypes only in the context of mitochondrial data; (c) we recommend excluding G2 from the genotype list. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction

    Science.gov (United States)

    Lallemand, Serge

    2016-12-01

    We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60-55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ˜54-48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called "fore-arc basalts" (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ˜52-50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere. (4) The first magmas rising from the shallow mantle corner, after being hydrated by the subducting Pacific crust beneath the young oceanic crust near the upper plate spreading centers at ˜49-48 Ma were boninites. Both the so-called FABs and the boninites formed at a significant distance from the incipient trench, not in a fore-arc position as previously claimed. The magmas erupted for 15 m.y. in some places, probably near the intersections between back-arc spreading centers and the arc. (5) As the Pacific crust reached greater depths and the oceanic basins cooled and thickened at ˜44-45 Ma, the composition of the lavas evolved into high-Mg andesites and then arc tholeiites and calc-alkaline andesites. (6) Tectonic erosion processes removed about 150-200 km of frontal margin during the Neogene, consuming most or all of the Pacific ophiolite

  10. Evidence for gill slits and a pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes

    Directory of Open Access Journals (Sweden)

    Ou Qiang

    2012-10-01

    members of the stem-group deuterostomes; a group best known as the chordates (amphioxus, tunicates, vertebrates, but also including the ambulacrarians (echinoderms, hemichordates, and xenoturbellids. If the latter, first they demonstrate that these members of the stem group show few similarities to the descendant crown group representatives. Second, of the key innovations that underpinned deuterostome success, the earliest and arguably most seminal was the evolution of openings that define the pharyngeal gill slits of hemichordates (and some extinct echinoderms and chordates.

  11. Initiation and early evolution of a Coronal Mass Ejection on May 13, 2009 from EUV and white-light observations

    Science.gov (United States)

    Reva, Anton; Kuzin, Sergey; Bogachev, Sergey; Ulyanov, Artyom

    In this talk we present results of the observations of a CME, which occurred on May 13, 2009. The most important feature of these observations is that the CME was observed from the very beginning stage (the solar surface) up to the distance of 15 solar radii (R_⊙). Below 2 R_⊙ we used the data from the TESIS EUV telescopes obtained in the Fe 171 Å and He 304 Å lines, and above 2 R_⊙ we used the observations of the LASCO C2 and C3 coronagraphs. Using data of these three instruments, we have studied the evolution of the CME in details. The CME had a curved trajectory -- its helio-latitude decreased with time. The mass ejection originated at a latitudes of about 50(°) and reached the ecliptic plane at a distance of 2.5 R_⊙ from the Sun’s center. The CME velocity and acceleration increased as the CME went away from the Sun. At the distance of 15 R_⊙ from the Sun’s center the CME had a velocity of 250 km/s and an acceleration of 5 m/s(2) . The CME was not associated with a flare, and didn’t have an impulsive acceleration phase. The mass ejection had U-shaped structure which was observed both in the 171 Å images and in white-light. The CME was formed at a distance of about 0.2 -- 0.5 R_⊙ from the Sun’s surface. Observations in the line 304 Å showed that the CME was associated with the erupting prominence, which was located in the lowest part of the U-shaped structure close to the X-point of the magnetic reconnection. The prominence disappeared at the height of 0.4 R_⊙ above the solar limb. Some aspects of these observations can’t be explained in the standard CME model, which predicts that the prominence should be located inside the U-shaped structure, and the CME should be associated with a flare and have an impulsive acceleration phase.

  12. Early development and orientation of the acoustic funnel provides insight into the evolution of sound reception pathways in cetaceans.

    Directory of Open Access Journals (Sweden)

    Maya Yamato

    Full Text Available Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete and baleen (mysticete whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding.

  13. Impedance-matching hearing in Paleozoic reptiles: evidence of advanced sensory perception at an early stage of amniote evolution.

    Directory of Open Access Journals (Sweden)

    Johannes Müller

    Full Text Available BACKGROUND: Insights into the onset of evolutionary novelties are key to the understanding of amniote origins and diversification. The possession of an impedance-matching tympanic middle ear is characteristic of all terrestrial vertebrates with a sophisticated hearing sense and an adaptively important feature of many modern terrestrial vertebrates. Whereas tympanic ears seem to have evolved multiple times within tetrapods, especially among crown-group members such as frogs, mammals, squamates, turtles, crocodiles, and birds, the presence of true tympanic ears has never been recorded in a Paleozoic amniote, suggesting they evolved fairly recently in amniote history. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we performed a morphological examination and a phylogenetic analysis of poorly known parareptiles from the Middle Permian of the Mezen River Basin in Russia. We recovered a well-supported clade that is characterized by a unique cheek morphology indicative of a tympanum stretching across large parts of the temporal region to an extent not seen in other amniotes, fossil or extant, and a braincase specialized in showing modifications clearly related to an increase in auditory function, unlike the braincase of any other Paleozoic tetrapod. In addition, we estimated the ratio of the tympanum area relative to the stapedial footplate for the basalmost taxon of the clade, which, at 23:1, is in close correspondence to that of modern amniotes capable of efficient impedance-matching hearing. CONCLUSIONS/SIGNIFICANCE: Using modern amniotes as analogues, the possession of an impedance-matching middle ear in these parareptiles suggests unique ecological adaptations potentially related to living in dim-light environments. More importantly, our results demonstrate that already at an early stage of amniote diversification, and prior to the Permo-Triassic extinction event, the complexity of terrestrial vertebrate ecosystems had reached a level that

  14. Analysis of a vinculin homolog in a sponge (phylum Porifera) reveals that vertebrate-like cell adhesions emerged early in animal evolution.

    Science.gov (United States)

    Miller, Phillip W; Pokutta, Sabine; Mitchell, Jennyfer M; Chodaparambil, Jayanth V; Clarke, D Nathaniel; Nelson, William; Weis, William I; Nichols, Scott A

    2018-06-07

    The evolution of cell adhesion mechanisms in animals facilitated the assembly of organized multicellular tissues. Studies in traditional animal models have revealed two predominant adhesion structures, the adherens junction (AJ) and focal adhesions (FAs), which are involved in the attachment of neighboring cells to each other and to the secreted extracellular matrix (ECM), respectively. The AJ (containing cadherins and catenins) and FAs (comprising integrins, talin, and paxillin) differ in protein composition, but both junctions contain the actin-binding protein vinculin. The near ubiquity of these structures in animals suggests that AJ and FAs evolved early, possibly coincident with multicellularity. However, a challenge to this perspective is that previous studies of sponges-a divergent animal lineage-indicate that their tissues are organized primarily by an alternative, sponge-specific cell adhesion mechanism called "aggregation factor." In this study, we examined the structure, biochemical properties, and tissue localization of a vinculin ortholog in the sponge Oscarella pearsei ( Op ). Our results indicate that Op vinculin localizes to both cell-cell and cell-ECM contacts and has biochemical and structural properties similar to those of vertebrate vinculin. We propose that Op vinculin played a role in cell adhesion and tissue organization in the last common ancestor of sponges and other animals. These findings provide compelling evidence that sponge tissues are indeed organized like epithelia in other animals and support the notion that AJ- and FA-like structures extend to the earliest periods of animal evolution. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages

    Directory of Open Access Journals (Sweden)

    Mandoli Dina F

    2010-10-01

    Full Text Available Abstract Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants, lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense, and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels. We found one new indel and an inversion of a block of genes that unites the monilophytes. Conclusions Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns

  16. Agerinia marandati sp. nov., a new early Eocene primate from the Iberian Peninsula, sheds new light on the evolution of the genus Agerinia.

    Science.gov (United States)

    Femenias-Gual, Joan; Minwer-Barakat, Raef; Marigó, Judit; Poyatos-Moré, Miquel; Moyà-Solà, Salvador

    2017-01-01

    The Eocene was the warmest epoch of the Cenozoic and recorded the appearance of several orders of modern mammals, including the first occurrence of Euprimates. During the Eocene, Euprimates were mainly represented by two groups, adapiforms and omomyiforms, which reached great abundance and diversity in the Northern Hemisphere. Despite this relative abundance, the record of early Eocene primates from the European continent is still scarce and poorly known, preventing the observation of clear morphological trends in the evolution of the group and the establishment of phylogenetic relationships among different lineages. However, knowledge about the early Eocene primates from the Iberian Peninsula has been recently increased through the description of new material of the genus Agerinia from several fossil sites from Northeastern Spain. Here we present the first detailed study of the euprimate material from the locality of Masia de l'Hereuet (early Eocene, NE Spain). The described remains consist of one fragment of mandible and 15 isolated teeth. This work provides detailed descriptions, accurate measurements, high-resolution figures and thorough comparisons with other species of Agerinia as well with other Eurasian notharctids. Furthermore, the position of the different species of Agerinia has been tested with two phylogenetic analyses. The new material from Masia de l'Hereuet shows several traits that were previously unknown for the genus Agerinia, such as the morphology of the upper and lower fourth deciduous premolars and the P 2 , and the unfused mandible. Moreover, this material clearly differs from the other described species of Agerinia , A. roselli and A. smithorum , thus allowing the erection of the new species Agerinia marandati . The phylogenetic analyses place the three species of Agerinia in a single clade, in which A. smithorum is the most primitive species of this genus. The morphology of the upper molars reinforces the distinction of Agerinia from

  17. Granitoids of the Dry Valleys area, southern Victoria Land : geochemistry and evolution along the early Paleozoic Antarctic Craton margin

    International Nuclear Information System (INIS)

    Allibone, A.H.; Cox, S.C.; Smillie, R.W.

    1993-01-01

    different tectonomagmatic histories along the early Paleozoic Antarctic Craton margin. (author). 60 refs., 9 figs., 1 tab

  18. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome

    Directory of Open Access Journals (Sweden)

    Valerio Alejandro

    2011-10-01

    evolutionary dynamics of these domains support the early origin of the acidocalcisome organelle. In particular, the universality of volutin granules and presence of a functional V-H+PPase domain in the three superkingdoms of life reveals that the acidocalcisomes may have appeared earlier than the divergence of the superkingdoms. This result is remarkable and highlights the possibility that a high degree of cellular compartmentalization could already have been present in the LUCA. Reviewers This article was reviewed by Anthony Poole, Lakshminarayan Iyer and Daniel Kahn

  19. Early phases in the stellar and substellar formation and evolution. Infrared and submillimeter data in the Barnard 30 dark cloud

    Science.gov (United States)

    Barrado, D.; de Gregorio Monsalvo, I.; Huélamo, N.; Morales-Calderón, M.; Bayo, A.; Palau, A.; Ruiz, M. T.; Rivière-Marichalar, P.; Bouy, H.; Morata, Ó.; Stauffer, J. R.; Eiroa, C.; Noriega-Crespo, A.

    2018-04-01

    Aims: The early evolutionary stage of brown dwarfs (BDs) is not very well characterized, especially during the embedded phase. Our goal is to gain insight into the dominant formation mechanism of very low-mass objects and BDs. Methods: We have conducted deep observations at 870 μm obtained with the LABOCA bolometer at the APEX telescope in order to identify young submillimeter (submm) sources in the Barnard 30 dark cloud. We have complemented these data with multi-wavelength observations from the optical to the far-IR and compiled complete spectral energy distributions in order to identify the counterparts, characterize the sources and to assess their membership to the association and stellar or substellar status based on the available photometric information. Results: We have identified 34 submm sources and a substantial number of possible and probable Barnard 30 members within each individual APEX/LABOCA beam. They can be classified into three distinct groups. First, 15 of these 34 have a clear optical or IR counterpart to the submm peak and nine of them are potential proto-BD candidates. Moreover, a substantial number of them could be multiple systems. A second group of 13 sources comprises candidate members with significant infrared excesses located away from the central submm emission. All of them include BD candidates, some displaying IR excess, but their association with submm emission is unclear. In addition, we have found six starless cores and, based on the total dust mass estimate, three might be pre-substellar (or pre-BDs) cores. Finally, the complete characterization of our APEX/LABOCA sources, focusing on those detected at 24 and/or 70 μm, indicates that in our sample of 34 submm sources there are, at least: two WTTs, four CTTs, five young stellar objects, eight proto-BD candidates (with another three dubious cases), and one very low luminosity objects. Conclusions: Our findings provide additional evidence concerning the BD formation mechanism

  20. Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism

    Science.gov (United States)

    Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.

    2015-01-01

    The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided

  1. Evolution of high-rise construction in Leningrad - Saint Petersburg in the middle of the 20th - Early 21st centuries: projects and Implementation

    Science.gov (United States)

    Vaytens, Andrey; Rusanov, Gennadiy; Skryabin, Pavel

    2018-03-01

    One of the most important issues in national urban planning is arrangement of high-rise buildings in the largest cities of Russia. This issue becomes especially acute in such cities as Saint Petersburg, which has unique architectural and urban-planning heritage preserved to a great extent. In this regard, it seems important to trace the evolution of high-rise construction development and arrangement in Leningrad - Saint Petersburg in the middle of the 20th — early 21st centuries. The goal of the article is to consider high-rise construction development regarding both public and residential buildings in comparison of project ideas and results of their implementation in the 1940s-2000s. Prerequisites and issues of high-rise construction of that period are considered. Particular attention is paid to changes in the official urban-planning policy, regulatory framework and attitude of city authorities to high-rise construction. The study was carried out with the consideration of the following historic periods differing in their urban-planning policy: the late 1940s-1950s; 1960s; 1970-1980s; 1990s; 2000s-2010s. Economical prerequisites of high-rise construction and their influence on the modern urban-planning policy during the post-Soviet period are considered. In conclusion, an attempt is made to determine tendencies of high-rise construction development in Saint Petersburg.

  2. WITNESSING THE KEY EARLY PHASE OF QUASAR EVOLUTION: AN OBSCURED ACTIVE GALACTIC NUCLEUS PAIR IN THE INTERACTING GALAXY IRAS 20210+1121

    International Nuclear Information System (INIS)

    Piconcelli, Enrico; Fiore, Fabrizio; Maiolino, Roberto; Nicastro, Fabrizio; Vignali, Cristian; Bianchi, Stefano; Mathur, Smita; Guainazzi, Matteo; Lanzuisi, Giorgio

    2010-01-01

    We report the discovery of an active galactic nucleus (AGN) pair in the interacting galaxy system IRAS 20210+1121 at z = 0.056. An XMM-Newton observation reveals the presence of an obscured (N H ∼ 5 x 10 23 cm -2 ), Seyfert-like (L 2-10keV = 4.7 x 10 42 erg s -1 ) nucleus in the northern galaxy, which lacks unambiguous optical AGN signatures. Our spectral analysis also provides strong evidence that the IR-luminous southern galaxy hosts a Type 2 quasar embedded in a bright starburst emission. In particular, the X-ray primary continuum from the nucleus appears totally depressed in the XMM-Newton band as expected in the case of a Compton-thick absorber, and only the emission produced by Compton scattering ('reflection') of the continuum from circumnuclear matter is seen. As such, IRAS 20210+1121 seems to provide an excellent opportunity to witness a key, early phase in the quasar evolution predicted by the theoretical models of quasar activation by galaxy collisions.

  3. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick (Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis.

