WorldWideScience

Sample records for early malaria vaccine

  1. Vaccines for preventing malaria (blood-stage).

    Science.gov (United States)

    Graves, P; Gelband, H

    2006-10-18

    0.57; 719 participants) while those with the other main subtype, FC27, were not (720 participants). The MSP/RESA (Combination B) vaccine shows promise as a way to reduce the severity of malaria episodes, but the effect of the vaccine is MSP2 variant-specific. Pretreatment for malaria during a vaccine trial makes the results difficult to interpret, particularly with the relatively small sample sizes of early trials. The results show that blood-stage vaccines may play a role and merit further development.

  2. Malaria vaccines: the case for a whole-organism approach.

    Science.gov (United States)

    Pinzon-Charry, Alberto; Good, Michael F

    2008-04-01

    Malaria is a significant health problem causing morbidity and mortality worldwide. Vaccine development has been an imperative for decades. However, the intricacy of the parasite's lifecycle coupled with the lack of evidence for robust infection-induced immunity has made vaccine development exceptionally difficult. To review some of the key advances in the field and discuss potential ways forward for a whole-organism vaccine. The authors searched PubMed using the words 'malaria and vaccine'. We searched for manuscripts detailing antigen characterisation and vaccine strategies with emphasis on subunit versus whole-parasite approaches. Abstracts were selected and relevant articles are discussed. The searches were not restricted by language or date. The early cloning of malaria antigens has fuelled rapid development of subunit vaccines. However, the disappointing results of clinical trials have resulted in reappraisal of current strategies. Whole-parasite approaches have re-emerged as an alternative strategy. Immunization using radiation or genetically attenuated sporozoites has been shown to result in sterile immunity and immunization with blood-stage parasites curtailed by antimalarials has demonstrated delayed parasitemia in rodent models as well as in human malaria.

  3. Important advances in malaria vaccine research

    Directory of Open Access Journals (Sweden)

    Priyanka Jadhav

    2012-01-01

    Full Text Available Malaria is one of the most widespread parasitic infection in Asian countries affecting the poor of the poor. In an effort to develop an effective vaccine for the treatment of malaria, various attempts are being made worldwide. If successful, such a vaccine can be effective for treatment of both Plasmodium vivax and Plasmodium falciparum. This would also be able to avoid complications such as drug resistance, resistance to insecticides, nonadherence to the treatment schedule, and eventually high cost of treatment in the resource-limited settings. In the current compilation, the details from the literature were collected by using PubMed and Medline as search engines and searched for terms such as malaria, vaccine, and malaria treatment. This review collates and provides glimpses of the information on the recent malaria vaccine development. The reader will be taken through the historical perspective followed by the approaches to the malaria vaccine development from pre-erythrocytic stage vaccines, asexual stage vaccines, transmission blocking vaccines, etc. Looking at the current scenario of the malaria and treatment strategies, it is an absolute need of an hour that an effective malaria vaccine should be developed. This would bring a revolutionary breakthrough in the treatment modalities especially when there is increasing emergence of resistance to existing drug therapy. It would be of great purpose to serve those living in malaria endemic region and also for travelers which are nonimmune and coming to malaria endemic region. As infection by P. vivax is more prevalent in India and other Asian subcontinent and is often prominent in areas where elimination is being attempted, special consideration is required of the role of vaccines in blocking transmission, regardless of the stages being targeted. Development of vaccines is feasible but with the support of private sector and government organization in terms of regulatory and most importantly

  4. Steady progress toward a malaria vaccine.

    Science.gov (United States)

    Lyke, Kirsten E

    2017-10-01

    Great progress has been made in reducing malaria morbidity and mortality, yet the parasite continues to cause a startling 200 million infections and 500 000 deaths annually. Malaria vaccine development is pushing new boundaries by steady advancement toward a licensed product. Despite 50 years of research, the complexity of Plasmoidum falciparum confounds all attempts to eradicate the organism. This very complexity has pushed the boundaries of vaccine development to new heights, yet it remains to be seen if an affordable vaccine can provide durable and high-level protection. Novel vaccines such as RTS,S/AS01E are on the edge of licensure, but old techniques have resurged with the ability to deliver vialed, whole organism vaccines. Novel adjuvants, multistage/multiantigen approaches and transmission blocking vaccines all contribute to a multipronged battle plan to conquer malaria. Vaccines are the most cost-effective tools to control infectious diseases, yet the complexity of malaria has frustrated all attempts to develop an effective product. This review concentrates on recent advances in malaria vaccine development that lend hope that a vaccine can be produced and malaria eradicated.

  5. Advances and challenges in malaria vaccine development.

    Science.gov (United States)

    Crompton, Peter D; Pierce, Susan K; Miller, Louis H

    2010-12-01

    Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

  6. Malaria vaccines and their potential role in the elimination of malaria

    Directory of Open Access Journals (Sweden)

    Greenwood Brian M

    2008-12-01

    Full Text Available Abstract Research on malaria vaccines is currently directed primarily towards the development of vaccines that prevent clinical malaria. Malaria elimination, now being considered seriously in some epidemiological situations, requires a different vaccine strategy, since success will depend on killing all parasites in the community in order to stop transmission completely. The feature of the life-cycles of human malarias that presents the greatest challenge to an elimination programme is the persistence of parasites as asymptomatic infections. These are an important source from which transmission to mosquitoes can occur. Consequently, an elimination strategy requires a community-based approach covering all individuals and not just those who are susceptible to clinical malaria. The progress that has been made in development of candidate malaria vaccines is reviewed. It is unlikely that many of these will have the efficacy required for complete elimination of parasites, though they may have an important role to play as part of future integrated control programmes. Vaccines for elimination must have a high level of efficacy in order to stop transmission to mosquitoes. This might be achieved with some pre-erythrocytic stage candidate vaccines or by targeting the sexual stages directly with transmission-blocking vaccines. An expanded malaria vaccine programme with such objectives is now a priority.

  7. Potency assay design for adjuvanted recombinant proteins as malaria vaccines.

    Science.gov (United States)

    Giersing, Birgitte K; Dubovsky, Filip; Saul, Allan; Denamur, Francoise; Minor, Philip; Meade, Bruce

    2006-05-15

    Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.

  8. Malaria vaccine offers hope. International / Africa.

    Science.gov (United States)

    1995-03-13

    Colombian professor Manuel Patarroyo developed a new malaria vaccine (SPF66). In February 1995, WHO and the Colombian government agreed to establish a manufacturing plant in Colombia for mass production of SPF66. This vaccine is likely to be available to persons in Africa, where 90% of all annual global cases live. In fact, Africa witnesses one million of 1.5 million annual malaria cases. Many children die from malaria. An extensive clinical trial of the SPF66 vaccine in Colombia achieved a 22-77% protection rate. The young and the very old had the high protection rates. A series of human clinical trials in the Gambia and Tanzania indicate that SPF66 produces a strong immune response against malaria without any harmful side effects. The results of field tests in the Gambia and Thailand and of trials in Colombia are expected in 1995. If the vaccine could reduce the incidence of malaria by just 50%, the lives of as many as 500,000 African children could be saved. SPF66 contains a combination of synthetic peptides (=or 2 amino acids). Mass production would make it affordable (estimated $5/injection). At least five other malaria vaccines hold promise and are ready for human testing in endemic countries. SPF66 is approximately three years ahead of all other promising malaria vaccines. 20 more vaccines are in the development stage. The large scale production of SPF66 in Colombia could begin within three years. Professor Patarroyo has financed his 12-year-old research himself because he wants to protect the lives of persons in developing countries. In 1992, the Congo's president petitioned the international community at the WHO summit in Amsterdam to join the fight against malaria since it is now in a position to defeat malaria since it finished the cold war.

  9. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  10. Optimal control for Malaria disease through vaccination

    Science.gov (United States)

    Munzir, Said; Nasir, Muhammad; Ramli, Marwan

    2018-01-01

    Malaria is a disease caused by an amoeba (single-celled animal) type of plasmodium where anopheles mosquito serves as the carrier. This study examines the optimal control problem of malaria disease spread based on Aron and May (1982) SIR type models and seeks the optimal solution by minimizing the prevention of the spreading of malaria by vaccine. The aim is to investigate optimal control strategies on preventing the spread of malaria by vaccination. The problem in this research is solved using analytical approach. The analytical method uses the Pontryagin Minimum Principle with the symbolic help of MATLAB software to obtain optimal control result and to analyse the spread of malaria with vaccination control.

  11. Overview of Plant-Made Vaccine Antigens against Malaria

    Directory of Open Access Journals (Sweden)

    Marina Clemente

    2012-01-01

    Full Text Available This paper is an overview of vaccine antigens against malaria produced in plants. Plant-based expression systems represent an interesting production platform due to their reduced manufacturing costs and high scalability. At present, different Plasmodium antigens and expression strategies have been optimized in plants. Furthermore, malaria antigens are one of the few examples of eukaryotic proteins with vaccine value expressed in plants, making plant-derived malaria antigens an interesting model to analyze. Up to now, malaria antigen expression in plants has allowed the complete synthesis of these vaccine antigens, which have been able to induce an active immune response in mice. Therefore, plant production platforms offer wonderful prospects for improving the access to malaria vaccines.

  12. MALARIA VACCINE: MYTH OR REALITY?

    African Journals Online (AJOL)

    Femi Olaleye

    Malaria currently remains the highest killer disease nationwide despite existing control measures. Malaria vaccine ... that malaria could be eliminated or at least controlled. However, because of changes in vector behaviour, drug resistance, manpower constraints for public ..... Although animal host models are different from ...

  13. APPROACHING THE TARGET: THE PATH TOWARDS AN EFFECTIVE MALARIA VACCINE

    Directory of Open Access Journals (Sweden)

    Alberto L. García-Basteiro

    2012-01-01

    Full Text Available Eliciting an effective malaria vaccine has been the goal of the scientific community for many years. A malaria vaccine, added to existing tools and strategies, would further prevent and decrease the unacceptable malaria morbidity and mortality burden. Great progress has been made over the last decade, with some vaccine candidates in the clinical phases of development. The RTS,S malaria vaccine candidate, based on a recombinant P. falciparum protein, is the most advanced of such candidates, currently undergoing a large phase III trial. RTS,S has consistently shown an efficacy of around 50% against the first clinical episode of malaria, with protection in some cases extending up to 4 years of duration. Thus, it is hoped that this candidate vaccine will eventually become the first licensed malaria vaccine. This first vaccine against a human parasite is a groundbreaking achievement, but improved malaria vaccines conferring higher protection will be needed if the aspiration of malaria eradication is to be achieved

  14. WHO policy development processes for a new vaccine: case study of malaria vaccines

    Directory of Open Access Journals (Sweden)

    Cheyne James

    2010-06-01

    Full Text Available Abstract Background Recommendations from the World Health Organization (WHO are crucial to inform developing country decisions to use, or not, a new intervention. This article analysed the WHO policy development process to predict its course for a malaria vaccine. Methods The decision-making processes for one malaria intervention and four vaccines were classified through (1 consultations with staff and expert advisors to WHO's Global Malaria Programme (GMP and Immunization, Vaccines and Biologicals Department (IVB; (2 analysis of the procedures and recommendations of the major policy-making bodies of these groups; (3 interviews with staff of partnerships working toward new vaccine availability; and (4 review and analyses of evidence informing key policy decisions. Case description WHO policy formulation related to use of intermittent preventive treatment in infancy (IPTi and the following vaccine interventions: Haemophilus influenzae type b conjugate vaccine (Hib, pneumococcal conjugate vaccine (PCV, rotavirus vaccine (RV, and human papillomavirus vaccine (HPV, five interventions which had relatively recently been through systematic WHO policy development processes as currently constituted, was analysed. Required information was categorized in three areas defined by a recent WHO publication on development of guidelines: safety and efficacy in relevant populations, implications for costs and population health, and localization of data to specific epidemiological situations. Discussion and evaluation Data needs for a malaria vaccine include safety; the demonstration of efficacy in a range of epidemiological settings in the context of other malaria prevention interventions; and information on potential rebound in which disease increases subsequent to the intervention. In addition, a malaria vaccine would require attention to additional factors, such as costs and cost-effectiveness, supply and demand, impact of use on other interventions, and

  15. A research agenda for malaria eradication: vaccines.

    NARCIS (Netherlands)

    Abdulla, S.; Agre, P.; Alonso, P.L.; Arevalo-Herrera, M.; Bassat, Q.; Binka, F.; Chitnis, C.; Corradin, G.; Cowman, A. F.; Culpepper, J.; Portillo, H. del; Dinglasan, R.R.; Duffy, P.; Gargallo, D.; Greenwood, B.; Guinovart, C.; Hall, B.F.; Herrera, S.; Hoffman, S.; Lanzavecchia, A.; Leroy, O.; Levine, M.M.; Loucq, C.; Mendis, K.; Milman, J.; Moorthy, V.S.; Pleuschke, G.; Plowe, C.V.; Reed, S.; Sauerwein, R.W.; Saul, A.; Schofield, L.; Sinden, R.R.; Stubbs, J.; Villafana, T.; Wirth, D.; Yadav, P.; Ballou, R.; Brown, G.; Birkett, A.; Brandt, W.; Brooks, A.; Carter, T.; Golden, A.; Lee, C.; Nunes, J.; Puijalon, O.; Raphael, T.; Richards, H.; Warren, C.; Woods, C.

    2011-01-01

    Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if

  16. Malaria Vaccine Development: The Need for Novel Approach-es: A Review Article

    Directory of Open Access Journals (Sweden)

    Shima MAHMOUDI

    2018-03-01

    Full Text Available Background: Although rigorous efforts have substantially decreased the malaria burden through decades, it still threatens the lives of millions of children. Development of an effective vaccine can provide important approach in malaria control strategies. Unfortunately, development of an effective vaccine for falciparum malaria has been hindered by the extreme complexity of malaria parasite biology, complex and diverse parasite genomes, and immune evasion by the parasites as well as the intricate nature of the parasites infection cycle. The aim of this review was to discuss the different approaches to malaria vaccine development until now.Methods: Scientific databases, including MEDLINE (via PubMed and SCOPUS were searched up to 30 Jan 2017 and the articles regarding malaria vaccine development were taken into examination.Results: Several strategies for malaria vaccine development including pre-erythrocytic vaccines, antibody-based subunit vaccines, vectored vaccines, whole sporozoite vaccines, genetically Attenuated parasites and sporozoite subunit vaccine, erythrocytic vaccines, sexual stage vaccine, transmission-blocking vaccine as well as synthetic peptides and conjugate vaccine has been introduced. However, the success has been limited thus far.Conclusion: Although development of malaria vaccine over the past 70 year has been continued, the discovery, development, and licensing of a malaria vaccine formulation, which meets safety, affordability, accessibility, applicability, and efficacy has not yet been achieved.

  17. Malaria vaccines: immunity, models and monoclonal antibodies

    DEFF Research Database (Denmark)

    Hviid, Lars; Barfod, Lea

    2008-01-01

    Although experts in the field have agreed on the malaria vaccine technology roadmap that should be followed (http://www.malariavaccineroadmap.net/), the path towards an effective malaria vaccine remains littered with intellectual and practical pot-holes. The animal models that are currently...

  18. Novel approaches to identify protective malaria vaccine candidates

    Directory of Open Access Journals (Sweden)

    Wan Ni eChia

    2014-11-01

    Full Text Available Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood-stage or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50% protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.

  19. Efficacy and Safety of the RTS,S/AS01 Malaria Vaccine during 18 Months after Vaccination

    DEFF Research Database (Denmark)

    Theander, Thor Grundtvig; Lusingu, John Peter Andrea

    2014-01-01

    BACKGROUND: A malaria vaccine could be an important addition to current control strategies. We report the safety and vaccine efficacy (VE) of the RTS,S/AS01 vaccine during 18 mo following vaccination at 11 African sites with varying malaria transmission. METHODS AND FINDINGS: 6,537 infants aged 6......-12 wk and 8,923 children aged 5-17 mo were randomized to receive three doses of RTS,S/AS01 or comparator vaccine. VE against clinical malaria in children during the 18 mo after vaccine dose 3 (per protocol) was 46% (95% CI 42% to 50%) (range 40% to 77%; VE, p... after vaccine dose 1 (intention to treat [ITT]) was 45% (95% CI 41% to 49%). VE against severe malaria, malaria hospitalization, and all-cause hospitalization was 34% (95% CI 15% to 48%), 41% (95% CI 30% to 50%), and 19% (95% CI 11% to 27%), respectively (ITT). VE against clinical malaria in infants...

  20. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G

    2002-01-01

    Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited to statistic......Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited...... to statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM......) in particular, to provide robust evidence of a causal link between the two in order to allow efficient and evidence-based identification of candidate antigens for malaria vaccine development....

  1. Clinical development of placental malaria vaccines and immunoassays harmonization

    DEFF Research Database (Denmark)

    Chêne, Arnaud; Houard, Sophie; Nielsen, Morten A

    2016-01-01

    Placental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies...... that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently...... in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays...

  2. Review Article: Prospect and Progress of Malaria Vaccine ...

    African Journals Online (AJOL)

    Malaria kills one child every 30 seconds in Africa. The development of a safe vaccine remains an urgent unmet need which could greatly control and even lead to the eradication of the disease. The success recorded in the recent vaccine trials have given some ray of hope that a safe and effective vaccine against malaria will ...

  3. RTS,S malaria vaccine development: progress and considerations for postapproval introduction

    Directory of Open Access Journals (Sweden)

    Asante KP

    2016-06-01

    Full Text Available Kwaku Poku Asante, George Adjei, Yeetey Enuameh, Seth Owusu-Agyei Kintampo Health Research Centre, Kintampo, Brong Ahafo Region, Ghana Abstract: Though the burden of malaria has decreased in the last decade in some sub-Saharan African countries, it is still high in others, and there is no malaria vaccine in use. The development of malaria vaccines in combination with current control programs could be effective in reducing the malaria burden. In this paper, we review and discuss the progress made in the RTS,S malaria vaccine development and considerations for its postapproval process. We conclude that the development of malaria vaccines has been a long process confronted with challenges of funding, difficulty in identifying malaria antigens that correlate with protection, and development of adjuvant systems among others. The scientific approval of the vaccine by the European Medicines Agency in July 2015 and subsequent recommendations for pilot implementation studies by the World Health Organization made history as the first human parasite vaccine. It is also a major public health achievement as the vaccine has the potential to prevent thousands of malaria cases. However, there are implementation challenges such as cold chain systems, community acceptance, and monitoring of adverse events post-licensure that need to be carefully addressed. Keywords: malaria, vaccines, challenges, introduction, Africa, implementation considerations 

  4. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...... vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard......, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite...

  5. Shape of Key Malaria Protein Could Help Improve Vaccine Efficacy

    Science.gov (United States)

    ... Featured Diseases & Conditions Food Allergy HIV/AIDS Influenza Malaria Respiratory Syncytial Virus (RSV) Tuberculosis Zika Virus Find ... To Volunteer for Vaccine Research Studies Volunteer for Malaria Vaccine Research Volunteer Profiles Q&A: Vaccine Clinical ...

  6. Malaria vaccines: lessons from field trials

    Directory of Open Access Journals (Sweden)

    Claudio J. Struchiner

    1994-07-01

    Full Text Available Malaria vaccine candidates have already been tested and new trials are being carried out. We present a brief description of specific issues of validity that are relevant when assessing vaccine efficacy in the field and illustrate how the application of these principles might improve our interpretation of the data being gathered in actual malaria vaccine field trials. Our discussion assumes that vaccine evaluation shares the same general principles of validity with epidemiologic causal inference, i.e., the process of drawing inferences from epidemiologic data aiming at the identification of causes of diseases. Judicious exercise of these principles indicates that, for meaningful interpretation, measures of vaccine efficacy require definitions based upon arguments conditional on the amount of exposure to infection, and specification of the initial and final states in which one believes the effect of interest takes place.

  7. Stakeholders' opinions and questions regarding the anticipated malaria vaccine in Tanzania.

    Science.gov (United States)

    Mtenga, Sally; Kimweri, Angela; Romore, Idda; Ali, Ali; Exavery, Amon; Sicuri, Elisa; Tanner, Marcel; Abdulla, Salim; Lusingu, John; Kafuruki, Shubi

    2016-04-05

    Within the context of combined interventions, malaria vaccine may provide additional value in malaria prevention. Stakeholders' perspectives are thus critical for informed recommendation of the vaccine in Tanzania. This paper presents the views of stakeholders with regards to malaria vaccine in 12 Tanzanian districts. Quantitative and qualitative methods were employed. A structured questionnaire was administered to 2123 mothers of under five children. Forty-six in-depth interviews and 12 focus group discussions were conducted with teachers, religious leaders, community health workers, health care professionals, and scientists. Quantitative data analysis involved frequency distributions and cross tabulations using Chi square test to determine the association between malaria vaccine acceptability and independent variables. Qualitative data were analysed thematically. Overall, 84.2% of the mothers had perfect acceptance of malaria vaccine. Acceptance varied significantly according to religion, occupation, tribe and region (p Stakeholders had high acceptance and positive opinions towards the combined use of the anticipated malaria vaccine and ITNs, and that their acceptance remains high even when the vaccine may not provide full protection, this is a crucial finding for malaria vaccine policy decisions in Tanzania. An inclusive communication strategy should be designed to address the stakeholders' questions through a process that should engage and be implemented by communities and health care professionals. Social cultural aspects associated with vaccine acceptance should be integrated in the communication strategy.

  8. Review Article: Vaccine for Malaria – How Far? | Oyeyinka | African ...

    African Journals Online (AJOL)

    This is a review of the progress made so far in the effort to produce a malaria vaccine. The problems that have made it impossible to get an effective vaccine for malaria are discussed. Also examined are the current efforts to produce the vaccine and the prospects for an effective vaccine in the future. Key words: Vaccine ...

  9. A multilateral effort to develop DNA vaccines against falciparum malaria.

    Science.gov (United States)

    Kumar, Sanjai; Epstein, Judith E; Richie, Thomas L; Nkrumah, Francis K; Soisson, Lorraine; Carucci, Daniel J; Hoffman, Stephen L

    2002-03-01

    Scientists from several organizations worldwide are working together to develop a multistage, multigene DNA-based vaccine against Plasmodium falciparum malaria. This collaborative vaccine development effort is named Multi-Stage DNA-based Malaria Vaccine Operation. An advisory board of international experts in vaccinology, malariology and field trials provides the scientific oversight to support the operation. This article discusses the rationale for the approach, underlying concepts and the pre-clinical development process, and provides a brief outline of the plans for the clinical testing of a multistage, multiantigen malaria vaccine based on DNA plasmid immunization technology.

  10. Willingness to pay for three hypothetical malaria vaccines in Nigeria.

    Science.gov (United States)

    Udezi, Waka Anthony; Usifoh, Cyril Odianose; Ihimekpen, Omoyeme Oluwatosin

    2010-08-01

    Unlike some African countries that have reported a approximately 50% reduction in malaria deaths in recent years, Nigeria has shown no evidence of a systematic decline in malaria burden. An important and sustainable reduction in malaria burden cannot be achieved unless an effective and inexpensive malaria vaccine becomes available. The goals of this study were to determine the willingness to pay (WTP) for 3 hypothetical malaria vaccines with different levels of protection (in years), effectiveness, and adverse effects; and to identify factors that influence the price that people are willing to pay in Nigeria. With the aid of a questionnaire, a contingent valuation method using payment cards was used to elicit WTP values for 3 hypothetical malaria vaccines. Payment cards contained both a description of the features of the vaccine being evaluated and price options. The 3 hypothetical vaccines had the following characteristics: vaccine A was 75% effective, protected for 3 years, and was well tolerated; vaccine B was 85% effective, protected for 6 years, and was less well tolerated than vaccine A; and vaccine C was 95% effective and protected for 12 years, but was the least well tolerated. Participants consisted of a convenience sample of individuals who were at the pharmacy waiting area of the state-owned hospitals located in Benin City and Warri, Nigeria. Every third patient or caregiver who was in the pharmacy to fill a prescription was asked to take part in the study as they waited to see the pharmacist. If consent was not granted, the next person in line was approached to be interviewed. Linear multiple regression analysis and nonparametric Kruskal-Wallis, Mann-Whitney, or chi(2) test was applied in inferential analysis, where necessary, to investigate the effects of sociodemographic factors on WTP. Prices on payment cards were expressed in Nigerian naira (NGN 150.00 approximately US $1.00), but study results were expressed in US dollars. A total of 359

  11. Community perceptions of malaria and vaccines in two districts of Mozambique

    Directory of Open Access Journals (Sweden)

    Bingham Allison

    2012-11-01

    Full Text Available Abstract Background Malaria is a leading cause of mortality and morbidity in Mozambique, with nearly three-quarters of the country’s malaria-related deaths occurring in children younger than five years. A malaria vaccine is not yet available, but planning is underway for a possible introduction, as soon as one becomes available. In an effort to inform the planning process, this study explored sociocultural and health communications issues among individuals at the community level who are both responsible for decisions about vaccine use and who are likely to influence decisions about vaccine use. Methods Researchers conducted a qualitative study in two malaria-endemic districts in southern Mozambique. Using criterion-based sampling, they conducted 23 focus group discussions and 26 in-depth interviews. Implementation was guided by the engagement of community stakeholders. Results Community members recognize that malaria contributes to high death rates and affects the workforce, school attendance, and the economy. Vaccines are seen as a means to reduce the threat of childhood illnesses and to keep children and the rest of the community healthy. Perceived constraints to accessing vaccine services include long queues, staff shortages, and a lack of resources at health care facilities. Local leaders play a significant role in motivating caregivers to have their children vaccinated. Participants generally felt that a vaccine could help to prevent malaria, although some voiced concern that the focus was only on young children and not on older children, pregnant women, and the elderly. Probed on their understanding of vaccine efficacy, participants voiced various views, including the perception that while some vaccines did not fully prevent disease they still had important benefits. Overall, it would be essential for local leaders to be involved in the design of specific messages for a future malaria vaccine communications strategy, and for those

  12. Immunoinformatics of Placental Malaria Vaccine Development

    DEFF Research Database (Denmark)

    Jessen, Leon Eyrich

    Malaria is an infectious disease caused by a protozoan parasite of the genus Plasmodium, which is transferred by female Anopheles mosquitos. WHO estimates that in 2012 there were 207 million cases of malaria, of which 627,000 were fatal. People living in malaria-endemic areas, gradually acquire...... immunity with multiple infections. Placental malaria (PM) is caused by P. falciparum sequestering in the placenta of pregnant women due to the presence of novel receptors in the placenta. An estimated 200,000 infants die a year as a result of PM. In 2004 the specific protein responsible...... and development in the field of placental malaria vaccine development....

  13. Pre-clinical and clinical development of the first placental malaria vaccine

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Salanti, Ali; Theander, Thor G

    2017-01-01

    the condition.  Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical...... vaccine development. However, all papers from these searches were not systematically included.  Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy...

  14. Quantitative PCR evaluation of cellular immune responses in Kenyan children vaccinated with a candidate malaria vaccine.

    Directory of Open Access Journals (Sweden)

    Jedidah Mwacharo

    2009-12-01

    Full Text Available The T-cell mediated immune response plays a central role in the control of malaria after natural infection or vaccination. There is increasing evidence that T-cell responses are heterogeneous and that both the quality of the immune response and the balance between pro-inflammatory and regulatory T-cells determines the outcome of an infection. As Malaria parasites have been shown to induce immunosuppressive responses to the parasite and non-related antigens this study examined T-cell mediated pro-inflammatory and regulatory immune responses induced by malaria vaccination in children in an endemic area to determine if these responses were associated with vaccine immunogenicity.Using real-time RT- PCR we profiled the expression of a panel of key markers of immunogenecity at different time points after vaccination with two viral vector vaccines expressing the malaria TRAP antigen (FP9-TRAP and MVA-TRAP or following rabies vaccination as a control.The vaccine induced modest levels of IFN-gamma mRNA one week after vaccination. There was also an increase in FoxP3 mRNA expression in both TRAP stimulated and media stimulated cells in the FFM ME-TRAP vaccine group; however, this may have been driven by natural exposure to parasite rather than by vaccination.Quantitative PCR is a useful method for evaluating vaccine induced cell mediated immune responses in frozen PBMC from children in a malaria endemic country. Future studies should seek to use vaccine vectors that increase the magnitude and quality of the IFN-gamma immune response in naturally exposed populations and should monitor the induction of a regulatory T cell response.

  15. Simulation of the cost-effectiveness of malaria vaccines

    Directory of Open Access Journals (Sweden)

    Tediosi Fabrizio

    2009-06-01

    Full Text Available Abstract Background A wide range of possible malaria vaccines is being considered and there is a need to identify which vaccines should be prioritized for clinical development. An important element of the information needed for this prioritization is a prediction of the cost-effectiveness of potential vaccines in the transmission settings in which they are likely to be deployed. This analysis needs to consider a range of delivery modalities to ensure that clinical development plans can be aligned with the most appropriate deployment strategies. Methods The simulations are based on a previously published individual-based stochastic model for the natural history and epidemiology of Plasmodium falciparum malaria. Three different vaccine types: pre-erythrocytic vaccines (PEV, blood stage vaccines (BSV, mosquito-stage transmission-blocking vaccines (MSTBV, and combinations of these, are considered each delivered via a range of delivery modalities (Expanded Programme of Immunization – EPI-, EPI with booster, and mass vaccination combined with EPI. The cost-effectiveness ratios presented are calculated for four health outcomes, for assumed vaccine prices of US$ 2 or US$ 10 per dose, projected over a 10-year period. Results The simulations suggest that PEV will be more cost-effective in low transmission settings, while BSV at higher transmission settings. Combinations of BSV and PEV are more efficient than PEV, especially in moderate to high transmission settings, while compared to BSV they are more cost-effective in moderate to low transmission settings. Combinations of MSTBV and PEV or PEV and BSV improve the effectiveness and the cost-effectiveness compared to PEV and BSV alone only when applied with EPI and mass vaccinations. Adding booster doses to the EPI is unlikely to be a cost-effective alternative to delivering vaccines via the EPI for any vaccine, while mass vaccination improves effectiveness, especially in low transmission settings, and is

  16. Potential public health impact of RTS,S malaria candidate vaccine in sub-Saharan Africa: a modelling study.

    Science.gov (United States)

    Sauboin, Christophe J; Van Bellinghen, Laure-Anne; Van De Velde, Nicolas; Van Vlaenderen, Ilse

    2015-12-23

    Adding malaria vaccination to existing interventions could help to reduce the health burden due to malaria. This study modelled the potential public health impact of the RTS,S candidate malaria vaccine in 42 malaria-endemic countries in sub-Saharan Africa. An individual-based Markov cohort model was constructed with three categories of malaria transmission intensity and six successive malaria immunity levels. The cycle time was 5 days. Vaccination was assumed to reduce the risk of infection, with no other effects. Vaccine efficacy was assumed to wane exponentially over time. Malaria incidence and vaccine efficacy data were taken from a Phase III trial of the RTS,S vaccine with 18 months of follow-up (NCT00866619). The model was calibrated to reproduce the malaria incidence in the control arm of the trial in each transmission category and published age distribution data. Individual-level heterogeneity in malaria exposure and vaccine protection was accounted for. Parameter uncertainty and variability were captured by using stochastic model transitions. The model followed a cohort from birth to 10 years of age without malaria vaccination, or with RTS,S malaria vaccination administered at age 6, 10 and 14 weeks or at age 6, 7-and-a-half and 9 months. Median and 95% confidence intervals were calculated for the number of clinical malaria cases, severe cases, malaria hospitalizations and malaria deaths expected to be averted by each vaccination strategy. Univariate sensitivity analysis was conducted by varying the values of key input parameters. Vaccination assuming the coverage of diphtheria-tetanus-pertussis (DTP3) at age 6, 10 and 14 weeks is estimated to avert over five million clinical malaria cases, 119,000 severe malaria cases, 98,600 malaria hospitalizations and 31,000 malaria deaths in the 42 countries over the 10-year period. Vaccination at age 6, 7-and-a-half and 9 months with 75% of DTP3 coverage is estimated to avert almost 12.5 million clinical malaria cases

  17. Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine

    DEFF Research Database (Denmark)

    Neafsey, Daniel E; Juraska, Michal; Bedford, Trevor

    2015-01-01

    Background The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes at the c......Background The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes...... protein had on vaccine efficacy against first episodes of clinical malaria within 1 year after vaccination. Results In the per-protocol group of 4577 RTS,S/AS01-vaccinated participants and 2335 control-vaccinated participants who were 5 to 17 months of age, the 1-year cumulative vaccine efficacy was 50.......3% (95% confidence interval [CI], 34.6 to 62.3) against clinical malaria in which parasites matched the vaccine in the entire circumsporozoite protein C-terminal (139 infections), as compared with 33.4% (95% CI, 29.3 to 37.2) against mismatched malaria (1951 infections) (P=0.04 for differential vaccine...

  18. The dog that did not bark: malaria vaccines without antibodies.

    NARCIS (Netherlands)

    Heppner, D.G.; Schwenk, R.J.; Arnot, D.; Sauerwein, R.W.; Luty, A.J.F.

    2007-01-01

    To date, the only pre-blood stage vaccine to confer protection against malaria in field trials elicits both antigen-specific antibody and T-cell responses. Recent clinical trials of new heterologous prime-boost malaria vaccine regimens using DNA, fowlpox or MVA, have chiefly elicited T-cell

  19. The Malaria Vaccine Candidate GMZ2 Elicits Functional Antibodies in Individuals From Malaria Endemic and Non-Endemic Areas

    DEFF Research Database (Denmark)

    Jepsen, Micha Phill Grønholm; Jogdand, Prajakta S; Singh, Susheel K

    2013-01-01

    against Plasmodium falciparum. Results. We showed that the maximum level of immunoglobulin G (IgG) antibodies obtained by GMZ2 vaccination is independent of ethnicity, time under malaria-exposure, and vaccine dose and that GMZ2 elicits high levels of functionally active IgG antibodies. Both, malaria......-naive adults and malaria-exposed preschool children elicit vaccine-specific antibodies with broad inhibitory activity against geographically diverse P. falciparum isolates. Peptide-mapping studies of IgG subclass responses identified IgG3 against a peptide derived from MSP3 as the strongest predictor...

  20. [Vaccinations and malaria prophylaxis for international travelers].

    Science.gov (United States)

    Alberer, Martin; Löscher, Thomas

    2015-05-01

    The prevention of infectious diseases by vaccination and by counselling about malaria prophylaxis is a central aspect of travel medicine. Besides mandatory vaccinations required for entry to certain countries various vaccinations may be indicated depending on destination and type of travel as well as on individual risks of the traveler. In addition, pre-travel counselling should always include a check-up of standard vaccinations. Protection against mosquito bites is the basis of malaria prophylaxis. The addition of chemoprophylaxis is warranted in high risk areas. When regular chemoprophylaxis is not applied it is recommended to carry an appropriate antimalarial drug which can be used for emergency stand-by treatment in case of unexplained fever and when medical attention is not available within 24 hours. Travelers should realize that self-treatment is a first-aid measure and that they should still seek medical advice as soon as possible. © Georg Thieme Verlag KG Stuttgart · New York.

  1. The evolutionary consequences of blood-stage vaccination on the rodent malaria Plasmodium chabaudi.

    Directory of Open Access Journals (Sweden)

    Victoria C Barclay

    Full Text Available Malaria vaccine developers are concerned that antigenic escape will erode vaccine efficacy. Evolutionary theorists have raised the possibility that some types of vaccine could also create conditions favoring the evolution of more virulent pathogens. Such evolution would put unvaccinated people at greater risk of severe disease. Here we test the impact of vaccination with a single highly purified antigen on the malaria parasite Plasmodium chabaudi evolving in laboratory mice. The antigen we used, AMA-1, is a component of several candidate malaria vaccines currently in various stages of trials in humans. We first found that a more virulent clone was less readily controlled by AMA-1-induced immunity than its less virulent progenitor. Replicated parasites were then serially passaged through control or AMA-1 vaccinated mice and evaluated after 10 and 21 rounds of selection. We found no evidence of evolution at the ama-1 locus. Instead, virulence evolved; AMA-1-selected parasites induced greater anemia in naïve mice than both control and ancestral parasites. Our data suggest that recombinant blood stage malaria vaccines can drive the evolution of more virulent malaria parasites.

  2. RTS,S/AS01 malaria vaccine and child mortality

    DEFF Research Database (Denmark)

    Aaby, Peter; Rodrigues, Amabelia; Kofoed, Poul-Erik

    2015-01-01

    Comment on Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. [Lancet. 2015]......Comment on Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. [Lancet. 2015]...

  3. Update on the Clinical Development of Candidate Malaria Vaccines

    National Research Council Canada - National Science Library

    Ballou, W. R; Arevalo-Herrera, Myriam; Carucci, Daniel; Richie, Thomas L; Corradin, Giampietro; Diggs, Carter; Druilhe, Pierre; Giersing, Birgitte K; Saul, Allan; Heppner, D. G

    2004-01-01

    ... powerful driver for stimulating clinical development of candidate vaccines for malaria. This new way forward promises to greatly increase the likelihood of bringing a safe and effective vaccine to licensure...

  4. Secreted HSP Vaccine for Malaria Prophylaxis

    Science.gov (United States)

    2017-10-01

    burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing...thereby stimulating an avid, antigen specific, cytotoxic CD8 T cell response. Here we developed malaria vaccine that relies on secreted gp96-Ig... stimulating multi-epitope specific cytotoxic T cells. In the proposed studies, we will adapt this vaccine approach to stimulate cytotoxic T cells

  5. Malaria in pregnancy: the relevance of animal models for vaccine development.

    Science.gov (United States)

    Doritchamou, Justin; Teo, Andrew; Fried, Michal; Duffy, Patrick E

    2017-10-06

    Malaria during pregnancy due to Plasmodium falciparum or P. vivax is a major public health problem in endemic areas, with P. falciparum causing the greatest burden of disease. Increasing resistance of parasites and mosquitoes to existing tools, such as preventive antimalarial treatments and insecticide-treated bed nets respectively, is eroding the partial protection that they offer to pregnant women. Thus, development of effective vaccines against malaria during pregnancy is an urgent priority. Relevant animal models that recapitulate key features of the pathophysiology and immunology of malaria in pregnant women could be used to accelerate vaccine development. This review summarizes available rodent and nonhuman primate models of malaria in pregnancy, and discusses their suitability for studies of biologics intended to prevent or treat malaria in this vulnerable population.

  6. The Feasibility of Gamma Irradiation for Developing Malaria Vaccine

    International Nuclear Information System (INIS)

    Syaifudin, M.; Tetriana, D.; Darlina; Nurhayati, S.

    2011-01-01

    Malaria, a plasmodial disease, causes more than one million deaths per year and has a significant public health impact. Improved access to prompt treatment with effective antimalarial drugs need to be conducted for prevention of infection in high risk groups. However, the parasite as causal agent has exhibited a potential danger of wide-spread resistances. This warning has directed attention to the study of alternative methods of protection against the disease, among them is to do the immunization. A deeper understanding of the nature and regulation of protective immune mechanisms against this parasite will facilitate the development of much needed vaccines. Developing a malaria vaccine remains an enormous scientific, technical, and financial challenge. Currently a vaccine is not fully available. Among the practical applications of radiobiological techniques that may be of considerable interest for public health is the use of ionizing radiation in the preparation of vaccines. Convincing data were reported that sporozoites of Plasmodium berghei irradiated with X- or gamma-rays, provide an antigenic stimulus effective to induce a protective immune response in mice and rats against subsequent sporozoite infection. Irradiated parasites are better immunogens than killed ones and although non-infective they are still metabolically active, as shown by continued protein and nucleic acid synthesis. There is a substantial number of data from human studies demonstrating that sporozoites attenuated by radiation are potent inducer of protective immunity and that they are safe and do not give rise to the asexual erythrocytic infections that cause malaria. This vaccine is relatively inexpensive to produce, easy to store, and transportable without refrigeration. A long-term effort and commitment to providing resources must be maintained and increased to achieve the goal of a malaria vaccine candidate where ionizing radiation as a tool to prepare is seemingly feasible. (author)

  7. Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate

    DEFF Research Database (Denmark)

    Esen, Meral; Kremsner, Peter G; Schleucher, Regina

    2009-01-01

    Malaria is a major public health problem in Sub-Saharan Africa. In highly endemic regions infants, children and pregnant women are mostly affected. An effective malaria vaccine would complement existing malaria control strategies because it can be integrated in existing immunization programs easily....... Here we present the results of the first phase Ia clinical trial of GMZ2 adjuvanted in aluminium hydroxide. GMZ2 is a malaria vaccine candidate, designed upon the rationale to induce immune responses against asexual blood stages of Plasmodium falciparum similar to those encountered in semi...... is a safe and immunogenic malaria vaccine candidate suitable for further clinical development....

  8. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1 and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90 (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02. From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001. In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364 and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials

  9. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    Science.gov (United States)

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  10. Malaria chemoprophylaxis and the serologic response to measles and diphtheria-tetanus-whole-cell pertussis vaccines

    Directory of Open Access Journals (Sweden)

    Saliou Pierre

    2005-11-01

    Full Text Available Abstract Background Acute malaria has been associated with a decreased antibody response to tetanus and diphtheria toxoids, meningococcal, salmonella, and Hib vaccines. Interest in giving malaria drug therapy and prevention at the time of childhood immunizations has increased greatly following recent trials of intermittent preventive therapy during infancy (IPTi, stimulating this re-analysis of unpublished data. The effect of malaria chemoprophylaxis on vaccine response was studied following administration of measles vaccines and diphtheria-tetanus-whole cell pertussis (DTP vaccines. Methods In 1975, six villages divided into two groups of children ≤74 months of age from Burkina Faso, were assigned to receive amodiaquine hydrochloride chemoprophylaxis (CH+ every two weeks for seven months or no chemoprophylaxis (CH-. After five months, children in each group received either one dose of measles or two doses of DTP vaccines. Results For recipients of the measles vaccine, the seroconversion rates in CH+ and CH- children, respectively, were 93% and 96% (P > 0.05. The seroresponse rates in CH+ and CH- children respectively, were 73% and 86% for diphtheria (P > 0.05 and 77% and 91% for tetanus toxoid (P > 0.05. In a subset analysis, in which only children who strictly adhered to chemoprophylaxis criteria were included, there were, likewise, no significant differences in seroconversion or seroresponse for measles, diphtheria, or tetanus vaccines (P > 0.05. While analysis for pertussis showed a 43% (CH+ and 67% (CH- response (P Conclusion Malaria chemoprophylaxis prior to vaccination in malaria endemic settings did not improve or impair immunogenicity of DTP and measles vaccines. This is the first human study to look at the association between malaria chemoprophylaxis and the serologic response to whole-cell pertussis vaccine.

  11. Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design.

    Science.gov (United States)

    Flanagan, Katie L; Wilson, Kirsty L; Plebanski, Magdalena

    2016-01-01

    The pre-erythrocytic stage of infection by malaria parasites represents a key target for vaccines that aim to eradicate malaria. Two important broad immune evasion strategies that can interfere with vaccine efficacy include the induction of dendritic cell (DC) dysfunction and regulatory T cells (Tregs) by blood-stage malaria parasites, leading to inefficient priming of T cells targeting liver-stage infections. The parasite also uses 'surgical strike' strategies, whereby polymorphism in pre-erythrocytic antigens can interfere with host immunity. Specifically, we review how even single amino acid changes in T cell epitopes can lead to loss of binding to major histocompatibility complex (MHC), lack of cross-reactivity, or antagonism and immune interference, where simultaneous or sequential stimulation with related variants of the same T cell epitope can cause T cell anergy or the conversion of effector to immunosuppressive T cell phenotypes.

  12. Perception and acceptability of malaria vaccine among maternal ...

    African Journals Online (AJOL)

    Perception and acceptability of malaria vaccine among maternal and child health clinic ... Journal of Community Medicine and Primary Health Care ... used for data collection from maternal and child health clinic attendees in Calabar, Nigeria.

  13. Towards a vaccine against pregnancy-associated malaria

    Directory of Open Access Journals (Sweden)

    Tuikue Ndam N.

    2008-09-01

    Full Text Available The consequences of pregnancy-associated malaria on pregnant women (anaemia, their babies (birth weight reduction, and infants (increased morbidity and mortality are well documented. Field observations during the last decade have underlined the key role of the interactions between P. falciparum variable surface antigens expressed on infected erythrocytes and a novel receptor: chondroitin sulfate A (CSA for the placental sequestration of infected erythrocytes. Identification of a distinct P. falciparum erythrocyte membrane protein 1 (PfEMP1 variant, VAR2CSA, as the dominant variant surface antigen and as a clinically important target for protective immune response to pregnancy-associated malaria has raised hope for developing a new preventive strategy based on inducing these immune responses by vaccination. However, despite particular structure and interclonal conservation of VAR2CSA among other PfEMP1, significant challenges still exist concerning the development of a VAR2CSA-based vaccine with profound efficacy.

  14. Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults: results of a phase 1 randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Mahamadou A Thera

    2008-01-01

    Full Text Available The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria.A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1 based on apical membrane antigen-1 (AMA-1 from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert. Sixty healthy, malaria-experienced adults aged 18-55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 microg/AS02A 0.25 mL or FMP2.1 50 microg/AS02A 0.5 mL or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively.The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site.

  15. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria.

    Directory of Open Access Journals (Sweden)

    Frédéric Coutant

    Full Text Available Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5-62.5 of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice. The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042. Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = -0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia. However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.

  16. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Pierre Druilhe

    2005-11-01

    Full Text Available Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant.Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation.This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  17. Development of malaria transmission-blocking vaccines: from concept to product.

    Science.gov (United States)

    Wu, Yimin; Sinden, Robert E; Churcher, Thomas S; Tsuboi, Takafumi; Yusibov, Vidadi

    2015-06-01

    Despite decades of effort battling against malaria, the disease is still a major cause of morbidity and mortality. Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. In the 1950s, Huff et al. first demonstrated the induction of transmission-blocking immunity in chickens by repeated immunizations with Plasmodium gallinaceum-infected red blood cells. Since then, significant progress has been made in identification of parasite antigens responsible for transmission-blocking activity. Recombinant technologies accelerated evaluation of these antigens as vaccine candidates, and it is possible to induce effective transmission-blocking immunity in humans both by natural infection and now by immunization with recombinant vaccines. This chapter reviews the efforts to produce TBVs, summarizes the current status and advances and discusses the remaining challenges and approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Factors likely to affect community acceptance of a malaria vaccine in two districts of Ghana: a qualitative study.

    Directory of Open Access Journals (Sweden)

    Arantza Meñaca

    Full Text Available Malaria is a leading cause of morbidity and mortality among children in Ghana. As part of the effort to inform local and national decision-making in preparation for possible malaria vaccine introduction, this qualitative study explored community-level factors that could affect vaccine acceptance in Ghana and provides recommendations for a health communications strategy. The study was conducted in two purposively selected districts: the Ashanti and Upper East Regions. A total of 25 focus group discussions, 107 in-depth interviews, and 21 semi-structured observations at Child Welfare Clinics were conducted. Malaria was acknowledged to be one of the most common health problems among children. While mosquitoes were linked to the cause and bed nets were considered to be the main preventive method, participants acknowledged that no single measure prevented malaria. The communities highly valued vaccines and cited vaccination as the main motivation for taking children to Child Welfare Clinics. Nevertheless, knowledge of specific vaccines and what they do was limited. While communities accepted the idea of minor vaccine side effects, other side effects perceived to be more serious could deter families from taking children for vaccination, especially during vaccination campaigns. Attendance at Child Welfare Clinics after age nine months was limited. Observations at clinics revealed that while two different opportunities for counseling were offered, little attention was given to addressing mothers' specific concerns and to answering questions related to child immunization. Positive community attitudes toward vaccines and the understanding that malaria prevention requires a comprehensive approach would support the introduction of a malaria vaccine. These attitudes are bolstered by a well-established child welfare program and the availability in Ghana of active, flexible structures for conveying health information to communities. At the same time, it would

  19. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available BACKGROUND: Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant. METHODS AND FINDINGS: Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation. CONCLUSION: This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  20. Comparative decline in funding of European Commission malaria vaccine projects: what next for the European scientists working in this field?

    Directory of Open Access Journals (Sweden)

    Imoukhuede Egeruan B

    2011-09-01

    Full Text Available Abstract Since 2000, under the Fifth and subsequent Framework Programmes, the European Commission has funded research to spur the development of a malaria vaccine. This funding has contributed to the promotion of an integrated infrastructure consisting of European basic, applied and clinical scientists in academia and small and medium enterprises, together with partners in Africa. Research has added basic understanding of what is required of a malaria vaccine, allowing selected candidates to be prioritized and some to be moved forward into clinical trials. To end the health burden of malaria, and its economic and social impact on development, the international community has now essentially committed itself to the eventual eradication of malaria. Given the current tentative advances towards elimination or eradication of malaria in many endemic areas, malaria vaccines constitute an additional and almost certainly essential component of any strategic plan to interrupt transmission of malaria. However, funding for malaria vaccines has been substantially reduced in the Seventh Framework Programme compared with earlier Framework Programmes, and without further support the gains made by earlier European investment will be lost.

  1. Safety and immunogenicity of an AMA1 malaria vaccine in Malian children: results of a phase 1 randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Mahamadou A Thera

    2010-02-01

    Full Text Available The objective was to evaluate the safety and immunogenicity of the AMA1-based malaria vaccine FMP2.1/AS02(A in children exposed to seasonal falciparum malaria.A Phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02(A is a recombinant protein (FMP2.1 based on apical membrane antigen 1 (AMA1 from the 3D7 clone of P. falciparum, formulated in the Adjuvant System AS02(A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert. One hundred healthy Malian children aged 1-6 years were recruited into 3 cohorts and randomized to receive either 10 microg FMP2.1 in 0.1 mL AS02(A, or 25 microg FMP2.1 in 0.25 mL AS02(A, or 50 microg FMP2.1 50 microg in 0.5 mL AS02(A, or rabies vaccine. Three doses of vaccine were given at 0, 1 and 2 months, and children were followed for 1 year. Solicited symptoms were assessed for 7 days and unsolicited symptoms for 30 days after each vaccination. Serious adverse events were assessed throughout the study. Transient local pain and swelling were common and more frequent in all malaria vaccine dosage groups than in the comparator group, but were acceptable to parents of participants. Levels of anti-AMA1 antibodies measured by ELISA increased significantly (at least 100-fold compared to baseline in all 3 malaria vaccine groups, and remained high during the year of follow up.The FMP2.1/AS02(A vaccine had a good safety profile, was well-tolerated, and induced high and sustained antibody levels in malaria-exposed children. This malaria vaccine is being evaluated in a Phase 2 efficacy trial in children at this site.ClinicalTrials.gov NCT00358332 [NCT00358332].

  2. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children

    DEFF Research Database (Denmark)

    Agnandji, Selidji Todagbe; Lell, Bertrand; Soulanoudjingar, Solange Solmeheim

    2011-01-01

    An ongoing phase 3 study of the efficacy, safety, and immunogenicity of candidate malaria vaccine RTS,S/AS01 is being conducted in seven African countries.......An ongoing phase 3 study of the efficacy, safety, and immunogenicity of candidate malaria vaccine RTS,S/AS01 is being conducted in seven African countries....

  3. N-Terminal Plasmodium vivax Merozoite Surface Protein-1, a Potential Subunit for Malaria Vivax Vaccine

    Directory of Open Access Journals (Sweden)

    Fernanda G. Versiani

    2013-01-01

    Full Text Available The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1, which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.

  4. Insights into long-lasting protection induced by RTS,S/AS02A malaria vaccine: further results from a phase IIb trial in Mozambican children.

    Directory of Open Access Journals (Sweden)

    Caterina Guinovart

    Full Text Available The pre-erythrocytic malaria vaccine RTS,S/AS02A has shown to confer protection against clinical malaria for at least 21 months in a trial in Mozambican children. Efficacy varied between different endpoints, such as parasitaemia or clinical malaria; however the underlying mechanisms that determine efficacy and its duration remain unknown. We performed a new, exploratory analysis to explore differences in the duration of protection among participants to better understand the protection afforded by RTS,S.The study was a Phase IIb double-blind, randomized controlled trial in 2022 children aged 1 to 4 years. The trial was designed with two cohorts to estimate vaccine efficacy against two different endpoints: clinical malaria (cohort 1 and infection (cohort 2. Participants were randomly allocated to receive three doses of RTS,S/AS02A or control vaccines. We did a retrospective, unplanned sub-analysis of cohort 2 data using information collected for safety through the health facility-based passive case detection system. Vaccine efficacy against clinical malaria was estimated over the first six-month surveillance period (double-blind phase and over the following 12 months (single-blind phase, and analysis was per-protocol. Adjusted vaccine efficacy against first clinical malaria episodes in cohort 2 was of 35.4% (95% CI 4.5-56.3; p = 0.029 over the double-blind phase and of 9.0% (-30.6-36.6; p = 0.609 during the single-blind phase.Contrary to observations in cohort 1, where efficacy against clinical malaria did not wane over time, in cohort 2 the efficacy decreases with time. We hypothesize that this reduced duration of protection is a result of the early diagnosis and treatment of infections in cohort 2 participants, preventing sufficient exposure to asexual-stage antigens. On the other hand, the long-term protection against clinical disease observed in cohort 1 may be a consequence of a prolonged exposure to low-dose blood-stage asexual parasitaemia

  5. Assessment of severe malaria in a multicenter, phase III, RTS, S/AS01 malaria candidate vaccine trial: case definition, standardization of data collection and patient care.

    Science.gov (United States)

    Vekemans, Johan; Marsh, Kevin; Greenwood, Brian; Leach, Amanda; Kabore, William; Soulanoudjingar, Solange; Asante, Kwaku Poku; Ansong, Daniel; Evans, Jennifer; Sacarlal, Jahit; Bejon, Philip; Kamthunzi, Portia; Salim, Nahya; Njuguna, Patricia; Hamel, Mary J; Otieno, Walter; Gesase, Samwel; Schellenberg, David

    2011-08-04

    An effective malaria vaccine, deployed in conjunction with other malaria interventions, is likely to substantially reduce the malaria burden. Efficacy against severe malaria will be a key driver for decisions on implementation. An initial study of an RTS, S vaccine candidate showed promising efficacy against severe malaria in children in Mozambique. Further evidence of its protective efficacy will be gained in a pivotal, multi-centre, phase III study. This paper describes the case definitions of severe malaria used in this study and the programme for standardized assessment of severe malaria according to the case definition. Case definitions of severe malaria were developed from a literature review and a consensus meeting of expert consultants and the RTS, S Clinical Trial Partnership Committee, in collaboration with the World Health Organization and the Malaria Clinical Trials Alliance. The same groups, with input from an Independent Data Monitoring Committee, developed and implemented a programme for standardized data collection.The case definitions developed reflect the typical presentations of severe malaria in African hospitals. Markers of disease severity were chosen on the basis of their association with poor outcome, occurrence in a significant proportion of cases and on an ability to standardize their measurement across research centres. For the primary case definition, one or more clinical and/or laboratory markers of disease severity have to be present, four major co-morbidities (pneumonia, meningitis, bacteraemia or gastroenteritis with severe dehydration) are excluded, and a Plasmodium falciparum parasite density threshold is introduced, in order to maximize the specificity of the case definition. Secondary case definitions allow inclusion of co-morbidities and/or allow for the presence of parasitaemia at any density. The programmatic implementation of standardized case assessment included a clinical algorithm for evaluating seriously sick children

  6. Malaria transmission dynamics at a site in northern Ghana proposed for testing malaria vaccines.

    Science.gov (United States)

    Appawu, Maxwell; Owusu-Agyei, Seth; Dadzie, Samuel; Asoala, Victor; Anto, Francis; Koram, Kwadwo; Rogers, William; Nkrumah, Francis; Hoffman, Stephen L; Fryauff, David J

    2004-01-01

    We studied the malaria transmission dynamics in Kassena Nankana district (KND), a site in northern Ghana proposed for testing malaria vaccines. Intensive mosquito sampling for 1 year using human landing catches in three micro-ecological sites (irrigated, lowland and rocky highland) yielded 18 228 mosquitoes. Anopheles gambiae s.l. and Anopheles funestus constituted 94.3% of the total collection with 76.8% captured from the irrigated communities. Other species collected but in relatively few numbers were Anopheles pharoensis (5.4%) and Anopheles rufipes (0.3%). Molecular analysis of 728 An. gambiae.s.l. identified Anopheles gambiae s.s. as the most dominant sibling species (97.7%) of the An. gambiae complex from the three ecological sites. Biting rates of the vectors (36.7 bites per man per night) were significantly higher (P<0.05) in the irrigated area than in the non-irrigated lowland (5.2) and rocky highlands (5.9). Plasmodium falciparum sporozoite rates of 7.2% (295/4075) and 7.1% (269/3773) were estimated for An. gambiae s.s. and An. funestus, respectively. Transmission was highly seasonal, and the heaviest transmission occurred from June to October. The intensity of transmission was higher for people in the irrigated communities than the non-irrigated ones. An overall annual entomological inoculation rate (EIR) of 418 infective bites was estimated in KND. There were micro-ecological variations in the EIRs, with values of 228 infective bites in the rocky highlands, 360 in the lowlands and 630 in the irrigated area. Approximately 60% of malaria transmission in KND occurred indoors during the second half of the night, peaking at daybreak between 04.00 and 06.00 hours. Vaccine trials could be conducted in this district, with timing dependent on the seasonal patterns and intensity of transmission taking into consideration the micro-geographical differences and vaccine trial objectives.