    Science.gov (United States)

    Gan, Han Ming; Thomas, Bolaji N; Cavanaugh, Nicole T; Morales, Grace H; Mayers, Ashley N; Savka, Michael A; Hudson, André O

    2017-01-01

    In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts.

  4. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick (Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis

    Science.gov (United States)

    Thomas, Bolaji N.; Cavanaugh, Nicole T.; Morales, Grace H.; Mayers, Ashley N.; Savka, Michael A.

    2017-01-01

    In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts. PMID:29158974

  5. Molecular Crowding and Early Evolution

    Science.gov (United States)

    Saha, Ranajay; Pohorille, Andrew; Chen, Irene A.

    2014-12-01

    The environment of protocells might have been crowded with small molecules and functional and non-specific polymers. In addition to altering conformational equilibria, affecting reaction rates and changing the structure and activity of water, crowding might have enhanced the capabilities of protocells for evolutionary innovation through the creation of extended neutral networks in the fitness landscape.

  6. Molecular crowding and early evolution.

    Science.gov (United States)

    Saha, Ranajay; Pohorille, Andrew; Chen, Irene A

    2014-12-01

    The environment of protocells might have been crowded with small molecules and functional and non-specific polymers. In addition to altering conformational equilibria, affecting reaction rates and changing the structure and activity of water, crowding might have enhanced the capabilities of protocells for evolutionary innovation through the creation of extended neutral networks in the fitness landscape.

  7. Petrogenesis of granitoids and associated xenoliths in the early Paleozoic Baoxu and Enping plutons, South China: Implications for the evolution of the Wuyi-Yunkai intracontinental orogen

    Science.gov (United States)

    Yu, Yang; Huang, Xiao-Long; Sun, Min; He, Peng-Li

    2018-05-01

    The early Paleozoic Wuyi-Yunkai orogen was associated with extensive felsic magmatic activities and the orogenic core was mainly distributed in the Yunkai and Wugong domains located in the western Cathaysia block and in the Wuyi domain located in the central part of the Cathaysia block. In order to investigate the evolution of the Wuyi-Yunkai orogen, elemental and Sr-Nd isotopic analyses were performed for granites from the Baoxu pluton in the Yunkai domain and from the Enping pluton in the central part of the Cathaysia block. The Baoxu pluton consists of biotite granite with abundant xenoliths of gneissic granite, granodiorite and diorite, and the Enping pluton is mainly composed of massive granodiorite. Biotite granites (441 ± 5 Ma) and gneissic granite xenolith (443 ± 4 Ma) of the Baoxu pluton are all weakly peraluminous (A/CNK = 1.05-1.10). They show high Sr/Y and La/Yb ratios and have negative bulk-rock εNd(t) values (-7.0 to -4.4), which are similar to coeval gneissic S-type granites in the Yunkai domain and were probably derived from dehydration melting of a sedimentary source with garnet residue in the source. Granodiorites (429 ± 3 Ma) from Enping and granodiorite xenolith (442 ± 4 Ma) from Baoxu are metaluminous and have REE patterns with enriched light REE and flat middle to heavy REE, possibly generated by the dehydration melting of an igneous basement at middle to lower crustal level. Diorite xenolith from Baoxu is ultrapotassic (K2O = 4.9 wt%), has high contents of MgO (7.0 wt%), Cr (379 ppm) and Ni (171 ppm) and shows pronounced negative Nb, Ta and Ti anomalies. This xenolith also has negative εNd(t) value (-3.6) and low Rb/Ba and high Ba/Sr ratios, and is thus interpreted to be derived from an enriched lithospheric mantle with the breakdown of phlogopite. Early Paleozoic I- and S-type granites in the Wuyi-Yunkai orogen mostly have negative εNd(t) values and do not have juvenile components, consistent with genesis by an intracontinental

  8. Late Carboniferous to Early Permian magmatic pulses in the Uliastai continental margin linked to slab rollback: Implications for evolution of the Central Asian Orogenic Belt

    Science.gov (United States)

    Chai, Hui; Wang, Qingfei; Tao, Jixiong; Santosh, M.; Ma, Tengfei; Zhao, Rui

    2018-05-01

    The Paleo Asian Ocean underwent a protracted closure history during Late Paleozoic. Here we investigate the magmatic evolution during this process based on a detailed study in the Baiyinwula region along the Uliastai continental margin. The major rock types in this area are Late Carboniferous-Early Permian volcanic sequences and coeval intrusions. We identified four stages of magmatic evolution based on the diverse assemblages and their precise isotopic ages. The first stage is represented by andesites with a zircon 206Pb/238U age of ca. 326 ± 12 Ma. These rocks are metaluminous to weakly peraluminous, high-K calc-alkaline, and possess high Na2O/K2O ratios in the range of 1.23 to 2.45. They also display enrichment of large ion lithophile elements (LILE) and depletion of high field strength elements (HFSE), with markedly positive zircon εHf (t) varying from 8.1 to 15.6.The geochemical features of these andesites are similar to those of typical arc volcanic rocks. The second stage includes granodiorites emplaced at 318.6 + 1.8 Ma. The rocks are high-K calc-alkaline with A/CNK values ranging from 0.95 to 1.06, and show enrichment in LILE and depletion in HFSE. They show geochemical affinities to adakites, with high Sr and low Y and Yb contents, indicating magma derivation from thickened lower crust. Zircon grains from these rocks display positive initial εHf (t) values ranging from 11.1 to 14.6 with corresponding two-stage Hf model ages (TDM2) of 394-622 Ma. The third stage consists of syenogranite together with a volcanic suite ranging in composition from rhyolite todacite, which formed during 303.4 ± 1.2 to 285.1 ± 2.2 Ma. They possess elevated silica and alkali contents, high FeOt/MgO and Ga/Al ratios, low Al2O3, MgO and CaO contents, and high Rb, Y, Nb, Ce, Zr, Y, and Ga contents, strong negative Ba, Sr and Eu anomalies, showing I- to A-type granitic affinities. Zircons in these rocks show elevated Hf isotopic compositions (εHf (t) = 9.9 to 14.6) with TDM2

  9. Petrogenesis of late Paleozoic-to-early Mesozoic granitoids and metagabbroic rocks of the Tengchong Block, SW China: implications for the evolution of the eastern Paleo-Tethys

    Science.gov (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Qin, Jiang-Feng; Zhao, Shao-Wei

    2018-03-01

    This paper presents precise zircon U-Pb, bulk-rock geochemical, and Sr-Nd-Pb isotopic data for metagabbro, quartz diorite, and granite units within the Tengchong Block of SW China, which forms the southeastern extension of the Himalayan orogeny and the southwestern section of the Sanjiang orogenic belt, a key region for furthering our understanding of the evolution of the eastern Paleo-Tethys. These data reveal four groups of zircon U-Pb ages that range from the late Paleozoic to the early Mesozoic, including a 263.6 ± 3.6 Ma quartz diorite, a 218.5 ± 5.4 Ma two-mica granite, a 205.7 ± 3.1 Ma metagabbroic unit, and a 195.5 ± 2.2 Ma biotite granite. The quartz diorite in this area contains low concentrations of SiO2 (60.71-64.32 wt%), is sodium-rich, and is metaluminous, indicating formation from magmas generated by a mixed source of metamafic rocks with a significant metapelitic sedimentary material within lower arc crust. The two-mica granites contain high concentrations of SiO2 (73.2-74.3 wt%), are strongly peraluminous, and have evolved Sr-Nd-Pb isotopic compositions, all of which are indicative of a crustal source, most probably from the partial melting of felsic pelite and metagreywacke/psammite material. The metagabbros contain low concentrations of SiO2 (50.17-50.96 wt%), are sodium-rich, contain high concentrations of Fe2O3T (9.79-10.06 wt%) and CaO (6.88-7.12 wt%), and are significantly enriched in the Sr (869-894 ppm) and LREE (198.14-464.60 ppm), indicative of derivation from magmas generated by a metasomatized mantle wedge modified by the sedimentary-derived component. The biotite granites are weakly peraluminous and formed from magmas generated by melting of metasedimentary sources dominated by metagreywacke/psammite material. Combining the petrology and geochemistry of these units with the regional geology of the Indosinian orogenic belt provides evidence for two stages of magmatism: an initial stage that generated magmas during partial melting of

  10. Nature vs. nurture in the low-density environment: structure and evolution of early-type dwarf galaxies in poor groups

    Science.gov (United States)

    Annibali, F.; Grützbauch, R.; Rampazzo, R.; Bressan, A.; Zeilinger, W. W.

    2011-04-01

    We present the stellar population properties of 13 dwarf galaxies residing in poor groups (low-density environment, LDE) observed with VIMOS at VLT. Ages, metallicities, and [α/Fe] ratios were derived within an r < re/2 aperture from the Lick indices Hβ, Mgb, Fe5270, and Fe5335 through comparison with our simple stellar population (SSP) models that account for variable [α/Fe] ratios. For a fiducial subsample of 10 early-type dwarfs, we derived median values and scatters around the medians of 5.7 ± 4.4 Gyr, -0.26 ± 0.28, and -0.04 ± 0.33 for age, log Z/Z⊙, and [α/Fe] , respectively. For a selection of bright early-type galaxies (ETGs) from an earlier sample residing in a comparable environment, we derive median values of 9.8 ± 4.1 Gyr, 0.06 ± 0.16, and 0.18 ± 0.13 for the same stellar population parameters. It follows that dwarfs are on average younger, less metal rich, and less enhanced in the α-elements than giants, in agreement with the extrapolation to the low-mass regime of the scaling relations derived for giant ETGs. From the total (dwarf + giant) sample, we find that age ∝ σ0.39 ± 0.22, Z ∝ σ0.80 ± 0.16, and α/Fe ∝ σ0.42 ± 0.22. We also find correlations with morphology, in the sense that the metallicity and the [α/Fe] ratio increase with the Sersic index n or with the bulge-to-total light fraction B/T. The presence of a strong morphology-[α/Fe] relation appears to contradict the possible evolution along the Hubble sequence from low B/T (low n) to high B/T (high n) galaxies. We also investigate the role played by environment by comparing the properties of our LDE dwarfs with those of Coma red passive dwarfs from the literature. We find possible evidence that LDE dwarfs experienced more prolonged star formations than Coma dwarfs, however larger data samples are needed to draw firmer conclusions. Based on observations obtained at the European Southern Observatory, La Silla, Chile.

  11. Evolution of the postoperative sagittal spinal profile in early-onset scoliosis: is there a difference between rib-based and spine-based growth-friendly instrumentation?

    Science.gov (United States)

    Chen, Zhonghui; Li, Song; Qiu, Yong; Zhu, Zezhang; Chen, Xi; Xu, Liang; Sun, Xu

    2017-12-01

    OBJECTIVE Although the vertical expandable prosthetic titanium rib (VEPTR) and growing rod instrumentation (GRI) encourage spinal growth via regular lengthening, they can create different results because of their different fixation patterns and mechanisms in correcting scoliosis. Previous studies have focused comparisons on coronal plane deformity with minimal attention to the sagittal profile. In this retrospective study, the authors aimed to compare the evolution of the sagittal spinal profile in early-onset scoliosis (EOS) treated with VEPTR versus GRI. METHODS The data for 11 patients with VEPTR and 22 with GRI were reviewed. All patients had more than 2 years' follow-up with more than 2 lengthening procedures. Radiographic measurements were performed before and after the index surgery and at the latest follow-up. The complications in both groups were recorded. RESULTS Patients in both groups had similar diagnoses, age at the index surgery, and number of lengthening procedures. The changes in the major coronal Cobb angle and T1-S1 spinal height were not significantly different between the 2 groups. Compared with the GRI group, the VEPTR group had less correction in thoracic kyphosis (23% ± 12% vs 44% ± 16%, p GRI: 8° ± 5°, p = 0.569), the incidence of proximal junctional kyphosis was relatively lower in the VEPTR group (VEPTR: 18.2% vs GRI: 22.7%). No significant changes in the spinopelvic parameters were observed, while the sagittal vertical axis showed a tendency toward a neutral position in both groups. The overall complication rate was higher in the VEPTR group than in the GRI group (72.7% vs 54.5%). CONCLUSIONS The VEPTR had coronal correction and spinal growth results similar to those with GRI. In the sagittal plane, however, the VEPTR was not comparable to the GRI in controlling thoracic kyphosis. Thus, for hyperkyphotic EOS patients, GRI is recommended over VEPTR.

  12. THE SL2S GALAXY-SCALE LENS SAMPLE. II. COSMIC EVOLUTION OF DARK AND LUMINOUS MASS IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Ruff, Andrea J.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.; Gavazzi, Raphael; Brault, Florence

    2011-01-01

    We present a joint gravitational lensing and stellar-dynamical analysis of 11 early-type galaxies (median deflector redshift z d = 0.5) from Strong Lenses in the Legacy Survey (SL2S). Using newly measured redshifts and stellar velocity dispersions from Keck spectroscopy with lens models from Paper I, we derive the total mass-density slope inside the Einstein radius for each of the 11 lenses. The average total density slope is found to be (γ') = 2.16 +0.09 -0.09 (ρ tot ∝r -γ ' ), with an intrinsic scatter of 0.25 +0.10 -0.07 . We also determine the dark matter fraction for each lens within half the effective radius, R eff /2, and find the average-projected dark matter mass fraction to be 0.42 +0.08 -0.08 with a scatter of 0.20 +0.09 -0.07 for a Salpeter initial mass function. By combining the SL2S results with those from the Sloan Lens ACS Survey (median z d = 0.2) and the Lenses Structure and Dynamics Survey (median z d = 0.8), we investigate cosmic evolution of γ' and find a mild trend ∂(γ')/∂z d = -0.25 +0.10 -0.12 . This suggests that the total density profile of massive galaxies has become slightly steeper over cosmic time. If this result is confirmed by larger samples, it would indicate that dissipative processes played some role in the growth of massive galaxies since z ∼ 1.

  13. Evolution of Northeastern Mexico during the early Mesozoic: potential areas for research and exploration José Rafael Barboza-Gudiño

    Science.gov (United States)

    Barboza-Gudiño, R.

    2013-05-01

    Huayacocotla formations). The Middle to Upper Jurassic La Joya Formation overlies unconformable all continental and marine-marginal successions and older rocks, and records the transgressive basal deposits of the Gulf series, changing upsection to the evaporites and limestone of the Oxfordian Zuloaga Group. Successive intraoceanic subduction zones to the West sparked magmatic arcs whose accretion in the continental margin produced the consolidation of much of the Mexican territory up to the current Pacific margin. Scattered isolated outcrops from the Early Mesozoic succession in central- and northeastern Mexico allow interpretation of tectonic setting and paleogeography associated to each stratigraphic unit, revealing a strongly different geologic evolution than the previously established models, opening a range of new possibilities and areas of opportunity for mining and fossil fuels exploration. However, most of the Triassic-Jurassic rocks or stratigraphic units in northern Mexico lie under many hundreds of meters of a Cretaceous-Cenozoic cover. Their recognition and preliminary evaluation implies the use of indirect techniques like geophysical methods, before drilling or subsurface mining.

  14. Adaptability and evolution.

    Science.gov (United States)

    Bateson, Patrick

    2017-10-06

    The capacity of organisms to respond in their own lifetimes to new challenges in their environments probably appeared early in biological evolution. At present few studies have shown how such adaptability could influence the inherited characteristics of an organism's descendants. In part, this has been because organisms have been treated as passive in evolution. Nevertheless, their effects on biological evolution are likely to have been important and, when they occurred, accelerated the pace of evolution. Ways in which this might have happened have been suggested many times since the 1870s. I review these proposals and discuss their relevance to modern thought.

  15. The morphology and distribution of submerged reefs in the Maui-Nui Complex, Hawaii: New insights into their evolution since the Early Pleistocene

    Science.gov (United States)

    Faichney, Iain D.E.; Webster, James M.; Clague, David A.; Kelley, Chris; Applegate, Bruce; Moore, James G.

    2009-01-01

    Reef drowning and backstepping have long been recognised as reef responses to sea-level rise on subsiding margins. During the Late Pleistocene (~500–14 ka) Hawaiian reefs grew in response to rapid subsidence and 120 m 100 kyr sea-level cycles, with recent work on the submerged drowned reefs around the big island of Hawaii, and in other locations from the last deglacial, providing insight into reef development under these conditions. In contrast, reefs of the Early Pleistocene (~1.8–0.8 Ma) remain largely unexplored despite developing in response to significantly different 60–70 m 41 kyr sea-level cycles. The Maui-Nui Complex (MNC — forming the islands of Maui, Molokai, Lanai and Kahoolawe), provides a natural laboratory to study reef evolution throughout this time period as recent data indicate the reefs grew from 1.1 to 0.5 Ma. We use new high resolution bathymetric and backscatter data as well as sub-bottom profiling seismic data and field observations from ROV and submersible dives to make a detailed analysis of reef morphology and structure around the MNC. We focus specifically on the south-central region of the complex that provides the best reef exposure and find that the morphology of the reefs varies both regionally and temporally within this region. Barrier and pinnacle features dominate the steeper margins in the north of the study area whilst broad backstepping of the reefs is observed in the south. Within the Au'au channel in the central region between the islands, closely spaced reef and karst morphology indicates repeated subaerial exposure. We propose that this variation in the morphology and structure of the reefs within the MNC has been controlled by three main factors; the subsidence rate of the complex, the amplitude and period of eustatic sea-level cycles, and the slope and continuity of the basement substrate. We provide a model of reef development within the MNC over the last 1.2 Ma highlighting the effect that the interaction

  16. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U-Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai

    Science.gov (United States)

    Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.

    2017-11-01

    Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.

  17. Contemporary evolution strategies

    CERN Document Server

    Bäck, Thomas; Krause, Peter

    2013-01-01

    Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the a

  18. Spectral evolution of galaxies: current views

    International Nuclear Information System (INIS)

    Bruzual, A.G.

    1985-01-01

    A summary of current views on the interpretation of the various evolutionary tests aimed at detecting spectral evolution in galaxies is presented. It is concluded that the evolution taking place in known galaxy samples is a slow process (perhaps consistent with no evolution at all), and that the early phases of rapid spectral evolution in early-type galaxies have not yet been detected. (author)

  19. The morphological development of newly inundated intertidal areas: the mechanisms driving the early evolution of an estuarine environment designed and constructed by humans

    Science.gov (United States)

    Dale, Jonathan; Burgess, Heidi; Cundy, Andrew

    2017-04-01

    Intertidal saltmarsh and mudflat habitats are of global importance due to the ecosystem, economic and cultural services they provide. These services include wildlife habitat provision and species diversity, immobilisation of pollutants and protection from coastal flooding. Saltmarsh and mudflat environments are, however, being lost and degraded due to erosion caused by rising sea levels and increased storminess. These losses are exacerbated by anthropogenic influences including land reclamation, increased coastal development and the construction of coastal flood defences which prevent the landwards migration of saltmarsh and mudflat environments, resulting in coastal squeeze. To compensate for saltmarsh and mudflat losses areas of the coastal hinterland are being inundated by breaching defences and constructing new defences inland, thus extending or constructing new estuarine environments; a processes known as de-embankment or managed realignment. Morphological engineering and landscaping within managed realignment sites prior to site inundation varies depending on the aims of the scheme. However, there is a shortage of data on the morphological evolution within these sites post site inundation impeding the ability of coastal engineers to effectively design and construct future sites. To date there has been a focus on the colonisation of marine macro fauna and flora within newly inundated managed realignment sites, which can be relatively rapid and easily quantified. Little is known of the morphological evolution in response to altered sedimentary processes, its driving mechanisms and therefore the success and ecological sustainability of these sites. This study evaluates the post-inundation morphological development of the largest open coast managed realignment site in Europe, at Medmerry on the south coast of the United Kingdom. Inundated in September 2013, the Medmerry Managed Realignment Site consists of a mosaic of former agricultural land and areas of lower

  20. The ATLAS3D project - VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within ΛCDM

    NARCIS (Netherlands)

    Khochfar, Sadegh; Emsellem, Eric; Serra, Paolo; Bois, Maxime; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bournaud, Frédéric; Bureau, M.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-01-01

    We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Λcold dark matter (ΛCDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed via λR. Within

  1. Checklist for Early Recognition and Treatment of Acute Illness (CERTAIN): evolution of a content management system for point-of-care clinical decision support

    NARCIS (Netherlands)

    Barwise, Amelia; Garcia-Arguello, Lisbeth; Dong, Yue; Hulyalkar, Manasi; Vukoja, Marija; Schultz, Marcus J.; Adhikari, Neill K. J.; Bonneton, Benjamin; Kilickaya, Oguz; Kashyap, Rahul; Gajic, Ognjen; Schmickl, Christopher N.

    2016-01-01

    The Checklist for Early Recognition and Treatment of Acute Illness (CERTAIN) is an international collaborative project with the overall objective of standardizing the approach to the evaluation and treatment of critically ill patients world-wide, in accordance with best-practice principles. One of

  2. The ATLAS(3D) project : VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within lambda CDM

    NARCIS (Netherlands)

    Khochfar, Sadegh; Emsellem, Eric; Serra, Paolo; Bois, Maxime; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bournaud, Frederic; Bureau, M.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-01-01

    We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Lambda cold dark matter (Lambda CDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed

  3. Tracing the spatio-temporal dynamics of endangered fin whales (Balaenoptera physalus) within baleen whale (Mysticeti) lineages: a mitogenomic perspective.

    Science.gov (United States)

    Yu, Jihyun; Nam, Bo-Hye; Yoon, Joon; Kim, Eun Bae; Park, Jung Youn; Kim, Heebal; Yoon, Sook Hee

    2017-12-01

    To explore the spatio-temporal dynamics of endangered fin whales (Balaenoptera physalus) within the baleen whale (Mysticeti) lineages, we analyzed 148 published mitochondrial genome sequences of baleen whales. We used a Bayesian coalescent approach as well as Bayesian inferences and maximum likelihood methods. The results showed that the fin whales had a single maternal origin, and that there is a significant correlation between geographic location and evolution of global fin whales. The most recent common female ancestor of this species lived approximately 9.88 million years ago (Mya). Here, North Pacific fin whales first appeared about 7.48 Mya, followed by a subsequent divergence in Southern Hemisphere approximately 6.63 Mya and North Atlantic about 4.42 Mya. Relatively recently, approximately 1.76 and 1.42 Mya, there were two additional occurrences of North Pacific populations; one originated from the Southern Hemisphere and the other from an uncertain location. The evolutionary rate of this species was 1.002 × 10 -3 substitutions/site/My. Our Bayesian skyline plot illustrates that the fin whale population has the rapid expansion event since ~ 2.5 Mya, during the Quaternary glaciation stage. Additionally, this study indicates that the fin whale has a sister group relationship with humpback whale (Meganoptera novaeangliae) within the baleen whale lineages. Of the 16 genomic regions, NADH5 showed the most powerful signal for baleen whale phylogenetics. Interestingly, fin whales have 16 species-specific amino acid residues in eight mitochondrial genes: NADH2, COX2, COX3, ATPase6, ATPase8, NADH4, NADH5, and Cytb.

  4. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  5. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects

    Science.gov (United States)

    2010-01-01

    Background Animal mitochondrial genomes are potential models for molecular evolution and markers for phylogenetic and population studies. Previous research has shown interesting features in hymenopteran mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola. Results Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders. Mecoptera was recovered as the

  6. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects

    Directory of Open Access Journals (Sweden)

    Shi Min

    2010-06-01

    Full Text Available Abstract Background Animal mitochondrial genomes are potential models for molecular evolution and markers for phylogenetic and population studies. Previous research has shown interesting features in hymenopteran mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola. Results Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders

  7. Early Cretaceous high-Ti and low-Ti mafic magmatism in Southeastern Tibet: Insights into magmatic evolution of the Comei Large Igneous Province

    Science.gov (United States)

    Wang, Yaying; Zeng, Lingsen; Asimow, Paul D.; Gao, Li-E.; Ma, Chi; Antoshechkina, Paula M.; Guo, Chunli; Hou, Kejun; Tang, Suohan

    2018-01-01

    The Dala diabase intrusion, at the southeastern margin of the Yardoi gneiss dome, is located within the outcrop area of the 132 Ma Comei Large Igneous Province (LIP), the result of initial activity of the Kerguelen plume. We present new zircon U-Pb geochronology results to show that the Dala diabase was emplaced at 132 Ma and geochemical data (whole-rock element and Sr-Nd isotope ratios, zircon Hf isotopes and Fe-Ti oxide mineral chemistry) to confirm that the Dala diabase intrusion is part of the Comei LIP. The Dala diabase can be divided into a high-Mg/low-Ti series and a low-Mg/high-Ti series. The high-Mg/low-Ti series represents more primitive mafic magma compositions that we demonstrate are parental to the low-Mg/high-Ti series. Fractionation of olivine and clinopyroxene, followed by plagioclase within the low-Mg series, lead to systematic changes in concentrations of mantle compatible elements (Cr, Co, Ni, and V), REEs, HFSEs, and major elements such as Ti and P. Some Dala samples from the low-Mg/high-Ti series contain large ilmenite clusters and show extreme enrichment of Ti with elevated Ti/Y ratios, likely due to settling and accumulation of ilmenite during the magma chamber evolution. However, most samples from throughout the Comei LIP follow the Ti-evolution trend of the typical liquid line of descent (LLD) of primary OIB compositions, showing strong evidence of control of Ti contents by differentiation processes. In many other localities, however, primitive magmas are absent and observed Ti contents of evolved magmas cannot be quantitatively related to source processes. Careful examination of the petrogenetic relationship between co-existing low-Ti and high-Ti mafic rocks is essential to using observed rock chemistry to infer source composition, location, and degree of melting.

  8. Morphological and genetic evidence for early Holocene cattle management in northeastern China

    DEFF Research Database (Denmark)

    Zhang, Hucai; Paijmans, Johanna L. A.; Chang, Fengqin

    2013-01-01

    The domestication of cattle is generally accepted to have taken place in two independent centres: around 10,500 years ago in the Near East, giving rise to modern taurine cattle, and two millennia later in southern Asia, giving rise to zebu cattle. Here we provide firmly dated morphological...... and genetic evidence for early Holocene management of taurine cattle in northeastern China. We describe conjoining mandibles from this region that show evidence of oral stereotypy, dated to the early Holocene by two independent (14)C dates. Using Illumina high-throughput sequencing coupled with DNA...... hybridization capture, we characterize 15,406 bp of the mitogenome with on average 16.7-fold coverage. Phylogenetic analyses reveal a hitherto unknown mitochondrial haplogroup that falls outside the known taurine diversity. Our data suggest that the first attempts to manage cattle in northern China predate...

  9. The early universe

    International Nuclear Information System (INIS)

    Steigman, G.

    1989-01-01

    The author discusses the physics of the early universe: the production and survival of relics from the big bang. The author comments on relic WIMPs as the dark matter in the universe. The remainder of this discussion is devoted to a review of the status of the only predictions from the early evolution of the universe that are accessible to astronomical observation: primordial nucleosynthesis

  10. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)

    Science.gov (United States)

    Xu, Weimu; Ruhl, Micha; Jenkyns, Hugh C.; Leng, Melanie J.; Huggett, Jennifer M.; Minisini, Daniel; Ullmann, Clemens V.; Riding, James B.; Weijers, Johan W. H.; Storm, Marisa S.; Percival, Lawrence M. E.; Tosca, Nicholas J.; Idiz, Erdem F.; Tegelaar, Erik W.; Hesselbo, Stephen P.

    2018-02-01

    The late Early Jurassic Toarcian Stage represents the warmest interval of the Jurassic Period, with an abrupt rise in global temperatures of up to ∼7 °C in mid-latitudes at the onset of the early Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma). The T-OAE, which has been extensively studied in marine and continental successions from both hemispheres, was marked by the widespread expansion of anoxic and euxinic waters, geographically extensive deposition of organic-rich black shales, and climatic and environmental perturbations. Climatic and environmental processes following the T-OAE are, however, poorly known, largely due to a lack of study of stratigraphically well-constrained and complete sedimentary archives. Here, we present integrated geochemical and physical proxy data (high-resolution carbon-isotope data (δ13 C), bulk and molecular organic geochemistry, inorganic petrology, mineral characterisation, and major- and trace-element concentrations) from the biostratigraphically complete and expanded entire Toarcian succession in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, Wales, UK. With these data, we (1) construct the first high-resolution biostratigraphically calibrated chemostratigraphic reference record for nearly the complete Toarcian Stage, (2) establish palaeoceanographic and depositional conditions in the Cardigan Bay Basin, (3) show that the T-OAE in the hemipelagic Cardigan Bay Basin was marked by the occurrence of gravity-flow deposits that were likely linked to globally enhanced sediment fluxes to continental margins and deeper marine (shelf) basins, and (4) explore how early Toarcian (tenuicostatum and serpentinum zones) siderite formation in the Cardigan Bay Basin may have been linked to low global oceanic sulphate concentrations and elevated supply of iron (Fe) from the hinterland, in response to climatically induced changes in hydrological cycling, global weathering rates and large-scale sulphide and evaporite deposition.

  11. The early Eocene birds of the Messel fossil site: a 48 million-year-old bird community adds a temporal perspective to the evolution of tropical avifaunas.

    Science.gov (United States)

    Mayr, Gerald

    2017-05-01

    Birds play an important role in studies addressing the diversity and species richness of tropical ecosystems, but because of the poor avian fossil record in all extant tropical regions, a temporal perspective is mainly provided by divergence dates derived from calibrated molecular analyses. Tropical ecosystems were, however, widespread in the Northern Hemisphere during the early Cenozoic, and the early Eocene German fossil site Messel in particular has yielded a rich avian fossil record. The Messel avifauna is characterized by a considerable number of flightless birds, as well as a high diversity of aerial insectivores and the absence of large arboreal birds. With about 70 currently known species in 42 named genus-level and at least 39 family-level taxa, it approaches extant tropical biotas in terms of species richness and taxonomic diversity. With regard to its taxonomic composition and presumed ecological characteristics, the Messel avifauna is more similar to the Neotropics, Madagascar, and New Guinea than to tropical forests in continental Africa and Asia. Because the former regions were geographically isolated during most of the Cenozoic, their characteristics may be due to the absence of biotic factors, especially those related to the diversification of placental mammals, which impacted tropical avifaunas in Africa and Asia. The crown groups of most avian taxa that already existed in early Eocene forests are species-poor. This does not support the hypothesis that the antiquity of tropical ecosystems is key to the diversity of tropical avifaunas, and suggests that high diversification rates may be of greater significance. © 2016 Cambridge Philosophical Society.