  7. Efficacy of RTS,S/AS01E Vaccine against Malaria in Children 5 to 17 Months of Age

    Science.gov (United States)

    Bejon, Philip; Lusingu, John; Olotu, Ally; Leach, Amanda; Lievens, Marc; Vekemans, Johan; Mshamu, Salum; Lang, Trudie; Gould, Jayne; Dubois, Marie-Claude; Demoitié, Marie-Ange; Stallaert, Jean-Francois; Vansadia, Preeti; Carter, Terrell; Njuguna, Patricia; Awuondo, Ken O.; Malabeja, Anangisye; Abdul, Omar; Gesase, Samwel; Mturi, Neema; Drakeley, Chris J.; Savarese, Barbara; Villafana, Tonya; Ballou, W. Ripley; Cohen, Joe; Riley, Eleanor M.; Lemnge, Martha M.; Marsh, Kevin; von Seidlein, Lorenz

    2009-01-01

    BACKGROUND Plasmodium falciparum malaria is a pressing global health problem. A previous study of the malaria vaccine RTS,S (which targets the circumsporozoite protein), given with an adjuvant system (AS02A), showed a 30% rate of protection against clinical malaria in children 1 to 4 years of age. We evaluated the efficacy of RTS,S given with a more immunogenic adjuvant system (AS01E) in children 5 to 17 months of age, a target population for vaccine licensure. METHODS We conducted a double-blind, randomized trial of RTS,S/AS01E vaccine as compared with rabies vaccine in children in Kilifi, Kenya, and Korogwe, Tanzania. The primary end point was fever with a falciparum parasitemia density of more than 2500 parasites per microliter, and the mean duration of follow-up was 7.9 months (range, 4.5 to 10.5). RESULTS A total of 894 children were randomly assigned to receive the RTS,S/AS01E vaccine or the control (rabies) vaccine. Among the 809 children who completed the study procedures according to the protocol, the cumulative number in whom clinical malaria developed was 32 of 402 assigned to receive RTS,S/AS01E and 66 of 407 assigned to receive the rabies vaccine; the adjusted efficacy rate for RTS,S/AS01E was 53% (95% confidence interval [CI], 28 to 69; P<0.001) on the basis of Cox regression. Overall, there were 38 episodes of clinical malaria among recipients of RTS,S/AS01E, as compared with 86 episodes among recipients of the rabies vaccine, with an adjusted rate of efficacy against all malarial episodes of 56% (95% CI, 31 to 72; P<0.001). All 894 children were included in the intention-to-treat analysis, which showed an unadjusted efficacy rate of 49% (95% CI, 26 to 65; P<0.001). There were fewer serious adverse events among recipients of RTS,S/AS01E, and this reduction was not only due to a difference in the number of admissions directly attributable to malaria. CONCLUSIONS RTS,S/AS01E shows promise as a candidate malaria vaccine. (ClinicalTrials.gov number, NCT

  8. Controlled Human Malaria Infection: Applications, Advances, and Challenges.

    Science.gov (United States)

    Stanisic, Danielle I; McCarthy, James S; Good, Michael F

    2018-01-01

    Controlled human malaria infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or by direct injection of sporozoites or parasitized erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of antimalarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development, where it is used to evaluate products in well-controlled early-phase proof-of-concept clinical studies, thus facilitating progression of only the most promising candidates for further evaluation in areas where malaria is endemic. Controlled infections have also been used to immunize against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of Plasmodium falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well-characterized and genetically distinct cultured malaria cell banks for blood-stage infection, and the availability of Plasmodium vivax -specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI, and ongoing challenges for consideration. Copyright © 2017 American Society for Microbiology.

  9. Stable malaria incidence despite scaling up control strategies in a malaria vaccine-testing site in Mali.

    Science.gov (United States)

    Coulibaly, Drissa; Travassos, Mark A; Kone, Abdoulaye K; Tolo, Youssouf; Laurens, Matthew B; Traore, Karim; Diarra, Issa; Niangaly, Amadou; Daou, Modibo; Dembele, Ahmadou; Sissoko, Mody; Guindo, Bouréima; Douyon, Raymond; Guindo, Aldiouma; Kouriba, Bourema; Sissoko, Mahamadou S; Sagara, Issaka; Plowe, Christopher V; Doumbo, Ogobara K; Thera, Mahamadou A

    2014-09-19

    The recent decline in malaria incidence in many African countries has been attributed to the provision of prompt and effective anti-malarial treatment using artemisinin-based combination therapy (ACT) and to the widespread distribution of long-lasting, insecticide-treated bed nets (LLINs). At a malaria vaccine-testing site in Bandiagara, Mali, ACT was introduced in 2004, and LLINs have been distributed free of charge since 2007 to infants after they complete the Expanded Programme of Immunization (EPI) schedule and to pregnant women receiving antenatal care. These strategies may have an impact on malaria incidence. To document malaria incidence, a cohort of 400 children aged 0 to 14 years was followed for three to four years up to July 2013. Monthly cross-sectional surveys were done to measure the prevalence of malaria infection and anaemia. Clinical disease was measured both actively and passively through continuous availability of primary medical care. Measured outcomes included asymptomatic Plasmodium infection, anaemia and clinical malaria episodes. The incidence rate of clinical malaria varied significantly from June 2009 to July 2013 without a clear downward trend. A sharp seasonality in malaria illness incidence was observed with higher clinical malaria incidence rates during the rainy season. Parasite and anaemia point prevalence also showed seasonal variation with much higher prevalence rates during rainy seasons compared to dry seasons. Despite the scaling up of malaria prevention and treatment, including the widespread use of bed nets, better diagnosis and wider availability of ACT, malaria incidence did not decrease in Bandiagara during the study period.

  10. Transcutaneous delivery of T Cell-inducing viral vector Malaria vaccines by microneedle patches

    OpenAIRE

    2011-01-01

    There is an urgent need for improvements to existing vaccine delivery technologies to run parallel with the development of new-generation vaccines. The burdens of needle-based immunisation strategies are exacerbated by poor resource provision in such areas as sub-Saharan Africa, where annual malaria mortality stands at 860,000. Needle-free delivery of vaccine to the skin holds promise for improved immunogenicity with lower doses of vaccine, in addition to significant logistical advantages. Va...

  11. Comparison of functional assays used in the clinical development of a placental malaria vaccine

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Heno, Kristine Klysner; Adams, Yvonne

    2017-01-01

    BACKGROUND: Malaria in pregnancy is associated with significant morbidity in pregnant women and their offspring. Plasmodium falciparum infected erythrocytes (IE) express VAR2CSA that mediates binding to chondroitin sulphate A (CSA) in the placenta. Two VAR2CSA-based vaccines for placental malaria...

  12. Satisfactory safety and immunogenicity of MSP3 malaria vaccine candidate in Tanzanian children aged 12–24 months

    Directory of Open Access Journals (Sweden)

    Segeja Method D

    2009-07-01

    Full Text Available Abstract Background Development and deployment of an effective malaria vaccine would complement existing malaria control measures. A blood stage malaria vaccine candidate, Merozoite Surface Protein-3 (MSP3, produced as a long synthetic peptide, has been shown to be safe in non-immune and semi-immune adults. A phase Ib dose-escalating study was conducted to assess the vaccine's safety and immunogenicity in children aged 12 to 24 months in Korogwe, Tanzania (ClinicalTrials.gov number: NCT00469651. Methods This was a double-blind, randomized, controlled, dose escalation phase Ib trial, in which children were given one of two different doses of the MSP3 antigen (15 μg or 30 μg or a control vaccine (Engerix B. Children were randomly allocated either to the MSP3 candidate malaria vaccine or the control vaccine administered at a schedule of 0, 1, and 2 months. Immunization with lower and higher doses was staggered for safety reasons starting with the lower dose. The primary endpoint was safety and reactogenicity within 28 days post-vaccination. Blood samples were obtained at different time points to measure immunological responses. Results are presented up to 84 days post-vaccination. Results A total of 45 children were enrolled, 15 in each of the two MSP3 dose groups and 15 in the Engerix B group. There were no important differences in reactogenicity between the two MSP3 groups and Engerix B. Grade 3 adverse events were infrequent; only five were detected throughout the study, all of which were transient and resolved without sequelae. No serious adverse event reported was considered to be related to MSP3 vaccine. Both MSP3 dose regimens elicited strong cytophilic IgG responses (subclasses IgG1 and IgG3, the isotypes involved in the monocyte-dependant mechanism of Plasmodium falciparum parasite-killing. The titers reached are similar to those from African adults having reached a state of premunition. Furthermore, vaccination induced seroconversion in

  13. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants

    DEFF Research Database (Denmark)

    Agnandji, Selidji Todagbe; Lell, Bertrand; Fernandes, José Francisco

    2012-01-01

    The candidate malaria vaccine RTS,S/AS01 reduced episodes of both clinical and severe malaria in children 5 to 17 months of age by approximately 50% in an ongoing phase 3 trial. We studied infants 6 to 12 weeks of age recruited for the same trial....

  14. Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation with aluminium phosphate adjuvant

    NARCIS (Netherlands)

    Ophorst, Olga J. A. E.; Radosevic, Katarina; Klap, Jaco M.; Sijtsma, Jeroen; Gillissen, Gert; Mintardjo, Ratna; van Ooij, Mark J. M.; Holterman, Lennart; Companjen, Arjen; Goudsmit, Jaap; Havenga, Menzo J. E.

    2007-01-01

    Previously, we have shown the potency of recombinant Adenovirus serotype 35 viral vaccines (rAd35) to induce strong immune response against the circumsporozoite protein (CS) of the plasmodium parasite. To further optimize immunogenicity of Ad35-based malaria vaccines we formulated rAd35.CS vaccine

  15. Avances más recientes en el desarrollo de vacunas contra la malaria The most recent advances in developing vaccines against malaria

    Directory of Open Access Journals (Sweden)

    Lázara Rojas Rivero

    2005-02-01

    Full Text Available According to reports of the Pan American Health Organization, malaria transmission continues to occur in 21 countries of the Americas. Of the 835 million inhabitants of the Region of the Americas, 293 million live in areas with some possibility of transmission of the disease. The most advanced of the candidate vaccines that have been designed based on the sequences of the circumsporozoite protein, is one based on the RTS,S/AS02A polypeptides of Plasmodium falciparum. A test of that vaccine was conducted in Mozambique with children from 1 to 4 years old. The test proved the vaccine to be safe, well tolerated, and immunogenic, but the level of protection reached was still low. However, the advantages that the RTS,S/AS02A vaccine offers to people who live in malaria-endemic areas justifies its being tested in the Americas in order to evaluate its effectiveness in the clinical and epidemiological conditions specific to the Region.

  16. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy.

    Directory of Open Access Journals (Sweden)

    Jason W Bennett

    2016-02-01

    Full Text Available A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001, a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP and a truncated repeat region that contains repeat sequences from both the VK210 (type 1 and the VK247 (type 2 parasites, was developed as a vaccine candidate for global use.We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group were given 3 intramuscular injections of 15 μg, 30 μg, or 60 μg respectively of VMP001, all formulated in 500 μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls.The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period.This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.

  17. Development of vaccines against Plasmodium falciparum malaria: taking lessons from naturally acquired protective immunity

    DEFF Research Database (Denmark)

    Hviid, Lars

    2007-01-01

    The acquisition of substantial anti-malarial protection in people naturally exposed to P. falciparum is often cited as evidence that malaria vaccines can be developed, but is rarely used to guide the development. We are pursuing the development of vaccines based on antigens and immune responses...

  18. Assessing the economic benefits of vaccines based on the health investment life course framework: a review of a broader approach to evaluate malaria vaccination.

    Science.gov (United States)

    Constenla, Dagna

    2015-03-24

    Economic evaluations have routinely understated the net benefits of vaccination by not including the full range of economic benefits that accrue over the lifetime of a vaccinated person. Broader approaches for evaluating benefits of vaccination can be used to more accurately calculate the value of vaccination. This paper reflects on the methodology of one such approach - the health investment life course approach - that looks at the impact of vaccine investment on lifetime returns. The role of this approach on vaccine decision-making will be assessed using the malaria health investment life course model example. We describe a framework that measures the impact of a health policy decision on government accounts over many generations. The methodological issues emerging from this approach are illustrated with an example from a recently completed health investment life course analysis of malaria vaccination in Ghana. Beyond the results, various conceptual and practical challenges of applying this framework to Ghana are discussed in this paper. The current framework seeks to understand how disease and available technologies can impact a range of economic parameters such as labour force participation, education, healthcare consumption, productivity, wages or economic growth, and taxation following their introduction. The framework is unique amongst previous economic models in malaria because it considers future tax revenue for governments. The framework is complementary to cost-effectiveness and budget impact analysis. The intent of this paper is to stimulate discussion on how existing and new methodology can add to knowledge regarding the benefits from investing in new and underutilized vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children

    DEFF Research Database (Denmark)

    Sirima, Sodiomon B; Mordmüller, Benjamin; Milligan, Paul

    2016-01-01

    randomized to receive three injections of either 100μg GMZ2 adjuvanted with aluminum hydroxide or a control vaccine (rabies) four weeks apart and were followed up for six months to measure the incidence of malaria defined as fever or history of fever and a parasite density ⩾5000/μL. RESULTS: A cohort of 1849...... in the rabies vaccine group and 14 in the GMZ2 group), VE 27% (95% CI -44%, 63%). CONCLUSIONS: GMZ2 is the first blood-stage malaria vaccine to be evaluated in a large multicenter trial. GMZ2 was well tolerated and immunogenic, and reduced the incidence of malaria, but efficacy would need to be substantially...

  20. The case for PfEMP1-based vaccines to protect pregnant women against Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Hviid, Lars

    2011-01-01

    , as well as knowledge regarding the protective immune response that is acquired in response to placental P. falciparum infection. Nevertheless, it remains controversial in some quarters whether such a vaccine would have the desired impact, or indeed whether the strategy is meaningful. This article......Vaccines are very cost-effective tools in combating infectious disease mortality and morbidity. Unfortunately, vaccines efficiently protecting against infection with malaria parasites are not available and are not likely to appear in the near future. An alternative strategy would be vaccines...... protecting against the disease and its consequences rather than against infection per se, by accelerating the development of the protective immunity that is normally acquired after years of exposure to malaria parasites in areas of stable transmission. This latter strategy is being energetically pursued...

  1. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    Science.gov (United States)

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa

    DEFF Research Database (Denmark)

    Theander, Thor Grundtvig; Lusingu, John Peter Andrea

    2015-01-01

    and a booster dose at month 20 (R3R group); three doses of RTS,S/AS01 and a dose of comparator vaccine at month 20 (R3C group); or a comparator vaccine at months 0, 1, 2, and 20 (C3C [control group]). Participants were followed up until Jan 31, 2014. Cases of clinical and severe malaria were captured through......, the vaccine has the potential to make a substantial contribution to malaria control when used in combination with other effective control measures, especially in areas of high transmission. FUNDING: GlaxoSmithKline Biologicals SA and the PATH Malaria Vaccine Initiative....

  3. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    Science.gov (United States)

    Moon, James J; Suh, Heikyung; Polhemus, Mark E; Ockenhouse, Christian F; Yadava, Anjali; Irvine, Darrell J

    2012-01-01

    The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  4. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    Directory of Open Access Journals (Sweden)

    James J Moon

    Full Text Available The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide acid (PLGA "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA, was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs. Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  5. Extended safety, immunogenicity and efficacy of a blood-stage malaria vaccine in malian children: 24-month follow-up of a randomized, double-blinded phase 2 trial.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available The FMP2.1/AS02A candidate malaria vaccine was tested in a Phase 2 study in Mali. Based on results from the first eight months of follow-up, the vaccine appeared well-tolerated and immunogenic. It had no significant efficacy based on the primary endpoint, clinical malaria, but marginal efficacy against clinical malaria in secondary analyses, and high allele-specific efficacy. Extended follow-up was conducted to evaluate extended safety, immunogenicity and efficacy.A randomized, double-blinded trial of safety, immunogenicity and efficacy of the candidate Plasmodium falciparum apical membrane antigen 1 (AMA1 vaccine FMP2.1/AS02A was conducted in Bandiagara, Mali. Children aged 1-6 years were randomized in a 1∶1 ratio to receive FMP2.1/AS02A or control rabies vaccine on days 0, 30 and 60. Using active and passive surveillance, clinical malaria and adverse events as well as antibodies against P. falciparum AMA1 were monitored for 24 months after the first vaccination, spanning two malaria seasons.400 children were enrolled. Serious adverse events occurred in nine participants in the FMP2.1/AS02A group and three in the control group; none was considered related to study vaccination. After two years, anti-AMA1 immune responses remained significantly higher in the FMP2.1/AS02A group than in the control group. For the entire 24-month follow-up period, vaccine efficacy was 7.6% (p = 0.51 against first clinical malaria episodes and 9.9% (p = 0.19 against all malaria episodes. For the final 16-month follow-up period, vaccine efficacy was 0.9% (p = 0.98 against all malaria episodes. Allele-specific efficacy seen in the first malaria season did not extend into the second season of follow-up.Allele-specific vaccine efficacy was not sustained in the second malaria season, despite continued high levels of anti-AMA1 antibodies. This study presents an opportunity to evaluate correlates of partial protection against clinical malaria that waned during

  6. Sterile protection against Plasmodium knowlesi in rhesus monkeys from a malaria vaccine: comparison of heterologous prime boost strategies.

    Directory of Open Access Journals (Sweden)

    George Jiang

    Full Text Available Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA, alphavirus replicons (VRP, attenuated adenovirus serotype 5 (Ad, or attenuated poxvirus (Pox. These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost.

  7. Application of a scalable plant transient gene expression platform for malaria vaccine development

    Directory of Open Access Journals (Sweden)

    Holger eSpiegel

    2015-12-01

    Full Text Available Despite decades of intensive research efforts there is currently no vaccine that provides sustained sterile immunity against malaria. In this context, a large number of targets from the different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates. None of these candidates has fulfilled expectations, and as long as we lack a single target that induces strain-transcending protective immune responses, combining key antigens from different life cycle stages seems to be the most promising route towards the development of efficacious malaria vaccines. After the identification of potential targets using approaches such as omics-based technology and reverse immunology, the rapid expression, purification and characterization of these proteins, as well as the generation and analysis of fusion constructs combining different promising antigens or antigen domains before committing to expensive and time consuming clinical development, represents one of the bottlenecks in the vaccine development pipeline. The production of recombinant proteins by transient gene expression in plants is a robust and versatile alternative to cell-based microbial and eukaryotic production platforms. The transfection of plant tissues and/or whole plants using Agrobacterium tumefaciens offers a low technical entry barrier, low costs and a high degree of flexibility embedded within a rapid and scalable workflow. Recombinant proteins can easily be targeted to different subcellular compartments according to their physicochemical requirements, including post-translational modifications, to ensure optimal yields of high quality product, and to support simple and economical downstream processing. Here we demonstrate the use of a plant transient expression platform based on transfection with A. tumefaciens as essential component of a malaria vaccine development workflow involving screens for expression, solubility and stability using fluorescent fusion

  8. Phase 1 study in malaria naïve adults of BSAM2/Alhydrogel®+CPG 7909, a blood stage vaccine against P. falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Ruth D Ellis

    Full Text Available A Phase 1 dose escalating study was conducted in malaria naïve adults to assess the safety, reactogenicity, and immunogenicity of the blood stage malaria vaccine BSAM2/Alhydrogel®+ CPG 7909. BSAM2 is a combination of the FVO and 3D7 alleles of recombinant AMA1 and MSP1(42, with equal amounts by weight of each of the four proteins mixed, bound to Alhydrogel®, and administered with the adjuvant CPG 7909. Thirty (30 volunteers were enrolled in two dose groups, with 15 volunteers receiving up to three doses of 40 µg total protein at Days 0, 56, and 180, and 15 volunteers receiving up to three doses of 160 µg protein on the same schedule. Most related adverse events were mild or moderate, but 4 volunteers experienced severe systemic reactions and two were withdrawn from vaccinations due to adverse events. Geometric mean antibody levels after two vaccinations with the high dose formulation were 136 µg/ml for AMA1 and 78 µg/ml for MSP1(42. Antibody responses were not significantly different in the high dose versus low dose groups and did not further increase after third vaccination. In vitro growth inhibition was demonstrated and was closely correlated with anti-AMA1 antibody responses. A Phase 1b trial in malaria-exposed adults is being conducted.Clinicaltrials.gov NCT00889616.

  9. Induction and maintenance of protective CD8+ T cells against malaria liver stages: implications for vaccine development

    Directory of Open Access Journals (Sweden)

    Sze-Wah Tse

    2011-08-01

    Full Text Available CD8+ T cells against malaria liver stages represent a major protective immune mechanism against infection. Following induction in the peripheral lymph nodes by dendritic cells (DCs, these CD8+ T cells migrate to the liver and eliminate parasite infected hepatocytes. The processing and presentation of sporozoite antigen requires TAP mediated transport of major histocompatibility complex class I epitopes to the endoplasmic reticulum. Importantly, in DCs this process is also dependent on endosome-mediated cross presentation while this mechanism is not required for epitope presentation on hepatocytes. Protective CD8+ T cell responses are strongly dependent on the presence of CD4+ T cells and the capacity of sporozoite antigen to persist for a prolonged period of time. While human trials with subunit vaccines capable of inducing antibodies and CD4+ T cell responses have yielded encouraging results, an effective anti-malaria vaccine will likely require vaccine constructs designed to induce protective CD8+ T cells against malaria liver stages.

  10. Malaria resistance | Iyabo | Nigerian Medical Practitioner

    African Journals Online (AJOL)

    Age and puberty have been found to contribute to malaria resistance. It is expected that knowledge of natural resistance to malaria may aid in developing Vaccines against this deadly disease. Keywords: malaria resistance, puberty, malaria economy, malaria vaccine. Nigerian Medical Practitioner Vol. 49(5) 2006: 133-142 ...

  11. Impact on malaria parasite multiplication rates in infected volunteers of the protein-in-adjuvant vaccine AMA1-C1/Alhydrogel+CPG 7909.

    Directory of Open Access Journals (Sweden)

    Christopher J A Duncan

    Full Text Available Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria.In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes.A significant correlation was observed between parasite multiplication rate in 48 hours (PMR and both vaccine-induced growth-inhibitory activity (Pearson r = -0.93 [95% CI: -1.0, -0.27] P = 0.02 and AMA1 antibody titres in the vaccine group (Pearson r = -0.93 [95% CI: -0.99, -0.25] P = 0.02. However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70. Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5-9], control group median 9 days [range 7-9].Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers.ClinicalTrials.gov [NCT00984763].

  12. Convergent ethical issues in HIV/AIDS, tuberculosis and malaria vaccine trials in Africa: Report from the WHO/UNAIDS African AIDS Vaccine Programme's Ethics, Law and Human Rights Collaborating Centre consultation, 10-11 February 2009, Durban, South Africa

    Directory of Open Access Journals (Sweden)

    Essack Zaynab

    2010-03-01

    Full Text Available Abstract Background Africa continues to bear a disproportionate share of the global HIV/AIDS, tuberculosis (TB and malaria burden. The development and distribution of safe, effective and affordable vaccines is critical to reduce these epidemics. However, conducting HIV/AIDS, TB, and/or malaria vaccine trials simultaneously in developing countries, or in populations affected by all three diseases, is likely to result in numerous ethical challenges. Methods In order to explore convergent ethical issues in HIV/AIDS, TB and malaria vaccine trials in Africa, the Ethics, Law and Human Rights Collaborating Centre of the WHO/UNAIDS African AIDS Vaccine Programme hosted a consultation on the Convergent Ethical Issues in HIV/AIDS, TB and Malaria Vaccine Trials in Africa in Durban, South Africa on the 10-11 February 2009. Results Key cross cutting ethical issues were prioritized during the consultation as community engagement; ancillary care obligations; care and treatment; informed consent; and resource sharing. Conclusion The consultation revealed that while there have been few attempts to find convergence on ethical issues between HIV/AIDS, TB and malaria vaccine trial fields to date, there is much common ground and scope for convergence work between stakeholders in the three fields.

  13. Convergent ethical issues in HIV/AIDS, tuberculosis and malaria vaccine trials in Africa: Report from the WHO/UNAIDS African AIDS Vaccine Programme's Ethics, Law and Human Rights Collaborating Centre consultation, 10-11 February 2009, Durban, South Africa.

    Science.gov (United States)

    Mamotte, Nicole; Wassenaar, Douglas; Koen, Jennifer; Essack, Zaynab

    2010-03-09

    Africa continues to bear a disproportionate share of the global HIV/AIDS, tuberculosis (TB) and malaria burden. The development and distribution of safe, effective and affordable vaccines is critical to reduce these epidemics. However, conducting HIV/AIDS, TB, and/or malaria vaccine trials simultaneously in developing countries, or in populations affected by all three diseases, is likely to result in numerous ethical challenges. In order to explore convergent ethical issues in HIV/AIDS, TB and malaria vaccine trials in Africa, the Ethics, Law and Human Rights Collaborating Centre of the WHO/UNAIDS African AIDS Vaccine Programme hosted a consultation on the Convergent Ethical Issues in HIV/AIDS, TB and Malaria Vaccine Trials in Africa in Durban, South Africa on the 10-11 February 2009. Key cross cutting ethical issues were prioritized during the consultation as community engagement; ancillary care obligations; care and treatment; informed consent; and resource sharing. The consultation revealed that while there have been few attempts to find convergence on ethical issues between HIV/AIDS, TB and malaria vaccine trial fields to date, there is much common ground and scope for convergence work between stakeholders in the three fields.

  14. Identification of pre-erythrocytic malaria antigens that target hepatocytes for killing in vivo and contribute to protection elicited by whole-parasite vaccination.

    Directory of Open Access Journals (Sweden)

    Lin Chen

    Full Text Available Pre-erythrocytic malaria vaccines, including those based on whole-parasite approaches, have shown protective efficacy in animal and human studies. However few pre-erythocytic antigens other than the immunodominant circumsporozoite protein (CSP have been studied in depth with the goal of developing potent subunit malaria vaccines that are suited for use in endemic areas. Here we describe a novel technique to identify pre-erythrocytic malaria antigens that contribute to protection elicited by whole-parasite vaccination in the mouse model. Our approach combines immunization with genetically attenuated parasites and challenge with DNA plasmids encoding for potential protective pre-erythrocytic malaria antigens as luciferase fusions by hydrodynamic tail vein injection. After optimizing the technique, we first showed that immunization with Pyfabb/f-, a P. yoelii genetically attenuated parasite, induces killing of CSP-presenting hepatocytes. Depletion of CD8+ but not CD4+ T cells diminished the killing of CSP-expressing hepatocytes, indicating that killing is CD8+ T cell-dependent. Finally we showed that the use of heterologous prime/boost immunization strategies that use genetically attenuated parasites and DNA vaccines enabled the characterization of a novel pre-erythrocytic antigen, Tmp21, as a contributor to Pyfabb/f- induced protection. This technique will be valuable for identification of potentially protective liver stage antigens and has the potential to contribute to the understanding of immunity elicited by whole parasite vaccination, as well as the development of effective subunit malaria vaccines.

  15. Effect of the pre-erythrocytic candidate malaria vaccine RTS,S/AS01E on blood stage immunity in young children

    DEFF Research Database (Denmark)

    Bejon, Philip; Cook, Jackie; Bergmann-Leitner, Elke

    2011-01-01

    (See the article by Greenhouse et al, on pages 19-26.) Background. RTS,S/AS01(E) is the lead candidate malaria vaccine and confers pre-erythrocytic immunity. Vaccination may therefore impact acquired immunity to blood-stage malaria parasites after natural infection. Methods. We measured, by enzyme......, MSP-1(42), and MSP-3 antibody concentrations and no significant change in GIA. Increasing anti-merozoite antibody concentrations and GIA were prospectively associated with increased risk of clinical malaria. Conclusions. Vaccination with RTS,S/AS01E reduces exposure to blood-stage parasites and, thus......-linked immunosorbent assay, antibodies to 4 Plasmodium falciparum merozoite antigens (AMA-1, MSP-1(42), EBA-175, and MSP-3) and by growth inhibitory activity (GIA) using 2 parasite clones (FV0 and 3D7) at 4 times on 860 children who were randomized to receive with RTS,S/AS01(E) or a control vaccine. Results. Antibody...

  16. Early life vaccination

    DEFF Research Database (Denmark)

    Nazerai, Loulieta; Bassi, Maria Rosaria; Uddbäck, Ida Elin Maria

    2016-01-01

    Intracellular pathogens represent a serious threat during early life. Importantly, even though the immune system of newborns may be characterized as developmentally immature, with a propensity to develop Th2 immunity, significant CD8+ T-cell responses may still be elicited in the context of optimal...... the first period of life and provide a pertinent alternative in infant vaccinology. To address this, infant mice were vaccinated with three different adenoviral vectors and the CD8+ T-cell response after early life vaccination was explored. We assessed the frequency, polyfunctionality and in vivo...... cytotoxicity of the elicited memory CD8+ T cells, as well as the potential of these cells to respond to secondary infections and confer protection. We further tested the impact of maternal immunity against our replication-deficient adenoviral vector during early life vaccination. Overall, our results indicate...

  17. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans.

    Science.gov (United States)

    Sheehy, Susanne H; Duncan, Christopher J A; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian V S; Draper, Simon J

    2012-12-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.

  18. Clinical development of a VAR2CSA-based placental malaria vaccine PAMVAC

    DEFF Research Database (Denmark)

    Gbédandé, Komi; Fievet, Nadine; Viwami, Firmine

    2017-01-01

    Background  The antigen VAR2CSA plays a pivotal role in the pathophysiology of pregnancy-associated malaria (PAM) caused by Plasmodium falciparum. A VAR2CSA-based vaccine candidate, PAMVAC, is under development by an EU-funded multi-country consortium (PlacMalVac project). As part of PAMVAC...

  19. Evidence for globally shared, cross-reacting polymorphic epitopes in the pregnancy-associated malaria vaccine candidate VAR2CSA

    DEFF Research Database (Denmark)

    Avril, Marion; Kulasekara, Bridget R; Gose, Severin O

    2008-01-01

    Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size ( approximately 350 k...

  20. Early warnings of the potential for malaria transmission in Rural Africa using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS)

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A.

    2010-12-01

    Early warnings of malaria transmission allow health officials to better prepare for future epidemics. Monitoring rainfall is recognized as an important part of malaria early warning systems, as outlined by the Roll Back Malaria Initiative. The Hydrology, Entomology and Malaria Simulator (HYDREMATS) is a mechanistic model that relates rainfall to malaria transmission, and could be used to provide early warnings of malaria epidemics. HYDREMATS is used to make predictions of mosquito populations and vectorial capacity for 2005, 2006, and 2007 in Banizoumbou village in western Niger. HYDREMATS is forced by observed rainfall, followed by a rainfall prediction based on the seasonal mean rainfall for a period two or four weeks into the future. Predictions made using this method provided reasonable estimates of mosquito populations and vectorial capacity, two to four weeks in advance. The predictions were significantly improved compared to those made when HYDREMATS was forced with seasonal mean rainfall alone.

  1. Generation of genetically attenuated blood-stage malaria parasites; characterizing growth and virulence in a rodent model of malaria

    NARCIS (Netherlands)

    Lin, Jingwen

    2013-01-01

    Despite intense efforts over the past 50 years to develop a vaccine, there is currently no licensed malaria vaccine available. The limited success in inducing sufficient protection against malaria with subunit-vaccines has renewed an interest in whole-parasite vaccination strategies. While

  2. Malaria early warning tool: linking inter-annual climate and malaria variability in northern Guadalcanal, Solomon Islands.

    Science.gov (United States)

    Smith, Jason; Tahani, Lloyd; Bobogare, Albino; Bugoro, Hugo; Otto, Francis; Fafale, George; Hiriasa, David; Kazazic, Adna; Beard, Grant; Amjadali, Amanda; Jeanne, Isabelle

    2017-11-21

    Malaria control remains a significant challenge in the Solomon Islands. Despite progress made by local malaria control agencies over the past decade, case rates remain high in some areas of the country. Studies from around the world have confirmed important links between climate and malaria transmission. This study focuses on understanding the links between malaria and climate in Guadalcanal, Solomon Islands, with a view towards developing a climate-based monitoring and early warning for periods of enhanced malaria transmission. Climate records were sourced from the Solomon Islands meteorological service (SIMS) and historical malaria case records were sourced from the National Vector-Borne Disease Control Programme (NVBDCP). A declining trend in malaria cases over the last decade associated with improved malaria control was adjusted for. A stepwise regression was performed between climate variables and climate-associated malaria transmission (CMT) at different lag intervals to determine where significant relationships existed. The suitability of these results for use in a three-tiered categorical warning system was then assessed using a Mann-Whitney U test. Of the climate variables considered, only rainfall had a consistently significant relationship with malaria in North Guadalcanal. Optimal lag intervals were determined for prediction using R 2 skill scores. A highly significant negative correlation (R = - 0.86, R 2  = 0.74, p malaria transmission periods in January-June. Cross-validation emphasized the suitability of this relationship for forecasting purposes [Formula: see text]  as did Mann-Whitney U test results showing that rainfall below or above specific thresholds was significantly associated with above or below normal malaria transmission, respectively. This study demonstrated that rainfall provides the best predictor of malaria transmission in North Guadalcanal. This relationship is thought to be underpinned by the unique hydrological conditions

  3. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Bernhards R Ogutu

    Full Text Available The antigen, falciparum malaria protein 1 (FMP1, represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1 of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System, it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children.A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg or Rabipur(R rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE was measured over a six-month period following third vaccinations.374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42 antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7.FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42 vaccine development should focus on other formulations and antigen constructs

  4. Plasmodium falciparum CS protein - prime malaria vaccine candidate: definition of the human CTL domain and analysis of its variation

    Directory of Open Access Journals (Sweden)

    Denise L. Doolan

    1992-01-01

    Full Text Available Studies in mice have shown that immunity to malaria sporozoites is mediated primarily by citotoxic T lymphocytes (CTL specific for epitopes within the circumsporozoite (CS protein. Humans, had never been shown to generate CTL against any malaria or other parasite protein. The design of a sub-unit vaccine for humans ralies on the epitopes recognized by CTL being identified and polymorphisms therein being defined. We have developed a novel technique using an entire series of overlapping synthetic peptides to define the epitopes of the Plasmodium falciparum CS protein recognized by human CTL and have analyzed the sequence variation of the protein with respect to the identified CTL epitopic domain. We have demonstrated that some humans can indeed generate CTL. against the P. falciparum CS protein. Furthermore, the extent of variation observed for the CTL recognition domain is finite and the combination of peptides necessary for inclusion in a polyvalent vaccine may be small. If ways can be found to increase immune responsiveness, then a vaccine designed to stimulate CS protein-specific CTL activity may prevent malaria.

  5. A Glycolipid Adjuvant, 7DW8-5, Enhances CD8+ T Cell Responses Induced by an Adenovirus-Vectored Malaria Vaccine in Non-Human Primates

    OpenAIRE

    Padte, Neal N.; Boente-Carrera, Mar; Andrews, Chasity D.; McManus, Jenny; Grasperge, Brooke F.; Gettie, Agegnehu; Coelho-dos-Reis, Jordana G.; Li, Xiangming; Wu, Douglass; Bruder, Joseph T.; Sedegah, Martha; Patterson, Noelle; Richie, Thomas L.; Wong, Chi-Huey; Ho, David D.

    2013-01-01

    A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer), enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent ad...

  6. A glycolipid adjuvant, 7DW8-5, enhances CD8+ T cell responses induced by an adenovirus-vectored malaria vaccine in non-human primates.

    Science.gov (United States)

    Padte, Neal N; Boente-Carrera, Mar; Andrews, Chasity D; McManus, Jenny; Grasperge, Brooke F; Gettie, Agegnehu; Coelho-dos-Reis, Jordana G; Li, Xiangming; Wu, Douglass; Bruder, Joseph T; Sedegah, Martha; Patterson, Noelle; Richie, Thomas L; Wong, Chi-Huey; Ho, David D; Vasan, Sandhya; Tsuji, Moriya

    2013-01-01

    A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer), enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent adjuvant effect on a candidate human malaria vaccine in the more relevant non-human primate (NHP) model, prior to committing to clinical development. The candidate human malaria vaccine, AdPfCA (NMRC-M3V-Ad-PfCA), consists of two non-replicating recombinant adenoviral (Ad) vectors, one expressing the circumsporozoite protein (CSP) and another expressing the apical membrane antigen-1 (AMA1) of Plasmodium falciparum. In several phase 1 clinical trials, AdPfCA was well tolerated and demonstrated immunogenicity for both humoral and cell-mediated responses. In the study described herein, 25 rhesus macaques received prime and boost intramuscular (IM) immunizations of AdPfCA alone or with an ascending dose of 7DW8-5. Our results indicate that 7DW8-5 is safe and well-tolerated and provides a significant enhancement (up to 9-fold) in malaria-specific CD8+ T-cell responses after both priming and boosting phases, supporting further clinical development.

  7. A glycolipid adjuvant, 7DW8-5, enhances CD8+ T cell responses induced by an adenovirus-vectored malaria vaccine in non-human primates.

    Directory of Open Access Journals (Sweden)

    Neal N Padte

    Full Text Available A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer, enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent adjuvant effect on a candidate human malaria vaccine in the more relevant non-human primate (NHP model, prior to committing to clinical development. The candidate human malaria vaccine, AdPfCA (NMRC-M3V-Ad-PfCA, consists of two non-replicating recombinant adenoviral (Ad vectors, one expressing the circumsporozoite protein (CSP and another expressing the apical membrane antigen-1 (AMA1 of Plasmodium falciparum. In several phase 1 clinical trials, AdPfCA was well tolerated and demonstrated immunogenicity for both humoral and cell-mediated responses. In the study described herein, 25 rhesus macaques received prime and boost intramuscular (IM immunizations of AdPfCA alone or with an ascending dose of 7DW8-5. Our results indicate that 7DW8-5 is safe and well-tolerated and provides a significant enhancement (up to 9-fold in malaria-specific CD8+ T-cell responses after both priming and boosting phases, supporting further clinical development.

  8. Phase 1 trial of AMA1-C1/Alhydrogel plus CPG 7909: an asexual blood-stage vaccine for Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Gregory E D Mullen

    2008-08-01

    Full Text Available Apical Membrane Antigen 1 (AMA1, a polymorphic merozoite surface protein, is a leading blood-stage malaria vaccine candidate. This is the first reported use in humans of an investigational vaccine, AMA1-C1/Alhydrogel, with the novel adjuvant CPG 7909.A phase 1 trial was conducted at the University of Rochester with 75 malaria-naive volunteers to assess the safety and immunogenicity of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine. Participants were sequentially enrolled and randomized within dose escalating cohorts to receive three vaccinations on days 0, 28 and 56 of either 20 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 15, 80 microg of AMA1-C1/Alhydrogel (n = 30, or 80 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 30.Local and systemic adverse events were significantly more likely to be of higher severity with the addition of CPG 7909. Anti-AMA1 immunoglobulin G (IgG were detected by enzyme-linked immunosorbent assay (ELISA, and the immune sera of volunteers that received 20 microg or 80 microg of AMA1-C1/Alhydrogel+CPG 7909 had up to 14 fold significant increases in anti-AMA1 antibody concentration compared to 80 microg of AMA1-C1/Alhydrogel alone. The addition of CPG 7909 to the AMA1-C1/Alhydrogel vaccine in humans also elicited AMA1 specific immune IgG that significantly and dramatically increased the in vitro growth inhibition of homologous parasites to levels as high as 96% inhibition.The safety profile of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine is acceptable, given the significant increase in immunogenicity observed. Further clinical development is ongoing.ClinicalTrials.gov NCT00344539.

  9. Comparative decline in funding of European Commission malaria vaccine projects: what next for the European scientists working in this field?

    DEFF Research Database (Denmark)

    Thøgersen, Regitze L; Holder, Anthony A; Hill, Adrian Vs

    2011-01-01

    scientists in academia and small and medium enterprises, together with partners in Africa. Research has added basic understanding of what is required of a malaria vaccine, allowing selected candidates to be prioritized and some to be moved forward into clinical trials. To end the health burden of malaria...

  10. Safety of the malaria vaccine candidate, RTS,S/AS01E in 5 to 17 month old Kenyan and Tanzanian Children

    DEFF Research Database (Denmark)

    Lusingu, John; Olotu, Ally; Leach, Amanda

    2010-01-01

    ) recipient and nine episodes among eight rabies vaccine recipients met the criteria for severe malaria. Unsolicited AEs were reported in 78% of subjects in the RTS,S/AS01(E) group and 74% of subjects in the rabies vaccine group. In both vaccine groups, gastroenteritis and pneumonia were the most frequently...

  11. Detection of Malaria parasite species based on 18S rRNA and assessment of its resistance to the drug for DHPS gene to support the development of irradiation Malaria vaccine

    International Nuclear Information System (INIS)

    Mukh Syaifudin; Darlina; Siti Nurhayati

    2016-01-01

    Malaria remains a major public health problem because it causes 1-2 million mortality per year. Therefore the development of its vaccine, including vaccine created by ionizing radiation, is urgently needed to control the disease. Aim of this research was to determine the species of malaria parasite infecting the blood of malaria suspected patients and its resistance to sulfadoxine-pyrimethamine (SP). The number of samples used were 10 blood specimens that obtained from Dok II Hospital in Jayapura. Microscopic examination on thin blood smear was done according to standard procedure, followed by Polymerase Chain Reaction (PCR) based diagnosis to further confirm the parasite using 18S rRNA gene on deoxyribonucleic acid extract. The presence of mutation in the dhps (dihydropteroate synthetase) gene related to SP drugs was examined using restriction fragment length polymorphism (RFLP) method. Results showed that 9 samples were infected with Plasmodium falciparum and 1 infected with P. vivax. Allelic mutants of dhps gene at codon K540E were detected in 3 (33.3%) samples. Even though only in very limited number of samples analyzed, the information obtained will be a great value in additional knowledge for vaccine development with irradiation. (author)

  12. Early detection and monitoring of Malaria

    Science.gov (United States)

    Rahman, Md Z.; Roytman, Leonid; Kadik, Abdelhamid; Miller, Howard; Rosy, Dilara A.

    2015-05-01

    Global Earth Observation Systems of Systems (GEOSS) are bringing vital societal benefits to people around the globe. In this research article, we engage undergraduate students in the exciting area of space exploration to improve the health of millions of people globally. The goal of the proposed research is to place students in a learning environment where they will develop their problem solving skills in the context of a world crisis (e.g., malaria). Malaria remains one of the greatest threats to public health, particularly in developing countries. The World Health Organization has estimated that over one million die of Malaria each year, with more than 80% of these found in Sub-Saharan Africa. The mosquitoes transmit malaria. They breed in the areas of shallow surface water that are suitable to the mosquito and parasite development. These environmental factors can be detected with satellite imagery, which provide high spatial and temporal coverage of the earth's surface. We investigate on moisture, thermal and vegetation stress indicators developed from NOAA operational environmental satellite data. Using these indicators and collected epidemiological data, it is possible to produce a forecast system that can predict the risk of malaria for a particular geographical area with up to four months lead time. This valuable lead time information provides an opportunity for decision makers to deploy the necessary preventive measures (spraying, treated net distribution, storing medications and etc) in threatened areas with maximum effectiveness. The main objective of the proposed research is to study the effect of ecology on human health and application of NOAA satellite data for early detection of malaria.

  13. Vaccination Confidence and Parental Refusal/Delay of Early Childhood Vaccines.

    Directory of Open Access Journals (Sweden)

    Melissa B Gilkey

    Full Text Available To support efforts to address parental hesitancy towards early childhood vaccination, we sought to validate the Vaccination Confidence Scale using data from a large, population-based sample of U.S. parents.We used weighted data from 9,354 parents who completed the 2011 National Immunization Survey. Parents reported on the immunization history of a 19- to 35-month-old child in their households. Healthcare providers then verified children's vaccination status for vaccines including measles, mumps, and rubella (MMR, varicella, and seasonal flu. We used separate multivariable logistic regression models to assess associations between parents' mean scores on the 8-item Vaccination Confidence Scale and vaccine refusal, vaccine delay, and vaccination status.A substantial minority of parents reported a history of vaccine refusal (15% or delay (27%. Vaccination confidence was negatively associated with refusal of any vaccine (odds ratio [OR] = 0.58, 95% confidence interval [CI], 0.54-0.63 as well as refusal of MMR, varicella, and flu vaccines specifically. Negative associations between vaccination confidence and measures of vaccine delay were more moderate, including delay of any vaccine (OR = 0.81, 95% CI, 0.76-0.86. Vaccination confidence was positively associated with having received vaccines, including MMR (OR = 1.53, 95% CI, 1.40-1.68, varicella (OR = 1.54, 95% CI, 1.42-1.66, and flu vaccines (OR = 1.32, 95% CI, 1.23-1.42.Vaccination confidence was consistently associated with early childhood vaccination behavior across multiple vaccine types. Our findings support expanding the application of the Vaccination Confidence Scale to measure vaccination beliefs among parents of young children.

  14. Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    Science.gov (United States)

    Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.

    2007-01-01

    Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher

  15. Safety of the malaria vaccine candidate, RTS,S/AS01E in 5 to 17 month old Kenyan and Tanzanian Children.

    Directory of Open Access Journals (Sweden)

    John Lusingu

    2010-11-01

    Full Text Available The malaria vaccine candidate, RTS,S/AS01(E, showed promising protective efficacy in a trial of Kenyan and Tanzanian children aged 5 to 17 months. Here we report on the vaccine's safety and tolerability. The experimental design was a Phase 2b, two-centre, double-blind (observer- and participant-blind, randomised (1∶1 ratio controlled trial. Three doses of study or control (rabies vaccines were administered intramuscularly at 1 month intervals. Solicited adverse events (AEs were collected for 7 days after each vaccination. There was surveillance and reporting for unsolicited adverse events for 30 days after each vaccination. Serious adverse events (SAEs were recorded throughout the study period which lasted for 14 months after dose 1 in Korogwe, Tanzania and an average of 18 months post-dose 1 in Kilifi, Kenya. Blood samples for safety monitoring of haematological, renal and hepatic functions were taken at baseline, 3, 10 and 14 months after dose 1. A total of 894 children received RTS,S/AS01(E or rabies vaccine between March and August 2007. Overall, children vaccinated with RTS,S/AS01(E had fewer SAEs (51/447 than children in the control group (88/447. One SAE episode in a RTS,S/AS01(E recipient and nine episodes among eight rabies vaccine recipients met the criteria for severe malaria. Unsolicited AEs were reported in 78% of subjects in the RTS,S/AS01(E group and 74% of subjects in the rabies vaccine group. In both vaccine groups, gastroenteritis and pneumonia were the most frequently reported unsolicited AE. Fever was the most frequently observed solicited AE and was recorded after 11% of RTS,S/AS01(E doses compared to 31% of doses of rabies vaccine. The candidate vaccine RTS,S/AS01(E showed an acceptable safety profile in children living in a malaria-endemic area in East Africa. More data on the safety of RTS,S/AS01(E will become available from the Phase 3 programme.

  16. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.

    Directory of Open Access Journals (Sweden)

    Susan Thrane

    Full Text Available Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP based vaccines (e.g., the licensed human papillomavirus vaccines have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of

  17. Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice.

    Directory of Open Access Journals (Sweden)

    John B Carey

    Full Text Available Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC, must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8(+ T cell responses to a malaria antigen induced by a live vaccine.Recombinant modified vaccinia virus Ankara (MVA expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes.This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8(+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids

  18. An open source business model for malaria.

    Science.gov (United States)

    Årdal, Christine; Røttingen, John-Arne

    2015-01-01

    Greater investment is required in developing new drugs and vaccines against malaria in order to eradicate malaria. These precious funds must be carefully managed to achieve the greatest impact. We evaluate existing efforts to discover and develop new drugs and vaccines for malaria to determine how best malaria R&D can benefit from an enhanced open source approach and how such a business model may operate. We assess research articles, patents, clinical trials and conducted a smaller survey among malaria researchers. Our results demonstrate that the public and philanthropic sectors are financing and performing the majority of malaria drug/vaccine discovery and development, but are then restricting access through patents, 'closed' publications and hidden away physical specimens. This makes little sense since it is also the public and philanthropic sector that purchases the drugs and vaccines. We recommend that a more "open source" approach is taken by making the entire value chain more efficient through greater transparency which may lead to more extensive collaborations. This can, for example, be achieved by empowering an existing organization like the Medicines for Malaria Venture (MMV) to act as a clearing house for malaria-related data. The malaria researchers that we surveyed indicated that they would utilize such registry data to increase collaboration. Finally, we question the utility of publicly or philanthropically funded patents for malaria medicines, where little to no profits are available. Malaria R&D benefits from a publicly and philanthropically funded architecture, which starts with academic research institutions, product development partnerships, commercialization assistance through UNITAID and finally procurement through mechanisms like The Global Fund to Fight AIDS, Tuberculosis and Malaria and the U.S.' President's Malaria Initiative. We believe that a fresh look should be taken at the cost/benefit of patents particularly related to new malaria

  19. An open source business model for malaria.

    Directory of Open Access Journals (Sweden)

    Christine Årdal

    Full Text Available Greater investment is required in developing new drugs and vaccines against malaria in order to eradicate malaria. These precious funds must be carefully managed to achieve the greatest impact. We evaluate existing efforts to discover and develop new drugs and vaccines for malaria to determine how best malaria R&D can benefit from an enhanced open source approach and how such a business model may operate. We assess research articles, patents, clinical trials and conducted a smaller survey among malaria researchers. Our results demonstrate that the public and philanthropic sectors are financing and performing the majority of malaria drug/vaccine discovery and development, but are then restricting access through patents, 'closed' publications and hidden away physical specimens. This makes little sense since it is also the public and philanthropic sector that purchases the drugs and vaccines. We recommend that a more "open source" approach is taken by making the entire value chain more efficient through greater transparency which may lead to more extensive collaborations. This can, for example, be achieved by empowering an existing organization like the Medicines for Malaria Venture (MMV to act as a clearing house for malaria-related data. The malaria researchers that we surveyed indicated that they would utilize such registry data to increase collaboration. Finally, we question the utility of publicly or philanthropically funded patents for malaria medicines, where little to no profits are available. Malaria R&D benefits from a publicly and philanthropically funded architecture, which starts with academic research institutions, product development partnerships, commercialization assistance through UNITAID and finally procurement through mechanisms like The Global Fund to Fight AIDS, Tuberculosis and Malaria and the U.S.' President's Malaria Initiative. We believe that a fresh look should be taken at the cost/benefit of patents particularly related

  20. Extended follow-up following a phase 2b randomized trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya.

    Directory of Open Access Journals (Sweden)

    Philip Bejon

    2007-08-01

    Full Text Available "FFM ME-TRAP" is sequential immunisation with two attenuated poxvirus vectors (FP9 and modified vaccinia virus Ankara delivering the pre-erythrocytic malaria antigen ME-TRAP. Over nine months follow-up in our original study, there was no evidence that FFM ME-TRAP provided protection against malaria. The incidence of malaria was slightly higher in children who received FFM ME-TRAP, but this was not statistically significant (hazard ratio 1.5, 95% CI 1.0-2.3. Although the study was unblinded, another nine months follow-up was planned to monitor the incidence of malaria and other serious adverse events.405 children aged 1-6 yrs were initially randomized to vaccination with either FFM ME-TRAP or control (rabies vaccine. 380 children were still available for follow-up after the first nine months. Children were seen weekly and whenever they were unwell for nine months monitoring. The axillary temperature was measured, and blood films taken when febrile. The primary analysis was time to parasitaemia >2,500/microl. During the second nine months monitoring, 49 events met the primary endpoint (febrile malaria with parasites >2,500/microl in the Intention To Treat (ITT group. 23 events occurred among the 189 children in the FFM ME-TRAP group, and 26 among the 194 children in the control group. In the full 18 months of monitoring, there were 63 events in the FFM ME-TRAP group and 60 in the control group (HR = 1.2, CI 0.84-1.73, p = 0.35. There was no evidence that the HR changed over the 18 months (test for interaction between time and vaccination p = 0.11.Vaccination with FFM ME-TRAP was not protective against malaria in this study. Malaria incidence during 18 months of surveillance was similar in both vaccine groups.Controlled-Trials.com ISRCTN88335123.

  1. A controlled human malaria infection model enabling evaluation of transmission-blocking interventions

    NARCIS (Netherlands)

    Collins, K.A.; Wang, C.Y.; Adams, M.; Mitchell, H.; Rampton, M.; Elliott, S.; Reuling, I.J.; Bousema, T.; Sauerwein, R.; Chalon, S.; Mohrle, J.J.; McCarthy, J.S.

    2018-01-01

    BACKGROUND: Drugs and vaccines that can interrupt the transmission of Plasmodium falciparum will be important for malaria control and elimination. However, models for early clinical evaluation of candidate transmission-blocking interventions are currently unavailable. Here, we describe a new model

  2. Towards A Malaria Vaccine?

    Directory of Open Access Journals (Sweden)

    B S GARG

    1990-12-01

    Full Text Available The last few years have seen a marked change in the understanding of malaria mmunology.We have very little knowledge on immunity of Malaria based on experiments in humanbeings due to ethical reasons. Whatsoever our knowledge exists at present is based onexperimentas in mice and monkey. However it is clear that it is sporzoite or merozoitewhich is directly exposed to our immune system in the life cycle of Malaria parasite. On thebasis of human experiments we can draw inference that immunity to malaria is species.specific (on cross immunity, stage specific and strain specific as well acquired in the response to surface antigen and relapsed antigen although the parasite also demonstrates escape machanism to immune system.So the host system kills or elimi nate the parasite by means of (a Antbody to extracell~ular form of parasite with the help of mechanism of Block invasion, Agglutination or opsonization and/or (b Cellular machanism-either by phago-cytosis of parasite or by antibody dependent cellular cytotoxicity ABCC (? or by effects of mediators like tumor necrosis fJ.ctor (TNF in cerebaral malaria or crisis forming factor as found in sudan or by possible role of lysis mechanism.However, inspite of all these theories the parasite has been able to invade the immunesystem by virtue of its intracellular development stage specificity, sequestration in capillaries and also by its unusual characteristics of antigenic diversity and antigenic variation.

  3. T-cell responses in malaria

    DEFF Research Database (Denmark)

    Hviid, L; Jakobsen, P H; Abu-Zeid, Y A

    1992-01-01

    Malaria is caused by infection with protozoan parasites of the genus Plasmodium. It remains one of the most severe health problems in tropical regions of the world, and the rapid spread of resistance to drugs and insecticides has stimulated intensive research aimed at the development of a malaria...... vaccine. Despite this, no efficient operative vaccine is currently available. A large amount of information on T-cell responses to malaria antigens has been accumulated, concerning antigens derived from all stages of the parasite life cycle. The present review summarizes some of that information......, and discusses factors affecting the responses of T cells to malaria antigens....

  4. Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36.

    Science.gov (United States)

    Palacpac, Nirianne Marie Q; Ntege, Edward; Yeka, Adoke; Balikagala, Betty; Suzuki, Nahoko; Shirai, Hiroki; Yagi, Masanori; Ito, Kazuya; Fukushima, Wakaba; Hirota, Yoshio; Nsereko, Christopher; Okada, Takuya; Kanoi, Bernard N; Tetsutani, Kohhei; Arisue, Nobuko; Itagaki, Sawako; Tougan, Takahiro; Ishii, Ken J; Ueda, Shigeharu; Egwang, Thomas G; Horii, Toshihiro

    2013-01-01

    Up to now a malaria vaccine remains elusive. The Plasmodium falciparum serine repeat antigen-5 formulated with aluminum hydroxyl gel (BK-SE36) is a blood-stage malaria vaccine candidate that has undergone phase 1a trial in malaria-naive Japanese adults. We have now assessed the safety and immunogenicity of BK-SE36 in a malaria endemic area in Northern Uganda. We performed a two-stage, randomized, single-blinded, placebo-controlled phase 1b trial (Current Controlled trials ISRCTN71619711). A computer-generated sequence randomized healthy subjects for 2 subcutaneous injections at 21-day intervals in Stage1 (21-40 year-olds) to 1-mL BK-SE36 (BKSE1.0) (n = 36) or saline (n = 20) and in Stage2 (6-20 year-olds) to BKSE1.0 (n = 33), 0.5-mL BK-SE36 (BKSE0.5) (n = 33), or saline (n = 18). Subjects and laboratory personnel were blinded. Safety and antibody responses 21-days post-second vaccination (Day42) were assessed. Post-trial, to compare the risk of malaria episodes 130-365 days post-second vaccination, Stage2 subjects were age-matched to 50 control individuals. Nearly all subjects who received BK-SE36 had induration (Stage1, n = 33, 92%; Stage2, n = 63, 96%) as a local adverse event. No serious adverse event related to BK-SE36 was reported. Pre-existing anti-SE36 antibody titers negatively correlated with vaccination-induced antibody response. At Day42, change in antibody titers was significant for seronegative adults (1.95-fold higher than baseline [95% CI, 1.56-2.43], p = 0.004) and 6-10 year-olds (5.71-fold [95% CI, 2.38-13.72], p = 0.002) vaccinated with BKSE1.0. Immunogenicity response to BKSE0.5 was low and not significant (1.55-fold [95% CI, 1.24-1.94], p = 0.75). In the ancillary analysis, cumulative incidence of first malaria episodes with ≥5000 parasites/µL was 7 cases/33 subjects in BKSE1.0 and 10 cases/33 subjects in BKSE0.5 vs. 29 cases/66 subjects in the control group. Risk ratio for BKSE1.0 was 0.48 (95% CI, 0

  5. A randomized controlled Phase Ib trial of the malaria vaccine candidate GMZ2 in African children

    DEFF Research Database (Denmark)

    Bélard, Sabine; Issifou, Saadou; Hounkpatin, Aurore B

    2011-01-01

    GMZ2 is a fusion protein of Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate rich protein (GLURP) that mediates an immune response against the blood stage of the parasite. Two previous phase I clinical trials, one in naïve European adults and one in malaria-exposed Gabonese ...... adults showed that GMZ2 was well tolerated and immunogenic. Here, we present data on safety and immunogenicity of GMZ2 in one to five year old Gabonese children, a target population for future malaria vaccine efficacy trials....

  6. Safety, immunogenicity and duration of protection of the RTS,S/AS02(D malaria vaccine: one year follow-up of a randomized controlled phase I/IIb trial.