  12. Tool for evaluating the evolution Space Weather Regional Warning Centers under the innovation point of view: the Case Study of the Embrace Space Weather Program Early Stages

    Science.gov (United States)

    Denardini, Clezio Marcos

    2016-07-01

    We have developed a tool for measuring the evolutional stage of the space weather regional warning centers using the approach of the innovative evolution starting from the perspective presented by Figueiredo (2009, Innovation Management: Concepts, metrics and experiences of companies in Brazil. Publisher LTC, Rio de Janeiro - RJ). It is based on measuring the stock of technological skills needed to perform a certain task that is (or should) be part of the scope of a space weather center. It also addresses the technological capacity for innovation considering the accumulation of technological and learning capabilities, instead of the usual international indices like number of registered patents. Based on this definition, we have developed a model for measuring the capabilities of the Brazilian Study and Monitoring Program Space Weather (Embrace), a program of the National Institute for Space Research (INPE), which has gone through three national stages of development and an international validation step. This program was created in 2007 encompassing competence from five divisions of INPE in order to carry out the data collection and maintenance of the observing system in space weather; to model processes of the Sun-Earth system; to provide real-time information and to forecast space weather; and provide diagnostic their effects on different technological systems. In the present work, we considered the issues related to the innovation of micro-processes inherent to the nature of the Embrace program, not the macro-economic processes, despite recognizing the importance of these. During the development phase, the model was submitted to five scientists/managers from five different countries member of the International Space Environment Service (ISES) who presented their evaluations, concerns and suggestions. It was applied to the Embrace program through an interview form developed to be answered by professional members of regional warning centers. Based on the returning

  13. Silicic melt evolution in the early Izu-Bonin arc recorded in detrital zircons: Zircon U-Pb geochronology and trace element geochemistry for Site U1438, Amami Sankaku Basin

    Science.gov (United States)

    Barth, A. P.; Tani, K.; Meffre, S.; Wooden, J. L.; Coble, M. A.

    2016-12-01

    Understanding the petrologic evolution of oceanic arc magmas through time is important because these arcs reveal the processes of formation and the early evolution of juvenile continental crust. The Izu-Bonin (IB) arc system has been targeted because it is one of several western Pacific intraoceanic arcs initiated at 50 Ma and because of its prominent spatial asymmetry, with widespread development of relatively enriched rear arc lavas. We examined Pb/U and trace element compositions in zircons recovered at IODP Site 351-U1438 and compared them to regional and global zircon suites. These new arc zircon data indicate that detrital zircons will yield new insights into the generation of IB silicic melts and form a set of useful geochemical proxies for interpreting ancient arc detrital zircon provenance. Project IBM drilling target IBM1 was explored by Expedition 351 at Site U1438, located in the proximal back-arc of the northern Kyushu-Palau Ridge (KPR) at 27.3°N. A 1.2 km thick section of Paleogene volcaniclastic rocks, increasingly lithified and hydrothermally altered with depth, constitutes a proximal rear arc sedimentary record of IB arc initiation and early arc evolution. The ages and compositions of U1438 zircons are compatible with provenance in one or more edifices of the northern KPR and are incompatible with drilling contamination. Melt zircon saturation temperatures and Ti-in-zircon thermometry suggest a provenance in relatively cool and silicic KPR melts. The abundances of selected trace elements with high native concentrations provide insight into the petrogenesis of U1438 detrital zircon host melts, and may be useful indicators of both short and long-term variations in melt compositions in arc settings. The U1438 zircons are slightly enriched in U and LREE and are depleted in Nb compared to zircons from mid-ocean ridges and the Parece-Vela Basin, as predicted for melts in a primitive oceanic arc setting with magmas derived from a highly depleted mantle

  14. The Centre for Early Human Behaviour (EHB) at the University of Bergen: A transdisciplinary exploration into the evolution of homo sapiens behaviour

    Science.gov (United States)

    Sobolowski, Stefan; Henshilwood, Christopher; Jansen, Eystein

    2017-04-01

    Homo sapiens was anatomically modern by 200 000 years ago in Africa, but there is no archaeological evidence to demonstrate that behaviour was modern at the time. Attributes of modern behaviour, perhaps inspired by changes in the human brain, are only recognizable after 100 000 years ago. Before we can study the process, we must critically define the criteria for the term 'modern behaviour' and then find a means to recognize such behavior in the record. This seemingly simple research statement involves complex exploration by a team of specialists. In this highly competitive research field our centre will, for the first time, be able to rise to the challenge by combining the skills of cutting-edge scientists in archaeology, climate reconstruction and modelling, and the cognitive and social sciences. Over the next decade we will integrate knowledge and methods from different disciplines to synthesize approaches and contribute to a sophisticated understanding of early human behaviour. Our highly ambitious research program will focus explicitly on rare, well preserved archaeological sites occupied in the period between 100-50 000 years ago because these contain the 'keys' for unlocking the past. A major competitive edge is the EHB Director's 25 years of archaeological experience and his long-term exclusive access, with permits, to a number of the best-preserved sites in the southern Cape, South Africa - a region regarded as a major locus for vital evidence that could inform on the behaviour of early humans. Our planned excavations at existing and new sites and our ground-breaking and innovative interdisciplinary approaches, including climate (The Bjerknes Centre for Climate Research) and cognitive research, to understanding the processes that shaped human cultures. Primarily, EHB will directly address unanswered, first order questions about Homo sapiens: a) what defines the switch to 'modern behaviour', exactly how should this term be defined and then, when, why and

  15. The 'Unicorn' dinosaur that wasn't: a new reconstruction of the crest of Tsintaosaurus and the early evolution of the lambeosaurine crest and rostrum.

    Directory of Open Access Journals (Sweden)

    Albert Prieto-Márquez

    evolution of the group.

  16. The 'Unicorn' dinosaur that wasn't: a new reconstruction of the crest of Tsintaosaurus and the early evolution of the lambeosaurine crest and rostrum.

    Science.gov (United States)

    Prieto-Márquez, Albert; Wagner, Jonathan R

    2013-01-01

    The lambeosaurine Tsintaosaurus spinorhinus has traditionally been reconstructed with an elevated, hollow, spike-like crest composed entirely of the nasal bones, although this has been disputed. Here, we provide a new reconstruction of the skull of this species based on reexamination and reinterpretation of the morphology and articular relationships of the type and Paratype skulls and a fragmentary crest. We confirm the presence of a supracranial crest composed of the elevated nasal bones, but also including the premaxillae. We hypothesize that the crest is a tall, lobate, hollow structure that projects dorsally and slightly caudally a distance greater than the height of the skull along the quadrate. In our reconstruction, the nasal passage passes through the crest, but enters the skull rostral to the tubular process of the nasals, not through it. Tsintaosaurus spinorhinus is rediagnosed on the basis of a suite of cranial autapomorphies including a circumnarial fossa subdivided into three accessory fossae, prefrontal with ascending rostral process and lateral flange, nasals fused sagittally to form elongate tubular process that rises dorsally from skull roof, each nasal being expanded rostrocaudally into a rhomboid distal process, and medial processes of premaxillae at the summit of the cranial crest inserted between rhomboid processes of nasals. Tsintaosaurus spinorhinus lacks characters that are present in more derived lambeosaurines (parasaurolophins and lambeosaurins), such as rotation of the caudal margin of the crest to an acute angle with the skull roof, lateral processes of the nasals that enclose part of the intracranial cavity and participate in the formation of the walls of the common median chamber, and a smooth narial fossa lacking ridges and accessory fossae. We hypothesize that ancestrally the rostrum of lambeosaurines may have been more similar to that in Saurolophinae, and became subsequently reduced in complexity during evolution of the group.

  17. The ‘Unicorn’ Dinosaur That Wasn’t: A New Reconstruction of the Crest of Tsintaosaurus and the Early Evolution of the Lambeosaurine Crest and Rostrum

    Science.gov (United States)

    Prieto-Márquez, Albert; Wagner, Jonathan R.

    2013-01-01

    The lambeosaurine Tsintaosaurus spinorhinus has traditionally been reconstructed with an elevated, hollow, spike-like crest composed entirely of the nasal bones, although this has been disputed. Here, we provide a new reconstruction of the skull of this species based on reexamination and reinterpretation of the morphology and articular relationships of the type and Paratype skulls and a fragmentary crest. We confirm the presence of a supracranial crest composed of the elevated nasal bones, but also including the premaxillae. We hypothesize that the crest is a tall, lobate, hollow structure that projects dorsally and slightly caudally a distance greater than the height of the skull along the quadrate. In our reconstruction, the nasal passage passes through the crest, but enters the skull rostral to the tubular process of the nasals, not through it. Tsintaosaurus spinorhinus is rediagnosed on the basis of a suite of cranial autapomorphies including a circumnarial fossa subdivided into three accessory fossae, prefrontal with ascending rostral process and lateral flange, nasals fused sagittally to form elongate tubular process that rises dorsally from skull roof, each nasal being expanded rostrocaudally into a rhomboid distal process, and medial processes of premaxillae at the summit of the cranial crest inserted between rhomboid processes of nasals. Tsintaosaurus spinorhinus lacks characters that are present in more derived lambeosaurines (parasaurolophins and lambeosaurins), such as rotation of the caudal margin of the crest to an acute angle with the skull roof, lateral processes of the nasals that enclose part of the intracranial cavity and participate in the formation of the walls of the common median chamber, and a smooth narial fossa lacking ridges and accessory fossae. We hypothesize that ancestrally the rostrum of lambeosaurines may have been more similar to that in Saurolophinae, and became subsequently reduced in complexity during evolution of the group

  18. Thermal and chemical evolution in the early Solar System as recorded by FUN CAIs: Part II - Laboratory evaporation of potential CMS-1 precursor material

    Science.gov (United States)

    Mendybaev, Ruslan A.; Williams, Curtis D.; Spicuzza, Michael J.; Richter, Frank M.; Valley, John W.; Fedkin, Alexei V.; Wadhwa, Meenakshi

    2017-03-01

    We present the results of laboratory experiments in which a forsterite-rich melt estimated to be a potential precursor of Allende CMS-1 FUN CAI was evaporated into vacuum for different lengths of time at 1900 °C. The evaporation of this melt resulted in residues that define trajectories in chemical as well as magnesium, silicon and oxygen isotopic composition space and come very close to the measured properties of CMS-1. The isotopic composition of the evaporation residues was also used to determine the kinetic isotopic fractionation factors [α2,1 (vapor-melt) defined as the ratio of isotopes 2 and 1 of a given element in the evaporating gas divided by their ratio in the evaporating source] for evaporation of magnesium (α25,24 for 25Mg/24Mg), silicon (α29,28 for 29Si/28Si) and oxygen (α18,16 for 18O/16O) from the forsterite-rich melt at 1900 °C. The values of α25,24 = 0.98383 ± 0.00033 and α29,28 = 0.99010 ± 0.00038 are essentially independent of change in the melt composition as evaporation proceeds. In contrast, α18,16 changes from 0.9815 ± 0.0016 to ∼0.9911 when the residual melt composition changes from forsteritic to melilitic. Using the determined values of α25,24 and α29,28 and present-day bulk chemical composition of the CMS-1, the composition of the precursor of the inclusion was estimated to be close to the clinopyroxene + spinel + forsterite assemblage condensed from a solar composition gas. The correspondence between the chemical composition and isotopic fractionation of experimental evaporation residues and the present-day bulk chemical and isotopic compositions of CMS-1 is evidence that evaporation played a major role in the chemical evolution of CMS-1.

  19. Detrital zircon U-Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River

    Science.gov (United States)

    Chen, Yi; Yan, Maodu; Fang, Xiaomin; Song, Chunhui; Zhang, Weilin; Zan, Jinbo; Zhang, Zhiguo; Li, Bingshuai; Yang, Yongpeng; Zhang, Dawen

    2017-10-01

    The paleo-Red River is suggested to have been a continental-scale drainage system connecting the Tibetan Plateau to the South China Sea. However, the evolution of the paleo-Red River is still under debate. This study presents new results from sedimentological analyses and detrital zircon U-Pb geochronologic data from fluvial sedimentary rocks of Paleocene to Oligocene age of the Simao Basin to constrain the nature of the paleo-drainage system of the Red River. The detrital zircon U-Pb results reveal multiple age groups at 190-240 Ma, 260-280 Ma, 450-540 Ma, 1700-1900 Ma and 2400-2600 Ma for the Paleocene to late Eocene Denghei Formation (Fm.), but only one conspicuous peak at 220-240 Ma for the late Eocene-Oligocene Mengla Fm. Provenance analyses illustrate that the former likely had source areas that included the Hoh-Xil, Songpan-Ganzi, northern Qiangtang, Yidun and western Yangtze Terranes, which are consistent with the catchments of the Upper and Lower Jinshajiang Segments, whereas the latter mainly transported material from a limited number of sources, such as the Lincang granitic intrusions west of the Simao Basin. Integrated with available detrital zircon U-Pb geochronologic and paleogeographic data, our study suggests the existence of a paleo-Red River during the Paleocene to late Eocene that was truncated and lost its northern sources after approximately 35 Ma, due to left-lateral strike-slip faulting of the Ailao Shan-Red River and clockwise rotation of the Lanping-Simao Terrane.

  20. Morphological evolution of the southwestern Black Sea coast of Turkey since the early 2000s: medium- vs. short-term changes

    Science.gov (United States)

    LiBassi, Nick; Özener, Haluk; Otay, Emre; Doğru, Aslı

    2018-06-01

    Coastal zones are in a state of continual flux worldwide, due in part to seasonal factors and in part to influences operating over longer periods of time. Discerning changes on different timescales remains a challenge. This study compares shoreline position and nearshore bathymetry over a time interval of 16 years in order to determine the extent of medium-term changes in comparison with short-term changes along the southwestern Black Sea coast of Turkey near Kilyos. For this purpose the results of surveys completed in 2001 and 2002 are compared with data collected in December 2015, September 2016, and March 2017 at the same location using a differential global positioning system (DGPS) in real-time kinematic (RTK) configuration combined with echo-sounder profiling. Average shoreline recession over the 16-year period (medium term) has been estimated at 3-4 cm/year as opposed to an average of 9.5 m in the 12-month period from June 2001 to June 2002 (short term). The medium-term nearshore sediment loss has been approx. 100-125 m3/m shoreline since the early 2000s. Over the same period a prominent offshore bar has moved seaward at a maximum rate of 1 m/year since 2002. Considering the large discrepancy in the shoreline recession rates recorded in the short and medium term, this aspect must be taken into account in any integrated coastal zone management strategy.

  1. Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals

    Science.gov (United States)

    Ruf, Irina; Luo, Zhe-Xi; Wible, John R; Martin, Thomas

    2009-01-01

    The petrosal anatomy and inner ear structure of Jurassic cladotherian mammals represent the ancestral morphological conditions (groundplan) from which modern therian mammals (marsupials and placentals) have evolved. We present the reconstruction of the petrosal and inner ear features of the Late Jurassic dryolestoid mammal Henkelotherium guimarotae from high-resolution computed tomography and three-dimensional imaging analysis. This study of Henkelotherium revealed a combination of derived and primitive features, including: cladotherian apomorphies, such as the promontorial sulcus for the internal carotid artery and reduced lateral trough; trechnotherian characters, such as an enclosed cochlear canaliculus for the perilymphatic duct, post-promontorial tympanic sinus and caudal tympanic process; in addition to plesiomorphic mammalian features, such as the cavum supracochleare and prootic canal. The inner ear of Henkelotherium shows a division between the utricle and saccule, a cochlear canal coiled through at least 270°, a distinctive primary bony lamina for the basilar membrane, and a secondary bony lamina. The development of the primary and secondary bony laminae in the cochlear canal is suggested here to be correlated with the concurrent coiling of the bony canal and membranous duct of the inner ear cochlea, apomorphies of the more inclusive cladotherian clade that also represent the ancestral morphotype of modern therian mammals. Because these features are crucial for high-frequency hearing in extant therian mammals, their early appearance in Late Jurassic cladotherians suggests a more ancient origination for high-frequency hearing in mammalian history than previously thought. PMID:19438763

  2. Late Paleozoic-Early Mesozoic tectonic evolution of the Paleo-Asian Ocean: geochronological and geochemical evidence from granitoids in the northern margin of Alxa, Western China

    Science.gov (United States)

    Sha, Xin; Wang, Jinrong; Chen, Wanfeng; Liu, Zheng; Zhai, Xinwei; Ma, Jinlong; Wang, Shuhua

    2018-03-01

    The Paleo-Asian Ocean (Southern Mongolian Ocean) ophiolitic belts and massive granitoids are exposed in the Alxa block, in response to oceanic subduction processes. In this work, we report petrographic, geochemical, and zircon U-Pb age data of some granitoid intrusions from the northern Alxa. Zircon U-Pb dating for the quartz diorite, tonalite, monzogranite, and biotite granite yielded weighted mean 206Pb/238U ages of 302±9.2 Ma, 246.5±4.6 Ma, 235±4.4 Ma, and 229.5±5.6 Ma, respectively. The quartz diorites ( 302 Ma) exhibit geochemical similarities to adakites, likely derived from partial melting of the initially subducted Chaganchulu back-arc oceanic slab. The tonalites ( 246.5 Ma) display geochemical affinities of I-type granites. They were probably derived by fractional crystallization of the modified lithospheric mantle-derived basaltic magmas in a volcanic arc setting. The monzogranites ( 235 Ma) are characterized by low Al2O3, but high Y and Yb with notably negative Eu anomalies. In contrast, the biotite granites ( 229.5 Ma) show high Al2O3 but low Y and Yb with steep HREE patterns and the absence of negative Eu anomalies. Elemental data suggested that the biotite granites were likely derived from a thickened lower crust, but the monzogranites originated from a thin crust. Our data suggested that the initial subduction of the Chaganchulu oceanic slab towards the Alxa block occurred at 302 Ma. This subduction process continued to the Early Triassic ( 246 Ma) and the basin was finally closed before the Middle Triassic ( 235 Ma). Subsequently, the break-off of the subducted slab triggered asthenosphere upwelling (240-230 Ma).

  3. Checklist for Early Recognition and Treatment of Acute Illness (CERTAIN): evolution of a content management system for point-of-care clinical decision support.

    Science.gov (United States)

    Barwise, Amelia; Garcia-Arguello, Lisbeth; Dong, Yue; Hulyalkar, Manasi; Vukoja, Marija; Schultz, Marcus J; Adhikari, Neill K J; Bonneton, Benjamin; Kilickaya, Oguz; Kashyap, Rahul; Gajic, Ognjen; Schmickl, Christopher N

    2016-10-03

    The Checklist for Early Recognition and Treatment of Acute Illness (CERTAIN) is an international collaborative project with the overall objective of standardizing the approach to the evaluation and treatment of critically ill patients world-wide, in accordance with best-practice principles. One of CERTAIN's key features is clinical decision support providing point-of-care information about common acute illness syndromes, procedures, and medications in an index card format. This paper describes 1) the process of developing and validating the content for point-of-care decision support, and 2) the content management system that facilitates frequent peer-review and allows rapid updates of content across different platforms (CERTAIN software, mobile apps, pdf-booklet) and different languages. Content was created based on survey results of acute care providers and validated using an open peer-review process. Over a 3 year period, CERTAIN content expanded to include 67 syndrome cards, 30 procedure cards, and 117 medication cards. 127 (59 %) cards have been peer-reviewed so far. Initially MS Word® and Dropbox® were used to create, store, and share content for peer-review. Recently Google Docs® was used to make the peer-review process more efficient. However, neither of these approaches met our security requirements nor has the capacity to instantly update the different CERTAIN platforms. Although we were able to successfully develop and validate a large inventory of clinical decision support cards in a short period of time, commercially available software solutions for content management are suboptimal. Novel custom solutions are necessary for efficient global point of care content system management.

  4. Late Neogene deformation of the Chocolate Mountains Anticlinorium: Implications for deposition of the Bouse Formation and early evolution of the Lower Colorado River

    Science.gov (United States)

    Beard, Sue; Haxel, Gordon B.; Dorsey, Rebecca J.; McDougall, Kristin A.; Jacobsen, Carl E.

    2016-01-01

    Deformation related to late Neogene dextral shear can explain a shift from an estuarine to lacustrine depositional environment in the southern Bouse Formation north of Yuma, Arizona. We infer that late Neogene deformation in the Chocolate Mountain Anticlinorium (CMA) created a barrier that blocked an estuary inlet, and that pre-existing and possibly active structures subsequently controlled the local course of the lower Colorado River. Structural patterns summarized below suggest that the CMA absorbed transpressional strain caused by left-stepping segments of dextral faults of the San Andreas fault system and/or the eastern California shear zone and Gulf of California shear zone. For this hypothesis to be correct, about 200-250 m of post-6 Ma, pre- ~5.3 Ma uplift along the CMA crest would be required to cut off a marine inlet. The 220-km-long CMA, cored by the early Paleogene Orocopia Schist subduction complex, extends from the Orocopia Mountains (Calif.) southeastward through the Chocolate Mountains (parallel to the southern San Andreas fault). Where Highway 78 crosses the Chocolate Mountains (Fig. 1), the CMA turns eastward through the Black Mountain-Picacho area (Calif.) and Trigo Mountains (Ariz.) into southwest Arizona. It separates southernmost Bouse Formation outcrops of the Blythe basin from subsurface Bouse outcrops to the south in the Yuma area. South of Blythe basin the CMA is transected by the lower Colorado River along a circuitous path. Here we focus on the geology of an area between the central Chocolate Mountains and the Yuma Proving Grounds in Arizona. Specific landmarks include the southeast Chocolate Mountains, Midway Mountains, Peter Kane Mountain, Black Mountain, Picacho Peak, and Gavilan Hills. For simplicity, we refer to this as the eastern Chocolate Mountains.

  5. Early insights into the characteristics and evolution of clinical parameters in a cohort of patients prescribed sacubitril/valsartan in Germany.

    Science.gov (United States)

    Wachter, Rolf; Viriato, Daniel; Klebs, Sven; Grunow, Stefanie S; Schindler, Matthias; Engelhard, Johanna; Proenca, Catia C; Calado, Frederico; Schlienger, Raymond; Dworak, Markus; Balas, Bogdan; Bruce Wirta, Sara

    2018-04-01

    This study aimed to provide early insights into sacubitril/valsartan (sac/val) prescription patterns and the demographic and clinical characteristics of patients prescribed sac/val in primary care and cardiology settings in Germany. The study used electronic medical records from the German IMS® Disease Analyzer database. Patients with ≥1 prescription for sac/val during 1 January-31 December 2016 (n = 1643) were identified and followed up for ≤12 months from first prescription. Patients with ≥1 heart failure (HF) diagnosis during the study period, ≥1 additional HF diagnosis in the full history of the database, and ≥1 prescription for an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker and a β-blocker during the study period, without a prescription for sac/val (n = 25,264), were included as a reference cohort. Changes in clinical parameters in the 12 months before and after sac/val initiation were investigated and compared with those from the PARADIGM-HF study. The characteristics of patients prescribed sac/val more closely resembled those of patients enrolled in PARADIGM-HF (e.g. younger age, higher proportion of men than women, lower systolic blood pressure) than patients in the reference cohort. Most patients were initiated on the lowest dose of sac/val irrespective of clinical setting. Significant decreases (p < 0.001) in NT-proBNP and glycated haemoglobin levels were observed following sac/val initiation. Patients prescribed sac/val had similar baseline demographics and clinical characteristics to those from PARADIGM-HF, and most patients were initiated on the lowest dose. Changes in clinical parameters before and after initiation mirrored findings from the PARADIGM-HF study.

  6. Initiation and early evolution of the coronal mass ejection on 2009 May 13 from extreme-ultraviolet and white-light observations

    International Nuclear Information System (INIS)

    Reva, A. A.; Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V.

    2014-01-01

    We present the results of the observations of a coronal mass ejection (CME) that occurred on 2009 May 13. The most important feature of these observations is that the CME was observed from the very early stage (the solar surface) up to a distance of 15 solar radii (R ☉ ). Below 2 R ☉ , we used the data from the TESIS extreme-ultraviolet telescopes obtained in the Fe 171 Å and He 304 Å lines, and above 2 R ☉ , we used the observations of the LASCO C2 and C3 coronagraphs. The CME was formed at a distance of 0.2-0.5R ☉ from the Sun's surface as a U-shaped structure, which was observed both in the 171 Å images and in the white light. Observations in the He 304 Å line showed that the CME was associated with an erupting prominence, which was not located above—as the standard model predicts—but rather in the lowest part of the U-shaped structure close to the magnetic X point. The prominence location can be explained with the CME breakout model. Estimates showed that CME mass increased with time. The CME trajectory was curved—its heliolatitude decreased with time. The CME started at a latitude of 50° and reached the ecliptic plane at distances of 2.5 R ☉ . The CME kinematics can be divided into three phases: initial acceleration, main acceleration, and propagation with constant velocity. After the CME, onset GOES registered a sub-A-class flare.

  7. Initiation and Early Evolution of the Coronal Mass Ejection on 2009 May 13 from Extreme-ultraviolet and White-light Observations

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V.

    2014-10-01

    We present the results of the observations of a coronal mass ejection (CME) that occurred on 2009 May 13. The most important feature of these observations is that the CME was observed from the very early stage (the solar surface) up to a distance of 15 solar radii (R ⊙). Below 2 R ⊙, we used the data from the TESIS extreme-ultraviolet telescopes obtained in the Fe 171 Å and He 304 Å lines, and above 2 R ⊙, we used the observations of the LASCO C2 and C3 coronagraphs. The CME was formed at a distance of 0.2-0.5R ⊙ from the Sun's surface as a U-shaped structure, which was observed both in the 171 Å images and in the white light. Observations in the He 304 Å line showed that the CME was associated with an erupting prominence, which was not located above—as the standard model predicts—but rather in the lowest part of the U-shaped structure close to the magnetic X point. The prominence location can be explained with the CME breakout model. Estimates showed that CME mass increased with time. The CME trajectory was curved—its heliolatitude decreased with time. The CME started at a latitude of 50° and reached the ecliptic plane at distances of 2.5 R ⊙. The CME kinematics can be divided into three phases: initial acceleration, main acceleration, and propagation with constant velocity. After the CME, onset GOES registered a sub-A-class flare.

  8. Initiation and early evolution of the coronal mass ejection on 2009 May 13 from extreme-ultraviolet and white-light observations

    Energy Technology Data Exchange (ETDEWEB)

    Reva, A. A.; Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V., E-mail: reva.antoine@gmail.com [Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninskij Prospekt, 119991 Moscow (Russian Federation)

    2014-10-01

    We present the results of the observations of a coronal mass ejection (CME) that occurred on 2009 May 13. The most important feature of these observations is that the CME was observed from the very early stage (the solar surface) up to a distance of 15 solar radii (R {sub ☉}). Below 2 R {sub ☉}, we used the data from the TESIS extreme-ultraviolet telescopes obtained in the Fe 171 Å and He 304 Å lines, and above 2 R {sub ☉}, we used the observations of the LASCO C2 and C3 coronagraphs. The CME was formed at a distance of 0.2-0.5R {sub ☉} from the Sun's surface as a U-shaped structure, which was observed both in the 171 Å images and in the white light. Observations in the He 304 Å line showed that the CME was associated with an erupting prominence, which was not located above—as the standard model predicts—but rather in the lowest part of the U-shaped structure close to the magnetic X point. The prominence location can be explained with the CME breakout model. Estimates showed that CME mass increased with time. The CME trajectory was curved—its heliolatitude decreased with time. The CME started at a latitude of 50° and reached the ecliptic plane at distances of 2.5 R {sub ☉}. The CME kinematics can be divided into three phases: initial acceleration, main acceleration, and propagation with constant velocity. After the CME, onset GOES registered a sub-A-class flare.

  9. Early maladaptive schemas, parental attitudes and temperament, and the evolution of borderline and avoidant personality features – the search for interdependencies

    Directory of Open Access Journals (Sweden)

    Dorota Mącik

    2018-03-01

    Full Text Available Aim: The aim of the presented study was the preliminary verification of the Jeffrey Young’s theory of early maladaptive schemas and their role in the genesis of personality disorders. According to Young, negative parental attitudes towards the child and the moderating influence of the child’s temperament can develop the schemas. Coping with schemas shapes the traits of a personality disorder. Methods: Four hundred and thirty-five subjects from a non-clinical group were tested. They completed the Young Schema Questionnaire – Short Form (YSQ-S3, Structured Clinical Interview for DSM-IV Axis II Personality Disorders – Personality Questionnaire part (SCID-II, Questionnaire of Retrospective Assessment of Parental Attitudes (KPR-Roc and Questionnaire of the Formal Characteristics of Behaviour–Temperament Inventory (FCB-TI. The SCID-II was used to determine specific features of behaviour. For the presented study borderline and avoidant personality patterns were chosen. Results: Explanatory models were created using regression analysis. The models were composed of: 1 schemas, 2 schemas, temperament, 3 schemas, parental attitudes, 4 all variables. In the case of borderline features, the models explain 26%, 30%, 35% and 36% of the variance of personality traits, respectively. The most appropriate model 3  includes the following schemas: Abandonment, Defectiveness, Self-Sacrifice, Pessimism and parental attitudes: Overdemandingness, Autonomy, Overprotection of the father and Autonomy and Inconsistency of the mother. In the case of avoidant traits, models explain 40%, 47%, 41% and 49% of the variance, respectively. For avoidant traits temperament is more important than parental attitudes – significant factors are: Social Isolation, Vulnerability to Harm, Subjugation, Self-Sacrifice, Emotional Inhibition, Pessimism and temperamental traits: Emotional Reactivity and Activity. Conclusion: The presented preliminary analysis confirms Young

  10. Thermal and chemical evolution in the early solar system as recorded by FUN CAIs: Part I - Petrology, mineral chemistry, and isotopic composition of Allende FUN CAI CMS-1

    Science.gov (United States)

    Williams, C. D.; Ushikubo, T.; Bullock, E. S.; Janney, P. E.; Hines, R. R.; Kita, N. T.; Hervig, R. L.; MacPherson, G. J.; Mendybaev, R. A.; Richter, F. M.; Wadhwa, M.