    Directory of Open Access Journals (Sweden)

    Pedro Aide

    2010-11-01

    Full Text Available The RTS,S/AS02(D vaccine has been shown to have a promising safety profile, to be immunogenic and to confer protection against malaria in children and infants.We did a randomized, controlled, phase I/IIb trial of RTS,S/AS02(D given at 10, 14 and 18 weeks of age staggered with routine immunization vaccines in 214 Mozambican infants. The study was double-blind until the young child completed 6 months of follow-up over which period vaccine efficacy against new Plasmodium falciparum infections was estimated at 65.9% (95% CI 42.6-79.8, p<0.0001. We now report safety, immunogenicity and estimated efficacy against clinical malaria up to 14 months after study start. Vaccine efficacy was assessed using Cox regression models. The frequency of serious adverse events was 32.7% in the RTS,S/AS02(D and 31.8% in the control group. The geometric mean titers of anti-circumsporozoite antibodies declined from 199.9 to 7.3 EU/mL from one to 12 months post dose three of RTS,S/AS02(D, remaining 15-fold higher than in the control group. Vaccine efficacy against clinical malaria was 33% (95% CI: -4.3-56.9, p = 0.076 over 14 months of follow-up. The hazard rate of disease per 2-fold increase in anti-CS titters was reduced by 84% (95% CI 35.1-88.2, p = 0.003.The RTS,S/AS02(D malaria vaccine administered to young infants has a good safety profile and remains efficacious over 14 months. A strong association between anti-CS antibodies and risk of clinical malaria has been described for the first time. The results also suggest a decrease of both anti-CS antibodies and vaccine efficacy over time.ClinicalTrials.gov NCT00197028.

  7. Multilaboratory approach to preclinical evaluation of vaccine immunogens for placental malaria

    DEFF Research Database (Denmark)

    Fried, Michal; Avril, Marion; Chaturvedi, Richa

    2013-01-01

    a vaccine targeting individual Duffy binding-like (DBL) domains. In this study, a consortium of laboratories under the Pregnancy Malaria Initiative compared the functional activity of antiadhesion antibodies elicited by different VAR2CSA domains and variants produced in prokaryotic and eukaryotic expression...... systems. Antisera were initially tested against laboratory lines of maternal parasites, and the most promising reagents were evaluated in the field against fresh placental parasite samples. Recombinant proteins expressed in Escherichia coli elicited antibody levels similar to those expressed in eukaryotic...

  8. Comparative testing of six antigen-based malaria vaccine candidates directed toward merozoite-stage Plasmodium falciparum

    DEFF Research Database (Denmark)

    Arnot, David E; Cavanagh, David R; Remarque, Edmond J

    2008-01-01

    Immunogenicity testing of Plasmodium falciparum antigens being considered as malaria vaccine candidates was undertaken in rabbits. The antigens compared were recombinant baculovirus MSP-1(19) and five Pichia pastoris candidates, including two versions of MSP-1(19), AMA-1 (domains I and II), AMA-1......G concentrations. The two P. pastoris-produced MSP-1(19)-induced IgGs conferred the lowest growth inhibition. Comparative analysis of immunogenicity of vaccine antigens can be used to prioritize candidates before moving to expensive GMP production and clinical testing. The assays used have given discriminating...

  9. Early Childhood Malaria Prevention and Children's Patterns of School Leaving in the Gambia

    Science.gov (United States)

    Zuilkowski, Stephanie S.; Jukes, Matthew C. H.

    2014-01-01

    Background: Early childhood malaria is often fatal, but its impact on the development and education of survivors has not received much attention. Malaria impacts cognitive development in a number of ways that may impact later educational participation. Aims: In this study, we examine the long-term educational effects of preventing early childhood…

  10. Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age

    DEFF Research Database (Denmark)

    Bejon, Philip; Lusingu, John; Olotu, Ally

    2008-01-01

    . We evaluated the efficacy of RTS,S given with a more immunogenic adjuvant system (AS01E) in children 5 to 17 months of age, a target population for vaccine licensure. METHODS: We conducted a double-blind, randomized trial of RTS,S/AS01E vaccine as compared with rabies vaccine in children in Kilifi...... vaccine or the control (rabies) vaccine. Among the 809 children who completed the study procedures according to the protocol, the cumulative number in whom clinical malaria developed was 32 of 402 assigned to receive RTS,S/AS01E and 66 of 407 assigned to receive the rabies vaccine; the adjusted efficacy...... rate for RTS,S/AS01E was 53% (95% confidence interval [CI], 28 to 69; Prabies vaccine, with an adjusted rate of efficacy...

  11. Safety and Immunogenicity of EBA-175 RII-NG Malaria Vaccine Administered Intramuscularly in Semi-Immune Adults: A Phase 1, Double-Blinded Placebo Controlled Dosage Escalation Study.

    Science.gov (United States)

    Koram, Kwadwo A; Adu, Bright; Ocran, Josephine; Karikari, Yaa S; Adu-Amankwah, Susan; Ntiri, Michael; Abuaku, Benjamin; Dodoo, Daniel; Gyan, Ben; Kronmann, Karl C; Nkrumah, Francis

    2016-01-01

    The erythrocyte binding antigen region II (EBA-175 RII) is a Plasmodium falciparum ligand that mediates erythrocyte invasion and is considered an important malaria vaccine candidate. A phase Ia trial in malaria naïve adults living in the United States found the recombinant non-glycosylated vaccine antigen, EBA-175 RII-NG adjuvanted with aluminium phosphate to be safe, immunogenic and capable of inducing biologically active antibodies that can inhibit parasite growth in vitro. The aim of the current study was to assess the safety and immunogenicity of this vaccine in malaria exposed semi-immune healthy adults living in a malaria endemic country, Ghana. In this double-blinded, placebo controlled, dose escalation phase I trial, eighteen subjects per group received ascending dose concentrations (5 μg, 20 μg or 80 μg) of the vaccine intramuscularly at 0, 1 and 6 months, while 6 subjects received placebo (normal saline). The primary end point was the number of subjects experiencing Grade 3 systemic or local adverse events within 14 days post-vaccination. Serious adverse events were assessed throughout the study period. Blood samples for immunological analyses were collected at days 0, 14, 28, 42, 180 and 194. A total of 52 subjects received three doses of the vaccine in the respective groups. No serious adverse events were reported. The majority of all adverse events reported were mild to moderate in severity, with local pain and tenderness being the most common. All adverse events, irrespective of severity, resolved without any sequelae. Subjects who received any of the EBA-175 RII-NG doses had high immunoglobulin G levels which moderately inhibited P. falciparum growth in vitro, compared to those in the placebo group. In conclusion, the EBA-175 RII-NG vaccine was safe, well tolerated and immunogenic in malaria semi-immune Ghanaian adults. Its further development is recommended. ClinicalTrials.gov. Identifier: NCT01026246.

  12. Safety and Immunogenicity of EBA-175 RII-NG Malaria Vaccine Administered Intramuscularly in Semi-Immune Adults: A Phase 1, Double-Blinded Placebo Controlled Dosage Escalation Study.

    Directory of Open Access Journals (Sweden)

    Kwadwo A Koram

    Full Text Available The erythrocyte binding antigen region II (EBA-175 RII is a Plasmodium falciparum ligand that mediates erythrocyte invasion and is considered an important malaria vaccine candidate. A phase Ia trial in malaria naïve adults living in the United States found the recombinant non-glycosylated vaccine antigen, EBA-175 RII-NG adjuvanted with aluminium phosphate to be safe, immunogenic and capable of inducing biologically active antibodies that can inhibit parasite growth in vitro. The aim of the current study was to assess the safety and immunogenicity of this vaccine in malaria exposed semi-immune healthy adults living in a malaria endemic country, Ghana. In this double-blinded, placebo controlled, dose escalation phase I trial, eighteen subjects per group received ascending dose concentrations (5 μg, 20 μg or 80 μg of the vaccine intramuscularly at 0, 1 and 6 months, while 6 subjects received placebo (normal saline. The primary end point was the number of subjects experiencing Grade 3 systemic or local adverse events within 14 days post-vaccination. Serious adverse events were assessed throughout the study period. Blood samples for immunological analyses were collected at days 0, 14, 28, 42, 180 and 194. A total of 52 subjects received three doses of the vaccine in the respective groups. No serious adverse events were reported. The majority of all adverse events reported were mild to moderate in severity, with local pain and tenderness being the most common. All adverse events, irrespective of severity, resolved without any sequelae. Subjects who received any of the EBA-175 RII-NG doses had high immunoglobulin G levels which moderately inhibited P. falciparum growth in vitro, compared to those in the placebo group. In conclusion, the EBA-175 RII-NG vaccine was safe, well tolerated and immunogenic in malaria semi-immune Ghanaian adults. Its further development is recommended.ClinicalTrials.gov. Identifier: NCT01026246.

  13. Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice

    Science.gov (United States)

    Carey, John B.; Pearson, Frances E.; Vrdoljak, Anto; McGrath, Marie G.; Crean, Abina M.; Walsh, Patrick T.; Doody, Timothy; O'Mahony, Conor; Hill, Adrian V. S.; Moore, Anne C.

    2011-01-01

    Background Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8+ T cell responses to a malaria antigen induced by a live vaccine. Methodology and Findings Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. Conclusions/Significance This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction

  14. malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication.

    Science.gov (United States)

    2017-11-01

    Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination.

  15. Plasmodium falciparum incidence relative to entomologic inoculation rates at a site proposed for testing malaria vaccines in western Kenya.

    Science.gov (United States)

    Beier, J C; Oster, C N; Onyango, F K; Bales, J D; Sherwood, J A; Perkins, P V; Chumo, D K; Koech, D V; Whitmire, R E; Roberts, C R

    1994-05-01

    Relationships between Plasmodium falciparum incidence and entomologic inoculation rates (EIRs) were determined for a 21-month period in Saradidi, western Kenya, in preparation for malaria vaccine field trials. Children, ranging in age from six months to six years and treated to clear malaria parasites, were monitored daily for up to 12 weeks to detect new malaria infections. Overall, new P. falciparum infections were detected in 77% of 809 children. The percentage of children that developed infections per two-week period averaged 34.7%, ranging from 7.3% to 90.9%. Transmission by vector populations was detected in 86.4% (38 of 44) of the two-week periods, with daily EIRs averaging 0.75 infective bites per person. Periods of intense transmission during April to August, and from November to January, coincided with seasonal rains. Relationships between daily malaria attack rates and EIRs indicated that an average of only 7.5% (1 in 13) of the sporozoite inoculations produced new infections in children. Regression analysis demonstrated that EIRs accounted for 74% of the variation in attack rates. One of the components of the EIR, the human-biting rate, alone accounted for 68% of the variation in attack rates. Thus, measurements of either the EIR or the human-biting rate can be used to predict corresponding attack rates in children. These baseline epidemiologic studies indicate that the intense transmission patterns of P. falciparum in Saradidi will provide excellent conditions for evaluating malaria vaccine efficacy.

  16. Humoral immune responses to a single allele PfAMA1 vaccine in healthy malaria-naïve adults.

    Directory of Open Access Journals (Sweden)

    Edmond J Remarque

    Full Text Available Plasmodium falciparum: apical membrane antigen 1 (AMA1 is a candidate malaria vaccine antigen expressed on merozoites and sporozoites. The polymorphic nature of AMA1 may compromise vaccine induced protection. The humoral response induced by two dosages (10 and 50 µg of a single allele AMA1 antigen (FVO formulated with Alhydrogel, Montanide ISA 720 or AS02 was investigated in 47 malaria-naïve adult volunteers. Volunteers were vaccinated 3 times at 4 weekly intervals and serum samples obtained four weeks after the third immunization were analysed for (i Antibody responses to various allelic variants, (ii Domain specificity, (iii Avidity, (iv IgG subclass levels, by ELISA and (v functionality of antibody responses by Growth Inhibition Assay (GIA. About half of the antibodies induced by vaccination cross reacted with heterologous AMA1 alleles. The choice of adjuvant determined the magnitude of the antibody response, but had only a marginal influence on specificity, avidity, domain recognition or subclass responses. The highest antibody responses were observed for AMA1 formulated with AS02. The Growth Inhibition Assay activity of the antibodies was proportional to the amount of antigen specific IgG and the functional capacity of the antibodies was similar for heterologous AMA1-expressing laboratory strains.ClinicalTrials.gov NCT00730782.

  17. Mother-Newborn Pairs in Malawi Have Similar Antibody Repertoires to Diverse Malaria Antigens.

    Science.gov (United States)

    Boudová, Sarah; Walldorf, Jenny A; Bailey, Jason A; Divala, Titus; Mungwira, Randy; Mawindo, Patricia; Pablo, Jozelyn; Jasinskas, Algis; Nakajima, Rie; Ouattara, Amed; Adams, Matthew; Felgner, Philip L; Plowe, Christopher V; Travassos, Mark A; Laufer, Miriam K

    2017-10-01

    Maternal antibodies may play a role in protecting newborns against malaria disease. Plasmodium falciparum parasite surface antigens are diverse, and protection from infection requires allele-specific immunity. Although malaria-specific antibodies have been shown to cross the placenta, the extent to which antibodies that respond to the full repertoire of diverse antigens are transferred from the mother to the infant has not been explored. Understanding the breadth of maternal antibody responses and to what extent these antibodies are transferred to the child can inform vaccine design and evaluation. We probed plasma from cord blood and serum from mothers at delivery using a customized protein microarray that included variants of malaria vaccine target antigens to assess the intensity and breadth of seroreactivity to three malaria vaccine candidate antigens in mother-newborn pairs in Malawi. Among the 33 paired specimens that were assessed, mothers and newborns had similar intensity and repertoire of seroreactivity. Maternal antibody levels against vaccine candidate antigens were the strongest predictors of infant antibody levels. Placental malaria did not significantly impair transplacental antibody transfer. However, mothers with placental malaria had significantly higher antibody levels against these blood-stage antigens than mothers without placental malaria. The repertoire and levels of infant antibodies against a wide range of malaria vaccine candidate antigen variants closely mirror maternal levels in breadth and magnitude regardless of evidence of placental malaria. Vaccinating mothers with an effective malaria vaccine during pregnancy may induce high and potentially protective antibody repertoires in newborns. Copyright © 2017 American Society for Microbiology.

  18. Prospects and Pitfalls of Pregnancy-Associated Malaria Vaccination Based on the Natural Immune Response to Plasmodium falciparum VAR2CSA-Expressing Parasites

    Directory of Open Access Journals (Sweden)

    Elizabeth G. Kane

    2011-01-01

    Full Text Available Pregnancy-associated malaria, a manifestation of severe malaria, is the cause of up to 200,000 infant deaths a year, through the effects of placental insufficiency leading to growth restriction and preterm delivery. Development of a vaccine is one strategy for control. Plasmodium falciparum-infected red blood cells accumulate in the placenta through specific binding of pregnancy-associated parasite variants that express the VAR2CSA antigen to chondroitin sulphate A on the surface of syncytiotrophoblast cells. Parasite accumulation, accompanied by an inflammatory infiltrate, disrupts the cytokine balance of pregnancy with the potential to cause placental damage and compromise foetal growth. Multigravid women develop immunity towards VAR2CSA-expressing parasites in a gravidity-dependent manner which prevents unfavourable pregnancy outcomes. Although current vaccine design, targeting VAR2CSA antigens, has succeeded in inducing antibodies artificially, this candidate may not provide protection during the first trimester and may only protect those women living in areas endemic for malaria. It is concluded that while insufficient information about placental-parasite interactions is presently available to produce an effective vaccine, incremental progress is being made towards achieving this goal.

  19. Population genomics diversity of Plasmodium falciparum in malaria ...

    African Journals Online (AJOL)

    Background: Plasmodium falciparum, the most dangerous malaria parasite species to ... tigen for subunit malaria vaccine.10 It comprises highly ... were also prepared for Giemsa staining as described by ... parasites with different alleles at a given locus and ranges ..... surface protein 1, immune evasion and vaccines against.

  20. Analysis of a Multi-component Multi-stage Malaria Vaccine Candidate--Tackling the Cocktail Challenge.

    Directory of Open Access Journals (Sweden)

    Alexander Boes

    Full Text Available Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80%, blood (up to 90% and sexual parasite stages (100%. Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17-25 μg/ml, the blood stage (40-60 μg/ml and the sexual stage (1.75 μg/ml. While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy.

  1. Pregnancy malaria: cryptic disease, apparent solution

    Directory of Open Access Journals (Sweden)

    Patrick Emmet Duffy

    2011-08-01

    Full Text Available Malaria during pregnancy can be severe in non-immune women, but in areas of stable transmission, where women are semi-immune and often asymptomatic during infection, malaria is an insidious cause of disease and death for mothers and their offspring. Sequelae, such as severe anaemia and hypertension in the mother and low birth weight and infant mortality in the offspring, are often not recognised as consequences of infection. Pregnancy malaria, caused by Plasmodium falciparum, is mediated by infected erythrocytes (IEs that bind to chondroitin sulphate A and are sequestered in the placenta. These parasites have a unique adhesion phenotype and distinct antigenicity, which indicates that novel targets may be required for development of an effective vaccine. Women become resistant to malaria as they acquire antibodies against placental IE, which leads to higher haemoglobin levels and heavier babies. Proteins exported from the placental parasites have been identified, including both variant and conserved antigens, and some of these are in preclinical development for vaccines. A vaccine that prevents P. falciparum malaria in pregnant mothers is feasible and would potentially save hundreds of thousands of lives each year.

  2. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria.

    Science.gov (United States)

    Lozano, José Manuel; Varela, Yahson; Silva, Yolanda; Ardila, Karen; Forero, Martha; Guasca, Laura; Guerrero, Yuly; Bermudez, Adriana; Alba, Patricia; Vanegas, Magnolia; Patarroyo, Manuel Elkin

    2017-11-01

    Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of Pf CSP, STARP; MSA1 and Pf 155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei -ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  3. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria

    Directory of Open Access Journals (Sweden)

    José Manuel Lozano

    2017-11-01

    Full Text Available Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of PfCSP, STARP; MSA1 and Pf155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei-ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  4. Development of behaviour change communication strategy for a vaccination-linked malaria control tool in southern Tanzania

    Directory of Open Access Journals (Sweden)

    Mshinda Hassan

    2008-09-01

    Full Text Available Abstract Background Intermittent preventive treatment of malaria in infants (IPTi using sulphadoxine-pyrimethamine and linked to the expanded programme on immunization (EPI is a promising strategy for malaria control in young children. As evidence grows on the efficacy of IPTi as public health strategy, information is needed so that this novel control tool can be put into practice promptly, once a policy recommendation is made to implement it. This paper describes the development of a behaviour change communication strategy to support implementation of IPTi by the routine health services in southern Tanzania, in the context of a five-year research programme evaluating the community effectiveness of IPTi. Methods Mixed methods including a rapid qualitative assessment and quantitative health facility survey were used to investigate communities' and providers' knowledge and practices relating to malaria, EPI, sulphadoxine-pyrimethamine and existing health posters. Results were applied to develop an appropriate behaviour change communication strategy for IPTi involving personal communication between mothers and health staff, supported by a brand name and two posters. Results Malaria in young children was considered to be a nuisance because it causes sleepless nights. Vaccination services were well accepted and their use was considered the mother's responsibility. Babies were generally taken for vaccination despite complaints about fevers and swellings after the injections. Sulphadoxine-pyrimethamine was widely used for malaria treatment and intermittent preventive treatment of malaria in pregnancy, despite widespread rumours of adverse reactions based on hearsay and newspaper reports. Almost all health providers said that they or their spouse were ready to take SP in pregnancy (96%, 223/242. A brand name, key messages and images were developed and pre-tested as behaviour change communication materials. The posters contained public health messages

  5. Is early measles vaccination better than later measles vaccination?

    DEFF Research Database (Denmark)

    Aaby, Peter; Martins, Cesário L; Ravn, Henrik

    2015-01-01

    WHO recommends delaying measles vaccination (MV) until maternal antibody has waned. However, early MV may improve child survival by reducing mortality from conditions other than measles infection. We tested whether early MV improves child survival compared with later MV. We found 43 studies compa...

  6. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery.

    Science.gov (United States)

    Davoodi-Semiromi, Abdoreza; Schreiber, Melissa; Nalapalli, Samson; Verma, Dheeraj; Singh, Nameirakpam D; Banks, Robert K; Chakrabarti, Debopam; Daniell, Henry

    2010-02-01

    Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce, respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10(+) T cell but not Foxp3(+) regulatory T cells, suppression of interferon-gamma and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity.

  7. Strategies for Early Outbreak Detection of Malaria in the Amhara Region of Ethiopia

    Science.gov (United States)

    Nekorchuk, D.; Gebrehiwot, T.; Mihretie, A.; Awoke, W.; Wimberly, M. C.

    2017-12-01

    Traditional epidemiological approaches to early detection of disease outbreaks are based on relatively straightforward thresholds (e.g. 75th percentile, standard deviations) estimated from historical case data. For diseases with strong seasonality, these can be modified to create separate thresholds for each seasonal time step. However, for disease processes that are non-stationary, more sophisticated techniques are needed to more accurately estimate outbreak threshold values. Early detection for geohealth-related diseases that also have environmental drivers, such as vector-borne diseases, may also benefit from the integration of time-lagged environmental data and disease ecology models into the threshold calculations. The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) project has been integrating malaria case surveillance with remotely-sensed environmental data for early detection, warning, and forecasting of malaria epidemics in the Amhara region of Ethiopia, and has five years of weekly time series data from 47 woredas (districts). Efforts to reduce the burden of malaria in Ethiopia has been met with some notable success in the past two decades with major reduction in cases and deaths. However, malaria remains a significant public health threat as 60% of the population live in malarious areas, and due to the seasonal and unstable transmission patterns with cyclic outbreaks, protective immunity is generally low which could cause high morbidity and mortality during the epidemics. This study compared several approaches for defining outbreak thresholds and for identifying a potential outbreak based on deviations from these thresholds. We found that model-based approaches that accounted for climate-driven seasonality in malaria transmission were most effective, and that incorporating a trend component improved outbreak detection in areas with active malaria elimination efforts. An advantage of these early

  8. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Ilin Chuang

    Full Text Available BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad. The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea, possibly related to immunization, was severe (Grade 3, preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27% were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102 and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270 and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019. Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%. Protection

  9. Malaria and World War II: German malaria experiments 1939-45.

    Science.gov (United States)

    Eckart, W U; Vondra, H

    2000-06-01

    The epidemiological and pharmacological fight against malaria and German malaria research during the Nazi dictatorship were completely under the spell of war. The Oberkommando des Heeres (German supreme command of the army) suffered the bitter experience of unexpected high losses caused by malaria especially at the Greek front (Metaxes line) but also in southern Russia and in the Ukraine. Hastily raised anti-malaria units tried to teach soldiers how to use the synthetic malaria drugs (Plasmochine, Atebrine) properly. Overdoses of these drugs were numerous during the first half of the war whereas in the second half it soon became clear that it would not be possible to support the army due to insufficient quantities of plasmochine and atebrine. During both running fights and troop withdrawals at all southern and southeastern fronts there was hardly any malaria prophylaxis or treatment. After war and captivity many soldiers returned home to endure heavy malaria attacks. In German industrial (Bayer, IG-Farben) and military malaria laboratories of the Heeres-Sanitäts-Akademie (Army Medical Academy) the situation was characterised by a hasty search for proper dosages of anti-malaria drugs, adequate mechanical and chemical prophylaxis (Petroleum, DDT, and other insecticides) as well as an anti-malaria vaccine. Most importantly, large scale research for proper atebrine and plasmochine dosages was conducted in German concentration camps and mental homes. In Dachau Professor Claus Schilling tested synthetic malaria drugs and injected helpless prisoners with high and sometimes lethal doses. Since the 1920s he had been furiously looking for an anti-malaria vaccine in Italian mental homes and from 1939 he continued his experiments in Dachau. Similar experiments were also performed in Buchenwald and in a psychiatric clinic in Thuringia, where Professor Gerhard Rose tested malaria drugs with mentally ill Russian prisoners of war. Schilling was put to death for his criminal

  10. Efficacy of RTS,S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5-17 months in Kenya and Tanzania: a randomised controlled trial

    DEFF Research Database (Denmark)

    Olotu, Ally; Lusingu, John; Leach, Amanda

    2011-01-01

    RTS,S/AS01E is the lead candidate malaria vaccine. We recently showed efficacy against clinical falciparum malaria in 5-17 month old children, during an average of 8 months follow-up. We aimed to assess the efficacy of RTS,S/AS01E during 15 months of follow-up.......RTS,S/AS01E is the lead candidate malaria vaccine. We recently showed efficacy against clinical falciparum malaria in 5-17 month old children, during an average of 8 months follow-up. We aimed to assess the efficacy of RTS,S/AS01E during 15 months of follow-up....

  11. Virosome-formulated Plasmodium falciparum AMA-1 & CSP derived peptides as malaria vaccine: randomized phase 1b trial in semi-immune adults & children.

    Directory of Open Access Journals (Sweden)

    Patrick Georges Cech

    Full Text Available This trial was conducted to evaluate the safety and immunogenicity of two virosome formulated malaria peptidomimetics derived from Plasmodium falciparum AMA-1 and CSP in malaria semi-immune adults and children.The design was a prospective randomized, double-blind, controlled, age-deescalating study with two immunizations. 10 adults and 40 children (aged 5-9 years living in a malaria endemic area were immunized with PEV3B or virosomal influenza vaccine Inflexal®V on day 0 and 90.No serious or severe adverse events (AEs related to the vaccines were observed. The only local solicited AE reported was pain at injection site, which affected more children in the Inflexal®V group compared to the PEV3B group (p = 0.014. In the PEV3B group, IgG ELISA endpoint titers specific for the AMA-1 and CSP peptide antigens were significantly higher for most time points compared to the Inflexal®V control group. Across all time points after first immunization the average ratio of endpoint titers to baseline values in PEV3B subjects ranged from 4 to 15 in adults and from 4 to 66 in children. As an exploratory outcome, we found that the incidence rate of clinical malaria episodes in children vaccinees was half the rate of the control children between study days 30 and 365 (0.0035 episodes per day at risk for PEV3B vs. 0.0069 for Inflexal®V; RR  = 0.50 [95%-CI: 0.29-0.88], p = 0.02.These findings provide a strong basis for the further development of multivalent virosomal malaria peptide vaccines.ClinicalTrials.gov NCT00513669.

  12. [Establishment of malaria early warning system in Jiangsu Province II application of digital earth system in malaria epidemic management and surveillance].

    Science.gov (United States)

    Wang, Wei-Ming; Zhou, Hua-Yun; Liu, Yao-Bao; Li, Ju-Lin; Cao, Yuan-Yuan; Cao, Jun

    2013-04-01

    To explore a new mode of malaria elimination through the application of digital earth system in malaria epidemic management and surveillance. While we investigated the malaria cases and deal with the epidemic areas in Jiangsu Province in 2011, we used JISIBAO UniStrong G330 GIS data acquisition unit (GPS) to collect the latitude and longitude of the cases located, and then established a landmark library about early-warning areas and an image management system by using Google Earth Free 6.2 and its image processing software. A total of 374 malaria cases were reported in Jiangsu Province in 2011. Among them, there were 13 local vivax malaria cases, 11 imported vivax malaria cases from other provinces, 20 abroad imported vivax malaria cases, 309 abroad imported falciparum malaria cases, 7 abroad imported quartan malaria cases (Plasmodium malaria infection), and 14 abroad imported ovale malaria cases (P. ovale infection). Through the analysis of Google Earth Mapping system, these malaria cases showed a certain degree of aggregation except the abroad imported quartan malaria cases which were highly sporadic. The local vivax malaria cases mainly concentrated in Sihong County, the imported vivax malaria cases from other provinces mainly concentrated in Suzhou City and Wuxi City, the abroad imported vivax malaria cases concentrated in Nanjing City, the abroad imported falciparum malaria cases clustered in the middle parts of Jiangsu Province, and the abroad imported ovale malaria cases clustered in Liyang City. The operation of Google Earth Free 6.2 is simple, convenient and quick, which could help the public health authority to make the decision of malaria prevention and control, including the use of funds and other health resources.

  13. Examination on the protein profiles of salivary glands of P. berghei infected anopheles Sp. post gamma irradiation using SDS-PAGE technique for developing malaria vaccine

    International Nuclear Information System (INIS)

    Tetriana, D.; Syaifudin, M.

    2014-01-01

    Sporozoite is a step of malaria parasitic live cycle that is most invasive and appropriate vaccine candidate. Result of experiments showed that malaria vaccine created by attenuating Plasmodium sp sporozoites with gamma rays was proven more effective. Study on the effects of irradiation to the profiles of protein in vaccine development is also important. The aim of this research was to examine the protein profile of salivary glands in sporozoite infected Anopheles sp post gamma irradiation using Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) technique. Examination covered the infection of Anopheles sp with Plasmodium sp, maintenance of infected mosquitoes for 14-16 days to obtain sporozoites, in vivo - in vitro irradiation of mosquitoes, preparation of salivary glands, electrophoresis on 10% SDS-PAGE, and Commassie blue staining. Results showed a different protein profile of infected and non infected salivary glands of Anopheles sp. There was additional protein band numbers at higher dose of irradiation (200 Gy) from sporozoite protein of P. berghei (MW 62 kDa). However, no difference of the profiles of circumsporozoite protein (CSP) observed among gamma irradiation doses of 150, 175 and 200 Gy. These results provide basic information that would lead to further study on the role of sporozoite proteins in malaria vaccine development. (author)

  14. Vaccines today, vaccines tomorrow: a perspective.

    Science.gov (United States)

    Loucq, Christian

    2013-01-01

    Vaccines are considered as one of the major contributions of the 20th century and one of the most cost effective public health interventions. The International Vaccine Institute has as a mission to discover, develop and deliver new and improved vaccines against infectious diseases that affects developing nations. If Louis Pasteur is known across the globe, vaccinologists like Maurice Hilleman, Jonas Salk and Charles Mérieux are known among experts only despite their contribution to global health. Thanks to a vaccine, smallpox has been eradicated, polio has nearly disappeared, Haemophilus influenzae B, measles and more recently meningitis A are controlled in many countries. While a malaria vaccine is undergoing phase 3, International Vaccine Institute, in collaboration with an Indian manufacturer has brought an oral inactivated cholera vaccine to pre-qualification. The field of vaccinology has undergone major changes thanks to philanthropists such as Bill and Melinda Gates, initiatives like the Decade of Vaccines and public private partnerships. Current researches on vaccines have more challenging targets like the dengue viruses, malaria, human immunodeficiency virus, the respiratory syncytial virus and nosocomial diseases. Exciting research is taking place on new adjuvants, nanoparticles, virus like particles and new route of administration. An overcrowded infant immunization program, anti-vaccine groups, immunizing a growing number of elderlies and delivering vaccines to difficult places are among challenges faced by vaccinologists and global health experts.

  15. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria.

    Science.gov (United States)

    Hoffman, Stephen L; Billingsley, Peter F; James, Eric; Richman, Adam; Loyevsky, Mark; Li, Tao; Chakravarty, Sumana; Gunasekera, Anusha; Chattopadhyay, Rana; Li, Minglin; Stafford, Richard; Ahumada, Adriana; Epstein, Judith E; Sedegah, Martha; Reyes, Sharina; Richie, Thomas L; Lyke, Kirsten E; Edelman, Robert; Laurens, Matthew B; Plowe, Christopher V; Sim, B Kim Lee

    2010-01-01

    Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.

  16. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  17. Malaria in Brazil: an overview.

    Science.gov (United States)

    Oliveira-Ferreira, Joseli; Lacerda, Marcus V G; Brasil, Patrícia; Ladislau, José L B; Tauil, Pedro L; Daniel-Ribeiro, Cláudio Tadeu

    2010-04-30

    Malaria is still a major public health problem in Brazil, with approximately 306,000 registered cases in 2009, but it is estimated that in the early 1940s, around six million cases of malaria occurred each year. As a result of the fight against the disease, the number of malaria cases decreased over the years and the smallest numbers of cases to-date were recorded in the 1960s. From the mid-1960s onwards, Brazil underwent a rapid and disorganized settlement process in the Amazon and this migratory movement led to a progressive increase in the number of reported cases. Although the main mosquito vector (Anopheles darlingi) is present in about 80% of the country, currently the incidence of malaria in Brazil is almost exclusively (99,8% of the cases) restricted to the region of the Amazon Basin, where a number of combined factors favors disease transmission and impair the use of standard control procedures. Plasmodium vivax accounts for 83,7% of registered cases, while Plasmodium falciparum is responsible for 16,3% and Plasmodium malariae is seldom observed. Although vivax malaria is thought to cause little mortality, compared to falciparum malaria, it accounts for much of the morbidity and for huge burdens on the prosperity of endemic communities. However, in the last few years a pattern of unusual clinical complications with fatal cases associated with P. vivax have been reported in Brazil and this is a matter of concern for Brazilian malariologists. In addition, the emergence of P. vivax strains resistant to chloroquine in some reports needs to be further investigated. In contrast, asymptomatic infection by P. falciparum and P. vivax has been detected in epidemiological studies in the states of Rondonia and Amazonas, indicating probably a pattern of clinical immunity in both autochthonous and migrant populations. Seropidemiological studies investigating the type of immune responses elicited in naturally-exposed populations to several malaria vaccine candidates in

  18. Malaria in Brazil: an overview

    Directory of Open Access Journals (Sweden)

    Brasil Patrícia

    2010-04-01

    Full Text Available Abstract Malaria is still a major public health problem in Brazil, with approximately 306 000 registered cases in 2009, but it is estimated that in the early 1940s, around six million cases of malaria occurred each year. As a result of the fight against the disease, the number of malaria cases decreased over the years and the smallest numbers of cases to-date were recorded in the 1960s. From the mid-1960s onwards, Brazil underwent a rapid and disorganized settlement process in the Amazon and this migratory movement led to a progressive increase in the number of reported cases. Although the main mosquito vector (Anopheles darlingi is present in about 80% of the country, currently the incidence of malaria in Brazil is almost exclusively (99,8% of the cases restricted to the region of the Amazon Basin, where a number of combined factors favors disease transmission and impair the use of standard control procedures. Plasmodium vivax accounts for 83,7% of registered cases, while Plasmodium falciparum is responsible for 16,3% and Plasmodium malariae is seldom observed. Although vivax malaria is thought to cause little mortality, compared to falciparum malaria, it accounts for much of the morbidity and for huge burdens on the prosperity of endemic communities. However, in the last few years a pattern of unusual clinical complications with fatal cases associated with P. vivax have been reported in Brazil and this is a matter of concern for Brazilian malariologists. In addition, the emergence of P. vivax strains resistant to chloroquine in some reports needs to be further investigated. In contrast, asymptomatic infection by P. falciparum and P. vivax has been detected in epidemiological studies in the states of Rondonia and Amazonas, indicating probably a pattern of clinical immunity in both autochthonous and migrant populations. Seropidemiological studies investigating the type of immune responses elicited in naturally-exposed populations to several

  19. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris.

    Science.gov (United States)

    Avril, Marion; Hathaway, Marianne J; Cartwright, Megan M; Gose, Severin O; Narum, David L; Smith, Joseph D

    2009-06-29

    VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. From a total of 42 different VAR2CSA constructs, 15 proteins (36%) were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development.

  20. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Narum David L

    2009-06-01

    Full Text Available Abstract Background VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. Methods VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. Results From a total of 42 different VAR2CSA constructs, 15 proteins (36% were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. Conclusion These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development.

  1. Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1.

    Directory of Open Access Journals (Sweden)

    Caroline Kulangara

    Full Text Available In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1. In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.

  2. Tools and Strategies for Malaria Control and Elimination: What Do We Need to Achieve a Grand Convergence in Malaria?

    Directory of Open Access Journals (Sweden)

    Janet Hemingway

    2016-03-01

    Full Text Available Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication.

  3. Liposomes containing monophosphoryl lipid A and QS-21 serve as an effective adjuvant for soluble circumsporozoite protein malaria vaccine FMP013.

    Science.gov (United States)

    Genito, Christopher J; Beck, Zoltan; Phares, Timothy W; Kalle, Fanta; Limbach, Keith J; Stefaniak, Maureen E; Patterson, Noelle B; Bergmann-Leitner, Elke S; Waters, Norman C; Matyas, Gary R; Alving, Carl R; Dutta, Sheetij

    2017-07-05

    Malaria caused by Plasmodium falciparum continues to threaten millions of people living in the tropical parts of the world. A vaccine that confers sterile and life-long protection remains elusive despite more than 30years of effort and resources invested in solving this problem. Antibodies to a malaria vaccine candidate circumsporozoite protein (CSP) can block invasion and can protect humans against malaria. We have manufactured the Falciparum Malaria Protein-013 (FMP013) vaccine based on the nearly full-length P. falciparum CSP 3D7 strain sequence. We report here immunogenicity and challenge data on FMP013 antigen in C57BL/6 mice formulated with two novel adjuvants of the Army Liposome Formulation (ALF) series and a commercially available adjuvant Montanide ISA 720 (Montanide) as a control. ALF is a liposomal adjuvant containing a synthetic monophosphoryl lipid A (3D-PHAD®). In our study, FMP013 was adjuvanted with ALF alone, ALF containing aluminum hydroxide (ALFA) or ALF containing QS-21 (ALFQ). Adjuvants ALF and ALFA induced similar antibody titers and protection against transgenic parasite challenge that were comparable to Montanide. ALFQ was superior to the other three adjuvants as it induced higher antibody titers with improved boosting after the third immunization, higher serum IgG2c titers, and enhanced protection. FMP013+ALFQ also augmented the numbers of splenic germinal center-derived activated B-cells and antibody secreting cells compared to Montanide. Further, FMP013+ALFQ induced antigen-specific IFN-γ ELISPOT activity, CD4 + T-cells and a T H 1-biased cytokine profile. These results demonstrate that soluble CSP can induce a potent and sterile protective immune response when formulated with the QS-21 containing adjuvant ALFQ. Comparative mouse immunogenicity data presented here were used as the progression criteria for an ongoing non-human primate study and a regulatory toxicology study in preparation for a controlled human malaria infection (CHMI

  4. An online operational rainfall-monitoring resource for epidemic malaria early warning systems in Africa

    Science.gov (United States)

    Grover-Kopec, Emily; Kawano, Mika; Klaver, Robert W.; Blumenthal, Benno; Ceccato, Pietro; Connor, Stephen J.

    2005-01-01

    Periodic epidemics of malaria are a major public health problem for many sub-Saharan African countries. Populations in epidemic prone areas have a poorly developed immunity to malaria and the disease remains life threatening to all age groups. The impact of epidemics could be minimized by prediction and improved prevention through timely vector control and deployment of appropriate drugs. Malaria Early Warning Systems are advocated as a means of improving the opportunity for preparedness and timely response.Rainfall is one of the major factors triggering epidemics in warm semi-arid and desert-fringe areas. Explosive epidemics often occur in these regions after excessive rains and, where these follow periods of drought and poor food security, can be especially severe. Consequently, rainfall monitoring forms one of the essential elements for the development of integrated Malaria Early Warning Systems for sub-Saharan Africa, as outlined by the World Health Organization.The Roll Back Malaria Technical Resource Network on Prevention and Control of Epidemics recommended that a simple indicator of changes in epidemic risk in regions of marginal transmission, consisting primarily of rainfall anomaly maps, could provide immediate benefit to early warning efforts. In response to these recommendations, the Famine Early Warning Systems Network produced maps that combine information about dekadal rainfall anomalies, and epidemic malaria risk, available via their Africa Data Dissemination Service. These maps were later made available in a format that is directly compatible with HealthMapper, the mapping and surveillance software developed by the WHO's Communicable Disease Surveillance and Response Department. A new monitoring interface has recently been developed at the International Research Institute for Climate Prediction (IRI) that enables the user to gain a more contextual perspective of the current rainfall estimates by comparing them to previous seasons and climatological

  5. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Directory of Open Access Journals (Sweden)

    Jairo Andres Fonseca

    Full Text Available A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity

  6. malaria

    African Journals Online (AJOL)

    children who presented with malaria symptoms at the same clinic and tested positive or ... phagocytes immunity and induce anti-inflammatory immune response ...... treatment gap, Malawi will be ready to submit a validation request for virtual .... Conclusions. Vaccination and quarantine are the important disease preventive.

  7. The elderly, the young and the pregnant traveler -- A retrospective data analysis from a large Swiss Travel Center with a special focus on malaria prophylaxis and yellow fever vaccination.

    Science.gov (United States)

    Jaeger, Veronika K; Tschudi, Nadine; Rüegg, Rolanda; Hatz, Christoph; Bühler, Silja

    2015-01-01

    Vulnerable individuals such as elderly, children/adolescents and pregnant/breastfeeding women increasingly travel overseas. We describe the travel and vaccination patterns of these groups at the largest Travel Clinic in Switzerland especially focusing on travel to yellow fever and malaria-endemic countries, and yellow fever vaccination (YFV) and malaria medications. An analysis of pre-travel visits between 2010 and 2012 at the Travel Clinic of the University of Zurich, was performed assessing differences between the elderly, young and middle-aged travelers as well as between pregnant/breastfeeding and other female travelers. Overall, the vulnerable groups did not differ from other travelers regarding their travel patterns. YFV was the most often administered vaccine to elderly travelers; half of them received it for the first time. More than 30% of children/adolescents received YFV, but no child below six months was vaccinated. 80% of young travelers and a similar percentage of pregnant women went to malaria-endemic regions. Twenty-five pregnant/breastfeeding women traveled to YF endemic areas. Travel patterns of vulnerable travelers are comparable to those of other travelers. In view of the limited data on malaria medications and precautions against YFV during pregnancy and at the extreme ages of life, giving travel advice to these groups is challenging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    Science.gov (United States)

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  9. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    Science.gov (United States)

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  10. Phase 1/2a study of the malaria vaccine candidate apical membrane antigen-1 (AMA-1 administered in adjuvant system AS01B or AS02A.

    Directory of Open Access Journals (Sweden)

    Michele D Spring

    Full Text Available This Phase 1/2a study evaluated the safety, immunogenicity, and efficacy of an experimental malaria vaccine comprised of the recombinant Plasmodium falciparum protein apical membrane antigen-1 (AMA-1 representing the 3D7 allele formulated with either the AS01B or AS02A Adjuvant Systems.After a preliminary safety evaluation of low dose AMA-1/AS01B (10 microg/0.5 mL in 5 adults, 30 malaria-naïve adults were randomly allocated to receive full dose (50 microg/0.5 mL of AMA-1/AS01B (n = 15 or AMA-1/AS02A (n = 15, followed by a malaria challenge. All vaccinations were administered intramuscularly on a 0-, 1-, 2-month schedule. All volunteers experienced transient injection site erythema, swelling and pain. Two weeks post-third vaccination, anti-AMA-1 Geometric Mean Antibody Concentrations (GMCs with 95% Confidence Intervals (CIs were high: low dose AMA-1/AS01B 196 microg/mL (103-371 microg/mL, full dose AMA-1/AS01B 279 microg/mL (210-369 microg/mL and full dose AMA-1/AS02A 216 microg/mL (169-276 microg/mL with no significant difference among the 3 groups. The three vaccine formulations elicited equivalent functional antibody responses, as measured by growth inhibition assay (GIA, against homologous but not against heterologous (FVO parasites as well as demonstrable interferon-gamma (IFN-gamma responses. To assess efficacy, volunteers were challenged with P. falciparum-infected mosquitoes, and all became parasitemic, with no significant difference in the prepatent period by either light microscopy or quantitative polymerase chain reaction (qPCR. However, a small but significant reduction of parasitemia in the AMA-1/AS02A group was seen with a statistical model employing qPCR measurements.All three vaccine formulations were found to be safe and highly immunogenic. These immune responses did not translate into significant vaccine efficacy in malaria-naïve adults employing a primary sporozoite challenge model, but encouragingly, estimation of parasite

  11. Comparison of clinical and parasitological data from controlled human malaria infection trials.

    Directory of Open Access Journals (Sweden)

    Meta Roestenberg

    Full Text Available Exposing healthy human volunteers to Plasmodium falciparum-infected mosquitoes is an accepted tool to evaluate preliminary efficacy of malaria vaccines. To accommodate the demand of the malaria vaccine pipeline, controlled infections are carried out in an increasing number of centers worldwide. We assessed their safety and reproducibility.We reviewed safety and parasitological data from 128 malaria-naïve subjects participating in controlled malaria infection trials conducted at the University of Oxford, UK, and the Radboud University Nijmegen Medical Center, The Netherlands. Results were compared to a report from the US Military Malaria Vaccine Program.We show that controlled human malaria infection trials are safe and demonstrate a consistent safety profile with minor differences in the frequencies of arthralgia, fatigue, chills and fever between institutions. But prepatent periods show significant variation. Detailed analysis of Q-PCR data reveals highly synchronous blood stage parasite growth and multiplication rates.Procedural differences can lead to some variation in safety profile and parasite kinetics between institutions. Further harmonization and standardization of protocols will be useful for wider adoption of these cost-effective small-scale efficacy trials. Nevertheless, parasite growth rates are highly reproducible, illustrating the robustness of controlled infections as a valid tool for malaria vaccine development.

  12. Efficacy of RTS,S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5–17 months in Kenya and Tanzania: a randomised controlled trial

    Science.gov (United States)

    Olotu, Ally; Lusingu, John; Leach, Amanda; Lievens, Marc; Vekemans, Johan; Msham, Salum; Lang, Trudie; Gould, Jayne; Dubois, Marie-Claude; Jongert, Erik; Vansadia, Preeti; Carter, Terrell; Njuguna, Patricia; Awuondo, Ken O; Malabeja, Anangisye; Abdul, Omar; Gesase, Samwel; Mturi, Neema; Drakeley, Chris J; Savarese, Barbara; Villafana, Tonya; Lapierre, Didier; Ballou, W Ripley; Cohen, Joe; Lemnge, Martha M; Peshu, Norbert; Marsh, Kevin; Riley, Eleanor M; von Seidlein, Lorenz; Bejon, Philip

    2011-01-01

    Summary Background RTS,S/AS01E is the lead candidate malaria vaccine. We recently showed efficacy against clinical falciparum malaria in 5–17 month old children, during an average of 8 months follow-up. We aimed to assess the efficacy of RTS,S/AS01E during 15 months of follow-up. Methods Between March, 2007, and October, 2008, we enrolled healthy children aged 5–17 months in Kilifi, Kenya, and Korogwe, Tanzania. Computer-generated block randomisation was used to randomly assign participants (1:1) to receive three doses (at month 0, 1, and 2) of either RTS,S/AS01E or human diploid-cell rabies vaccine. The primary endpoint was time to first clinical malaria episode, defined as the presence of fever (temperature ≥37·5°C) and a Plasmodium falciparum density of 2500/μL or more. Follow-up was 12 months for children from Korogwe and 15 months for children from Kilifi. Primary analysis was per protocol. In a post-hoc modelling analysis we characterised the associations between anti-circumsporozoite antibodies and protection against clinical malaria episodes. This study is registered with ClinicalTrials.gov, number NCT00380393. Findings 894 children were assigned, 447 in each treatment group. In the per-protocol analysis, 82 of 415 children in the RTS,S/AS01E group and 125 of 420 in the rabies vaccine group had first or only clinical malaria episode by 12 months, vaccine efficacy 39·2% (95% CI 19·5–54·1, p=0·0005). At 15 months follow-up, 58 of 209 children in the RTS,S/AS01E group and 85 of 206 in the rabies vaccine group had first or only clinical malaria episode, vaccine efficacy 45·8% (24·1–61·3, p=0·0004). At 12 months after the third dose, anti-circumsporozoite antibody titre data were available for 390 children in the RTS,S/AS01E group and 391 in the rabies group. A mean of 15 months (range 12–18 months) data were available for 172 children in the RTS,S/AS01E group and 155 in the rabies group. These titres at 1 month after the third dose were

  13. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.

    Science.gov (United States)

    Biswas, Sumi; Choudhary, Prateek; Elias, Sean C; Miura, Kazutoyo; Milne, Kathryn H; de Cassan, Simone C; Collins, Katharine A; Halstead, Fenella D; Bliss, Carly M; Ewer, Katie J; Osier, Faith H; Hodgson, Susanne H; Duncan, Christopher J A; O'Hara, Geraldine A; Long, Carole A; Hill, Adrian V S; Draper, Simon J

    2014-01-01

    The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases

  14. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.

    Directory of Open Access Journals (Sweden)

    Sumi Biswas

    Full Text Available The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i ChAd63-MVA immunization, ii immunization and CHMI, and iii primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i total IgG responses before and after CHMI, ii responses to allelic variants of MSP1 and AMA1, iii functional growth inhibitory activity (GIA, iv IgG avidity, and v isotype responses (IgG1-4, IgA and IgM. These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other

  15. Devising a method towards development of early warning tool for detection of malaria outbreak.

    Science.gov (United States)

    Verma, Preeti; Sarkar, Soma; Singh, Poonam; Dhiman, Ramesh C

    2017-11-01

    Uncertainty often arises in differentiating seasonal variation from outbreaks of malaria. The present study was aimed to generalize the theoretical structure of sine curve for detecting an outbreak so that a tool for early warning of malaria may be developed. A 'case/mean-ratio scale' system was devised for labelling the outbreak in respect of two diverse districts of Assam and Rajasthan. A curve-based method of analysis was developed for determining outbreak and using the properties of sine curve. It could be used as an early warning tool for Plasmodium falciparum malaria outbreaks. In the present method of analysis, the critical C max (peak value of sine curve) value of seasonally adjusted curve for P. falciparum malaria outbreak was 2.3 for Karbi Anglong and 2.2 for Jaisalmer districts. On case/mean-ratio scale, the C max value of malaria curve between C max and 3.5, the outbreak could be labelled as minor while >3.5 may be labelled as major. In epidemic years, with mean of case/mean ratio of ≥1.00 and root mean square (RMS) ≥1.504 of case/mean ratio, outbreaks can be predicted 1-2 months in advance. The present study showed that in P. falciparum cases in Karbi Anglong (Assam) and Jaisalmer (Rajasthan) districts, the rise in C max value of curve was always followed by rise in average/RMS or both and hence could be used as an early warning tool. The present method provides better detection of outbreaks than the conventional method of mean plus two standard deviation (mean+2 SD). The identified tools are simple and may be adopted for preparedness of malaria outbreaks.

  16. The Malaria Season Is Upon Us

    African Journals Online (AJOL)

    imported or Odyssean malaria from countries such as Swaziland,. Mozambique ... can be administered.⁵ The only .... Treatment. With the introduction of an effective vaccine for Southern Africa .... Being prepared for a malaria infection by packing ... sulfadoxine-pyrimethamine against Plasmodium falciparum in Yemen and.

  17. Safety and Immunogenicity of Pfs25-EPA/Alhydrogel®, a Transmission Blocking Vaccine against Plasmodium falciparum: An Open Label Study in Malaria Naïve Adults.

    Directory of Open Access Journals (Sweden)

    Kawsar R Talaat

    Full Text Available Transmission-blocking vaccines (TBVs that target sexual stage parasite development could be an integral part of measures for malaria elimination. Pfs25 is a leading TBV candidate, and previous studies conducted in animals demonstrated an improvement of its functional immunogenicity after conjugation to EPA, a recombinant, detoxified ExoProtein A from Pseudomonas aeruginosa. In this report, we describe results of an open-label, dose-escalating Phase 1 trial to assess the safety and immunogenicity of Pfs25-EPA conjugates formulated with Alhydrogel®. Thirty malaria-naïve healthy adults received up to four doses of the conjugate vaccine, with 8, 16, or 47 μg of conjugated Pfs25 mass, at 0, 2, 4, and 10 months. Vaccinations were generally well tolerated. The majority of solicited adverse events were mild in severity with pain at the injection site the most common complaint. Anemia was the most common laboratory abnormality, but was considered possibly related to the study in only a minority of cases. No vaccine-related serious adverse events occurred. The peak geometric mean anti-Pfs25 antibody level in the highest dose group was 88 (95% CI 53, 147 μg/mL two weeks after the 4th vaccination, and declined to near baseline one year later. Antibody avidity increased over successive vaccinations. Transmission blocking activity demonstrated in a standard membrane feeding assay (SMFA also increased from the second to the third dose, and correlated with antibody titer and, after the final dose, with antibody avidity. These results support the further evaluation of Pfs25-EPA/Alhydrogel® in a malaria-endemic population.

  18. Ensemble modeling of the likely public health impact of a pre-erythrocytic malaria vaccine.

    Directory of Open Access Journals (Sweden)

    Thomas Smith

    2012-01-01

    Full Text Available BACKGROUND: The RTS,S malaria vaccine may soon be licensed. Models of impact of such vaccines have mainly considered deployment via the World Health Organization's Expanded Programme on Immunization (EPI in areas of stable endemic transmission of Plasmodium falciparum, and have been calibrated for such settings. Their applicability to low transmission settings is unclear. Evaluations of the efficiency of different deployment strategies in diverse settings should consider uncertainties in model structure. METHODS AND FINDINGS: An ensemble of 14 individual-based stochastic simulation models of P. falciparum dynamics, with differing assumptions about immune decay, transmission heterogeneity, and treatment access, was constructed. After fitting to an extensive library of field data, each model was used to predict the likely health benefits of RTS,S deployment, via EPI (with or without catch-up vaccinations, supplementary vaccination of school-age children, or mass vaccination every 5 y. Settings with seasonally varying transmission, with overall pre-intervention entomological inoculation rates (EIRs of two, 11, and 20 infectious bites per person per annum, were considered. Predicted benefits of EPI vaccination programs over the simulated 14-y time horizon were dependent on duration of protection. Nevertheless, EPI strategies (with an initial catch-up phase averted the most deaths per dose at the higher EIRs, although model uncertainty increased with EIR. At two infectious bites per person per annum, mass vaccination strategies substantially reduced transmission, leading to much greater health effects per dose, even at modest coverage. CONCLUSIONS: In higher transmission settings, EPI strategies will be most efficient, but vaccination additional to the EPI in targeted low transmission settings, even at modest coverage, might be more efficient than national-level vaccination of infants. The feasibility and economics of mass vaccination, and the

  19. An online operational rainfall-monitoring resource for epidemic malaria early warning systems in Africa

    Directory of Open Access Journals (Sweden)

    Ceccato Pietro

    2005-01-01

    Full Text Available Abstract Periodic epidemics of malaria are a major public health problem for many sub-Saharan African countries. Populations in epidemic prone areas have a poorly developed immunity to malaria and the disease remains life threatening to all age groups. The impact of epidemics could be minimized by prediction and improved prevention through timely vector control and deployment of appropriate drugs. Malaria Early Warning Systems are advocated as a means of improving the opportunity for preparedness and timely response. Rainfall is one of the major factors triggering epidemics in warm semi-arid and desert-fringe areas. Explosive epidemics often occur in these regions after excessive rains and, where these follow periods of drought and poor food security, can be especially severe. Consequently, rainfall monitoring forms one of the essential elements for the development of integrated Malaria Early Warning Systems for sub-Saharan Africa, as outlined by the World Health Organization. The Roll Back Malaria Technical Resource Network on Prevention and Control of Epidemics recommended that a simple indicator of changes in epidemic risk in regions of marginal transmission, consisting primarily of rainfall anomaly maps, could provide immediate benefit to early warning efforts. In response to these recommendations, the Famine Early Warning Systems Network produced maps that combine information about dekadal rainfall anomalies, and epidemic malaria risk, available via their Africa Data Dissemination Service. These maps were later made available in a format that is directly compatible with HealthMapper, the mapping and surveillance software developed by the WHO's Communicable Disease Surveillance and Response Department. A new monitoring interface has recently been developed at the International Research Institute for Climate Prediction (IRI that enables the user to gain a more contextual perspective of the current rainfall estimates by comparing them to

  20. randomised trial of alternative malaria chemoprophylaxis strategies

    African Journals Online (AJOL)

    hi-tech

    2000-02-02

    Feb 2, 2000 ... randomisation produced comparable intervention and comparison groups with balanced characteristics. Specific results of the baseline studies are presented in the companion paper. ... strategies for protecting pregnant women against malaria. ..... from malaria vaccine trial conducted among Tanzanian.

  1. Cost-effectiveness analysis of vaccinating children in Malawi with RTS,S vaccines in comparison with long-lasting insecticide-treated nets.

    Science.gov (United States)

    Seo, Mikyung Kelly; Baker, Peter; Ngo, Karen Ngoc-Lan

    2014-02-24

    New RTS,S malaria vaccines may soon be licensed, yet its cost-effectiveness is unknown. Before the widespread introduction of RTS,S vaccines, cost-effectiveness studies are needed to help inform governments in resource-poor settings about how best to prioritize between the new vaccine and existing malaria interventions. A Markov model simulated malaria progression in a hypothetical Malawian birth cohort. Parameters were based on published data. Three strategies were compared: no intervention, vaccination at one year, and long-lasting, insecticide-treated nets (LLINs) at birth. Both health service and societal perspectives were explored. Health outcomes were measured in disability-adjusted life years (DALYs) averted and costed in 2012 US$. Incremental cost-effectiveness ratios (ICERs) were calculated and extensive sensitivity analyses were conducted. Three times GDP per capita ($1,095) per DALY averted was used for a cost-effectiveness threshold, whilst one times GDP ($365) was considered 'very cost-effective'. From a societal perspective the vaccine strategy was dominant. It averted 0.11 more DALYs than LLINs and 0.372 more DALYs than the no intervention strategy per person, while costing $10.04 less than LLINs and $59.74 less than no intervention. From a health service perspective the vaccine's ICER was $145.03 per DALY averted, and thus can be considered very cost-effective. The results were robust to changes in all variables except the vaccine and LLINs' duration of efficacy. Vaccines remained cost-effective even at the lowest assumed efficacy levels of 49.6% (mild malaria) and 14.2% (severe malaria), and the highest price of $15. However, from a societal perspective, if the vaccine duration efficacy was set below 2.69 years or the LLIN duration of efficacy was greater than 4.24 years then LLINs became the more cost-effective strategy. The results showed that vaccinating Malawian children with RTS,S vaccines was very cost-effective from both a societal and a

  2. Effect of schistosoma infection on malaria immune response: A systematic review.

    Science.gov (United States)

    Yesuf, Elias Ali; Dejene, Tariku

    2011-01-01

    Background Worldwide an estimated 225 million cases and about 800, 000 deaths due to malaria were documented in 2009. Malaria vaccines have been developed as a malaria control strategy. Immune response to these vaccines might be affected by the blood fluke schistosoma which is often co-endemic with malaria in Sub-Saharan Africa where most of phase II and Phase III malaria vaccine trials were conducted.Objectives To systematically search, appraise and synthesize the best available evidence on the effect of schistosoma infection on the immune response to malaria antigens and provide direction to future malaria vaccination trials.Types of participants The review considered studies with above 5 year old individuals as participants.Phenomenon of interest The phenomenon of interest was the presence of schistosoma infectionTypes of outcomes Blood serum levels of Th1 and Th2 specific to Merozoite Surface Proteins 1, 2, and 3 of malaria were considered as primary outcomes. While blood serum levels of IgG1, IgG2, IgG3, IFN-γ, IL-10 and TGF-β directed against Merozoite Surface Proteins were considered as secondary outcomes.Types of studies Studies with any quantitative study designs were considered for inclusion.Search Strategy Any quantitative English language articles published between 1994 and April 2011 were sought using a comprehensive search strategy.Assessment of methodological quality It was done using Joanna Briggs Institutes' Meta Analysis of Statistical Assessment and Review Instrument critical appraisal tools.Data extraction Data extraction was carried out using the Joanna Briggs Institute Meta Analysis of Statistical Assessment and Review Instrument data extraction tool.Data synthesis Meta- analysis was conducted using random effects model with an inverse variance method with RevMan5 software. Heterogeneity between the studies was assessed using ξ test at a p-value of SMD (95% CI), 0.15 (-2.00, 2.31), p=0.89.Similarly a small and statistically not significant

  3. Vaccines and immunization

    African Journals Online (AJOL)

    Prof Ezechukwu

    vaccines for malaria and HIV infection. Despite the ... decades, effective vaccines against the major causes of ... challenge antibodies, specific helper and effector T lymphocytes ... materials to produced immunity to a disease. It was originally ...

  4. Macromolecular systems for vaccine delivery.

    Science.gov (United States)

    MuŽíková, G; Laga, R

    2016-10-20

    Vaccines have helped considerably in eliminating some life-threatening infectious diseases in past two hundred years. Recently, human medicine has focused on vaccination against some of the world's most common infectious diseases (AIDS, malaria, tuberculosis, etc.), and vaccination is also gaining popularity in the treatment of cancer or autoimmune diseases. The major limitation of current vaccines lies in their poor ability to generate a sufficient level of protective antibodies and T cell responses against diseases such as HIV, malaria, tuberculosis and cancers. Among the promising vaccination systems that could improve the potency of weakly immunogenic vaccines belong macromolecular carriers (water soluble polymers, polymer particels, micelles, gels etc.) conjugated with antigens and immunistumulatory molecules. The size, architecture, and the composition of the high molecular-weight carrier can significantly improve the vaccine efficiency. This review includes the most recently developed (bio)polymer-based vaccines reported in the literature.

  5. Malaria drives T cells to exhaustion

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2014-05-01

    Full Text Available Malaria is a significant global burden but after >30 years of effort there is no vaccine on the market. While the complex life cycle of the parasite presents several challenges, many years of research have also identified several mechanisms of immune evasion by Plasmodium spp.. Recent research on malaria, has investigated the Programmed cell death-1 (PD-1 pathway which mediates exhaustion of T cells, characterized by poor effector functions and recall responses and in some cases loss of the cells by apoptosis. Such studies have shown exhaustion of CD4+ T cells and an unappreciated role for CD8+ T cells in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells, thus masking their role in protection. The role of T cell exhaustion during malaria provides an explanation for the absence of sterile immunity following the clearance of acute disease which will be relevant to future malaria-vaccine design and suggests the need for novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell exhaustion in preventing lasting immunity against malaria.

  6. Challenges in malaria control in sub-Saharan Africa: the vaccine perspective

    DEFF Research Database (Denmark)

    Lusingu, John P A; Von Seidlein, Lorenz

    2008-01-01

    of these interventions. The emergence of resistance against drugs and insecticides requires in response a steady stream of new interventions. Up to the beginning of this millennium, most sub-Saharan African countries have been using chloroquine (CQ) as the first-line antimalarial drug, which had to be replaced...... malaria control measures have been applied such as environmental improvements, use of insecticide impregnated nets, residual indoor spraying, early case detection and treatment with effective antimalarial drugs. However, the adaptation of vector and parasite has so far limited the effect...... with sulphadoxine-pyrimethamine (SP) after resistant parasites had rendered CQ ineffective. Currently the first line treatment of malaria consists of combination therapy which includes an artemisinin derivative. The current approach appears robust but history has taught us to be alert and to expect resistance...

  7. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51.

    Directory of Open Access Journals (Sweden)

    Yimin Wu

    2008-07-01

    Full Text Available Pfs25 and Pvs25, surface proteins of mosquito stage of the malaria parasites P. falciparum and P. vivax, respectively, are leading candidates for vaccines preventing malaria transmission by mosquitoes. This single blinded, dose escalating, controlled Phase 1 study assessed the safety and immunogenicity of recombinant Pfs25 and Pvs25 formulated with Montanide ISA 51, a water-in-oil emulsion.The trial was conducted at The Johns Hopkins Center for Immunization Research, Washington DC, USA, between May 16, 2005-April 30, 2007. The trial was designed to enroll 72 healthy male and non-pregnant female volunteers into 1 group to receive adjuvant control and 6 groups to receive escalating doses of the vaccines. Due to unexpected reactogenicity, the vaccination was halted and only 36 volunteers were enrolled into 4 groups: 3 groups of 10 volunteers each were immunized with 5 microg of Pfs25/ISA 51, 5 microg of Pvs25/ISA 51, or 20 microg of Pvs25/ISA 51, respectively. A fourth group of 6 volunteers received adjuvant control (PBS/ISA 51. Frequent local reactogenicity was observed. Systemic adverse events included two cases of erythema nodosum considered to be probably related to the combination of the antigen and the adjuvant. Significant antibody responses were detected in volunteers who completed the lowest scheduled doses of Pfs25/ISA 51. Serum anti-Pfs25 levels correlated with transmission blocking activity.It is feasible to induce transmission blocking immunity in humans using the Pfs25/ISA 51 vaccine, but these vaccines are unexpectedly reactogenic for further development. This is the first report that the formulation is associated with systemic adverse events including erythema nodosum.ClinicalTrials.gov NCT00295581.

  8. Evaluation of two formulations of adjuvanted RTS, S malaria vaccine in children aged 3 to 5 years living in a malaria-endemic region of Mozambique: a Phase I/IIb randomized double-blind bridging trial

    Directory of Open Access Journals (Sweden)

    Mandomando Inacio

    2007-03-01

    Full Text Available Abstract Background Previous trials of the RTS, S malaria candidate vaccine have shown that this vaccine is safe, tolerated and immunogenic. The development plan for this vaccine aims at administering it in the first year of life through the Expanded Program on Immunization (EPI. The objective was to evaluate the safety and reactogenicity of RTS, S/AS02D (0.5 ml dose, a pediatric formulation of GlaxoSmithKline Biologicals' current malaria candidate vaccine RTS, S/AS02A (0.25 ml dose. A 0.5 ml dose of AS02D is composed of the same active ingredients in the same quantities as in a 0.25 ml dose of AS02A and has been developed to be easily introduced into routine EPI practices. Methods We performed a phase I/IIb randomized double-blind bridging study in a malaria-endemic region of Mozambique, to compare the safety and immunogenicity of both candidate vaccines with the aim of replacing RTS, S/AS02A with RTS, S/AS02D as the candidate pediatric vaccine. 200 Mozambican children aged 3 to 5 years were randomized 1:1 to receive one of the 2 vaccines according to a 0, 1, 2 month schedule. Results Both vaccines were safe and had similar reactogenicity profiles. All subjects with paired pre and post-vaccination samples showed a vaccine response with respect to anti-circumsporozoite (CS antibodies irrespective of initial anti-CS serostatus. Geometric mean titers (GMTs were 191 EU/ml (95% CI 150–242 in recipients of RTS, S/AS02D compared to 180 EU/ml (95% CI 146–221 in recipients of RTS, S/AS02A. For the anti-hepatitis B surface antigen (HBsAg, all subjects were seroprotected at day 90, and the GMTs were 23978 mIU/ml (95% CI 17896–32127 in RTS, S/AS02D recipients and 17410 mIU/ml (95% CI 13322–22752 in RTS, S/AS02A recipients. There was a decrease in anti-CS GMTs between months 3 and 14 in both groups (191 vs 22 EU/mL in RTS, S/AS02D group and 180 vs 29 EU/mL in RTS, S/AS02A group. Conclusion Our data show that the RTS, S/AS02D is safe, well tolerated

  9. A New Decade of Vaccines

    LENUS (Irish Health Repository)

    Murphy, JFA

    2011-09-01

    The call for a new decade of vaccines was made in December 2010. The aims are to secure the further discovery, development and delivery of vaccination. The first challenge is the acquisition of funds for the research and development of 20 new vaccines1. The Gates Foundation has pledged $10 billion for this venture. The other major players are WHO, UNICEF and the US National Institute of Allergy and Infectious Diseases. The top priorities are TB, AIDS and Malaria. It is hoped that a Malaria vaccine will available in 3 years. The ambitious target of saving the lives of over 7 million children has been set. The programme must also address the need for vaccines in insulin dependent diabetes, cancers and degenerative diseases2.

  10. Age-dependent association between IgG2 and IgG3 subclasses to Pf332-C231 antigen and protection from malaria, and induction of protective antibodies by sub-patent malaria infections, in Daraweesh

    DEFF Research Database (Denmark)

    Giha, Hayder A; Nasr, Amre; Iriemenam, Nnaemeka C

    2010-01-01

    The certainty of the protective role of acquired immunity in malaria is the major drive for malaria vaccine development. In this study, we measured the levels of total IgG and IgG subclasses to four candidate malaria vaccine antigens; MSP2-3D7, MSP2-FC27, AMA-1 and Pf332-C231, in plasma obtained ...

  11. Environmental data analysis and remote sensing for early detection of dengue and malaria

    Science.gov (United States)

    Rahman, Md Z.; Roytman, Leonid; Kadik, Abdelhamid; Rosy, Dilara A.

    2014-06-01

    Malaria and dengue fever are the two most common mosquito-transmitted diseases, leading to millions of serious illnesses and deaths each year. Because the mosquito vectors are sensitive to environmental conditions such as temperature, precipitation, and humidity, it is possible to map areas currently or imminently at high risk for disease outbreaks using satellite remote sensing. In this paper we propose the development of an operational geospatial system for malaria and dengue fever early warning; this can be done by bringing together geographic information system (GIS) tools, artificial neural networks (ANN) for efficient pattern recognition, the best available ground-based epidemiological and vector ecology data, and current satellite remote sensing capabilities. We use Vegetation Health Indices (VHI) derived from visible and infrared radiances measured by satellite-mounted Advanced Very High Resolution Radiometers (AVHRR) and available weekly at 4-km resolution as one predictor of malaria and dengue fever risk in Bangladesh. As a study area, we focus on Bangladesh where malaria and dengue fever are serious public health threats. The technology developed will, however, be largely portable to other countries in the world and applicable to other disease threats. A malaria and dengue fever early warning system will be a boon to international public health, enabling resources to be focused where they will do the most good for stopping pandemics, and will be an invaluable decision support tool for national security assessment and potential troop deployment in regions susceptible to disease outbreaks.

  12. PD-1 Dependent Exhaustion of CD8+ T Cells Drives Chronic Malaria

    Directory of Open Access Journals (Sweden)

    Joshua M. Horne-Debets

    2013-12-01

    Full Text Available Malaria is a highly prevalent disease caused by infection by Plasmodium spp., which infect hepatocytes and erythrocytes. Blood-stage infections cause devastating symptoms and can persist for years. Antibodies and CD4+ T cells are thought to protect against blood-stage infections. However, there has been considerable difficulty in developing an efficacious malaria vaccine, highlighting our incomplete understanding of immunity against this disease. Here, we used an experimental rodent malaria model to show that PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells. Furthermore, in contrast to widely held views, parasite-specific CD8+ T cells are required to control both acute and chronic blood-stage disease even when parasite-specific antibodies and CD4+ T cells are present. Our findings provide a molecular explanation for chronic malaria that will be relevant to future malaria-vaccine design and may need consideration when vaccine development for other infections is problematic.

  13. Vaccine development: From concept to early clinical testing.

    Science.gov (United States)

    Cunningham, Anthony L; Garçon, Nathalie; Leo, Oberdan; Friedland, Leonard R; Strugnell, Richard; Laupèze, Béatrice; Doherty, Mark; Stern, Peter

    2016-12-20

    & clinical testing. The candidate vaccine must be tested for immunogenicity, safety and efficacy in preclinical and appropriately designed clinical trials. This review considers these processes using examples of differing pathogenic challenges, including human papillomavirus, malaria, and ebola. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Long-term clinical protection from falciparum malaria is strongly associated with IgG3 antibodies to merozoite surface protein 3.

    Directory of Open Access Journals (Sweden)

    Christian Roussilhon

    2007-11-01

    Full Text Available BACKGROUND: Surrogate markers of protective immunity to malaria in humans are needed to rationalize malaria vaccine discovery and development. In an effort to identify such markers, and thereby provide a clue to the complex equation malaria vaccine development is facing, we investigated the relationship between protection acquired through exposure in the field with naturally occurring immune responses (i.e., induced by the parasite to molecules that are considered as valuable vaccine candidates. METHODS AND FINDINGS: We analyzed, under comparative conditions, the antibody responses of each of six isotypes to five leading malaria vaccine candidates in relation to protection acquired by exposure to natural challenges in 217 of the 247 inhabitants of the African village of Dielmo, Senegal (96 children and 121 older adolescents and adults. The status of susceptibility or resistance to malaria was determined by active case detection performed daily by medical doctors over 6 y from a unique follow-up study of this village. Of the 30 immune responses measured, only one, antibodies of the IgG3 isotype directed to merozoite surface protein 3 (MSP3, was strongly associated with clinical protection against malaria in all age groups, i.e., independently of age. This immunological parameter had a higher statistical significance than the sickle cell trait, the strongest factor of protection known against Plasmodium falciparum. A single determination of antibody was significantly associated with the clinical outcome over six consecutive years in children submitted to massive natural parasite challenges by mosquitoes (over three parasite inoculations per week. Finally, the target epitopes of these antibodies were found to be fully conserved. CONCLUSIONS: Since anti-MSP3 IgG3 antibodies can naturally develop along with protection against P. falciparum infection in young children, our results provide the encouraging indication that these antibodies should be

  15. Antibodies to malaria vaccine candidates are associated with chloroquine or sulphadoxine/pyrimethamine treatment efficacy in children in an endemic area of Burkina Faso

    DEFF Research Database (Denmark)

    Diarra, Amidou; Nebie, Issa; Tiono, Alfred

    2012-01-01

    ABSTRACT: BACKGROUND: Patient immune status is thought to affect the efficacy of anti-malarial chemotherapy. This is a subject of some importance, since evidence of immunity-related interactions may influence our use of chemotherapy in populations with drug resistance, as well as assessment...... of the value of suboptimal vaccines. The study aim was to investigate relationship between antibodies and anti-malarial drug treatment outcomes. METHODS: Some 248 children aged 0.5 and 15 years were recruited prior to the high malaria transmission season. Venous blood (5 ml) was obtained from each child...... to measure antibody levels to selected malaria antigens, using ELISA. Blood smears were also performed to assess drug efficacy and malaria infection prevalence. Children were actively followed up to record clinical malaria cases. RESULTS: IgG levels to MSP3 were always higher in the successfully treated...

  16. Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice

    Directory of Open Access Journals (Sweden)

    Grau Georges E

    2007-12-01

    Full Text Available Abstract Background Microarray analyses allow the identification and assessment of molecular signatures in whole tissues undergoing pathological processes. To better understand cerebral malaria pathogenesis, we investigated intra-cerebral gene-expression profiles in well-defined genetically cerebral malaria-resistant (CM-R and CM-susceptible (CM-S mice, upon infection by Plasmodium berghei ANKA (PbA. We investigated mouse transcriptional responses at early and late stages of infection by use of cDNA microarrays. Results Through a rigorous statistical approach with multiple testing corrections, we showed that PbA significantly altered brain gene expression in CM-R (BALB/c, and in CM-S (CBA/J and C57BL/6 mice, and that 327 genes discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice. We further identified 104, 56, 84 genes with significant differential expression between CM-R and CM-S mice on days 2, 5, and 7 respectively. The analysis of their functional annotation indicates that genes involved in metabolic energy pathways, the inflammatory response, and the neuroprotection/neurotoxicity balance play a major role in cerebral malaria pathogenesis. In addition, our data suggest that cerebral malaria and Alzheimer's disease may share some common mechanisms of pathogenesis, as illustrated by the accumulation of β-amyloid proteins in brains of CM-S mice, but not of CM-R mice. Conclusion Our microarray analysis highlighted marked changes in several molecular pathways in CM-S compared to CM-R mice, particularly at early stages of infection. This study revealed some promising areas for exploration that may both provide new insight into the knowledge of CM pathogenesis and the development of novel therapeutic strategies.

  17. A randomized placebo-controlled phase Ia malaria vaccine trial of two virosome-formulated synthetic peptides in healthy adult volunteers.

    Directory of Open Access Journals (Sweden)

    Blaise Genton

    2007-10-01

    -specific antibody response in all volunteers immunized with the appropriate dose. In the case of PEV301 the 50 microg antigen dose was associated with a higher mean antibody titer and seroconversion rate than the 10 microg dose. In contrast, for PEV302 mean titer and seroconversion rate were higher with the lower dose. Combined delivery of PEV301 and PEV302 did not interfere with the development of an antibody response to either of the two antigens. No relevant antibody responses against the two malaria antigens were observed in the control group receiving unmodified virosomes.The present study demonstrates that three immunizations with the virosomal malaria vaccine components PEV301 or/and PEV302 (containing 10 microg or 50 microg of antigen are safe and well tolerated. At appropriate antigen doses seroconversion rates of 100% were achieved. Two injections may be sufficient for eliciting an appropriate immune response, at least in individuals with pre-existing anti-malarial immunity. These results justify further development of a final multi-stage virosomal vaccine formulation incorporating additional malaria antigens.ClinicalTrials.gov NCT00400101.

  18. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    DEFF Research Database (Denmark)

    Tamborrini, Marco; Stoffel, Sabine A; Westerfeld, Nicole

    2011-01-01

    In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs) have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant ...... fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP....

  19. Newer Vaccines against Mosquito-borne Diseases.

    Science.gov (United States)

    Aggarwal, Anju; Garg, Neha

    2018-02-01

    Mosquitos are responsible for a number of protozoal and viral diseases. Malaria, dengue, Japanese encephalitis (JE) and chikungunya epidemics occur commonly all over the world, leading to marked mortality and morbidity in children. Zika, Yellow fever and West Nile fever are others requiring prevention. Environmental control and mosquito bite prevention are useful in decreasing the burden of disease but vaccination has been found to be most cost-effective and is the need of the hour. RTS,S/AS01 vaccine is the first malaria vaccine being licensed for use against P. falciparum malaria. Dengvaxia (CYD-TDV) against dengue was licensed first in Mexico in 2015. A Vero-cell derived, inactivated and alum-adjuvanted JE vaccine based on the SA14-14-2 strain was approved in 2009 in North America, Australia and various European countries. It can be used from 2 mo of age. In India, immunization is carried out in endemic regions at 1 y of age. Another inactivated Vero-cell culture derived Kolar strain, 821564XY, JE vaccine is being used in India. Candidate vaccines against dengue, chikungunya and West Nile fever are been discussed. A continued research and development of new vaccines are required for controlling these mosquito-borne diseases.

  20. Is maternal education a social vaccine for childhood malaria infection? A cross-sectional study from war-torn Democratic Republic of Congo.

    Science.gov (United States)

    Ma, Cary; Claude, Kasereka Masumbuko; Kibendelwa, Zacharie Tsongo; Brooks, Hannah; Zheng, Xiaonan; Hawkes, Michael

    2017-03-01

    In zones of violent conflict in the tropics, social disruption leads to elevated child mortality, of which malaria is the leading cause. Understanding the social determinants of malaria transmission may be helpful to optimize malaria control efforts. We conducted a cross-sectional study of healthy children aged 2 months to 5 years attending well-child and/or immunization visits in the Democratic Republic of Congo (DRC). Six hundred and forty-seven children were tested for malaria antigenemia by rapid diagnostic test and the accompanying parent or legal guardian simultaneously completed a survey questionnaire related to demographics, socioeconomic status, maternal education, as well as bednet use and recent febrile illness. We examined the associations between variables using multivariable logistic regression analysis, chi-squared statistic, Fisher's exact test, and Spearman's rank correlation, as appropriate. One hundred and twenty-three out of the 647 (19%) children in the study tested positive for malaria. Higher levels of maternal education were associated with a lower risk of malaria in their children. The prevalence of malaria in children of mothers with no education, primary school, and beyond primary was 41/138 (30%), 41/241 (17%), and 39/262 (15%), respectively (p = 0.001). In a multivariable logistic regression model adjusting for the effect of a child's age and study site, the following remained significant predictors of malaria antigenemia: maternal education, number of children under five per household, and HIV serostatus. Higher maternal education, through several putative causal pathways, was associated with lower malaria prevalence among children in the DRC. Our findings suggest that maternal education might be an effective 'social vaccine' against malaria in the DRC and globally.

  1. The role of vitamin D in malaria.

    Science.gov (United States)

    Lương, Khanh Vinh Quốc; Nguyễn, Lan Thi Hoàng

    2015-01-15

    An abnormal calcium-parathyroid hormone (PTH)-vitamin D axis has been reported in patients with malaria infection. A role for vitamin D in malaria has been suggested by many studies. Genetic studies have identified numerous factors that link vitamin D to malaria, including human leukocyte antigen genes, toll-like receptors, heme oxygenase-1, angiopoietin-2, cytotoxic T lymphocyte antigen-4, nucleotide-binding oligomerization domain-like receptors, and Bcl-2. Vitamin D has also been implicated in malaria via its effects on the Bacillus Calmette-Guerin (BCG) vaccine, matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, reactive oxidative species, and nitric oxide synthase. Vitamin D may be important in malaria; therefore, additional research on its role in malaria is needed.

  2. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    OpenAIRE

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delive...

  3. Annual Frequency of Malaria Attack in Different Haemoglobin ...

    African Journals Online (AJOL)

    GREG F. FOMBO

    believed to be due to the enzyme deficiency advantage against fatal malaria. However, the mechanism of this .... Fluorescence was produced due to the reduction of NADP+ to. NADPH. ... Presence of fluorescence indicated normal cells while weak fluorescence ..... Molecular Monitoring of Malaria Vaccine Trial. Trends in.

  4. Conquering the intolerable burden of malaria: what's new, what's needed: a summary.

    Science.gov (United States)

    Breman, Joel G; Alilio, Martin S; Mills, Anne

    2004-08-01

    approach for countering the spread and intensity of Plasmodium falciparum resistance to chloroquine, sulfadoxine/pyrimethamine, and other antimalarial drugs. Although costly, ACT ($1.20-2.50 per adult treatment) becomes more cost-effective as resistance to alternative drugs increases; early use of ACT may delay development of resistance to these drugs and prevent the medical toll associated with use of ineffective drugs. The burden of malaria in one district in Tanzania has not decreased since the primary health care approach replaced the vertical malaria control efforts of the 1960s. Despite decentralization, this situation resulted, in part, from weak district management capacity, poor coordination, inadequate monitoring, and lack of training of key staff. Experience in the Solomon Islands showed that spraying with DDT, use of insecticide-treated bed nets (ITNs), and health education were all associated with disease reduction. The use of nets permitted a reduction in DDT spraying, but could not replace it without an increased malaria incidence. Baseline data and reliable monitoring of key outcome indicators are needed to measure whether the ambitious goals for the control of malaria and other diseases has occurred. Such systems are being used for evidence-based decision making in Tanzania and several other countries. Baseline cluster sampling surveys in several countries across Africa indicate that only 53% of the children with febrile illness in malarious areas are being treated; chloroquine (CQ) is used 84% of the time, even where the drug may be ineffective. Insecticide-treated bed nets were used only 2% of the time by children less than five years of age. Progress in malaria vaccine research has been substantial over the past five years; 35 candidate malaria vaccines are in development, many of which are in clinical trials. Development of new vaccines and drugs has been the result of increased investments and formation of public-private partnerships. Before malaria

  5. Safety and immunogenicity of a malaria vaccine, Plasmodium falciparum AMA-1/MSP-1 chimeric protein formulated in montanide ISA 720 in healthy adults.

    Directory of Open Access Journals (Sweden)

    Jinhong Hu

    Full Text Available BACKGROUND: The P. falciparum chimeric protein 2.9 (PfCP-2.9 consisting of the sequences of MSP1-19 and AMA-1 (III is a malaria vaccine candidate that was found to induce inhibitory antibodies in rabbits and monkeys. This was a phase I randomized, single-blind, placebo-controlled, dose-escalation study to evaluate the safety and immunogenicity of the PfCP-2.9 formulated with a novel adjuvant Montanide ISA720. Fifty-two subjects were randomly assigned to 4 dose groups of 10 participants, each receiving the test vaccine of 20, 50, 100, or 200 microg respectively, and 1 placebo group of 12 participants receiving the adjuvant only. METHODS AND FINDINGS: The vaccine formulation was shown to be safe and well-tolerated, and none of the participants withdrew. The total incidence of local adverse events (AEs was 75%, distributed among 58% of the placebo group and 80% of those vaccinated. Among the vaccinated, 65% had events that were mild and 15% experienced moderate AEs. Almost all systemic adverse reactions observed in this study were graded as mild and required no therapy. The participants receiving the test vaccine developed detectable antibody responses which were boosted by the repeated vaccinations. Sixty percent of the vaccinated participants had high ELISA titers (>1:10,000 of antigen-specific antibodies which could also recognize native parasite proteins in an immunofluorescence assay (IFA. CONCLUSION: This study is the first clinical trial for this candidate and builds on previous investigations supporting PfCP-2.9/ISA720 as a promising blood-stage malaria vaccine. Results demonstrate safety, tolerability (particularly at the lower doses tested and immunogenicity of the formulation. Further clinical development is ongoing to explore optimizing the dose and schedule of the formulation to decrease reactogenicity without compromising immunogenicity. TRIAL REGISTRATION: Chinese State Food and Drug Administration (SFDA 2002SL0046; Controlled

  6. The synthetic Plasmodium falciparum circumsporozoite peptide PfCS102 as a malaria vaccine candidate: a randomized controlled phase I trial.

    Directory of Open Access Journals (Sweden)

    Régine Audran

    Full Text Available BACKGROUND: Fully efficient vaccines against malaria pre-erythrocytic stage are still lacking. The objective of this dose/adjuvant-finding study was to evaluate the safety, reactogenicity and immunogenicity of a vaccine candidate based on a peptide spanning the C-terminal region of Plasmodium falciparum circumsporozoite protein (PfCS102 in malaria naive adults. METHODOLOGY AND PRINCIPAL FINDINGS: Thirty-six healthy malaria-naive adults were randomly distributed into three dose blocks (10, 30 and 100 microg and vaccinated with PfCS102 in combination with either Montanide ISA 720 or GSK proprietary Adjuvant System AS02A at days 0, 60, and 180. Primary end-point (safety and reactogenicity was based on the frequency of adverse events (AE and of abnormal biological safety tests; secondary-end point (immunogenicity on P. falciparum specific cell-mediated immunity and antibody response before and after immunization. The two adjuvant formulations were well tolerated and their safety profile was good. Most AEs were local and, when systemic, involved mainly fatigue and headache. Half the volunteers in AS02A groups experienced severe AEs (mainly erythema. After the third injection, 34 of 35 volunteers developed anti-PfCS102 and anti-sporozoite antibodies, and 28 of 35 demonstrated T-cell proliferative responses and IFN-gamma production. Five of 22 HLA-A2 and HLA-A3 volunteers displayed PfCS102 specific IFN-gamma secreting CD8(+ T cell responses. Responses were only marginally boosted after the 3(rd vaccination and remained stable for 6 months. For both adjuvants, the dose of 10 microg was less immunogenic in comparison to 30 and 100 microg that induced similar responses. AS02A formulations with 30 microg or 100 microg PfCS102 induced about 10-folds higher antibody and IFN-gamma responses than Montanide formulations. CONCLUSIONS/SIGNIFICANCE: PfCS102 peptide was safe and highly immunogenic, allowing the design of more advanced trials to test its potential

  7. Vaccine Containing the Three Allelic Variants of the Plasmodium vivax Circumsporozoite Antigen Induces Protection in Mice after Challenge with a Transgenic Rodent Malaria Parasite

    Directory of Open Access Journals (Sweden)

    Alba Marina Gimenez

    2017-10-01

    Full Text Available Plasmodium vivax is the most common species that cause malaria outside of the African continent. The development of an efficacious vaccine would contribute greatly to control malaria. Recently, using bacterial and adenoviral recombinant proteins based on the P. vivax circumsporozoite protein (CSP, we demonstrated the possibility of eliciting strong antibody-mediated immune responses to each of the three allelic forms of P. vivax CSP (PvCSP. In the present study, recombinant proteins representing the PvCSP alleles (VK210, VK247, and P. vivax-like, as well as a hybrid polypeptide, named PvCSP-All epitopes, were generated. This hybrid containing the conserved C-terminal of the PvCSP and the three variant repeat domains in tandem were successfully produced in the yeast Pichia pastoris. After purification and biochemical characterization, they were used for the experimental immunization of C57BL/6 mice in a vaccine formulation containing the adjuvant Poly(I:C. Immunization with a recombinant protein expressing all three different allelic forms in fusion elicited high IgG antibody titers reacting with all three different allelic variants of PvCSP. The antibodies targeted both the C-terminal and repeat domains of PvCSP and recognized the native protein on the surface of P. vivax sporozoites. More importantly, mice that received the vaccine formulation were protected after challenge with chimeric Plasmodium berghei sporozoites expressing CSP repeats of P. vivax sporozoites (Pb/PvVK210. Our results suggest that it is possible to elicit protective immunity against one of the most common PvCSP alleles using soluble recombinant proteins expressed by P. pastoris. These recombinant proteins are promising candidates for clinical trials aiming to develop a multiallele vaccine against P. vivax malaria.

  8. Serum protein profile of Malaria patients through SDS-PAGE method ...

    African Journals Online (AJOL)

    Serum protein profile of Malaria patients through SDS-PAGE method. ... reliable method in the diagnosis of antibodies produced against Plasmodium spps. ... of malaria patients may be undertaken for study to develop possible future vaccine.

  9. Malaria infection and socioeconomic status of some residents of Port ...

    African Journals Online (AJOL)

    ADOWIE PERE

    public health interventions against malaria, such as insecticide spraying or ... prepared, air dried, stained and examined ... Port Harcourt metropolis is presented in Table 1. It showed that more ..... of effective vaccine for malaria prevention and.

  10. Military Infectious Diseases Update on Vaccine Development

    Science.gov (United States)

    2011-01-24

    Licensed live vaccines (polio, MMR) - Radiation- attenuated sporozoites - Genetically- attenuated sporozoites 2011 MHS Conference Whole Organism...Not sufficiently attenuated Seattle Biomedical , Gates Foundation, WEHI and USMMVP 2011 MHS Conference Subunit approach- RTS,S Vaccine RTS,S is...Ad Boost  DNA plasmids [Prime] – Encoding malaria proteins CSP and AMA1  Adenovirus 5 ( attenuated )[Boost] – Encoding malaria proteins CSP and AMA1

  11. 3D analysis of the TCR/pMHCII complex formation in monkeys vaccinated with the first peptide inducing sterilizing immunity against human malaria.

    Directory of Open Access Journals (Sweden)

    Manuel A Patarroyo

    Full Text Available T-cell receptor gene rearrangements were studied in Aotus monkeys developing high antibody titers and sterilizing immunity against the Plasmodium falciparum malaria parasite upon vaccination with the modified synthetic peptide 24112, which was identified in the Merozoite Surface Protein 2 (MSP-2 and is known to bind to HLA-DRbeta1*0403 molecules with high capacity. Spectratyping analysis showed a preferential usage of Vbeta12 and Vbeta6 TCR gene families in 67% of HLA-DRbeta1*0403-like genotyped monkeys. Docking of peptide 24112 into the HLA-DRbeta1*0401-HA peptide-HA1.7TCR complex containing the VDJ rearrangements identified in fully protected monkeys showed a different structural signature compared to nonprotected monkeys. These striking results show the exquisite specificity of the TCR/pMHCII complex formation needed for inducing sterilizing immunity and provide important hints for a logical and rational methodology to develop multiepitopic, minimal subunit-based synthetic vaccines against infectious diseases, among them malaria.

  12. Effect of early measles vaccine on pneumococcal colonization

    DEFF Research Database (Denmark)

    Hansen, Nadja Skadkær; Byberg, Stine; Hervig Jacobsen, Lars

    2017-01-01

    BACKGROUND: Measles vaccine (MV) may have non-specific beneficial effects for child health and particularly seems to prevent respiratory infections. Streptococcus pneumoniae is the leading cause of bacterial pneumonia among children worldwide, and nasopharyngeal colonization precedes infection....... OBJECTIVE: We investigated whether providing early MV at 18 weeks of age reduced pneumococcal colonization and/or density up to 9 months of age. METHOD: The study was conducted in 2013-2014 in Guinea-Bissau. Pneumococcal vaccine was not part of the vaccination program. Infants aged 18 weeks were block...

  13. High-Throughput Testing of Antibody-Dependent Binding Inhibition of Placental Malaria Parasites

    DEFF Research Database (Denmark)

    Nielsen, Morten A; Salanti, Ali

    2015-01-01

    The particular virulence of Plasmodium falciparum manifests in diverse severe malaria syndromes as cerebral malaria, severe anemia and placental malaria. The cause of both the severity and the diversity of infection outcome, is the ability of the infected erythrocyte (IE) to bind a range......-throughput assay used in the preclinical and clinical development of a VAR2CSA based vaccine against placental malaria....

  14. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts.

    Directory of Open Access Journals (Sweden)

    Thomas S Churcher

    2017-01-01

    Full Text Available Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP, and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

  15. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display

    DEFF Research Database (Denmark)

    Singh, Susheel K; Thrane, Susan; Janitzek, Christoph M

    2017-01-01

    Malaria is a devastating disease caused by Plasmodium parasites, resulting in almost 0.5 million deaths per year. The Pfs48/45 protein exposed on the P. falciparum sexual stages is one of the most advanced antigen candidates for a transmission-blocking (TB) vaccine in the clinical pipeline. However...

  16. Sustainable development of a GCP-compliant clinical trials platform in Africa: the malaria clinical trials alliance perspective.

    Science.gov (United States)

    Ogutu, Bernhards R; Baiden, Rita; Diallo, Diadier; Smith, Peter G; Binka, Fred N

    2010-04-20

    The Malaria Clinical Trials Alliance (MCTA), a programme of INDEPTH network of demographic surveillance centres, was launched in 2006 with two broad objectives: to facilitate the timely development of a network of centres in Africa with the capacity to conduct clinical trials of malaria vaccines and drugs under conditions of good clinical practice (GCP); and to support, strengthen and mentor the centres in the network to facilitate their progression towards self-sustaining clinical research centres. Sixteen research centres in 10 African malaria-endemic countries were selected that were already working with the Malaria Vaccine Initiative (MVI) or the Medicines for Malaria Venture (MMV). All centres were visited to assess their requirements for research capacity development through infrastructure strengthening and training. Support provided by MCTA included: laboratory and facility refurbishment; workshops on GCP, malaria diagnosis, strategic management and media training; and training to support staff to undertake accreditation examinations of the Association of Clinical Research Professionals (ACRP). Short attachments to other network centres were also supported to facilitate sharing practices within the Alliance. MCTA also played a key role in the creation of the African Media & Malaria Research Network (AMMREN), which aims to promote interaction between researchers and the media for appropriate publicity and media reporting of research and developments on malaria, including drug and vaccine trials. In three years, MCTA strengthened 13 centres to perform GCP-compliant drug and vaccine trials, including 11 centres that form the backbone of a large phase III malaria vaccine trial. MCTA activities have demonstrated that centres can be brought up to GCP compliance on this time scale, but the costs are substantial and there is a need for further support of other centres to meet the growing demand for clinical trial capacity. The MCTA experience also indicates that

  17. Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25.

    Science.gov (United States)

    Scally, Stephen W; McLeod, Brandon; Bosch, Alexandre; Miura, Kazutoyo; Liang, Qi; Carroll, Sean; Reponen, Sini; Nguyen, Ngan; Giladi, Eldar; Rämisch, Sebastian; Yusibov, Vidadi; Bradley, Allan; Lemiale, Franck; Schief, William R; Emerling, Daniel; Kellam, Paul; King, C Richter; Julien, Jean-Philippe

    2017-11-16

    The Plasmodium falciparum Pfs25 protein (Pfs25) is a leading malaria transmission-blocking vaccine antigen. Pfs25 vaccination is intended to elicit antibodies that inhibit parasite development when ingested by Anopheles mosquitoes during blood meals. The Pfs25 three-dimensional structure has remained elusive, hampering a molecular understanding of its function and limiting immunogen design. We report six crystal structures of Pfs25 in complex with antibodies elicited by immunization via Pfs25 virus-like particles in human immunoglobulin loci transgenic mice. Our structural findings reveal the fine specificities associated with two distinct immunogenic sites on Pfs25. Importantly, one of these sites broadly overlaps with the epitope of the well-known 4B7 mouse antibody, which can be targeted simultaneously by antibodies that target a non-overlapping site to additively increase parasite inhibition. Our molecular characterization of inhibitory antibodies informs on the natural disposition of Pfs25 on the surface of ookinetes and provides the structural blueprints to design next-generation immunogens.

  18. Reduced antibody responses against Plasmodium falciparum vaccine candidate antigens in the presence of Trichuris trichiura

    DEFF Research Database (Denmark)

    Esen, Meral; Mordmüller, Benjamin; de Salazar, Pablo Martinez

    2012-01-01

    BACKGROUND: Helminth infections are highly prevalent in the tropics and may have an effect on immune responses to vaccines due to their immunomodulatory effect. The prevalence of helminth infections in young children, the target group for malaria and most other vaccines, is high. Therefore we...... assessed the influence of helminth infection on vaccine-induced immune responses in a phase I clinical trial of the malaria vaccine candidate GMZ2. METHODS: Twenty Gabonese preschool-age children were vaccinated with GMZ2, a blood stage malaria vaccine candidate. Humoral immune response against the vaccine...... antigens and parasitological status were assessed. Vaccine-specific antibody concentrations and memory B-cell numbers were compared in worm infected and non-infected participants. RESULTS: Antibody response to GMZ2 was 3.4-fold (95% confidence interval: 1.6, 7.4) higher in Trichuris trichiura negative...

  19. Fertility and early-life mortality: Evidence from smallpox vaccination in Sweden

    DEFF Research Database (Denmark)

    Ager, Philipp; Hansen, Casper Worm; Jensen, Peter Sandholt

    2018-01-01

    The smallpox vaccination method was the paramount medical innovation of the late 18th and early 19th centuries. We exploit the introduction of the smallpox vaccine in Sweden to identify the causal effect of early-life mortality on fertility. Our analysis shows that parishes in counties with highe...... a small insignificant effect on the number of surviving children and natural population growth....

  20. Malaria in pregnancy: pathogenesis and immunity

    DEFF Research Database (Denmark)

    Rogerson, Stephen J; Hviid, Lars; Duffy, Patrick E

    2007-01-01

    Understanding of the biological basis for susceptibility to malaria in pregnancy was recently advanced by the discovery that erythrocytes infected with Plasmodium falciparum accumulate in the placenta through adhesion to molecules such as chondroitin sulphate A. Antibody recognition of placental...... infected erythrocytes is dependent on sex and gravidity, and could protect from malaria complications. Moreover, a conserved parasite gene-var2csa-has been associated with placental malaria, suggesting that its product might be an appropriate vaccine candidate. By contrast, our understanding of placental...... immunopathology and how this contributes to anaemia and low birthweight remains restricted, although inflammatory cytokines produced by T cells, macrophages, and other cells are clearly important. Studies that unravel the role of host response to malaria in pathology and protection in the placenta...

  1. Influence of malaria on the serum levels of vitamin A, zinc and ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... to usual anti-malaria drugs and insecticides (Müller and. Garenne, 1999). ... METHOD. Collection and preparation of sera ... consultation (for malaria) or vaccination (control) in the catholic medical .... are presented in Table 1.

  2. New insight-guided approaches to detect, cure, prevent and eliminate malaria.

    Science.gov (United States)

    Kumar, Sushil; Kumari, Renu; Pandey, Richa

    2015-05-01

    New challenges posed by the development of resistance against artemisinin-based combination therapies (ACTs) as well as previous first-line therapies, and the continuing absence of vaccine, have given impetus to research in all areas of malaria control. This review portrays the ongoing progress in several directions of malaria research. The variants of RTS,S and apical membrane antigen 1 (AMA1) are being developed and test adapted as multicomponent and multistage malaria control vaccines, while many other vaccine candidates and methodologies to produce antigens are under experimentation. To track and prevent the spread of artemisinin resistance from Southeast Asia to other parts of the world, rolling circle-enhanced enzyme activity detection (REEAD), a time- and cost-effective malaria diagnosis in field conditions, and a DNA marker associated with artemisinin resistance have become available. Novel mosquito repellents and mosquito trapping and killing techniques much more effective than the prevalent ones are undergoing field testing. Mosquito lines stably infected with their symbiotic wild-type or genetically engineered bacteria that kill sympatric malaria parasites are being constructed and field tested for stopping malaria transmission. A complementary approach being pursued is the addition of ivermectin-like drug molecules to ACTs to cure malaria and kill mosquitoes. Experiments are in progress to eradicate malaria mosquito by making it genetically male sterile. High-throughput screening procedures are being developed and used to discover molecules that possess long in vivo half life and are active against liver and blood stages for the fast cure of malaria symptoms caused by simple or relapsing and drug-sensitive and drug-resistant types of varied malaria parasites, can stop gametocytogenesis and sporogony and could be given in one dose. Target-based antimalarial drug designing has begun. Some of the putative next-generation antimalarials that possess in their

  3. Randomized controlled trial of RTS,S/AS02D and RTS,S/AS01E malaria candidate vaccines given according to different schedules in Ghanaian children.

    Directory of Open Access Journals (Sweden)

    Seth Owusu-Agyei

    2009-10-01

    Full Text Available The target delivery channel of RTS,S candidate malaria vaccines in malaria-endemic countries in Africa is the World Health Organisation Expanded Program on Immunization. As an Adjuvant System, age de-escalation and schedule selection step, this study assessed 3 schedules of RTS,S/AS01(E and RTS,S/AS02(D in infants and young children 5-17 months of age in Ghana.A Phase II, partially-blind randomized controlled study (blind to vaccine, not to schedule, of 19 months duration was conducted in two (2 centres in Ghana between August 2006 and May 2008. Subjects were allocated randomly (1:1:1:1:1:1 to one of six study groups at each study site, each defining which vaccine should be given and by which schedule (0,1-, 0,1,2- or 0,1,7-months. For the 0,1,2-month schedule participants received RTS,S/AS01(E or rabies vaccine at one center and RTS,S/AS01(E or RTS,S/AS02(D at the other. For the other schedules at both study sites, they received RTS,S/AS01(E or RTS,S/AS02(D. The primary outcome measure was the occurrence of serious adverse events until 10 months post dose 1.The number of serious adverse events reported across groups was balanced. One child had a simple febrile convulsion, which evolved favourably without sequelae, considered to be related to RTS,S/AS01(E vaccination. Low grade reactions occurred slightly more frequently in recipients of RTS,S/AS than rabies vaccines; grade 3 reactions were infrequent. Less local reactogenicity occurred with RTS,S/AS01(E than RTS,S/AS02(D. Both candidate vaccines were highly immunogenic for anti-circumsporozoite and anti-Hepatitis B Virus surface antigen antibodies. Recipients of RTS,S/AS01(E compared to RTS,S/AS02(D had higher peak anti-circumsporozoite antibody responses for all 3 schedules. Three dose schedules were more immunogenic than 2 dose schedules. Area under the curve analyses for anti-circumsporozoite antibodies were comparable between the 0,1,2- and 0,1,7-month RTS,S/AS01(E schedules.Both candidate

  4. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Midekisa Alemayehu

    2012-05-01

    Full Text Available Abstract Background Malaria is one of the leading public health problems in most of sub-Saharan Africa, particularly in Ethiopia. Almost all demographic groups are at risk of malaria because of seasonal and unstable transmission of the disease. Therefore, there is a need to develop malaria early-warning systems to enhance public health decision making for control and prevention of malaria epidemics. Data from orbiting earth-observing sensors can monitor environmental risk factors that trigger malaria epidemics. Remotely sensed environmental indicators were used to examine the influences of climatic and environmental variability on temporal patterns of malaria cases in the Amhara region of Ethiopia. Methods In this study seasonal autoregressive integrated moving average (SARIMA models were used to quantify the relationship between malaria cases and remotely sensed environmental variables, including rainfall, land-surface temperature (LST, vegetation indices (NDVI and EVI, and actual evapotranspiration (ETa with lags ranging from one to three months. Predictions from the best model with environmental variables were compared to the actual observations from the last 12 months of the time series. Results Malaria cases exhibited positive associations with LST at a lag of one month and positive associations with indicators of moisture (rainfall, EVI and ETa at lags from one to three months. SARIMA models that included these environmental covariates had better fits and more accurate predictions, as evidenced by lower AIC and RMSE values, than models without environmental covariates. Conclusions Malaria risk indicators such as satellite-based rainfall estimates, LST, EVI, and ETa exhibited significant lagged associations with malaria cases in the Amhara region and improved model fit and prediction accuracy. These variables can be monitored frequently and extensively across large geographic areas using data from earth-observing sensors to support public

  5. A brief review on features of falciparum malaria during pregnancy

    Directory of Open Access Journals (Sweden)

    Alexandre Manirakiza

    2017-12-01

    Full Text Available Malaria in pregnancy is a serious public health problem in tropical areas. Frequently, the placenta is infected by accumulation of Plasmodium falciparum-infected erythrocytes in the intervillous space. Falciparum malaria acts during pregnancy by a range of mechanisms, and chronic or repeated infection and co-infections have insidious effects. The susceptibility of pregnant women to malaria is due to both immunological and humoral changes. Until a malaria vaccine becomes available, the deleterious effects of malaria in pregnancy can be avoided by protection against infection and prompt treatment with safe, effective antimalarial agents; however, concurrent infections such as with HIV and helminths during pregnancy are jeopardizing malaria control in sub-Saharan Africa.

  6. To what extent does climate explain variations in reported malaria cases in early 20th century Uganda?

    Directory of Open Access Journals (Sweden)

    Adrian M. Tompkins

    2016-03-01

    Full Text Available Malaria case statistics were analysed for the period 1926 to 1960 to identify inter-annual variations in malaria cases for the Uganda Protectorate. The analysis shows the mid-to-late 1930s to be a period of increased reported cases. After World War II, malaria cases trend down to a relative minimum in the early 1950s, before increasing rapidly after 1953 to the end of the decade. Data for the Western Province confirm these national trends, which at the time were attributed to a wide range of causes, including land development and management schemes, population mobility, interventions and misdiagnosis. Climate was occasionally proposed as a contributor to enhanced case numbers, and unusual precipitation patterns were held responsible; temperature was rarely, if ever, considered. In this study, a dynamical malaria model was driven with available precipitation and temperature data from the period for five stations located across a range of environments in Uganda. In line with the historical data, the simulations produced relatively enhanced transmission in the 1930s, although there is considerable variability between locations. In all locations, malaria transmission was low in the late 1940s and early 1950s, steeply increasing after 1954. Results indicate that past climate variability explains some of the variations in numbers of reported malaria cases. The impact of multiannual variability in temperature, while only on the order of 0.5°C, was sufficient to drive some of the trends observed in the statistics and thus the role of climate was likely underestimated in the contemporary reports. As the elimination campaigns of the 1960s followed this partly climate-driven increase in malaria, this emphasises the need to account for climate when planning and evaluating intervention strategies.

  7. Safety and immunogenicity of RTS,S/AS01 malaria vaccine in infants and children with WHO stage 1 or 2 HIV disease: a randomised, double-blind, controlled trial.

    Science.gov (United States)

    Otieno, Lucas; Oneko, Martina; Otieno, Walter; Abuodha, Joseph; Owino, Emmanuel; Odero, Chris; Mendoza, Yolanda Guerra; Andagalu, Ben; Awino, Norbert; Ivinson, Karen; Heerwegh, Dirk; Otsyula, Nekoye; Oziemkowska, Maria; Usuf, Effua Abigail; Otieno, Allan; Otieno, Kephas; Leboulleux, Didier; Leach, Amanda; Oyieko, Janet; Slutsker, Laurence; Lievens, Marc; Cowden, Jessica; Lapierre, Didier; Kariuki, Simon; Ogutu, Bernhards; Vekemans, Johan; Hamel, Mary J

    2016-10-01

    Malaria remains a major global public health concern, especially in sub-Saharan Africa. The RTS,S/AS01 malaria candidate vaccine was reviewed by the European Medicines Agency and received a positive scientific opinion; WHO subsequently recommended pilot implementation in sub-Saharan African countries. Because malaria and HIV overlap geographically, HIV-infected children should be considered for RTS,S/AS01 vaccination. We therefore aimed to assess the safety of RTS,S/AS01 in HIV-infected children at two sites in western Kenya. We did a randomised, double-blind, controlled trial at the clinical trial sites of the Kenya Medical Research Institute (KEMRI)-Walter Reed Army Institute of research in Kisumu and the KEMRI/US Centers for Disease Control and Prevention in Siaya. Eligible participants were infants and children aged from 6 weeks to 17 months with WHO stage 1 or 2 HIV disease (documented positive by DNA PCR), whether or not they were receiving antiretroviral therapy (ART). We randomly assigned participants (1:1) to receive three doses of either RTS,S/AS01 or rabies vaccine (both 0·5 mL per dose by intramuscular injection), given once per month at 0, 1, and 2 months. We did the treatment allocation using a web-based central randomisation system stratified by age (6 weeks-4 months, 5-17 months), and by baseline CD4% (vaccine recipient, their parent or carer, the funder, and investigators responsible for the assessment of endpoints were all masked to treatment allocation (only staff responsible for the preparation and administration of the vaccines were aware of the assignment and these individuals played no other role in the study). We provided ART, even if the participants were not receiving ART before the study, and daily co-trimoxazole for prevention of opportunistic infections. The primary outcome was the occurrence of serious adverse events until 14 months after dose 1 of the vaccine, assessed in the intention-to-treat population. This trial was registered

  8. Algae-Produced Pfs25 Elicits Antibodies That Inhibit Malaria Transmission

    Science.gov (United States)

    Gregory, James A.; Li, Fengwu; Tomosada, Lauren M.; Cox, Chesa J.; Topol, Aaron B.; Vinetz, Joseph M.; Mayfield, Stephen

    2012-01-01

    Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus

  9. RTS,S/AS01E Malaria Vaccine Induces Memory and Polyfunctional T Cell Responses in a Pediatric African Phase III Trial

    Directory of Open Access Journals (Sweden)

    Gemma Moncunill

    2017-08-01

    Full Text Available Comprehensive assessment of cellular responses to the RTS,S/AS01E vaccine is needed to understand potential correlates and ultimately mechanisms of protection against malaria disease. Cellular responses recognizing the RTS,S/AS01E-containing circumsporozoite protein (CSP and Hepatitis B surface antigen (HBsAg were assessed before and 1 month after primary vaccination by intracellular cytokine staining and 16-color flow cytometry in 105 RTS,S/AS01-vaccinated and 74 rabies-vaccinated participants (controls in a pediatric phase III trial in Africa. RTS,S/AS01E-vaccinated children had significantly higher frequencies of CSP- and HBsAg-specific CD4+ T cells producing IL-2, TNF-α, and CD40L and HBsAg-specific CD4+ T producing IFN-γ and IL-17 than baseline and the control group. Vaccine-induced responses were identified in both central and effector memory (EM compartments. EM CD4+ T cells expressing IL-4 and IL-21 were detected recognizing both vaccine antigens. Consistently higher response rates to both antigens in RTS,S/AS01E-vaccinated than comparator-vaccinated children were observed. RTS,S/AS01E induced polyfunctional CSP- and HBsAg-specific CD4+ T cells, with a greater degree of polyfunctionality in HBsAg responses. In conclusion, RTS,S/AS01E vaccine induces T cells of higher functional heterogeneity and polyfunctionality than previously characterized. Responses detected in memory CD4+ T cell compartments may provide correlates of RTS,S/AS01-induced immunity and duration of protection in future correlates of immunity studies.

  10. Knowledge of influenza vaccination recommendation and early vaccination uptake during the 2015-16 season among adults aged ≥18years - United States.

    Science.gov (United States)

    Lu, Peng-Jun; Srivastav, Anup; Santibanez, Tammy A; Christopher Stringer, M; Bostwick, Michael; Dever, Jill A; Stanley Kurtz, Marshica; Williams, Walter W

    2017-08-03

    Since 2010, the Advisory Committee on Immunization Practices (ACIP) has recommended that all persons aged ≥6months receive annual influenza vaccination. We analyzed data from the 2015 National Internet Flu Survey (NIFS), to assess knowledge and awareness of the influenza vaccination recommendation and early influenza vaccination coverage during the 2015-16 season among adults. Predictive marginals from a multivariable logistic regression model were used to identify factors independently associated with adults' knowledge and awareness of the vaccination recommendation and early vaccine uptake during the 2015-16 influenza season. Among the 3301 respondents aged ≥18years, 19.6% indicated knowing that influenza vaccination is recommended for all persons aged ≥6months. Of respondents, 62.3% indicated awareness that there was a recommendation for influenza vaccination, but did not indicate correct knowledge of the recommended age group. Overall, 39.9% of adults aged ≥18years reported having an influenza vaccination. Age 65years and older, being female, having a college or higher education, not being in work force, having annual household income ≥$75,000, reporting having received an influenza vaccination early in the 2015-16 season, having children aged ≤17years in the household, and having high-risk conditions were independently associated with a higher correct knowledge of the influenza vaccination recommendation. Approximately 1 in 5 had correct knowledge of the recommendation that all persons aged ≥6months should receive an influenza vaccination annually, with some socio-economic groups being even less aware. Clinic based education in combination with strategies known to increase uptake of recommended vaccines, such as patient reminder/recall systems and other healthcare system-based interventions are needed to improve vaccination, which could also improve awareness. Published by Elsevier Ltd.

  11. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.

  12. BCG vaccination at birth and early childhood hospitalisation

    DEFF Research Database (Denmark)

    Stensballe, Lone Graff; Sørup, Signe; Aaby, Peter

    2017-01-01

    vaccination at birth would reduce early childhood hospitalisation in Denmark, a high-income setting. METHODS: Pregnant women planning to give birth at three Danish hospitals were invited to participate. After parental consent, newborn children were allocated to BCG or no intervention within 7 days of age......BACKGROUND: The BCG vaccine is administered to protect against tuberculosis, but studies suggest there may also be non-specific beneficial effects upon the infant immune system, reducing early non-targeted infections and atopic diseases. The present randomised trial tested the hypothesis that BCG......-protocol analyses. RESULTS: 4184 pregnant women were randomised and their 4262 children allocated to BCG or no intervention. There was no difference in risk of hospitalisation up to 15 months of age; 2129 children randomised to BCG experienced 1047 hospitalisations with a mean of 0.49 hospitalisation per child...

  13. Phase 1/2a study of the malaria vaccine candidate apical membrane antigen-1 (AMA-l) administered in adjuvant system AS01B or AS02A

    NARCIS (Netherlands)

    M.D. Spring (Michele Donna); J.F. Cummings (James); C.F. Ockenhouse (Christian); S. Dutta (Shantanu); R. Reidler (Randall); E. Angov (Evelina); E. Bergmann-Leitner (Elke); V.A. Stewart (Ann); S. Bittner (Stacey); L. Juompan (Laure); M.G. Kortepeter (Mark); R. Nielsen (Robin); U. Krzych (Urszula); E. Tierney (Ev); L.A. Ware (Lisa); M. Dowler (Megan); C.C. Hermsen (Cornelus); R.W. Sauerwein (Robert); S.J. de Vlas (Sake); O. Ofori-Anyinam (Opokua); D.E. Lanar (David); J.L. Williams (Jack); K.E. Kester (Kent); K. Tucker (Kathryn); M. Shi (Meng); E. Malkin (Elissa); C. Long (Carole); C.L. Diggs (Carter); L. Soisson (Lorraine Amory); M.C. Dubois; W.R. Ballou (Ripley); J. Cohen (Joe); D.G. Heppner (Gray)

    2009-01-01

    textabstractBackground: This Phase 1/2a study evaluated the safety, immunogenicity, and efficacy of an experimental malaria vaccine comprised of the recombinant Plasmodium falciparum protein apical membrane antigen-1 (AMA-1) representing the 3D7 allele formulated with either the AS01B or AS02A

  14. Strategies & recent development of transmission-blocking vaccines against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Neha Chaturvedi

    2016-01-01

    Full Text Available Transmission blocking malaria vaccines are aimed to block the development and maturity of sexual stages of parasite within mosquitoes. The vaccine candidate antigens (Pfs25, Pfs48/45, Pfs230 that have shown transmission blocking immunity in model systems are in different stages of development. These antigens are immunogenic with limited genetic diversity. Pfs25 is a leading candidate and currently in phase I clinical trial. Efforts are now focused on the cost-effective production of potent antigens using safe adjuvants and optimization of vaccine delivery system that are capable of inducing strong immune responses. This review addresses the potential usefulness, development strategies, challenges, clinical trials and current status of Plasmodium falciparum sexual stage malaria vaccine candidate antigens for the development of transmission-blocking vaccines.