    2017-03-01

    Detailed petrologic, geochemical and isotopic analyses of a new FUN CAI from the Allende CV3 meteorite (designated CMS-1) indicate that it formed by extensive melting and evaporation of primitive precursor material(s). The precursor material(s) condensed in a 16O-rich region (δ17O and δ18O ∼ -49‰) of the inner solar nebula dominated by gas of solar composition at total pressures of ∼10-3-10-6 bar. Subsequent melting of the precursor material(s) was accompanied by evaporative loss of magnesium, silicon and oxygen resulting in large mass-dependent isotope fractionations in these elements (δ25Mg = 30.71-39.26‰, δ29Si = 14.98-16.65‰, and δ18O = -41.57 to -15.50‰). This evaporative loss resulted in a bulk composition similar to that of compact Type A and Type B CAIs, but very distinct from the composition of the original precursor condensate(s). Kinetic fractionation factors and the measured mass-dependent fractionation of silicon and magnesium in CMS-1 suggest that ∼80% of the silicon and ∼85% of the magnesium were lost from its precursor material(s) through evaporative processes. These results suggest that the precursor material(s) of normal and FUN CAIs condensed in similar environments, but subsequently evolved under vastly different conditions such as total gas pressure. The chemical and isotopic differences between normal and FUN CAIs could be explained by sorting of early solar system materials into distinct physical and chemical regimes, in conjunction with discrete heating events, within the protoplanetary disk.

  11. Understanding the formation and evolution of early-type galaxies based on newly developed single-burst stellar population synthesis models in the infrared

    Science.gov (United States)

    Roeck, Benjamin

    2015-12-01

    whole optical and infrared wavelength range between 3500 and 50000Å which are almost completely based on spectra of observed stars (apart from two gaps which were fitted with theoretical stellar spectra) . We analyze the behaviour of the near-infrared (J - K) and the Spitzer ([3.6]-[4.5]) colour calculated from our models. For ages older than 3 Gyr, both colours depend only slightly on age and metallicity. However, for younger ages, both colours become redder which is caused by the asymptotic giant branch stars contributing significantly to the light in the infrared at ages between 0.1 and 3 Gyr. Furthermore, we find a satisfactory agreement between the optical and near-infrared colours measured from our models and the colours observed from various samples of globular clusters and early-type x galaxies. However, our model predictions are only able to reproduce correctly the Spitzer ([3.6]-[4.5]) colours of older, more massive galaxies that resemble a single-burst population. Younger, less massive and more metal-poor galaxies show redder colours than our models. This mismatch can be explained by a more extended star formation history of these galaxies which includes a metal-poor or/and young population. The Spitzer ([3.6]-[4.5]) colours derived from our models also agree very well with those from most other models available in this wavelength range as long as they also correctly take into account a strong CO absorption band situated at 4.5 μm. The model predictions for colours in the near-infrared, such as (J - K), differ more between the different sets of models, depending on the underlying prescriptions for the asymptotic giant branch stellar evolutionary phase. Compared to other authors, we adopt only a moderate contribution of asymptotic giant branch stars to our models. Our stellar population models allow us also to determine mass-to-light ratios in different infrared bands. Consequently, we can confirm that the massto- light ratio determined in the Spitzer [3

  12. Evolution of Scale Worms

    DEFF Research Database (Denmark)

    Gonzalez, Brett Christopher

    ) caves, and the interstitium, recovering six monophyletic clades within Aphroditiformia: Acoetidae, Aphroditidae, Eulepethidae, Iphionidae, Polynoidae, and Sigalionidae (inclusive of the former ‘Pisionidae’ and ‘Pholoidae’), respectively. Tracing of morphological character evolution showed a high degree...... of adaptability and convergent evolution between relatively closely related scale worms. While some morphological and behavioral modifications in cave polynoids reflected troglomorphism, other modifications like eye loss were found to stem from a common ancestor inhabiting the deep sea, further corroborating...... the deep sea ancestry of scale worm cave fauna. In conclusion, while morphological characterization across Aphroditiformia appears deceptively easy due to the presence of elytra, convergent evolution during multiple early radiations across wide ranging habitats have confounded our ability to reconstruct...

  13. Education and Evolution

    DEFF Research Database (Denmark)

    Hjermitslev, Hans Henrik

    2015-01-01

    Herbert Spencer’s ideas were first introduced to a Scandinavian audience in the early 1870s when the Danish philosopher Harald Høffding published and lectured on his evolutionary philosophy. At this time, Høffding also played an important role in disseminating Charles Darwin’s theory of evolution...... and in discussing the philosophical consequences of an evolutionary worldview. In the late 1870s and 1880s several of Spencer’s works were translated into Danish and Swedish and he became a household name among liberal intellectuals who primarily discussed his views on education and evolution. His most influential...... known foreign thinkers in the general public at the time of his death in 1903. Moreover, in the decades around 1900 Spencer’s thoughts on education were part of the curricula at many colleges of education. Spencer’s ideas on evolution and education were thus widely circulated and positively received...

  14. Quantitative Phylogenomics of Within-Species Mitogenome Variation: Monte Carlo and Non-Parametric Analysis of Phylogeographic Structure among Discrete Transatlantic Breeding Areas of Harp Seals (Pagophilus groenlandicus.

    Directory of Open Access Journals (Sweden)

    Steven M Carr

    -stepping-stone biogeographic models, but not a simple 1-step trans-Atlantic model. Plots of the cumulative pairwise sequence difference curves among seals in each of the four populations provide continuous proxies for phylogenetic diversification within each. Non-parametric Kolmogorov-Smirnov (K-S tests of maximum pairwise differences between these curves indicates that the Greenland Sea population has a markedly younger phylogenetic structure than either the White Sea population or the two Northwest Atlantic populations, which are of intermediate age and homogeneous structure. The Monte Carlo and K-S assessments provide sensitive quantitative tests of within-species mitogenomic phylogeography. This is the first study to indicate that the White Sea and Greenland Sea populations have different population genetic histories. The analysis supports the hypothesis that Harp Seals comprises three genetically distinguishable breeding populations, in the White Sea, Greenland Sea, and Northwest Atlantic. Implications for an ice-dependent species during ongoing climate change are discussed.

  15. Schumpeter's Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model...

  16. Galactic evolution

    International Nuclear Information System (INIS)

    Pagel, B.

    1979-01-01

    Ideas are considered concerning the evolution of galaxies which are closely related to those of stellar evolution and the origin of elements. Using information obtained from stellar spectra, astronomers are now able to consider an underlying process to explain the distribution of various elements in the stars, gas and dust clouds of the galaxies. (U.K.)

  17. Darwinian evolution

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.; Spijkerboer, Hendrik Pieter; Koelewijn, Hans Peter

    2016-01-01

    Darwinian evolution is a central tenet in biology. Conventionally, the defi nition of Darwinian evolution is linked to a population-based process that can be measured by focusing on changes in DNA/allele frequencies. However, in some publications it has been suggested that selection represents a

  18. Cyanobacterial evolution during the Precambrian

    Science.gov (United States)

    Schirrmeister, Bettina E.; Sanchez-Baracaldo, Patricia; Wacey, David

    2016-07-01

    Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth's biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth's atmosphere and hydrosphere, triggered the evolution of plants -being ancestral to chloroplasts- and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history. However, very little is known about the early evolution of this phylum and ongoing debates about cyanobacterial fossils, biomarkers and molecular clock analyses highlight the difficulties in this field of research. Although phylogenomic analyses have provided promising glimpses into the early evolution of cyanobacteria, estimated divergence ages are often very uncertain, because of vague and insufficient tree-calibrations. Results of molecular clock analyses are intrinsically tied to these prior calibration points, hence improving calibrations will enable more precise divergence time estimations. Here we provide a review of previously described Precambrian microfossils, biomarkers and geochemical markers that inform upon the early evolution of cyanobacteria. Future research in micropalaeontology will require novel analyses and imaging techniques to improve taxonomic affiliation of many Precambrian microfossils. Consequently, a better understanding of early cyanobacterial evolution will not only allow for a more specific calibration of cyanobacterial and eubacterial phylogenies, but also provide new dates for the tree

  19. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution

    Science.gov (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei

    2017-09-01

    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  20. Evolution of the Mongol-Okhotsk suture as constrained by new Early Cretaceous palaeomagnetic data from the North China and southern Mongolia

    Science.gov (United States)

    Ren, Q.; Zhang, S.; Zhao, H.; Ding, J.; Turbold, S.; Gao, Y.; Xu, B.; Wu, Y.; Fu, H.

    2017-12-01

    The closure time of the Mongol-Okhotsk ocean and subsequent collision between the Siberia and Amuria-North China block (AMU-NCB) during the final episode of the amalgamation of Northeast Asia have been hotly debating for decades. In order to better puzzle out the controversy, we carried out new paleomagnetic investigations from the Early Cretaceous geological units on the northern margin of the NCB and southern AMU. These geological units have been well-dated. Within the Yanshan Belt of the northern margin of the NCB, we collected the 209 paleomagnetic samples from the sandstone of the middle-upper member of the Tuchengzi Formation ( 140 Ma) and the volcanic rocks of the bottom of the Yixian Formation ( 130 Ma). We drilled 225 samples from the lava flows of two sections of the Tsagantsav Formation ( 130 Ma) in the southern Mongolia of the AMU. All samples were subjected to stepwise thermal demagnetization. After removal of a recent geomagnetic field viscous component, the stable high temperature component can pass a reversal test and a fold test at 95% and 99% confidence level. They are thus interpreted as primary. The virtual geomagnetic poles observed from the 130 Ma volcanic rocks of the Yixian Formation and the Tsagantsav Formation respectively averaged out the paleosecular variation and they overlapped each other, indicating that NCB and AMU was a single unit (NCB-AMU) at that time. The paleopole from the Tuchengzi Formation ( 140 Ma) of the NCB is different from the coeval pole of the Siberia, indicating that there was a significant latitudinal convergence between the Siberia and the NCB. Compared the 130 Ma paleopoles of the NCB-AMU and Siberia, there was no significant latitudinal difference, but the relative tectonic rotation was existing. It has been suggested that the plate convergence or Mongol-Okhotsk collisional orogeny was stopped between Siberia and NCB-AMU during the 140-130 Ma. After Mongol-Okhotsk orogeny, the widely extensional rift basins were

  1. Mitogenomic analyses from ancient DNA

    DEFF Research Database (Denmark)

    Paijmans, Johanna L. A.; Gilbert, Tom; Hofreiter, Michael

    2013-01-01

    The analysis of ancient DNA is playing an increasingly important role in conservation genetic, phylogenetic and population genetic analyses, as it allows incorporating extinct species into DNA sequence trees and adds time depth to population genetics studies. For many years, these types of DNA...... analyses (whether using modern or ancient DNA) were largely restricted to the analysis of short fragments of the mitochondrial genome. However, due to many technological advances during the past decade, a growing number of studies have explored the power of complete mitochondrial genome sequences...... yielded major progress with regard to both the phylogenetic positions of extinct species, as well as resolving population genetics questions in both extinct and extant species....

  2. The evolution of shallow crustal structures in early rift-transform interaction: a case study in the northern Gulf of California.

    Science.gov (United States)

    Farangitakis, Georgios-Pavlos; van Hunen, Jeroen; Kalnins, Lara M.; Persaud, Patricia; McCaffrey, Kenneth J. W.

    2017-04-01

    end, and is an active rift. The second structural domain is a large, NE-SW-trending anticlinorium 60 km wide to the southeast of the rift zone, towards the Tiburon basin. One possibility is that it represents a positive flower structure and thus indicates a transpressional domain. However, individual structures within the broader zone are normal faults and negative flower structures, suggesting transtensional deformation, and the overall structure may be a roll-over antiform formed on a deep detachment structure. Finally, a strike-slip-dominated zone occurs along the northward continuation of the Ballenas Transform Fault. This is accompanied by the formation of submarine volcanic knolls. These patterns can be compared with seismic stratigraphy facies and structural patterns in mature transform margins and potentially give insight into their early history.

  3. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area

    Science.gov (United States)

    Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing

    2018-04-01

    The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.

  4. Second Symposium on Chemical Evolution and the Origin of Life

    International Nuclear Information System (INIS)

    Devincenzi, D.L.; Dufour, P.A.

    1986-05-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI)

  5. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  6. Earth's earliest biosphere: Its origin and evolution

    International Nuclear Information System (INIS)

    Schopf, J.W.

    1983-01-01

    Some of the subjects discussed are related to the early biogeologic history, the nature of the earth prior to the oldest known rock record, the early earth and the Archean rock record, the prebiotic organic syntheses and the origin of life, Precambrian organic geochemistry, the biochemical evolution of anaerobic energy conversion, the isotopic inferences of ancient biochemistries, Archean stromatolites providing evidence of the earth's earliest benthos, Archean microfossils, the geologic evolution of the Archean-Early Proterozoic earth, and the environmental evolution of the Archean-Early Proterozoic earth. Other topics examined are concerned with geochemical evidence bearing on the origin of aerobiosis, biological and biochemical effects of the development of an aerobic environment, Early Proterozoic microfossils, the evolution of earth's earliest ecosystems, and geographic and geologic data for processed rock samples. Attention is given to a processing procedure for abiotic samples and calculation of model atmospheric compositions, and procedures of organic geochemical analysis

  7. The chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    1986-01-01

    The chemical evolution of galaxies is reviewed with particular attention to the theoretical interpretation of the distribution and abundances of elements in stars and the interstellar medium. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. The metallicity distribution of the solar vicinity, age metallicity relationship, abundance gradients in the galaxy, external galaxies, star formation and evolution, major sites of nucleosynthesis, yields of chemical elements, chemical models, and the galactic disk, are all discussed. (U.K.)

  8. Evolution: When Dinosaurs Bested Their Early Rivals.

    Science.gov (United States)

    Brusatte, Stephen L

    2016-11-21

    A sublime fossil discovery in Brazil shows that dinosaurs and their immediate evolutionary precursors lived together for tens of millions of years before dinosaurs ultimately rose to the top. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Early Flowers and Angiosperm Evolution

    DEFF Research Database (Denmark)

    Friis, Else Marie; Crane, P.R.; Pedersen, Kaj Raunsgaard

    of the evolutionary history of flowering plants from their earliest phases in obscurity to their dominance in modern vegetation. The discussion provides comprehensive biological and geological background information, before moving on to summarise the fossil record in detail. Including previously unpublished results...

  10. Biogeochemistry: Food for early animal evolution

    Science.gov (United States)

    Knoll, Andrew H.

    2017-08-01

    A revised timeline for when algae became ecologically important among plankton in the ancient oceans reveals a link between chemical changes in those waters and the emergence of animals in marine ecosystems. See Letter p.578

  11. Evolution of Early Pleistocene fluvial systems in central Poland prior to the first ice sheet advance – a case study from the Bełchatów lignite mine

    Directory of Open Access Journals (Sweden)

    Goździk Jan

    2017-06-01

    fluvio-periglacial conditions are identified in the foreground of the advance of the oldest ice sheet into this part of central Poland. The series studied have been compared with other fluvial successions which accumulated in the Kleszczów Graben during subsequent glaciations so as to document general changes in fluvial systems as reactions to climatic evolution. Thus, a palaeoenvironmental scenario has emerged which could be considered to be characteristic of central Poland during the Early Pleistocene.