  15. Implementation of Malaria Dynamic Models in Municipality Level Early Warning Systems in Colombia. Part I: Description of Study Sites

    Science.gov (United States)

    Ruiz, Daniel; Cerón, Viviana; Molina, Adriana M.; Quiñónes, Martha L.; Jiménez, Mónica M.; Ahumada, Martha; Gutiérrez, Patricia; Osorio, Salua; Mantilla, Gilma; Connor, Stephen J.; Thomson, Madeleine C.

    2014-01-01

    As part of the Integrated National Adaptation Pilot project and the Integrated Surveillance and Control System, the Colombian National Institute of Health is working on the design and implementation of a Malaria Early Warning System framework, supported by seasonal climate forecasting capabilities, weather and environmental monitoring, and malaria statistical and dynamic models. In this report, we provide an overview of the local ecoepidemiologic settings where four malaria process-based mathematical models are currently being implemented at a municipal level. The description includes general characteristics, malaria situation (predominant type of infection, malaria-positive cases data, malaria incidence, and seasonality), entomologic conditions (primary and secondary vectors, mosquito densities, and feeding frequencies), climatic conditions (climatology and long-term trends), key drivers of epidemic outbreaks, and non-climatic factors (populations at risk, control campaigns, and socioeconomic conditions). Selected pilot sites exhibit different ecoepidemiologic settings that must be taken into account in the development of the integrated surveillance and control system. PMID:24891460

  16. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Directory of Open Access Journals (Sweden)

    Simon H Apte

    Full Text Available Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+ and/or CD8(+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  17. Controlled human malaria infection by intramuscular and direct venous inoculation of cryopreserved Plasmodium falciparum sporozoites in malaria-naïve volunteers: effect of injection volume and dose on infectivity rates

    NARCIS (Netherlands)

    Gómez-Pérez, Gloria P.; Legarda, Almudena; Muñoz, Jose; Sim, B. Kim Lee; Ballester, María Rosa; Dobaño, Carlota; Moncunill, Gemma; Campo, Joseph J.; Cisteró, Pau; Jimenez, Alfons; Barrios, Diana; Mordmüller, Benjamin; Pardos, Josefina; Navarro, Mireia; Zita, Cecilia Justino; Nhamuave, Carlos Arlindo; García-Basteiro, Alberto L.; Sanz, Ariadna; Aldea, Marta; Manoj, Anita; Gunasekera, Anusha; Billingsley, Peter F.; Aponte, John J.; James, Eric R.; Guinovart, Caterina; Antonijoan, Rosa M.; Kremsner, Peter G.; Hoffman, Stephen L.; Alonso, Pedro L.

    2015-01-01

    Controlled human malaria infection (CHMI) by mosquito bite is a powerful tool for evaluation of vaccines and drugs against Plasmodium falciparum malaria. However, only a small number of research centres have the facilities required to perform such studies. CHMI by needle and syringe could help to

  18. Timeliness of Receipt of Early Childhood Vaccinations Among Children of Immigrants - Minnesota, 2016.

    Science.gov (United States)

    Leeds, Maureen; Muscoplat, Miriam Halstead

    2017-10-27

    Receiving recommended childhood vaccinations on schedule is the best way to prevent the occurrence and spread of vaccine-preventable diseases (1). Vaccination coverage among children aged 19-35 months in the United States exceeds 90% for most recommended vaccines in the early childhood series (2); however, previous studies have found that few children receive all recommended vaccine doses on time (3). The Minnesota Department of Health (MDH), using information from the Minnesota Immunization Information Connection (MIIC) and the MDH Office of Vital Records, examined early childhood immunization rates and found that children with at least one foreign-born parent were less likely to be up-to-date on recommended immunizations at ages 2, 6, 18, and 36 months than were children with two U.S.-born parents. Vaccination coverage at age 36 months varied by mother's region of origin, ranging from 77.5% among children born to mothers from Central and South America and the Caribbean to 44.2% among children born to mothers from Somalia. Low vaccination coverage in these communities puts susceptible children and adults at risk for outbreaks of vaccine-preventable diseases, as evidenced by the recent measles outbreak in Minnesota (4). Increased outreach to immigrant, migrant, and refugee populations and other populations with low up-to-date vaccination rates might improve timely vaccination in these communities.

  19. Severe falciparum malaria in young children of the Kassena-Nankana district of northern Ghana.

    Science.gov (United States)

    Oduro, Abraham R; Koram, Kwadwo A; Rogers, William; Atuguba, Frank; Ansah, Patrick; Anyorigiya, Thomas; Ansah, Akosua; Anto, Francis; Mensah, Nathan; Hodgson, Abraham; Nkrumah, Francis

    2007-07-27

    Severe falciparum malaria in children was studied as part of the characterization of the Kassena-Nankana District Ghana for future malaria vaccine trials. Children aged 6-59 months with diagnosis suggestive of acute disease were characterized using the standard WHO definition for severe malaria. Of the total children screened, 45.2% (868/1921) satisfied the criteria for severe malaria. Estimated incidence of severe malaria was 3.4% (range: 0.4-8.3%) cases per year. The disease incidence was seasonal: 560 cases per year, of which 70.4% occurred during the wet season (June-October). The main manifestations were severe anaemia (36.5%); prolonged or multiple convulsions (21.6%); respiratory distress (24.4%) and cerebral malaria (5.4%). Others were hyperpyrexia (11.1%); hyperparasitaemia (18.5%); hyperlactaemia (33.4%); and hypoglycaemia (3.2%). The frequency of severe anaemia was 39.8% in children of six to 24 months of age and 25.9% in children of 25-60 months of age. More children (8.7%) in the 25-60 months age group had cerebral malaria compared with 4.4% in the 6-24 months age group. The overall case fatality ratio was 3.5%. Cerebral malaria and hyperlactataemia were the significant risk factors associated with death. Severe anaemia, though a major presentation, was not significantly associated with risk of death. Severe malaria is a frequent and seasonal childhood disease in northern Ghana and maybe an adequate endpoint for future malaria vaccine trials.

  20. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites.

    Directory of Open Access Journals (Sweden)

    Ian A Cockburn

    2010-05-01

    Full Text Available Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization--a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen.

  1. Simulation of the Costs and Consequences of Potential Vaccines for Plasmodium Falciparum Malaria

    OpenAIRE

    Tediosi, Fabrizio

    2010-01-01

    Malaria is one of the major public health problems for low income countries, a major global health priority, and it has also a dramatic economic impact. Funding for malaria control is on the rise and both international donors and governments of malaria endemic countries need tools and evidence to assess which are the best and most efficient strategies to control malaria. Standard tools traditionally used to assess the public health and economic impact of malaria control inte...

  2. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine.

    Science.gov (United States)

    Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S

    2015-06-22

    There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Malaria and the Millennium Development Goals.

    Science.gov (United States)

    Owens, Stephen

    2015-02-01

    Malaria, as a key disease of poverty, was singled out for special attention in the Millennium Project of 2000. Recent data suggest that malaria incidence and mortality are now declining all over the world. While these figures are cause for celebration, they must be interpreted carefully and with caution, particularly in relation to Africa. There are daunting challenges ahead for those working to achieve malaria eradication, not least of which is the poor quality of the data on which the work is based. In the absence of an affordable and fully effective vaccine, international funding for malaria control needs to be escalated still further. The money is essential to pay for universal access to a set of simple and proven interventions which would save the lives of millions of children over the next 15 years. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. The London School of Hygiene and Tropical Medicine: a new century of malaria research

    Directory of Open Access Journals (Sweden)

    Riley Eleanor M

    2000-01-01

    Full Text Available The global malaria situation has scarcely improved in the last 100 years, despite major advances in our knowledge of the basic biology, epidemiology and clinical basis of the disease. Effective malaria control, leading to a significant decrease in the morbidity and mortality attributable to malaria, will require a multidisciplinary approach. New tools - drugs, vaccine and insecticides - are needed but there is also much to be gained by better use of existing tools: using drugs in combination in order to slow the development of drug resistance; targeting resources to areas of greatest need; using geographic information systems to map the populations at risk and more sophisticated marketing techniques to distribute bed nets and insecticides. Sustainable malaria control may require the deployment of a highly effective vaccine, but there is much that can be done in the meantime to reduce the burden of disease.

  5. Recognition of Plasmodium falciparum mature gametocyte-infected erythrocytes by antibodies of semi-immune adults and malaria-exposed children from Gabon

    DEFF Research Database (Denmark)

    Gebru, Tamirat; Ajua, Anthony; Theisen, Michael

    2017-01-01

    BACKGROUND: Transmission of malaria from man to mosquito depends on the presence of gametocytes, the sexual stage of Plasmodium parasites in the infected host. Naturally acquired antibodies against gametocytes exist and may play a role in controlling transmission by limiting the gametocyte...... falciparum mature gametocytes were investigated in sera of semi-immune adults and malaria-exposed children. In addition, the effect of immunization with GMZ2, a blood stage malaria vaccine candidate, and the effect of intestinal helminth infection on the development of immunity to gametocytes of P...... was significantly higher after fixation and permeabilization of parasitized erythrocytes. Following vaccination with the malaria vaccine candidate GMZ2, anti-gametocyte Ab concentration decreased in adults compared to baseline. Ab response to whole asexual stage antigens had a significant but weak positive...

  6. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum.

    NARCIS (Netherlands)

    Silvestrini, F.; Lasonder, E.; Olivieri, A.; Camarda, G.; Schaijk, B.C.L. van; Sanchez, M.; Younis Younis, S.; Sauerwein, R.W.; Alano, P.

    2010-01-01

    Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent

  7. Exclusive Breastfeeding and Malaria in Early Infancy: Experience ...

    African Journals Online (AJOL)

    Malaria is a leading cause of morbidity and mortality in African children including infants while the roles of exclusive breastfeeding in the prevention of infections and protection against several common childhood morbidities are widely acknowledged. To study the role of exclusive breastfeeding on the incidence of malaria in ...

  8. External quality assurance of malaria nucleic acid testing for clinical trials and eradication surveillance

    NARCIS (Netherlands)

    Murphy, S.C.; Hermsen, C.C.; Douglas, A.D.; Edwards, N.J.; Petersen, I.; Fahle, G.A.; Adams, M.; Berry, A.A.; Billman, Z.P.; Gilbert, S.C.; Laurens, M.B.; Leroy, O.; Lyke, K.E.; Plowe, C.V.; Seilie, A.M.; Strauss, K.A.; Teelen, K.; Hill, A.V.; Sauerwein, R.W.

    2014-01-01

    Nucleic acid testing (NAT) for malaria parasites is an increasingly recommended diagnostic endpoint in clinical trials of vaccine and drug candidates and is also important in surveillance of malaria control and elimination efforts. A variety of reported NAT assays have been described, yet no formal

  9. Placental malaria and neonatal anti-tetanus antibody status: Any ...

    African Journals Online (AJOL)

    Globally, neonatal tetanus accounts for 7% of neonatal mortality,[1] ... There was a statistically significant association between type of placental malaria .... Also excluded were mothers with diabetes ..... Tetanus Vaccine: WHO Position Paper.

  10. A randomized trial assessing the safety and immunogenicity of AS01 and AS02 adjuvanted RTS,S malaria vaccine candidates in children in Gabon.

    Directory of Open Access Journals (Sweden)

    Bertrand Lell

    2009-10-01

    Full Text Available The malaria vaccine candidate antigen RTS,S includes parts of the pre-erythrocytic stage circumsporozoite protein fused to the Hepatitis B surface antigen. Two Adjuvant Systems are in development for this vaccine, an oil-in water emulsion--based formulation (AS02 and a formulation based on liposomes (AS01.In this Phase II, double-blind study (NCT00307021, 180 healthy Gabonese children aged 18 months to 4 years were randomized to receive either RTS,S/AS01(E or RTS,S/AS02(D, on a 0-1-2 month vaccination schedule. The children were followed-up daily for six days after each vaccination and monthly for 14 months. Blood samples were collected at 4 time-points. Both vaccines were well tolerated. Safety parameters were distributed similarly between the two groups. Both vaccines elicited a strong specific immune response after Doses 2 and 3 with a ratio of anti-CS GMT titers (AS02(D/AS01(E of 0.88 (95% CI: 0.68-1.15 post-Dose 3. After Doses 2 and 3 of experimental vaccines, anti-CS and anti-HBs antibody GMTs were higher in children who had been previously vaccinated with at least one dose of hepatitis B vaccine compared to those not previously vaccinated.RTS,S/AS01(E proved similarly as well tolerated and immunogenic as RTS,S/AS02(D, completing an essential step in the age de-escalation process within the RTS,S clinical development plan.ClinicalTrials.gov. NCT00307021.

  11. Antibodies to malaria vaccine candidates are associated with chloroquine or sulphadoxine/pyrimethamine treatment efficacy in children in an endemic area of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Diarra Amidou

    2012-03-01

    Full Text Available Abstract Background Patient immune status is thought to affect the efficacy of anti-malarial chemotherapy. This is a subject of some importance, since evidence of immunity-related interactions may influence our use of chemotherapy in populations with drug resistance, as well as assessment of the value of suboptimal vaccines. The study aim was to investigate relationship between antibodies and anti-malarial drug treatment outcomes. Methods Some 248 children aged 0.5 and 15 years were recruited prior to the high malaria transmission season. Venous blood (5 ml was obtained from each child to measure antibody levels to selected malaria antigens, using ELISA. Blood smears were also performed to assess drug efficacy and malaria infection prevalence. Children were actively followed up to record clinical malaria cases. Results IgG levels to MSP3 were always higher in the successfully treated group than in the group with treatment failure. The same observation was made for GLURP but the reverse observation was noticed for MSP1-19. Cytophilic and non-cytophilic antibodies were significantly associated with protection against all three antigens, except for IgG4 to MSP1-19 and GLURP. Conclusion Acquired anti-malarial antibodies may play an important role in the efficacy of anti-malarial drugs in younger children more susceptible to the disease.

  12. PATTERNS OF SEVEN AND COMPLICATED MALARIA IN CHILDREN

    African Journals Online (AJOL)

    GB

    2017-01-01

    Jan 1, 2017 ... Vaccines Directorate, Ethiopia. 4Department of ... and III were given 400 and 800 mg/kg body weight/day plant .... Experimental animals preparation: A total of thirty adult ..... Tesgaye K. In-vivo anti-malaria activity of plants ...

  13. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects

    NARCIS (Netherlands)

    Radosević, Katarina; Rodriguez, Ariane; Lemckert, Angelique; Goudsmit, Jaap

    2009-01-01

    Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more

  14. Monitoring selective components of primary health care: methodology and community assessment of vaccination, diarrhoea, and malaria practices in Conakry, Guinea. ACSI-CCCD team.

    Science.gov (United States)

    Dabis, F; Breman, J G; Roisin, A J; Haba, F

    1989-01-01

    The Africa Child Survival Initiative-Combatting Childhood Communicable Diseases (ACSI-CCCD) Project is a primary health care activity that focuses on antenatal care, immunization, diarrhoeal disease control, and malaria control in children under 5 years of age. In order to gauge progress made in the project, a community-based health interview survey to measure simultaneously several prevention and treatment indicators was carried out in 1986 in Conakry, Guinea. A sample of 1415 caretakers and their 2048 children aged under 5 years was visited using a cluster sampling technique. The survey documented the levels of literacy and health education awareness of the caretakers, measured the vaccination coverage levels for children and women of childbearing age, and determined treatment practices for diarrhoea and malaria. Of the 637 women who reported having given birth in the previous 12 months, 96% had visited an antenatal clinic, but only 49% had had two or more doses of tetanus toxoid, and 13% took weekly chemoprophylaxis against malaria. The vaccination coverage for measles was 16% for children aged 12-23 months. Oral rehydration therapy (ORT) was given to 16% of children with diarrhoea; however, only 43% of those who were administered ORT at home were treated according to standard guidelines. Of children with diarrhoea, 51% were given antidiarrhoeal or antimicrobial drugs by caretakers. Fever was treated at home for 79% of the febrile children, and 43% of those with fever also visited health units. The use of injectable antimalarials and prolonged treatments with chloroquine were common. Combining findings from a population-based community study with an assessment of practices in health facilities can provide reliable information for the implementation and monitoring of selective components of primary health care.

  15. Molecular Vaccines for Malaria

    Science.gov (United States)

    2010-01-01

    Removing inhibitory plasm ids from the cock- with the radiation-attenuated sporozoite (RAS) vaccine36•37 (see tail restored the immunogenicity of the...relative increased in vitro growth inhibitory activity against homologous to the P. folciparum antigen expressing plasm ids alone, and none parasites...25nm and have a molecular weight of 14.8 kDa. (C) Transmission electron microscopy image of P4c-Mal nanoparticles at 242 OOOx. The sample was

  16. tetanus nearly eliminated after 40 years of vaccination in rural

    African Journals Online (AJOL)

    2014-07-01

    Jul 1, 2014 ... number of admissions and mortality for tetanus and malaria. ... of a neurotoxin, produced by the bacteria when they grow in the ... the tetanus vaccine is often administered as a ... to vaccinate the community against tetanus in.

  17. Early experience with human papillomavirus vaccine introduction in the United States, Canada and Australia.

    Science.gov (United States)

    Shefer, Abigail; Markowitz, Lauri; Deeks, Shelley; Tam, Theresa; Irwin, Kathleen; Garland, Suzanne M; Schuchat, Anne

    2008-08-19

    Successful incorporation of a new vaccine into a nation's vaccination program requires addressing a number of issues, including: 1) establishing national recommendations; 2) assuring education of and acceptance by the public and medical community; 3) establishing and maintaining an appropriate infrastructure for vaccine delivery; 4) financing the vaccine and the program, in addition to political will. This article reviews the early experience with implementation of human papillomavirus (HPV) vaccination programs. It focuses on the United States of America and Canada and provides a brief report on Australia, where introduction is underway.

  18. Epidemiology of malaria in the forest-savanna transitional zone of Ghana

    Directory of Open Access Journals (Sweden)

    Newton Sam

    2009-09-01

    Full Text Available Abstract Background Information on the epidemiology of malaria is essential for designing and interpreting results of clinical trials of drugs, vaccines and other interventions. As a background to the establishment of a site for anti-malarial drugs and vaccine trials, the epidemiology of malaria in a rural site in central Ghana was investigated. Methods Active surveillance of clinical malaria was carried out in a cohort of children below five years of age (n = 335 and the prevalence of malaria was estimated in a cohort of subjects of all ages (n = 1484 over a 12-month period. Participants were sampled from clusters drawn around sixteen index houses randomly selected from a total of about 22,000 houses within the study area. The child cohort was visited thrice weekly to screen for any illness and a blood slide was taken if a child had a history of fever or a temperature greater than or equal to 37.5 degree Celsius. The all-age cohort was screened for malaria once every eight weeks over a 12-month period. Estimation of Entomological Inoculation Rate (EIR and characterization of Anopheline malaria vectors in the study area were also carried out. Results The average parasite prevalence in the all age cohort was 58% (95% CI: 56.9, 59.4. In children below five years of age, the average prevalence was 64% (95% CI: 61.9, 66.0. Geometric mean parasite densities decreased significantly with increasing age. More than 50% of all children less than 10 years of age were anaemic. Children less than 5 years of age had as many as seven malaria attacks per child per year. The attack rates decreased significantly with increasing cut-offs of parasite density. The average Multiplicity of Infection (MOI was of 6.1. All three pyrimethamine resistance mutant alleles of the Plasmodium falciparum dhfr gene were prevalent in this population and 25% of infections had a fourth mutant of pfdhps-A437G. The main vectors were Anopheles funestus and Anopheles gambiae and the EIR

  19. Modelling of Malaria Risk Areas in Ghana by using Environmental ...

    African Journals Online (AJOL)

    Michael

    2015-12-02

    Dec 2, 2015 ... control in time and space to be prepared for outbreaks, which ... developing dynamic and area-specific risk maps to ... disease outbreaks including vaccination (Haydon et ... analyse malaria data against certain environmental.

  20. Early home treatment of childhood fevers with ineffective antimalarials is deleterious in the outcome of severe malaria

    Directory of Open Access Journals (Sweden)

    Olumese Peter E

    2008-07-01

    Full Text Available Abstract Background Early diagnosis and prompt treatment including appropriate home-based treatment of malaria is a major strategy for malaria control. A major determinant of clinical outcome in case management is compliance and adherence to effective antimalarial regimen. Home-based malaria treatment with inappropriate medicines is ineffective and there is insufficient evidence on how this contributes to the outcome of severe malaria. This study evaluated the effects of pre-hospital antimalarial drugs use on the presentation and outcome of severe malaria in children in Ibadan, Nigeria. Methods Two hundred and sixty-eight children with a median age of 30 months comprising 114 children with cerebral malaria and 154 with severe malarial anaemia (as defined by WHO were prospectively enrolled. Data on socio-demographic data, treatments given at home, clinical course and outcome of admission were collected and analysed. Results A total of 168 children had treatment with an antimalarial treatment at home before presenting at the hospital when there was no improvement. There were no significant differences in the haematocrit levels, parasite counts and nutritional status of the pre-hospital treated and untreated groups. The most commonly used antimalarial medicine was chloroquine. Treatment policy was revised to Artemesinin-based Combination Therapy (ACT in 2005 as a response to unacceptable levels of therapeutic failures with chloroquine, however chloroquine use remains high. The risk of presenting as cerebral malaria was 1.63 times higher with pre-hospital use of chloroquine for treatment of malaria, with a four-fold increase in the risk of mortality. Controlling for other confounding factors including age and clinical severity, pre-hospital treatment with chloroquine was an independent predictor of mortality. Conclusion This study showed that, home treatment with chloroquine significantly impacts on the outcome of severe malaria. This finding

  1. Estimation of effectiveness of interventions for malaria control in pregnancy using the screening method

    NARCIS (Netherlands)

    Msyamboza, K.; Senga, E.; Tetteh-Ashong, E.; Kazembe, P.; Brabin, B. J.

    2007-01-01

    BACKGROUND: The evaluation of the effectiveness of antimalarial drugs and bed net use in pregnant women is an important aspect of monitoring and surveillance of malaria control in pregnancy. In principle the screening method for assessing vaccine efficacy can be applied in non-vaccine settings for

  2. Malaria control and elimination, Venezuela, 1800s –1970s.

    Science.gov (United States)

    Griffing, Sean M; Villegas, Leopoldo; Udhayakumar, Venkatachalam

    2014-10-01

    Venezuela had the highest number of human malaria cases in Latin American before 1936. During 1891–1920,malaria was endemic to >600,000 km2 of this country; malaria death rates led to major population decreases during 1891–1920. No pathogen, including the influenza virus that caused the 1918 pandemic, caused more deaths than malaria during 1905–1945. Early reports of malaria eradication in Venezuela helped spark the world's interest in global eradication. We describe early approaches to malaria epidemiology in Venezuela and how this country developed an efficient control program and an approach to eradication.Arnoldo Gabaldón was a key policy maker during this development process. He directed malaria control in Venezuela from the late 1930s to the end of the 1970s and contributed to malaria program planning of the World Health Organization.We discuss how his efforts helped reduce the incidence of malaria in Venezuela and how his approach diverged from World Health Organization guidelines.

  3. Malaria Control and Elimination,1 Venezuela, 1800s–1970s

    Science.gov (United States)

    Villegas, Leopoldo; Udhayakumar, Venkatachalam

    2014-01-01

    Venezuela had the highest number of human malaria cases in Latin American before 1936. During 1891–1920, malaria was endemic to >600,000 km2 of this country; malaria death rates led to major population decreases during 1891–1920. No pathogen, including the influenza virus that caused the 1918 pandemic, caused more deaths than malaria during 1905–1945. Early reports of malaria eradication in Venezuela helped spark the world’s interest in global eradication. We describe early approaches to malaria epidemiology in Venezuela and how this country developed an efficient control program and an approach to eradication. Arnoldo Gabaldón was a key policy maker during this development process. He directed malaria control in Venezuela from the late 1930s to the end of the 1970s and contributed to malaria program planning of the World Health Organization. We discuss how his efforts helped reduce the incidence of malaria in Venezuela and how his approach diverged from World Health Organization guidelines.

  4. Mathematical model for optimal use of sulfadoxine-pyrimethamine as a temporary malaria vaccine.

    Science.gov (United States)

    Dembele, Bassidy; Friedman, Avner; Yakubu, Abdul-Aziz

    2010-05-01

    In this paper, we introduce a deterministic malaria model for determining the drug administration protocol that leads to the smallest first malaria episodes during the wet season. To explore the effects of administering the malaria drug on different days during the wet season while minimizing the potential harmful effects of drug overdose, we define 40 drug administration protocols. Our results fit well with the clinical studies of Coulibaly et al. at a site in Mali. In addition, we provide protocols that lead to smaller number of first malaria episodes during the wet season than the protocol of Coulibaly et al.

  5. Solution structure of a Plasmodium falciparum AMA-1/MSP 1 chimeric protein vaccine candidate (PfCP-2.9 for malaria

    Directory of Open Access Journals (Sweden)

    Jin Changwen

    2010-03-01

    Full Text Available Abstract Background The Plasmodium falciparum chimeric protein PfCP-2.9 is a promising asexual-stage malaria vaccine evaluated in clinical trials. This chimeric protein consists of two cysteine-rich domains: domain III of the apical membrane antigen 1 (AMA-1 [III] and the C-terminal region of the merozoite surface protein 1 (MSP1-19. It has been reported that the fusion of these two antigens enhanced their immunogenicity and antibody-mediated inhibition of parasite growth in vitro. Methods The 15N-labeled and 13C/15N-labeled PfCP-2.9 was produced in Pichia pastoris for nuclear magnetic resonance (NMR structure analysis. The chemical shift assignments of PfCP-2.9 were compared with those previously reported for the individual domains (i.e., PfAMA-1(III or PfMSP 1-19. The two-dimensional spectra and transverse relaxation rates (R2 of the PfMSP1-19 alone were compared with that of the PfCP-2.9. Results Confident backbone assignments were obtained for 122 out of 241 residues of PfCP-2.9. The assigned residues in PfCP-2.9 were very similar to those previously reported for the individual domains. The conformation of the PfMSP1-19 in different constructs is essentially the same. Comparison of transverse relaxation rates (R2 strongly suggests no weak interaction between the domains. Conclusions These data indicate that the fusion of AMA-1(III and MSP1-19 as chimeric protein did not change their structures, supporting the use of the chimeric protein as a potential malaria vaccine.

  6. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    Directory of Open Access Journals (Sweden)

    Tamborrini Marco

    2011-12-01

    Full Text Available Abstract Background In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP. Methods The highly purified recombinant protein GMZ2 was coupled to phosphatidylethanolamine and the conjugates incorporated into the membrane of IRIVs. The immunogenicity of this adjuvant-free virosomal formulation was compared to GMZ2 formulated with the adjuvants Montanide ISA 720 and Alum in three mouse strains with different genetic backgrounds. Results Intramuscular injections of all three candidate vaccine formulations induced GMZ2-specific antibody responses in all mice tested. In general, the humoral immune response in outbred NMRI mice was stronger than that in inbred BALB/c and C57BL/6 mice. ELISA with the recombinant antigens demonstrated immunodominance of the GLURP component over the MSP3 component. However, compared to the Al(OH3-adjuvanted formulation the two other formulations elicited in NMRI mice a larger proportion of anti-MSP3 antibodies. Analyses of the induced GMZ2-specific IgG subclass profiles showed for all three formulations a predominance of the IgG1 isotype. Immune sera against all three formulations exhibited cross-reactivity with in vitro cultivated blood-stage parasites. Immunofluorescence and immunoblot competition experiments showed that both components of the hybrid protein induced IgG cross-reactive with the corresponding native proteins. Conclusion A virosomal formulation of the chimeric protein GMZ2 induced P. falciparum blood stage parasite cross-reactive IgG responses specific for both MSP3 and GLURP. GMZ2 thus represents a candidate component suitable for inclusion into a multi-valent virosomal

  7. Malaria in inter-war British India.

    Science.gov (United States)

    Bynum, W F

    2000-06-01

    British India was an important site of much important malaria research. Although Ronald Ross left India in 1899, a number of malariologists continued the task of evaluating the incidence and distribution of malaria in the country. Implementing practical solutions was hampered by formidable social and economic problems. This paper examines the Indian situation in the late 1920s, through a retrospective selection of writings chosen by J.A. Sinton for reproduction in an early issue of 'The records of the malaria survey of India', and the analysis of the Indian malaria situation through a visit of the League of Nations Malaria Commission in 1929.

  8. Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia.

    Science.gov (United States)

    Corbel, Vincent; Nosten, Francois; Thanispong, Kanutcharee; Luxemburger, Christine; Kongmee, Monthathip; Chareonviriyaphap, Theeraphap

    2013-12-01

    Despite significant advances in the search for potential dengue vaccines and new therapeutic schemes for malaria, the control of these diseases remains difficult. In Thailand, malaria incidence is falling whereas that of dengue is rising, with an increase in the proportion of reported severe cases. In the absence of antiviral therapeutic options for acute dengue, appropriate case management reduces mortality. However, the interruption of transmission still relies on vector control measures that are currently insufficient to curtail the cycle of epidemics. Drug resistance in malaria parasites is increasing, compromising malaria control and elimination. Deficiencies in our knowledge of vector biology and vectorial capacity also hinder public health efforts for vector control. Challenges to dengue and malaria control are discussed, and research priorities identified. Copyright © 2013. Published by Elsevier Ltd.

  9. Remotely Sensed Environmental Conditions and Malaria Mortality in Three Malaria Endemic Regions in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Maquins Odhiambo Sewe

    Full Text Available Malaria is an important cause of morbidity and mortality in malaria endemic countries. The malaria mosquito vectors depend on environmental conditions, such as temperature and rainfall, for reproduction and survival. To investigate the potential for weather driven early warning systems to prevent disease occurrence, the disease relationship to weather conditions need to be carefully investigated. Where meteorological observations are scarce, satellite derived products provide new opportunities to study the disease patterns depending on remotely sensed variables. In this study, we explored the lagged association of Normalized Difference Vegetation Index (NVDI, day Land Surface Temperature (LST and precipitation on malaria mortality in three areas in Western Kenya.The lagged effect of each environmental variable on weekly malaria mortality was modeled using a Distributed Lag Non Linear Modeling approach. For each variable we constructed a natural spline basis with 3 degrees of freedom for both the lag dimension and the variable. Lag periods up to 12 weeks were considered. The effect of day LST varied between the areas with longer lags. In all the three areas, malaria mortality was associated with precipitation. The risk increased with increasing weekly total precipitation above 20 mm and peaking at 80 mm. The NDVI threshold for increased mortality risk was between 0.3 and 0.4 at shorter lags.This study identified lag patterns and association of remote- sensing environmental factors and malaria mortality in three malaria endemic regions in Western Kenya. Our results show that rainfall has the most consistent predictive pattern to malaria transmission in the endemic study area. Results highlight a potential for development of locally based early warning forecasts that could potentially reduce the disease burden by enabling timely control actions.

  10. Cardiac complication after experimental human malaria infection: a case report

    Directory of Open Access Journals (Sweden)

    Druilhe Pierre

    2009-12-01

    Full Text Available Abstract A 20 year-old healthy female volunteer participated in a clinical Phase I and IIa safety and efficacy trial with candidate malaria vaccine PfLSA-3-rec adjuvanted with aluminium hydroxide. Eleven weeks after the third and last immunization she was experimentally infected by bites of Plasmodium falciparum-infected mosquitoes. When the thick blood smear became positive, at day 11, she was treated with artemether/lumefantrine according to protocol. On day 16 post-infection i.e. two days after completion of treatment, she woke up with retrosternal chest pain. She was diagnosed as acute coronary syndrome and treated accordingly. She recovered quickly and her follow-up was uneventful. Whether the event was related to the study procedures such as the preceding vaccinations, malaria infection or antimalarial drugs remains elusive. However, the relation in time with the experimental malaria infection and apparent absence of an underlying condition makes the infection the most probable trigger. This is in striking contrast, however, with the millions of malaria cases each year and the fact that such complication has never been reported in the literature. The rare occurrence of cardiac events with any of the preceding study procedures may even support a coincidental finding. Apart from acute coronary syndrome, myocarditis can be considered as a final diagnosis, but the true nature and patho-physiological explanation of the event remain unclear.

  11. Phase 1 trial of the Plasmodium falciparum blood stage vaccine MSP1(42-C1/Alhydrogel with and without CPG 7909 in malaria naïve adults.

    Directory of Open Access Journals (Sweden)

    Ruth D Ellis

    2010-01-01

    Full Text Available Merozoite surface protein 1(42 (MSP1(42 is a leading blood stage malaria vaccine candidate. In order to induce immune responses that cover the major antigenic polymorphisms, FVO and 3D7 recombinant proteins of MSP1(42 were mixed (MSP1(42-C1. To improve the level of antibody response, MSP1(42-C1 was formulated with Alhydrogel plus the novel adjuvant CPG 7909.A Phase 1 clinical trial was conducted in healthy malaria-naïve adults at the Center for Immunization Research in Washington, D.C., to evaluate the safety and immunogenicity of MSP1(42-C1/Alhydrogel +/- CPG 7909. Sixty volunteers were enrolled in dose escalating cohorts and randomized to receive three vaccinations of either 40 or 160 microg protein adsorbed to Alhydrogel +/- 560 microg CPG 7909 at 0, 1 and 2 months.Vaccinations were well tolerated, with only one related adverse event graded as severe (Grade 3 injection site erythema and all other vaccine related adverse events graded as either mild or moderate. Local adverse events were more frequent and severe in the groups receiving CPG. The addition of CPG enhanced anti-MSP1(42 antibody responses following vaccination by up to 49-fold two weeks after second immunization and 8-fold two weeks after the third immunization when compared to MSP1(42-C1/Alhydrogel alone (p<0.0001. After the third immunization, functionality of the antibody was tested by an in vitro growth inhibition assay. Inhibition was a function of antibody titer, with an average of 3% (range -2 to 10% in the non CPG groups versus 14% (3 to 32% in the CPG groups.The favorable safety profile and high antibody responses induced with MSP1(42-C1/Alhydrogel + CPG 7909 are encouraging. MSP1(42-C1/Alhydrogel is being combined with other blood stage antigens and will be taken forward in a formulation adjuvanted with CPG 7909.ClinicalTrials.gov Identifier: NCT00320658.

  12. The comparison of detection methods of asymptomatic malaria in hypoendemic areas

    Science.gov (United States)

    Siahaan, L.; Panggabean, M.; Panggabean, Y. C.

    2018-03-01

    Malaria is still a problem that disrupts public health in North Sumatera. Late diagnosis will increase the chances of increased morbidity and mortality due to malaria. The early detection of asymptomatic malaria is one of the best efforts to reduce the transmission of the disease. Early detection is certainly must be done on suspect patients who have no malaria complaints. Passive Case Detection (PCD) methods seem hard to find asymptomatic malaria. This study was conducted to compare ACD (Active Case Detection) and PCD methods in asymptomatic malaria detection in the hypoendemic areas of malaria. ACD method is done by going to the sample based on secondary data. Meanwhile, PCD is done on samples that come to health services. Samples were taken randomly and diagnosis was confirmed by microscopic examination with 3% Giemsa staining, as gold standard of malaria diagnostics. There was a significant difference between ACD and PCD detection methods (p = 0.034), where ACD method was seen superior in detecting malaria patients in all categories, such as: clinical malaria (65.2%), asymptomatic malaria (65.1%) and submicroscopic malaria (58.5%). ACD detection methods are superior in detecting malaria sufferers, especially asymptomatic malaria sufferers.

  13. Impact of a Plasmodium falciparum AMA1 vaccine on antibody responses in adult Malians.

    Directory of Open Access Journals (Sweden)

    Alassane Dicko

    2007-10-01

    Full Text Available Apical Membrane Antigen 1 (AMA1 of Plasmodium falciparum merozoites is a leading blood-stage malaria vaccine candidate. Protection of Aotus monkeys after vaccination with AMA1 correlates with antibody responses.A randomized, controlled, double-blind phase 1 clinical trial was conducted in 54 healthy Malian adults living in an area of intense seasonal malaria transmission to assess the safety and immunogenicity of the AMA1-C1 malaria vaccine. AMA1-C1 contains an equal mixture of yeast-expressed recombinant proteins based on sequences from the FVO and 3D7 clones of P. falciparum, adsorbed on Alhydrogel. The control vaccine was the hepatitis B vaccine (Recombivax. Participants were enrolled into 1 of 3 dose cohorts (n = 18 per cohort and randomized 2:1 to receive either AMA1-C1 or Recombivax. Participants in the first, second, and third cohorts randomized to receive AMA1-C1 were vaccinated with 5, 20 and 80 microg of AMA1-C1, respectively. Vaccinations were administered on days 0, 28, and 360, and participants were followed until 6 months after the final vaccination. AMA1-C1 was well tolerated; no vaccine-related severe or serious adverse events were observed. AMA1 antibody responses to the 80 microg dose increased rapidly from baseline levels by days 14 and 28 after the first vaccination and continued to increase after the second vaccination. After a peak 14 days following the second vaccination, antibody levels decreased to baseline levels one year later at the time of the third vaccination that induced little or no increase in antibody levels.Although the AMA1-C1 vaccine candidate was well-tolerated and induced antibody responses to both vaccine and non-vaccine alleles, the antibody response after a third dose given at one year was lower than the response to the initial vaccinations. Additionally, post-vaccination increases in anti-AMA1 antibody levels were not associated with significant changes in in vitro growth inhibition of P. falciparum

  14. Prevalence of malaria parasitaemia and malaria related anaemia among pregnant women in Abakaliki, South East Nigeria.

    Science.gov (United States)

    Nwonwu, E U; Ibekwe, P C; Ugwu, J I; Obarezi, H C; Nwagbara, O C

    2009-06-01

    Malaria currently is regarded as the most common and potentially the most serious infection occurring in pregnancy in many sub Saharan African countries. This study was undertaken to evaluate the prevalence of malaria parasitaemia and malaria related anaemia among pregnant women in Abakaliki, South East, Nigeria. This is a cross sectional, descriptive study conducted in two tertiary health institutions in Abakaliki, South East, Nigeria (Ebonyi State University Teaching Hospital And Federal Medical Centre). Using systematic sampling method, 193 pregnant women were selected from the health institutions for the study. Their blood were analysed for haemoglobin status and malaria parasite. Data were also collected using an interviewer administered questionnaire. All the data were analysed using Epi info version 6 statistical software. Response rate was 100%. Twenty nine percent prevalence of malaria parasitaemia was detected, more common among primigravidae. Women with higher parity had higher frequency of anaemia in pregnancy. More than half of the pregnant women (51%) were in their second trimester at the time of booking. There was no case of severe anaemia requiring blood transfusion. Our pregnant women register late for antenatal care. Prevalence of malaria parasitaemia is high in our environment as well as anaemia in pregnancy, using the standard WHO definition. It is suggested that effort should be intensified to make our women register early for antenatal care in order to identify complications early. Intermittent preventive treatment for malaria should be incorporated into routine drugs for antenatal women.

  15. Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries.

    Science.gov (United States)

    Srisutham, Suttipat; Saralamba, Naowarat; Sriprawat, Kanlaya; Mayxay, Mayfong; Smithuis, Frank; Nosten, Francois; Pukrittayakamee, Sasithon; Day, Nicholas P J; Dondorp, Arjen M; Imwong, Mallika

    2018-01-11

    Genetic diversity of the three important antigenic proteins, namely thrombospondin-related anonymous protein (TRAP), apical membrane antigen 1 (AMA1), and 6-cysteine protein (P48/45), all of which are found in various developmental stages of Plasmodium parasites is crucial for targeted vaccine development. While studies related to the genetic diversity of these proteins are available for Plasmodium falciparum and Plasmodium vivax, barely enough information exists regarding Plasmodium malariae. The present study aims to demonstrate the genetic variations existing among these three genes in P. malariae by analysing their diversity at nucleotide and protein levels. Three surface protein genes were isolated from 45 samples collected in Thailand (N = 33), Myanmar (N = 8), and Lao PDR (N = 4), using conventional polymerase chain reaction (PCR) assay. Then, the PCR products were sequenced and analysed using BioEdit, MEGA6, and DnaSP programs. The average pairwise nucleotide diversities (π) of P. malariae trap, ama1, and p48/45 were 0.00169, 0.00413, and 0.00029, respectively. The haplotype diversities (Hd) of P. malariae trap, ama1, and p48/45 were 0.919, 0.946, and 0.130, respectively. Most of the nucleotide substitutions were non-synonymous, which indicated that the genetic variations of these genes were maintained by positive diversifying selection, thus, suggesting their role as a potential target of protective immune response. Amino acid substitutions of P. malariae TRAP, AMA1, and P48/45 could be categorized to 17, 20, and 2 unique amino-acid variants, respectively. For further vaccine development, carboxyl terminal of P48/45 would be a good candidate according to conserved amino acid at low genetic diversity (π = 0.2-0.3). High mutational diversity was observed in P. malariae trap and ama1 as compared to p48/45 in P. malariae samples isolated from Thailand, Myanmar, and Lao PDR. Taken together, these results suggest that P48/45 might be a good vaccine

  16. Defining malaria burden from morbidity and mortality records, self ...

    African Journals Online (AJOL)

    Abstract: Malaria morbidity and mortality data from clinical records provide essential information .... Babati District is one of the eight sentinel sites in Tanzania for monitoring anti- ... treatment given before leaving the health facility was documented. ..... Targett, G. (1999) Vaccine efficacy, and immunity affecting transmission.

  17. Humoral immune response to Plasmodium falciparum vaccine candidate GMZ2 and its components in populations naturally exposed to seasonal malaria in Ethiopia

    DEFF Research Database (Denmark)

    Mamo, Hassen; Esen, Meral; Ajua, Anthony

    2013-01-01

    for malaria infection microscopically and by the rapid diagnostic test (RDT). Sera were tested by using enzyme-linked immunosorbent assay (ELISA) for total immunoglobulin (Ig) G against P. falciparum blood-stage vaccine candidate GMZ2 and its subunits (Glutamate-rich protein (GLURP-R0), merozoite surface...... transmission in the two localities and/or genetic differences between the two populations in their response to the antigens. In both study sites, IgG subclass levels to GLURP-R0 were significantly higher than that to MSP3 for all corresponding subclasses in most individuals, indicating the higher relative...

  18. External quality assurance of malaria nucleic acid testing for clinical trials and eradication surveillance.

    Science.gov (United States)

    Murphy, Sean C; Hermsen, Cornelus C; Douglas, Alexander D; Edwards, Nick J; Petersen, Ines; Fahle, Gary A; Adams, Matthew; Berry, Andrea A; Billman, Zachary P; Gilbert, Sarah C; Laurens, Matthew B; Leroy, Odile; Lyke, Kristen E; Plowe, Christopher V; Seilie, Annette M; Strauss, Kathleen A; Teelen, Karina; Hill, Adrian V S; Sauerwein, Robert W

    2014-01-01

    Nucleic acid testing (NAT) for malaria parasites is an increasingly recommended diagnostic endpoint in clinical trials of vaccine and drug candidates and is also important in surveillance of malaria control and elimination efforts. A variety of reported NAT assays have been described, yet no formal external quality assurance (EQA) program provides validation for the assays in use. Here, we report results of an EQA exercise for malaria NAT assays. Among five centers conducting controlled human malaria infection trials, all centers achieved 100% specificity and demonstrated limits of detection consistent with each laboratory's pre-stated expectations. Quantitative bias of reported results compared to expected results was generally Quality Assessment program that fulfills the need for EQA of malaria NAT assays worldwide.

  19. Immunity to viral haemorrhagic septicaemia (VHS) following DNA vaccination of rainbow trout at an early life-stage

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2001-01-01

    -vaccination respectively, revealed that a highly protective and lasting immunity was established shortly after vaccination, in accordance with earlier experiments with larger fish. The defence mechanisms activated by the DNA vaccine are thus functional at an early life-stage in rainbow trout....

  20. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    Science.gov (United States)

    Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J Ignacio; Esteban, Mariano

    2012-01-01

    With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  1. The Malaria Transition on the Arabian Peninsula: Progress toward a Malaria-Free Region between 1960–2010

    Science.gov (United States)

    Snow, Robert W.; Amratia, Punam; Zamani, Ghasem; Mundia, Clara W.; Noor, Abdisalan M.; Memish, Ziad A.; Al Zahrani, Mohammad H.; Al Jasari, Adel; Fikri, Mahmoud; Atta, Hoda

    2014-01-01

    The transmission of malaria across the Arabian Peninsula is governed by the diversity of dominant vectors and extreme aridity. It is likely that where malaria transmission was historically possible it was intense and led to a high disease burden. Here, we review the speed of elimination, approaches taken, define the shrinking map of risk since 1960 and discuss the threats posed to a malaria-free Arabian Peninsula using the archive material, case data and published works. From as early as the 1940s, attempts were made to eliminate malaria on the peninsula but were met with varying degrees of success through to the 1970s; however, these did result in a shrinking of the margins of malaria transmission across the peninsula. Epidemics in the 1990s galvanised national malaria control programmes to reinvigorate control efforts. Before the launch of the recent global ambition for malaria eradication, countries on the Arabian Peninsula launched a collaborative malaria-free initiative in 2005. This initiative led a further shrinking of the malaria risk map and today locally acquired clinical cases of malaria are reported only in Saudi Arabia and Yemen, with the latter contributing to over 98% of the clinical burden. PMID:23548086

  2. Multiple Antigen Peptide Vaccines against Plasmodium falciparum Malaria

    Science.gov (United States)

    2010-01-01

    Robert A. Boykins/ Victoria Majam,l Hong Zheng,1 Rana Chattopadhyay,l Patricia de Ia Vcga,3 J. Kathleen Moch ,J J. David Hayncs,3 Igor M. Belyakov,2...K. Moch , and D. S. Smoot. 2002. Erythroc-ytic malaria growth or invasion inhibition assays with emphasis on suspension culture GIA. Methods Mol. Med

  3. Prevalence of malaria and typhoid co-infections in University of ...

    African Journals Online (AJOL)

    user

    2011-03-14

    Mar 14, 2011 ... screened for antibody against Salmonella species using widal test. The stool and ... The results indicated that there is no relationship between malaria and Salmonella infection, but ... vein puncture and transferred into commercially prepared sterile ..... of Salmonella vaccine that expresses circumsporozoite.

  4. Immunogenicity and in vitro Protective Efficacy of a Recombinant Multistage Plasmodium falciparum Candidate Vaccine

    Science.gov (United States)

    Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.

    1999-02-01

    Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.

  5. Congenital malaria in China.

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Tao

    2014-03-01

    were cured with antimalarial drugs such as chloroquine, quinine, artemether, and artesunate. CONCLUSIONS: The symptoms of congenital malaria vary significantly between cases, so clear and early diagnosis is difficult. We suggest that active surveillance might be necessary for neonates born to mothers with a history of malaria.

  6. Fc gamma receptor IIIB (Fc gamma RIIIB) polymorphisms are associated with clinical malaria in Ghanaian children

    DEFF Research Database (Denmark)

    Adu, Bright; Dodoo, Daniel; Adukpo, Selorme

    2012-01-01

    Plasmodium falciparum malaria kills nearly a million people annually. Over 90% of these deaths occur in children under five years of age in sub-Saharan Africa. A neutrophil mediated mechanism, the antibody dependent respiratory burst (ADRB), was recently shown to correlate with protection from...... by allele specific restriction enzyme digestion. FCGR3B-exon 3 was sequenced in 585 children, aged 1 to 12 years living in a malaria endemic region of Ghana. Multivariate logistic regression analysis found no association between Fc¿RIIA-166H/R polymorphism and clinical malaria. The A-allele of FCGR3B-c.233C...... malaria vaccines....

  7. Vaccines against poverty

    Science.gov (United States)

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented. PMID:25136089

  8. The establishment of a WHO Reference Reagent for anti-malaria (Plasmodium falciparum) human serum.

    Science.gov (United States)

    Bryan, Donna; Silva, Nilupa; Rigsby, Peter; Dougall, Thomas; Corran, Patrick; Bowyer, Paul W; Ho, Mei Mei

    2017-08-05

    At a World Health Organization (WHO) sponsored meeting it was concluded that there is an urgent need for a reference preparation that contains antibodies against malaria antigens in order to support serology studies and vaccine development. It was proposed that this reference would take the form of a lyophilized serum or plasma pool from a malaria-endemic area. In response, an immunoassay standard, comprising defibrinated human plasma has been prepared and evaluated in a collaborative study. A pool of human plasma from a malaria endemic region was collected from 140 single plasma donations selected for reactivity to Plasmodium falciparum apical membrane antigen-1 (AMA-1) and merozoite surface proteins (MSP-1 19 , MSP-1 42 , MSP-2 and MSP-3). This pool was defibrinated, filled and freeze dried into a single batch of ampoules to yield a stable source of naturally occurring antibodies to P. falciparum. The preparation was evaluated by an enzyme-linked immunosorbent assay (ELISA) in a collaborative study with sixteen participants from twelve different countries. This anti-malaria human serum preparation (NIBSC Code: 10/198) was adopted by the WHO Expert Committee on Biological Standardization (ECBS) in October 2014, as the first WHO reference reagent for anti-malaria (Plasmodium falciparum) human serum with an assigned arbitrary unitage of 100 units (U) per ampoule. Analysis of the reference reagent in a collaborative study has demonstrated the benefit of this preparation for the reduction in inter- and intra-laboratory variability in ELISA. Whilst locally sourced pools are regularly use for harmonization both within and between a few laboratories, the presence of a WHO-endorsed reference reagent should enable optimal harmonization of malaria serological assays either by direct use of the reference reagent or calibration of local standards against this WHO reference. The intended uses of this reference reagent, a multivalent preparation, are (1) to allow cross

  9. 20 YEARS OF PROGRESS IN MALARIA RESEARCH

    Directory of Open Access Journals (Sweden)

    J. Kevin Baird

    2012-09-01

    Full Text Available U.S. Naval Medical Research Unit No. 2 Detachment (NAMRU, in collaboration with National Institute of Health Research and Development (NIHRD and many other Indonesian government agencies and universities, has conducted studies of malaria throughout Java, Sumatra, Sulawesi, Kalimantan, Flores, Timor, and Irian Jaya. Most studies have characterized the disease epidemiologically by defining the parasitologic distribution of the disease in the population, and by defining the entomologic parameters of local transmission. Studies of patterns of resistance to antimalarials have also been done at many field sites. Several studies on the clinical management of malaria occurred in Rumah Sakit Umum Propinsi in Jayapura. In addition to these studies which impact upon local public health planning policy, immunologic studies routinely occurred in support of the global effort to develop a vaccine against malaria. This report summarizes the progress made in these areas of research during the first 20 years of NAMRU in Indonesia.

  10. Development of standardized laboratory methods and quality processes for a phase III study of the RTS, S/AS01 candidate malaria vaccine

    Directory of Open Access Journals (Sweden)

    Carter Terrell

    2011-08-01

    Full Text Available Abstract Background A pivotal phase III study of the RTS,S/AS01 malaria candidate vaccine is ongoing in several research centres across Africa. The development and establishment of quality systems was a requirement for trial conduct to meet international regulatory standards, as well as providing an important capacity strengthening opportunity for study centres. Methods Standardized laboratory methods and quality assurance processes were implemented at each of the study centres, facilitated by funding partners. Results A robust protocol for determination of parasite density based on actual blood cell counts was set up in accordance with World Health Organization recommendations. Automated equipment including haematology and biochemistry analyzers were put in place with standard methods for bedside testing of glycaemia, base excess and lactacidaemia. Facilities for X-rays and basic microbiology testing were also provided or upgraded alongside health care infrastructure in some centres. External quality assurance assessment of all major laboratory methods was established and method qualification by each laboratory demonstrated. The resulting capacity strengthening has ensured laboratory evaluations are conducted locally to the high standards required in clinical trials. Conclusion Major efforts by study centres, together with support from collaborating parties, have allowed standardized methods and robust quality assurance processes to be put in place for the phase III evaluation of the RTS, S/AS01 malaria candidate vaccine. Extensive training programmes, coupled with continuous commitment from research centre staff, have been the key elements behind the successful implementation of quality processes. It is expected these activities will culminate in healthcare benefits for the subjects and communities participating in these trials. Trial registration Clinicaltrials.gov NCT00866619

  11. Physiological adaption to maternal malaria and other adverse exposure

    DEFF Research Database (Denmark)

    Christensen, Dirk L; Kapur, Anil; Bygbjerg, Ib C

    2011-01-01

    of the world, malaria infection during pregnancy is the most common cause of anemia and LBW. By causing disruption to nutrient supply, as well as hypoxia, placental malaria and anemia negatively impact intrauterine fetal development. Thus, in utero exposure to placental malaria and consequent LBW may impart......, including type 2 diabetes; this potential link also opens an opportunity for early prevention of future metabolic diseases by paying greater attention to malaria during pregnancy....

  12. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine

    NARCIS (Netherlands)

    Theisen, M.; Jore, M.M.; Sauerwein, R.

    2017-01-01

    INTRODUCTION: Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which

  13. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    Directory of Open Access Journals (Sweden)

    Dolores Rodríguez

    Full Text Available With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs carrying the CD8(+ T cell epitope (SYVPSAEQI of the circumsporozoite (CS protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS, and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV vectors from the Western Reserve (WR and modified virus Ankara (MVA strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  14. Vaccines for the 21st century

    Science.gov (United States)

    Delany, Isabel; Rappuoli, Rino; De Gregorio, Ennio

    2014-01-01

    In the last century, vaccination has been the most effective medical intervention to reduce death and morbidity caused by infectious diseases. It is believed that vaccines save at least 2–3 million lives per year worldwide. Smallpox has been eradicated and polio has almost disappeared worldwide through global vaccine campaigns. Most of the viral and bacterial infections that traditionally affected children have been drastically reduced thanks to national immunization programs in developed countries. However, many diseases are not yet preventable by vaccination, and vaccines have not been fully exploited for target populations such as elderly and pregnant women. This review focuses on the state of the art of recent clinical trials of vaccines for major unmet medical needs such as HIV, malaria, TB, and cancer. In addition, we describe the innovative technologies currently used in vaccine research and development including adjuvants, vectors, nucleic acid vaccines, and structure-based antigen design. The hope is that thanks to these technologies, more diseases will be addressed in the 21st century by novel preventative and therapeutic vaccines. PMID:24803000

  15. Optimizing Preventive Strategies and Malaria Diagnostics to Reduce the Impact of Malaria on US Military Forces

    Science.gov (United States)

    2012-05-01

    at: http://www.alere.com/us/ en /product-details/binaxnow-malaria.html 13 that enables real-time quality improvement and tracking of malaria in...but not limited to dengue fever, early shigellosis, typhoid fever, rickettsiosis, leptospirosis or acute retroviral syndrome). (strong recommendation...Infectious Disease Society of America Guidelines Development Resources: GRADE Strength of Recommendations and Quality of the Evidence Table

  16. Change in settings for early-season influenza vaccination among US adults, 2012 to 2013

    Directory of Open Access Journals (Sweden)

    Sarah J. Clark, MPH

    2016-12-01

    Full Text Available Vaccination in non-medical settings is recommended as a strategy to increase access to seasonal influenza vaccine. To evaluate change in early-season influenza vaccination setting, we analyzed data from the National Internet Flu Survey. Bivariate comparison of respondent characteristics by location of vaccination was assessed using chi-square tests. Multinomial logistic regression was performed to compare the predicted probability of being vaccinated in medical, retail, and mobile settings in 2012 vs 2013. In both 2012 and 2013, vaccination in medical settings was more likely among elderly adults, those with chronic conditions, and adults with a high school education or less. Adults 18–64 without a chronic condition had a lower probability of vaccination in the medical setting, and higher probability of vaccination in a retail or mobile setting, in 2013 compared to 2012. Adults 18–64 with a chronic condition had no change in their location of flu vaccination. Elderly adults had a lower probability of vaccination in the medical setting, and higher probability of vaccination in a retail setting, in 2013 compared to 2012. Non-medical settings continue to play an increasing role in influenza vaccination of adults, particularly for adults without a chronic condition and elderly adults. Retail and mobile settings should continue to be viewed as important mechanisms to ensure broad access to influenza vaccination.

  17. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response.

  18. Surveillance of vector populations and malaria transmission during the 2009/10 El Niño event in the western Kenya highlands: opportunities for early detection of malaria hyper-transmission

    Directory of Open Access Journals (Sweden)

    Wanjala Christine L

    2011-07-01

    Full Text Available Abstract Background Vector control in the highlands of western Kenya has resulted in a significant reduction of malaria transmission and a change in the vectorial system. Climate variability as a result of events such as El Niño increases the highlands suitability for malaria transmission. Surveillance and monitoring is an important component of early transmission risk identification and management. However, below certain disease transmission thresholds, traditional tools for surveillance such as entomological inoculation rates may become insensitive. A rapid diagnostic kit comprising Plasmodium falciparum circumsporozoite surface protein and merozoite surface protein antibodies in humans was tested for early detection of transmission surges in the western Kenya highlands during an El Niño event (October 2009-February 2010. Methods Indoor resting female adult malaria vectors were collected in western Kenya highlands in four selected villages categorized into two valley systems, the U-shaped (Iguhu and Emutete and the V-shaped valleys (Marani and Fort Ternan for eight months. Members of the Anopheles gambiae complex were identified by PCR. Blood samples were collected from children 6-15 years old and exposure to malaria was tested using a circum-sporozoite protein and merozoite surface protein immunchromatographic rapid diagnostic test kit. Sporozoite ELISA was conducted to detect circum-sporozoite protein, later used for estimation of entomological inoculation rates. Results Among the four villages studied, an upsurge in antibody levels was first observed in October 2009. Plasmodium falciparum sporozoites were then first observed in December 2009 at Iguhu village and February 2010 at Emutete. Despite the upsurge in Marani and Fort Ternan no sporozoites were detected throughout the eight month study period. The antibody-based assay had much earlier transmission detection ability than the sporozoite-based assay. The proportion of An. arabiensis

  19. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Ben C L van Schaijk

    Full Text Available Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use.

  20. Differential induction of functional IgG using the Plasmodium falciparum placental malaria vaccine candidate VAR2CSA

    DEFF Research Database (Denmark)

    Pinto, Vera V; Ditlev, Sisse B; Jensen, Kamilla E

    2011-01-01

    In Plasmodium falciparum malaria endemic areas placental malaria (PM) is an important complication of malaria. The recurrence of malaria in primigravidae women irrespective of acquired protection during childhood is caused by the interaction between the parasite-expressed VAR2CSA antigen and chon...

  1. Parasite threshold associated with clinical malaria in areas of different transmission intensities in north eastern Tanzania

    DEFF Research Database (Denmark)

    Mmbando, Bruno P; Lusingu, John P; Vestergaard, Lasse S

    2009-01-01

    BACKGROUND: In Sub-Sahara Africa, malaria due to Plasmodium falciparum is the main cause of ill health. Evaluation of malaria interventions, such as drugs and vaccines depends on clinical definition of the disease, which is still a challenge due to lack of distinct malaria specific clinical...... features. Parasite threshold is used in definition of clinical malaria in evaluation of interventions. This however, is likely to be influenced by other factors such as transmission intensity as well as individual level of immunity against malaria. METHODS: This paper describes step function and dose...... response model with threshold parameter as a tool for estimation of parasite threshold for onset of malaria fever in highlands (low transmission) and lowlands (high transmission intensity) strata. These models were fitted using logistic regression stratified by strata and age groups (0-1, 2-3, 4-5, 6...

  2. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects.

    Science.gov (United States)

    Radosević, Katarina; Rodriguez, Ariane; Lemckert, Angelique; Goudsmit, Jaap

    2009-05-01

    Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more powerful immune response, in particular T-cell immunity, are desperately needed. Combining different vaccine modalities that are able to complement each other and induce broad and sustainable immunity is a promising approach. This review provides an overview of heterologous prime-boost vaccination modalities currently in development for the 'big three' poverty-related diseases and emphasizes the need for innovative vaccination approaches.

  3. Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G.

    Directory of Open Access Journals (Sweden)

    Lauren G Holinka

    Full Text Available Prophylactic vaccination using live attenuated classical swine fever (CSF vaccines has been a very effective method to control the disease in endemic regions and during outbreaks in previously disease-free areas. These vaccines confer effective protection against the disease at early times post-vaccination although the mechanisms mediating the protection are poorly characterized. Here we present the events occurring after the administration of our in-house developed live attenuated marker vaccine, FlagT4Gv. We previously reported that FlagT4Gv intramuscular (IM administered conferred effective protection against intranasal challenge with virulent CSFV (BICv as early as 7 days post-vaccination. Here we report that FlagT4Gv is able to induce protection against disease as early as three days post-vaccination. Immunohistochemical testing of tissues from FlagT4Gv-inoculated animals showed that tonsils were colonized by the vaccine virus by day 3 post-inoculation. There was a complete absence of BICv in tonsils of FlagT4Gv-inoculated animals which had been intranasal (IN challenged with BICv 3 days after FlagT4Gv infection, confirming that FlagT4Gv inoculation confers sterile immunity. Analysis of systemic levels of 19 different cytokines in vaccinated animals demonstrated an increase of IFN-α three days after FlagT4Gv inoculation compared with mock infected controls.

  4. Can slide positivity rates predict malaria transmission?

    Directory of Open Access Journals (Sweden)

    Bi Yan

    2012-04-01

    Full Text Available Abstract Background Malaria is a significant threat to population health in the border areas of Yunnan Province, China. How to accurately measure malaria transmission is an important issue. This study aimed to examine the role of slide positivity rates (SPR in malaria transmission in Mengla County, Yunnan Province, China. Methods Data on annual malaria cases, SPR and socio-economic factors for the period of 1993 to 2008 were obtained from the Center for Disease Control and Prevention (CDC and the Bureau of Statistics, Mengla, China. Multiple linear regression models were conducted to evaluate the relationship between socio-ecologic factors and malaria incidence. Results The results show that SPR was significantly positively associated with the malaria incidence rates. The SPR (β = 1.244, p = 0.000 alone and combination (SPR, β = 1.326, p  Conclusion SPR is a strong predictor of malaria transmission, and can be used to improve the planning and implementation of malaria elimination programmes in Mengla and other similar locations. SPR might also be a useful indicator of malaria early warning systems in China.

  5. Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis-Discovery and implications

    Directory of Open Access Journals (Sweden)

    Sreenivas eGannavaram

    2014-05-01

    Full Text Available Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, sub-unit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in L. donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen1-/- in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated

  6. Vaccination with a Plasmodium chabaudi adami multivalent DNA vaccine cross-protects A/J mice against challenge with P. c. adami DK and virulent Plasmodium chabaudi chabaudi AS parasites.

    Science.gov (United States)

    Scorza, T; Grubb, K; Cambos, M; Santamaria, C; Tshikudi Malu, D; Spithill, T W

    2008-06-01

    A current goal of malaria vaccine research is the development of vaccines that will cross-protect against multiple strains of malaria. In the present study, the breadth of cross-reactivity induced by a 30K multivalent DNA vaccine has been evaluated in susceptible A/J mice (H-2a) against infection with the Plasmodium chabaudi adami DK strain and a virulent parasite subspecies, Plasmodium chabaudi chabaudi AS. Immunized A/J mice were significantly protected against infection with both P. c. adami DK (31-40% reduction in cumulative parasitemia) and P. c. chabaudi AS parasites, where a 30-39% reduction in cumulative parasitemia as well as enhanced survival was observed. The 30K vaccine-induced specific IFN-gamma production by splenocytes in response to native antigens from both P. c. chabaudi AS and P. c. adami DK. Specific antibodies reacting with surface antigens expressed on P. c. adami DS and P. c. chabaudi AS infected red blood cells, and with opsonizing properties, were detected. These results suggest that multivalent vaccines encoding conserved antigens can feasibly induce immune cross-reactivity that span Plasmodium strains and subspecies and can protect hosts of distinct major histocompatibility complex haplotypes.

  7. Vector incrimination and effects of antimalarial drugs on malaria transmission and control in the Amazon Basin of Brazil

    Directory of Open Access Journals (Sweden)

    T. A. Klein

    1992-01-01

    Full Text Available World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral, methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.

  8. Safety and immunogenicity of therapeutic DNA vaccination in individuals treated with antiretroviral therapy during acute/early HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Eric S Rosenberg

    2010-05-01

    Full Text Available An effective therapeutic vaccine that could augment immune control of HIV-1 replication may abrogate or delay the need for antiretroviral therapy. AIDS Clinical Trials Group (ACTG A5187 was a phase I/II, randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of an HIV-1 DNA vaccine (VRC-HVDNA 009-00-VP in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. (clinicaltrials.gov NCT00125099Twenty healthy HIV-1 infected subjects who were treated with antiretroviral therapy during acute/early HIV-1 infection and had HIV-1 RNA<50 copies/mL were randomized to receive either vaccine or placebo. The objectives of this study were to evaluate the safety and immunogenicity of the vaccine. Following vaccination, subjects interrupted antiretroviral treatment, and set-point HIV-1 viral loads and CD4 T cell counts were determined 17-23 weeks after treatment discontinuation.Twenty subjects received all scheduled vaccinations and discontinued antiretroviral therapy at week 30. No subject met a primary safety endpoint. No evidence of differences in immunogenicity were detected in subjects receiving vaccine versus placebo. There were also no significant differences in set-point HIV-1 viral loads or CD4 T cell counts following treatment discontinuation. Median set-point HIV-1 viral loads after treatment discontinuation in vaccine and placebo recipients were 3.5 and 3.7 log(10 HIV-1 RNA copies/mL, respectively.The HIV-1 DNA vaccine (VRC-HIVDNA 009-00-VP was safe but poorly immunogenic in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. Viral set-points were similar between vaccine and placebo recipients following treatment interruption. However, median viral load set-points in both groups were lower than in historical controls, suggesting a possible role for antiretroviral therapy in persons with acute or early HIV-1 infection and supporting the safety of

  9. [Development of new vaccines].

    Science.gov (United States)

    González-Romo, Fernando; Picazo, Juan J

    2015-10-01

    Recent and important advances in the fields of immunology, genomics, functional genomics, immunogenetics, immunogenomics, bioinformatics, microbiology, genetic engineering, systems biology, synthetic biochemistry, proteomics, metabolomics and nanotechnology, among others, have led to new approaches in the development of vaccines. The better identification of ideal epitopes, the strengthening of the immune response due to new adjuvants, and the search of new routes of vaccine administration, are good examples of advances that are already a reality and that will favour the development of more vaccines, their use in indicated population groups, or its production at a lower cost. There are currently more than 130 vaccines are under development against the more wished (malaria or HIV), difficult to get (CMV or RSV), severe re-emerging (Dengue or Ebola), increasing importance (Chagas disease or Leishmania), and nosocomial emerging (Clostridium difficile or Staphylococcus aureus) infectious diseases. Copyright © 2015. Published by Elsevier España, S.L.U.

  10. Face to face interventions for informing or educating parents about early childhood vaccination.

    Science.gov (United States)

    Kaufman, Jessica; Synnot, Anneliese; Ryan, Rebecca; Hill, Sophie; Horey, Dell; Willis, Natalie; Lin, Vivian; Robinson, Priscilla

    2013-05-31

    Childhood vaccination (also described as immunisation) is an important and effective way to reduce childhood illness and death. However, there are many children who do not receive the recommended vaccines because their parents do not know why vaccination is important, do not understand how, where or when to get their children vaccinated, disagree with vaccination as a public health measure, or have concerns about vaccine safety.Face to face interventions to inform or educate parents about routine childhood vaccination may improve vaccination rates and parental knowledge or understanding of vaccination. Such interventions may describe or explain the practical and logistical factors associated with vaccination, and enable parents to understand the meaning and relevance of vaccination for their family or community. To assess the effects of face to face interventions for informing or educating parents about early childhood vaccination on immunisation uptake and parental knowledge. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 7); MEDLINE (OvidSP) (1946 to July 2012); EMBASE + Embase Classic (OvidSP) (1947 to July 2012); CINAHL (EbscoHOST) (1981 to July 2012); PsycINFO (OvidSP) (1806 to July 2012); Global Health (CAB) (1910 to July 2012); Global Health Library (WHO) (searched July 2012); Google Scholar (searched September 2012), ISI Web of Science (searched September 2012) and reference lists of relevant articles. We searched for ongoing trials in The International Clinical Trials Registry Platform (ICTRP) (searched August 2012) and for grey literature in The Grey Literature Report and OpenGrey (searched August 2012). We also contacted authors of included studies and experts in the field. There were no language or date restrictions. Randomised controlled trials (RCTs) and cluster RCTs evaluating the effects of face to face interventions delivered to individual parents or groups of parents to inform or educate

  11. New Vaccines for the World's Poorest People.

    Science.gov (United States)

    Hotez, Peter J; Bottazzi, Maria Elena; Strych, Ulrich

    2016-01-01

    The 2000 Millennium Development Goals helped stimulate the development of life-saving childhood vaccines for pneumococcal and rotavirus infections while greatly expanding coverage of existing vaccines. However, there remains an urgent need to develop new vaccines for HIV/AIDS, malaria, and tuberculosis, as well as for respiratory syncytial virus and those chronic and debilitating (mostly parasitic) infections known as neglected tropical diseases (NTDs). The NTDs represent the most common diseases of people living in extreme poverty and are the subject of this review. The development of NTD vaccines, including those for hookworm infection, schistosomiasis, leishmaniasis, and Chagas disease, is being led by nonprofit product development partnerships (PDPs) working in consortia of academic and industrial partners, including vaccine manufacturers in developing countries. NTD vaccines face unique challenges with respect to their product development and manufacture, as well as their preclinical and clinical testing. We emphasize global efforts to accelerate the development of NTD vaccines and some of the hurdles to ensuring their availability to the world's poorest people.

  12. Role of healthcare workers in early epidemic spread of Ebola: policy implications of prophylactic compared to reactive vaccination policy in outbreak prevention and control.

    Science.gov (United States)

    Coltart, Cordelia E M; Johnson, Anne M; Whitty, Christopher J M

    2015-10-19

    Ebola causes severe illness in humans and has epidemic potential. How to deploy vaccines most effectively is a central policy question since different strategies have implications for ideal vaccine profile. More than one vaccine may be needed. A vaccine optimised for prophylactic vaccination in high-risk areas but when the virus is not actively circulating should be safe, well tolerated, and provide long-lasting protection; a two- or three-dose strategy would be realistic. Conversely, a reactive vaccine deployed in an outbreak context for ring-vaccination strategies should have rapid onset of protection with one dose, but longevity of protection is less important. In initial cases, before an outbreak is recognised, healthcare workers (HCWs) are at particular risk of acquiring and transmitting infection, thus potentially augmenting early epidemics. We hypothesise that many early outbreak cases could be averted, or epidemics aborted, by prophylactic vaccination of HCWs. This paper explores the potential impact of prophylactic versus reactive vaccination strategies of HCWs in preventing early epidemic transmissions. To do this, we use the limited data available from Ebola epidemics (current and historic) to reconstruct transmission trees and illustrate the theoretical impact of these vaccination strategies. Our data suggest a substantial potential benefit of prophylactic versus reactive vaccination of HCWs in preventing early transmissions. We estimate that prophylactic vaccination with a coverage >99% and theoretical 100% efficacy could avert nearly two-thirds of cases studied; 75% coverage would still confer clear benefit (40% cases averted), but reactive vaccination would be of less value in the early epidemic. A prophylactic vaccination campaign for front-line HCWs is not a trivial undertaking; whether to prioritise long-lasting vaccines and provide prophylaxis to HCWs is a live policy question. Prophylactic vaccination is likely to have a greater impact on the

  13. Effect of antenatal parasitic infections on anti-vaccine IgG levels in children: a prospective birth cohort study in Kenya.

    Directory of Open Access Journals (Sweden)

    Indu Malhotra

    2015-01-01

    Full Text Available Parasitic infections are prevalent among pregnant women in sub-Saharan Africa. We investigated whether prenatal exposure to malaria and/or helminths affects the pattern of infant immune responses to standard vaccinations against Haemophilus influenzae (Hib, diphtheria (DT, hepatitis B (Hep B and tetanus toxoid (TT.450 Kenyan women were tested for malaria, schistosomiasis, lymphatic filariasis (LF, and intestinal helminths during pregnancy. After three standard vaccinations at 6, 10 and 14 weeks, their newborns were followed biannually to age 36 months and tested for absolute levels of IgG against Hib, DT, Hep B, and TT at each time point. Newborns' cord blood (CB lymphocyte responses to malaria blood-stage antigens, soluble Schistosoma haematobium worm antigen (SWAP, and filaria antigen (BMA were also assessed. Three immunophenotype categories were compared: i tolerant (those having Plasmodium-, Schistosoma-, or Wuchereria-infected mothers but lacking respective Th1/Th2-type recall responses at birth to malaria antigens, SWAP, or BMA; ii sensitized (those with infected/uninfected mothers and detectable Th1/Th2-type CB recall response to respective parasite antigen; or iii unexposed (no evidence of maternal infection or CB recall response. Overall, 78.9% of mothers were infected with LF (44.7%, schistosomiasis (32.4%, malaria (27.6% or hookworm (33.8%. Antenatal maternal malaria, LF, and hookworm were independently associated with significantly lower Hib-specific IgG. Presence of multiple maternal infections was associated with lower infant IgG levels against Hib and DT antigens post-vaccination. Post-vaccination IgG levels were also significantly associated with immunophenotype: malaria-tolerized infants had reduced response to DT, whereas filaria-tolerized infants showed reduced response to Hib.There is an impaired ability to develop IgG antibody responses to key protective antigens of Hib and diphtheria in infants of mothers infected with

  14. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease

    Science.gov (United States)

    Crompton, Peter D.; Moebius, Jacqueline; Portugal, Silvia; Waisberg, Michael; Hart, Geoffrey; Garver, Lindsey S.; Miller, Louis H.; Barillas, Carolina; Pierce, Susan K.

    2014-01-01

    Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa family, the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world’s most vulnerable populations, claiming the lives of nearly a million children and pregnant women each year in Africa alone. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite’s complex life cycle with a view towards developing the tools that will contribute to the prevention of disease and death and ultimately the goal of malaria eradication. In so doing we hope to inspire immunologists to participate in defeating this devastating disease. PMID:24655294

  15. Vaccines as a global imperative--a business perspective.

    Science.gov (United States)

    Stéphenne, Jean

    2011-06-01

    During the past thirty years, vaccines have experienced a renaissance. Advances in science, business, and distribution have transformed the field to the point where vaccines are recognized as a "best buy" in global health, a driver of pharmaceutical industry growth, and a key instrument of international development. With many new vaccines available and others on the horizon, the global community will need to explore new ways of ensuring access to vaccines in developing nations. So-called tiered pricing, which makes vaccines available at different prices for countries at different levels of economic development; innovative financing mechanisms such as advance market commitments or offers of long-term and high-volume contracts to vaccine producers; and technology transfers such as sharing intellectual property and production techniques among companies and countries can all play a part in bringing new life-saving vaccines for pneumonia, rotavirus, malaria, and other diseases to developing countries.

  16. Effect of early detection and treatment on malaria related maternal mortality on the north-western border of Thailand 1986-2010.

    Directory of Open Access Journals (Sweden)

    Rose McGready

    Full Text Available Maternal mortality is high in developing countries, but there are few data in high-risk groups such as migrants and refugees in malaria-endemic areas. Trends in maternal mortality were followed over 25 years in antenatal clinics prospectively established in an area with low seasonal transmission on the north-western border of Thailand.All medical records from women who attended the Shoklo Malaria Research Unit antenatal clinics from 12(th May 1986 to 31(st December 2010 were reviewed, and maternal death records were analyzed for causality. There were 71 pregnancy-related deaths recorded amongst 50,981 women who attended antenatal care at least once. Three were suicide and excluded from the analysis as incidental deaths. The estimated maternal mortality ratio (MMR overall was 184 (95%CI 150-230 per 100,000 live births. In camps for displaced persons there has been a six-fold decline in the MMR from 499 (95%CI 200-780 in 1986-90 to 79 (40-170 in 2006-10, p<0.05. In migrants from adjacent Myanmar the decline in MMR was less significant: 588 (100-3260 to 252 (150-430 from 1996-2000 to 2006-2010. Mortality from P. falciparum malaria in pregnancy dropped sharply with the introduction of systematic screening and treatment and continued to decline with the reduction in the incidence of malaria in the communities. P. vivax was not a cause of maternal death in this population. Infection (non-puerperal sepsis and P. falciparum malaria accounted for 39.7 (27/68 % of all deaths.Frequent antenatal clinic screening allows early detection and treatment of falciparum malaria and substantially reduces maternal mortality from P. falciparum malaria. No significant decline has been observed in deaths from sepsis or other causes in refugee and migrant women on the Thai-Myanmar border.

  17. Can plant biotechnology help break the HIV-malaria link?

    Science.gov (United States)

    Vamvaka, E; Twyman, R M; Christou, P; Capell, T

    2014-01-01

    The population of sub-Saharan Africa is at risk from multiple, poverty-related endemic diseases. HIV and malaria are the most prevalent, but they disproportionately affect different groups of people, i.e. HIV predominantly affects sexually-active adults whereas malaria has a greater impact on children and pregnant women. Nevertheless, there is a significant geographical and epidemiological overlap which results in bidirectional and synergistic interactions with important consequences for public health. The immunosuppressive effects of HIV increase the risk of infection when individuals are exposed to malaria parasites and also the severity of malaria symptoms. Similarly, acute malaria can induce a temporary increase in the HIV viral load. HIV is associated with a wide range of opportunistic infections that can be misdiagnosed as malaria, resulting in the wasteful misuse of antimalarial drugs and a failure to address the genuine cause of the disease. There is also a cumulative risk of toxicity when antiretroviral and antimalarial drugs are given to the same patients. Synergistic approaches involving the control of malaria as a strategy to fight HIV/AIDS and vice versa are therefore needed in co-endemic areas. Plant biotechnology has emerged as a promising approach to tackle poverty-related diseases because plant-derived drugs and vaccines can be produced inexpensively in developing countries and may be distributed using agricultural infrastructure without the need for a cold chain. Here we explore some of the potential contributions of plant biotechnology and its integration into broader multidisciplinary public health programs to combat the two diseases in developing countries. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Mapping hypoendemic, seasonal malaria in rural Bandarban, Bangladesh: a prospective surveillance

    Directory of Open Access Journals (Sweden)

    Glass Gregory

    2011-05-01

    Full Text Available Abstract Background Until recently the Chittagong Hill tracts have been hyperendemic for malaria. A past cross-sectional RDT based survey in 2007 recorded rates of approximately 15%. This study was designed to understand the present epidemiology of malaria in this region, to monitor and facilitate the uptake of malaria intervention activities of the national malaria programme and to serve as an area for developing new and innovative control strategies for malaria. Methods This research field area was established in two rural unions of Bandarban District of Bangladesh north of Bandarban city, which are known to be endemic for malaria due to Plasmodium falciparum. The project included the following elements: a a demographic surveillance system including an initial census with updates every four months, b periodic surveys of knowledge attitude and practice, c a geographic information system, d weekly active and continuous passive surveillance for malaria infections using smears, rapid tests and PCR, f monthly mosquito surveillance, and e daily weather measures. The programme included both traditional and molecular methods for detecting malaria as well as lab methods for speciating mosquitoes and detecting mosquitoes infected with sporozoites. Results The demographic surveillance enumerated and mapped 20,563 people, 75% of which were tribal non-Bengali. The monthly mosquito surveys identified 22 Anopheles species, eight of which were positive by circumsporozoite ELISA. The annual rate of malaria was close to 1% with 85% of cases in the rainy months of May-October. Definitive clustering identified in the low transmission season persisted during the high transmission season. Conclusion This demographically and geographically defined area, near to the Myanmar border, which is also hypoendemic for malaria, will be useful for future studies of the epidemiology of malaria and for evaluation of strategies for malaria control including new drugs and

  19. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells.

    Science.gov (United States)

    Burkhardt, Ute E; Hainz, Ursula; Stevenson, Kristen; Goldstein, Natalie R; Pasek, Mildred; Naito, Masayasu; Wu, Di; Ho, Vincent T; Alonso, Anselmo; Hammond, Naa Norkor; Wong, Jessica; Sievers, Quinlan L; Brusic, Ana; McDonough, Sean M; Zeng, Wanyong; Perrin, Ann; Brown, Jennifer R; Canning, Christine M; Koreth, John; Cutler, Corey; Armand, Philippe; Neuberg, Donna; Lee, Jeng-Shin; Antin, Joseph H; Mulligan, Richard C; Sasada, Tetsuro; Ritz, Jerome; Soiffer, Robert J; Dranoff, Glenn; Alyea, Edwin P; Wu, Catherine J

    2013-09-01

    Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity. We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation. Each vaccine consisted of irradiated autologous tumor cells admixed with GM-CSF-secreting bystander cells. Serial patient PBMC samples following transplantation were collected, and the impact of vaccination on T cell activity was evaluated. At a median follow-up of 2.9 (range, 1-4) years, the estimated 2-year progression-free and overall survival rates of vaccinated subjects were 82% (95% CI, 54%-94%) and 88% (95% CI, 59%-97%), respectively. Although vaccination only had a modest impact on recovering T cell numbers, CD8+ T cells from vaccinated patients consistently reacted against autologous tumor, but not alloantigen-bearing recipient cells with increased secretion of the effector cytokine IFN-γ, unlike T cells from nonvaccinated CLL patients undergoing allo-HSCT. Further analysis confirmed that 17% (range, 13%-33%) of CD8+ T cell clones isolated from 4 vaccinated patients by limiting dilution of bulk tumor-reactive T cells solely reacted against CLL-associated antigens. Our studies suggest that autologous tumor cell vaccination is an effective strategy to advance long-term leukemia control following allo-HSCT. Clinicaltrials.gov NCT00442130. NCI (5R21CA115043-2), NHLBI (5R01HL103532-03), and Leukemia and Lymphoma Society Translational Research Program.

  20. Socialization, Indifference, and Convenience: Exploring the Uptake of Influenza Vaccine Among Medical Students and Early Career Doctors.

    Science.gov (United States)

    Edge, Rhiannon; Goodwin, Dawn; Isba, Rachel; Keegan, Thomas

    2017-11-01

    The Chief Medical Officer recommends that all health care workers receive an influenza vaccination annually. High vaccination coverage is believed to be the best protection against the spread of influenza within a hospital, although uptake by health care workers remains low. We conducted semistructured interviews with seven medical students and nine early career doctors, to explore the factors informing their influenza vaccination decision making. Data collection and analysis took place iteratively, until theoretical saturation was achieved, and a thematic analysis was performed. Socialization was important although its effects were attenuated by participants' previous experiences and a lack of clarity around the risks and benefits of vaccination. Many participants did not have strong intentions regarding vaccination. There was considerable disparity between an individual's opinion of the vaccine, their intentions, and their vaccination status. The indifference demonstrated here suggests few are strongly opposed to the vaccination-there is potential to increase vaccination coverage.

  1. External quality assurance of malaria nucleic acid testing for clinical trials and eradication surveillance.

    Directory of Open Access Journals (Sweden)

    Sean C Murphy

    Full Text Available Nucleic acid testing (NAT for malaria parasites is an increasingly recommended diagnostic endpoint in clinical trials of vaccine and drug candidates and is also important in surveillance of malaria control and elimination efforts. A variety of reported NAT assays have been described, yet no formal external quality assurance (EQA program provides validation for the assays in use. Here, we report results of an EQA exercise for malaria NAT assays. Among five centers conducting controlled human malaria infection trials, all centers achieved 100% specificity and demonstrated limits of detection consistent with each laboratory's pre-stated expectations. Quantitative bias of reported results compared to expected results was generally <0.5 log10 parasites/mL except for one laboratory where the EQA effort identified likely reasons for a general quantitative shift. The within-laboratory variation for all assays was low at <10% coefficient of variation across a range of parasite densities. Based on this study, we propose to create a Molecular Malaria Quality Assessment program that fulfills the need for EQA of malaria NAT assays worldwide.

  2. Laboratory assessment of hypoglycaemia due to malaria in children ...

    African Journals Online (AJOL)

    ... leading to hypoglycaemia in children could be attributed to poverty, malnutrition, inadequate management of uncomplicated malaria in the health centres as well as late arrival at the hospital. Early laboratory and clinical diagnosis, correct treatment and improved quality management are key strategies for malaria control.

  3. Increasing Incidence of Plasmodium knowlesi Malaria following Control of P. falciparum and P. vivax Malaria in Sabah, Malaysia

    Science.gov (United States)

    William, Timothy; Rahman, Hasan A.; Jelip, Jenarun; Ibrahim, Mohammad Y.; Menon, Jayaram; Grigg, Matthew J.; Yeo, Tsin W.; Anstey, Nicholas M.; Barber, Bridget E.

    2013-01-01

    Background The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time. Methods Reporting of microscopy-diagnosed malaria cases in Sabah is mandatory. We reviewed all available Department of Health malaria notification records from 1992–2011. Notifications of P. malariae and P. knowlesi were considered as a single group due to microscopic near-identity. Results From 1992–2011 total malaria notifications decreased dramatically, with P. falciparum peaking at 33,153 in 1994 and decreasing 55-fold to 605 in 2011, and P. vivax peaking at 15,857 in 1995 and decreasing 25-fold to 628 in 2011. Notifications of P. malariae/P. knowlesi also demonstrated a peak in the mid-1990s (614 in 1994) before decreasing to ≈100/year in the late 1990s/early 2000s. However, P. malariae/P. knowlesi notifications increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly. Conclusions A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination. Determination of transmission dynamics and risk factors for knowlesi malaria is required to guide measures to control this rising incidence. PMID:23359830

  4. Nigerian Journal of Biotechnology (Vol. 33)

    African Journals Online (AJOL)

    Ladaf 2

    Malaria continues to be a major global health accounting for about 29% of the total malaria cases problem with .... malaria. Given the role of pro-inflammatory cytokines ... in early immunity against Plasmodium by enhancing .... Thick and thin blood smears were prepared .... smallpox vaccination in Caucasians and African.

  5. Randomized Trials Comparing Inactivated Vaccine after Medium- or High-titer Measles Vaccine with Standard Titer Measles Vaccine after Inactivated Vaccine

    DEFF Research Database (Denmark)

    Aaby, Peter; Ravn, Henrik; Benn, Christine S.

    2016-01-01

    Background: Observational studies have suggested that girls have higher mortality if their most recent immunization is an inactivated vaccine rather than a live vaccine. We therefore reanalyzed 5 randomized trials of early measles vaccine (MV) in which it was possible to compare an inactivated va...

  6. Antingens for a Vaccine that Prevents Severe Malaria

    Science.gov (United States)

    2009-03-01

    3,210,682 220,620 sum 6,076,570 4,845,314 Table 3: Number of sequencing reads for uninfected blood and blood with cultured parasites o determine if the...Trends Parasitol, 22(3):99-101 2. Kappe SHI, Duffy PE. 2006. Malaria liver stage culture : in Hyg, 74(5):706-7 3. Duffy PE, Muta 367(9528):2037-9. 4...classified as the short (S) allele. SNPs that flanked the dinucleotide repeat region and that varied in frequency between Caucasian and Yoruba

  7. The potential impact of integrated malaria transmission control on entomologic inoculation rate in highly endemic areas.

    Science.gov (United States)

    Killeen, G F; McKenzie, F E; Foy, B D; Schieffelin, C; Billingsley, P F; Beier, J C

    2000-05-01

    We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas.

  8. The effect of early measles vaccination on thymic size. A randomized study from Guinea-Bissau

    DEFF Research Database (Denmark)

    Christensen, Lone Damkjær; Eriksen, Helle Brander; Biering-Sørensen, Sofie

    2014-01-01

    In low-income countries early measles vaccine (MV) is associated with reduced child mortality which cannot be explained by prevention of measles. A large thymus gland in infancy is also associated with reduced mortality. We hypothesized that early MV is associated with increased thymic size. Within...

  9. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications.

    Science.gov (United States)

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  10. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda.

    Science.gov (United States)

    Kateera, Fredrick; Nsobya, Sam L; Tukwasibwe, Stephen; Mens, Petra F; Hakizimana, Emmanuel; Grobusch, Martin P; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele

    2016-04-26

    interventions, and in proper interpretation of malaria vaccine studies.

  11. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses.

    Directory of Open Access Journals (Sweden)

    Nathaniel J Schuldt

    Full Text Available Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI responses.BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA or SLAM receptors adaptor protein (EAT-2. Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly

  12. Early DNA vaccination of puppies against canine distemper in the presence of maternally derived immunity.

    Science.gov (United States)

    Griot, Christian; Moser, Christian; Cherpillod, Pascal; Bruckner, Lukas; Wittek, Riccardo; Zurbriggen, Andreas; Zurbriggen, Rinaldo

    2004-01-26

    Canine distemper (CD) is a disease in carnivores caused by CD virus (CDV), a member of the morbillivirus genus. It still is a threat to the carnivore and ferret population. The currently used modified attenuated live vaccines have several drawbacks of which lack of appropriate protection from severe infection is the most outstanding one. In addition, puppies up to the age of 6-8 weeks cannot be immunized efficiently due to the presence of maternal antibodies. In this study, a DNA prime modified live vaccine boost strategy was investigated in puppies in order to determine if vaccinated neonatal dogs induce a neutralizing immune response which is supposed to protect animals from a CDV challenge. Furthermore, a single DNA vaccination of puppies, 14 days after birth and in the presence of high titers of CDV neutralizing maternal antibodies, induced a clear and significant priming effect observed as early as 3 days after the subsequent booster with a conventional CDV vaccine. It was shown that the priming effect develops faster and to higher titers in puppies preimmunized with DNA 14 days after birth than in those vaccinated 28 days after birth. Our results demonstrate that despite the presence of maternal antibodies puppies can be vaccinated using the CDV DNA vaccine, and that this vaccination has a clear priming effect leading to a solid immune response after a booster with a conventional CDV vaccine.

  13. Early direct and indirect impact of quadrivalent HPV (4HPV) vaccine on genital warts: a systematic review.

    Science.gov (United States)

    Mariani, Luciano; Vici, Patrizia; Suligoi, Barbara; Checcucci-Lisi, Giovanni; Drury, Rosybel

    2015-01-01

    Since 2007, many countries have implemented national human papillomavirus (HPV) vaccination programs with the quadrivalent HPV (4HPV) vaccine that has been shown to be efficacious in clinical trials involving 25,000 subjects. Two vaccine serotypes, HPV16 and 18, are responsible for cervical cancer and other HPV-related cancers, but the impact of the 4HPV vaccine on these cancers cannot be seen immediately as there is a considerable lag between infection with HPV and cancer development. The other two serotypes, HPV6 and 11, are responsible for genital warts (GWs), which develop within a few months after infection, making GWs an early clinical endpoint for the assessment of the impact of 4HPV vaccination. We performed a systematic literature search in PubMed to identify all published studies on 4HPV vaccination, including those that assessed the impact of 4HPV vaccination programs on the incidence of GWs at a population level around the world. A total of 354 records were identified in the PubMed search. After screening and obtaining full papers for 56 publications, 16 publications presenting data on the impact or effectiveness of 4HPV vaccination on GWs were identified. These reported data on the impact or effectiveness of 4HPV in six countries [Australia (n = 6), New Zealand (n = 2), United States (n = 3), Denmark (n = 2), Germany (n = 1), and Sweden (n = 2)]. In Australia, no GWs were diagnosed in women aged <21 years who reported being vaccinated. A 92.6% reduction in GWs incidence was reported for all women in this age group, where the vaccine uptake rate (VUR) was 70% for 3 doses. The highest reductions were reported in countries with high VURs, mostly through school-based vaccination programs, although high VURs were obtained with some non-school-based programs. The results are coherent with the GWs incidence reduction reported in clinical trials and are an early indicator of what can be expected for the long-term clinical impact on vaccine-type HPV

  14. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    Science.gov (United States)

    Chen, Lili; He, Zhengxiang; Qin, Li; Li, Qinyan; Shi, Xibao; Zhao, Siting; Chen, Ling; Zhong, Nanshan; Chen, Xiaoping

    2011-01-01

    Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+) T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer

  15. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Lili Chen

    Full Text Available BACKGROUND: Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL staining and decreased Ki-67 expression in tumors. Through natural killer (NK cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. CONCLUSIONS/SIGNIFICANCE: Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria

  16. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Magistrado, Pamela; Sharp, Sarah

    2004-01-01

    Parasite-encoded variant surface antigens (VSAs) like the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are responsible for antigenic variation and infected red blood cell (RBC) cytoadhesion in P. falciparum malaria. Parasites causing severe malaria in noni...... genes, such as PFD1235w/MAL7P1.1, appear to be involved in the pathogenesis of severe disease and are thus attractive candidates for a vaccine against life-threatening P. falciparum malaria....

  17. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates

    DEFF Research Database (Denmark)

    Jones, Sophie; Grignard, Lynn; Nebie, Issa

    2015-01-01

    for the future evaluation of vaccine immunogenicity and efficacy in populations naturally exposed to malaria. METHODS: We determined naturally acquired antibody responses to the recombinant proteins Pfs48/45-10C and Pfs230-230CMB in children from three malaria endemic settings in Ghana, Tanzania and Burkina Faso......OBJECTIVES: Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences....... We also examined genetic polymorphisms in the P. falciparum gene pfs48/45. RESULTS: Antibody prevalence was 1.1-18.2% for 10C and 6.7-18.9% for 230CMB. In Burkina Faso we observed evidence of an age-dependent acquisition pattern for both 10C (p assays...

  18. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    Science.gov (United States)

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  19. Hidden burden of malaria in Indian women

    Directory of Open Access Journals (Sweden)

    Sharma Vinod P

    2009-12-01

    Full Text Available Abstract Malaria is endemic in India with an estimated 70-100 million cases each year (1.6-1.8 million reported by NVBDCP; of this 50-55% are Plasmodium vivax and 45-50% Plasmodium falciparum. A recent study on malaria in pregnancy reported from undivided Madhya Pradesh state (includes Chhattisgarh state, that an estimated over 220,000 pregnant women contract malaria infection each year. Malaria in pregnancy caused- abortions 34.5%; stillbirths 9%; and maternal deaths 0.45%. Bulk of this tragic outcome can be averted by following the Roll Back Malaria/WHO recommendations of the use of malaria prevention i.e. indoor residual spraying (IRS/insecticide-treated bed nets (ITN preferably long-lasting treated bed nets (LLIN; intermittent preventive therapy (IPT; early diagnosis, prompt and complete treatment using microscopic/malaria rapid diagnostics test (RDT and case management. High incidence in pregnancy has arisen because of malaria surveillance lacking coverage, lack of age and sex wise data, staff shortages, and intermittent preventive treatment (IPT applicable in high transmission states/pockets is not included in the national drug policy- an essential component of fighting malaria in pregnancy in African settings. Inadequate surveillance and gross under-reporting has been highlighted time and again for over three decades. As a result the huge problem of malaria in pregnancy reported occasionally by researchers has remained hidden. Malaria in pregnancy may quicken severity in patients with drug resistant parasites, anaemia, endemic poverty, and malnutrition. There is, therefore, urgent need to streamline malaria control strategies to make a difference in tackling this grim scenario in human health.

  20. Biomarkers of Safety and Immune Protection for Genetically Modified Live Attenuated Leishmania Vaccines Against Visceral Leishmaniasis – Discovery and Implications

    Science.gov (United States)

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L.

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen−/− in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  1. Early IFN-gamma production after YF 17D vaccine virus immunization in mice and its association with adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Patrícia C C Neves

    Full Text Available Yellow Fever vaccine is one of the most efficacious human vaccines ever made. The vaccine (YF 17D virus induces polyvalent immune responses, with a mixed TH1/TH2 CD4(+ cell profile, which results in robust T CD8(+ responses and high titers of neutralizing antibody. In recent years, it has been suggested that early events after yellow fever vaccination are crucial to the development of adequate acquired immunity. We have previously shown that primary immunization of humans and monkeys with YF 17D virus vaccine resulted in the early synthesis of IFN-γ. Herein we have demonstrated, for the first time that early IFN-γ production after yellow fever vaccination is a feature also of murine infection and is much more pronounced in the C57BL/6 strain compared to the BALB/c strain. Likewise, in C57BL/6 strain, we have observed the highest CD8(+ T cells responses as well as higher titers of neutralizing antibodies and total anti-YF IgG. Regardless of this intense IFN-γ response in mice, it was not possible to see higher titers of IgG2a in relation to IgG1 in both mice lineages. However, IgG2a titers were positively correlated to neutralizing antibodies levels, pointing to an important role of IFN-γ in eliciting high quality responses against YF 17D, therefore influencing the immunogenicity of this vaccine.

  2. A flow cytometry-based workflow for detection and quantification of anti-plasmodial antibodies in vaccinated and naturally exposed individuals

    DEFF Research Database (Denmark)

    Ajua, Anthony; Engleitner, Thomas; Esen, Meral

    2012-01-01

    information about natural exposure and vaccine immunogenicity. A novel, cytometry-based workflow for the quantitative detection of anti-plasmodial antibodies in human serum is presented. METHODS: Fixed red blood cells (RBCs), infected with late stages of P. falciparum were utilized to detect malaria...... vaccine trials in semiimmune adults and pre-school children residing in a malaria endemic area. RESULTS: Fixation, permeabilization, and staining of infected RBCs were adapted for best operation in flow cytometry. As asexual vaccine candidates are designed to induce antibody patterns similar to semi...... with those obtained by manual gating (r between 0.79 and 0.99) and outperformed other model-driven gating methods. Bland-Altman plots confirmed the agreement of manual gating and OSA derived results. A-1.33 fold increase (p=0.003) in the number of positive cells after vaccination in a subgroup of preschool...

  3. A Two-Center Randomized Trial of an Additional Early Dose of Measles Vaccine

    DEFF Research Database (Denmark)

    Fisker, Ane B; Nebie, Eric; Schoeps, Anja

    2018-01-01

    Background: Besides protecting against measles, measles vaccine (MV) may have beneficial non-specific effects. We tested the effect of an additional early MV on mortality and measles antibody levels. Methods: Children aged 4-7 months in two rural health and demographic surveillance sites in Burki...

  4. Visual Indicators on Vaccine Boxes as Early Warning Tools to Identify Potential Freeze Damage.

    Science.gov (United States)

    Angoff, Ronald; Wood, Jillian; Chernock, Maria C; Tipping, Diane

    2015-07-01

    The aim of this study was to determine whether the use of visual freeze indicators on vaccines would assist health care providers in identifying vaccines that may have been exposed to potentially damaging temperatures. Twenty-seven sites in Connecticut involved in the Vaccine for Children Program participated. In addition to standard procedures, visual freeze indicators (FREEZEmarker ® L; Temptime Corporation, Morris Plains, NJ) were affixed to each box of vaccine that required refrigeration but must not be frozen. Temperatures were monitored twice daily. During the 24 weeks, all 27 sites experienced triggered visual freeze indicator events in 40 of the 45 refrigerators. A total of 66 triggered freeze indicator events occurred in all 4 types of refrigerators used. Only 1 of the freeze events was identified by a temperature-monitoring device. Temperatures recorded on vaccine data logs before freeze indicator events were within the 35°F to 46°F (2°C to 8°C) range in all but 1 instance. A total of 46,954 doses of freeze-sensitive vaccine were stored at the time of a visual freeze indicator event. Triggered visual freeze indicators were found on boxes containing 6566 doses (14.0% of total doses). Of all doses stored, 14,323 doses (30.5%) were of highly freeze-sensitive vaccine; 1789 of these doses (12.5%) had triggered indicators on the boxes. Visual freeze indicators are useful in the early identification of freeze events involving vaccines. Consideration should be given to including these devices as a component of the temperature-monitoring system for vaccines.

  5. An Anthropologist Looks at Malaria | Tobias | South African Medical ...

    African Journals Online (AJOL)

    Also, malaria may be associated with the lower levels of ATP (adenosine triphosphate) in the red blood cells of Blacks. Man's cultural evolution and especially the adoption of agriculture - may have played a big part in the establishment of areas of malarial hyperendemicity. Thus, indirectly, malaria may have helped the early ...

  6. Differentiating between dengue fever and malaria using hematological parameters in endemic areas of Thailand.

    Science.gov (United States)

    Kotepui, Manas; PhunPhuech, Bhukdee; Phiwklam, Nuoil; Uthaisar, Kwuntida

    2017-03-02

    Dengue fever (DF) and malaria are the two major public health concerns in tropical countries such as Thailand. Early differentiation between dengue and malaria could help clinicians to identify patients who should be closely monitored for signs of dengue hemorrhagic fever or severe malaria. This study aims to build knowledge on diagnostic markers that are used to discriminate between the infections, which frequently occur in malaria-endemic areas, such as the ones in Thailand. A retrospective study was conducted in Phop Phra Hospital, a hospital located in the Thailand-Burma border area, a malaria-endemic area, between 2013 and 2015. In brief, data on 336 patients infected with malaria were compared to data on 347 patients infected with DF. White blood cells, neutrophil, monocyte, eosinophil, neutrophil-lymphocyte ratio, and monocyte-lymphocyte ratio were significantly lower in patients with DF compared to patients with malaria (P dengue and malaria infection. This study concluded that several hematological parameters were different for diagnosing DF and malaria. A decision tree model revealed that using neutrophils, lymphocyte, MCHC, and gender was guided to discriminate patients with dengue and malaria infection. In addition, using these markers will thus lead to early detection, diagnosis, and prompt treatment of these tropical diseases.

  7. Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia.

    Science.gov (United States)

    Gryseels, Charlotte; Durnez, Lies; Gerrets, René; Uk, Sambunny; Suon, Sokha; Set, Srun; Phoeuk, Pisen; Sluydts, Vincent; Heng, Somony; Sochantha, Tho; Coosemans, Marc; Peeters Grietens, Koen

    2015-04-24

    In certain regions in Southeast Asia, where malaria is reduced to forested regions populated by ethnic minorities dependent on slash-and-burn agriculture, malaria vector populations have developed a propensity to feed early and outdoors, limiting the effectiveness of long-lasting insecticide-treated nets (LLIN) and indoor residual spraying (IRS). The interplay between heterogeneous human, as well as mosquito behaviour, radically challenges malaria control in such residual transmission contexts. This study examines human behavioural patterns in relation to the vector behaviour. The anthropological research used a sequential mixed-methods study design in which quantitative survey research methods were used to complement findings from qualitative ethnographic research. The qualitative research existed of in-depth interviews and participant observation. For the entomological research, indoor and outdoor human landing collections were performed. All research was conducted in selected villages in Ratanakiri province, Cambodia. Variability in human behaviour resulted in variable exposure to outdoor and early biting vectors: (i) indigenous people were found to commute between farms in the forest, where malaria exposure is higher, and village homes; (ii) the indoor/outdoor biting distinction was less clear in forest housing often completely or partly open to the outside; (iii) reported sleeping times varied according to the context of economic activities, impacting on the proportion of infections that could be accounted for by early or nighttime biting; (iv) protection by LLINs may not be as high as self-reported survey data indicate, as observations showed around 40% (non-treated) market net use while (v) unprotected evening resting and deep forest activities impacted further on the suboptimal use of LLINs. The heterogeneity of human behaviour and the variation of vector densities and biting behaviours may lead to a considerable proportion of exposure occurring during

  8. Efficacy of early Mycoplasma hyopneumoniae vaccination against mixed respiratory disease in older fattening pigs.

    Science.gov (United States)

    Del Pozo Sacristán, R; Sierens, A; Marchioro, S B; Vangroenweghe, F; Jourquin, J; Labarque, G; Haesebrouck, F; Maes, D

    2014-02-22

    The present field study investigated the efficacy of early Mycoplasma hyopneumoniae vaccination in a farrow-to-finish pig herd with respiratory disease late in the fattening period due to combined infections with M hyopneumoniae and viral pathogens. Five hundred and forty piglets were randomly divided into three groups of 180 piglets each: two groups were vaccinated (Stellamune Once) at either 7 (V1) or 21 days of age (V2), and a third group was left non-vaccinated (NV). The three treatment groups were housed in different pens within the same compartment during the nursery period, and were housed in different but identical compartments during the fattening period. The efficacy was evaluated using performance and pneumonia lesions. The average daily weight gain during the fattening period was 19 (V1) and 18 g/day (V2) higher in both vaccinated groups when compared with the NV group. However, the difference was not statistically significant (P>0.05). The prevalence of pneumonia was significantly lower in both vaccinated groups (V1: 71.5 and V2: 67.1 per cent) when compared with the NV group (80.2 per cent) (Ppneumonia lesions were significantly reduced and growth losses numerically (not statistically significant) decreased by both vaccination schedules.

  9. Immune effector mechanisms of the nitric oxide pathway in malaria: cytotoxicity versus cytoprotection

    Directory of Open Access Journals (Sweden)

    Hossein Nahrevanian

    Full Text Available Nitric oxide (NO is thought to be an important mediator and critical signaling molecule for malaria immunopathology; it is also a target for therapy and for vaccine. Inducible nitric oxide synthase (iNOS is synthesized by a number of cell types under inflammatory conditions. The most relevant known triggers for its expression are endotoxins and cytokines. To date, there have been conflicting reports concerning the clinical significance of NO in malaria. Some researchers have proposed that NO contributes to the development of severe and complicated malaria, while others have argued that NO has a protective role. Infection with parasites resistant to the microbicidal action of NO may result in high levels of NO being generated, which could then damage the host, instead of controlling parasitemia. Consequently, the host-parasite interaction is a determining factor for whether the parasite is capable of stimulating NO production; the role of NO in resistance to malaria appears to be strain specific. It is known that NO and/or its related molecules are involved in malaria, but their involvement is not independent of other immune events. NO is an important, but possibly not an essential contributor to the control of acute-phase malaria infection. The protective immune responses against malaria parasite are multifactorial; however, they necessarily involve final effector molecules, including NO, iNOS and RNI.

  10. Forecasting Malaria in the Western Amazon

    Science.gov (United States)

    Pan, W. K.; Zaitchik, B. F.; Pizzitutti, F.; Berky, A.; Feingold, B.; Mena, C.; Janko, M.

    2017-12-01

    Reported cases of malaria in the western Amazon regions of Peru, Colombia and Ecuador have more than tripled since 2011. Responding to this epidemic has been challenging given large-scale environmental impacts and demographic changes combined with changing financial and political priorities. In Peru alone, malaria cases increased 5-fold since 2011. Reasons include changes in the Global Malaria Fund, massive flooding in 2012, the "mega" El Nino in 2016, and continued natural resource extraction via logging and mining. These challenges prompted the recent creation of the Malaria Cero program in 2017 with the goal to eradicate malaria by 2021. To assist in malaria eradiation, a team of investigators supported by NASA have been developing an Early Warning System for Malaria. The system leverages demographic, epidemiological, meteorological and land use/cover data to develop a four-component system that will improve detection of malaria across the western Amazon Basin. System components include a land data assimilation system (LDAS) to estimate past and future hydrological states and flux, a seasonal human population model to estimate population at risk and spatial connectivity to high risk transmission areas, a sub-regional statistical model to identify when and where observed malaria cases have exceeded those expected, and an Agent Based Model (ABM) to integrate human, environmental, and entomological transmission dynamics with potential strategies for control. Data include: daily case detection reports between 2000 and 2017 from all health posts in the region of Loreto in the northern Peruvian Amazon; LDAS outputs (precipitation, temperature, humidity, solar radiation) at a 1km and weekly scale; satellite-derived estimates of land cover; and human population size from census and health data. This presentation will provide an overview of components, focusing on how the system identifies an outbreak and plans for technology transfer.

  11. Culminating anti-malaria efforts at long lasting insecticidal net?

    Directory of Open Access Journals (Sweden)

    Sunil Dhiman

    2014-11-01

    . Focused research on developing effective anti-malarial drugs, vaccines and new insecticides to reduce resistance is imperative to tackle malaria in the future. Keywords: LLIN, Insecticide resistance, Malaria, Immunity, Vector

  12. Spatio-temporal heterogeneity of malaria morbidity in Ghana: Analysis of routine health facility data.

    Science.gov (United States)

    Awine, Timothy; Malm, Keziah; Peprah, Nana Yaw; Silal, Sheetal P

    2018-01-01

    Malaria incidence is largely influenced by vector abundance. Among the many interconnected factors relating to malaria transmission, weather conditions such as rainfall and temperature are known to create suitable environmental conditions that sustain reproduction and propagation of anopheles mosquitoes and malaria parasites. In Ghana, climatic conditions vary across the country. Understanding the heterogeneity of malaria morbidity using data sourced from a recently setup data repository for routine health facility data could support planning. Monthly aggregated confirmed uncomplicated malaria cases from the District Health Information Management System and average monthly rainfall and temperature records obtained from the Ghana Meteorological Agency from 2008 to 2016 were analysed. Univariate time series models were fitted to the malaria, rainfall and temperature data series. After pre-whitening the morbidity data, cross correlation analyses were performed. Subsequently, transfer function models were developed for the relationship between malaria morbidity and rainfall and temperature. Malaria morbidity patterns vary across zones. In the Guinea savannah, morbidity peaks once in the year and twice in both the Transitional forest and Coastal savannah, following similar patterns of rainfall at the zonal level. While the effects of rainfall on malaria morbidity are delayed by a month in the Guinea savannah and Transitional Forest zones those of temperature are delayed by two months in the Transitional forest zone. In the Coastal savannah however, incidence of malaria is significantly associated with two months lead in rainfall and temperature. Data captured on the District Health Information Management System has been used to demonstrate heterogeneity in the dynamics of malaria morbidity across the country. Timing of these variations could guide the deployment of interventions such as indoor residual spraying, Seasonal Malaria Chemoprevention or vaccines to optimise

  13. The Ethics of Health Care Delivery in a Pediatric Malaria Vaccine Trial: The Perspectives of Stakeholders From Ghana and Tanzania.

    Science.gov (United States)

    Ward, Claire Leonie; Shaw, David; Anane-Sarpong, Evelyn; Sankoh, Osman; Tanner, Marcel; Elger, Bernice

    2018-02-01

    This study explores ethical issues raised in providing medical care to participants and communities of low-resource settings involved in a Phase II/III pediatric malaria vaccine trial (PMVT). We conducted 52 key informant interviews with major stakeholders of an international multi-center PMVT (GSK/PATH-MVI RTS,S) (NCT00866619) in Ghana and Tanzania. Based on their stakeholder experiences, the responses fell into three main themes: (a) undue inducement, (b) community disparities, and (c) broad therapeutic misconceptions. The study identified the critical ethical aspects, from the perspectives of stakeholders, of delivering health care during a PMVT. The study showed that integrating research into health care services needs to be addressed in a manner that upholds the favorable risk-benefit ratio of research and attends to the health needs of local populations. The implementation of research should aim to improve local standards of care through building a collaborative agenda with local institutions and systems of health.

  14. Does malaria affect placental development? Evidence from in vitro models.

    Directory of Open Access Journals (Sweden)

    Alexandra J Umbers

    Full Text Available BACKGROUND: Malaria in early pregnancy is difficult to study but has recently been associated with fetal growth restriction (FGR. The pathogenic mechanisms underlying malarial FGR are poorly characterized, but may include impaired placental development. We used in vitro methods that model migration and invasion of placental trophoblast into the uterine wall to investigate whether soluble factors released into maternal blood in malaria infection might impair placental development. Because trophoblast invasion is enhanced by a number of hormones and chemokines, and is inhibited by pro-inflammatory cytokines, many of which are dysregulated in malaria in pregnancy, we further compared concentrations of these factors in blood between malaria-infected and uninfected pregnancies. METHODOLOGY/PRINCIPAL FINDINGS: We measured trophoblast invasion, migration and viability in response to treatment with serum or plasma from two independent cohorts of Papua New Guinean women infected with Plasmodium falciparum or Plasmodium vivax in early pregnancy. Compared to uninfected women, serum and plasma from women with P. falciparum reduced trophoblast invasion (P = .06 and migration (P = .004. P. vivax infection did not alter trophoblast migration (P = .64. The P. falciparum-specific negative effect on placental development was independent of trophoblast viability, but associated with high-density infections. Serum from P. falciparum infected women tended to have lower levels of trophoblast invasion promoting hormones and factors and higher levels of invasion-inhibitory inflammatory factors. CONCLUSION/SIGNIFICANCE: We demonstrate that in vitro models of placental development can be adapted to indirectly study the impact of malaria in early pregnancy. These infections could result in impaired trophoblast invasion with reduced transformation of maternal spiral arteries due to maternal hormonal and inflammatory disturbances, which may contribute to FGR by

  15. The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development

    DEFF Research Database (Denmark)

    Hviid, Lars

    2010-01-01

    There is substantial immuno-epidemiological evidence that the parasite-encoded, so-called variant surface antigens (VSAs) such as PfEMP1 on the surface of infected erythrocytes (IEs) are important-in some cases probably decisive-determinants of clinical outcome of P. falciparum malaria. The evide...... of VSAs, and how vaccines based on this type of antigens fit into the current global strategy to reduce, eliminate and eventually eradicate the burden of malaria....

  16. Sickle cell protection from malaria.

    Science.gov (United States)

    Eridani, Sandro

    2011-10-19

    A linkage between presence of Sickle Haemoglobin (HbS) and protection from malaria infection and clinical manifestations in certain areas was suspected from early observations and progressively elucidated by more recent studies. Research has confirmed the abovementioned connection, but also clarified how such protection may be abolished by coexistence of sickle cell trait (HbS trait) and alpha thalassemia, which may explain the relatively low incidence of HbS trait in the Mediterranean. The mechanisms of such protective effect are now being investigated: factors of genetic, molecular and immunological nature are prominent. As for genetic factors attention is given to the role of the red blood cell (RBC) membrane complement regulatory proteins as polymorphisms of these components seem to be associated with resistance to severe malaria; genetic ligands like the Duffy group blood antigen, necessary for erythrocytic invasion, and human protein CD36, a major receptor for P. falciparum-infected RBC's, are also under scrutiny: attention is focused also on plasmodium erythrocyte-binding antigens, which bind to RBC surface components. Genome-wide linkage and association studies are now carried out too, in order to identify genes associated with malaria resistance. Only a minor role is attributed to intravascular sickling, phagocytosis and haemolysis, while specific molecular mechanisms are the object of intensive research: among these a decisive role is played by a biochemical sequence, involving activation of haeme oxygenase (HMO-1), whose effect appears mediated by carbon monoxide (CO). A central role in protection from malaria is also played by immunological factors, which may stimulate antibody production to plasmodium antigens in the early years of life; the role of agents like pathogenic CD8 T-cells has been suggested while the effects of molecular actions on the immunity mechanism are presently investigated. It thus appears that protection from malaria can be

  17. Baculovirus virions displaying Plasmodium berghei circumsporozoite protein protect mice against malaria sporozoite infection

    International Nuclear Information System (INIS)

    Yoshida, Shigeto; Kondoh, Daisuke; Arai, Eriko; Matsuoka, Hiroyuki; Seki, Chisato; Tanaka, Takao; Okada, Masaji; Ishii, Akira

    2003-01-01

    The display of foreign proteins on the surface of baculovirus virions has provided a tool for the analysis of protein-protein interactions and for cell-specific targeting in gene transfer applications. To evaluate the baculovirus display system as a vaccine vehicle, we have generated a recombinant baculovirus (AcNPV-CSPsurf) that displays rodent malaria Plasmodium berghei circumsporozoite protein (PbCSP) on the virion surface as a fusion protein with the major baculovirus envelope glycoprotein gp64. The PbCSP-gp64 fusion protein was incorporated and oligomerized on the virion surface and led to a 12-fold increase in the binding activity of AcNPV-CSPsurf virions to HepG2 cells. Immunization with adjuvant-free AcNPV-CSPsurf virions induced high levels of antibodies and gamma interferon-secreting cells against PbCSP and protected 60% of mice against sporozoite challenge. These data demonstrate that AcNPV-CSPsurf displays sporozoite-like PbCSP on the virion surface and possesses dual potentials as a malaria vaccine candidate and a liver-directed gene delivery vehicle

  18. Population Genetics and Drug Resistance Markers: An Essential for Malaria Surveillance in Pakistan

    International Nuclear Information System (INIS)

    Raza, A.; Beg, M.A.