  12. Animal evolution

    DEFF Research Database (Denmark)

    Nielsen, Claus

    This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes it possi......This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes...

  13. Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition?

    Science.gov (United States)

    Graham, Jeffrey B; Lee, Heather J

    2004-01-01

    The air-breathing fishes have heuristic importance as possible models for the Paleozoic evolution of vertebrate air breathing and the transition to land. A recent hypothesis about this transition suggests that the diverse assemblage of marine amphibious fishes occurring primarily in tropical, high intertidal zone habitats are analogs of early tetrapods and that the intertidal zone, not tropical freshwater lowlands, was the springboard habitat for the Devonian land transition by vertebrates. Here we argue that selection pressures imposed by life in the intertidal zone are insufficient to have resulted in the requisite aerial respiratory capacity or the degree of separation from water required for the vertebrate land transition. The extant marine amphibious fishes, which occur mainly on rocky shores or mudflats, have reached the limit of their niche expansion onto land and remain tied to water by respiratory structures that are less efficient in air and more vulnerable to desiccation than lungs. We further argue that evolutionary contingencies actuated by the Devonian origin of the tetrapods marked a critical point of divergence for a way of life in which selection pressures would operate on the physiology, morphology, and natural history of the different vertebrate groups. While chronically hypoxic and shallow water conditions in the habitats of some primitive bony fishes and some amphibians appear similar to the conditions that prevailed in the Devonian, markedly different selection pressures have operated on other amphibians and bony fishes over the 300 million years since the vertebrate land transition. For example, both egg development and larval metamorphosis in extant amphibians are geared mainly toward compensating for the uncertainty of habitat water quality or even the absence of water by minimizing the time required to develop there. In contrast, reproduction by most intertidal (and amphibious) fishes, all of which are teleosts, remains dependent on a

  14. Representing Evolution

    DEFF Research Database (Denmark)

    Hedin, Gry

    2012-01-01

    . This article discusses Willumsen's etching in the context of evolutionary theory, arguing that Willumsen is a rare example of an artist who not only let the theory of evolution fuel his artistic imagination, but also concerned himself with a core issue of the theory, namely to what extent it could be applied...

  15. Security Evolution.

    Science.gov (United States)

    De Patta, Joe

    2003-01-01

    Examines how to evaluate school security, begin making schools safe, secure schools without turning them into fortresses, and secure schools easily and affordably; the evolution of security systems into information technology systems; using schools' high-speed network lines; how one specific security system was developed; pros and cons of the…

  16. Cepheid evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1984-05-01

    A review of the phases of stellar evolution relevant to Cepheid variables of both Types I and II is presented. Type I Cepheids arise as a result of normal post-main sequence evolutionary behavior of many stars in the intermediate to massive range of stellar masses. In contrast, Type II Cepheids generally originate from low-mass stars of low metalicity which are undergoing post core helium-burning evolution. Despite great progress in the past two decades, uncertainties still remain in such areas as how to best model convective overshoot, semiconvection, stellar atmospheres, rotation, and binary evolution as well as uncertainties in important physical parameters such as the nuclear reaction rates, opacity, and mass loss rates. The potential effect of these uncertainties on stellar evolution models is discussed. Finally, comparisons between theoretical predictions and observations of Cepheid variables are presented for a number of cases. The results of these comparisons show both areas of agreement and disagreement with the latter result providing incentive for further research

  17. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    Therefore, the platypus sequence was studied to quantify the role of gene duplication in the evolution of venom. ... Platypus venom is present only in males and is used for asserting dominance over com- petitors during the ... Certain toxin gene families are known to re- peatedly evolve through gene duplications. The rapidly ...

  18. The Evolution of Electronic Publishing.

    Science.gov (United States)

    Lancaster, F. W.

    1995-01-01

    Discusses the evolution of electronic publishing from the early 1960s when computers were used merely to produce conventional printed products to the present move toward networked scholarly publishing. Highlights include library development, periodicals on the Internet, online journals versus paper journals, problems, and the future of…

  19. Nudging Evolution?

    OpenAIRE

    Katharine N. Farrell; Andreas Thiel

    2013-01-01

    This Special Feature, "Nudging Evolution? Critical Exploration of the Potential and Limitations of the Concept of Institutional Fit for the Study and Adaptive Management of Social-Ecological Systems," aims to contribute toward the development of social theory and social research methods for the study of social-ecological system dynamics. Our objective is to help strengthen the academic discourse concerning if, and if so, how, to what extent, and in what concrete ways the concept of institut...

  20. Community Evolution

    OpenAIRE

    Saganowski, Stanisław; Bródka, Piotr; Kazienko, Przemysław

    2016-01-01

    The continuous interest in the social network area contributes to the fast development of this field. The new possibilities of obtaining and storing data facilitate deeper analysis of the entire social network, extracted social groups and single individuals as well. One of the most interesting research topic is the network dynamics and dynamics of social groups in particular, it means analysis of group evolution over time. It is the natural step forward after social community extraction. Havi...

  1. Shear-Velocity Structure and Azimuthal and Radial Anisotropy Beneath the Kaapvaal Craton From Bayesian Inversion of Surface-Wave Data: Inferences for the Architecture and Early Evolution of Cratons

    Science.gov (United States)

    Lebedev, S.; Ravenna, M.; Adam, J.

    2017-12-01

    uniform, NNE-SSW azimuth in the asthenosphere, parallel to the absolute plate motion. A mid-lithospheric discontinuity in azimuthal anisotropy is detected at around 80 km depth, this depth likely to vary somewhat laterally. The orientations of anisotropy below and above the MLD prompt intriguing inferences on the early evolution of cratons.

  2. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  3. The physics of evolution

    Science.gov (United States)

    Eigen, Manfred

    1988-12-01

    likely candidate for early evolution2,3, and of the implications on natural selection have been given in Refs. 4 and 5. The quasi-species model has been constructed in Refs. 6 and 7 using the concept of sequence space. Subsequently various methods have been invented to elucidate this concept and to relate it to the theory of critical phenomena 8-19. The instability of the quasi-species at the error threshold is discussed in Ref. 10. Evolution experiments with RNA strands in test tubes are described in Refs. 21 and 22.

  4. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  5. Mitochondrial genomes suggest rapid evolution of dwarf California Channel Islands foxes (Urocyon littoralis).

    Science.gov (United States)

    Hofman, Courtney A; Rick, Torben C; Hawkins, Melissa T R; Funk, W Chris; Ralls, Katherine; Boser, Christina L; Collins, Paul W; Coonan, Tim; King, Julie L; Morrison, Scott A; Newsome, Seth D; Sillett, T Scott; Fleischer, Robert C; Maldonado, Jesus E

    2015-01-01

    Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California's Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200-7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics.

  6. Om religion og evolution

    DEFF Research Database (Denmark)

    Geertz, Armin W.

    2011-01-01

    for kulturens kausale virkning på den menneskelige kognition og ikke mindst den hominine evolution. Ud fra, hvad vi ved om den menneskelige evolution, ses det, at den hominine evolution har en dybde, som sjældent medtænkes i teorier og hypoteser om den menneskelige evolution. Den menneskelige evolution er...

  7. Quasars and galactic evolution

    CERN Document Server

    Woltjer, L

    1978-01-01

    The evolution of quasars is discussed. It is noted that substantial clustering may be present at faint magnitudes. The relationship between quasar evolution and galactic evolution is considered. (4 refs).

  8. Evolution of galaxies

    International Nuclear Information System (INIS)

    Palous, J.

    1987-01-01

    The proceedings contain 87 papers divided into 8 chapters. The chapter Bipolar outflows and star formations contains papers on optical and infrared observations of young bipolar outflow objects and the theory thereof, and on observations of cometary nebulae. The chapter Masers and early stellar evolution discusses molecular masers and star forming regions. The following chapter contains papers on initial mass function and star formation rates in galaxies. The chapter Clusters and star formation contains data on OB associations and open star clusters, their development and observations, CO and H 2 in our galaxy, the four vector model of radio emission and an atlas of the wavelength dependence of ultraviolet extinction in the Galaxy. The most voluminous is the chapter Evolution of galaxies. It contains papers on the theories of the physical and chemodynamic development of galaxies of different types, rotation research and rotation velocities of galaxies and their arms, and on mathematical and laboratory models of morphological development. Chapter seven contains papers dealing with active extragalactic objects, quasars and active galactic nuclei. The last chapter discusses cosmological models, the theory of the inflationary universe, and presents an interpretation of the central void and X-ray background. (M.D.). 299 figs., 48 tabs., 1651 refs

  9. Nudging Evolution?

    Directory of Open Access Journals (Sweden)

    Katharine N. Farrell

    2013-12-01

    Full Text Available This Special Feature, "Nudging Evolution? Critical Exploration of the Potential and Limitations of the Concept of Institutional Fit for the Study and Adaptive Management of Social-Ecological Systems," aims to contribute toward the development of social theory and social research methods for the study of social-ecological system dynamics. Our objective is to help strengthen the academic discourse concerning if, and if so, how, to what extent, and in what concrete ways the concept of institutional "fit" might play a role in helping to develop better understanding of the social components of interlinkages between the socioeconomic-cultural and ecological dynamics of social-ecological systems. Two clearly discernible patterns provide a map of this Special Feature: (1 One pattern is the authors' positions regarding the place and role of normativity within their studies and assessment of institutional fit. Some place this at the center of their studies, exploring phenomena endogenous to the process of defining what constitutes institutional fit, whereas others take the formation of norms as a phenomenon exogenous to their study. (2 Another pattern is the type of studies presented: critiques and elaborations of the theory, methods for judging qualities of fit, and/or applied case studies using the concept. As a body of work, these contributions highlight that self-understanding of social-ecological place, whether explicit or implicit, constitutes an important part of the study object, i.e., the role of institutions in social-ecological systems, and that this is, at the same time, a crucial point of reference for the scholar wishing to evaluate what constitutes institutional fit and how it might be brought into being.

  10. Hands of early primates.

    Science.gov (United States)

    Boyer, Doug M; Yapuncich, Gabriel S; Chester, Stephen G B; Bloch, Jonathan I; Godinot, Marc

    2013-12-01

    Questions surrounding the origin and early evolution of primates continue to be the subject of debate. Though anatomy of the skull and inferred dietary shifts are often the focus, detailed studies of postcrania and inferred locomotor capabilities can also provide crucial data that advance understanding of transitions in early primate evolution. In particular, the hand skeleton includes characteristics thought to reflect foraging, locomotion, and posture. Here we review what is known about the early evolution of primate hands from a comparative perspective that incorporates data from the fossil record. Additionally, we provide new comparative data and documentation of skeletal morphology for Paleogene plesiadapiforms, notharctines, cercamoniines, adapines, and omomyiforms. Finally, we discuss implications of these data for understanding locomotor transitions during the origin and early evolutionary history of primates. Known plesiadapiform species cannot be differentiated from extant primates based on either intrinsic hand proportions or hand-to-body size proportions. Nonetheless, the presence of claws and a different metacarpophalangeal [corrected] joint form in plesiadapiforms indicate different grasping mechanics. Notharctines and cercamoniines have intrinsic hand proportions with extremely elongated proximal phalanges and digit rays relative to metacarpals, resembling tarsiers and galagos. But their hand-to-body size proportions are typical of many extant primates (unlike those of tarsiers, and possibly Teilhardina, which have extremely large hands). Non-adapine adapiforms and omomyids exhibit additional carpal features suggesting more limited dorsiflexion, greater ulnar deviation, and a more habitually divergent pollex than observed plesiadapiforms. Together, features differentiating adapiforms and omomyiforms from plesiadapiforms indicate increased reliance on vertical prehensile-clinging and grasp-leaping, possibly in combination with predatory behaviors in

  11. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  12. Galaxies in the Early Universe

    DEFF Research Database (Denmark)

    Krogager, Jens-Kristian

    Understanding how galaxies evolved from the early Universe through cosmic time is a fundamental part of modern astrophysics. In order to study this evolution it is important to sample the galaxies at various times in a consistent way through time. In regular luminosity selected samples, our...

  13. IDEA and Early Childhood Inclusion.

    Science.gov (United States)

    Smith, Barbara J.; Rapport, Mary Jane K.

    This paper discusses 1997 amendments to the Individuals with Disabilities Education Act (IDEA) that promote the inclusion of children with disabilities in general early childhood education settings. The evolution of inclusion policy is explored and changes in disability terminology are described. Amended provisions are then explained and include:…

  14. Early resistance change and stress/electromigrationmodeling in aluminium interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Schoenmaker, W.

    1997-01-01

    A complete description for early resistance change and two dimensional simulation of mechanical stress evolution in confined Al interconnects, related to the electromigration, is given in this paper. The model, combines the stress/ vacancy concentration evolution with the early resistance change of

  15. Stellar dynamics and galactic evolution

    International Nuclear Information System (INIS)

    Gilmore, G.; Kuijken, K.; Wyse, R.F.G.

    1989-01-01

    Solar neighbourhood observations have the unique capability of providing detailed study of the consequences of the early evolution of the Galaxy. Important examples of this capability include determination of the distribution of luminous and unseen mass in the Galaxy, and deduction of the rate of star formation and chemical evolution in the proto-Galaxy. We describe a new method to determine the distribution of mass in the Galactic disk. We reinvestigate determinations of the local volume mass density (the Oort limit) and show there to be serious internal inconsistencies in the available data. The most likely value for the local volume mass density, based on old stars and with kinematic models consistent with the age structure of the local disk is ∼ 0.1 solar mass pc -3 , though this value is still poorly determined. Thus, there is no significant evidence for any missing mass associated with the Galactic disk. We also reinvestigate observational data on the chemical abundances and kinematics of old stars in the Galaxy. The (Intermediate Population II) thick disk stars are most likely as old as the globular clusters, and kinematically distinct from the old disk. This favours models of thick disk origin involving a discrete disruptive event, such as the accretion of a satellite of the Galaxy early in the evolution of the Galactic disk. (author)

  16. The Evolution of Special Education in Malaysia

    Science.gov (United States)

    Lee, Lay Wah; Low, Hui Min

    2014-01-01

    This article traces the evolution of special education in Malaysia across four chronological stages: before and during the early colonial period (before 1900), pre-independence (1900-1957), post-independence (1957-1990) and modern Malaysia (1990 to the present), through document analysis. By placing current issues and trends within a historical…

  17. Developmental evolution: this side of paradise.

    Science.gov (United States)

    Graham, A; McGonnell, I

    1999-09-09

    It has long been appreciated that the evolution of snakes involved the loss of limbs and axis elongation, but their developmental basis has been obscure. It has now been shown that alterations in the deployment of Hox genes and an early block in the formation of hindlimb primordia underpin these modifications.

  18. Launching "the evolution of cooperation".

    Science.gov (United States)

    Axelrod, Robert

    2012-04-21

    This article describes three aspects of the author's early work on the evolution of the cooperation. First, it explains how the idea for a computer tournament for the iterated Prisoner's Dilemma was inspired by the artificial intelligence research on computer checkers and computer chess. Second, it shows how the vulnerability of simple reciprocity of misunderstanding or misimplementation can be eliminated with the addition of some degree of generosity or contrition. Third, it recounts the unusual collaboration between the author, a political scientist, and William D. Hamilton, an evolutionary biologist. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Archeology and evolution of QCD

    CERN Document Server

    De Rújula, A.