    2013-01-01

    Plasmodium (P.) vivax is the prevalent malarial species accounting for 70% of malaria cases in Pakistan. However, baseline epidemiological data on P. vivax population structure and drug resistance are lacking from Pakistan. For population structure studies, molecular genetic markers, circumsporozoite protein (csp) and merozoite surface protein-1 (msp-1) are considered useful as these play an important role in P. vivax survival under immune and environmental pressure. Furthermore, these genes have also been identified as suitable candidates for vaccine development. While efforts for effective vaccine are underway, anti-malarial agents remain the mainstay for control. Evidence of resistance against commonly used anti-malarial agents, particularly Sulphadoxine-Pyrimethamine (SP) is threatening to make this form of control defunct. Therefore, studies on drug resistance are necessary so that anti-malarial treatment strategies can be structured and implemented accordingly by the Malaria Control Program, Pakistan. This review aims to provide information on genetic markers of P. vivax population structure and drug resistance and comment on their usefulness in molecular surveillance and control. (author)

  19. Severe malaria vivax with sepsis bacterial: a case report

    Science.gov (United States)

    Tarigan, P.; Ginting, F.

    2018-03-01

    Malaria cases are often misdiagnosis by clinicians in tropical areas like Indonesia. Some cases show overlapping signs and symptoms of another infection that are common in the tropical areas such as typhoid, dengue, and leptospirosis. It can be misdiagnosed in practice and led to a wrong management that can end fatally. Severe malaria is usually caused by Plasmodium falciparum. P. vivax can also cause severe malaria but the cases reported are uncommon. Since infections with severe P. vivax that generally results in serious disease is quite uncommon in Indonesia, their identification and management are important. We report a case of severe malaria with sepsis, renal injury and hepatic impairment associated with malaria in a 70-year-old male. Clinical manifestations included anemia, sepsis, and elevated serum creatinine, urea, total bilirubin, and procalcitonin. The rapid diagnostic test for malaria and microscopic examination of blood smears were positive for P. vivax. The patient was treated as severe malaria with intravenous artesunate for six days, followed by oral treatment of primaquine for 14 days. Intravenous fluid therapy, antipyretic, anti-malaria and antibiotic treatment were administered. The patient was stable and then discharged from the hospital. The prognosis depends much on early diagnosis and appropriate supportive treatment.

  20. Malaria in South Asia: Prevalence and control

    Science.gov (United States)

    Kumar, Ashwani; Chery, Laura; Biswas, Chinmoy; Dubhashi, Nagesh; Dutta, Prafulla; Dua, Virendra Kumar; Kacchap, Mridula; Kakati, Sanjeeb; Khandeparkar, Anar; Kour, Dalip; Mahajanj, Satish N.; Maji, Ardhendu; Majumder, Partha; Mohanta, Jagadish; Mohapatra, Pradyumna K.; Narayanasamy, Krishnamoorthy; Roy, Krishnangshu; Shastri, Jayanthi; Valecha, Neena; Vikash, Rana; Wani, Reena; White, John; Rathod, Pradipsinh K

    2013-01-01

    The “Malaria Evolution in South Asia” (MESA) program project is an International Center of Excellence for Malaria Research (ICEMR) sponsored by the US National Institutes of Health. This US–India collaborative program will study the origin of genetic diversity of malaria parasites and their selection on the Indian subcontinent. This knowledge should contribute to a better understanding of unexpected disease outbreaks and unpredictable disease presentations from Plasmodium falciparum and Plasmodium vivax infections. In this first of two reviews, we highlight malaria prevalence in India. In particular, we draw attention to variations in distribution of different human-parasites and different vectors, variation in drug resistance traits, and multiple forms of clinical presentations. Uneven malaria severity in India is often attributed to large discrepancies in health care accessibility as well as human migrations within the country and across neighboring borders. Poor access to health care goes hand in hand with poor reporting from some of the same areas, combining to possibly distort disease prevalence and death from malaria in some parts of India. Corrections are underway in the form of increased resources for disease control, greater engagement of village-level health workers for early diagnosis and treatment, and possibly new public–private partnerships activities accompanying traditional national malaria control programs in the most severely affected areas. A second accompanying review raises the possibility that, beyond uneven health care, evolutionary pressures may alter malaria parasites in ways that contribute to severe disease in India, particularly in the NE corridor of India bordering Myanmar Narayanasamy et al., 2012. PMID:22248528

  1. Vaccinations in early life are not associated with development of islet autoimmunity in type 1 diabetes high-risk children: Results from prospective cohort data.

    Science.gov (United States)

    Beyerlein, Andreas; Strobl, Andreas N; Winkler, Christiane; Carpus, Michaela; Knopff, Annette; Donnachie, Ewan; Ankerst, Donna P; Ziegler, Anette-G

    2017-03-27

    Vaccinations in early childhood potentially stimulate the immune system and may thus be relevant for the pathogenesis of autoimmune diseases such as type 1 diabetes (T1D). We determined the association of vaccination burden with T1D-associated islet autoimmunity in children with high familial risk followed prospectively from birth. A total of 20,570 certified vaccination records from 1918 children were correlated with time to onset of T1D-associated islet autoimmunity using Cox regression, considering multiple time periods up until age two years and vaccination types, and adjusting for HLA genotype, sex, delivery mode, season of birth, preterm delivery and maternal T1D status. Additionally, prospective claims data of 295,420 subjects were used to validate associations for the tick-borne encephalitis (TBE) vaccination. Most vaccinations were not associated with a significantly increased hazard ratio (HR) for islet autoimmunity (e.g. HR [95% confidence interval]: 1.08 [0.96-1.21] per additional vaccination against measles, mumps and rubella at age 0-24months). TBE vaccinations within the first two years of life were nominally associated with a significantly increased autoimmunity risk (HR: 1.44 [1.06-1.96] per additional vaccination at age 0-24months), but this could not be confirmed with respect to outcome T1D in the validation cohort (HR: 1.02 [0.90-1.16]). We found no evidence that early vaccinations increase the risk of T1D-associated islet autoimmunity development. The potential association with early TBE vaccinations could not be confirmed in an independent cohort and appears to be a false positive finding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The clinical development process for a novel preventive vaccine: An overview

    Directory of Open Access Journals (Sweden)

    K Singh

    2016-01-01

    Full Text Available Each novel vaccine candidate needs to be evaluated for safety, immunogenicity, and protective efficacy in humans before it is licensed for use. After initial safety evaluation in healthy adults, each vaccine candidate follows a unique development path. This article on clinical development gives an overview on the development path based on the expectations of various guidelines issued by the World Health Organization (WHO, the European Medicines Agency (EMA, and the United States Food and Drug Administration (USFDA. The manuscript describes the objectives, study populations, study designs, study site, and outcome(s of each phase (Phase I-III of a clinical trial. Examples from the clinical development of a malaria vaccine candidate, a rotavirus vaccine, and two vaccines approved for human papillomavirus (HPV have also been discussed. The article also tabulates relevant guidelines, which can be referred to while drafting the development path of a novel vaccine candidate.

  3. Structure-activity-based design of a synthetic malaria peptide eliciting sporozoite inhibitory antibodies in a virosomal formulation.

    NARCIS (Netherlands)

    Okitsu, S.L.; Kienzl, U.; Moehle, K.; Silvie, O.; Peduzzi, E.; Mueller, M.S.; Sauerwein, R.W.; Matile, H.; Zurbriggen, R.; Mazier, D.; Robinson, J.A.; Pluschke, G.

    2007-01-01

    The circumsporozoite protein (CSP) of Plasmodium falciparum is a leading candidate antigen for inclusion in a malaria subunit vaccine. We describe here the design of a conformationally constrained synthetic peptide, designated UK-39, which has structural and antigenic similarity to the NPNA-repeat

  4. Timing of intermittent preventive treatment for malaria during pregnancy and the implications of current policy on early uptake in north-east Tanzania

    Directory of Open Access Journals (Sweden)

    Chambo Pili

    2008-05-01

    Full Text Available Abstract Background Intermittent preventive treatment (IPTp is efficacious in reducing the adverse outcomes associated with pregnancy-associated malaria, however uptake of the recommended two doses is low in Tanzania, and little is known of the timepoint during pregnancy at which it is delivered. This study investigated the timing of delivery of IPTp to pregnant women attending antenatal clinics (ANC, and the potential determinants of timely uptake. Methods Structured interviews were conducted with staff and pregnant women at antenatal clinics in northeast Tanzania, and antenatal consultations were observed. Facility-based and individual factors were analysed for any correlation with timing of IPTp uptake. Results Almost half the women interviewed first attended ANC during or before the fourth month of gestation, however 86% of these early attendees did not receive IPTp on their first visit. The timing of IPTp delivery complied closely with the national guidelines which stipulate giving the first dose at 20–24 weeks gestation. Uptake of at least one dose of IPTp among women who had reached this gestation age was 67%, although this varied considerably between clinics. At one facility, IPTp was not delivered because SP was out of stock. Conclusion Early uptake of IPTp was found to be hampered by factors external to health worker performance or women's individual preferences. These include insufficient drug stocks and an apparent lack of information to health workers on the reasoning for continued use of SP for IPTp when it has been replaced as a first-line treatment. In addition, an unexpectedly high proportion of women attend antenatal clinics before 20 weeks of pregnancy. While current policy denies the use of IPTp at this time, there is emerging, but incomplete, evidence that malaria in early pregnancy may contribute considerably to the burden of pregnancy-related malaria. Current policy may thus result in a missed opportunity for maximising

  5. An Overview of Application of Nanotechnology in Malaria Control

    Directory of Open Access Journals (Sweden)

    Pam DD

    2017-07-01

    Full Text Available Infectious diseases caused by parasites are of immense global significance as about 30% of world’s population experiences parasitic infections. malaria is the most life threatening disease and accounts for one to two million deaths round the globe every year. Currently, there is no available effective vaccine against malaria. The shortcomings of malaria preventive and curative drug treatments have become a major reason for the failure to eradicate the disease. There is an urgent need for an effective antimalarial agent due to increasing drug resistance of Plasmodium falciparum. Nanotechnology has been identified as the new frontier in the fight against this disease. Nanomedicine is a new technology utilizing nanometer scale drug delivery systems as therapeutics, able to confer advantages which include improved drug pharmacokinetic profiles, organ, cell and parasite targeted drug delivery, reduce doses and reduction in drug toxicity. Nanomedicine can address the challenges associated with current anti-malarial drugs by reformulating the drugs in nanomedicine drug delivery systems (NMDDS. The development of these particulate carriers as vehicles for delivery of active compounds is a novel area of research that provides a new hope in malarial chemotherapy.

  6. [Current malaria situation in Turkey].

    Science.gov (United States)

    Gockchinar, T; Kalipsi, S

    2001-01-01

    are important in transmitting the diseases. The districts where malaria cases occur are the places where population moves are rapid, agriculture is the main occupation, the increase in the population is high and the education/cultural level is low. Within years, the districts with high malaria cases also differ. Before 1990 Cucurova and Amikova were the places that showed the highest incidence of malaria. Since 1990, the number of cases from south-eastern Anatolia has started to rise. The main reasons for this change are a comprehensive malaria prevention programme, regional development, developed agricultural systems, and lower population movements. The 1999 statistical data indicate that 83 and 17% of all malaria cases are observed in the GAP and other districts, respectively. The distribution of malaria cases in Turkey differs by months and climatic conditions. The incidence of malaria starts to rise in March, reaching its peak in July, August and September, begins to fall in October. In other words, the number of malaria cases is lowest in winter and reaches its peak in summer and autumn. This is not due to the parasite itself, but a climatic change is a main reason. In the past years the comprehensive malaria prevention programme has started bearing its fruits. Within the WHO Roll Back Malaria strategies, Turkey has started to implement its national malaria control projects, the meeting held on March 22, 2000, coordinated the country's international cooperation for this purpose. The meeting considered the aim of the project to be introduced into other organizations. In this regards, the target for 2002 is to halve the incidence of malaria as compared to 1999. The middle--and long-term incidence of malaria will be lowered to even smaller figures. The objectives of this project are as follows: to integrate malaria services with primary health care services to prove more effective studies; to develop early diagnosis and treatment systems, to provide better

  7. Levels of antibody to conserved parts of Plasmodium falciparum merozoite surface protein 1 in Ghanaian children are not associated with protection from clinical malaria

    DEFF Research Database (Denmark)

    Dodoo, D; Theander, T G; Kurtzhals, J A

    1999-01-01

    malaria season in April and after the season in November. Using enzyme-linked immunosorbent assay, we measured antibody responses to recombinant gluthathione S-transferase-PfMSP119 fusion proteins corresponding to the Wellcome and MAD20 allelic variants in these samples. Prevalence of antibodies......The 19-kDa conserved C-terminal part of the Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is a malaria vaccine candidate antigen, and human antibody responses to PfMSP119 have been associated with protection against clinical malaria. In this longitudinal study carried out in an area...

  8. UK malaria treatment guidelines 2016.

    Science.gov (United States)

    Lalloo, David G; Shingadia, Delane; Bell, David J; Beeching, Nicholas J; Whitty, Christopher J M; Chiodini, Peter L

    2016-06-01

    . Most patients treated for P. falciparum malaria should be admitted to hospital for at least 24 h as patients can deteriorate suddenly, especially early in the course of treatment. In specialised units seeing large numbers of patients, outpatient treatment may be considered if specific protocols for patient selection and follow up are in place. 10. Uncomplicated P. falciparum malaria should be treated with an artemisinin combination therapy (Grade 1A). Artemether-lumefantrine (Riamet(®)) is the drug of choice (Grade 2C) and dihydroartemisinin-piperaquine (Eurartesim(®)) is an alternative. Quinine or atovaquone-proguanil (Malarone(®)) can be used if an ACT is not available. Quinine is highly effective but poorly-tolerated in prolonged treatment and should be used in combination with an additional drug, usually oral doxycycline. 11. Severe falciparum malaria, or infections complicated by a relatively high parasite count (more than 2% of red blood cells parasitized) should be treated with intravenous therapy until the patient is well enough to continue with oral treatment. Severe malaria is a rare complication of P. vivax or P. knowlesi infection and also requires parenteral therapy. 12. The treatment of choice for severe or complicated malaria in adults and children is intravenous artesunate (Grade 1A). Intravenous artesunate is unlicensed in the EU but is available in many centres. The alternative is intravenous quinine, which should be started immediately if artesunate is not available (Grade 1A). Patients treated with intravenous quinine require careful monitoring for hypoglycemia. 13. Patients with severe or complicated malaria should be managed in a high-dependency or intensive care environment. They may require haemodynamic support and management of: acute respiratory distress syndrome, disseminated intravascular coagulation, acute kidney injury, seizures, and severe intercurrent infections including Gram-negative bacteraemia/septicaemia. 14. Children with

  9. A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum.

    Science.gov (United States)

    Farrance, Christine E; Rhee, Amy; Jones, R Mark; Musiychuk, Konstantin; Shamloul, Moneim; Sharma, Satish; Mett, Vadim; Chichester, Jessica A; Streatfield, Stephen J; Roeffen, Will; van de Vegte-Bolmer, Marga; Sauerwein, Robert W; Tsuboi, Takafumi; Muratova, Olga V; Wu, Yimin; Yusibov, Vidadi

    2011-08-01

    Plasmodium falciparum is transmitted to a new host after completing its sexual cycle within a mosquito. Developing vaccines against the parasite sexual stages is a critical component in the fight against malaria. We are targeting multiple proteins of P. falciparum which are found only on the surfaces of the sexual forms of the parasite and where antibodies against these proteins have been shown to block the progression of the parasite's life cycle in the mosquito and thus block transmission to the next human host. We have successfully produced a region of the Pfs230 antigen in our plant-based transient-expression system and evaluated this vaccine candidate in an animal model. This plant-produced protein, 230CMB, is expressed at approximately 800 mg/kg in fresh whole leaf tissue and is 100% soluble. Administration of 230CMB with >90% purity induces strong immune responses in rabbits with high titers of transmission-blocking antibodies, resulting in a greater than 99% reduction in oocyst counts in the presence of complement, as determined by a standard membrane feeding assay. Our data provide a clear perspective on the clinical development of a Pfs230-based transmission-blocking malaria vaccine.

  10. Utility of health facility-based malaria data for malaria surveillance.

    Directory of Open Access Journals (Sweden)

    Yaw A Afrane

    Full Text Available Currently, intensive malaria control programs are being implemented in Africa to reduce the malaria burden. Clinical malaria data from hospitals are valuable for monitoring trends in malaria morbidity and for evaluating the impacts of these interventions. However, the reliability of hospital-based data for true malaria incidence is often questioned because of diagnosis accuracy issues and variation in access to healthcare facilities among sub-groups of the population. This study investigated how diagnosis and treatment practices of malaria cases in hospitals affect reliability of hospital malaria data.The study was undertaken in health facilities in western Kenya. A total of 3,569 blood smears were analyzed after being collected from patients who were requested by clinicians to go to the hospital's laboratory for malaria testing. We applied several quality control measures for clinical malaria diagnosis. We compared our slide reading results with those from the hospital technicians. Among the 3,390 patients whose diagnoses were analyzed, only 36% had clinical malaria defined as presence of any level of parasitaemia and fever. Sensitivity and specificity of clinicians' diagnoses were 60.1% (95% CI: 61.1-67.5 and 75.0% (95% CI: 30.8-35.7, respectively. Among the 980 patients presumptively treated with an anti-malarial by the clinicians without laboratory diagnosis, only 47% had clinical malaria.These findings revealed substantial over-prescription of anti-malarials and misdiagnosis of clinical malaria. More than half of the febrile cases were not truly clinical malaria, but were wrongly diagnosed and treated as such. Deficiency in malaria diagnosis makes health facility data unreliable for monitoring trends in malaria morbidity and for evaluating impacts of malaria interventions. Improving malaria diagnosis should be a top priority in rural African health centers.

  11. Antigenicity and immunogenicity of a novel Plasmodium vivax circumsporozoite derived synthetic vaccine construct

    DEFF Research Database (Denmark)

    Céspedes, Nora; Jiménez, Eliécer; Lopez-Perez, Mary

    2014-01-01

    BACKGROUND: The circumsporozoite (CS) protein is a major malaria sporozoite surface antigen currently being considered as vaccine candidate. Plasmodium vivax CS (PvCS) protein comprises a dimorphic central repeat fragment flanked by conserved regions that contain functional domains involved in pa...

  12. Rotavirus vaccines

    Directory of Open Access Journals (Sweden)

    Kang G

    2006-01-01

    Full Text Available Rotavirus, the most common cause of severe diarrhea and a leading cause of mortality in children, has been a priority target for vaccine development for the past several years. The first rotavirus vaccine licensed in the United States was withdrawn because of an association of the vaccine with intussusception. However, the need for a vaccine is greatest in the developing world, because the benefits of preventing deaths due to rotavirus disease are substantially greater than the risk of intussusception. Early vaccines were based on animal strains. More recently developed and licenced vaccines are either animal-human reassortants or are based on human strains. In India, two candidate vaccines are in the development process, but have not yet reached efficacy trials. Many challenges regarding vaccine efficacy and safety remain. In addition to completing clinical evaluations of vaccines in development in settings with the highest disease burden and virus diversity, there is also a need to consider alternative vaccine development strategies.

  13. Defining childhood severe falciparum malaria for intervention studies.

    Directory of Open Access Journals (Sweden)

    Philip Bejon

    2007-08-01

    Full Text Available Clinical trials of interventions designed to prevent severe falciparum malaria in children require a clear endpoint. The internationally accepted definition of severe malaria is sensitive, and appropriate for clinical purposes. However, this definition includes individuals with severe nonmalarial disease and coincident parasitaemia, so may lack specificity in vaccine trials. Although there is no "gold standard" individual test for severe malaria, malaria-attributable fractions (MAFs can be estimated among groups of children using a logistic model, which we use to test the suitability of various case definitions as trial endpoints.A total of 4,583 blood samples were taken from well children in cross-sectional surveys and from 1,361 children admitted to a Kenyan District hospital with severe disease. Among children under 2 y old with severe disease and over 2,500 parasites per microliter of blood, the MAFs were above 85% in moderate- and low-transmission areas, but only 61% in a high-transmission area. HIV and malnutrition were not associated with reduced MAFs, but gastroenteritis with severe dehydration (defined by reduced skin turgor, lower respiratory tract infection (clinician's final diagnosis, meningitis (on cerebrospinal fluid [CSF] examination, and bacteraemia were associated with reduced MAFs. The overall MAF was 85% (95% confidence interval [CI] 83.8%-86.1% without excluding these conditions, 89% (95% CI 88.4%-90.2% after exclusions, and 95% (95% CI 94.0%-95.5% when a threshold of 2,500 parasites/mul was also applied. Applying a threshold and exclusion criteria reduced sensitivity to 80% (95% CI 77%-83%.The specificity of a case definition for severe malaria is improved by applying a parasite density threshold and by excluding children with meningitis, lower respiratory tract infection (clinician's diagnosis, bacteraemia, and gastroenteritis with severe dehydration, but not by excluding children with HIV or malnutrition.

  14. Hari Malaria Sedunia 2013 Investasi Di Masa Depan. Taklukkan Malaria

    Directory of Open Access Journals (Sweden)

    Hotnida Sitorus

    2017-02-01

    Full Text Available Abstract Malaria is still the global health problems, World Health Organization estimates that malaria causes death of approximately 660.000 in 2010, most of the age of the children in the region of sub-Saharan Africa. World Malaria Day 2013 assigned the theme “Invest in the future. Defeat malaria”. It takes political will and collective action to jointly combat malaria through malaria elimination. Needed more new donors to be involved in global partnerships against malaria. These partnerships exist, one of which is support of funding or facility for malaria endemic countries which do not have sufficient resources to control malaria. A lot of effort has been done or is still in the development stage. The use of long-lasting insecticidal nets appropriately can reduce malaria cases. The use of rapid diagnostic test, especially in remote areas and health facility with no microscopy, is very beneficial for patients to get prompt treatment. The control of malaria through integrated vector management is a rational decision making process to optimize the use of resources in the control of vector. Sterile insect technique has a promising prospect and expected to replace the role of chemical insecticides that have negative impact both on the environment and target vector (resistance. Keywords: Malaria, long-lasting insecticidal nets, rapid diagnostic test Abstrak Malaria masih menjadi masalah kesehatan dunia, Organisasi Kesehatan Dunia (WHO memperkirakan malaria menyebabkan kurang lebih 660.000 kematian pada tahun 2010, kebanyakan usia anak-anak di wilayah Sub-Sahara Afrika. Pada peringatan hari malaria dunia tahun 2013 ditetapkan tema “Investasi di masa depan. Taklukkan malaria”. Dibutuhkan kemauan politik dan tindakan kolektif untuk bersama-sama memerangi malaria melalui gerakan eliminasi malaria. Diperlukan lebih banyak donor baru untuk turut terlibat dalam kemitraan global melawan malaria. Wujud kemitraan tersebut salah satunya adalah

  15. Immunopathology of thrombocytopenia in experimental malaria.

    Science.gov (United States)

    Grau, G E; Piguet, P F; Gretener, D; Vesin, C; Lambert, P H

    1988-12-01

    An early thrombocytopenia was observed in CBA mice during acute infection with Plasmodium berghei. This was associated with an increase in bone marrow megakaryocytes and a reduction of normal syngeneic 111Indium-labelled platelet life span. Malaria-induced thrombocytopenia was thus considered to be the result of increased peripheral platelet destruction rather than central hypoproduction. The occurrence of thrombocytopenia was modulated by T-cell depletion. Indeed, thymectomized, irradiated or anti-CD4 monoclonal antibody-treated mice failed to develop thrombocytopenia, although they were infected to the same extent. Conversely, a significant thrombocytopenia was observed in thymectomized mice reconstituted with CD4+ T cells. During the course of infection, a significant inverse correlation was found between platelet counts and platelet-associated IgG. Normal mice passively transferred with serum from syngeneic malaria-infected mice developed thrombocytopenia. The possibility to raise monoclonal anti-platelet antibodies from P. berghei-infected animals further suggested a role for an antibody-mediated platelet destruction during acute murine malaria infection. These results indicate that in murine malaria, thrombocytopenia is mediated by immune mechanisms and that CD4+ T cells might be significantly involved.

  16. Genetic polymorphisms in the glutamate-rich protein of Plasmodium falciparum field isolates from a malaria-endemic area of Brazil

    DEFF Research Database (Denmark)

    Pratt-Riccio, Lilian Rose; Perce-da-Silva, Daiana de Souza; Lima-Junior, Josué da Costa

    2013-01-01

    The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in...

  17. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine.

    Directory of Open Access Journals (Sweden)

    Stephen A Kaba

    Full Text Available The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+ and CD4(+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.To establish the basis for a SAPN-based vaccine, B- and CD8(+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP. We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year protective antibody and poly-functional (IFNγ(+, IL-2(+ long-lived central memory CD8(+ T-cells. Furthermore, we demonstrated that these Ab or CD8(+ T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.

  18. Schistosomiasis coinfection in children influences acquired immune response against Plasmodium falciparum malaria antigens.

    Directory of Open Access Journals (Sweden)

    Tamsir O Diallo

    Full Text Available BACKGROUND: Malaria and schistosomiasis coinfection frequently occurs in tropical countries. This study evaluates the influence of Schistosoma haematobium infection on specific antibody responses and cytokine production to recombinant merozoite surface protein-1-19 (MSP1-(19 and schizont extract of Plasmodium falciparum in malaria-infected children. METHODOLOGY: Specific IgG1 to MSP1-(19, as well as IgG1 and IgG3 to schizont extract were significantly increased in coinfected children compared to P. falciparum mono-infected children. Stimulation with MSP1-(19 lead to a specific production of both interleukin-10 (IL-10 and interferon-γ (IFN-γ, whereas the stimulation with schizont extract produced an IL-10 response only in the coinfected group. CONCLUSIONS: Our study suggests that schistosomiasis coinfection favours anti-malarial protective antibody responses, which could be associated with the regulation of IL-10 and IFN-γ production and seems to be antigen-dependent. This study demonstrates the importance of infectious status of the population in the evaluation of acquired immunity against malaria and highlights the consequences of a multiple infection environment during clinical trials of anti-malaria vaccine candidates.

  19. Malaria fever therapy for general paralysis of the insane in Denmark.

    Science.gov (United States)

    Kragh, Jesper Vaczy

    2010-12-01

    This article explores the history of general paralysis and malaria fever therapy in Denmark. I argue that the small size of the country gave Danish psychiatrists excellent opportunities for performing statistical studies of general paralysis in the 19th century. In the early 1920s malaria fever therapy was introduced in Danish mental hospitals and raised hopes of a cure for paralytics. Malaria fever therapy became popular among Danish psychiatrists, but the new therapy also raised ethical questions and led to the first regulations concerning informed consent in the history of Danish psychiatry.

  20. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    Science.gov (United States)

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-03

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process.

  1. A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among children.

    Science.gov (United States)

    Stassijns, Jorgen; Bollaerts, Kaatje; Baay, Marc; Verstraeten, Thomas

    2016-02-03

    New adjuvants such as the AS- or the MF59-adjuvants improve vaccine efficacy and facilitate dose-sparing. Their use in influenza and malaria vaccines has resulted in a large body of evidence on their clinical safety in children. We carried out a systematic search for safety data from published clinical trials on newly adjuvanted vaccines in children ≤10 years of age. Serious adverse events (SAEs), solicited AEs, unsolicited AEs and AEs of special interest were evaluated for four new adjuvants: the immuno-stimulants containing adjuvant systems AS01 and AS02, and the squalene containing oil-in-water emulsions AS03 and MF59. Relative risks (RR) were calculated, comparing children receiving newly adjuvanted vaccines to children receiving other vaccines with a variety of antigens, both adjuvanted and unadjuvanted. Twenty-nine trials were included in the meta-analysis, encompassing 25,056 children who received at least one dose of the newly adjuvanted vaccines. SAEs did not occur more frequently in adjuvanted groups (RR 0.85, 95%CI 0.75-0.96). Our meta-analyses showed higher reactogenicity following administration of newly adjuvanted vaccines, however, no consistent pattern of solicited AEs was observed across adjuvant systems. Pain was the most prevalent AE, but often mild and of short duration. No increased risks were found for unsolicited AEs, febrile convulsions, potential immune mediated diseases and new onset of chronic diseases. Our meta-analysis did not show any safety concerns in clinical trials of the newly adjuvanted vaccines in children ≤10 years of age. An unexplained increase of meningitis in one Phase III AS01-adjuvanted malaria trial and the link between narcolepsy and the AS03-adjuvanted pandemic vaccine illustrate that continued safety monitoring is warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Interventions aimed at communities to inform and/or educate about early childhood vaccination.

    Science.gov (United States)

    Saeterdal, Ingvil; Lewin, Simon; Austvoll-Dahlgren, Astrid; Glenton, Claire; Munabi-Babigumira, Susan

    2014-11-19

    -making regarding childhood vaccination (adjusted mean difference 0.043, 95% CI -0.009 to 0.097).The studies did not assess knowledge among participants of vaccine service delivery; participant confidence in the vaccination decision; intervention costs; or any unintended harms as a consequence of the intervention. We did not identify any studies that compared interventions aimed at communities to inform and/or educate with interventions directed to individual parents or caregivers, or studies that compared two interventions aimed at communities to inform and/or educate about childhood vaccination. This review provides limited evidence that interventions aimed at communities to inform and educate about early childhood vaccination may improve attitudes towards vaccination and probably increase vaccination uptake under some circumstances. However, some of these interventions may be resource intensive when implemented on a large scale and further rigorous evaluations are needed. These interventions may achieve most benefit when targeted to areas or groups that have low childhood vaccination rates.'

  3. Relationship between the entomologic inoculation rate and the force of infection for Plasmodium falciparum malaria.

    Science.gov (United States)

    Smith, Thomas; Maire, Nicolas; Dietz, Klaus; Killeen, Gerry F; Vounatsou, Penelope; Molineaux, Louis; Tanner, Marcel

    2006-08-01

    We propose a stochastic model for the relationship between the entomologic inoculation rate (EIR) for Plasmodium falciparum malaria and the force of infection in endemic areas. The model incorporates effects of increased exposure to mosquito bites as a result of the growth in body surface area with the age of the host, naturally acquired pre-erythrocytic immunity, and the reduction in the proportion of entomologically assessed inoculations leading to infection, as the EIR increases. It is fitted to multiple datasets from field studies of the relationship between malaria infection and the EIR. We propose that this model can account for non-monotonic relationships between the age of the host and the parasite prevalence and incidence of disease. It provides a parsimonious explanation for the faster acquisition of natural immunity in adults than in children exposed to high EIRs. This forms one component of a new stochastic model for the entire transmission cycle of P. falciparum that we have derived to estimate the potential epidemiologic impact of malaria vaccines and other malaria control interventions.

  4. A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum

    NARCIS (Netherlands)

    Farrance, C.E.; Rhee, A.; Jones, R.M.; Musiychuk, K.; Shamloul, M.; Sharma, S.; Mett, V.; Chichester, J.A.; Streatfield, S.J.; Roeffen, W.F.G.; Vegte-Bolmer, M.G. van de; Sauerwein, R.W.; Tsuboi, T.; Muratova, O.V.; Wu, Y.; Yusibov, V.

    2011-01-01

    Plasmodium falciparum is transmitted to a new host after completing its sexual cycle within a mosquito. Developing vaccines against the parasite sexual stages is a critical component in the fight against malaria. We are targeting multiple proteins of P. falciparum which are found only on the

  5. Implementation research: reactive mass vaccination with single-dose oral cholera vaccine, Zambia.

    Science.gov (United States)

    Poncin, Marc; Zulu, Gideon; Voute, Caroline; Ferreras, Eva; Muleya, Clara Mbwili; Malama, Kennedy; Pezzoli, Lorenzo; Mufunda, Jacob; Robert, Hugues; Uzzeni, Florent; Luquero, Francisco J; Chizema, Elizabeth; Ciglenecki, Iza

    2018-02-01

    To describe the implementation and feasibility of an innovative mass vaccination strategy - based on single-dose oral cholera vaccine - to curb a cholera epidemic in a large urban setting. In April 2016, in the early stages of a cholera outbreak in Lusaka, Zambia, the health ministry collaborated with Médecins Sans Frontières and the World Health Organization in organizing a mass vaccination campaign, based on single-dose oral cholera vaccine. Over a period of 17 days, partners mobilized 1700 health ministry staff and community volunteers for community sensitization, social mobilization and vaccination activities in 10 townships. On each day, doses of vaccine were delivered to vaccination sites and administrative coverage was estimated. Overall, vaccination teams administered 424 100 doses of vaccine to an estimated target population of 578 043, resulting in an estimated administrative coverage of 73.4%. After the campaign, few cholera cases were reported and there was no evidence of the disease spreading within the vaccinated areas. The total cost of the campaign - 2.31 United States dollars (US$) per dose - included the relatively low cost of local delivery - US$ 0.41 per dose. We found that an early and large-scale targeted reactive campaign using a single-dose oral vaccine, organized in response to a cholera epidemic within a large city, to be feasible and appeared effective. While cholera vaccines remain in short supply, the maximization of the number of vaccines in response to a cholera epidemic, by the use of just one dose per member of an at-risk community, should be considered.

  6. Measurement of ex vivo ELISpot interferon-gamma recall responses to Plasmodium falciparum AMA1 and CSP in Ghanaian adults with natural exposure to malaria.

    Science.gov (United States)

    Ganeshan, Harini; Kusi, Kwadwo A; Anum, Dorothy; Hollingdale, Michael R; Peters, Bjoern; Kim, Yohan; Tetteh, John K A; Ofori, Michael F; Gyan, Ben A; Koram, Kwadwo A; Huang, Jun; Belmonte, Maria; Banania, Jo Glenna; Dodoo, Daniel; Villasante, Eileen; Sedegah, Martha

    2016-02-01

    Malaria eradication requires a concerted approach involving all available control tools, and an effective vaccine would complement these efforts. An effective malaria vaccine should be able to induce protective immune responses in a genetically diverse population. Identification of immunodominant T cell epitopes will assist in determining if candidate vaccines will be immunogenic in malaria-endemic areas. This study therefore investigated whether class I-restricted T cell epitopes of two leading malaria vaccine antigens, Plasmodium falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1), could recall T cell interferon-γ responses from naturally exposed subjects using ex vivo ELISpot assays. Thirty-five subjects aged between 24 and 43 years were recruited from a malaria-endemic urban community of Ghana in 2011, and their peripheral blood mononuclear cells (PBMCs) were tested in ELISpot IFN-γ assays against overlapping 15mer peptide pools spanning the entire CSP and AMA1 antigens, and 9-10mer peptide epitope mixtures that included previously identified and/or predicted human leukocyte antigen (HLA) class 1-restricted epitopes from same two antigens. For CSP, 26 % of subjects responded to at least one of the nine 15mer peptide pools whilst 17 % responded to at least one of the five 9-10mer HLA-restricted epitope mixtures. For AMA1, 63 % of subjects responded to at least one of the 12 AMA1 15mer peptide pools and 51 % responded to at least one of the six 9-10mer HLA-restricted epitope mixtures. Following analysis of data from the two sets of peptide pools, along with bioinformatics predictions of class I-restricted epitopes and the HLA supertypes expressed by a subset of study subjects, peptide pools that may contain epitopes recognized by multiple HLA supertypes were identified. Collectively, these results suggest that natural transmission elicits ELISpot IFN-γ activities to class 1-restricted epitopes that are largely HLA-promiscuous. These

  7. Vaccines 'on demand': science fiction or a future reality.

    Science.gov (United States)

    Ulmer, Jeffrey B; Mansoura, Monique K; Geall, Andrew J

    2015-02-01

    Self-amplifying mRNA vaccines are being developed as a platform technology with potential to be used for a broad range of targets. The synthetic production methods for their manufacture, combined with the modern tools of bioinformatics and synthetic biology, enable these vaccines to be produced rapidly from an electronic gene sequence. Preclinical proof of concept has so far been achieved for influenza, respiratory syncytial virus, rabies, Ebola, cytomegalovirus, human immunodeficiency virus and malaria. This editorial highlights the key milestones in the discovery and development of self-amplifying mRNA vaccines, and reviews how they might be used as a rapid response platform. The paper points out how future improvements in RNA vector design and non-viral delivery may lead to decreases in effective dose and increases in production capacity. The prospects for non-viral delivery of self-amplifying mRNA vaccines are very promising. Like other types of nucleic acid vaccines, these vaccines have the potential to draw on the positive attributes of live-attenuated vaccines while obviating many potential safety limitations. Hence, this approach could enable the concept of vaccines on demand as a rapid response to a real threat rather than the deployment of strategic stockpiles based on epidemiological predictions for possible threats.

  8. Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant.

    Science.gov (United States)

    Padte, Neal N; Li, Xiangming; Tsuji, Moriya; Vasan, Sandhya

    2011-08-01

    Natural killer T (NKT) cells are known to play a role against certain microbial infections, including malaria and HIV, two major global infectious diseases. Strategies that can harness and amplify the immunotherapeutic potential of NKT cells can serve as powerful tools in the fight against such diseases. 7DW8-5, a novel glycolipid, may be one such tool. The interaction of 7DW8-5 with CD1d molecules induces activation of NKT cells, thereby activating various immune-competent cells including dendritic cells (DCs) to provide a significant adjuvant effect for several vaccines. This review discusses the discovery and characterization of 7DW8-5 and the practical considerations of its preclinical and clinical development as a potential glycolipid adjuvant for candidate malaria and HIV vaccines. Copyright © 2010. Published by Elsevier Inc.

  9. Immunization of early adolescent females with human papillomavirus type 16 and 18 L1 virus-like particle vaccine containing AS04 adjuvant

    DEFF Research Database (Denmark)

    Pedersen, Court; Petaja, Tiina; Strauss, Gitte

    2007-01-01

    will require prophylactic vaccination against oncogenic HPV 16 and 18 before the onset of sexual activity in early adolescent girls. To establish the feasibility of vaccination in girls 10-14 years of age, we compared the immunogenicity and safety in early adolescent female individuals to those 15-25 years...... measured by enzyme-linked immunosorbent assay. Vaccine safety was assessed at 7 or 30 days after each dose; serious adverse events were recorded during the entire study period. RESULTS: Both age groups achieved 100% seroconversion for HPV 16 and 18. Participants in the group aged 10-14 years were not only......PURPOSE: In female individuals 15-25-years of age, the AS04-containing human papillomavirus (HPV)-16/18 vaccine is highly immunogenic and provides up to 100% protection against HPV-16/18 persistent infection and associated cervical lesions up to 4.5 years. Optimal cervical cancer prevention...

  10. Using rapid diagnostic tests as source of malaria parasite DNA for molecular analyses in the era of declining malaria prevalence

    DEFF Research Database (Denmark)

    Ishengoma, Deus S; Lwitiho, Sudi; Madebe, Rashid A

    2011-01-01

    was conducted to examine if sufficient DNA could be successfully extracted from malaria rapid diagnostic tests (RDTs), used and collected as part of routine case management services in health facilities, and thus forming the basis for molecular analyses, surveillance and quality control (QC) testing of RDTs....... continued molecular surveillance of malaria parasites is important to early identify emerging anti-malarial drug resistance, it is becoming increasingly difficult to obtain parasite samples from ongoing studies, such as routine drug efficacy trials. To explore other sources of parasite DNA, this study...

  11. Pulmonary manifestations of malaria : recognition and management.

    Science.gov (United States)

    Taylor, Walter R J; Cañon, Viviam; White, Nicholas J

    2006-01-01

    Lung involvement in malaria has been recognized for more than 200 hundred years, yet our knowledge of its pathogenesis and management is limited. Pulmonary edema is the most severe form of lung involvement. Increased alveolar capillary permeability leading to intravascular fluid loss into the lungs is the main pathophysiologic mechanism. This defines malaria as another cause of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS).Pulmonary edema has been described most often in non-immune individuals with Plasmodium falciparum infections as part of a severe systemic illness or as the main feature of acute malaria. P.vivax and P.ovale have also rarely caused pulmonary edema.Clinically, patients usually present with acute breathlessness that can rapidly progress to respiratory failure either at disease presentation or, interestingly, after treatment when clinical improvement is taking place and the parasitemia is falling. Pregnant women are particularly prone to developing pulmonary edema. Optimal management of malaria-induced ALI/ARDS includes early recognition and diagnosis. Malaria must always be suspected in a returning traveler or a visitor from a malaria-endemic country with an acute febrile illness. Slide microscopy and/or the use of rapid antigen tests are standard diagnostic tools. Malaria must be treated with effective drugs, but current choices are few: e.g. parenteral artemisinins, intravenous quinine or quinidine (in the US only). A recent trial in adults has shown that intravenous artesunate reduces severe malaria mortality by a third compared with adults treated with intravenous quinine. Respiratory compromise should be managed on its merits and may require mechanical ventilation.Patients should be managed in an intensive care unit and particular attention should be paid to the energetic management of other severe malaria complications, notably coma and acute renal failure. ALI/ARDS may also be related to a coincidental bacterial

  12. Malaria.

    Science.gov (United States)

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  13. Malaria and protective behaviours: is there a malaria trap?

    Science.gov (United States)

    Berthélemy, Jean-Claude; Thuilliez, Josselin; Doumbo, Ogobara; Gaudart, Jean

    2013-06-13

    In spite of massive efforts to generalize efficient prevention, such as insecticide-treated mosquito nets (ITN) or long-lasting insecticidal nets (LLINs), malaria remains prevalent in many countries and ITN/LLINs are still only used to a limited extent. This study proposes a new model for malaria economic analysis by combining economic epidemiology tools with the literature on poverty traps. A theoretical model of rational protective behaviour in response to malaria is designed, which includes endogenous externalities and disease characteristics. Survey data available for Uganda provide empirical support to the theory of prevalence-elastic protection behaviours, once endogeneity issues related to epidemiology and poverty are solved. Two important conclusions emerge from the model. First, agents increase their protective behaviour when malaria is more prevalent in a society. This is consistent with the literature on "prevalence-elastic behaviour". Second, a 'malaria trap' defined as the result of malaria reinforcing poverty while poverty reduces the ability to deal with malaria can theoretically exist and the conditions of existence of the malaria trap are identified. These results suggest the possible existence of malaria traps, which provides policy implications. Notably, providing ITN/LLINs at subsidized prices is not sufficient. To be efficient an ITN/LLINs dissemination campaigns should include incentive of the very poor for using ITN/LLINs.

  14. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    Directory of Open Access Journals (Sweden)

    Yoshikazu Nakayama

    2015-03-01

    Full Text Available Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing heterologous antigens for human use have yet been licensed in the U.S., Europe or Japan. In this research, we describe the current regulatory context for gene-based prophylactic vaccines against infectious disease in the U.S., Europe, and Japan. We identify the important considerations, in particular, on the preclinical assessments that would allow these vaccines to proceed to clinical trials, and the differences on the regulatory pathway for the marketing authorization in each region.

  15. Host-parasite interactions and ecology of the malaria parasite-a bioinformatics approach.

    Science.gov (United States)

    Izak, Dariusz; Klim, Joanna; Kaczanowski, Szymon

    2018-04-25

    Malaria remains one of the highest mortality infectious diseases. Malaria is caused by parasites from the genus Plasmodium. Most deaths are caused by infections involving Plasmodium falciparum, which has a complex life cycle. Malaria parasites are extremely well adapted for interactions with their host and their host's immune system and are able to suppress the human immune system, erase immunological memory and rapidly alter exposed antigens. Owing to this rapid evolution, parasites develop drug resistance and express novel forms of antigenic proteins that are not recognized by the host immune system. There is an emerging need for novel interventions, including novel drugs and vaccines. Designing novel therapies requires knowledge about host-parasite interactions, which is still limited. However, significant progress has recently been achieved in this field through the application of bioinformatics analysis of parasite genome sequences. In this review, we describe the main achievements in 'malarial' bioinformatics and provide examples of successful applications of protein sequence analysis. These examples include the prediction of protein functions based on homology and the prediction of protein surface localization via domain and motif analysis. Additionally, we describe PlasmoDB, a database that stores accumulated experimental data. This tool allows data mining of the stored information and will play an important role in the development of malaria science. Finally, we illustrate the application of bioinformatics in the development of population genetics research on malaria parasites, an approach referred to as reverse ecology.

  16. Nanotecnologia farmacêutica aplicada ao tratamento da malária Application of pharmaceutical nanotechnology to the treatment of malaria

    Directory of Open Access Journals (Sweden)

    Lúcio Figueira Pimentel

    2007-12-01

    Full Text Available Apesar do desenvolvimento tecnológico e científico, a malária permanece como um dos maiores problemas de saúde a serem combatidos. As estratégias modernas para o controle da doença prevêem ações conjuntas, como o combate do inseto vetor, diagnóstico rápido e preciso, garantia de terapêutica adequada, redução dos casos de resistência, além do desenvolvimento de novos agentes terapêuticos e vacina e através da otimização da ação de fármacos utilizados na atualidade. Os sistemas de liberação controlada de fármacos vêm recebendo atenção especial nesta área de pesquisa, com o desenvolvimento de estratégias para a veiculação de agentes bioativos e vacinas na forma de nanodispositivos tais como lipossomas, nanopartículas e micropartículas. Diversos nanossistemas já demonstraram eficácia na otimização de vacinas e quimioterápicos destinados ao controle da malária. Este artigo de revisão tem por objetivo avaliar o estado da arte na terapêutica da malária e demonstrar o potencial da nanotecnologia farmacêutica como ferramenta destinada ao combate da doença.In spite of living in a scientific and technological era, malaria continues to be one of the worldwide greatest health challenges. The state-of-the-art policy to keep malaria under control is expected to comprise joint-strategies, such as the vector control, fast diagnosis, therapeutic guarantee, resistance cutback, drug optimization and development of new therapeutic agents and vaccines. Nano and microcarrier systems have been receiving a special attention, including the development of strategies for carrying bioactive agents, vaccines through nanodevices, such as liposomes and nanoparticles, and microdevices, such as microparticles and microemulsions. Numerous nanosystems have already substantiated their effectiveness to optimize vaccines, insecticides, and chemotherapeutic agents applied to the control of malaria. This review is intended to explain the

  17. Proteins involved in invasion of human red blood cells by malaria parasites

    Directory of Open Access Journals (Sweden)

    Ewa Jaśkiewicz

    2010-11-01

    Full Text Available Malaria is a disease caused by parasites of Plasmodium species. It is responsible for around 1-2 million deaths annually, mainly children under the age of 5. It occurs mainly in tropical and subtropical areas.Malaria is caused by five Plasmodium species:[i] P. falciparum, P. malariae, P. vivax, P. knowlesi[/i] and [i]P. ovale[/i]. Mosquitoes spread the disease by biting humans. The malaria parasite has two stages of development: the human stage and the mosquito stage. The first stage occurs in the human body and is divided into two phases: the liver phase and the blood phase.The invasion of erythrocytes by [i]Plasmodium[/i] merozoites is a multistep process of specific protein interactions between the parasite and red blood cell. The first step is the reversible merozoite attachment to the erythrocyte followed by its apical reorientation, then formation of an irreversible “tight” junction and finally entry into the red cell in a parasitophorous vacuole.The blood phase is supported by a number of proteins produced by the parasite. The merozoite surface GPI-anchored proteins (MSP-1, 2, 4, 5, 8 and 10 assist in the process of recognition of susceptible erythrocytes, apical membrane antigen (AMA-1 may be directly responsible for apical reorientation of the merozoite and apical proteins which function in tight junction formation. These ligands are members of two families: Duffy binding-like (DBL and reticulocyte binding-like (RBL proteins. In [i]Plasmodium[/i] [i]falciparum[/i] the DBL family includes: EBA-175, EBA-140 (BAEBL, EBA-181 (JESEBL, EBA-165 (PEBL and EBL-1 ligands.To date, no effective antimalarial vaccine has been developed, but there are several studies for this purpose. Therefore, it is crucial to understand the molecular basis of host cells invasion by parasites. Major efforts are focused on developing a multiantigenic and multiepitope vaccine preventing all steps of [i]Plasmodium[/i] invasion.

  18. Declines in Malaria Burden and All-Cause Child Mortality following Increases in Control Interventions in Senegal, 2005-2010.

    Science.gov (United States)

    Thwing, Julie; Eckert, Erin; Dione, Demba Anta; Tine, Roger; Faye, Adama; Yé, Yazoume; Ndiop, Medoune; Cisse, Moustapha; Ndione, Jacques Andre; Diouf, Mame Birame; Ba, Mady

    2017-09-01

    Malaria is endemic in Senegal. The national malaria control strategy focuses on achieving universal coverage for major interventions, with a goal of reaching preelimination status by 2018. Senegal began distribution of insecticide-treated nets (ITNs) and introduced artemisinin-based combination therapy in 2006, then introduced rapid diagnostic tests in 2007. We evaluated the impact of these efforts using a plausibility design based on malaria's contribution to all-cause under-five mortality (ACCM) and considering other contextual factors which may influence ACCM. Between 2005 and 2010, household ownership of ITNs increased from 20% to 63%, and the proportion of people sleeping under an ITN the night prior to the survey increased from 6% to 29%. Malaria parasite prevalence declined from 6% to 3% from 2008 to 2010 among children under five. Some nonmalaria indicators of child health improved, for example, increase of complete vaccination coverage from 58% to 64%; however, nutritional indicators deteriorated, with an increase in stunting from 16% to 26%. Although economic indicators improved, environmental conditions favored an increase in malaria transmission. ACCM decreased 40% between 2005 and 2010, from 121 (95% confidence interval [CI] 113-129) to 72 (95% CI 66-77) per 1,000, and declines were greater among age groups, epidemiologic zones, and wealth quintiles most at risk for malaria. After considering coverage of malaria interventions, trends in malaria morbidity, effects of contextual factors, and trends in ACCM, it is plausible that malaria control interventions contributed to a reduction in malaria mortality and to the impressive gains in child survival in Senegal.

  19. Indigenous environmental indicators for malaria: A district study in Zimbabwe.

    Science.gov (United States)

    Macherera, Margaret; Chimbari, Moses J; Mukaratirwa, Samson

    2017-11-01

    This paper discusses indigenous environmental indicators for the occurrence of malaria in ward 11, 15 and 18 of Gwanda district, Zimbabwe. The study was inspired by the successes of use of indigenous knowledge systems in community based early warning systems for natural disasters. To our knowledge, no study has examined the relationship between malaria epidemics and climatic factors in Gwanda district. The aim of the study was to determine the environmental indicators for the occurrence of malaria. Twenty eight key informants from the 3 wards were studied. Questionnaires, focus group discussions and PRA sessions were used to collect data. Content analysis was used to analyse the data. The local name for malaria was 'uqhuqho' literally meaning a fever. The disease is also called, "umkhuhlane wemiyane" and is derived from the association between malaria and mosquitoes. The findings of our study reveal that trends in malaria incidence are perceived to positively correlate with variations in both temperature and rainfall, although factors other than climate seem to play an important role too. Plant phenology and insects are the commonly used indicators in malaria prediction in the study villages. Other indicators for malaria prediction included the perceived noise emanating from mountains, referred to as "roaring of mountains" and certain behaviours exhibited by ostriches. The results of the present study highlight the importance of using climatic information in the analysis of malaria surveillance data, and this knowledge can be integrated into the conventional health system to develop a community based malaria forecasting system. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of Eastern Amazonian Brazil

    DEFF Research Database (Denmark)

    Conn, Jan E.; Vineis, Joseph H.; Bollback, Jonathan Paul

    2006-01-01

    of insecticides, but since the mid-1990s there has been a shift to patient treatment and focal insecticide fogging. Anopheles darlingi was believed to have been significantly reduced in a gold-mining community, Peixoto de Azevedo (in Mato Grosso State), in the early 1990s by insecticide use during a severe...... malaria epidemic. In contrast, although An. darlingi was eradicated from some districts of the city of Belem (the capital of Para State) in 1968 to reduce malaria, populations around the water protection area in the eastern district were treated only briefly. To investigate the population structure of An...

  1. About Malaria

    Science.gov (United States)

    ... Emergency Consultations, and General Public. Contact Us About Malaria Recommend on Facebook Tweet Share Compartir Malaria is ... from sub-Saharan Africa and South Asia. About Malaria Topics FAQs Frequently Asked Question, Incubation period, uncomplicated & ...

  2. Epidemiology and Synergistic Hepatopathology of Malaria and Hepatitis C Virus Coinfection.

    Science.gov (United States)

    Nasir, Idris Abdullahi; Yakubu, Sa'adatu; Mustapha, Jelili Olaide

    2017-01-01

    Malaria and hepatitis C virus (HCV) infections are very common causes of human suffering with overlapping global geographic distributions. With the growing incidence of HCV infections in malaria-endemic zones and malaria in areas with exceptionally high HCV prevalence, coinfections and syndemism of both pathogens are likely to occur. However, studies of malaria and HCV coinfections are very rare despite the fact that liver-stage plasmodiasis and hepatitis C develop in hepatocytes which may synergistically interact. The fact that both pathogens share similar entry molecules or receptors in early invasive steps of hepatocytes further makes hepatopathologic investigations of coinfected hosts greatly important. This review sought to emphasize the public health significance of malaria/HCV coinfections and elucidate the mechanisms of pathogens' entrance and invasion of susceptible host to improve on existing or develop antiplasmodial drugs and hepatitis C therapeutics that can intervene at appropriate stages of pathogens' life cycles.

  3. Enhanced acquired antibodies to a chimeric Plasmodium falciparum antigen; UB05-09 is associated with protective immunity against malaria.

    Science.gov (United States)

    Dinga, J N; Gamua, S D; Titanji, V P K

    2017-08-01

    It has been shown that covalently linking two antigens could enhance the immunogenicity of the chimeric construct. To prioritize such a chimera for malaria vaccine development, it is necessary to demonstrate that naturally acquired antibodies against the chimera are associated with protection from malaria. Here, we probe the ability of a chimeric construct of UB05 and UB09 antigens (UB05-09) to better differentiate between acquired immune protection and susceptibility to malaria. In a cross-sectional study, recombinant UB05-09 chimera and the constituent antigens were used to probe for specific antibodies in the plasma from children and adults resident in a malaria-endemic zone, using the enzyme-linked immunosorbent assay (ELISA). Anti-UB05-09 antibody levels doubled that of its constituent antigens, UB09 and UB05, and this correlated with protection against malaria. The presence of enhanced UB05-09-specific antibody correlated with the absence of fever and parasitaemia, which are the main symptoms of malaria infection. The chimera is more effective in detecting and distinguishing acquired protective immunity against malaria than any of its constituents taken alone. Online B-cell epitope prediction tools confirmed the presence of B-cell epitopes in the study antigens. UB05-09 chimera is a marker of protective immunity against malaria that needs to be studied further. © 2017 John Wiley & Sons Ltd.

  4. Toward Malaria Risk Prediction in Afghanistan Using Remote Sensing

    Science.gov (United States)

    Safi, N.; Adimi, F.; Soebiyanto, R. P.; Kiang, R. K.

    2010-01-01

    average provincial accuracy reaches 91%. The developed predictive and early warning capabilities support the Third Strategic Approach of the WHO EMRO Malaria Control and Elimination Plan.

  5. The effects of varying exposure to malaria transmission on development of antimalarial antibody responses in preschool children. XVI. Asembo Bay Cohort Project

    NARCIS (Netherlands)

    Singer, Lauren M.; Mirel, Lisa B.; ter Kuile, Feiko O.; Branch, OraLee H.; Vulule, John M.; Kolczak, Margarette S.; Hawley, William A.; Kariuki, Simon K.; Kaslow, David C.; Lanar, David E.; Lal, Altaf A.

    2003-01-01

    In areas of intense malaria transmission, malaria morbidity and mortality is highest in children 3-18 months old. Interventions that reduce malaria exposure early in life reduce morbidity but may also delay development of clinical immunity. We assessed the relationship between intensity of malaria

  6. Comparative Genomics and Systems Biology of Malaria Parasites Plasmodium

    Science.gov (United States)

    Cai, Hong; Zhou, Zhan; Gu, Jianying; Wang, Yufeng

    2013-01-01

    Malaria is a serious infectious disease that causes over one million deaths yearly. It is caused by a group of protozoan parasites in the genus Plasmodium. No effective vaccine is currently available and the elevated levels of resistance to drugs in use underscore the pressing need for novel antimalarial targets. In this review, we survey omics centered developments in Plasmodium biology, which have set the stage for a quantum leap in our understanding of the fundamental processes of the parasite life cycle and mechanisms of drug resistance and immune evasion. PMID:24298232

  7. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination

    Directory of Open Access Journals (Sweden)

    Mackenzie Donna O

    2011-05-01

    Full Text Available Abstract Background In the Solomon Islands, the Malaria Eradication Programmes of the 1970s virtually eliminated the malaria vectors: Anopheles punctulatus and Anopheles koliensis, both late night biting, endophagic species. However, the vector, Anopheles farauti, changed its behaviour to bite early in the evening outdoors. Thus, An. farauti mosquitoes were able to avoid insecticide exposure and still maintain transmission. Thirty years on and the Solomon Islands are planning for intensified malaria control and localized elimination; but little is currently known about the behaviour of the vectors and how they will respond to intensified control. Methods In the elimination area, Temotu Province, standard entomological collection methods were conducted in typical coastal villages to determine the vector, its ecology, biting density, behaviour, longevity, and vector efficacy. These vector surveys were conducted pre-intervention and post-intervention following indoor residual spraying and distribution of long-lasting insecticidal nets. Results Anopheles farauti was the only anopheline in Temotu Province. In 2008 (pre-intervention, this species occurred in moderate to high densities (19.5-78.5 bites/person/night and expressed a tendency to bite outdoors, early in the night (peak biting time 6-8 pm. Surveys post intervention showed that there was little, if any, reduction in biting densities and no reduction in the longevity of the vector population. After adjusting for human behaviour, indoor biting was reduced from 57% pre-intervention to 40% post-intervention. Conclusion In an effort to learn from historical mistakes and develop successful elimination programmes, there is a need for implementing complimentary vector control tools that can target exophagic and early biting vectors. Intensified indoor residual spraying and long-lasting insecticide net use has further promoted the early, outdoor feeding behaviour of An. farauti in the Solomon Islands

  8. Community response to intermittent preventive treatment of malaria in infants (IPTi in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Senn Nicolas

    2010-12-01

    Full Text Available Abstract Background Building on previous acceptability research undertaken in sub-Saharan Africa this article aims to investigate the acceptability of intermittent preventive treatment of malaria in infants (IPTi in Papua New Guinea (PNG. Methods A questionnaire was administered to mothers whose infants participated in the randomised placebo controlled trial of IPTi. Mothers whose infants participated and who refused to participate in the trial, health workers, community reporters and opinion leaders were interviewed. Men and women from the local community also participated in focus group discussions. Results Respondents viewed IPTi as acceptable in light of wider concern for infant health and the advantages of trial participation. Mothers reported complying with at-home administration of IPTi due to perceived benefits of IPTi and pressure from health workers. In spite of patchy knowledge, respondents also demonstrated a demand for infant vaccinations and considered non-vaccination to be neglect. There is little evidence that IPTi has negative impacts on attitudes to EPI, EPI adherence or existing malaria prevention practices. Conclusion The degree of similarity between findings from the acceptability studies undertaken in sub-Saharan Africa and PNG allows some generalization relating to the implementation of IPTi outside of Africa: IPTi fits well with local health cultures, appears to be accepted easily and has little impact on attitudes towards EPI or malaria prevention. The study adds to the evidence indicating that IPTi could be rolled out in a range of social and cultural contexts.

  9. The diagnostic and prognostic value of conventional and rapid diagnostic tools in malaria

    OpenAIRE

    Chandrakanth C.H

    2016-01-01

    Background: The burden of malaria is raising all over the world and India is no exception. Despite well established treatment regimens and diagnostic tools, Malaria is thought to kill between1.1 to 2.7 million people worldwide each year. Rapid diagnosis and early treatment are one of the key factors in controlling the disease burden of malaria. Objective: The study was conducted to investigate the diagnostic and prognostic utility of rapid test (QBC, PLDH, HRP2) with conventional thick and th...

  10. Firm-Led Malaria Prevention in the United States, 1910-1920.

    Science.gov (United States)

    Carson, Byron

    2016-05-01

    In the absence of capable government services, a railroad company in Texas and multiple cotton mills in North Carolina successfully prevented malaria in the early twentieth century. This Article looks through the lens of economics to understand how and why people had the incentive to privately coordinate malaria prevention during this time, but not after. These firms, motivated by increases in productivity and profit, implemented extensive anti-malaria programs and used their hierarchical organizational structures to monitor performance. The factors underlying the decline of private prevention include a fall in the overall rate of malaria, the increasing presence of the federal government, and technological innovations that lowered exposure to mosquitoes. Understanding how, why, and when firms can prevent diseases has important implications for current disease policy, especially where governments, international organizations, and technologies are not enough.

  11. Naturally acquired antibodies to the glutamate-rich protein are associated with protection against Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Dodoo, D; Theisen, M; Kurtzhals, J A

    2000-01-01

    The development of effective malaria vaccines depends on the identification of targets of well-defined protective immune responses. Data and samples from a longitudinal study of a cohort of children from coastal Ghana were used to investigate the role of antibody responses to 3 regions of the Pla...

  12. Febrile illness diagnostics and the malaria-industrial complex: a socio-environmental perspective

    Directory of Open Access Journals (Sweden)

    Justin Stoler

    2016-11-01

    Full Text Available Abstract Background Global prioritization of single-disease eradication programs over improvements to basic diagnostic capacity in the Global South have left the world unprepared for epidemics of chikungunya, Ebola, Zika, and whatever lies on the horizon. The medical establishment is slowly realizing that in many parts of sub-Saharan Africa (SSA, particularly urban areas, up to a third of patients suffering from acute fever do not receive a correct diagnosis of their infection. Main body Malaria is the most common diagnosis for febrile patients in low-resource health care settings, and malaria misdiagnosis has soared due to the institutionalization of malaria as the primary febrile illness of SSA by international development organizations and national malaria control programs. This has inadvertently created a “malaria-industrial complex” and historically obstructed our complete understanding of the continent’s complex communicable disease epidemiology, which is currently dominated by a mélange of undiagnosed febrile illnesses. We synthesize interdisciplinary literature from Ghana to highlight the complexity of communicable disease care in SSA from biomedical, social, and environmental perspectives, and suggest a way forward. Conclusion A socio-environmental approach to acute febrile illness etiology, diagnostics, and management would lead to substantial health gains in Africa, including more efficient malaria control. Such an approach would also improve global preparedness for future epidemics of emerging pathogens such as chikungunya, Ebola, and Zika, all of which originated in SSA with limited baseline understanding of their epidemiology despite clinical recognition of these viruses for many decades. Impending ACT resistance, new vaccine delays, and climate change all beckon our attention to proper diagnosis of fevers in order to maximize limited health care resources.

  13. Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take? CD8 T-Cell Vaccines: To B or Not to B?

    Science.gov (United States)

    Beura, Lalit K; Jameson, Stephen C; Masopust, David

    2017-12-18

    Although CD8 T-cell vaccines do not have the record of success of humoral-mediated vaccines, they do not receive the same degree of effort. Many diseases, including malaria, tuberculosis, and acquired immune deficiency syndrome (AIDS) have not yielded to vaccines, and intrinsic barriers may impede approaches limited solely to generating antibodies. Moreover, population growth and modernization are driving an increased pace of new emerging global health threats (human immunodeficiency virus [HIV] is a recent example), which will create unpredictable challenges for vaccinologists. Vaccine-elicited CD8 T cells may contribute to protective modalities, although their development will require a more thorough understanding of CD8 T-cell biology, practices for manufacturing and delivering CD8 T-cell-eliciting vectors that have acceptable safety profiles, and, ultimately, the political will and faith of those that make vaccine research funding decisions. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Vaccine supply chains need to be better funded and strengthened, or lives will be at risk.

    Science.gov (United States)

    Kaufmann, Judith R; Miller, Roger; Cheyne, James

    2011-06-01

    In the next decade, at least twelve additional vaccines that target such diseases as typhoid, malaria, and dengue will become available to lower- and middle-income countries. These vaccines must travel along what are called supply chains, which include all personnel, systems, equipment, and activities involved in ensuring that vaccines are effectively delivered from the point of production to the people who need them. But for various reasons, supply chains are already strained in many developing countries, and the potential inability to distribute new vaccines will place lives at risk. Among the many steps needed to strengthen the global vaccine supply chain, we suggest that the international community pursue improved coordination between organizations that donate and ship vaccines and the host-country officials who receive and distribute the vaccines, as well as better training for supply-chain managers.

  15. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite.

    Science.gov (United States)

    Mistarz, Ulrik H; Singh, Susheel K; Nguyen, Tam T T N; Roeffen, Will; Yang, Fen; Lissau, Casper; Madsen, Søren M; Vrang, Astrid; Tiendrebeogo, Régis W; Kana, Ikhlaq H; Sauerwein, Robert W; Theisen, Michael; Rand, Kasper D

    2017-09-01

    Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a multi-stage malaria vaccine that targets both transmission and asexual life-cycle stages of the parasite. GMZ2'.10C was produced in Lactococcus lactis and purified using either an immunoaffinity purification (IP) or a conventional purification (CP) method. Protein purity and stability was analysed by RP-HPLC, SEC-HPLC, 2-site ELISA, gel-electrophoresis and Western blotting. Structural characterization (mass analysis, peptide mapping and cysteine connectivity mapping) was performed by LC-MS/MS. CP-GMZ2'.10C resulted in similar purity, yield, structure and stability as compared to IP-GMZ2'.10C. CP-GMZ2'.10C and IP-GMZ2'.10C both elicited a high titer of transmission blocking (TB) antibodies in rodents. The intricate disulphide-bond connectivity of C-terminus Pfs48/45 was analysed by tandem mass spectrometry and was established for GMZ2'.10C and two reference fusion proteins encompassing similar parts of Pfs48/45. GMZ2'.10C, combining GMZ2' and correctly-folded Pfs48/45 can be produced by the Lactoccus lactis P170 based expression system in purity and quality for pharmaceutical development and elicit high level of TB antibodies. The cysteine connectivity for the 10C region of Pfs48/45 was revealed experimentally, providing an important guideline for employing the Pfs48/45 antigen in vaccine design.

  16. Concurrent malaria and typhoid fever in the tropics: the diagnostic challenges and public health implications.

    Science.gov (United States)

    Uneke, C J

    2008-06-01

    Malaria and typhoid fever still remain diseases of major public health importance in the tropics. Individuals in areas endemic for both the diseases are at substantial risk of contracting both these diseases, either concurrently or an acute infection superimposed on a chronic one. The objective of this report was to systematically review scientific data from studies conducted in the tropics on concurrent malaria and typhoid fever within the last two decades (1987-2007), to highlight the diagnostic challenges and the public health implications. Using the MedLine Entrez-PubMed search, relevant publications were identified for the review via the key words Malaria and Typhoid fever, which yielded 287 entries as of January 2008. Most of the studies reviewed expressed concern that poor diagnosis continues to hinder effective control of concurrent malaria and typhoid fever in the tropics due to: non-specific clinical presentation of the diseases; high prevalence of asymptomatic infections; lack of resources and insufficient access to trained health care providers and facilities; and widespread practice of self-treatment for clinically suspected malaria or typhoid fever. There were considerably higher rates of concurrent malaria and typhoid fever by Widal test compared to the bacteriological culture technique. Although culture technique remains the gold standard in typhoid fever diagnosis, Widal test is still of significant diagnostic value provided judicious interpretation of the test is made against a background of pertinent information. Malaria could be controlled through interventions to minimize human-vector contact, while improved personal hygiene, targeted vaccination campaigns and intensive community health education could help to control typhoid fever in the tropics.

  17. STATUS HEMATOLOGI PENDERITA MALARIA SEREBRAL

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2009-05-01

    Full Text Available AbstrakMalaria masih merupakan masalah kesehatan masyarakat dunia. Berdasarkan klasifikasi klinis, malaria dibedakan atas malaria berat dan malaria tanpa komplikasi. Malaria serebral merupakan komplikasi terberat dari malaria falsiparum.Telah dilakukan penelitian seksi silang terhadap penderita malaria falciparum yang dirawat inap di Bangsal Penyakit Dalam RS. Perjan. Dr. M. Djamil Padang dari bulan Juni 2002 sampai Juni 2006. Pada penelitian ini didapatkan jumlah sampel sebanyak 60 orang, terdiri dari 16 orang penderita malaria serebral dan 44 orang penderita malaria tanpa komplikasi.Data penelitian menunjukan terdapat perbedaan bermakna nilai hematokrit (p<0,05 dan jumlah leukosit (p<0,05 antara penderita malaria serebral dengan penderita malaria tanpa komplikasi. Dan terdapat korelasi positif antara nilai hemoglobin dengan hematokrit (r=0,864; p<0,05 pada penderita malaria falsiparum.Kata kunci: malaria serebral, malaria tanpa komplikasi, malaria falsiparumAbstract Malaria is still a problem of health of world society. Based on the clinical classification, are distinguished on severe malaria and uncomplicated malaria. Cerebral malaria is the worst complication of falciparum malaria. Cross section of the research done at the Hospital Dr. M. Djamil Padang againts medical record of malaria patients who are hospitalized in the Internal Medicine from June 2002 until June 2004. In this study, a total sample of 60 people, consisting of 16 cerebral malaria and 44 uncomplicated malaria. Data showed there were significant differences for hematocrit values (p <0.05 and total leukocytes values (p <0.05 between cerebral malaria and uncomplicated malaria patients. There is a positive correlation between hemoglobin with hematocrit values (r = 0.864; p <0.05 of falciparum malaria patients. Keywords: cerebral malaria, uncomplicated malaria, falciparum malaria

  18. Sickle cell protection from malaria: a review

    Directory of Open Access Journals (Sweden)

    Sandro Eridani

    2011-11-01

    Full Text Available A linkage between presence of Sickle Haemoglobin (HbS and protection from malaria infection and clinical manifestations in certain areas was suspected from early observations and progressively elucidated by more recent studies. Research has confirmed the abovementioned connection, but also clarified how such protection may be abolished by coexistence of sickle cell trait (HbS trait and alpha thalassemia, which may explain the relatively low incidence of HbS trait in the Mediterranean. The mechanisms of such protective effect are now being investigated: factors of genetic, molecular and immunological nature are prominent. As for genetic factors attention is given to the role of the red blood cell (RBC membrane complement regulatory proteins as polymorphisms of these components seem to be associated with resistance to severe malaria; genetic ligands like the Duffy group blood antigen, necessary for erythrocytic invasion, and human protein CD36, a major receptor for P. falciparum-infected RBC‘s, are also under scrutiny: attention is focused also on plasmodium erythrocyte-binding antigens, which bind to RBC surface components. Genome-wide linkage and association studies are now carried out too, in order to identify genes associated with malaria resistance. Only a minor role is attributed to intravascular sickling, phagocytosis and haemolysis, while specific molecular mechanisms are the object of intensive research: among these a decisive role is played by a biochemical sequence, involving activation of haeme oxygenase (HMO-1, whose effect appears mediated by carbon monoxide (CO. A central role in protection from malaria is also played by immunological factors, which may stimulate antibody production to plasmodium antigens in the early years of life; the role of agents like pathogenic CD8 T-cells has been suggested while the effects of molecular actions on the immunity mechanism are presently investigated. It thus appears that protection from

  19. Towards a Predictive Analytics-Based Intelligent Malaria Outbreak Warning System

    Directory of Open Access Journals (Sweden)

    Babagana Modu

    2017-08-01

    Full Text Available Malaria, as one of the most serious infectious diseases causing public health problems in the world, affects about two-thirds of the world population, with estimated resultant deaths close to a million annually. The effects of this disease are much more profound in third world countries, which have very limited medical resources. When an intense outbreak occurs, most of these countries cannot cope with the high number of patients due to the lack of medicine, equipment and hospital facilities. The prevention or reduction of the risk factor of this disease is very challenging, especially in third world countries, due to poverty and economic insatiability. Technology can offer alternative solutions by providing early detection mechanisms that help to control the spread of the disease and allow the management of treatment facilities in advance to ensure a more timely health service, which can save thousands of lives. In this study, we have deployed an intelligent malaria outbreak early warning system, which is a mobile application that predicts malaria outbreak based on climatic factors using machine learning algorithms. The system will help hospitals, healthcare providers, and health organizations take precautions in time and utilize their resources in case of emergency. To our best knowledge, the system developed in this paper is the first publicly available application. Since confounding effects of climatic factors have a greater influence on the incidence of malaria, we have also conducted extensive research on exploring a new ecosystem model for the assessment of hidden ecological factors and identified three confounding factors that significantly influence the malaria incidence. Additionally, we deploy a smart healthcare application; this paper also makes a significant contribution by identifying hidden ecological factors of malaria.

  20. Malaria in Europe: emerging threat or minor nuisance?

    Science.gov (United States)

    Piperaki, E T; Daikos, G L

    2016-06-01

    Malaria was eradicated from Europe in the 1970s through a combination of insecticide spraying, drug therapy and environmental engineering. Since then, it has been mostly imported into the continent by international travellers and immigrants from endemic regions. Despite the substantial number of imported malaria cases and the documented presence of suitable anopheline vectors, autochthonous transmission has not been widely observed in Europe, probably as a result of early diagnosis and treatment, afforded by efficient healthcare systems. Current climatic conditions are conducive to malaria transmission in several areas of Southern Europe, and climate change might favour mosquito proliferation and parasite development, further facilitating malaria transmission. Moreover, the continuing massive influx of refugee and migrant populations from endemic areas could contribute to building up of an infectious parasite reservoir. Although the malariogenic potential of Europe is currently low, particularly in the northern and western parts of the continent, strengthening of disease awareness and maintaining robust public health infrastructures for surveillance and vector control are of the utmost importance and should be technically and financially supported to avert the possibility of malaria transmission in Europe's most vulnerable areas. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. Vaccines to combat the neglected tropical diseases

    Science.gov (United States)

    Bethony, Jeffrey M.; Cole, Rhea N.; Guo, Xiaoti; Kamhawi, Shaden; Lightowlers, Marshall W.; Loukas, Alex; Petri, William; Reed, Steven; Valenzuela, Jesus G.; Hotez, Peter J.

    2012-01-01

    Summary The neglected tropical diseases (NTDs) represent a group of parasitic and related infectious diseases such as amebiasis, Chagas disease, cysticercosis, echinococcosis, hookworm, leishmaniasis, and schistosomiasis. Together, these conditions are considered the most common infections in low- and middle-income countries, where they produce a level of global disability and human suffering equivalent to better known conditions such as human immunodeficiency virus/acquired immunodeficiency syndrome and malaria. Despite their global public health importance, progress on developing vaccines for NTD pathogens has lagged because of some key technical hurdles and the fact that these infections occur almost exclusively in the world’s poorest people living below the World Bank poverty line. In the absence of financial incentives for new products, the multinational pharmaceutical companies have not embarked on substantive research and development programs for the neglected tropical disease vaccines. Here, we review the current status of scientific and technical progress in the development of new neglected tropical disease vaccines, highlighting the successes that have been achieved (cysticercosis and echinococcosis) and identifying the challenges and opportunities for development of new vaccines for NTDs. Also highlighted are the contributions being made by non-profit product development partnerships that are working to overcome some of the economic challenges in vaccine manufacture, clinical testing, and global access. PMID:21198676

  2. Embryonic vaccines against cancer: an early history.

    Science.gov (United States)

    Brewer, Bradley G; Mitchell, Robert A; Harandi, Amir; Eaton, John W

    2009-06-01

    Almost 100 years have passed since the seminal observations of Schöne showing that vaccination of animals with fetal tissue would prevent the growth of transplantable tumors. Many subsequent reports have affirmed the general idea that immunologic rejection of transplantable tumors, as well as prevention of carcinogenesis, may be affected by vaccination with embryonic/fetal material. Following a decade of intense research on this phenomenon during approximately 1964-1974, interest appears to have waned. This earlier experimental work may be particularly pertinent in view of the rising interest in so-called cancer stem cells. We believe that further work - perhaps involving the use of embryonic stem cells as immunogens - is warranted and that the results reviewed herein support the concept that vaccination against the appearance of cancers of all kinds is a real possibility.

  3. Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria

    DEFF Research Database (Denmark)

    Abdulla, S.; Adam, I.; Adjei, G. O.

    2015-01-01

    values for clearance in patients from Sub-Saharan African countries with uncomplicated malaria treated with artemisinin-based combination therapies (ACTs). Methods: A literature review in PubMed was conducted in March 2013 to identify all prospective clinical trials (uncontrolled trials, controlled...... trials and randomized controlled trials), including ACTs conducted in Sub-Saharan Africa, between 1960 and 2012. Individual patient data from these studies were shared with the WorldWide Antimalarial Resistance Network (WWARN) and pooled using an a priori statistical analytical plan. Factors affecting...... early parasitological response were investigated using logistic regression with study sites fitted as a random effect. The risk of bias in included studies was evaluated based on study design, methodology and missing data. Results: In total, 29,493 patients from 84 clinical trials were included...

  4. A brief history of vaccines & vaccination in India

    Directory of Open Access Journals (Sweden)

    Chandrakant Lahariya

    2014-01-01

    Full Text Available The challenges faced in delivering lifesaving vaccines to the targeted beneficiaries need to be addressed from the existing knowledge and learning from the past. This review documents the history of vaccines and vaccination in India with an objective to derive lessons for policy direction to expand the benefits of vaccination in the country. A brief historical perspective on smallpox disease and preventive efforts since antiquity is followed by an overview of 19 th century efforts to replace variolation by vaccination, setting up of a few vaccine institutes, cholera vaccine trial and the discovery of plague vaccine. The early twentieth century witnessed the challenges in expansion of smallpox vaccination, typhoid vaccine trial in Indian army personnel, and setting up of vaccine institutes in almost each of the then Indian States. In the post-independence period, the BCG vaccine laboratory and other national institutes were established; a number of private vaccine manufacturers came up, besides the continuation of smallpox eradication effort till the country became smallpox free in 1977. The Expanded Programme of Immunization (EPI (1978 and then Universal Immunization Programme (UIP (1985 were launched in India. The intervening events since UIP till India being declared non-endemic for poliomyelitis in 2012 have been described. Though the preventive efforts from diseases were practiced in India, the reluctance, opposition and a slow acceptance of vaccination have been the characteristic of vaccination history in the country. The operational challenges keep the coverage inequitable in the country. The lessons from the past events have been analysed and interpreted to guide immunization efforts.

  5. A brief history of vaccines & vaccination in India.

    Science.gov (United States)

    Lahariya, Chandrakant

    2014-04-01

    The challenges faced in delivering lifesaving vaccines to the targeted beneficiaries need to be addressed from the existing knowledge and learning from the past. This review documents the history of vaccines and vaccination in India with an objective to derive lessons for policy direction to expand the benefits of vaccination in the country. A brief historical perspective on smallpox disease and preventive efforts since antiquity is followed by an overview of 19 th century efforts to replace variolation by vaccination, setting up of a few vaccine institutes, cholera vaccine trial and the discovery of plague vaccine. The early twentieth century witnessed the challenges in expansion of smallpox vaccination, typhoid vaccine trial in Indian army personnel, and setting up of vaccine institutes in almost each of the then Indian States. In the post-independence period, the BCG vaccine laboratory and other national institutes were established; a number of private vaccine manufacturers came up, besides the continuation of smallpox eradication effort till the country became smallpox free in 1977. The Expanded Programme of Immunization (EPI) (1978) and then Universal Immunization Programme (UIP) (1985) were launched in India. The intervening events since UIP till India being declared non-endemic for poliomyelitis in 2012 have been described. Though the preventive efforts from diseases were practiced in India, the reluctance, opposition and a slow acceptance of vaccination have been the characteristic of vaccination history in the country. The operational challenges keep the coverage inequitable in the country. The lessons from the past events have been analysed and interpreted to guide immunization efforts.

  6. [History of vaccination: from empiricism towards recombinant vaccines].

    Science.gov (United States)

    Guérin, N

    2007-01-01

    Two hundreds years after the discovery of the smallpox vaccine, immunization remains one of the most powerful tools of preventive medicine. Immunization was born with Jenner, then Pasteur and expanded during the 19th and 20th century. It started with the empirical observation of cross-immunity between two diseases, cowpox and smallpox. It became a real science, with pathogen isolation, culture and attenuation or inactivation, to prepare a vaccine. Together with clinical and biological efficacy studies and adverse events assessments, it constructed the concept of "vaccinology". Protein conjugation of polyosidic vaccines has made possible early immunisation of infants. Nowadays, recombinant, reassortant, or virus-like particles technologies open the road for new vaccines. Ongoing research opens the way for the development of new vaccines that will help to control transmittable diseases for which we are lacking antimicrobial agents.

  7. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    NARCIS (Netherlands)

    Baldwin, S.L.; Roeffen, W.; Singh, S.K; Tiendrebeogo, R.W.; Christiansen, M.; Beebe, E.; Carter, D.; Fox, C.B.; Howard, R.F.; Reed, S.G.; Sauerwein, R.; Theisen, M.

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the

  8. Magnetic Resonance Features of Cerebral Malaria

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P.; Sharma, R.; Kumar, S.; Kumar, U. (Dept. of Radiodiagnosis and Dept. of Medicine, All India Institute of Medical Sciences, New Delhi (India))

    2008-06-15

    Background: Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. Purpose: To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. Material and Methods: We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm2, and apparent diffusion coefficient (ADC) maps were obtained. Results: Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. Conclusion: MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients

  9. Magnetic Resonance Features of Cerebral Malaria

    International Nuclear Information System (INIS)

    Yadav, P.; Sharma, R.; Kumar, S.; Kumar, U.

    2008-01-01

    Background: Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. Purpose: To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. Material and Methods: We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm 2 , and apparent diffusion coefficient (ADC) maps were obtained. Results: Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. Conclusion: MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients

  10. Malaria og graviditet

    DEFF Research Database (Denmark)

    Hoffmann, A L; Rønn, A M; Langhoff-Roos, J

    1992-01-01

    In regions where malaria is endemism, the disease is a recognised cause of complications of pregnancy such as spontaneous abortion, premature delivery, intrauterine growth retardation and foetal death. Malaria is seldom seen in pregnant women in Denmark but, during the past two years, the authors...... the patients but also their practitioners were unaware that malaria can occur several years after exposure. Three out of the four patients had employed malaria prophylaxis. As resistance to malarial prophylactics in current use is increasing steadily, chemoprophylaxis should be supplemented by mechanical...... protection against malaria and insect repellents. As a rule, malaria is treated with chloroquine. In cases of Falciparum malaria in whom chloroquine resistance is suspected, treatment with mefloquine may be employed although this should only be employed in cases of dire necessity in pregnant patients during...

  11. Turf wars: exploring splenomegaly in sickle cell disease in malaria-endemic regions.

    Science.gov (United States)

    Tubman, Venée N; Makani, Julie

    2017-06-01

    Sickle cell disease (SCD) is a group of recessively inherited disorders of erythrocyte function that presents an ongoing threat to reducing childhood and adult morbidity and mortality around the world. While decades of research have led to improved survival for SCD patients in wealthy countries, survival remains dismal in low- and middle-income countries. Much of the early mortality associated with SCD is attributed to increased risk of infections due to early loss of splenic function. In the West, bacterial infections with encapsulated organisms are a primary concern. In sub-Saharan Africa, where the majority of infants with SCD are born, the same is true. However malaria presents an additional threat to survival. The search for factors that define variability in sickle cell phenotypes should include environmental modifiers, such as malaria. Further exploration of this relationship could lead to novel strategies to reduce morbidity and mortality attributable to infections. In this review, we explore the interactions between SCD, malaria and the spleen to better understand how splenomegaly and splenic (dys)function may co-exist in patients with SCD living in malaria-endemic areas. © 2017 John Wiley & Sons Ltd.

  12. EU-funded malaria research under the 6th and 7th Framework Programmes for research and technological development.

    Science.gov (United States)

    Holtel, Andreas; Troye-Blomberg, Marita; Penas-Jimenez, Inmaculada

    2011-01-14

    While malaria research has traditionally been strong in Europe, targeted and sustained support for cooperative malaria research at EU level, namely through the EU's 6th and 7th Framework Programmes for research and technological development, FP6 (2002-2006) and FP7 (2007-2013), has boosted both impact and visibility of European malaria research. Most of the European malaria research community is now organized under a number of comprehensive and complementary research networks and projects, assembled around four key areas: (1) fundamental research on the malaria parasite and the disease, (2) development of new malaria drugs, (3) research and development of a malaria vaccine, and (4) research to control the malaria-transmitting mosquito vector. Considerable efforts were undertaken to ensure adequate participation of research groups from disease-endemic countries, in particular from Africa, with the long-term aim to strengthen cooperative links and research capacities in these countries. The concept of organizing European research through major strategic projects to form a "European Research Area" (ERA) was originally developed in the preparation of FP6, and ERA formation has now turned into a major EU policy objective explicitly inscribed into the Lisbon Treaty. EU-funded malaria research may serve as a showcase to demonstrate how ERA formation can successfully be implemented in a given area of science when several surrounding parameters converge to support implementation of this strategic concept: timely coincidence of political stimuli, responsive programming, a clearly defined--and well confined--area of research, and the readiness of the targeted research community who is well familiar with transnational cooperation at EU level. Major EU-funded malaria projects have evolved into thematic and organizational platforms that can collaborate with other global players. Europe may thus contribute more, and better, to addressing the global research agenda for malaria.

  13. Neonatal malaria in Nigeria -a 2 year review

    Directory of Open Access Journals (Sweden)

    Fetuga Bolanle M

    2006-06-01

    Full Text Available Abstract Background In view of the fact that a significant proportion of neonates with malaria may be missed on our wards on the assumption that the disease condition is rare, this study aims at documenting the prevalence of malaria in neonates admitted into our neonatal ward. Specifically, we hope to describe its clinical features and outcome of this illness. Knowledge of these may ensure early diagnosis and institution of prompt management. Methods Methods Hospital records of all patients (two hundred and thirty admitted into the Neonatal ward of Olabisi Onabanjo University Teaching Hospital, Sagamu between 1st January 1998 and 31st December 1999 were reviewed. All neonates (fifty-seven who had a positive blood smear for the malaria parasite were included in the study. Socio-demographic data as well as clinical correlates of each of the patients were reviewed. The Epi-Info 6 statistical software was used for data entry, validation and analysis. A frequency distribution was generated for categorical variables. To test for an association between categorical variables, the chi-square test was used. The level of significance was put at values less than 5%. Results Prevalence of neonatal malaria in this study was 24.8% and 17.4% for congenital malaria. While the mean duration of illness was 3.60 days, it varied from 5.14 days in those that died and and 3.55 in those that survived respectively. The duration of illness significantly affected the outcome (p value = 0.03. Fever alone was the clinical presentation in 44 (77.4% of the patients. Maturity of the baby, sex and age did not significantly affect infestation. However, history of malaria/febrile illness within the 2 weeks preceding the delivery was present in 61.2% of the mothers. Maternal age, concurrent infection and duration of illness all significantly affected the outcome of illness. Forty-two (73.7% of the babies were discharged home in satisfactory condition. Conclusion It was concluded

  14. Dynamics of positional warfare malaria: Finland and Korea compared.

    Science.gov (United States)

    Huldén, Lena; Huldén, Larry

    2008-09-08

    A sudden outbreak of vivax malaria among Finnish troops in SE-Finland and along the front line in Hanko peninsula in the southwest occurred in 1941 during World War II. The common explanation has been an invasion of infective Anopheles mosquitoes from the Russian troops crossing the front line between Finland and Soviet Union. A revised explanation is presented based on recent studies of Finnish malaria. The exact start of the epidemic and the phenology of malaria cases among the Finnish soldiers were reanalyzed. The results were compared with the declining malaria in Finland. A comparison with a corresponding situation starting in the 1990's in Korea was performed. The malaria cases occurred in July in 1941 when it was by far too early for infective mosquitoes to be present. The first Anopheles mosquitoes hatched at about the same time as the first malaria cases were observed among the Finnish soldiers. It takes about 3-6 weeks for the completion of the sporogony in Finland. The new explanation is that soldiers in war conditions were suddenly exposed to uninfected mosquitoes and those who still were carriers of hypnozoites developed relapses triggered by these mosquitoes. It is estimated that about 0.5% of the Finnish population still were carriers of hypnozoites in the 1940's. A corresponding outbreak of vivax malaria in Korea in the 1990's is similarly interpreted as relapses from activated hypnozoites among Korean soldiers. The significance of the mosquito induced relapses is emphasized by two benefits for the Plasmodium. There is a synchronous increase of gametocytes when new mosquitoes emerge. It also enables meiotic recombination between different strains of the Plasmodium. The malaria peak during the positional warfare in the 1940's was a short outbreak during the last phase of declining indigenous malaria in Finland. The activation of hypnozoites among a large number of soldiers and subsequent medication contributed to diminishing the reservoir of malaria

  15. Effect of an Early Dose of Measles Vaccine on Morbidity Between 18 Weeks and 9 Months of Age: A Randomized, Controlled Trial in Guinea-Bissau

    DEFF Research Database (Denmark)

    Do, Vu An; Biering-Sorensen, Sofie; Fisker, Ane Bærent

    2017-01-01

    Background: Children in Guinea-Bissau receive measles vaccine (MV) at 9 months of age, but studies have shown that an additional dose before 9 months of age might have beneficial nonspecific effects. Within a randomized trial designed to examine nonspecific effects of early MV receipt on mortality......). Children were visited weekly from enrollment to age 9 months; the mother reported morbidity, and the field assistants examined the children. Using Cox and binomial regression models, we compared the 2 randomization groups. Results: Among the 1592 children, early measles vaccination was not associated...... with a higher risk of the well-known adverse events of fever, rash, and convulsions within the first 14 days. From 15 days after randomization to age 9 months, early measles vaccination was associated with reductions in maternally reported diarrhea (hazard ratio [HR], 0.89; 95% confidence interval [CI],.82-. 97...

  16. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates

    NARCIS (Netherlands)

    Jones, S; Grignard, L.; Nebie, I.; Chilongola, J.; Dodoo, D.; Sauerwein, R.W.; Theisen, M.; Roeffen, W.F.; Singh, S.K; Singh, R.K.; Kyei-Baafour, E.; Tetteh, K.; Drakeley, C.; Bousema, T.

    2015-01-01

    OBJECTIVES: Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences for the

  17. Coexistence of Malaria and Thalassemia in Malaria Endemic Areas of Thailand

    Science.gov (United States)

    Kuesap, Jiraporn; Chaijaroenkul, W.; Rungsihirunrat, K.; Pongjantharasatien, K.; Na-Bangchang, Kesara

    2015-01-01

    Hemoglobinopathy and malaria are commonly found worldwide particularly in malaria endemic areas. Thalassemia, the alteration of globin chain synthesis, has been reported to confer resistance against malaria. The prevalence of thalassemia was investigated in 101 malaria patients with Plasmodium falciparum and Plasmodium vivax along the Thai-Myanmar border to examine protective effect of thalassemia against severe malaria. Hemoglobin typing was performed using low pressure liquid chromatography (LPLC) and α-thalassemia was confirmed by multiplex PCR. Five types of thalassemia were observed in malaria patients. The 2 major types of thalassemia were Hb E (18.8%) and α-thalassemia-2 (11.9%). There was no association between thalassemia hemoglobinopathy and malaria parasitemia, an indicator of malaria disease severity. Thalassemia had no significant association with P. vivax infection, but the parasitemia in patients with coexistence of P. vivax and thalassemia was about 2-3 times lower than those with coexistence of P. falciparum and thalassemia and malaria without thalassemia. Furthermore, the parasitemia of P. vivax in patients with coexistence of Hb E showed lower value than coexistence with other types of thalassemia and malaria without coexistence. Parasitemia, hemoglobin, and hematocrit values in patients with coexistence of thalassemia other than Hb E were significantly lower than those without coexistence of thalassemia. Furthermore, parasitemia with coexistence of Hb E were 2 times lower than those with coexistence of thalassemia other than Hb E. In conclusion, the results may, at least in part, support the protective effect of thalassemia on the development of hyperparasitemia and severe anemia in malaria patients. PMID:26174819

  18. Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii.

    Science.gov (United States)

    Kim, Seon-Hee; Bae, Young-An; Seoh, Ju-Young; Yang, Hyun-Jong

    2017-06-01

    Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium . Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii -infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

  19. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area1

    Science.gov (United States)

    Weiss, Greta E; Crompton, Peter D.; Li, Shanping; Walsh, Laura A.; Moir, Susan; Traore, Boubacar; Kayentao, Kassoum; Ongoiba, Aissata; Doumbo, Ogobara K.; Pierce, Susan K.

    2009-01-01

    Epidemiological observations in malaria endemic areas have long suggested a deficiency in the generation and maintenance of B cell memory to Plasmodium falciparum (Pf) in individuals chronically reinfected with the parasite. Recently, a functionally and phenotypically distinct population of FCRL4+ hypo-responsive memory B cells (MBCs) was reported to be expanded in HIV-infected individuals with high viral loads. Here we provide evidence that a phenotypically similar atypical MBC population is significantly expanded in Pf-exposed Malian adults and children as young as two years of age as compared to healthy U.S. adult controls. The number of these atypical MBCs was higher in children with chronic asymptomatic Pf infections compared to uninfected children suggesting that the chronic presence of the parasite may drive expansion of these distinct MBCs. This is the first description of an atypical MBC phenotype associated with malaria. Understanding the origin and function of these MBCs could be important in informing the design of malaria vaccines. PMID:19592645

  20. Plasmodium vivax hospitalizations in a monoendemic malaria region: severe vivax malaria?

    Science.gov (United States)

    Quispe, Antonio M; Pozo, Edwar; Guerrero, Edith; Durand, Salomón; Baldeviano, G Christian; Edgel, Kimberly A; Graf, Paul C F; Lescano, Andres G

    2014-07-01

    Severe malaria caused by Plasmodium vivax is no longer considered rare. To describe its clinical features, we performed a retrospective case control study in the subregion of Luciano Castillo Colonna, Piura, Peru, an area with nearly exclusive vivax malaria transmission. Severe cases and the subset of critically ill cases were compared with a random set of uncomplicated malaria cases (1:4). Between 2008 and 2009, 6,502 malaria cases were reported, including 106 hospitalized cases, 81 of which fit the World Health Organization definition for severe malaria. Of these 81 individuals, 28 individuals were critically ill (0.4%, 95% confidence interval = 0.2-0.6%) with severe anemia (57%), shock (25%), lung injury (21%), acute renal failure (14%), or cerebral malaria (11%). Two potentially malaria-related deaths occurred. Compared with uncomplicated cases, individuals critically ill were older (38 versus 26 years old, P < 0.001), but similar in other regards. Severe vivax malaria monoinfection with critical illness is more common than previously thought. © The American Society of Tropical Medicine and Hygiene.

  1. Engineering and malaria control: learning from the past 100 years

    DEFF Research Database (Denmark)

    Konradsen, Flemming; van der Hoek, Wim; Amerasinghe, Felix P

    2004-01-01

    Traditionally, engineering and environment-based interventions have contributed to the prevention of malaria in Asia. However, with the introduction of DDT and other potent insecticides, chemical control became the dominating strategy. The renewed interest in environmental-management-based approa......Traditionally, engineering and environment-based interventions have contributed to the prevention of malaria in Asia. However, with the introduction of DDT and other potent insecticides, chemical control became the dominating strategy. The renewed interest in environmental......-management-based approaches for the control of malaria vectors follows the rapid development of resistance by mosquitoes to the widely used insecticides, the increasing cost of developing new chemicals, logistical constraints involved in the implementation of residual-spraying programs and the environmental concerns linked...... cases are discussed in the wider context of environment-based approaches for the control of malaria vectors, including current relevance. Clearly, some of the interventions piloted and implemented early in the last century still have relevance today but generally in a very site-specific manner...

  2. Use of short message service (SMS to improve malaria chemoprophylaxis compliance after returning from a malaria endemic area

    Directory of Open Access Journals (Sweden)

    Boutin Jean-Paul

    2009-10-01

    Full Text Available Abstract Background Malaria chemoprophylaxis compliance is suboptimal among French soldiers despite the availability of free malaria chemoprophylaxis and repeated health education before, during and after deployment to malaria endemic areas. Methods In 2007, a randomized controlled study was performed among a cohort of French soldiers returning from Côte d'Ivoire to assess the feasibility and acceptability of sending a daily short message service (SMS reminder message via mobile device to remind soldiers to take their malaria chemoprophylaxis, and to assess the impact of the daily reminder SMS on chemoprophylaxis compliance. Malaria chemoprophylaxis consisted of a daily dose of 100 mg doxycycline monohydrate, which began upon arrival in Côte d'Ivoire and was to be continued for 28 days following return to France. Feasibility and acceptability were assessed by questionnaire. Cohort members were followed for a 28 day period, with compliance assessed by use of an electronic medication monitoring device, from which several indicators were developed: daily proportion of compliant individuals, average number of pills taken, and early discontinuation. Results Among 424 volunteers randomized to the study, 47.6% were assigned to the SMS group and 52.3% to the control group. Approximately 90% of subjects assigned to the SMS group received a daily SMS at midday during the study. Persons of the SMS group agreed more frequently that SMS reminders were very useful and that the device was not annoying. Compliance did not vary significantly between groups across the compliance indicators. Conclusion SMS did not increase malaria chemoprophylaxis compliance above baseline, likely because the persons did not benefit from holidays after the return and stayed together. So the reminder by SMS was noted by all subjects of the study. Another study should be done to confirm these results on soldiers going on holidays from employment after return or with individual

  3. Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination.

    Science.gov (United States)

    Recht, Judith; Siqueira, André M; Monteiro, Wuelton M; Herrera, Sonia M; Herrera, Sócrates; Lacerda, Marcus V G

    2017-07-04

    In spite of significant progress towards malaria control and elimination achieved in South America in the 2000s, this mosquito-transmitted tropical disease remains an important public health concern in the region. Most malaria cases in South America come from Amazon rain forest areas in northern countries, where more than half of malaria is caused by Plasmodium vivax, while Plasmodium falciparum malaria incidence has decreased in recent years. This review discusses current malaria data, policies and challenges in four South American Amazon countries: Brazil, Colombia, Peru and the Bolivarian Republic of Venezuela. Challenges to continuing efforts to further decrease malaria incidence in this region include: a significant increase in malaria cases in recent years in Venezuela, evidence of submicroscopic and asymptomatic infections, peri-urban malaria, gold mining-related malaria, malaria in pregnancy, glucose-6-phosphate dehydrogenase (G6PD) deficiency and primaquine use, and possible under-detection of Plasmodium malariae. Some of these challenges underscore the need to implement appropriate tools and procedures in specific regions, such as a field-compatible molecular malaria test, a P. malariae-specific test, malaria diagnosis and appropriate treatment as part of regular antenatal care visits, G6PD test before primaquine administration for P. vivax cases (with weekly primaquine regimen for G6PD deficient individuals), single low dose of primaquine for P. falciparum malaria in Colombia, and national and regional efforts to contain malaria spread in Venezuela urgently needed especially in mining areas. Joint efforts and commitment towards malaria control and elimination should be strategized based on examples of successful regional malaria fighting initiatives, such as PAMAFRO and RAVREDA/AMI.

  4. Malaria epidemiology in the Pakaanóva (Wari') Indians, Brazilian Amazon.

    Science.gov (United States)

    Sá, D Ribeiro; Souza-Santos, R; Escobar, A L; Coimbra, C E A

    2005-04-01

    This paper reports the results of a longitudinal study of malaria incidence (1998-2002) among the Pakaanóva (Wari') Indians, Brazilian southwest Amazon region, based on data routinely gathered by Brazilian National Health Foundation outposts network in conjunction with the Indian health service. Malaria is present yearlong in the Pakaanóva. Statistically significant differences between seasons or months were not noticed. A total of 1933 cases of malaria were diagnosed in the Pakaanóva during this period. The P. vivax / P. falciparum ratio was 3.4. P. vivax accounted for 76.5% of the cases. Infections with P. malariae were not recorded. Incidence rates did not differ by sex. Most malaria cases were reported in children < 10 years old (45%). About one fourth of all cases were diagnosed on women 10-40 years old. An entomological survey carried out at two Pakaanóva villages yielded a total of 3.232 specimens of anophelines. Anopheles darlingi predominated (94.4%). Most specimens were captured outdoors and peak activity hours were noted at early evening and just before sunrise. It was observed that Pakaanóva cultural practices may facilitate outdoor exposure of individuals of both sexes and all age groups during peak hours of mosquito activities (e.g., coming to the river early in the morning for bathing or to draw water, fishing, engaging in hunting camps, etc). In a context in which anophelines are ubiquitous and predominantly exophilic, and humans of both sexes and all ages are prone to outdoor activities during peak mosquito activity hours, malaria is likely to remain endemic in the Pakaanóva, thus requiring the development of alternative control strategies that are culturally and ecologically sensitive.

  5. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates.

    Science.gov (United States)

    Jones, Sophie; Grignard, Lynn; Nebie, Issa; Chilongola, Jaffu; Dodoo, Daniel; Sauerwein, Robert; Theisen, Michael; Roeffen, Will; Singh, Shrawan Kumar; Singh, Rajesh Kumar; Singh, Sanjay; Kyei-Baafour, Eric; Tetteh, Kevin; Drakeley, Chris; Bousema, Teun

    2015-07-01

    Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences for the future evaluation of vaccine immunogenicity and efficacy in populations naturally exposed to malaria. We determined naturally acquired antibody responses to the recombinant proteins Pfs48/45-10C and Pfs230-230CMB in children from three malaria endemic settings in Ghana, Tanzania and Burkina Faso. We also examined genetic polymorphisms in the P. falciparum gene pfs48/45. Antibody prevalence was 1.1-18.2% for 10C and 6.7-18.9% for 230CMB. In Burkina Faso we observed evidence of an age-dependent acquisition pattern for both 10C (p < 0.001) and 230CMB (p = 0.031). Membrane feeding assays on a separate dataset demonstrated an association between functional transmission reducing activity and antibody prevalence for both 10C (p = 0.017) and 230CMB (p = 0.049). 17 single nucleotide polymorphisms were found in pfs48/45 (from 126 samples), with 5 non-synonymous SNPs in the Pfs48/45 10C region. We conclude there are naturally acquired antibody responses to both vaccine candidates which have functional relevance by reducing the transmissibility of infected individuals. We identified genetic polymorphisms, in pfs48/45 which exhibited geographical specificity. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  6. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria.

    Science.gov (United States)

    Boyle, Michelle J; Reiling, Linda; Feng, Gaoqian; Langer, Christine; Osier, Faith H; Aspeling-Jones, Harvey; Cheng, Yik Sheng; Stubbs, Janine; Tetteh, Kevin K A; Conway, David J; McCarthy, James S; Muller, Ivo; Marsh, Kevin; Anders, Robin F; Beeson, James G

    2015-03-17

    Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Baseline incidence of intussusception in early childhood before rotavirus vaccine introduction, the netherlands, january 2008 to december 2012

    NARCIS (Netherlands)

    Gadroen, Kartini; Kemmeren, Jeanet M.; Bruijning-Verhagen, P. C.; Straus, Sabine M J M; Weibel, Daniel; de Melker, Hester E.; Sturkenboom, M. C.

    2017-01-01

    Intussusception is a rare, potentially life-threatening condition in early childhood. It gained attention due to an unexpected association with the first rotavirus vaccine, RotaShield, which was subsequently withdrawn from the market. Across Europe, broad variations in intussusception incidence

  8. Baseline incidence of intussusception in early childhood before rotavirus vaccine introduction, the Netherlands, January 2008 to December 2012.

    NARCIS (Netherlands)

    Gadroen, Kartini; Kemmeren, Jeanet M; Bruijning-Verhagen, Patricia Cj; Straus, Sabine Mjm; Weibel, Daniel; de Melker, Hester E; Sturkenboom, Miriam Cjm

    2017-01-01

    Intussusception is a rare, potentially life-threatening condition in early childhood. It gained attention due to an unexpected association with the first rotavirus vaccine, RotaShield, which was subsequently withdrawn from the market. Across Europe, broad variations in intussusception incidence

  9. The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen–encoding var genes

    Science.gov (United States)

    Tonkin-Hill, Gerry Q.; Trianty, Leily; Noviyanti, Rintis; Nguyen, Hanh H. T.; Sebayang, Boni F.; Lampah, Daniel A.; Marfurt, Jutta; Cobbold, Simon A.; Rambhatla, Janavi S.; McConville, Malcolm J.; Rogerson, Stephen J.; Brown, Graham V.; Day, Karen P.; Price, Ric N.; Anstey, Nicholas M.

    2018-01-01

    Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to—or is selected by—this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to—or are selected by—the host environment in severe malaria. PMID:29529020

  10. Impact of pre-existing MSP142-allele specific immunity on potency of an erythrocytic Plasmodium falciparum vaccine

    Directory of Open Access Journals (Sweden)

    Bergmann-Leitner Elke S

    2012-09-01

    Full Text Available Abstract Background MSP1 is the major surface protein on merozoites and a prime candidate for a blood stage malaria vaccine. Preclinical and seroepidemiological studies have implicated antibodies to MSP1 in protection against blood stage parasitaemia and/or reduced parasite densities, respectively. Malaria endemic areas have multiple strains of Plasmodium falciparum circulating at any given time, giving rise to complex immune responses, an issue which is generally not addressed in clinical trials conducted in non-endemic areas. A lack of understanding of the effect of pre-existing immunity to heterologous parasite strains may significantly contribute to vaccine failure in the field. The purpose of this study was to model the effect of pre-existing immunity to MSP142 on the immunogenicity of blood-stage malaria vaccines based on alternative MSP1 alleles. Methods Inbred and outbred mice were immunized with various recombinant P. falciparum MSP142 proteins that represent the two major alleles of MSP142, MAD20 (3D7 and Wellcome (K1, FVO. Humoral immune responses were analysed by ELISA and LuminexTM, and functional activity of induced MSP142-specific antibodies was assessed by growth inhibition assays. T-cell responses were characterized using ex vivo ELISpot assays. Results Analysis of the immune responses induced by various immunization regimens demonstrated a strong allele-specific response at the T cell level in both inbred and outbred mice. The success of heterologous regimens depended on the degree of homology of the N-terminal p33 portion of the MSP142, likely due to the fact that most T cell epitopes reside in this part of the molecule. Analysis of humoral immune responses revealed a marked cross-reactivity between the alleles. Functional analyses showed that some of the heterologous regimens induced antibodies with improved growth inhibitory activities. Conclusion The development of a more broadly efficacious MSP1 based vaccine may be

  11. Malaria induced acute renal failure: A single center experience

    International Nuclear Information System (INIS)

    KV Kanodia; AV Vanikar

    2010-01-01

    Malaria has protean clinical manifestations and renal complications, particularly acute renal failure that could be life threatening. To evaluate the incidence, clinical profile, ou come and predictors of mortality in patients with malarial acute renal failure, we retrospectively studied the last two years records of malaria induced acute renal failure in patients with peripheral smear positive for malarial parasites. One hundred (10.4%) (63 males, 37 females) malaria induced acute renal failure amongst 958 cases of acute renal failure were evaluated. Plasmodium (P). falciparum was reported in 85%, P. vivax in 2%, and both in 13% patients. The mean serum creatinine was 9.2 ± 4.2 mg%, and oligo/anuria was present in 82%; 78% of the patients required hemodialysis. Sixty four percent of the patients recovered completely, 10% incompletely, and 5% developed chronic kidney failure; mortality occurred in 21% of the patients. Low hemoglobin, oligo/anuria on admission, hyperbilirubinemia, cerebral malaria, disseminated intravascular coagulation, and high serum creatinine were the main predictors of mortality. We conclude that malaria is associated with acute renal failure, which occurs most commonly in plasmodium falciparum infected patients. Early diagnosis and prompt dialysis with supportive management can reduce morality and enhance recovery of renal function (Author).

  12. Functional characterization of Plasmodium berghei PSOP25 during ookinete development and as a malaria transmission-blocking vaccine candidate.

    Science.gov (United States)

    Zheng, Wenqi; Liu, Fei; He, Yiwen; Liu, Qingyang; Humphreys, Gregory B; Tsuboi, Takafumi; Fan, Qi; Luo, Enjie; Cao, Yaming; Cui, Liwang

    2017-01-05

    Plasmodium ookinete surface proteins as post-fertilization target antigens are potential malaria transmission-blocking vaccine (TBV) candidates. Putative secreted ookinete protein 25 (PSOP25) is a highly conserved ookinete surface protein, and has been shown to be a promising novel TBV target. Here, we further investigated the TBV activities of the full-length recombinant PSOP25 (rPSOP25) protein in Plasmodium berghei, and characterized the potential functions of PSOP25 during the P. berghei life-cycle. We expressed the full-length P. berghei PSOP25 protein in a prokaryotic expression system, and developed polyclonal mouse antisera and a monoclonal antibody (mAb) against the recombinant protein. Indirect immunofluorescence assay (IFA) and Western blot were used to test the specificity of antibodies. The transmission-blocking (TB) activities of antibodies were evaluated by the in vitro ookinete conversion assay and by direct mosquito feeding assay (DFA). Finally, the function of PSOP25 during Plasmodium development was studied by deleting the psop25 gene. Both polyclonal mouse antisera and anti-rPSOP25 mAb recognized the PSOP25 proteins in the parasites, and IFA showed the preferential expression of PSOP25 on the surface of zygotes, retorts and mature ookinetes. In vitro, these antibodies significantly inhibited ookinetes formation in an antibody concentration-dependent manner. In DFA, mice immunized with the rPSOP25 and those receiving passive transfer of the anti-rPSOP25 mAb reduced the prevalence of mosquito infection by 31.2 and 26.1%, and oocyst density by 66.3 and 63.3%, respectively. Genetic knockout of the psop25 gene did not have a detectable impact on the asexual growth of P. berghei, but significantly affected the maturation of ookinetes and the formation of midgut oocysts. The full-length rPSOP25 could elicit strong antibody response in mice. Polyclonal and monoclonal antibodies against PSOP25 could effectively block the formation of ookinetes in vitro

  13. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens.

    Directory of Open Access Journals (Sweden)

    Christian M Parobek

    2014-04-01

    Full Text Available Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1 and Plasmodium vivax circumsporozoite protein (pvcsp. Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44 and the complete gene of pvcsp (n = 47 from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines.

  14. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    Science.gov (United States)

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  15. Plasmodium falciparum-induced severe malaria with acute kidney injury and jaundice: a case report

    Science.gov (United States)

    Baswin, A.; Siregar, M. L.; Jamil, K. F.

    2018-03-01

    P. falciparum-induced severe malaria with life-threatening complications like acute kidney injury (AKI), jaundice, cerebral malaria, severe anemia, acidosis, and acute respiratory distress syndrome (ARDS). A 31-year-old soldier man who works in Aceh Singkil, Indonesia which is an endemic malaria area presented with a paroxysm of fever, shaking chills and sweats over four days, headache, arthralgia, abdominal pain, pale, jaundice, and oliguria. Urinalysis showed hemoglobinuria. Blood examination showed hemolytic anemia, thrombocytopenia, and hyperbilirubinemia. Falciparum malaria was then confirmed by peripheral blood smear, antimalarial medications were initiated, and hemodialysis was performed for eight times. The patient’s condition and laboratory results were quickly normalized. We report a case of P. falciparum-induced severe malaria with AKI and jaundice. The present case suggests that P. falciparum may induce severe malaria with life-threatening complications, early diagnosis and treatment is important to improve the quality of life of patients. Physicians must be alert for correct diagnosis and proper management of imported tropical malaria when patients have travel history in endemic areas.

  16. HPV and oral lesions: preventive possibilities, vaccines and early diagnosis of malignant lesions.

    Science.gov (United States)

    Testi, D; Nardone, M; Melone, P; Cardelli, P; Ottria, L; Arcuri, C

    2015-01-01

    The importance of HPV in world healthy is high, in fact high-risk HPV types contribute significantly to viral associated neoplasms. In this article we will analyze vary expression of HPV in oral cavity both benign and malignant, their prevalence and the importance in early diagnosis and prevention. The classical oral lesions associated with human papillomavirus are squamous cell papilloma, condyloma acuminatum, verruca vulgaris and focal epithelial hyperplasia. Overall, HPV types 2, 4, 6, 11, 13 and 32 have been associated with benign oral lesions while HPV types 16 and 18 have been associated with malignant lesions, especially in cancers of the tonsils and elsewhere in the oropharynx. Transmission of the virus can occur with direct contact, genital contact, anal and oral sex; latest studies suggest a salivary transmission and from mother to child during delivery. The number of lifetime sexual partners is an important risk factor for the development of HPV-positive head-neck cancer. Oral/oropharyngeal cancer etiologically associated with HPV having an increased survival and a better prognostic (85%-90% to five years). There is no cure for the virus. There are two commercially available prophylactic vaccines against HPV today: the bivalent (16 and 18) Cervarix® and the tetravalent (6, 11, 16 and 18) Gardasil® and new vaccine Gardasil 9 (6, 11, 16, 18, 31, 33, 45, 52, 58) was approved in the United States. To be effective, such vaccination should start before "sexual puberty". The vaccine could be an important preventive strategy, in fact the scientific community is in agreement on hypothesis that blocking the contagion it may also limit the distance complications as the oropharyngeal cancer.

  17. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon.

    Science.gov (United States)

    Kwenti, Tebit Emmanuel; Moye, Adzemye Linus; Wiylanyuy, Adzemye Basil; Njunda, Longdoh Anna; Nkuo-Akenji, Theresa

    2017-11-09

    Studies to assess the immune responses against malaria in Cameroonian children are limited. The purpose of this study was to assess the immune responses against Plasmodium falciparum merozoite surface protein-1 (MSP-1 19 ) and apical membrane antigen-1 (AMA-1) in children residing in the different epidemiological strata of malaria in Cameroon. In a cross-sectional survey performed between April and July 2015, 602 children between 2 and 15 years (mean ± SD = 5.7 ± 3.7), comprising 319 (53%) males were enrolled from five epidemiological strata of malaria in Cameroon including: the sudano-sahelian (SS) strata, the high inland plateau (HIP) strata, the south Cameroonian equatorial forest (SCEF) strata, the high western plateau (HWP) strata, and the coastal (C) strata. The children were screened for clinical malaria (defined by malaria parasitaemia ≥ 5000 parasites/µl plus axillary temperature ≥ 37.5 °C). Their antibody responses were measured against P. falciparum MSP-1 19 and AMA-1 vaccine candidate antigens using standard ELISA technique. A majority of the participants were IgG responders 72.1% (95% CI 68.3-75.6). The proportion of responders was higher in females (p = 0.002) and in children aged 10 years and above (p = 0.005). The proportion of responders was highest in Limbe (C strata) and lowest in Ngaoundere (HIP strata) (p malaria (p malaria parasites. The immune responses varied considerably across the different strata: the highest levels observed in the C strata a