    2017-01-01

    These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki --an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which --to my judgement-- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.

  20. Geohistory. Global evolution of the earth

    Energy Technology Data Exchange (ETDEWEB)

    Ozima, Minoru

    1987-01-01

    A full understanding of the earth's evolution can be achieved only by considering it as a continuous process starting with the birth of the solar system. This book traces the evolution of the earth, mainly on the basis of radiogenic isotopes from long half-life parent elements, and discusses it in terms of the latest developments in astrophysical theory, which impose unique constraints on the earth's origin and early evolution. By its 'historical' nature, geohistorical study also offers a unique approach to forecasting the future of the earth, yielding useful clues for the understanding of environmental problems, such as radioactive waste disposal. This book aims to provide an outline of global evolution of the planet earth for students of general science and for earth scientists.

  1. Tectonic evolution of Mars

    International Nuclear Information System (INIS)

    Wise, D.U.; Golombek, M.P.; McGill, G.E.

    1979-01-01

    Any model for the tectonic evolution of Mars must account for two major crustal elements: the Tharsis bulge and the topographically low and lightly crated northern third of the planet. Ages determined by crater density indicate that both of these elements came into existence very early in Martian history, a conclusion that holds no matter which of the current crater density versus age curves is used. The size of these two major crustal elements and their sequential development suggest that both may be related to a global-scale internal process. It is proposed that the resurfacing of the northern third of Mars is related to subcrustal erosion and isostatic foundering during the life of a first-order convection cell. With the demise of the cell, denser segregations of metallic materials began to coalesce as a gravitatively unstable layer which finally overturned to form the core. In the overturn, lighter crustal materials was shifted laterally and underplated beneath Tharsis to cause rapid and permanent isostatic rise. This was followed by a long-lived thermal phase produced by the hot underplate and by the gravitative energy of core formation slowly making its way to the surface to produce the Tharsis volcanics

  2. Inlet Geomorphology Evolution

    Science.gov (United States)

    2015-04-01

    APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Inlet Geomorphology Evolution 5a. CONTRACT NUMBER 5b...Std Z39-18 Coastal Inlets Research Program Inlet Geomorphology Evolution The Inlet Geomorphology Evolution work unit of the CIRP evaluates

  3. Early discontinuation

    DEFF Research Database (Denmark)

    Hansen, Dorte Gilså; Felde, Lina; Gichangi, Anthony

    2007-01-01

    prevalence and rate of early discontinuation of different drugs consisting of, in this study, lipid-lowering drugs, antihypertensive drugs, antidepressants, antidiabetics and drugs against osteoporosis. Material and methods This was a register study based on prescription data covering a 4-year period...... and consisting of 470,000 citizens. For each practice and group of drug, a 1-year prevalence for 2002 and the rate of early discontinuation among new users in 2002-2003 were estimated. Early discontinuation was defined as no prescriptions during the second half-year following the first prescription....... There was a positive association between the prevalence of prescribing for the specific drugs studied (antidepressants, antidiabetics, drugs against osteoporosis and lipid-lowering drugs) and early discontinuation (r = 0.29 -0.44), but not for anti-hypertensive drugs. The analysis of the association between prevalence...

  4. Early literacy

    DEFF Research Database (Denmark)

    Jensen, Anders Skriver

    2012-01-01

    This paper discusses findings from the Danish contribution to the EASE project, a European research project running from 2008 to 2010 on early literacy in relation to the transition from childcare to school. It explores a holistic, inclusive approach to early literacy that resists a narrow...... and schools. The paper also draws on Gee’s (2001, 2003, 2004, 2008) sociocultural approach to literacy, and Honneth’s (2003, 2006) concept of recognition. Emphasizing participation and recognition as key elements, it claims that stakeholders in early liter- acy must pay attention to how diverse early literacy...... opportunities empower children, especially when these opportunities are employed in a project-based learning environ- ment in which each child is able to contribute to the shared literacy events....

  5. Positive selection on the killer whale mitogenome

    DEFF Research Database (Denmark)

    Foote, Andrew David; Morin, Phillip A.; Durban, John W.

    2011-01-01

    Mitochondria produce up to 95 per cent of the eukaryotic cell's energy. The coding genes of the mitochondrial DNA may therefore evolve under selection owing to metabolic requirements. The killer whale, Orcinus orca, is polymorphic, has a global distribution and occupies a range of ecological niches....... It is therefore a suitable organism for testing this hypothesis. We compared a global dataset of the complete mitochondrial genomes of 139 individuals for amino acid changes that were associated with radical physico-chemical property changes and were influenced by positive selection. Two such selected non...

  6. Cosmic evolution, life and man

    International Nuclear Information System (INIS)

    Oro, J.

    1995-01-01

    Among the most basic problems confronting science are those regarding the origin of the universe, the origin of life and the origin of man. This general overview starts (1) with a brief introduction addressed primarily to the Cyril Ponnamperuma Memorial. Then, the thesis is presented that the appearance of life and intelligence on our planet can be understood as the result of a number of cosmic and biological evolutionary processes, including (2) the stellar thermonuclear synthesis of the biogenic elements other than hydrogen (C, N, O, P and S), their dispersal into space, and their combination into circumstellar and interstellar molecules. (3) The formation of the Solar System and the Earth-Moon System. (4) The role of comets and carbonaceous chondrites in contributing organic matter to the primitive Earth. (5) The prebiotics synthesis of amino acids, purines, pyrimidines, fatty acids, and other biochemical monomers. (6) The prebiotic condensation reactions leading to the synthesis of oligomers such as oligonucleotides and oligopeptides, with replicative and catalytic activities. (7) The synthesis of amphiphilic lipids, and their self-assembly into liposomes with bi-layered membranes. (8) The formation of protocellular structures. (9) The activation of protocells into a functioning Darwin's ancestral cell. (10) Early evolution of life. (11) The K-T boundary event and the disappearance of dinosaurs. (12) Evolution of hominids leading to Homo sapiens. (13) The rapid development of civilization. (14) The exploration of the Solar System. (15) Life beyond our planetary system. (16) Epilogue. Peace from cosmic evolution? (Abstract only)

  7. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    International Nuclear Information System (INIS)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-01-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together

  8. Cosmic evolution, life and man

    Energy Technology Data Exchange (ETDEWEB)

    Oro, J [Houston Univ., Houston, TX (United States). Dept. of Biochemical and Biophysical Sciences

    1995-08-01

    Among the most basic problems confronting science are those regarding the origin of the universe, the origin of life and the origin of man. This general overview starts (1) with a brief introduction addressed primarily to the Cyril Ponnamperuma Memorial. Then, the thesis is presented that the appearance of life and intelligence on our planet can be understood as the result of a number of cosmic and biological evolutionary processes, including (2) the stellar thermonuclear synthesis of the biogenic elements other than hydrogen (C, N, O, P and S), their dispersal into space, and their combination into circumstellar and interstellar molecules. (3) The formation of the Solar System and the Earth-Moon System. (4) The role of comets and carbonaceous chondrites in contributing organic matter to the primitive Earth. (5) The prebiotics synthesis of amino acids, purines, pyrimidines, fatty acids, and other biochemical monomers. (6) The prebiotic condensation reactions leading to the synthesis of oligomers such as oligonucleotides and oligopeptides, with replicative and catalytic activities. (7) The synthesis of amphiphilic lipids, and their self-assembly into liposomes with bi-layered membranes. (8) The formation of protocellular structures. (9) The activation of protocells into a functioning Darwin`s ancestral cell. (10) Early evolution of life. (11) The K-T boundary event and the disappearance of dinosaurs. (12) Evolution of hominids leading to Homo sapiens. (13) The rapid development of civilization. (14) The exploration of the Solar System. (15) Life beyond our planetary system. (16) Epilogue. Peace from cosmic evolution? (Abstract only).

  9. Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates.

    Science.gov (United States)

    Aouacheria, Abdel; Geourjon, Christophe; Aghajari, Nushin; Navratil, Vincent; Deléage, Gilbert; Lethias, Claire; Exposito, Jean-Yves

    2006-12-01

    Collagens are thought to represent one of the most important molecular innovations in the metazoan line. Basement membrane type IV collagen is present in all Eumetazoa and was found in Homoscleromorpha, a sponge group with a well-organized epithelium, which may represent the first stage of tissue differentiation during animal evolution. In contrast, spongin seems to be a demosponge-specific collagenous protein, which can totally substitute an inorganic skeleton, such as in the well-known bath sponge. In the freshwater sponge Ephydatia mülleri, we previously characterized a family of short-chain collagens that are likely to be main components of spongins. Using a combination of sequence- and structure-based methods, we present evidence of remote homology between the carboxyl-terminal noncollagenous NC1 domain of spongin short-chain collagens and type IV collagen. Unexpectedly, spongin short-chain collagen-related proteins were retrieved in nonsponge animals, suggesting that a family related to spongin constitutes an evolutionary sister to the type IV collagen family. Formation of the ancestral NC1 domain and divergence of the spongin short-chain collagen-related and type IV collagen families may have occurred before the parazoan-eumetazoan split, the earliest divergence among extant animal phyla. Molecular phylogenetics based on NC1 domain sequences suggest distinct evolutionary histories for spongin short-chain collagen-related and type IV collagen families that include spongin short-chain collagen-related gene loss in the ancestors of Ecdyzosoa and of vertebrates. The fact that a majority of invertebrates encodes spongin short-chain collagen-related proteins raises the important question to the possible function of its members. Considering the importance of collagens for animal structure and substratum attachment, both families may have played crucial roles in animal diversification.

  10. Cosmic Evolution: The History of an Idea

    Science.gov (United States)

    Dick, S. J.

    2004-12-01

    Cosmic evolution has become the conceptual framework within which modern astronomy is undertaken, and is the guiding principle of major NASA programs such as Origins and Astrobiology. While there are 19th- and early 20th century antecedents, as in the work of Robert Chambers, Herbert Spencer and Lawrence Henderson, it was only at mid-20th century that full-blown cosmic evolution began to be articulated and accepted as a research paradigm extending from the Big Bang to life, intelligence and the evolution of culture. Harlow Shapley was particularly important in spreading the idea to the public in the 1950s, and NASA embraced the idea in the 1970s as part of its SETI program and later its exobiology and astrobiology programs. Eric Chaisson, Carl Sagan and others were early proponents of cosmic evolution, and it continues to be elaborated in ever more subtle form as a research program and a philosophy. It has even been termed "Genesis for the 21st century." This paper documents the origin and development of the idea and offers a glimpse of where it could lead if cultural evolution is taken seriously, possibly leading to the concept of a postbiological universe.

  11. Conceptual Ecology of the Evolution Acceptance among Greek Education Students: Knowledge, Religious Practices and Social Influences

    Science.gov (United States)

    Athanasiou, Kyriacos; Papadopoulou, Penelope

    2012-01-01

    In this study, we explored some of the factors related to the acceptance of evolution theory among Greek university students training to be teachers in early childhood education, using conceptual ecology for biological evolution as a theoretical framework. We examined the acceptance of evolution theory and we also looked into the relationship…

  12. Age of acquisition predicts rate of lexical evolution.

    Science.gov (United States)

    Monaghan, Padraic

    2014-12-01

    The processes taking place during language acquisition are proposed to influence language evolution. However, evidence demonstrating the link between language learning and language evolution is, at best, indirect, constituting studies of laboratory-based artificial language learning studies or computational simulations of diachronic change. In the current study, a direct link between acquisition and evolution is established, showing that for two hundred fundamental vocabulary items, the age at which words are acquired is a predictor of the rate at which they have changed in studies of language evolution. Early-acquired words are more salient and easier to process than late-acquired words, and these early-acquired words are also more stably represented within the community's language. Analysing the properties of these early-acquired words potentially provides insight into the origins of communication, highlighting features of words that have been ultra-conserved in language. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. E-modulus evolution and its relation to solids formation of pastes from commercial cements

    DEFF Research Database (Denmark)

    Maia, Lino; Azenha, Miguel; Geiker, Mette

    2012-01-01

    Models for early age E-modulus evolution of cement pastes are available in the literature, but their validation is limited. This paper provides correlated measurements of early age evolution of E-modulus and hydration of pastes from five commercial cements differing in limestone content. A recently...

  14. Has Human Evolution Stopped?

    Directory of Open Access Journals (Sweden)

    Alan R. Templeton

    2010-07-01

    Full Text Available It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important implications for infectious diseases, Mendelian genetic diseases, and systemic diseases in current human populations. Moreover, evolution proceeds by mechanisms other than natural selection. The recent growth in human population size has greatly increased the reservoir of mutational variants in the human gene pool, thereby enhancing the potential for human evolution. The increase in human population size coupled with our increased capacity to move across the globe has induced a rapid and ongoing evolutionary shift in how genetic variation is distributed within and among local human populations. In particular, genetic differences between human populations are rapidly diminishing and individual heterozygosity is increasing, with beneficial health effects. Finally, even when cultural evolution eliminates selection on a trait, the trait can still evolve due to natural selection on other traits. Our traits are not isolated, independent units, but rather are integrated into a functional whole, so selection on one trait can cause evolution to occur on another trait, sometimes with mildly maladaptive consequences.

  15. Complete mitochondrial genome sequence of Indian medium carp, Labeo gonius (Hamilton, 1822) and its comparison with other related carp species.

    Science.gov (United States)

    Behera, Bijay Kumar; Kumari, Kavita; Baisvar, Vishwamitra Singh; Rout, Ajaya Kumar; Pakrashi, Sudip; Paria, Prasenjet; Jena, J K

    2017-01-01

    In the present study, the complete mitochondrial genome sequence of Labeo gonius is reported using PGM sequencer (Ion Torrent). The complete mitogenome of L. gonius is obtained by the de novo sequences assembly of genomic reads using the Torrent Mapping Alignment Program (TMAP) which is 16 614 bp in length. The mitogenome of L. gonius comprised of 13 protein-coding genes, 22 tRNAs, 2 rRNA genes, and D-loop as control region along with gene order and organization, being similar to most of other fish mitogenomes of NCBI databases. The mitogenome in the present study has 99% similarity to the complete mitogenome sequence of Labeo fimbriatus, as reported earlier. The phylogenetic analysis of Cypriniformes depicted that their mitogenomes are closely related to each other. The complete mitogenome sequence of L. gonius would be helpful in understanding the population genetics, phylogenetics, and evolution of Indian Carps.

  16. Geohistory: Global evolution of the earth

    International Nuclear Information System (INIS)

    Ozima, M.

    1987-01-01

    This book traces the evolution of the Earth, mainly on the basis of radiogenic isotopes from half-life parent elements, and discusses it in terms of the latest developments in astrophysical theory, which impose unique constraints on the origin and early evolution of the earth. Owing to its historical nature, this geohistorical study offers an approach to forecasting the future of the Earth yielding clues for the understanding of environmental problems, such as radioactive waste to disposal and climate changes due to CO/sub 2/ increase

  17. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.

    2013-04-08

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution