WorldWideScience

Sample records for early immune response

  1. Early-life inflammation, immune response and ageing.

    Science.gov (United States)

    Khan, Imroze; Agashe, Deepa; Rolff, Jens

    2017-03-15

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. © 2017 The Author(s).

  2. The effect of ghrelin upon the early immune response in lean and obese mice during sepsis.

    Directory of Open Access Journals (Sweden)

    Daniel Siegl

    Full Text Available It is well established that obesity-related hormones can have modulatory effects associated with the immune response. Ghrelin, a hormone mainly derived from endocrine cells of the gastric mucosa, regulates appetite, energy expenditure and body weight counteracting leptin, a hormone mainly derived from adipocytes. Additionally, receptors of both have been detected on immune cells and demonstrated an immune regulatory function during sepsis.In the present study, the effect of peripheral ghrelin administration on early immune response and survival was investigated with lean mice and mice with diet-induced obesity using cecal ligation and puncture to induce sepsis.In the obese group, we found that ghrelin treatment improved survival, ameliorated hypothermia, and increased hyperleptinemia as compared to the lean controls. We also observed that ghrelin treatment divergently regulated serum IL-1ß and TNF-α concentrations in both lean and obese septic mice. Ghrelin treatment initially decreased but later resulted in increased bacteriaemia in lean mice while having no impact upon obese mice. Similarly, ghrelin treatment increased early neutrophil oxidative burst while causing a decrease 48 hours after sepsis inducement.In conclusion, as the immune response to sepsis temporally changes, ghrelin treatment differentially mediates this response. Specifically, we observed that ghrelin conferred protective effects during the early phase of sepsis, but during the later phase deteriorated immune response and outcome. These adverse effects were more pronounced upon lean mice as compared to obese mice.

  3. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    Full Text Available Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals.Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR. Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria during winnowing processes as symbioses are fine-tuned.Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are

  4. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.

    Science.gov (United States)

    Puill-Stephan, Eneour; Seneca, François O; Miller, David J; van Oppen, Madeleine J H; Willis, Bette L

    2012-01-01

    Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further

  5. Early Peritoneal Immune Response during Echinococcus granulosus Establishment Displays a Biphasic Behavior

    Science.gov (United States)

    Mourglia-Ettlin, Gustavo; Marqués, Juan Martín; Chabalgoity, José Alejandro; Dematteis, Sylvia

    2011-01-01

    Background Cystic echinococcosis is a worldwide distributed helminth zoonosis caused by the larval stage of Echinococcus granulosus. Human secondary cystic echinococcosis is caused by dissemination of protoscoleces after accidental rupture of fertile cysts and is due to protoscoleces ability to develop into new metacestodes. In the experimental model of secondary cystic echinococcosis mice react against protoscoleces producing inefficient immune responses, allowing parasites to develop into cysts. Although the chronic phase of infection has been analyzed in depth, early immune responses at the site of infection establishment, e.g., peritoneal cavity, have not been well studied. Because during early stages of infection parasites are thought to be more susceptible to immune attack, this work focused on the study of cellular and molecular events triggered early in the peritoneal cavity of infected mice. Principal Findings Data obtained showed disparate behaviors among subpopulations within the peritoneal lymphoid compartment. Regarding B cells, there is an active molecular process of plasma cell differentiation accompanied by significant local production of specific IgM and IgG2b antibodies. In addition, peritoneal NK cells showed a rapid increase with a significant percentage of activated cells. Peritoneal T cells showed a substantial increase, with predominance in CD4+ T lymphocytes. There was also a local increase in Treg cells. Finally, cytokine response showed local biphasic kinetics: an early predominant induction of Th1-type cytokines (IFN-γ, IL-2 and IL-15), followed by a shift toward a Th2-type profile (IL-4, IL-5, IL-6, IL-10 and IL-13). Conclusions Results reported here open new ways to investigate the involvement of immune effectors players in E. granulosus establishment, and also in the sequential promotion of Th1- toward Th2-type responses in experimental secondary cystic echinococcosis. These data would be relevant for designing rational therapies

  6. Characterization of the early local immune response to Ixodes ricinus tick bites in human skin.

    Science.gov (United States)

    Glatz, Martin; Means, Terry; Haas, Josef; Steere, Allen C; Müllegger, Robert R

    2017-03-01

    Little is known about the immunomodulation by tick saliva during a natural tick bite in human skin, the site of the tick-host interaction. We examined the expression of chemokines, cytokines and leucocyte markers on the mRNA levels and histopathologic changes in human skin biopsies of tick bites (n=37) compared to unaffected skin (n=9). Early tick-bite skin lesions (skin. With longer tick attachment (>24 hours), the numbers of innate immune cells and mediators (not significantly) declined, whereas the numbers of lymphocytes (not significantly) increased. Natural tick bites by Ixodes ricinus ticks initially elicit a strong local innate immune response in human skin. Beyond 24 hours of tick attachment, this response usually becomes less, perhaps because of immunomodulation by tick saliva. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Oral treatment with enrofloxacin early in life promotes Th2-mediated immune response in mice.

    Science.gov (United States)

    Strzępa, Anna; Majewska-Szczepanik, Monika; Kowalczyk, Paulina; Woźniak, Dorota; Motyl, Sylwia; Szczepanik, Marian

    2016-02-01

    Th2 lymphocytes play a crucial role in the development of allergy. These pathologies are caused by coordinated production of the cytokines IL-4, IL-5 and IL-13 that regulate the activity of eosinophils, basophils and B cells. According to the 'hygiene hypothesis', the reduced exposure to microorganisms favors allergy occurrence. The advances in medicine in the field of infection therapy promoted an increasing application of antibiotics which, apart from eliminating pathogens, also partially eliminate the microbiota. Epicutaneous (EC) immunization with ovalbumin (OVA) followed by OVA challenge was used to study the influence of partial gut flora depletion by oral treatment with enrofloxacin on type-2 immune response. Current work describes the influence of enrofloxacin application on anti-OVA antibody production and cytokine synthesis in young and adult mice. Immune response in adult mice is less sensitive to modification of natural gut flora. We observed that enrofloxacin treatment of adult mice leads to significant decrease of anti-OVA IgG2a production while synthesis of anti-OVA IgE was not changed. The production of type-1 (IFN-γ), type-2 (IL-4, IL-5, IL-10, IL-13) and Th17-associated (IL-17A) cytokines was inhibited. On the other hand, treatment of young mice with enrofloxacin significantly upregulates the production of anti-OVA IgE and inhibits the secretion of anti-OVA IgG2a antibodies. Additionally, treatment with enrofloxacin early in life prior to OVA immunization results in increased production of type-2 (IL-4, IL-10 and IL-13) cytokines. Our results clearly indicate that the immune system is more vulnerable to decreased bacterial exposure early in life that may promote development of allergy. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    Science.gov (United States)

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  9. Fish oil supplementation in early infancy modulates developing infant immune responses.

    Science.gov (United States)

    D'Vaz, N; Meldrum, S J; Dunstan, J A; Lee-Pullen, T F; Metcalfe, J; Holt, B J; Serralha, M; Tulic, M K; Mori, T A; Prescott, S L

    2012-08-01

    Maternal fish oil supplementation during pregnancy has been associated with altered infant immune responses and a reduced risk of infant sensitization and eczema. To examine the effect of early postnatal fish oil supplementation on infant cellular immune function at 6 months of age in the context of allergic disease. In a double-blind randomized controlled trial (ACTRN12606000281594), 420 infants of high atopic risk received fish oil [containing 280 mg docosahexaenoic acid (DHA) and 110 mg eicosapentanoic acid (EPA)] or control oil daily from birth to 6 months. One hundred and twenty infants had blood collected at 6 months of age. Fatty acid levels, induced cytokine responses, T cell subsets and monocyte HLA-DR expression were assessed at 6 months of age. Infant allergies were assessed at 6 and 12 months of age. DHA and EPA levels were significantly higher in the fish oil group and erythrocyte arachidonic acid (AA) levels were lower (all P acid (PUFA) levels and associated with lowered allergen-specific Th2 responses and elevated polyclonal Th1 responses. Our results add to existing evidence of n-3 PUFA having immunomodulatory properties that are potentially allergy-protective. © 2012 Blackwell Publishing Ltd.

  10. Evidence for an early innate immune response in the motor cortex of ALS.

    Science.gov (United States)

    Jara, Javier H; Genç, Barış; Stanford, Macdonell J; Pytel, Peter; Roos, Raymond P; Weintraub, Sandra; Mesulam, M Marsel; Bigio, Eileen H; Miller, Richard J; Özdinler, P Hande

    2017-06-26

    Recent evidence indicates the importance of innate immunity and neuroinflammation with microgliosis in amyotrophic lateral sclerosis (ALS) pathology. The MCP1 (monocyte chemoattractant protein-1) and CCR2 (CC chemokine receptor 2) signaling system has been strongly associated with the innate immune responses observed in ALS patients, but the motor cortex has not been studied in detail. After revealing the presence of MCP1 and CCR2 in the motor cortex of ALS patients, to elucidate, visualize, and define the timing, location and the extent of immune response in relation to upper motor neuron vulnerability and progressive degeneration in ALS, we developed MCP1-CCR2-hSOD1 G93A mice, an ALS reporter line, in which cells expressing MCP1 and CCR2 are genetically labeled by monomeric red fluorescent protein-1 and enhanced green fluorescent protein, respectively. In the motor cortex of MCP1-CCR2-hSOD1 G93A mice, unlike in the spinal cord, there was an early increase in the numbers of MCP1+ cells, which displayed microglial morphology and selectively expressed microglia markers. Even though fewer CCR2+ cells were present throughout the motor cortex, they were mainly infiltrating monocytes. Interestingly, MCP1+ cells were found in close proximity to the apical dendrites and cell bodies of corticospinal motor neurons (CSMN), further implicating the importance of their cellular interaction to neuronal pathology. Similar findings were observed in the motor cortex of ALS patients, where MCP1+ microglia were especially in close proximity to the degenerating apical dendrites of Betz cells. Our findings reveal that the intricate cellular interplay between immune cells and upper motor neurons observed in the motor cortex of ALS mice is indeed recapitulated in ALS patients. We generated and characterized a novel model system, to study the cellular and molecular basis of this close cellular interaction and how that relates to motor neuron vulnerability and progressive degeneration in

  11. Prior Puma Lentivirus Infection Modifies Early Immune Responses and Attenuates Feline Immunodeficiency Virus Infection in Cats

    Directory of Open Access Journals (Sweden)

    Wendy S. Sprague

    2018-04-01

    Full Text Available We previously showed that cats that were infected with non-pathogenic Puma lentivirus (PLV and then infected with pathogenic feline immunodeficiency virus (FIV (co-infection with the host adapted/pathogenic virus had delayed FIV proviral and RNA viral loads in blood, with viral set-points that were lower than cats infected solely with FIV. This difference was associated with global CD4+ T cell preservation, greater interferon gamma (IFN-γ mRNA expression, and no cytotoxic T lymphocyte responses in co-infected cats relative to cats with a single FIV infection. In this study, we reinforced previous observations that prior exposure to an apathogenic lentivirus infection can diminish the effects of acute infection with a second, more virulent, viral exposure. In addition, we investigated whether the viral load differences that were observed between PLV/FIV and FIV infected cats were associated with different immunocyte phenotypes and cytokines. We found that the immune landscape at the time of FIV infection influences the infection outcome. The novel findings in this study advance our knowledge about early immune correlates and documents an immune state that is associated with PLV/FIV co-infection that has positive outcomes for lentiviral diseases.

  12. Early immune response patterns to pathogenic bacteria are associated to increased risk of lower respiratory infections in children

    DEFF Research Database (Denmark)

    Vissing, N. H.; Larsen, Jeppe Madura; Rasmussen, Mette Annelie

    2014-01-01

    Neonatal colonisation of the airways with respiratory pathogens is associated with increased risk of lower respiratory infections (LRI) in early childhood (1). Therefore, we hypothesized that children developing LRI have an abnormal immune response to pathogenic bacteria in infancy. We aimed...... to characterise the systemic immune response to pathogenic bacteria at the age of 6 months and study the association with incidence of LRI during the first 3 years of life....

  13. Recognition of Immune Response for the Early Diagnosis and Treatment of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Adrese M. Kandahari

    2015-01-01

    Full Text Available Osteoarthritis is a common and debilitating joint disease that affects up to 30 million Americans, leading to significant disability, reduction in quality of life, and costing the United States tens of billions of dollars annually. Classically, osteoarthritis has been characterized as a degenerative, wear-and-tear disease, but recent research has identified it as an immunopathological disease on a spectrum between healthy condition and rheumatoid arthritis. A systematic literature review demonstrates that the disease pathogenesis is driven by an early innate immune response which progressively catalyzes degenerative changes that ultimately lead to an altered joint microenvironment. It is feasible to detect this infiltration of cells in the early, and presumably asymptomatic, phase of the disease through noninvasive imaging techniques. This screening can serve to aid clinicians in potentially identifying high-risk patients, hopefully leading to early effective management, vast improvements in quality of life, and significant reductions in disability, morbidity, and cost related to osteoarthritis. Although the diagnosis and treatment of osteoarthritis routinely utilize both invasive and non-invasive strategies, imaging techniques specific to inflammatory cells are not commonly employed for these purposes. This review discusses this paradigm and aims to shift the focus of future osteoarthritis-related research towards early diagnosis of the disease process.

  14. Patterns of early gut colonization shape future immune responses of the host

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis; Nielsen, Dennis Sandris; Kverka, Miloslav

    2012-01-01

    The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut...... production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system....

  15. Immune system development during early childhood in tropical Latin America: evidence for the age-dependent down regulation of the innate immune response.

    Science.gov (United States)

    Teran, Rommy; Mitre, Edward; Vaca, Maritza; Erazo, Silvia; Oviedo, Gisela; Hübner, Marc P; Chico, Martha E; Mattapallil, Joseph J; Bickle, Quentin; Rodrigues, Laura C; Cooper, Philip J

    2011-03-01

    The immune response that develops in early childhood underlies the development of inflammatory diseases such as asthma and there are few data from tropical Latin America (LA). This study investigated the effects of age on the development of immunity during the first 5 years of life by comparing innate and adaptive immune responses in Ecuadorian children aged 6-9 months, 22-26 months, and 48-60 months. Percentages of naïve CD4+ T cells declined with age while those of memory CD4(+) and CD8(+) T cells increased indicating active development of the immune system throughout the first five years. Young infants had greater innate immune responses to TLR agonists compared to older children while regulatory responses including SEB-induced IL-10 and percentages of FoxP3(+) T-regulatory cells decreased with age. Enhanced innate immunity in early life may be important for host defense against pathogens but may increase the risk of immunopathology. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Early Involvement of Immune/Inflammatory Response Genes in Retinal Degeneration in DBA/2J Mice

    Directory of Open Access Journals (Sweden)

    W. Fan

    2010-01-01

    , representative of different functions/pathways, were validated with RT-PCR, and changes in glial responses were visualized in the retina with immunocytochemistry. Conclusions The results showed that the expression of genes related to the immune response and acute stress were altered independently of the development of elevated IOP, and indicated early involvement of the immune system in the onset of the disease. The later development of elevated IOP, observed in this animal model, was coincident with continued changes in expression of genes observed at earlier time points. Further studies are warranted to identify the roles of specific genes identified here with respect to the death of the RGCs.

  17. Early Involvement of Immune/Inflammatory Response Genes in Retinal Degeneration in DBA/2J Mice

    Directory of Open Access Journals (Sweden)

    W. Fan

    2010-03-01

    , representative of different functions/pathways, were validated with RT-PCR, and changes in glial responses were visualized in the retina with immunocytochemistry. Conclusions: The results showed that the expression of genes related to the immune response and acute stress were altered independently of the development of elevated IOP, and indicated early involvement of the immune system in the onset of the disease. The later development of elevated IOP, observed in this animal model, was coincident with continued changes in expression of genes observed at earlier time points. Further studies are warranted to identify the roles of specific genes identified here with respect to the death of the RGCs.

  18. Vaccination Enhances Early Immune Responses in White Shrimp Litopenaeus vannamei after Secondary Exposure to Vibrio alginolyticus

    Science.gov (United States)

    Lin, Yong-Chin; Chen, Jiann-Chu; Morni, Wan Zabidii W.; Putra, Dedi Fazriansyah; Huang, Chien-Lun; Li, Chang-Che; Hsieh, Jen-Fang

    2013-01-01

    Background Recent work suggested that the presence of specific memory or some form of adaptive immunity occurs in insects and shrimp. Hypervariable pattern recognition molecules, known as Down syndrome cell adhesion molecules, are able to mount specific recognition, and immune priming in invertebrates. In the present study, we attempted to understand the immune response pattern of white shrimp Litopenaeus vannamei which received primary (PE) and secondary exposure (SE) to Vibrio alginolyticus. Methodology Immune parameters and proliferation of haematopoietic tissues (HPTs) of shrimp which had received PE and SE to V. alginolyticus were measured. In the PE trial, the immune parameters and proliferation of HPTs of shrimp that received heat-killed V. alginolyticus (HVa) and formalin-inactivated V. alginolyticus (FVa) were measured. Mortality, immune parameters and proliferation of HPTs of 7-day-HVa-PE shrimp (shrimp that received primary exposure to HVa after 7 days) and 7-day-FVa-PE shrimp (shrimp that received primary exposure to FVa after 7 days) following SE to live V. alginolyticus (LVa) were measured. Phagocytic activity and clearance efficiency were examined for the 7∼35-day-HVa-PE and FVa-PE shrimp. Results HVa-receiving shrimp showed an earlier increase in the immune response on day 1, whereas FVa-receiving shrimp showed a late increase in the immune response on day 5. The 7-day-FVa-PE shrimp showed enhancement of immunity when encountering SE to LVa, whereas 7-day-HVa-PE shrimp showed a minor enhancement in immunity. 7-day-FVa-PE shrimp showed higher proliferation and an HPT mitotic index. Both phagocytic activity and clearance maintained higher for both HVa-PE and FVa-PE shrimp after 28 days. Conclusions HVa- and FVa-receiving shrimp showed the bacteria agglutinated prior to being phagocytised. FVa functions as a vaccine, whereas HVa functions as an inducer and can be used as an immune adjuvant. A combined mixture of FVa and HVa can serve as a

  19. Early IFN-gamma production after YF 17D vaccine virus immunization in mice and its association with adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Patrícia C C Neves

    Full Text Available Yellow Fever vaccine is one of the most efficacious human vaccines ever made. The vaccine (YF 17D virus induces polyvalent immune responses, with a mixed TH1/TH2 CD4(+ cell profile, which results in robust T CD8(+ responses and high titers of neutralizing antibody. In recent years, it has been suggested that early events after yellow fever vaccination are crucial to the development of adequate acquired immunity. We have previously shown that primary immunization of humans and monkeys with YF 17D virus vaccine resulted in the early synthesis of IFN-γ. Herein we have demonstrated, for the first time that early IFN-γ production after yellow fever vaccination is a feature also of murine infection and is much more pronounced in the C57BL/6 strain compared to the BALB/c strain. Likewise, in C57BL/6 strain, we have observed the highest CD8(+ T cells responses as well as higher titers of neutralizing antibodies and total anti-YF IgG. Regardless of this intense IFN-γ response in mice, it was not possible to see higher titers of IgG2a in relation to IgG1 in both mice lineages. However, IgG2a titers were positively correlated to neutralizing antibodies levels, pointing to an important role of IFN-γ in eliciting high quality responses against YF 17D, therefore influencing the immunogenicity of this vaccine.

  20. Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses.

    Science.gov (United States)

    Thwe, Phyu M; Pelgrom, Leonard; Cooper, Rachel; Beauchamp, Saritha; Reisz, Julie A; D'Alessandro, Angelo; Everts, Bart; Amiel, Eyal

    2017-09-05

    Dendritic cell (DC) activation by Toll-like receptor (TLR) agonists causes rapid glycolytic reprogramming that is required to meet the metabolic demands of their immune activation. Recent efforts in the field have identified an important role for extracellular glucose sourcing to support DC activation. However, the contributions of intracellular glucose stores to these processes have not been well characterized. We demonstrate that DCs possess intracellular glycogen stores and that cell-intrinsic glycogen metabolism supports the early effector functions of TLR-activated DCs. Inhibition of glycogenolysis significantly attenuates TLR-mediated DC maturation and impairs their ability to initiate lymphocyte activation. We further report that DCs exhibit functional compartmentalization of glucose- and glycogen-derived carbons, where these substrates preferentially contribute to distinct metabolic pathways. This work provides novel insights into nutrient homeostasis in DCs, demonstrating that differential utilization of glycogen and glucose metabolism regulates their optimal immune function. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. IgD, cyclooxygenase-2 and ribosomal protein S6-PS240 immune response in a case of early psoriasis

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2018-02-01

    Full Text Available Psoriasis is an inflammatory skin disease. Five classic types of psoriasis have been defined: plaque, inverse, pustular, guttate, and erythrodermic. The early psoriasis immunologic skin immune response is not well understood. Here we aim to show an immune and cell signaling response in a case of early psoriasis. A 56 year old female presented with a desquamative lesion on her right leg. A skin biopsy for hematoxylin and eosin (H&E and immunohistochemistry (IHC staining was taken. The diagnosis indicated early psoriasis, and IHC showed positive IgD staining in the epidermal corneal layer, as well as positive staining with ribosomal protein S6-pS240 (RIBO in the hyperproliferative epidermis. Cyclooxygenase-2 (COX-2 was also very positive in the granular layer in spots, at the basement membrane zone of the skin and in the inflammatory infiltrate in the dermis subjacent to hyperproliferative psoriatic areas. In an early case of psoriasis, we confirmed the presence of IgD, RIBO and COX-2. Each molecule seems to be playing a role in inflammation and intracellular signaling pathways in early psoriasis. The role of IgD is unknown, and this case brings to light the complexity of the pathologic changes occurring in early psoriatic lesions.

  2. Infection of goose with genotype VIId Newcastle disease virus of goose origin elicits strong immune responses at early stage

    Directory of Open Access Journals (Sweden)

    Qianqian Xu

    2016-10-01

    Full Text Available Newcastle disease (ND, caused by virulent strains of Newcastle disease virus (NDV, is a highly contagious disease of birds that is responsible for heavy economic losses for the poultry industry worldwide. However, little is known about host-virus interactions in waterfowl, goose. In this study, we aim to characterize the host immune response in goose, based on the previous reports on the host response to NDV in chickens. Here, we evaluated viral replication and mRNA expression of 27 immune-related genes in 10 tissues of geese challenged with a genotype VIId NDV strain of goose origin (go/CH/LHLJ/1/06. The virus showed early replication, especially in digestive and immune tissues. The expression profiles showed up-regulation of Toll-like receptor (TLR1–3, 5, 7 and 15, avian β-defensin (AvBD 5–7, 10, 12 and 16, cytokines interleukin (IL-8, IL-18, IL-1β and interferon-γ, inducible NO synthase (iNOS, and MHC class I in some tissues of geese in response to NDV. In contrast, NDV infection suppressed expression of AvBD1 in cecal tonsil of geese. Moreover, we observed a highly positive correlation between viral replication and host mRNA expressions of TLR1-5 and 7, AvBD4-6, 10 and 12, all the cytokines measured, MHC class I, FAS ligand, and iNOS, mainly at 72 h post-infection. Taken together, these results demonstrated that NDV infection induces strong innate immune responses and intense inflammatory responses at early stage in goose which may associate with the viral pathogenesis.

  3. Dynamic range of Nef-mediated evasion of HLA class II-restricted immune responses in early HIV-1 infection.

    Science.gov (United States)

    Mahiti, Macdonald; Brumme, Zabrina L; Jessen, Heiko; Brockman, Mark A; Ueno, Takamasa

    2015-07-31

    HLA class II-restricted CD4(+) T lymphocytes play an important role in controlling HIV-1 replication, especially in the acute/early infection stage. But, HIV-1 Nef counteracts this immune response by down-regulating HLA-DR and up-regulating the invariant chain associated with immature HLA-II (Ii). Although functional heterogeneity of various Nef activities, including down-regulation of HLA class I (HLA-I), is well documented, our understanding of Nef-mediated evasion of HLA-II-restricted immune responses during acute/early infection remains limited. Here, we examined the ability of Nef clones from 47 subjects with acute/early progressive infection and 46 subjects with chronic progressive infection to up-regulate Ii and down-regulate HLA-DR and HLA-I from the surface of HIV-infected cells. HLA-I down-regulation function was preserved among acute/early Nef clones, whereas both HLA-DR down-regulation and Ii up-regulation functions displayed relatively broad dynamic ranges. Nef's ability to down-regulate HLA-DR and up-regulate Ii correlated positively at this stage, suggesting they are functionally linked in vivo. Acute/early Nef clones also exhibited higher HLA-DR down-regulation and lower Ii up-regulation functions compared to chronic Nef clones. Taken together, our results support enhanced Nef-mediated HLA class II immune evasion activities in acute/early compared to chronic infection, highlighting the potential importance of these functions following transmission. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Involvement of two microRNAs in the early immune response to DNA vaccination against a fish rhabdovirus

    DEFF Research Database (Denmark)

    Bela-ong, Dennis Berbulla; Schyth, Brian Dall; Zou, Jun

    2015-01-01

    Mechanisms that account for the high protective efficacy in teleost fish of a DNA vaccine expressing the glycoprotein (G) of Viral hemorrhagic septicemia virus (VHSV) are thought to involve early innate immune responses mediated by interferons (IFNs). Microribonucleic acids (miRNAs) are a diverse...... class of small (18–22 nucleotides) endogenous RNAs that potently mediate post-transcriptional silencing of a wide range of genes and are emerging as critical regulators of cellular processes, including immune responses. We have recently reported that miR-462 and miR-731 were strongly induced in rainbow......RNAs using anti-miRNA oligonucleotides was conducted in poly I:C-treated rainbow trout fingerlings. Following VHSV challenge, anti-miRNA-injected fish had faster development of disease and higher mortalities than control fish, indicating that miR-462/731 may be involved in IFN-mediated protection conferred...

  5. Budesonide and formoterol reduce early innate anti-viral immune responses in vitro.

    Directory of Open Access Journals (Sweden)

    Janet M Davies

    Full Text Available Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16 in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10⁻⁶ M when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2', 5' oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits

  6. Combined chromatin and expression analysis reveals specific regulatory mechanisms within cytokine genes in the macrophage early immune response.

    Directory of Open Access Journals (Sweden)

    Maria Jesus Iglesias

    Full Text Available Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS.To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches--gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII, which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF, was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines, was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/-LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40% was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at

  7. Early systemic bacterial dissemination and a rapid innate immune response characterize genetic resistance to plague of SEG mice.

    Science.gov (United States)

    Demeure, Christian E; Blanchet, Charlène; Fitting, Catherine; Fayolle, Corinne; Khun, Huot; Szatanik, Marek; Milon, Geneviève; Panthier, Jean-Jacques; Jaubert, Jean; Montagutelli, Xavier; Huerre, Michel; Cavaillon, Jean-Marc; Carniel, Elisabeth

    2012-01-01

    Although laboratory mice are usually highly susceptible to Yersinia pestis, we recently identified a mouse strain (SEG) that exhibited an exceptional capacity to resist bubonic plague and used it to identify immune mechanisms associated with resistance. The kinetics of infection, circulating blood cells, granulopoiesis, lesions, and cellular populations in the spleen, and cytokine production in various tissues were compared in SEG and susceptible C57BL/6J mice after subcutaneous infection with the virulent Y. pestis CO92. Bacterial invasion occurred early (day 2) but was transient in SEG/Pas mice, whereas in C57BL/6J mice it was delayed but continuous until death. The bacterial load in all organs significantly correlated with the production of 5 cytokines (granulocyte colony-stimulating factor, keratinocyte-derived chemokine (KC), macrophage cationic peptide-1 (MCP-1), interleukin 1α, and interleukin 6) involved in monocyte and neutrophil recruitment. Indeed, higher proportions of these 2 cell types in blood and massive recruitment of F4/80(+)CD11b(-) macrophages in the spleen were observed in SEG/Pas mice at an early time point (day 2). Later times after infection (day 4) were characterized in C57BL/6J mice by destructive lesions of the spleen and impaired granulopoiesis. A fast and efficient Y. pestis dissemination in SEG mice may be critical for the triggering of an early and effective innate immune response necessary for surviving plague.

  8. They Are What You Eat: Can Nutritional Factors during Gestation and Early Infancy Modulate the Neonatal Immune Response?

    Directory of Open Access Journals (Sweden)

    Sarah Prentice

    2017-11-01

    Full Text Available The ontogeny of the human immune system is sensitive to nutrition even in the very early embryo, with both deficiency and excess of macro- and micronutrients being potentially detrimental. Neonates are particularly vulnerable to infectious disease due to the immaturity of the immune system and modulation of nutritional immunity may play a role in this sensitivity. This review examines whether nutrition around the time of conception, throughout pregnancy, and in early neonatal life may impact on the developing infant immune system.

  9. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  10. Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Swedin Linda

    2012-05-01

    Full Text Available Abstract Background Single-walled carbon nanotubes (SWCNT trigger pronounced inflammation and fibrosis in the lungs of mice following administration via pharyngeal aspiration or inhalation. Human exposure to SWCNT in an occupational setting may occur in conjunction with infections and this could yield enhanced or suppressed responses to the offending agent. Here, we studied whether the sequential exposure to SWCNT via pharyngeal aspiration and infection of mice with the ubiquitous intracellular parasite Toxoplasma gondii would impact on the immune response of the host against the parasite. Methods C57BL/6 mice were pre-exposed by pharyngeal administration of SWCNT (80 + 80 μg/mouse for two consecutive days followed by intravenous injection with either 1x103 or 1x104 green fluorescence protein and luciferase-expressing T. gondii tachyzoites. The dissemination of T. gondii was monitored by in vivo bioluminescence imaging in real time for 7 days and by plaque formation. The inflammatory response was analysed in bronchoalveolar lavage (BAL fluid, and by assessment of morphological changes and immune responses in lung and spleen. Results There were no differences in parasite distribution between mice only inoculated with T. gondii or those mice pre-exposed for 2 days to SWCNT before parasite inoculum. Lung and spleen histology and inflammation markers in BAL fluid reflected the effects of SWCNT exposure and T. gondii injection, respectively. We also noted that CD11c positive dendritic cells but not F4/80 positive macrophages retained SWCNT in the lungs 9 days after pharyngeal aspiration. However, co-localization of T. gondii with CD11c or F4/80 positive cells could not be observed in lungs or spleen. Pre-exposure to SWCNT did not affect the splenocyte response to T. gondii. Conclusions Taken together, our data indicate that pre-exposure to SWCNT does not enhance or suppress the early immune response to T. gondii in mice.

  11. Peripheral and placental immune responses in goats after primoinfection with Neospora caninum at early, mid and late gestation.

    Science.gov (United States)

    Porto, Wagnner José Nascimento; Horcajo, Pilar; Kim, Pomy de Cássia Peixoto; Regidor-Cerrillo, Javier; Romão, Elton Amorim; Álvarez-García, Gema; Mesquita, Emanuela Polimeni de; Mota, Rinaldo Aparecido; Ortega-Mora, Luis Miguel

    2017-08-15

    Neospora caninum can cause reproductive failure in goats. However, the pathogenesis of neosporosis in this domestic species remains largely unknown. We recently demonstrated that the outcome of experimental infection by N. caninum in pregnant goats is highly dependent on the time of gestation, during which infection occurs. In the present study, we examined the peripheral and placental immune responses in these groups of goats infected with 10 6 tachyzoites of the Nc-Spain7 isolate at early (G1, at day 40 of gestation, dg), mid (G2, 90 dg) and late (G3, 120 dg) gestation, together with a group of non-infected goats as a control group (G4). Seroconversion was observed as early as day 10 post-infection (pi) in all goats from G1 that aborted earlier (10-11 pi). The remaining infected goats had seroconverted by day 14 pi. Similar IFN-γ kinetic profiles were found in sera from goats in G1 and G2 with a significant increase in the IFN-γ levels on days 7 and 10 pi. This increase was not observed in G3. A similar pattern of placental cytokine expression was found in all infected groups. IFN-γ and IL-4 showed the highest increase, followed by a weaker up-regulation in TNF-α and IL-10. The lowest up-regulation was observed for IL-12 expression. In summary, this study provides information regarding the dynamics of immune responses and their relationship with the outcome of N. caninum infection in goats during gestation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. FINE SPECIFICITY OF CELLULAR IMMUNE-RESPONSES IN HUMANS TO HUMAN CYTOMEGALOVIRUS IMMEDIATE-EARLY 1-PROTEIN

    NARCIS (Netherlands)

    ALP, NJ; ALLPORT, TD; VANZANTEN, J; RODGERS, B; SISSONS, JGP; BORYSIEWICZ, LK

    Cell-mediated immunity is important in maintaining the virus-host equilibrium in persistent human cytomegalovirus (HCMV) infection. The HCMV 72-kDa major immediate early 1 protein (IE1) is a target for CD8+ cytotoxic T cells in humans, as is the equivalent 89-kDa protein in mouse. Less is known

  13. The early stages of the immune response of the European abalone Haliotis tuberculata to a Vibrio harveyi infection.

    Science.gov (United States)

    Cardinaud, Marion; Dheilly, Nolwenn M; Huchette, Sylvain; Moraga, Dario; Paillard, Christine

    2015-08-01

    Vibrio harveyi is a marine bacterial pathogen responsible for episodic abalone mortalities in France, Japan and Australia. In the European abalone, V. harveyi invades the circulatory system in a few hours after exposure and is lethal after 2 days of infection. In this study, we investigated the responses of European abalone immune cells over the first 24 h of infection. Results revealed an initial induction of immune gene expression including Rel/NF-kB, Mpeg and Clathrin. It is rapidly followed by a significant immuno-suppression characterized by reduced cellular hemocyte parameters, immune response gene expressions and enzymatic activities. Interestingly, Ferritin was overexpressed after 24 h of infection suggesting that abalone attempt to counter V. harveyi infection using soluble effectors. Immune function alteration was positively correlated with V. harveyi concentration. This study provides the evidence that V. harveyi has a hemolytic activity and an immuno-suppressive effect in the European abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Influence of intestinal early enteral nutrition therapy on intestinal barrier function and immune response of patients with radiation enteritis

    International Nuclear Information System (INIS)

    Liu Guohui; Kang Xin; Chen Gong; Wang Guangyi

    2012-01-01

    Objective: To investigate the influence of early enteral nutrition therapy on the intestinal barrier function and immune response of the patients with radiation enteritis (ER) so as to find a relatively simple and effective method to treat RE. Methods: Fifty-six patients with radiation enteritis (RE) diagnosed by colonoscopy, X-rays, and pathology were randomly divided into 2 equal groups: experimental group undergoing enteral nutrition therapy, and control group undergoing conventional therapy only. Peripheral blood samples were collected 1, 11, and 21 days after admission. Plasma diamine oxidase (DAO), D-lactic acid, endotoxin, and lactulose/mannitol (L/M) ratio, and levels of IgG, IgM, and IgA, and CD4/CD8 ratio were examined. Five cases from the experimental group and 5 cases from the control group underwent second-time operation because of incomplete intestinal obstruction, intestinal stenosis, or recurrent tumor respectively. The biopsy specimens of the terminal ileum or distal descending colon taken during the first and second operations underwent pathological examination. Peripheral blood samples were collected 1, 11, and 21 days after admission. Plasma diamine oxidase (DAO), D-lactic acid, endotoxin, and lactulose/mannitol (L/M) ratio, and levels of IgG, IgM, and IgA, and CD4/CD8 ratio were examined. Results: There were no significant differences in the intestinal function and blood immunological indices between these 2 groups. The levels of DAO, D-lactic acid, and endotoxin,and the L/M ratio 11 days after admission of the experiment group were all significantly lower than those of the control group (t=2.568, 2.427, 2.143, 2.443, P<0.05), and all those indices 21 days after admission of the experiment group were all much more significantly lower in comparison with the control group (t=6.019, 12.834, 7.837, 7.997, P<0.01). The levels of IgG, IgM, and IgA, and CD4/CD8 ratio 11 days after admission of the experimental group were all significantly higher than

  15. Early gene Broad complex plays a key role in regulating the immune response triggered by ecdysone in the Malpighian tubules of Drosophila melanogaster.

    Science.gov (United States)

    Verma, Puja; Tapadia, Madhu G

    2015-08-01

    In insects, humoral response to injury is accomplished by the production of antimicrobial peptides (AMPs) which are secreted in the hemolymph to eliminate the pathogen. Drosophila Malpighian tubules (MTs), however, are unique immune organs that show constitutive expression of AMPs even in unchallenged conditions and the onset of immune response is developmental stage dependent. Earlier reports have shown ecdysone positively regulates immune response after pathogenic challenge however, a robust response requires prior potentiation by the hormone. Here we provide evidence to show that MTs do not require prior potentiation with ecdysone hormone for expression of AMPs and they respond to ecdysone very fast even without immune challenge, although the different AMPs Diptericin, Cecropin, Attacin, Drosocin show differential expression in response to ecdysone. We show that early gene Broad complex (BR-C) could be regulating the IMD pathway by activating Relish and physically interacting with it to activate AMPs expression. BR-C depletion from Malpighian tubules renders the flies susceptible to infection. We also show that in MTs ecdysone signaling is transduced by EcR-B1 and B2. In the absence of ecdysone signaling the IMD pathway associated genes are down regulated and activation and translocation of transcription factor Relish is also affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A pilot randomized trial assessing the effects of autogenic training in early stage cancer patients in relation to psychological status and immune system responses.

    Science.gov (United States)

    Hidderley, Margaret; Holt, Martin

    2004-03-01

    Autogenic training (AT) is a type of meditation usually used for reducing stress. This pilot study describes how AT was used on a group of early stage cancer patients and the observed effect on stress-related behaviours and immune system responses. This was a randomized trial with 31 early stage breast cancer women, having received a lumpectomy and adjuvant radiotherapy. The women were randomized into two groups. Group 1 received a home visit only. Group 2 received a home visit and 2 months' weekly Autogenic training. At the beginning and end of the 2 monthly periods, the Hospital Anxiety and Depression Scale (HADS) and T and B cell markers were measured to give an indication of changes in immune system responses and measurement of anxiety and depression. At the end of the study, HADS scores and T and B cell markers remained similar in the women who did not receive AT. The women receiving AT showed a strong statistical difference for an improvement in their HADS scores and those women observed in a meditative state as opposed to a relaxed state were found to have an increase in their immune responses. This study suggests AT as a powerful self-help therapy.

  17. Cord blood Streptococcus pneumoniae-specific cellular immune responses predict early pneumococcal carriage in high-risk infants in Papua New Guinea.

    Science.gov (United States)

    Francis, J P; Richmond, P C; Strickland, D; Prescott, S L; Pomat, W S; Michael, A; Nadal-Sims, M A; Edwards-Devitt, C J; Holt, P G; Lehmann, D; van den Biggelaar, A H J

    2017-03-01

    In areas where Streptococcus pneumoniae is highly endemic, infants experience very early pneumococcal colonization of the upper respiratory tract, with carriage often persisting into adulthood. We aimed to explore whether newborns in high-risk areas have pre-existing pneumococcal-specific cellular immune responses that may affect early pneumococcal acquisition. Cord blood mononuclear cells (CBMC) of 84 Papua New Guinean (PNG; high endemic) and 33 Australian (AUS; low endemic) newborns were stimulated in vitro with detoxified pneumolysin (dPly) or pneumococcal surface protein A (PspA; families 1 and 2) and compared for cytokine responses. Within the PNG cohort, associations between CBMC dPly and PspA-induced responses and pneumococcal colonization within the first month of life were studied. Significantly higher PspA-specific interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-5, IL-6, IL-10 and IL-13 responses, and lower dPly-IL-6 responses were produced in CBMC cultures of PNG compared to AUS newborns. Higher CBMC PspA-IL-5 and PspA-IL-13 responses correlated with a higher proportion of cord CD4 T cells, and higher dPly-IL-6 responses with a higher frequency of cord antigen-presenting cells. In the PNG cohort, higher PspA-specific IL-5 and IL-6 CBMC responses were associated independently and significantly with increased risk of earlier pneumococcal colonization, while a significant protective effect was found for higher PspA-IL-10 CBMC responses. Pneumococcus-specific cellular immune responses differ between children born in pneumococcal high versus low endemic settings, which may contribute to the higher risk of infants in high endemic settings for early pneumococcal colonization, and hence disease. © 2016 British Society for Immunology.

  18. Long-term persistence of immunity and B-cell memory following Haemophilus influenzae type B conjugate vaccination in early childhood and response to booster.

    Science.gov (United States)

    Perrett, K P; John, T M; Jin, C; Kibwana, E; Yu, L-M; Curtis, N; Pollard, A J

    2014-04-01

    Protection against Haemophilus influenzae type b (Hib), a rapidly invading encapsulated bacteria, is dependent on maintenance of an adequate level of serum antibody through early childhood. In many countries, Hib vaccine booster doses have been implemented after infant immunization to sustain immunity. We investigated the long-term persistence of antibody and immunological memory in primary-school children following infant (with or without booster) Hib vaccination. Anti-polyribosylribitol phosphate (PRP) immunoglobulin G (IgG) concentration and the frequency of circulating Hib-specific memory B cells were measured before a booster of a Hib-serogroup C meningococcal (MenC) conjugate vaccine and again 1 week, 1 month, and 1 year after the booster in 250 healthy children aged 6-12 years in an open-label phase 4 clinical study. Six to 12 years following infant priming with 3 doses of Hib conjugate vaccine, anti-PRP IgG geometric mean concentrations were 3.11 µg/mL and 0.71 µg/mL and proportions with anti-PRP IgG ≥1.0 µg/mL were 79% and 43% in children who had or had not, respectively, received a fourth Hib conjugate vaccine dose (mean age, 3.9 years). Higher baseline and post-Hib-MenC booster responses (anti-PRP IgG and memory B cells) were found in younger children and in those who had received a fourth Hib dose. Sustained Hib conjugate vaccine-induced immunity in children is dependent on time since infant priming and receipt of a booster. Understanding the relationship between humoral and cellular immunity following immunization with conjugate vaccines may direct vaccine design and boosting strategies to sustain individual and population immunity against encapsulated bacteria in early childhood. Clinical Trials Registration ISRCTN728588998.

  19. Induction of immune response in macaque monkeys infected with simian-human immunodeficiency virus having the TNF-α gene at an early stage of infection

    International Nuclear Information System (INIS)

    Shimizu, Yuya; Miyazaki, Yasuyuki; Ibuki, Kentaro; Suzuki, Hajime; Kaneyasu, Kentaro; Goto, Yoshitaka; Hayami, Masanori; Miura, Tomoyuki; Haga, Takeshi

    2005-01-01

    TNF-α has been implicated in the pathogenesis of, and the immune response against, HIV-1 infection. To clarify the roles of TNF-α against HIV-1-related virus infection in an SHIV-macaque model, we genetically engineered an SHIV to express the TNF-α gene (SHIV-TNF) and characterized the virus's properties in vivo. After the acute viremic stage, the plasma viral loads declined earlier in the SHIV-TNF-inoculated monkeys than in the parental SHIV (SHIV-NI)-inoculated monkeys. SHIV-TNF induced cell death in the lymph nodes without depletion of circulating CD4 + T cells. SHIV-TNF provided some immunity in monkeys by increasing the production of the chemokine RANTES and by inducing an antigen-specific proliferation of lymphocytes. The monkeys immunized with SHIV-TNF were partly protected against a pathogenic SHIV (SHIV-C2/1) challenge. These findings suggest that TNF-α contributes to the induction of an effective immune response against HIV-1 rather than to the progression of disease at the early stage of infection

  20. Substance P reduces apoptotic cell death possibly by modulating the immune response at the early stage after spinal cord injury.

    Science.gov (United States)

    Jiang, Mei Hua; Lim, Ji Eun; Chi, Guang Fan; Ahn, Woosung; Zhang, Mingzi; Chung, Eunkyung; Son, Youngsook

    2013-10-23

    Previously, we have reported that substance P (SP) enhanced functional recovery from spinal cord injury (SCI) possibly by the anti-inflammatory modulation associated with the induction of M2-type macrophages at the injured lesion. In this study, we explored the cytokine expression profiles and apoptotic cell death in the lesion site of the SCI after an immediate intravenous injection of SP. SP injection increased the levels of interleukin-4 (IL-4), IL-6, and IL-10 at day 1 after the SCI approximately by 2-, 9-, and 10-folds when compared with the control SCI, respectively. On the basis of double immunofluorescence staining with IL-10 and CD11b, activated macrophages or microglia expressing IL-10 appeared in the margin of the lesion site at day 1 only after the SP injection. This SP-mediated alteration in the lesion microenvironment was shown to be associated with the lower cell death of neuronal cells at day 1 and oligodendrocytes at day 5 by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, which was also accompanied by a decrease in caspase-3 activation. These findings suggest that SP may reduce the inflammation-induced secondary cell death, possibly through immune modulation at an early stage after the SCI.

  1. A comparison of the immune response between early exposed and 1 year post exposure to Bacillus anthracis in Indonesia

    Science.gov (United States)

    Redhono, D.; Kusumawardani, A.; Dirgahayu, P.

    2018-03-01

    Anthrax is one of the zoonotic diseases that usually affects animals and can be transmitted to humans. Immune response of the body during an infection is the presence of antibodies as an effort to defend the body and it will survive for some time in the blood. The aim study is to find out how the initial response to the formation of antibodies and how these antibodies survive after one year. This study is cohort to people exposed to anthrax and found 130 people exposed to anthrax. The most risk factor was direct contact and consumed infected animal meat, which was 34.6%. Clinical manifestations of the skin were 12.3% and all respondents showed positive IgG. While 87.7% did not show any anthrax symptoms. IgG serum examination after 1 year of exposure to anthrax obtained 3.8% still detected antibodies in the body. The relationship between IgG titers with clinical manifestations of anthrax at one year post-outbreak is highly significant p 0.028. In conclusion a significant association between the clinical manifestation with antibody serum anthrax and it still detected after one-year post outbreaks of anthrax.

  2. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    Directory of Open Access Journals (Sweden)

    François Renoz

    Full Text Available In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  3. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    Science.gov (United States)

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  4. Manipulations of the immune response in the chicken

    International Nuclear Information System (INIS)

    Bixler, G.S. Jr.

    1978-01-01

    The chicken with its dissociation of immune responses in cell-mediated immunity, dependent on the thymus, and humoral immunity, dependent on the bursa of Fabricius, provides a unique model for studying the two components of the immune system. While there are methods of obtaining selective, profound deficiency of humoral immunity, in this species, methods for obtaining a consistent, profound selective deficiency of cell-mediated immunity have been lacking. Oxisuran, 2[(methylsulfinyl)acetal] pyridine, has been reported to have the unique ability to differentially suppress cell-mediated immunity in several species of mammals without a concomitant reduction in antibody forming capacity. The effect of this compound on two parameters of cell-mediated immune responses in chickens was investigated. In further attempts to create a deficiency of both cell-mediated and humoral immunity, the effects of a combination of cyclophosphamide treatment and x-irradiation early in life on immune responses were studied

  5. A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer

    Science.gov (United States)

    Koski, Gary K.; Koldovsky, Ursula; Xu, Shuwen; Mick, Rosemarie; Sharma, Anupama; Fitzpatrick, Elizabeth; Weinstein, Susan; Nisenbaum, Harvey; Levine, Bruce L; Fox, Kevin; Zhang, Paul; Czerniecki, Brian J

    2011-01-01

    Twenty-seven subjects with HER-2/neu over-expressing ductal carcinoma in situ of the breast were enrolled in a neoadjuvant immunization trial for safety and immunogenicity of DC1-polarized dendritic cells (DC1) pulsed with six HER-2/neu promiscuous MHC class II-binding peptides, plus two additional HLA-A2.1 class I-binding peptides. DC1 were generated with IFN-γ plus a special clinical-grade bacterial endotoxin (LPS) and administered directly into groin lymph nodes four times at weekly intervals prior to scheduled surgical resection of DCIS. Subjects were monitored for the induction of new or enhanced anti-peptide reactivity by IFN-γ ELIspot and ELISA assays performed on Th cells obtained from peripheral blood or excised sentinel lymph nodes. Responses by CTL against HLA-A2.1-binding peptides were measured using peptide-pulsed T2 target cells or HER-2/neu-expressing or non-expressing tumor cell lines. DC1 showed surface phenotype indistinct from “gold standard” inflammatory cocktail-activated DC, but displayed a number of distinguishing functional characteristics including the secretion of soluble factors and enhanced “killer DC” capacity against tumor cells in vitro. Post-immunization, we observed sensitization of Th cells to at least 1 class II peptide in 22 of 25 (88%, 95% exact CI 68.8 – 97.5%) evaluable subjects, while eleven of 13 (84.6%, 95% exact CI 64 – 99.8%) HLA-A2.1 subjects were successfully sensitized to class I peptides. Perhaps most importantly, anti-HER-2/neu peptide responses were observed up to 52 months post-immunization. These data show even in the presence of early breast cancer such DC1 are potent inducers of durable type I-polarized immunity, suggesting potential clinical value for development of cancer immunotherapy. PMID:22130160

  6. Immune response to H pylori

    Science.gov (United States)

    Suarez, Giovanni; Reyes, Victor E; Beswick, Ellen J

    2006-01-01

    The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer, attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium. PMID:17007009

  7. Allergen-induced activation of natural killer cells represents an early-life immune response in the development of allergic asthma.

    Science.gov (United States)

    Altman, Matthew C; Whalen, Elizabeth; Togias, Alkis; O'Connor, George T; Bacharier, Leonard B; Bloomberg, Gordon R; Kattan, Meyer; Wood, Robert A; Presnell, Scott; LeBeau, Petra; Jaffee, Katy; Visness, Cynthia M; Busse, William W; Gern, James E

    2018-03-05

    Childhood asthma in inner-city populations is a major public health burden, and understanding early-life immune mechanisms that promote asthma onset is key to disease prevention. Children with asthma demonstrate a high prevalence of aeroallergen sensitization and T H 2-type inflammation; however, the early-life immune events that lead to T H 2 skewing and disease development are unknown. We sought to use RNA sequencing of PBMCs collected at age 2 years to determine networks of immune responses that occur in children with allergy and asthma. In an inner-city birth cohort with high asthma risk, we compared gene expression using RNA sequencing in PBMCs collected at age 2 years between children with 2 or more aeroallergen sensitizations, including dust mite, cockroach, or both, by age 3 years and asthma by age 7 years (cases) and matched control subjects who did not have any aeroallergen sensitization or asthma by age 7 years. PBMCs from the cases showed higher levels of expression of natural killer (NK) cell-related genes. After cockroach or dust mite allergen but not tetanus antigen stimulation, PBMCs from the cases compared with the control subjects showed differential expression of 244 genes. This gene set included upregulation of a densely interconnected NK cell-like gene network reflecting a pattern of cell activation and induction of inflammatory signaling molecules, including the key T H 2-type cytokines IL9, IL13, and CCL17, as well as a dendritic cell-like gene network, including upregulation of CD1 lipid antigen presentation molecules. The NK cell-like response was reproducible in an independent group of children with later-onset allergic sensitization and asthma and was found to be specific to only those children with both aeroallergen sensitization and asthma. These findings provide important mechanistic insight into an early-life immune pathway involved in T H 2 polarization, leading to the development of allergic asthma. Copyright © 2018 American

  8. Mathematical Modeling of Early Cellular Innate and Adaptive Immune Responses to Ischemia/Reperfusion Injury and Solid Organ Allotransplantation

    Science.gov (United States)

    Day, Judy D.; Metes, Diana M.; Vodovotz, Yoram

    2015-01-01

    A mathematical model of the early inflammatory response in transplantation is formulated with ordinary differential equations. We first consider the inflammatory events associated only with the initial surgical procedure and the subsequent ischemia/reperfusion (I/R) events that cause tissue damage to the host as well as the donor graft. These events release damage-associated molecular pattern molecules (DAMPs), thereby initiating an acute inflammatory response. In simulations of this model, resolution of inflammation depends on the severity of the tissue damage caused by these events and the patient’s (co)-morbidities. We augment a portion of a previously published mathematical model of acute inflammation with the inflammatory effects of T cells in the absence of antigenic allograft mismatch (but with DAMP release proportional to the degree of graft damage prior to transplant). Finally, we include the antigenic mismatch of the graft, which leads to the stimulation of potent memory T cell responses, leading to further DAMP release from the graft and concomitant increase in allograft damage. Regulatory mechanisms are also included at the final stage. Our simulations suggest that surgical injury and I/R-induced graft damage can be well-tolerated by the recipient when each is present alone, but that their combination (along with antigenic mismatch) may lead to acute rejection, as seen clinically in a subset of patients. An emergent phenomenon from our simulations is that low-level DAMP release can tolerize the recipient to a mismatched allograft, whereas different restimulation regimens resulted in an exaggerated rejection response, in agreement with published studies. We suggest that mechanistic mathematical models might serve as an adjunct for patient- or sub-group-specific predictions, simulated clinical studies, and rational design of immunosuppression. PMID:26441988

  9. Effect of golden needle mushroom (Flammulina velutipes) stem waste on laying performance, calcium utilization, immune response and serum immunity at early phase of production.

    Science.gov (United States)

    Mahfuz, Shad; Song, Hui; Liu, Zhongjun; Liu, Xinyu; Diao, Zipeng; Ren, Guihong; Guo, Zhixin; Cui, Yan

    2018-05-01

    This experiment was conducted to evaluate the effects of golden needle mushroom ( Flammulina velutipes ) stem waste (FVW), on organic eggs production, calcium utilization, antibody response, serum immunoglobulin, and serum cytokine concentration at early phase of production in laying hens. A total 210, 19 weeks old aged ISA Brown layers were randomly assigned into 5 equal treatment groups, with 7 replications of 6 hens each. Dietary treatment included a standard basal diet as control; antibiotic (0.05% flavomycin); 2% FVW; 4% FVW; and 6% FVW. The experimental duration was 10 weeks. There was no significant differences (p>0.05) on hen day egg production, egg weight, egg mass, feed intake, and feed conversion ratio (FCR) among experimental groups. Unmarketable eggs were significantly lower (pcontrol group. The calcium retention and calcium in egg shell deposition were significantly higher (pcontrol and antibiotic groups. Antibody titers against Newcastle diseases were significantly higher (pcontrol and antibiotic groups. Serum immunoglobulin sIgA was significantly higher (pcontrol and antibiotic groups. Serum cytokine concentration interleukin-2 (IL-2) was significantly higher (pcontrol and antibiotic groups; IL-4 was significantly higher (pcontrol. F. velutipes mushroom waste can be used as a novel substitute for antibiotic for organic egg production and sound health status in laying hens.

  10. Efficiency of early, single-dose probiotic administration methods on performance, small intestinal morphology, blood biochemistry, and immune response of Japanese quail.

    Science.gov (United States)

    Seifi, Kazem; Karimi Torshizi, Mohammad Amir; Rahimi, Shaban; Kazemifard, Mohammad

    2017-07-01

    The aim of the present study was to investigate the efficacy of early probiotics (single dose) administered in different ways, on quails' performance, small intestine morphology, blood biochemistry, and immune response. In total, 192 day-old chicks were used in one of the following experimental groups before being transferred to a raising room: 1) Control (no probiotic administered), 2) oral gavage, 3) spray, and 4) vent lip. Four replicates of 12 chicks per cage were considered for each treatment and birds were raised up to 35 d in the same conditions. Probiotic treated birds had higher d 1 to 35 feed intake than the control group (P birds had a higher body weight gain as compared to the control (P birds compared to control (P  0.01). None of the immune-related parameters were affected by the probiotic (P > 0.05). Single dose usage of probiotics exerts its beneficial effects on quails' body weight gain, feed intake and mortality in 1 to 35 d period, regardless of the route of administration. This work generally supports the efficacy of single-dose usage of probiotics and suggests the spray of probiotics as an early, single-dose administration method. © 2017 Poultry Science Association Inc.

  11. Effects of different levels of protein supplements in the diet of early-weaned yaks on growth performance, intestinal development, and immune response to tuberculosis

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2015-06-01

    Full Text Available This study was conducted to determine the effects of different levels of crude protein (CP supplements to the diet of early-weaned yaks on their growth performance, intestinal development, and immune response. Forty 3-month-old weaned yaks were selected and assigned to four dietary groups (Control, 17, 19 and 21% CP. Dietary CP supplements had a significant effect on average daily gain (ADG, crypt depth (CD (duodenum, jejunum and ileum, villous height (VH (duodenum, jejunum and ileum and CD/VH (jejunum and ileum. Average daily gain, CD (duodenum, jejunum and ileum and VH (ileum showed quadratic increases as the dietary CP increased, whereas CD/VH (jejunum and ileum ratios showed quadratic decreases. Blood urea nitrogen (BUN, glucose (GLU, immunoglobulin G (IgG, IgM, interleukin-1 (IL-1, IL-2, tumor necrosis factor (TNF-α, and interferon (IFN-γ concentrations increased significantly, whereas albumin (ALB, alanine aminotransferase (ALT and aspartate aminotransferase (AST decreased significantly with dietary CP supplements. Dietary CP supplements significantly increased the concentrations of IL-6, TNF-α, IFN-γ and the nuclear factor of activated T cell transcription factor (NFAT for gene expression. As the dietary CP supplements increased, IL-6, IFN-γ and NF-AT gene expression showed quadratic increases. These results showed that the appropriate dietary CP supplementation improved the growth performance and intestinal development of earlyweaned yaks and thus that the CP supplements were beneficial and enhanced the humoral immunity response of yaks.

  12. Early nutrition and immunity - progress and perspectives

    NARCIS (Netherlands)

    Calder, Philip C.; Krauss-Etschmann, Susanne; de Jong, Esther C.; Dupont, Christophe; Frick, Julia-Stefanie; Frokiaer, Hanne; Heinrich, Joachim; Garn, Holger; Koletzko, Sibylle; Lack, Gideon; Mattelio, Gianluca; Renz, Harald; Sangild, Per T.; Schrezenmeir, Jürgen; Stulnig, Thomas M.; Thymann, Thomas; Wold, Agnes E.; Koletzko, Berthold

    2006-01-01

    The immune system exists to protect the host against pathogenic organisms and highly complex pathways of recognition, response, elimination and memory have evolved in order to fulfil this role. The immune system also acts to ensure tolerance to 'self', to food and other environmental components, and

  13. Innate Immune Responses in Leprosy

    Science.gov (United States)

    Pinheiro, Roberta Olmo; Schmitz, Veronica; Silva, Bruno Jorge de Andrade; Dias, André Alves; de Souza, Beatriz Junqueira; de Mattos Barbosa, Mayara Garcia; de Almeida Esquenazi, Danuza; Pessolani, Maria Cristina Vidal; Sarno, Euzenir Nunes

    2018-01-01

    Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management. PMID:29643852

  14. Expression kinetics of key genes in the early innate immune response to Great Lakes viral hemorrhagic septicemia virus IVb infection in yellow perch (Perca flavescens)

    Science.gov (United States)

    Olson, Wendy; Emmenegger, Eveline; Glenn, Jolene; Simchick, Crystal; Winton, Jim; Goetz, Frederick

    2013-01-01

    The recently discovered strain of viral hemorrhagic septicemia virus, VHSV-IVb, represents an example of the introduction of an extremely pathogenic rhabdovirus capable of infecting a wide variety of new fish species in a new host-environment. The goal of the present study was to delineate the expression kinetics of key genes in the innate immune response relative to the very early stages of VHSV-IVb infection using the yellow perch (Perca flavescens) as a model. Administration of VHSV-IVb by IP-injection into juvenile yellow perch resulted in 84% cumulative mortality, indicating their high susceptibility to this disease. In fish sampled in the very early stages of infection, a significant up-regulation of Mx gene expression in the liver, as well as IL-1β and SAA activation in the head kidney, spleen, and liver was directly correlated to viral load. The potential down-regulation of Mx in the hematopoietic tissues, head kidney and spleen, may represent a strategy utilized by the virus to increase replication.

  15. Association of immune response to endothelial cell growth factor with early disseminated and late manifestations of Lyme disease but not posttreatment Lyme disease syndrome.

    Science.gov (United States)

    Tang, Kevin S; Klempner, Mark S; Wormser, Gary P; Marques, Adriana R; Alaedini, Armin

    2015-12-01

    Endothelial cell growth factor has been recently proposed as a potential autoantigen in manifestations of Lyme disease that are thought to involve immune-mediated mechanisms. Our findings indicate that a humoral immune response to this protein is not associated with posttreatment Lyme disease syndrome. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Eosinophils in mucosal immune responses

    Science.gov (United States)

    Travers, J; Rothenberg, M E

    2015-01-01

    Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184

  17. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  18. The Immune Response of Maternally Immune Chicks to Vaccination ...

    African Journals Online (AJOL)

    The Immune Response of Maternally Immune Chicks to Vaccination with Newcastle Disease Virus. ... G A El-Tayeb, M Y El-Ttegani, I E Hajer, M A Mohammed ... This study was conducted to determine the persistence of maternally derived antibodies (MDA) to Newcastle disease virus (NDV) in newly hatched chicks and the ...

  19. Immune oncology, immune responsiveness and the theory of everything.

    Science.gov (United States)

    Turan, Tolga; Kannan, Deepti; Patel, Maulik; Matthew Barnes, J; Tanlimco, Sonia G; Lu, Rongze; Halliwill, Kyle; Kongpachith, Sarah; Kline, Douglas E; Hendrickx, Wouter; Cesano, Alessandra; Butterfield, Lisa H; Kaufman, Howard L; Hudson, Thomas J; Bedognetti, Davide; Marincola, Francesco; Samayoa, Josue

    2018-06-05

    Anti-cancer immunotherapy is encountering its own checkpoint. Responses are dramatic and long lasting but occur in a subset of tumors and are largely dependent upon the pre-existing immune contexture of individual cancers. Available data suggest that three landscapes best define the cancer microenvironment: immune-active, immune-deserted and immune-excluded. This trichotomy is observable across most solid tumors (although the frequency of each landscape varies depending on tumor tissue of origin) and is associated with cancer prognosis and response to checkpoint inhibitor therapy (CIT). Various gene signatures (e.g. Immunological Constant of Rejection - ICR and Tumor Inflammation Signature - TIS) that delineate these landscapes have been described by different groups. In an effort to explain the mechanisms of cancer immune responsiveness or resistance to CIT, several models have been proposed that are loosely associated with the three landscapes. Here, we propose a strategy to integrate compelling data from various paradigms into a "Theory of Everything". Founded upon this unified theory, we also propose the creation of a task force led by the Society for Immunotherapy of Cancer (SITC) aimed at systematically addressing salient questions relevant to cancer immune responsiveness and immune evasion. This multidisciplinary effort will encompass aspects of genetics, tumor cell biology, and immunology that are pertinent to the understanding of this multifaceted problem.

  20. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    Science.gov (United States)

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  1. Gastrointestinal immune responses in HIV infected subjects

    Directory of Open Access Journals (Sweden)

    LRR Castello-Branco

    1996-06-01

    Full Text Available The gut associated lymphoid tissue is responsible for specific responses to intestinal antigens. During HIV infection, mucosal immune deficiency may account for the gastrointestinal infections. In this review we describe the humoral and cellular mucosal immune responses in normal and HIV-infected subjects.

  2. Early life innate immune signatures of persistent food allergy.

    Science.gov (United States)

    Neeland, Melanie R; Koplin, Jennifer J; Dang, Thanh D; Dharmage, Shyamali C; Tang, Mimi L; Prescott, Susan L; Saffery, Richard; Martino, David J; Allen, Katrina J

    2017-11-14

    Food allergy naturally resolves in a proportion of food-allergic children without intervention; however the underlying mechanisms governing the persistence or resolution of food allergy in childhood are not understood. This study aimed to define the innate immune profiles associated with egg allergy at age 1 year, determine the phenotypic changes that occur with the development of natural tolerance in childhood, and explore the relationship between early life innate immune function and serum vitamin D. This study used longitudinally collected PBMC samples from a population-based cohort of challenge-confirmed egg-allergic infants with either persistent or transient egg allergy outcomes in childhood to phenotype and quantify the functional innate immune response associated with clinical phenotypes of egg allergy. We show that infants with persistent egg allergy exhibit a unique innate immune signature, characterized by increased numbers of circulating monocytes and dendritic cells that produce more inflammatory cytokines both at baseline and following endotoxin exposure when compared with infants with transient egg allergy. Follow-up analysis revealed that this unique innate immune signature continues into childhood in those with persistent egg allergy and that increased serum vitamin D levels correlate with changes in innate immune profiles observed in children who developed natural tolerance to egg. Early life innate immune dysfunction may represent a key immunological driver and predictor of persistent food allergy in childhood. Serum vitamin D may play an immune-modulatory role in the development of natural tolerance. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T-helper cell response

    DEFF Research Database (Denmark)

    Moser, C; Hougen, H P; Song, Z

    1999-01-01

    Most cystic fibrosis (CF) patients become chronically infected with Pseudomonas aeruginosa in the lungs. The infection is characterized by a pronounced antibody response and a persistant inflammation dominated by polymorphonuclear neutrophils. Moreover a high antibody response correlates with a p...

  4. Regulation of immune responsiveness in vivo by disrupting an early T-cell signaling event using a cell-permeable peptide.

    Directory of Open Access Journals (Sweden)

    David M Guimond

    Full Text Available The inducible T cell kinase (ITK regulates type 2 (Th2 cytokines that provide defense against certain parasitic and bacterial infections and are involved in the pathogenesis of lung inflammation such as allergic asthma. Activation of ITK requires the interaction of its SH3 domain with the poly-proline region of its signaling partner, the SH2 domain containing leukocyte phosphoprotein of 76 kilodaltons (SLP-76. The specific disruption of the ITK-SH3/SLP-76 poly-proline interaction in vitro by a cell-permeable competitive inhibitor peptide (R9-QQP interferes with the activation of ITK and the transduction of its cellular functions in T lymphocytes. In the present investigation, we assessed the effects of R9-QQP treatment on the induction of an in vivo immune response as represented by lung inflammation in a murine model of allergic asthma. We found that mice treated with R9-QQP and sensitized and challenged with the surrogate allergen ovalbumin (OVA display significant inhibition of lung inflammation in a peptide-specific manner. Thus, parameters of the allergic response, such as airway hyper-responsiveness, suppression of inflammatory cell infiltration, reduction of bronchial mucus accumulation, and production of relevant cytokines from draining lymph nodes were significantly suppressed. These findings represent the first demonstration of the biological significance of the interaction between ITK and SLP-76 in the induction of an immune response in a whole animal model and specifically underscore the significance of the ITK-SH3 domain interaction with the poly-proline region of SLP-76 in the development of an inflammatory response. Furthermore, the experimental approach of intracellular peptide-mediated inhibition might be applicable to the study of other important intracellular interactions thus providing a paradigm for dissecting signal transduction pathways.

  5. Characterization of host immune responses in Ebola virus infections.

    Science.gov (United States)

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  6. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  7. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  8. Immune responses of ducks infected with duck Tembusu virus

    Directory of Open Access Journals (Sweden)

    Ning eLi

    2015-05-01

    Full Text Available Duck Tembusu virus (DTMUV can cause serious disease in ducks, characterized by reduced egg production. Although the virus has been isolated and detection methods developed, the host immune responses to DTMUV infection are unclear. Therefore, we systematically examined the expression of immune-related genes and the viral distribution in DTMUV-infected ducks, using quantitative real-time PCR. Our results show that DTMUV replicates quickly in many tissues early in infection, with the highest viral titers in the spleen 1 day after infection. Rig-1, Mda5, and Tlr3 are involved in the host immune response to DTMUV, and the expression of proinflammatory cytokines (Il-1β, -2, -6, Cxcl8 and antiviral proteins (Mx, Oas, etc. are also upregulated early in infection. The expression of Il-6 increased most significantly in the tissues tested. The upregulation of Mhc-I was observed in the brain and spleen, but the expression of Mhc-II was upregulated in the brain and downregulated in the spleen. The expression of the interferons was also upregulated to different degrees in the spleen but that of the brain was various. Our study suggests that DTMUV replicates rapidly in various tissues and that the host immune responses are activated early in infection. However, the overexpression of cytokines may damage the host. These results extend our understanding of the immune responses of ducks to DTMUV infection, and provide insight into the pathogenesis of DTMUV attributable to host factors.

  9. Immune-mediated diseases and microbial exposure in early life

    DEFF Research Database (Denmark)

    Bisgaard, H; Bønnelykke, K; Stokholm, Jacob

    2014-01-01

    The non-communicable disease pandemic includes immune-mediated diseases such as asthma and allergy, which are likely originating in early life where the immature immune system is prone to alterations caused by the exposome. The timing of exposure seems critical for the developing immune system...

  10. Glycoprotein from street rabies virus BD06 induces early and robust immune responses when expressed from a non-replicative adenovirus recombinant.

    Science.gov (United States)

    Wang, Shuchao; Sun, Chenglong; Zhang, Shoufeng; Zhang, Xiaozhuo; Liu, Ye; Wang, Ying; Zhang, Fei; Wu, Xianfu; Hu, Rongliang

    2015-09-01

    The rabies virus (RABV) glycoprotein (G) is responsible for inducing neutralizing antibodies against rabies virus. Development of recombinant vaccines using the G genes from attenuated strains rather than street viruses is a regular practice. In contrast to this scenario, we generated three human adenovirus type 5 recombinants using the G genes from the vaccine strains SRV9 and Flury-LEP, and the street RABV strain BD06 (nrAd5-SRV9-G, nrAd5-Flury-LEP-G, and nrAd5-BD06-G). These recombinants were non-replicative, but could grow up to ~10(8) TCID50/ml in helper HEK293AD cells. Expression of the G protein was verified by immunostaining, quantitative PCR and cytometry. Animal experiments revealed that immunization with nrAd5-BD06-G can induce a higher seroconversion rate, a higher neutralizing antibody level, and a longer survival time after rabies virus challenge in mice when compared with the other two recombinants. Moreover, the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly higher in mice immunized with nrAd5-BD06-G, which might also contribute to the increased protection. These results show that the use of street RABV G for non-replicative systems may be an alternative for developing effective recombinant rabies vaccines.

  11. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  12. Transfer of maternal immunity to piglets is involved in early protection against Mycoplasma hyosynoviae infection

    DEFF Research Database (Denmark)

    Lauritsen, Klara Tølbøl; Hagedorn-Olsen, Tine; Jungersen, Gregers

    2017-01-01

    Mycoplasma hyosynoviae causes arthritis in pigs older than 12 weeks. The role of colostrum in protection of piglets against M. hyosynoviae infection is not clear. Our objective was therefore to investigate whether transfer of maternal immunity to piglets was involved in early protection against...... immune response that complements the maternally transferred immune factors. Evident from this study is that the general absence of M. hyosynoviae arthritis in piglets can be ascribed mainly to their immunological status....

  13. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  14. PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine.

    Science.gov (United States)

    Xu, Guanlong; Zhang, Xuxiao; Liu, Qinfang; Bing, Guoxia; Hu, Zhe; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua; Sun, Yipeng

    2017-08-01

    Previous studies have identified a functional role of PA-X for influenza viruses in mice and avian species; however, its role in swine remains unknown. Toward this, we constructed PA-X deficient virus (Sw-FS) in the background of a Triple-reassortment (TR) H1N2 swine influenza virus (SIV) to assess the impact of PA-X in viral virulence in pigs. Expression of PA-X in TR H1N2 SIV enhanced viral replication and host protein synthesis shutoff, and inhibited the mRNA levels of type I IFNs and proinflammatory cytokines in porcine cells. A delay of proinflammatory responses was observed in lungs of pigs infected by wild type SIV (Sw-WT) compared to Sw-FS. Furthermore, Sw-WT virus replicated and transmitted more efficiently than Sw-FS in pigs. These results highlight the importance of PA-X in the moderation of virulence and immune responses of TR SIV in swine, which indicated that PA-X is a pro-virulence factor in TR SIV in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A modified live canine parvovirus vaccine. II. Immune response.

    Science.gov (United States)

    Carmichael, L E; Joubert, J C; Pollock, R V

    1983-01-01

    The safety and efficacy of an attenuated canine parvovirus (A-CPV) vaccine was evaluated in both experimental and in field dogs. After parenteral vaccination, seronegative dogs developed hemagglutination-inhibition (HI) antibody titers as early as postvaccination (PV) day 2. Maximal titers occurred within 1 week. Immunity was associated with the persistence of HI antibody titers (titers greater than 80) that endured at least 2 years. Immune dogs challenged with virulent CPV did not shed virus in their feces. The A-CPV vaccine did not cause illness alone or in combination with living canine distemper (CD) and canine adenovirus type-2 (CAV-2) vaccines, nor did it interfere with the immune response to the other viruses. A high rate (greater than 98%) of immunity was engendered in seronegative pups. In contrast, maternal antibody interfered with the active immune response to the A-CPV. More than 95% of the dogs with HI titers less than 10 responded to the vaccine, but only 50% responded when titers were approximately 20. No animal with a titer greater than 80 at the time of vaccination became actively immunized. Susceptibility to virulent CPV during that period when maternal antibody no longer protects against infection, but still prevents active immunization, is the principal cause of vaccinal failure in breeding kennels where CPV is present. Reduction, but not complete elimination, of CPV disease in large breeding kennels occurred within 1-2 months of instituting an A-CPV vaccination program.

  16. Early nutrition and immunity - progress and perspectives

    DEFF Research Database (Denmark)

    Calder, PC; Krauss-Etschmann, S; de Jong, EC

    2006-01-01

    and maintenance of tolerance are lifelong processes which start very early in life, even prenatally. Profound immunologic changes occur during pregnancy, involving a polarization of T helper (Th) cells towards a dominance of Th2 and regulatory T cell effector responses in both mother and fetus. This situation...... is important to maintain pregnancy through avoidance of the rejection of the immunologically incompatible fetus. During the third trimester of human pregnancy, fetal T cells are able to mount antigen-specific responses to environmental and food-derived antigens and antigen-specific T cells are detectable...... becomes competent and functional and that the gut becomes colonized with bacteria. Exposure to bacteria during birth and from the mother's skin and the provision of immunologic factors in breast milk are amongst the key events that promote maturation of the infant's gut and gut-associated and systemic...

  17. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    Science.gov (United States)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  18. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity.

    Science.gov (United States)

    Kennelly, Kevin P; Holmes, Toby M; Wallace, Deborah M; O'Farrelly, Cliona; Keegan, David J

    2017-06-09

    Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success

  19. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  20. Plasticity in early immune evasion strategies of a bacterial pathogen.

    Science.gov (United States)

    Bernard, Quentin; Smith, Alexis A; Yang, Xiuli; Koci, Juraj; Foor, Shelby D; Cramer, Sarah D; Zhuang, Xuran; Dwyer, Jennifer E; Lin, Yi-Pin; Mongodin, Emmanuel F; Marques, Adriana; Leong, John M; Anguita, Juan; Pal, Utpal

    2018-04-17

    Borrelia burgdorferi is one of the few extracellular pathogens capable of establishing persistent infection in mammals. The mechanisms that sustain long-term survival of this bacterium are largely unknown. Here we report a unique innate immune evasion strategy of B. burgdorferi , orchestrated by a surface protein annotated as BBA57, through its modulation of multiple spirochete virulent determinants. BBA57 function is critical for early infection but largely redundant for later stages of spirochetal persistence, either in mammals or in ticks. The protein influences host IFN responses as well as suppresses multiple host microbicidal activities involving serum complement, neutrophils, and antimicrobial peptides. We also discovered a remarkable plasticity in BBA57-mediated spirochete immune evasion strategy because its loss, although resulting in near clearance of pathogens at the inoculum site, triggers nonheritable adaptive changes that exclude detectable nucleotide alterations in the genome but incorporate transcriptional reprograming events. Understanding the malleability in spirochetal immune evasion mechanisms that ensures their host persistence is critical for the development of novel therapeutic and preventive approaches to combat long-term infections like Lyme borreliosis.

  1. Stress proteins and the immune response.

    Science.gov (United States)

    Moseley, P

    2000-07-25

    The heat shock or stress response is one of the most highly conserved adaptive responses in nature. In single cell organisms, the stress response confers tolerance to a variety of stresses including hyperthermia, hyperoxia, hypoxia, and other perturbations, which alter protein synthesis. This tolerance phenomenon is also extremely important in the multicellular organism, resulting in not only thermal tolerance, but also resistance to stresses of the whole organism such as ischemia-reperfusion injury. Moreover, recent data indicates that these stress proteins have the ability to modulate the cellular immune response. Although the terms heat shock proteins (HSPs) and stress proteins are often used interchangeably, the term stress proteins includes the HSPs, the glucose-regulated proteins (GRPs) and ubiquitin. The stress proteins may be grouped by molecular weight ranging from the large 110 kDa HSP110 to ubiquitin at 8 kDa. These proteins serve as cellular chaperones, participating in protein synthesis and transport through the various cellular compartments. Because these proteins have unique cellular localizations, the chaperone function of the stress proteins often involves a transfer of peptides between stress proteins as the peptide is moved between cellular compartments. For example, HSP70 is a cytosolic and nuclear chaperone, which is critical for the transfer of cellular peptides in the mitochondrion through a hand-off that involves mitochondrial HSP60 at the inner mitochondrial membrane. Similarly, cytosolic proteins are transferred from HSP70 to gp96 as they move into the endoplasmic reticulum. The central role of the stress proteins in the transfer of peptides through the cell may be responsible for the recently recognized importance of the stress proteins in the modulation of the immune system [Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61

  2. Mitogen-activated protein kinase 1 from disk abalone (Haliotis discus discus): Roles in early development and immunity-related transcriptional responses.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-12-01

    Mitogen-activated protein kinase (MAPK) is involved in the regulation of cellular events by mediating signal transduction pathways. MAPK1 is a member of the extracellular-signal regulated kinases (ERKs), playing roles in cell proliferation, differentiation, and development. This is mainly in response to growth factors, mitogens, and many environmental stresses. In the current study, we have characterized the structural features of a homolog of MAPK1 from disk abalone (AbMAPK1). Further, we have unraveled its expressional kinetics against different experimental pathogenic infections or related chemical stimulants. AbMAPK1 harbors a 5' untranslated region (UTR) of 23 bps, a coding sequence of 1104 bps, and a 3' UTR of 448 bp. The putative peptide comprises a predicted molecular mass of 42.2 kDa, with a theoretical pI of 6.28. Based on the in silico analysis, AbMAPK1 possesses two N-glycosylation sites, one S_TK catalytic domain, and a conserved His-Arg-Asp domain (HRD). In addition, a conservative glycine rich ATP-phosphate-binding loop and a threonine-x-tyrosine motif (TEY) important for the autophosphorylation were also identified in the protein. Homology assessment of AbMAPK1 showed several conserved regions, and ark clam (Aplysia californica) showed the highest sequence identity (87.9%). The phylogenetic analysis supported close evolutionary kinship with molluscan orthologs. Constitutive expression of AbMAPK1 was observed in six different tissues of disk abalone, with the highest expression in the digestive tract, followed by the gills and hemocytes. Highest AbMAPK1 mRNA expression level was detected at the trochophore developmental stage, suggesting its role in abalone cell differentiation and proliferation. Significant modulation of AbMAPK1 expression under pathogenic stress suggested its putative involvement in the immune defense mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Immune Response to Dengue and Zika.

    Science.gov (United States)

    Ngono, Annie Elong; Shresta, Sujan

    2018-04-26

    Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.

  4. Immune Responses Involved in Mycobacterium Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Roghayeh Teimourpour

    2016-09-01

    Full Text Available Background and Objectives: Mycobacterium tuberculosis is the causative agent of tuberculosis (TB. Approximately one-third of the world's population is infected with M. tuberculosis. Despite the availability of drug and vaccine, it remains one of the leading causes of death in humans especially in developing countries. Epidemiological studies have indicated that only 10-30% of people exposed to tubercle bacillus are infected with M. tuberculosis, and at least 90% of the infected people finally do not acquire TB. The studies have indicated that the host efficient immune system has essential roles in the control of TB infection such that the highest rate of mortality and morbidity is seen in immunocompromised patients such as people infected with HIV. M. tuberculosis is an obligatory intracellular bacterium. It enters the body mainly through the respiratory tract and alveolar macrophages combat this pathogen most commonly. In addition to alveolar macrophages, various T-cell subpopulations need to be activated to overcome this bacterium's resistance to the host defense systems. CD4+ T cells, through production of several cytokines such as IFN-γ and TNF-α, and CD8+ T cells, through cytotoxic activities and induction of apoptosis in infected cells, play critical roles in inducing appropriate immune responses against M. tuberculosis. Although cell-mediated immunity is the cornerstone of host responses against TB and the recent studies have provided evidence for the importance of humoral and innate immune system in the control of TB, a profound understanding of the immune responses would provide a basis for development of new generations of vaccines and drugs. The present study addresses immune responses involved in M. tuberculosis infection.

  5. Immune Response in Mussels To Environmental Pollution.

    Science.gov (United States)

    Pryor, Stephen C.; Facher, Evan

    1997-01-01

    Describes the use of mussels in measuring the extent of chemical contamination and its variation in different coastal regions. Presents an experiment to introduce students to immune response and the effects of environmental pollution on marine organisms. Contains 14 references. (JRH)

  6. Modulation of immune response by bacterial lipopolysaccharides

    Directory of Open Access Journals (Sweden)

    Gustavo Aldapa-Vega

    2016-08-01

    Full Text Available Lipopolysaccharide (LPS is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4 and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants.

  7. Adrenaline influence on the immune response. I

    International Nuclear Information System (INIS)

    Depelchin, A.; Letesson, J.J.

    1981-01-01

    The intervention of adrenaline in the immunoregulation was investigated through the modification of the anti-SRBC PFC response of mice after its i.p. administration (4 μg) at various intervals before SRBC antigen. When the interval was less than 24 h, adrenaline accelerated the immune kinetics. This modification was apparent on both direct and indirect PFC, as well as on naive and immune mice. However, mice treated from 2 days showed a suppression of the response. The adrenaline affect subsisted on the adoptive response of spleen cells drug-treated either in vivo or in vitro. The mitogenic response after in vitro PHA or LPS stimulation of spleen cells from adrenaline-treated mice indicated that the T-cells were the drug target. The physiological role of the adrenaline and immunological influences of acute stress are discussed in the paper. The stress was provided by gamma irradiation. (Auth.)

  8. Humoral immune response to AAV

    Directory of Open Access Journals (Sweden)

    Roberto eCalcedo

    2013-10-01

    Full Text Available Adeno-associated virus (AAV is a member of the family parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  9. Honeybee (Apis mellifera Venom Reinforces Viral Clearance during the Early Stage of Infection with Porcine Reproductive and Respiratory Syndrome Virus through the Up-Regulation of Th1-Specific Immune Responses

    Directory of Open Access Journals (Sweden)

    Jin-A Lee

    2015-05-01

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS is a chronic and immunosuppressive viral disease that is responsible for substantial economic losses for the swine industry. Honeybee venom (HBV is known to possess several beneficial biological properties, particularly, immunomodulatory effects. Therefore, this study aimed at evaluating the effects of HBV on the immune response and viral clearance during the early stage of infection with porcine reproductive and respiratory syndrome virus (PRRSV in pigs. HBV was administered via three routes of nasal, neck, and rectal and then the pigs were inoculated with PRRSV intranasally. The CD4+/CD8+ cell ratio and levels of interferon (IFN-γ and interleukin (IL-12 were significantly increased in the HBV-administered healthy pigs via nasal and rectal administration. In experimentally PRRSV-challenged pigs with virus, the viral genome load in the serum, lung, bronchial lymph nodes and tonsil was significantly decreased, as was the severity of interstitial pneumonia, in the nasal and rectal administration group. Furthermore, the levels of Th1 cytokines (IFN-γ and IL-12 were significantly increased, along with up-regulation of pro-inflammatory cytokines (TNF-α and IL-1β with HBV administration. Thus, HBV administration—especially via the nasal or rectal route—could be a suitable strategy for immune enhancement and prevention of PRRSV infection in pigs.

  10. Immune Response to Lipoproteins in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sonia Samson

    2012-01-01

    Full Text Available Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  11. Ovine model for studying pulmonary immune responses

    International Nuclear Information System (INIS)

    Joel, D.D.; Chanana, A.D.

    1984-01-01

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with 125 I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables

  12. Ovine model for studying pulmonary immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  13. The effects of early life adversity on the immune system.

    Science.gov (United States)

    Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D

    2017-08-01

    Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Multiscale modeling of mucosal immune responses

    Science.gov (United States)

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  15. Multiscale modeling of mucosal immune responses.

    Science.gov (United States)

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T

  16. Quantitating cellular immune responses to cancer vaccines.

    Science.gov (United States)

    Lyerly, H Kim

    2003-06-01

    While the future of immunotherapy in the treatment of cancer is promising, it is difficult to compare the various approaches because monitoring assays have not been standardized in approach or technique. Common assays for measuring the immune response need to be established so that these assays can one day serve as surrogate markers for clinical response. Assays that accurately detect and quantitate T-cell-mediated, antigen-specific immune responses are particularly desired. However, to date, increases in the number of cytotoxic T cells through immunization have not been correlated with clinical tumor regression. Ideally, then, a T-cell assay not only needs to be sensitive, specific, reliable, reproducible, simple, and quick to perform, it must also demonstrate close correlation with clinical outcome. Assays currently used to measure T-cell response are delayed-type hypersensitivity testing, flow cytometry using peptide major histocompatibility complex tetramers, lymphoproliferation assay, enzyme-linked immunosorbant assay, enzyme-linked immunospot assay, cytokine flow cytometry, direct cytotoxicity assay, measurement of cytokine mRNA by quantitative reverse transcriptase polymerase chain reaction, and limiting dilution analysis. The purpose of this review is to describe the attributes of each test and compare their advantages and disadvantages.

  17. Gene expression analyses of immune responses in Atlantic salmon during early stages of infection by salmon louse (Lepeophtheirus salmonis revealed bi-phasic responses coinciding with the copepod-chalimus transition

    Directory of Open Access Journals (Sweden)

    Afanasyev Sergey

    2011-03-01

    Full Text Available Abstract Background The salmon louse (Lepeophtheirus salmonis Krøyer, an ectoparasitic copepod with a complex life cycle causes significant losses in salmon aquaculture. Pesticide treatments against the parasite raise environmental concerns and their efficacy is gradually decreasing. Improvement of fish resistance to lice, through biological control methods, needs better understanding of the protective mechanisms. We used a 21 k oligonucleotide microarray and RT-qPCR to examine the time-course of immune gene expression changes in salmon skin, spleen, and head kidney during the first 15 days after challenge, which encompassed the copepod and chalimus stages of lice development. Results Large scale and highly complex transcriptome responses were found already one day after infection (dpi. Many genes showed bi-phasic expression profiles with abrupt changes between 5 and 10 dpi (the copepod-chalimus transitions; the greatest fluctuations (up- and down-regulation were seen in a large group of secretory splenic proteases with unknown roles. Rapid sensing was witnessed with induction of genes involved in innate immunity including lectins and enzymes of eicosanoid metabolism in skin and acute phase proteins in spleen. Transient (1-5 dpi increase of T-cell receptor alpha, CD4-1, and possible regulators of lymphocyte differentiation suggested recruitment of T-cells of unidentified lineage to the skin. After 5 dpi the magnitude of transcriptomic responses decreased markedly in skin. Up-regulation of matrix metalloproteinases in all studied organs suggested establishment of a chronic inflammatory status. Up-regulation of putative lymphocyte G0/G1 switch proteins in spleen at 5 dpi, immunoglobulins at 15 dpi; and increase of IgM and IgT transcripts in skin indicated an onset of adaptive humoral immune responses, whereas MHCI appeared to be down-regulated. Conclusions Atlantic salmon develops rapid local and systemic reactions to L. salmonis, which, however

  18. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  19. Flavobacterium psychrophilum - Experimental challenge and immune response

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi

    the immune system of the fry is not fully developed. Theoretically, the infection pressure could be subdued by vaccinating larger fish, but no commercial vaccine is yet available. Diagnostic methods are well described and the disease is treated with antibiotics. To prevent disease outbreaks and subsequent......-time PCR (RT-PCR) was used to examine the immune response in the head kidney during the first eight days after infection, and enzyme-linked immunosorbent assay (ELISA) was used to evaluate the production of antibodies 50 days post-exposure. A pro-inflammatory response was observed in both groups infected...... of edemas, but in both cases the tissue was regenerating after 192 hours. However, when the fish had been exposed to both H2O2 and F. psychrophilum, the damage was still evident at this time point. The relative pathogen load measured as 16S rRNA was highest at the first sampling and decreased steadily...

  20. Increased innate and adaptive immune responses in induced sputum of young smokers

    Directory of Open Access Journals (Sweden)

    Agnese Kislina

    2015-01-01

    Conclusions: This study demonstrates that young smokers have early inflammatory changes in their airways that not only initiate nonspecific mechanisms recruiting neutrophils, but also involve specific immune mechanisms with recruitment of T regulatory lymphocytes. The lymphocyte response is probably adaptive.

  1. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100-Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    NARCIS (Netherlands)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery

  2. Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation

    Directory of Open Access Journals (Sweden)

    K Murai

    2010-01-01

    Full Text Available Although intervertebral disc herniation and associated sciatica is a common disease, its molecular pathogenesis is not well understood. Immune responses are thought to be involved. This study provides direct evidence that even non-degenerated nucleus pulposus (NP cells elicit immune responses. An in vitro colony forming inhibition assay demonstrated the suppressive effects of autologous spleen cells on NP cells and an in vitro cytotoxicity assay showed the positive cytotoxic effects of natural killer (NK cells and macrophages on NP cells. Non-degenerated rat NP tissues transplanted into wild type rats and immune-deficient mice demonstrated a significantly higher NP cell survival rate in immune-deficient mice. Immunohistochemical staining showed the presence of macrophages and NK cells in the transplanted NP tissues. These results suggest that even non-degenerated autologous NP cells are recognized by macrophages and NK cells, which may have an immunological function in the early phase of disc herniation. These findings contribute to understanding resorption and the inflammatory reaction to disc herniation.

  3. Immune Response among Patients Exposed to Molds

    Directory of Open Access Journals (Sweden)

    Jordan N. Fink

    2009-12-01

    Full Text Available Macrocyclic trichothecenes, mycotoxins produced by Stachybotrys chartarum, have been implicated in adverse reactions in individuals exposed to mold-contaminated environments. Cellular and humoral immune responses and the presence of trichothecenes were evaluated in patients with mold-related health complaints. Patients underwent history, physical examination, skin prick/puncture tests with mold extracts, immunological evaluations and their sera were analyzed for trichothecenes. T-cell proliferation, macrocyclic trichothecenes, and mold specific IgG and IgA levels were not significantly different than controls; however 70% of the patients had positive skin tests to molds. Thus, IgE mediated or other non-immune mechanisms could be the cause of their symptoms.

  4. Th1/Th2 balance and humoral immune response to potential antigens as early diagnostic method of equine Strongylus nematode infection.

    Science.gov (United States)

    Abo-Aziza, Faten A M; Hendawy, Seham H M; Namaky, Amira H El; Ashry, Heba M

    2017-06-01

    The aim of this study was to investigate the early diagnosis of strongyle infection based on early changes in Th1 and Th2 cytokines beside the diagnostic accuracy values and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting profiles using prepared strongyles antigens. A total of 73 donkeys had a mean age of 4-32 years old were parasitologically examined for strongyle infection. The early changes in Th1 and Th2 cytokines were determined, and the diagnostic accuracy values and SDS-PAGE and western blotting profiles were performed using prepared strongyles antigens; crude somatic Strongylus vulgaris (CSS), excretory-secretory S. vulgaris (ESS), crude somatic Cyathostomins (CSC), and excretory-secretory Cyathostomins (ESC). The results revealed highest 437.04% and lowest 37.81% immunoglobulin G (IgG) in high and low egg shedder groups when using ESC and CSS antigens, respectively. Antibodies index for ESS and CSC were significantly higher in moderate egg shedder group while that for ESS and CSC, ESC was significantly higher in high egg shedder group. Tumor necrosis factor alpha (TNF-α)/interleukin-4 (IL-4) balance in S. vulgaris infected donkeys was approximately equal in apparently healthy, low and high egg shedder groups while TNF-α vulgaris and Cyathostomins spp. at the base of serological and molecular investigation.

  5. MECHANISMS OF IMMUNE RESPONSES IN CNIDARIANS

    Directory of Open Access Journals (Sweden)

    Iván Darío Ocampo

    2015-05-01

    Full Text Available The immune system maintains the integrity of the organisms through a complex network of molecules, cells, and tissues that recognize internal or external antigenic substances to neutralized and eliminate them. The mechanisms of immune response have evolved in a modular fashion, where members of a given module interact strongly among them, but weakly with members of other modules, providing robustness and evolvability to the immune system. Ancestral modules are the raw material for the generation of new modules through evolution. Thus, the study of immune systems in basal metazoans such as cnidarians seeks to determine the basic tool kit from which the metazoans started to construct their immune systems. In addition, understanding the immune mechanisms in cnidarians contributes to decipher the etiopathology of coral diseases of infectious nature that are affecting coral reefs worldwide. RESUMEN El sistema inmune mantiene la integridad de los organismos vivos por medio de una red compleja de moléculas, células y tejidos que reconocen sustancias antigénicas internas o externas para neutralizarlas y eliminarlas. Los mecanismos de respuesta inmune han evolucionado de una manera modular, en donde miembros de un módulo dado interactúan fuertemente entre sí, pero débilmente con componentes de otros módulos, otorgando así robustez y potencial evolutivo al sistema inmune. Módulos ancestrales representan el material básico para la generación de nuevos módulos durante el proceso evolutivo. Así, el estudio de sistemas inmunes en metazoarios basales como los cnidarios busca determinar cuales son los módulos ancestrales a partir de los cuales se constituyen los sistemas inmunes de animales derivados. Adicionalmente, el entendimiento de los mecanismos de respuesta inmune en cnidarios eventualmente contribuirá a descifrar la etiopatología de las enfermedades de corales de carácter infeccioso que está afectando los corales en el mundo.

  6. Early Life Microbiota, Neonatal Immune Maturation and Hematopoiesis

    DEFF Research Database (Denmark)

    Kristensen, Matilde Bylov

    Emerging epidemiologic data supports the hypothesis that early life colonization is a key player in development of a balanced immune system. Events in early life, as birth mode and infant diet, are shown to influence development of immune related diseases, like asthma, diabetes and inflammatory...... bowl disease, later in life. The intestinal epithelium makes up a physical and biochemical barrier between the bacteria in the gut lumen and the immune cells in the submocusal tissue. This monolayer of intestinal epithelial cells (IEC) makes up an extremely large surface and is highly important...... for the synergistic coexistence between trillions of bacteria in the gastrointestinal tract and their mammalian hosts. The IEC actively communicate with the microbiota of the gut lumen and tolerance establishment in the intestine is induced as a result of a balanced and controlled communication between IEC...

  7. Systemic immune markers characterizing early stages of rheumatoid arthritis

    NARCIS (Netherlands)

    Chalan, Paulina Luiza

    2016-01-01

    Rheumatoid arthritis is a chronic autoimmune disease occurring in ~1% of the world population. The main feature of the disease is ongoing joint inflammation, caused by immune cells and their soluble factors, leading to irreversible bone erosions and cartilage damage. Early treatment can halt

  8. immune response can measuring immunity to hiv during ...

    African Journals Online (AJOL)

    2005-11-01

    Nov 1, 2005 ... inhibitors (PIs), have resulted in significant suppression of viral replication. ... thymus, with the potential for immune reconstitution when ..... HIV-exposed but uninfected Gambian women [published erratum appears in. Nat Med ...

  9. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  10. Th1/Th2 balance and humoral immune response to potential antigens as early diagnostic method of equine Strongylus nematode infection

    Directory of Open Access Journals (Sweden)

    Faten A. M. Abo-Aziza

    2017-06-01

    Full Text Available Aim: The aim of this study was to investigate the early diagnosis of strongyle infection based on early changes in Th1 and Th2 cytokines beside the diagnostic accuracy values and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and western blotting profiles using prepared strongyles antigens. Materials and Methods: A total of 73 donkeys had a mean age of 4-32 years old were parasitologically examined for strongyle infection. The early changes in Th1 and Th2 cytokines were determined, and the diagnostic accuracy values and SDS-PAGE and western blotting profiles were performed using prepared strongyles antigens; crude somatic Strongylus vulgaris (CSS, excretory-secretory S. vulgaris (ESS, crude somatic Cyathostomins (CSC, and excretory-secretory Cyathostomins (ESC. Results: The results revealed highest 437.04% and lowest 37.81% immunoglobulin G (IgG in high and low egg shedder groups when using ESC and CSS antigens, respectively. Antibodies index for ESS and CSC were significantly higher in moderate egg shedder group while that for ESS and CSC, ESC was significantly higher in high egg shedder group. Tumor necrosis factor alpha (TNF-α/interleukin-4 (IL-4 balance in S. vulgaris infected donkeys was approximately equal in apparently healthy, low and high egg shedder groups while TNF-α < IL-4 in moderate egg shedder. In Cyathostomins infected animals, TNF-α/IL-4 balance was approximately equal in apparently healthy group while it was low in moderate and high egg shedder groups. The diagnostic accuracy showed that the higher specificity (46.6% and prevalence (95.40% were recorded by CSS and ESC antigens, respectively. However, SDS-PAGE and western blotting profiling proved that the band at molecular weight 25 kDa is exhibited by CSS antigen. Conclusion: Combination of detecting level of TNF-α/IL-4 balance, CSS antigen and IgG concentration is good tool for appropriate diagnosis of such infection. More advancement research must be

  11. Work stress and innate immune response.

    Science.gov (United States)

    Boscolo, P; Di Gioacchino, M; Reale, M; Muraro, R; Di Giampaolo, L

    2011-01-01

    Several reports highlight the relationship between blood NK cytotoxic activity and life style. Easy life style, including physical activity, healthy dietary habits as well as good mental health are characterized by an efficient immune response. Life style is related to the type of occupational activity since work has a central part in life either as source of income or contributing to represent the social identity. Not only occupational stress, but also job loss or insecurity are thus considered serious stressful situations, inducing emotional disorders which may affect both neuroendocrine and immune systems; reduced reactivity to mitogens and/or decreased blood NK cytotoxic activity was reported in unemployed workers or in those with a high perception of job insecurity and/or job stress. Although genetic factors have a key role in the pathogenesis of autoimmune disorders, occupational stress (as in night shifts) was reported associated to an increased incidence of autoimmune disorders. Monitoring blood NK response may thus be included in the health programs as an indirect index of stressful job and/or poor lifestyle.

  12. Enhancement of Immune Memory Responses to Respiratory Infection

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0360 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Min Chen PhD...5a. CONTRACT NUMBER Enhancement of Immune Memory Responses to Respiratory Infection 5b. GRANT NUMBER W81XWH-16-1-0360 5c. PROGRAM ELEMENT NUMBER...entitled “ENHANCEMENT OF IMMUNE MEMORY RESPONSES TO RESPIRATORY INFECTION: AUTOPHAGY IN MEMORY B-CELLS RESPONSE TO INFLUENZA VACCINE (AMBRIV

  13. Rhinovirus infection results in stronger and more persistent genomic dysregulation: Evidence for altered innate immune response in asthmatics at baseline, early in infection, and during convalescence.

    Directory of Open Access Journals (Sweden)

    Peter W Heymann

    Full Text Available Rhinovirus (HRV is associated with the large majority of virus-induced asthma exacerbations in children and young adults, but the mechanisms remain poorly defined.Asthmatics and non-asthmatic controls were inoculated with HRV-A16, and nasal epithelial samples were obtained 7 days before, 36 hours after, and 7 days after viral inoculation. RNA was extracted and subjected to RNA-seq analysis.At baseline, 57 genes were differentially expressed between asthmatics and controls, and the asthmatics had decreased expression of viral replication inhibitors and increased expression of genes involved in inflammation. At 36 hours (before the emergence of peak symptoms, 1329 genes were significantly altered from baseline in the asthmatics compared to 62 genes in the controls. At this time point, asthmatics lacked an increase in IL-10 signaling observed in the controls. At 7 days following HRV inoculation, 222 genes were significantly dysregulated in the asthmatics, whereas only 4 genes were dysregulated among controls. At this time point, the controls but not asthmatics demonstrated upregulation of SPINK5.As judged by the magnitude and persistence of dysregulated genes, asthmatics have a substantially different host response to HRV-A16 infection compared with non-asthmatic controls. Gene expression differences illuminate biologically plausible mechanisms that contribute to a better understanding of the pathogenesis of HRV-induced asthma exacerbations.

  14. Pneumonia, Acute Respiratory Distress Syndrome, and Early Immune-Modulator Therapy

    Directory of Open Access Journals (Sweden)

    Kyung-Yil Lee

    2017-02-01

    Full Text Available Acute respiratory distress syndrome (ARDS is caused by infectious insults, such as pneumonia from various pathogens or related to other noninfectious events. Clinical and histopathologic characteristics are similar across severely affected patients, suggesting that a common mode of immune reaction may be involved in the immunopathogenesis of ARDS. There may be etiologic substances that have an affinity for respiratory cells and induce lung cell injury in cases of ARDS. These substances originate not only from pathogens, but also from injured host cells. At the molecular level, these substances have various sizes and biochemical characteristics, classifying them as protein substances and non-protein substances. Immune cells and immune proteins may recognize and act on these substances, including pathogenic proteins and peptides, depending upon the size and biochemical properties of the substances (this theory is known as the protein-homeostasis-system hypothesis. The severity or chronicity of ARDS depends on the amount of etiologic substances with corresponding immune reactions, the duration of the appearance of specific immune cells, or the repertoire of specific immune cells that control the substances. Therefore, treatment with early systemic immune modulators (corticosteroids and/or intravenous immunoglobulin as soon as possible may reduce aberrant immune responses in the potential stage of ARDS.

  15. Outcome Prediction in Mathematical Models of Immune Response to Infection.

    Directory of Open Access Journals (Sweden)

    Manuel Mai

    Full Text Available Clinicians need to predict patient outcomes with high accuracy as early as possible after disease inception. In this manuscript, we show that patient-to-patient variability sets a fundamental limit on outcome prediction accuracy for a general class of mathematical models for the immune response to infection. However, accuracy can be increased at the expense of delayed prognosis. We investigate several systems of ordinary differential equations (ODEs that model the host immune response to a pathogen load. Advantages of systems of ODEs for investigating the immune response to infection include the ability to collect data on large numbers of 'virtual patients', each with a given set of model parameters, and obtain many time points during the course of the infection. We implement patient-to-patient variability v in the ODE models by randomly selecting the model parameters from distributions with coefficients of variation v that are centered on physiological values. We use logistic regression with one-versus-all classification to predict the discrete steady-state outcomes of the system. We find that the prediction algorithm achieves near 100% accuracy for v = 0, and the accuracy decreases with increasing v for all ODE models studied. The fact that multiple steady-state outcomes can be obtained for a given initial condition, i.e. the basins of attraction overlap in the space of initial conditions, limits the prediction accuracy for v > 0. Increasing the elapsed time of the variables used to train and test the classifier, increases the prediction accuracy, while adding explicit external noise to the ODE models decreases the prediction accuracy. Our results quantify the competition between early prognosis and high prediction accuracy that is frequently encountered by clinicians.

  16. Immunization of neonatal mice with LAMP/p55 HIV gag DNA elicits robust immune responses that last to adulthood

    International Nuclear Information System (INIS)

    Ordonhez Rigato, Paula; Maciel, Milton; Goldoni, Adriana Leticia; Piubelli, Orlando; Alves de Brito, Cyro; Fusaro, Ana Elisa; Eurico de Alencar, Liciana Xavier; August, Thomas; Torres Azevedo Marques, Ernesto; Silva Duarte, Alberto Jose da; Sato, Maria Notomi

    2010-01-01

    Successful T cell priming in early postnatal life that can generate effective long-lasting responses until adulthood is critical in HIV vaccination strategies because it prevents early sexual initiation and breastfeeding transmission of HIV. A chimeric DNA vaccine encoding p55 HIV gag associated with lysosome-associated membrane protein 1 (LAMP-1; which drives the antigen to the MIIC compartment), has been used to enhance cellular and humoral antigen-specific responses in adult mice and macaques. Herein, we investigated LAMP-1/gag vaccine immunogenicity in the neonatal period in mice and its ability to generate long-lasting effects. Neonatal vaccination with chimeric LAMP/gag generated stronger Gag-specific immune responses, as measured by the breadth of the Gag peptide-specific IFN-γ, proliferative responsiveness, cytokine production and antibody production, all of which revealed activation of CD4+ T cells as well as the generation of a more robust CTL response compared to gag vaccine alone. To induce long-lived T and B cell memory responses, it was necessary to immunize neonates with the chimeric LAMP/gag DNA vaccine. The LAMP/gag DNA vaccine strategy could be particularly useful for generating an anti-HIV immune response in the early postnatal period capable of inducing long-term immunological memory.

  17. Adrenaline influence on the immune response. II

    International Nuclear Information System (INIS)

    Depelchin, A.; Letesson, J.J.

    1981-01-01

    Experiments were carried out to specify the adrenaline target among the immunocompetent cells. Adrenaline administered for some hours exerted opposite effects on the natural PFC and RFC: the first were enhanced and the second significantly reduced. These paradoxical results were interpreted as a consequence of the inhibition of the suppressor T-cells in the resting status. Adrenaline appeared to act on the sensitive cells through beta- rather than through alpha-receptors. Further experiments on the adrenaline influence on the syngeneic barrier phenomenon and on the cellular balance at its termination seemed to indicate that adrenaline was directly inhibitory for the Ts but not for their precursors. These results are discussed in the light of the cellular networks regulating the immune response. Irradiated mice were compared with non-irradiated mice as described in the previous article. (Auth.)

  18. Population-expression models of immune response

    International Nuclear Information System (INIS)

    Stromberg, Sean P; Antia, Rustom; Nemenman, Ilya

    2013-01-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable. (paper)

  19. Sex hormones and the immune response in humans

    NARCIS (Netherlands)

    Bouman, Annechien; Heineman, Maas Jan; Faas, Marijke M.

    2005-01-01

    In addition to their effects on sexual differentiation and reproduction, sex hormones appear to influence the immune system. This results in a sexual dimorphism in the immune response in humans: for instance, females produce more vigorous cellular and more vigorous humoral immune reactions, are more

  20. Non specific immune response in the African catfish ...

    African Journals Online (AJOL)

    Non specific immune response in the African catfish, Heterobranchus longifilis fed diets fortified with ethanolic extracts of selected traditional medicinal plants and disease resistance against Pseudomonas aeruginosa.

  1. Effects of early-life adversity on immune function are mediated by prenatal environment: Role of prenatal alcohol exposure.

    Science.gov (United States)

    Raineki, Charlis; Bodnar, Tamara S; Holman, Parker J; Baglot, Samantha L; Lan, Ni; Weinberg, Joanne

    2017-11-01

    The contribution of the early postnatal environment to the pervasive effects of prenatal alcohol exposure (PAE) is poorly understood. Moreover, PAE often carries increased risk of exposure to adversity/stress during early life. Dysregulation of immune function may play a role in how pre- and/or postnatal adversity/stress alters brain development. Here, we combine two animal models to examine whether PAE differentially increases vulnerability to immune dysregulation in response to early-life adversity. PAE and control litters were exposed to either limited bedding (postnatal day [PN] 8-12) to model early-life adversity or normal bedding, and maternal behavior and pup vocalizations were recorded. Peripheral (serum) and central (amygdala) immune (cytokines and C-reactive protein - CRP) responses of PAE animals to early-life adversity were evaluated at PN12. Insufficient bedding increased negative maternal behavior in both groups. Early-life adversity increased vocalization in all animals; however, PAE pups vocalized less than controls. Early-life adversity reduced serum TNF-α, KC/GRO, and IL-10 levels in control but not PAE animals. PAE increased serum CRP, and levels were even higher in pups exposed to adversity. Finally, PAE reduced KC/GRO and increased IL-10 levels in the amygdala. Our results indicate that PAE alters immune system development and both behavioral and immune responses to early-life adversity, which could have subsequent consequences for brain development and later life health. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Characterization and role of the immune response during ligament healing

    Science.gov (United States)

    Chamberlain, Connie S.

    inflammation and stimulating remodeling. IL-4 dose- and time-dependently stimulated early ligament regeneration but was unable to maintain the response during later healing. In summary, this work demonstrated the association between the immune cells and ligament healing, indicating a potential for obtaining a more regenerative response by modulating the immune response in a time, dose, and spatial manner.

  3. Fluorescent dye labeled influenza virus mainly infects innate immune cells and activated lymphocytes and can be used in cell-mediated immune response assay

    OpenAIRE

    Xie, Dongxu

    2009-01-01

    Early results have recognized that influenza virus infects the innate and adaptive immune cells. The data presented in this paper demonstrated that influenza virus labeled with fluorescent dye not only retained the ability to infect and replicate in host cells, but also stimulated a similar human immune response as did unlabeled virus. Influenza virus largely infected the innate and activated adaptive immune cells. Influenza B type virus was different from that of A type virus. B type virus w...

  4. Immune response and anamnestic immune response in children after a 3-dose primary hepatitis b vaccination

    International Nuclear Information System (INIS)

    Afzal, M.F.; Sultan, M.A.; Saleemi, A.I.

    2017-01-01

    Diseases caused by Hepatitis B virus (HBV) have a worldwide distribution. Pakistan adopted the recommendations of World Health Organization (WHO) for routine universal infant vaccination against hepatitis B in 2002, currently being administered at 6, 10, and 14 weeks of age in a combination vaccine. This study was conducted to determine the immune response and anamnestic immune response in children, 9 months-10 years of age, after a 3-dose primary Hepatitis B vaccination. Methods: This cross sectional study was conducted in the Department of Paediatrics, King Edward Medical University/Mayo Hospital, Lahore, Pakistan, from January to June, 2014. A total of 200 children of either sex between the ages of 9 months to 10 years, docu mented to have received 3 doses of hepatitis B vaccines according to Expanded Program of Immunization (6,10,14 weeks) schedule in infancy, were recruited by consecutive sampling. The level of serum anti-HBsAb by ELIZA was measured. Children with anti-HBs titers =10 mIU/mL were considered to be immune. Those with anti-HBsAb levels <10 mIU/mL were offered a booster dose of infant recombinant hepatitis B vaccine. The second serum sample was obtained 21-28 days following the administration of the booster dose and the anamnestic immune response was measured. Data was analysed using SPSS 17 to determine the relation between time interval since last vaccination and antibody titer. Chi square test was applied. Results: Of the 200 children, protective antibody response was found in 58 percent. Median serological response was 18.60 (range 2.82-65.15). Antibody levels were found to have a statistically significant (p-value 0.019) negative correlation with the time since last administration of vaccine. A booster dose of Hepatitis B vaccine was administered to all non-responders, with each registering a statistically significant (p-value 0.00) anamnestic response. Conclusion: The vaccination schedule with short dosage interval was unable to provide

  5. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis)

    OpenAIRE

    Widodo, Trijoedani

    2005-01-01

    Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed th...

  6. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  7. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  8. Tetraspanins in the immune response against cancer

    NARCIS (Netherlands)

    Veenbergen, S.; van Spriel, A.B.

    2011-01-01

    The role of the immune system in the defense against cancer, a process termed tumor immunosurveillance, has been extensively studied. Evidence is accumulating that the molecular organization of proteins and lipids in the plasma membrane of immune cells is of critical importance. Tetraspanin proteins

  9. Frequent adaptive immune responses against arginase-1

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Mortensen, Rasmus Erik Johansson; Hansen, Morten

    2018-01-01

    The enzyme arginase-1 reduces the availability of arginine to tumor-infiltrating immune cells, thus reducing T-cell functionality in the tumor milieu. Arginase-1 is expressed by some cancer cells and by immune inhibitory cells, such as myeloid-derived suppressor cells (MDSCs) and tumor-associated...

  10. Long-chain inulin for stimulating an immune response

    NARCIS (Netherlands)

    de Vos, Paulus; Vogt, Leonie

    2017-01-01

    The invention relates to a long chain inulin for influencing the immune response against a pathogen. The invention also relates to a combination comprising a long chain inulin and a vaccine for influencing the immune response against a pathogen, wherein the long chain inulin is orally administrated.

  11. Risk factors for discordant immune response among HIV-infected ...

    African Journals Online (AJOL)

    Risk factors for discordant immune response among HIV-infected patients initiating antiretroviral therapy: A retrospective cohort study. ... Multivariate logistic regression models were used to estimate adjusted odds ratios (AORs) to determine associations between discordant immune response and clinical and demographic ...

  12. Importins and Exportins Regulating Allergic Immune Responses

    Directory of Open Access Journals (Sweden)

    Ankita Aggarwal

    2014-01-01

    Full Text Available Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS present on cargo molecules to be imported while nuclear export signals (NES on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.

  13. Linear ubiquitination signals in adaptive immune responses.

    Science.gov (United States)

    Ikeda, Fumiyo

    2015-07-01

    Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  15. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  16. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  17. Viral evasion of DNA-stimulated innate immune responses

    Science.gov (United States)

    Christensen, Maria H; Paludan, Søren R

    2017-01-01

    Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP–AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway. PMID:26972769

  18. Viral evasion of DNA-stimulated innate immune responses.

    Science.gov (United States)

    Christensen, Maria H; Paludan, Søren R

    2017-01-01

    Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP-AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway.

  19. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  20. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  1. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    OpenAIRE

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-01-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The...

  2. Immunomodulator-based enhancement of anti smallpox immune responses.

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  3. Interplay between behavioural thermoregulation and immune response in mealworms.

    Science.gov (United States)

    Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-11-01

    Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Functional characterization of Foxp3-specific spontaneous immune responses

    DEFF Research Database (Denmark)

    Larsen, Susanne Købke; Munir, S; Andersen, Anders Woetmann

    2013-01-01

    Tumor-infiltrating CD4+CD25+ regulatory T cells (Tregs) are associated with an impaired prognosis in several cancers. The transcription factor forkhead box P3 (Foxp3) is generally expressed in Tregs. Here, we identify and characterize spontaneous cytotoxic immune responses to Foxp3-expressing cel....... Consequently, induction of Foxp3-specific cytotoxic T-cell responses appears as an attractive tool to boost spontaneous or therapeutically provoked immune responses, for example, for the therapy of cancer....

  5. The Role of the Immune Response in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Triozzi, Pierre L.; Fernandez, Anthony P.

    2013-01-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies

  6. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  7. Early Development of the Gut Microbiota and Immune Health

    Directory of Open Access Journals (Sweden)

    M. Pilar Francino

    2014-09-01

    Full Text Available In recent years, the increase in human microbiome research brought about by the rapidly evolving “omic” technologies has established that the balance among the microbial groups present in the human gut, and their multipronged interactions with the host, are crucial for health. On the other hand, epidemiological and experimental support has also grown for the ‘early programming hypothesis’, according to which factors that act in utero and early in life program the risks for adverse health outcomes later on. The microbiota of the gut develops during infancy, in close interaction with immune development, and with extensive variability across individuals. It follows that the specific process of gut colonization and the microbe-host interactions established in an individual during this period have the potential to represent main determinants of life-long propensity to immune disease. Although much remains to be learnt on the progression of events by which the gut microbiota becomes established and initiates its intimate relationships with the host, and on the long-term repercussions of this process, recent works have advanced significatively in this direction.

  8. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response

    Directory of Open Access Journals (Sweden)

    Katherine M. Buckley

    2017-10-01

    Full Text Available The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17, are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism.

  9. Pleurodeles Waltl Humoral Immune Response under Spaceflight Conditions

    Science.gov (United States)

    Bascove, Matthieu; Touche, Nadege; Frippiat, Jean-Pol

    2008-06-01

    The immune system is an important regulatory mechanism affected by spaceflights. In a previous work, we performed a first study of the humoral immune response induced by the immunization of Pleurodeles waltl during a 5 months stay onboard the Mir space station. This analysis indicated that heavy-chain variable domains of specific IgM are encoded by genes of the VHII and VHVI families. However, the contributions of these two families to IgM heavy-chains are different in flown animals [1]. To better understand this immune response modification, we have now determined how individual VH genes have been used to build specific IgM binding sites in animals immunized on earth or in space. This new study revealed quantitative and qualitative modifications in VH genes expression. These data confirm that a spaceflight might affect the humoral response.

  10. Heavy metal pollution disturbs immune response in wild ant populations

    International Nuclear Information System (INIS)

    Sorvari, Jouni; Rantala, Liisa M.; Rantala, Markus J.; Hakkarainen, Harri; Eeva, Tapio

    2007-01-01

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants

  11. Immune Response to Marburg Virus Angola Infection in Nonhuman Primates.

    Science.gov (United States)

    Fernando, Lisa; Qiu, Xiangguo; Melito, P Leno; Williams, Kinola J N; Feldmann, Friederike; Feldmann, Heinz; Jones, Steven M; Alimonti, Judie B

    2015-10-01

    The 2005 outbreak of Marburg virus (MARV) infection in Angola was the most lethal MARV infection outbreak in history, with a case-fatality rate (90%) similar to that for Zaire ebolavirus (EBOV) infection. However, very little is known about the pathogenicity of MARV Angola, as few studies have been conducted to date. Therefore, the immune response was examined in MARV Angola-infected nonhuman primates. Cynomolgus macaques were infected with MARV Angola and monitored for survival. The effect of MARV Angola on the immune system was examined by immunophenotyping whole-blood and by analyzing cytokine and chemokine levels in plasma and spleen specimens, using flow cytometry. The prominent clinical findings were rapid onset of disease and death (mean time after infection, 6.7 days), fever, depression, anorexia, petechial rash, and lymphopenia. Specifically, T, B, and natural killer cells were severely depleted in the blood by day 6. The typical cytokine storm was present, with levels of interferon γ, tumor necrosis factor, interleukin 6, and CCL2 rising in the blood early during infection. MARV Angola displayed the same virulence and disease pathology as EBOV. MARV Angola appears to cause a more rapid onset and severe outcome of infection than other MARV strains. © Crown copyright 2015.

  12. Hepatitis B Virus Vaccine immune response in Egyptian children 15 ...

    African Journals Online (AJOL)

    Egypt J Pediatr Allergy Immunol 2015;13(2):45-48. 45. Hepatitis B Virus Vaccine immune response in Egyptian children 15-17 years after primary immunization; should we provide a booster dose? INTRODUCTION. Hepatitis B virus (HBV) infection is a global public health problem. With approximately 350 million hepatitis B ...

  13. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    Purpose: To evaluate the immunogenicity and types of immune response of a quality-controlled modified recombinant hepatitis B surface antigen (HBsAg) plasmid encoding HBsAg in mice. Methods: The characterized plasmid DNA was used in the immunization of Balb/c mice. Three groups of mice were intramuscularly ...

  14. Modulation of the immune response by emotional stress

    NARCIS (Netherlands)

    Croiset, G; Heijnen, C J; Veldhuis, H D; de Wied, D; Ballieux, R E

    1987-01-01

    The influence of mild, emotional stress was investigated for its effect on the immune system by subjecting rats to the one-trial-learning passive avoidance test. The reactivity of the immune system was tested by determining the proliferative response after mitogenic stimulation in vitro as well as

  15. Reprogramming Antitumor Immune Responses with microRNAs

    Science.gov (United States)

    2013-10-01

    disease, including cancer etiology (4) and the generation and inhibition of antitumor immune responses (5–9). Biologically active miRNAs bind to MREs...breast, colorectal, lung, pancreatic , and thyroid carcinomas and in liquid tumors including lymphomas and some acute myeloid leukemias (9, 35). The...immunity [9], underscoring the potential of targeting this major microenvironmental compartment. Accumulating evidence suggests that chronic

  16. The sterile immune response during hepatic ischemia/reperfusion

    NARCIS (Netherlands)

    van Golen, Rowan F.; van Gulik, Thomas M.; Heger, Michal

    2012-01-01

    Hepatic ischemia and reperfusion elicits an immune response that lacks a microbial constituent yet poses a potentially lethal threat to the host. In this sterile setting, the immune system is alarmed by endogenous danger signals that are release by stressed and dying liver cells. The detection of

  17. Immune and stress responses in oysters with insights on adaptation.

    Science.gov (United States)

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Models for Immune Response and Immune Evasion in MSI Cancer and Lynch Syndrome

    OpenAIRE

    Özcan, Mine

    2017-01-01

    Microsatellite-unstable (MSI) cancers occurring in the context of the hereditary Lynch syndrome or as sporadic cancers elicit pronounced tumor-specific immune responses. The pronounced immune response was shown to be closely associated with frameshift peptides (FSP) that are generated as a result of deficiency in DNA mismatch repair system leading to insertion/deletion mutations in coding microsatellites (cMS). FSP neoantigens are long antigenic amino acid stretches that bear m...

  19. Predictors of responses to immune checkpoint blockade in advanced melanoma

    DEFF Research Database (Denmark)

    Jacquelot, N; Roberti, M P; Enot, D P

    2017-01-01

    Immune checkpoint blockers (ICB) have become pivotal therapies in the clinical armamentarium against metastatic melanoma (MMel). Given the frequency of immune related adverse events and increasing use of ICB, predictors of response to CTLA-4 and/or PD-1 blockade represent unmet clinical needs....... Using a systems biology-based approach to an assessment of 779 paired blood and tumor markers in 37 stage III MMel patients, we analyzed association between blood immune parameters and the functional immune reactivity of tumor-infiltrating cells after ex vivo exposure to ICB. Based on this assay, we...

  20. Putative apolipoprotein A-I, natural killer cell enhancement factor and lysozyme g are involved in the early immune response of brown-marbled grouper, Epinephelus fuscoguttatus, Forskal, to Vibrio alginolyticus.

    Science.gov (United States)

    Low, C-F; Shamsudin, M N; Chee, H-Y; Aliyu-Paiko, M; Idrus, E S

    2014-08-01

    The gram-negative bacterium, Vibrio alginolyticus, has frequently been identified as the pathogen responsible for the infectious disease called vibriosis. This disease is one of the major challenges facing brown-marbled grouper aquaculture, causing fish farmers globally to suffer substantial economic losses. The objective of this study was to investigate the proteins involved in the immune response of brown-marbled grouper fingerlings during their initial encounter with pathogenic organisms. To achieve this objective, a challenge experiment was performed, in which healthy brown-marbled grouper fingerlings were divided into two groups. Fish in the treated group were subjected to intraperitoneal injection with an infectious dose of V. alginolyticus suspended in phosphate-buffered saline (PBS), and those in the control group were injected with an equal volume of PBS. Blood samples were collected from a replicate number of fish from both groups at 4 h post-challenge and analysed for immune response-related serum proteins via two-dimensional gel electrophoresis. The results showed that 14 protein spots were altered between the treated and control groups; these protein spots were further analysed to determine the identity of each protein via MALDI-TOF/TOF. Among the altered proteins, three were clearly overexpressed in the treated group compared with the control; these were identified as putative apolipoprotein A-I, natural killer cell enhancement factor and lysozyme g. Based on these results, these three highly expressed proteins participate in immune response-related reactions during the initial exposure (4 h) of brown-marbled grouper fingerling to V. alginolyticus infection. © 2013 John Wiley & Sons Ltd.

  1. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  2. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    International Nuclear Information System (INIS)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses

  3. A Mathematical Model of Skeletal Muscle Disease and Immune Response in the mdx Mouse

    Directory of Open Access Journals (Sweden)

    Abdul Salam Jarrah

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is a genetic disease that results in the death of affected boys by early adulthood. The genetic defect responsible for DMD has been known for over 25 years, yet at present there is neither cure nor effective treatment for DMD. During early disease onset, the mdx mouse has been validated as an animal model for DMD and use of this model has led to valuable but incomplete insights into the disease process. For example, immune cells are thought to be responsible for a significant portion of muscle cell death in the mdx mouse; however, the role and time course of the immune response in the dystrophic process have not been well described. In this paper we constructed a simple mathematical model to investigate the role of the immune response in muscle degeneration and subsequent regeneration in the mdx mouse model of Duchenne muscular dystrophy. Our model suggests that the immune response contributes substantially to the muscle degeneration and regeneration processes. Furthermore, the analysis of the model predicts that the immune system response oscillates throughout the life of the mice, and the damaged fibers are never completely cleared.

  4. Immune responses to red blood cell antigens

    NARCIS (Netherlands)

    Stegmann, T.C.

    2016-01-01

    The research described in this thesis is aimed towards elucidation of the mechanism of action of anti-D. Anti-D is administered prophylactivly to prevent alloimmunization against the immunogenic D-antigen to D⁻ pregnant women carrying a D⁺ fetus. The plasma of women who became immunized during

  5. Immune response capacity after human splenic autotransplantation - Restoration of response to individual pneumococcal vaccine subtypes

    NARCIS (Netherlands)

    Leemans, R; Manson, W; Snijder, JAM; Smit, JW; Klasen, HJ; The, TH; Timens, W

    Objective To evaluate features of general immune function, in particular the restoration of the humoral immune response to pneumococcal capsular polysaccharides, in humans undergoing a spleen autotransplantation after splenectomy because of trauma. Summary Background Data After splenectomy, patients

  6. [Effect of vitamine A on mice immune response induced by specific periodontal pathogenic bacteria-immunization].

    Science.gov (United States)

    Lin, Xiao-Ping; Zhou, Xiao-Jia; Liu, Hong-Li; DU, Li-Li; Toshihisa, Kawai

    2010-12-01

    The aim of this study was to investigate the effect of vitamine-A deficiency on the induction of specific periodontal pathogenic bacteria A. actinomycetetemcomitans(Aa) immunization. BALB/c mice were fed with vitamine A-depleted diet or control regular diet throughout the whole experiment period. After 2 weeks, immunized formalin-killed Aa to build immunized models, 6 weeks later, sacrificed to determine specific antibody-IgG, IgM and sub-class IgG antibody titers in serum, and concentration of IL-10, IFN-γ, TNF-α and RANKL in T cell supernatant were measured by ELISA and T cell proliferation was measured by cintilography. SPSS 11.5 software package was used for statistical analysis. The levels of whole IgG and IgM antibody which were immunized by Aa significantly elevated, non-immune group was unable to produce any antibody. Compared with Aa immunized+RD group, the level of whole IgG in Aa immunized+VAD group was significantly higher (Pvitamin-A diet can increase the immunized mice's susceptibility to periodontal pathogenic bacteria and trigger or aggravate immune inflammatory response. Adequate vitamin A is an important factor in maintaining body health. Supported by Natural Science Foundation of Liaoning Province (Grant No.20092139) and Science and Technology Program of Shenyang Municipality (Grant No.F10-149-9-32).

  7. Incomplete Early Childhood Immunization Series and Missing Fourth DTaP Immunizations; Missed Opportunities or Missed Visits?

    Science.gov (United States)

    Robison, Steve G

    2013-01-01

    The successful completion of early childhood immunizations is a proxy for overall quality of early care. Immunization statuses are usually assessed by up-to-date (UTD) rates covering combined series of different immunizations. However, series UTD rates often only bear on which single immunization is missing, rather than the success of all immunizations. In the US, most series UTD rates are limited by missing fourth DTaP-containing immunizations (diphtheria/tetanus/pertussis) due at 15 to 18 months of age. Missing 4th DTaP immunizations are associated either with a lack of visits at 15 to 18 months of age, or to visits without immunizations. Typical immunization data however cannot distinguish between these two reasons. This study compared immunization records from the Oregon ALERT IIS with medical encounter records for two-year olds in the Oregon Health Plan. Among those with 3 valid DTaPs by 9 months of age, 31.6% failed to receive a timely 4th DTaP; of those without a 4th DTaP, 42.1% did not have any provider visits from 15 through 18 months of age, while 57.9% had at least one provider visit. Those with a 4th DTaP averaged 2.45 encounters, while those with encounters but without 4th DTaPs averaged 2.23 encounters.

  8. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  9. Immune responses accelerate ageing: proof-of-principle in an insect model.

    Directory of Open Access Journals (Sweden)

    E Rhiannon Pursall

    Full Text Available The pathology of many of the world's most important infectious diseases is caused by the immune response. Additionally age-related disease is often attributed to inflammatory responses. Consequently a reduction in infections and hence inflammation early in life has been hypothesized to explain the rise in lifespan in industrialized societies. Here we demonstrate experimentally for the first time that eliciting an immune response early in life accelerates ageing. We use the beetle Tenebrio molitor as an inflammation model. We provide a proof of principle for the effects of early infection on morbidity late in life and demonstrate a long-lasting cost of immunopathology. Along with presenting a proof-of-principle study, we discuss a mechanism for the apparently counter-adaptive persistence of immunopathology in natural populations. If immunopathology from early immune response only becomes costly later in life, natural selection on reducing self-harm would be relaxed, which could explain the presence of immune self-harm in nature.

  10. Immune response at birth, long-term immune memory and 2 years follow-up after in-utero anti-HBV DNA immunization.

    Science.gov (United States)

    Fazio, V M; Ria, F; Franco, E; Rosati, P; Cannelli, G; Signori, E; Parrella, P; Zaratti, L; Iannace, E; Monego, G; Blogna, S; Fioretti, D; Iurescia, S; Filippetti, R; Rinaldi, M

    2004-03-01

    Infections occurring at the end of pregnancy, during birth or by breastfeeding are responsible for the high toll of death among first-week infants. In-utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. A major contribution to infant immunization would be achieved if a vaccine proved able to be protective as early as at the birth, preventing the typical 'first-week infections'. To establish its potential for use in humans, in-utero DNA vaccination efficiency has to be evaluated for short- and long-term safety, protection at delivery, efficacy of boosts in adults and effective window/s for modulation of immune response during pregnancy, in an animal model suitable with human development. Here we show that a single intramuscular in-utero anti-HBV DNA immunization at two-thirds of pig gestation produces, at birth, antibody titers considered protective in humans. The boost of antibody titers in every animal following recall at 4 and 10 months demonstrates the establishment of immune memory. The safety of in-utero fetus manipulation is guaranteed by short-term (no fetus loss, lack of local alterations, at-term spontaneous delivery, breastfeeding) and long-term (2 years) monitoring. Treatment of fetuses closer to delivery results in immune ignorance without induction of tolerance. This result highlights the repercussion of selecting the appropriate time point when this approach is used to deliver therapeutic genes. All these findings illustrate the relevance of naked DNA-based vaccination technology in therapeutic efforts aimed to prevent the high toll of death among first-week infants.

  11. Siblings Promote a Type 1/Type 17-oriented immune response in the airways of asymptomatic neonates.

    Science.gov (United States)

    Wolsk, H M; Chawes, B L; Følsgaard, N V; Rasmussen, M A; Brix, S; Bisgaard, H

    2016-06-01

    Siblings have been shown to reduce the risk of childhood asthma and allergy, but the mechanism driving this association is unknown. The objective was to study whether siblings affect the airway immune response in healthy neonates, which could represent an underlying immune modulatory pathway. We measured 20 immune mediators related to the Type 1, Type 2, Type 17, or regulatory immune pathways in the airway mucosa of 571 one-month-old asymptomatic neonates from the Copenhagen Prospective Studies on Asthma in Childhood2010 birth cohort (COPSAC2010 ). The association between airway mediator levels and presence of siblings was investigated using conventional statistics and principle component analysis (PCA). Neonates with siblings had an upregulated level of airway immune mediators, with predominance of Type 1- and Type 17-related mediators. This was supported by the PCA showing a highly significant difference between children with vs without siblings: P Siblings mediate a Type 1/Type 17-related immune-stimulatory effect in the airways of asymptomatic neonates, also after adjustment for pathogenic bacteria and viruses, indicating that siblings exert a transferable early immune modulatory effect. These findings may represent an in utero immune priming effect of the fetal immune system caused by previous pregnancies as the effect was attenuated with time since last childbirth, or it could relate to the presence of unidentified microbes, but further studies are needed to confirm our findings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Children with asthma by school age display aberrant immune responses to pathogenic airway bacteria as infants.

    Science.gov (United States)

    Larsen, Jeppe Madura; Brix, Susanne; Thysen, Anna Hammerich; Birch, Sune; Rasmussen, Morten Arendt; Bisgaard, Hans

    2014-04-01

    Asthma is a highly prevalent chronic lung disease that commonly originates in early childhood. Colonization of neonatal airways with the pathogenic bacterial strains Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae is associated with increased risk of later childhood asthma. We hypothesized that children with asthma have an abnormal immune response to pathogenic bacteria in infancy. We aimed to assess the bacterial immune response in asymptomatic infants and the association with later development of asthma by age 7 years. The Copenhagen Prospective Studies on Asthma in Childhood birth cohort was followed prospectively, and asthma was diagnosed at age 7 years. The immune response to H influenzae, M catarrhalis, and S pneumoniae was analyzed in 292 infants using PBMCs isolated and stored since the age of 6 months. The immune response was assessed based on the pattern of cytokines produced and T-cell activation. The immune response to pathogenic bacteria was different in infants with asthma by 7 years of age (P = .0007). In particular, prospective asthmatic subjects had aberrant production of IL-5 (P = .008), IL-13 (P = .057), IL-17 (P = .001), and IL-10 (P = .028), whereas there were no differences in T-cell activation or peripheral T-cell composition. Children with asthma by school age exhibited an aberrant immune response to pathogenic bacteria in infancy. We propose that an abnormal immune response to pathogenic bacteria colonizing the airways in early life might lead to chronic airway inflammation and childhood asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  13. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis

    Directory of Open Access Journals (Sweden)

    Trijoedani Widodo

    2005-06-01

    Full Text Available Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed that there were three pulpitis immunopathologic patterns: the sound teeth immunopathologic pattern showing a low humoral immune response, in a low level of IgG, IgA and IgM, the reversible pulpitis pattern showing that in a higher humoral immune response, IgG and IgA decreased but IgM increased, the irreversible pulpitis pattern showing that IgG and IgM increased, but it couldn't be repaired although it has highly immunity, and it showed an unusually low level of IgA. This low level of IgA meant that irreversible pulpitis had a low mucosal immunity.

  14. Human Immune Response to Dengue Infections

    Science.gov (United States)

    1991-06-30

    had been immunized with yellow fever vaccine and later became infected with dengue 3 virus, responded best to dengue 3 antigen but also responded to...effective dengue virus subunit vaccines . We found evidence of marked T cell activation in patients with DHF. T cell activation in patients with DF was similar...Treatment and Control of Dengue Hemorrhagic Fever. World Health Organization, Geneva, Switzerland 7. Sabin AB (1952) Research on dengue during World

  15. A deterministic and stochastic model for the system dynamics of tumor-immune responses to chemotherapy

    Science.gov (United States)

    Liu, Xiangdong; Li, Qingze; Pan, Jianxin

    2018-06-01

    Modern medical studies show that chemotherapy can help most cancer patients, especially for those diagnosed early, to stabilize their disease conditions from months to years, which means the population of tumor cells remained nearly unchanged in quite a long time after fighting against immune system and drugs. In order to better understand the dynamics of tumor-immune responses under chemotherapy, deterministic and stochastic differential equation models are constructed to characterize the dynamical change of tumor cells and immune cells in this paper. The basic dynamical properties, such as boundedness, existence and stability of equilibrium points, are investigated in the deterministic model. Extended stochastic models include stochastic differential equations (SDEs) model and continuous-time Markov chain (CTMC) model, which accounts for the variability in cellular reproduction, growth and death, interspecific competitions, and immune response to chemotherapy. The CTMC model is harnessed to estimate the extinction probability of tumor cells. Numerical simulations are performed, which confirms the obtained theoretical results.

  16. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  17. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Science.gov (United States)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  18. Optimal approximation of linear systems by artificial immune response

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.

  19. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets.

    Science.gov (United States)

    Bandrick, Meggan; Theis, Kara; Molitor, Thomas W

    2014-06-05

    Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.

  20. Maternal nutritional status during pregnancy and infant immune response to routine childhood vaccinations.

    Science.gov (United States)

    Obanewa, Olayinka; Newell, Marie-Louise

    2017-09-01

    To systematically review the association between maternal nutritional status in pregnancy and infant immune response to childhood vaccines. We reviewed literature on maternal nutrition during pregnancy, fetal immune system and vaccines and possible relationships. Thereafter, we undertook a systematic review of the literature of maternal nutritional status and infant vaccine response, extracted relevant information, assessed quality of the nine papers identified and present findings in a narrative format. From limited evidence of average quality, intrauterine nutrition deficiency could lead to functional deficit in the infant's immune function; child vaccine response may thus be negatively affected by maternal malnutrition. Response to childhood vaccination may be associated with fetal and early life environment; evaluation of programs should take this into account.

  1. Agouron and immune response to commercialize remune immune-based treatment.

    Science.gov (United States)

    James, J S

    1998-06-19

    Agouron Pharmaceuticals agreed in June to collaborate with The Immune Response Corporation on the final development and marketing of an immune-based treatment for HIV. Remune, the vaccine developed by Dr. Jonas Salk, is currently in Phase III randomized trials with 2,500 patients, and the trials are expected to be completed in April 1999. Immune-based treatments have been difficult to test, as there is no surrogate marker, like viral load, to determine if the drug is working. Agouron agreed to participate in the joint venture after reviewing encouraging results from preliminary trials in which remune was taken in combination with highly active antiretroviral drugs.

  2. Flavobacterium psychrophilum, prevention and immune response

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi; Dalsgaard, Inger

    The fish pathogen Flavobacterium psychrophilum is one of the main causes of mortality in farmed rainbow trout and other salmonid fish. The disease following infection is often called bacterial coldwater disease (BCWD) in USA or rainbow trout fry syndrome (RTFS) in Europe. An infected farm can exp...... goal is to examine gene expression and location of transcription products in rainbow trout fry, in order to optimize vaccination or immune-stimulation. The presentation will focus on the future plans for the project, since no data have yet been obtained....

  3. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    Directory of Open Access Journals (Sweden)

    Chih-Yun Lai

    2017-08-01

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD is currently available, Ebola virus glycoprotein (GP is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs. Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4

  4. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  5. Immunomodulator-Based Enhancement of Anti Smallpox Immune Responses

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L.; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    Background The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. Methods We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. Results The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. Conclusion These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform. PMID:25875833

  6. Trachoma: protective and pathogenic ocular immune responses to Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Victor H Hu

    Full Text Available Trachoma, caused by Chlamydia trachomatis (Ct, is the leading infectious blinding disease worldwide. Chronic conjunctival inflammation develops in childhood and leads to eyelid scarring and blindness in adulthood. The immune response to Ct provides only partial protection against re-infection, which can be frequent. Moreover, the immune response is central to the development of scarring pathology, leading to loss of vision. Here we review the current literature on both protective and pathological immune responses in trachoma. The resolution of Ct infection in animal models is IFNγ-dependent, involving Th1 cells, but whether this is the case in human ocular infection still needs to be confirmed. An increasing number of studies indicate that innate immune responses arising from the epithelium and other innate immune cells, along with changes in matrix metalloproteinase activity, are important in the development of tissue damage and scarring. Current trachoma control measures, which are centred on repeated mass antibiotic treatment of populations, are logistically challenging and have the potential to drive antimicrobial resistance. A trachoma vaccine would offer significant advantages. However, limited understanding of the mechanisms of both protective immunity and immunopathology to Ct remain barriers to vaccine development.

  7. Transgenerational effects enhance specific immune response in a wild passerine

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    2016-03-01

    Full Text Available Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects. However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus in Sevilla, SE Spain with Newcastle disease virus (NDV vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers.

  8. Characterization of early host responses in adults with dengue disease

    Directory of Open Access Journals (Sweden)

    Ling Ling

    2011-08-01

    Full Text Available Abstract Background While dengue-elicited early and transient host responses preceding defervescence could shape the disease outcome and reveal mechanisms of the disease pathogenesis, assessment of these responses are difficult as patients rarely seek healthcare during the first days of benign fever and thus data are lacking. Methods In this study, focusing on early recruitment, we performed whole-blood transcriptional profiling on denguevirus PCR positive patients sampled within 72 h of self-reported fever presentation (average 43 h, SD 18.6 h and compared the signatures with autologous samples drawn at defervescence and convalescence and to control patients with fever of other etiology. Results In the early dengue fever phase, a strong activation of the innate immune response related genes were seen that was absent at defervescence (4-7 days after fever debut, while at this second sampling genes related to biosynthesis and metabolism dominated. Transcripts relating to the adaptive immune response were over-expressed in the second sampling point with sustained activation at the third sampling. On an individual gene level, significant enrichment of transcripts early in dengue disease were chemokines CCL2 (MCP-1, CCL8 (MCP-2, CXCL10 (IP-10 and CCL3 (MIP-1α, antimicrobial peptide β-defensin 1 (DEFB1, desmosome/intermediate junction component plakoglobin (JUP and a microRNA which may negatively regulate pro-inflammatory cytokines in dengue infected peripheral blood cells, mIR-147 (NMES1. Conclusions These data show that the early response in patients mimics those previously described in vitro, where early assessment of transcriptional responses has been easily obtained. Several of the early transcripts identified may be affected by or mediate the pathogenesis and deserve further assessment at this timepoint in correlation to severe disease.

  9. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  10. Influences of large sets of environmental exposures on immune responses in healthy adult men.

    Science.gov (United States)

    Yi, Buqing; Rykova, Marina; Jäger, Gundula; Feuerecker, Matthias; Hörl, Marion; Matzel, Sandra; Ponomarev, Sergey; Vassilieva, Galina; Nichiporuk, Igor; Choukèr, Alexander

    2015-08-26

    Environmental factors have long been known to influence immune responses. In particular, clinical studies about the association between migration and increased risk of atopy/asthma have provided important information on the role of migration associated large sets of environmental exposures in the development of allergic diseases. However, investigations about environmental effects on immune responses are mostly limited in candidate environmental exposures, such as air pollution. The influences of large sets of environmental exposures on immune responses are still largely unknown. A simulated 520-d Mars mission provided an opportunity to investigate this topic. Six healthy males lived in a closed habitat simulating a spacecraft for 520 days. When they exited their "spacecraft" after the mission, the scenario was similar to that of migration, involving exposure to a new set of environmental pollutants and allergens. We measured multiple immune parameters with blood samples at chosen time points after the mission. At the early adaptation stage, highly enhanced cytokine responses were observed upon ex vivo antigen stimulations. For cell population frequencies, we found the subjects displayed increased neutrophils. These results may presumably represent the immune changes occurred in healthy humans when migrating, indicating that large sets of environmental exposures may trigger aberrant immune activity.

  11. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials.

    Science.gov (United States)

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L

    2017-06-01

    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4 + T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The immune response against Candida spp. and Sporothrix schenckii.

    Science.gov (United States)

    Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2014-01-01

    Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  13. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    Science.gov (United States)

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  14. A simple non-linear model of immune response

    International Nuclear Information System (INIS)

    Gutnikov, Sergei; Melnikov, Yuri

    2003-01-01

    It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background

  15. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  16. The Impact of Ultraviolet Radiation on Immune Responses (invited paper)

    International Nuclear Information System (INIS)

    Norval, M.

    2000-01-01

    In addition to its genotoxic and mutagenic effects, UV has the capacity to suppress immune responses. The mechanism involved is complex, beginning with chromophores located in the skin which absorb UV, this leading in turn to changes in the production of a range of immune mediators locally and systemically which then induce phenotypic and functional alterations in antigen presentation. The cascade ends with the promotion of a subset of T-cells downregulating cell-mediated immunity. The possible consequences of this immunomodulation for the control of tumours and infectious diseases require careful evaluation from laboratory and human studies. (author)

  17. The nature of immune responses to urinary tract infections

    Science.gov (United States)

    Abraham, Soman N.; Miao, Yuxuan

    2016-01-01

    The urinary tract is constantly exposed to microorganisms that inhabit the gastrointestinal tract, but generally the urinary tract resists infection by gut microorganisms. This resistance to infection is mainly ascribed to the versatility of the innate immune defences in the urinary tract as the adaptive immune responses are limited, particularly when only the lower urinary tract is infected. In recent years, as the strengths and weaknesses of the immune system of the urinary tract have emerged and as the virulence attributes of uropathogens are recognized, several potentially effective and unconventional strategies to contain or prevent urinary tract infections have emerged. PMID:26388331

  18. Ageing and the humoral immune response in mice

    International Nuclear Information System (INIS)

    Blankwater, M.J.

    1978-01-01

    The study presented in this thesis is concerned with changes in the humoral immune system as a function of age in different inbred mouse strains. Their capacity to develop humoral immune responses to experimentally given thymus-dependent and thymus-independent antigens under various conditions is compared. Furthermore, experiments employing thymus transplantation and thymic humoral factors which are directed at the restoration of the diminished T cell functions in old age are reported. (Auth.)

  19. ENDOCANNABINOIDS AND EICOSAMOIDS: BIOSYNTHESIS AND INTERACTIONS WITH IMMUNE RESPONSE

    Directory of Open Access Journals (Sweden)

    Yu. K. Karaman

    2013-01-01

    Full Text Available The review is dedicated to modern concepts of arachidonic acid metabolites, i.e., endocannabinoids and eicosanoids, their biosynthetic pathways, cross-talk mechanisms and participation in immune response. New information from literature and own results include data concerning overlapping enzymatic pathways controlling biosynthesis of endocannabinoids and eicosanoids. Impact of synthetic cannabinoid receptor ligands upon production rates of proinflammatory cytokines and eicosanoids is discussed, as like as relationships among immune system reactivity and expression levels of cannabinoid receptors.

  20. Role of Activin A in Immune Response to Breast Cancer

    Science.gov (United States)

    2016-12-01

    strategies are needed in order to eradicate metastatic breast cancer. In this respect, the activation of the immune system to elicit anti-tumor immune...responses represents one of the most promising approaches that have recently demonstrated some success in other diseases. However, clinically apparent...content/76/14_Supplement/4986 Advertisement Advanced Search search ! Clinical Research (Excluding Clinical Trials) Abstract 4986: Regulation of radiation

  1. Bovine anaplasmosis with emphasis on immune responses and protection

    International Nuclear Information System (INIS)

    Ristic, M.

    1980-01-01

    Anaplasmosis is an infectious and transmissible disease manifested by progressive anaemia and the appearance of other characteristic disease symptoms. It is a world-wide tick-borne disease of cattle and some wild ruminants caused by the rickettsia Anaplasma marginale. By drawing on information obtained from studies of plasmodial cell cultures, a method has recently been developed for short-term in vitro cultivation of A. marginale. An attenuated Anaplasma organism capable of growth in both ovine and bovine erythrocytes was used to demonstrate that the in vitro system provided the necessary requirements for active transfer of the organism from cell to cell. Organismal antigens are found in the erythrocytes of infected animals, whereas soluble antigens are derived from their erythrocytes and serum. Serums from convalescing animals interact with these antigens in agglutination, complement fixation, fluorescent antibody and precipitation tests. Passive transfer of sera from immune to susceptible cattle, however, does not seem to confer protection against the infection and development of the disease. Studies that employed various tests for measuring cell-mediated immune (CMI) responses (leukocyte migration inhibition, blast transformation and cytotoxicity), in association with information collected simultaneously on antibody activity, have shown that both humoral and cellular immune responses are needed for the development of protective immunity in anaplasmosis. It was further shown that an active replication of Anaplasma is essential for induction of these two types of immune responses. Consequently, live virulent and attenuated immunogens fulfil requirements for induction of protective immunity. With the virulent agent, however, development of protective immunity is preceded by induction of auto-immune responses apparently associated with pathogenesis of anaemia in anaplasmosis. Inactivated immunogens derived from blood of infected cattle and used in combination with

  2. The immune response to sand fly salivary proteins and its influence on Leishmania immunity

    Directory of Open Access Journals (Sweden)

    Regis eGomes

    2012-05-01

    Full Text Available Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic upon multiple contacts with a mammalian host. Immunization with single immunogenic salivary proteins or exposure to uninfected bites can produce protective immune responses against leishmaniasis. These sand fly salivary proteins induce cellular immune responses and/or antibodies. Antibodies to saliva are not required for protection in a mouse model against leishmaniasis. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

  3. An Immune-inspired Adaptive Automated Intrusion Response System Model

    Directory of Open Access Journals (Sweden)

    Ling-xi Peng

    2012-09-01

    Full Text Available An immune-inspired adaptive automated intrusion response system model, named as , is proposed. The descriptions of self, non-self, immunocyte, memory detector, mature detector and immature detector of the network transactions, and the realtime network danger evaluation equations are given. Then, the automated response polices are adaptively performed or adjusted according to the realtime network danger. Thus, not only accurately evaluates the network attacks, but also greatly reduces the response times and response costs.

  4. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  5. Effect of partially purified fumonisins on cellular immune response in ...

    African Journals Online (AJOL)

    After 7 days, cellular immune response was evaluated by delayed-type hypersensitivity (DTH) and lymphoproliferative assays (LA) using spleen cells. Nitric oxide (NO) production by spleen cells was also evaluated. The specific LA response to Pb antigen was higher in group PB than in FB and CTR groups (p< 0.05) but not ...

  6. Metabolic and adaptive immune responses induced in mice infected ...

    African Journals Online (AJOL)

    This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were ...

  7. Immune responses of pigs inoculated with a recombinant fowlpox ...

    African Journals Online (AJOL)

    Yomi

    2012-04-03

    Apr 3, 2012 ... Key words: PCV2, rFPV, FMDV, immune response, prime-boost. .... After 10 min in the dark at room temperature, the color reaction was terminated with 50 µl of ..... ponses and improve memory and/or effector cell responses ...

  8. T helper cell 2 immune skewing in pregnancy/early life

    DEFF Research Database (Denmark)

    McFadden, J P; Thyssen, J P; Basketter, D A

    2015-01-01

    During the last 50 years there has been a significant increase in Western societies of atopic disease and associated allergy. The balance between functional subpopulations of T helper cells (Th) determines the quality of the immune response provoked by antigen. One such subpopulation - Th2 cells...... that in Westernized societies reduced exposure during early childhood to pathogenic microorganisms favours the development of atopic allergy. Pregnancy is normally associated with Th2 skewing, which persists for some months in the neonate before Th1/Th2 realignment occurs. In this review, we consider...... the immunophysiology of Th2 immune skewing during pregnancy. In particular, we explore the possibility that altered and increased patterns of exposure to certain chemicals have served to accentuate this normal Th2 skewing and therefore further promote the persistence of a Th2 bias in neonates. Furthermore, we propose...

  9. Differential immune response of rainbow trout (Oncorhynchus mykiss) at early developmental stages (larvae and fry) against the bacterial pathogen Yersinia ruckeri

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar; Raida, Martin Kristian; Kania, Per Walter

    2012-01-01

    . We exposed 17 and 87 days post hatch larvae and fry (152 and 1118 degree days post hatch; avg. wt. 70 and 770 mg, respectively) to the bacterial pathogen, Yersinia ruckeri for 4 h by bath challenge. Samples were taken at 4, 24, 72 and 96 h post exposure for qPCR and immunohistochemical analyses...... to elucidate the immune response mounted by these young fish. Larvae showed no mortality although infected larvae at 48 h post exposure showed hyperaemia in the mouth region and inflammation on the dorsal side of the body. Gene expression studies showed an up-regulation of iNOS and IL-22 in infected larvae 24...... h post exposure but most of the investigated genes did not show any difference between infected and uninfected larvae. Immunohistochemical studies demonstrated a high expression of IgT molecules in gills and CD8 positive cells in thymus of both infected and uninfected larvae. Infection of rainbow...

  10. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients

    NARCIS (Netherlands)

    Wieten, R. W.; Goorhuis, A.; Jonker, E. F. F.; de Bree, G. J.; de Visser, A. W.; van Genderen, P. J. J.; Remmerswaal, E. B. M.; ten Berge, I. J. M.; Visser, L. G.; Grobusch, M. P.; van Leeuwen, E. M. M.

    2016-01-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen

  11. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients.

    Science.gov (United States)

    Wieten, R W; Goorhuis, A; Jonker, E F F; de Bree, G J; de Visser, A W; van Genderen, P J J; Remmerswaal, E B M; Ten Berge, I J M; Visser, L G; Grobusch, M P; van Leeuwen, E M M

    2016-06-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen patients using different immunosuppressive drugs and 30 healthy individuals vaccinated 0-22 years ago were included. The serological response was measured using the plaque reduction neutralization test (PRNT). CD8(+) and CD4(+) T-cell responses were measured following proliferation and re-stimulation with YFV peptide pools. Phenotypic characteristics and cytokine responses of CD8(+) T-cells were determined using class I tetramers. The geometric mean titre of neutralizing antibodies was not different between the groups (p = 0.77). The presence of YFV-specific CD4(+) and CD8(+) T-cell did not differ between patients and healthy individuals (15/15, 100.0% vs. 29/30, 96.7%, p = 0.475). Time since vaccination correlated negatively with the number of YFV-specific CD8(+) T-cells (r = -0.66, p = 0.0045). Percentages of early-differentiated memory cells increased (r = 0.67, p = 0.017) over time. These results imply that YF vaccination is effective despite certain immunosuppressive drug regimens. An early-differentiated memory-like phenotype persisted, which is associated with effective expansion upon re-encounter with antigen, suggesting a potent memory T-cell pool remains. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  12. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  13. [Human milk, immune responses and health effects].

    Science.gov (United States)

    Løland, Beate Fossum; Baerug, Anne B; Nylander, Gro

    2007-09-20

    Besides providing optimal nutrition to infants, human milk contains a multitude of immunological components. These components are important for protection against infections and also support the development and maturation of the infant's own immune system. This review focuses on the function of some classical immunocomponents of human milk. Relevant studies are presented that describe health benefits of human milk for the child and of lactation for the mother. Relevant articles were found mainly by searching PubMed. Humoral and cellular components of human milk confer protection against infections in the respiratory--, gastrointestinal--and urinary tract. Human milk also protects premature children from neonatal sepsis and necrotizing enterocolitis. There is evidence that human milk may confer long-term benefits such as lower risk of certain autoimmune diseases, inflammatory bowel disease and probably some malignancies. Human milk possibly affects components of the metabolic syndrome. Recent studies demonstrate long-term health benefits of lactation also for the mother. A reduced incidence of breast cancer is best documented. An increasing number of studies indicate protection against ovarian cancer, rheumatoid arthritis and type II diabetes.

  14. Probiotics, antibiotics and the immune responses to vaccines.

    Science.gov (United States)

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  16. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, A.; Chettri, J. K.

    2017-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  17. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, Azmi; Chettri, Jiwan Kumar

    2018-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  18. Using an agent-based model to analyze the dynamic communication network of the immune response

    Directory of Open Access Journals (Sweden)

    Doolittle John

    2011-01-01

    Full Text Available Abstract Background The immune system behaves like a complex, dynamic network with interacting elements including leukocytes, cytokines, and chemokines. While the immune system is broadly distributed, leukocytes must communicate effectively to respond to a pathological challenge. The Basic Immune Simulator 2010 contains agents representing leukocytes and tissue cells, signals representing cytokines, chemokines, and pathogens, and virtual spaces representing organ tissue, lymphoid tissue, and blood. Agents interact dynamically in the compartments in response to infection of the virtual tissue. Agent behavior is imposed by logical rules derived from the scientific literature. The model captured the agent-to-agent contact history, and from this the network topology and the interactions resulting in successful versus failed viral clearance were identified. This model served to integrate existing knowledge and allowed us to examine the immune response from a novel perspective directed at exploiting complex dynamics, ultimately for the design of therapeutic interventions. Results Analyzing the evolution of agent-agent interactions at incremental time points from identical initial conditions revealed novel features of immune communication associated with successful and failed outcomes. There were fewer contacts between agents for simulations ending in viral elimination (win versus persistent infection (loss, due to the removal of infected agents. However, early cellular interactions preceded successful clearance of infection. Specifically, more Dendritic Agent interactions with TCell and BCell Agents, and more BCell Agent interactions with TCell Agents early in the simulation were associated with the immune win outcome. The Dendritic Agents greatly influenced the outcome, confirming them as hub agents of the immune network. In addition, unexpectedly high frequencies of Dendritic Agent-self interactions occurred in the lymphoid compartment late in the

  19. Suppressive influences in the immune response to cancer.

    Science.gov (United States)

    Bronte, Vincenzo; Mocellin, Simone

    2009-01-01

    Although much evidence has been gathered demonstrating that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells do evade immune surveillance in most cases. Considering that anticancer active specific immunotherapy seems to have reached a plateau of results and that currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted.

  20. Escaping deleterious immune response in their hosts: lessons from trypanosomatids

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2016-05-01

    Full Text Available The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, T. cruzi and Leishmania spp are important human pathogens causing Human African Trypanosomiasis (HAT or Sleeping Sickness, Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs or sandflies and affect millions of people worldwide.In humans, extracellular African trypanosomes (T. brucei evade the hosts’ immune defences, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response.This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and, will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

  1. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  2. The intracellular cholesterol landscape: dynamic integrator of the immune response

    Science.gov (United States)

    Fessler, Michael B.

    2016-01-01

    Cholesterol has typically been considered an exogenous, disease-related factor in immunity; however, recent literature suggests that a paradigm shift is in order. Sterols are now recognized to ligate several immune receptors. Altered flux through the mevalonic acid synthesis pathway also appears to be a required event in the antiviral interferon response of macrophages and in the activation, proliferation, and differentiation of T cells. In this review, evidence is discussed that suggests an intrinsic, ‘professional’ role for sterols and oxysterols in macrophage and T cell immunity. Host defense may have been the original selection pressure behind the development of mechanisms for intracellular cholesterol homeostasis. Functional coupling between sterol metabolism and immunity has fundamental implications for health and disease. PMID:27692616

  3. Effects of inhaled insoluble 239PuO2 on immune responses following lung immunization

    International Nuclear Information System (INIS)

    Bice, D.E.; Harris, D.L.; Brooks, A.L.; Mewhinney, J.A.

    1978-01-01

    To determine if inhaled 239 PuO 2 suppresses immunity in lung-associated lymph nodes, Chinese hamsters were exposed to a polydisperse aerosol of 239 PuO 2 produced at 1150 0 C. The mean lung burden of these animals was estimated to be 10 nCi at 8 days after exposure. At 128, 256 and 400 days after exposure, sham exposed controls and experimental animals were immunized by intratracheal instillation of 1 x 10 8 sheep red blood cells (SRBC). Six days later, they were sacrificed and the number of antibody forming cells (AFC) in lung-associated lymph nodes, spleen and cervical lymph nodes was evaluated. Results of these studies indicated that the number of AFC in lung-associated lymph modes was significantly lower in animals exposed to 239 PuO 2 . Only a few AFC were found in spleen and cervical lymph nodes after intratracheal immunization and the number in exposed animals was not significantly different than in the controls. These data indicate that even though the 239 PuO 2 exposure had suppressed immune responses in lung-associated lymph nodes, their filtering capacity was unaffected and antigen did not translocate to the spleen. We conclude that, at the sacrifice intervals evaluated, the immune function of lung-associated lymph nodes was suppressed and that distant lymphoid tissue (e.g., spleen and cervical lymph nodes) did not replace the immune function of the lung-associated lymph nodes

  4. Modulation of immune response by alloactivated suppressor T cells

    International Nuclear Information System (INIS)

    Bernstein, A.; Sopori, M.L.; Gose, J.E.; Sondel, P.M.

    1979-01-01

    These studies show that there may be several different kinds of suppressor cells, each activated by different pathways and able to suppress different parts of the immune response either specifically or nonspecifically. As such, the physiology of one type of suppressor cell need not necessarily apply to that of another type of suppressor. Thus we emphasize the trap that the suppressor cell option provides: that is, virtually any previously inexplicable in vitro and in vivo immune phenomenon can always be adequately accounted for by evoking a suppressor mechanism, either by suppressing the response or suppressing the suppressor

  5. Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.

    Science.gov (United States)

    Fins, Joseph J

    2015-04-01

    Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.

  6. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...

  7. Early DNA vaccination of puppies against canine distemper in the presence of maternally derived immunity.

    Science.gov (United States)

    Griot, Christian; Moser, Christian; Cherpillod, Pascal; Bruckner, Lukas; Wittek, Riccardo; Zurbriggen, Andreas; Zurbriggen, Rinaldo

    2004-01-26

    Canine distemper (CD) is a disease in carnivores caused by CD virus (CDV), a member of the morbillivirus genus. It still is a threat to the carnivore and ferret population. The currently used modified attenuated live vaccines have several drawbacks of which lack of appropriate protection from severe infection is the most outstanding one. In addition, puppies up to the age of 6-8 weeks cannot be immunized efficiently due to the presence of maternal antibodies. In this study, a DNA prime modified live vaccine boost strategy was investigated in puppies in order to determine if vaccinated neonatal dogs induce a neutralizing immune response which is supposed to protect animals from a CDV challenge. Furthermore, a single DNA vaccination of puppies, 14 days after birth and in the presence of high titers of CDV neutralizing maternal antibodies, induced a clear and significant priming effect observed as early as 3 days after the subsequent booster with a conventional CDV vaccine. It was shown that the priming effect develops faster and to higher titers in puppies preimmunized with DNA 14 days after birth than in those vaccinated 28 days after birth. Our results demonstrate that despite the presence of maternal antibodies puppies can be vaccinated using the CDV DNA vaccine, and that this vaccination has a clear priming effect leading to a solid immune response after a booster with a conventional CDV vaccine.

  8. The serological response to heartwater immunization in cattle is an indicator of protective immunity

    DEFF Research Database (Denmark)

    Lawrence, J A; Tjørnehøj, Kirsten; Whiteland, A P

    1995-01-01

    A significant correlation was demonstrated in Friesian-cross steers between the serological response to previous vaccination with the Ball 3 strain of Cowdria ruminantium and the development of protective immunity against the Kalota isolate from Malawi. Of 10 animals which seroconverted after vac...

  9. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    Science.gov (United States)

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-03-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system.

  10. Effect of produced water on cod (Gadus morhua) immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Hamoutene, D.; Mabrouk, G.; Samuelson, S.; Mansour, A.; Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Region, Ocean Sciences Division; Volkoff, H.; Parrish, C. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada); Mathieu, A. [Oceans Ltd., St. John' s, NL (Canada)

    2007-07-01

    Studies have shown that produced water (PW) discharged from North Sea offshore platforms affects the biota at greater distances from operational platforms than originally presumed. According to PW dispersion simulations, dilution by at least 240 times occurs within 50-100 m, and up to 9000 times by 20 km from the discharge. In this study, the effect of PW on cod immunity was investigated by exposing fish to 0, 100 ppm (x 10,000 dilution) or 200 ppm (x 500) of PW for 76 days. Immune responses were evaluated at the end of the exposure. Fish from the 3 groups were injected with Aeromonas salmonicida lipopolysaccharides (LPS). Blood cell observation and flow cytometry were used to investigate the serum cortisol levels and gill histology along with ratios and respiratory burst (RB) responses of both circulating and head-kidney white blood cells (WBCs). The study revealed that baseline immunity and stress response were not affected by PW, other than an irritant-induced change in gill cells found in treated cod. In all groups, LPS injection resulted in a pronounced decrease in RB of head-kidney cells and an increase in serum cortisol and protein levels. However, the group exposed to 200 ppm of PW exhibited the most significant changes. LPS injection was also shown to influence WBC ratios, but further studies are needed to determine if this impact is stronger in fish exposed to PW. This study suggested an effect of PW on cod immunity after immune challenge with LPS.

  11. Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice.

    Directory of Open Access Journals (Sweden)

    Ashok K Chaturvedi

    Full Text Available Cryptococcus gattii is a fungal pathogen that can cause life-threatening respiratory and disseminated infections in immune-competent and immune-suppressed individuals. Currently, there are no standardized vaccines against cryptococcosis in humans, underlying an urgent need for effective therapies and/or vaccines. In this study, we evaluated the efficacy of intranasal immunization with C. gattii cell wall associated (CW and/or cytoplasmic (CP protein preparations to induce protection against experimental pulmonary C. gattii infection in mice. BALB/c mice immunized with C. gattii CW and/or CP protein preparations exhibited a significant reduction in pulmonary fungal burden and prolonged survival following pulmonary challenge with C. gattii. Protection was associated with significantly increased pro-inflammatory and Th1-type cytokine recall responses, in vitro and increased C. gattii-specific antibody production in immunized mice challenged with C. gattii. A number of immunodominant proteins were identified following immunoblot analysis of C. gattii CW and CP protein preparations using sera from immunized mice. Immunization with a combined CW and CP protein preparation resulted in an early increase in pulmonary T cell infiltrates following challenge with C. gattii. Overall, our studies show that C. gattii CW and CP protein preparations contain antigens that may be included in a subunit vaccine to induce prolonged protection against pulmonary C. gattii infection.

  12. The inflammatory an immune response to mousepox (infectious ectromelia) virus

    International Nuclear Information System (INIS)

    Niemialtowski, M.G.; Spohr de Faundez, I.; Gierynska, M; Toka, F.N.; Schollenberger, A.; Popis, A.; Malicka, E.

    1994-01-01

    The ectromelia virus(EV) has been recognized as the etiological agent of a relatively common infection in laboratory mouse colonies around the world, i.e. Europe (including Poland), U.S.A. and Asia. Due to widespread use of mice in biomedical research, it is important to study the biology of strains characteristic for a given country. This is particularly significant for the diagnosis, prevention and control ectromelia. In severe epizootics, approximately 90% morbidity is observed within colonies and mortality rate exceeding 70% is observed within 4 to 20 days from the appearance of clinical symptoms. The resistance to lethal infection is mouse strain-dependent. Several inbred strains of mice, including C57BL/6 and AKR are resistant to the lethal effects of EV infection, while others, such as A and BALB/c are susceptible. Recent studies indicate that (1) T lymphocytes, natural killer cells and interferon (IFN)-dependent host defenses must operate for the expression of resistance, (2) virus-specific T-cell precursors appear earlier in regional lymph nodes of resistant than susceptible mice, and (3) resistance mechanism are expressed during early stages of infection. Over the past several years, (1) induction of anti-EV cytotoxic CD8 + T lymphocytes responses in vivo in the absence of CD 4 + (T helper) cells, (2) importance of some cytokines e.g., IFN-gamma in EV clearance at all stages of infection, and (3) induction of nitric oxide synthase, which is necessary for a substantial antiviral activity of IFN-gamma, have been demonstrated. The effector mechanism by which EV-specific immune cells (T lymphocytes) execute their and inflammatory functions are thought to involve the release of soluble mediators that attract, focus and active cells at the infected sites. It is possible that the skin is the most relevant organ for studying the biology of an EV infection in vivo, yet very little is known concerning EV replication there and the importance of the skin;s innate and

  13. The host immune response to Clostridium difficile infection

    Science.gov (United States)

    2013-01-01

    Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future. PMID:25165542

  14. Influence of bedding type on mucosal immune responses.

    Science.gov (United States)

    Sanford, Amy N; Clark, Stephanie E; Talham, Gwen; Sidelsky, Michael G; Coffin, Susan E

    2002-10-01

    The mucosal immune system interacts with the external environment. In the study reported here, we found that bedding materials can influence the intestinal immune responses of mice. We observed that mice housed on wood, compared with cotton bedding, had increased numbers of Peyer's patches (PP) visible under a dissecting microscope. In addition, culture of lymphoid organs revealed increased production of total and virus-specific IgA by PP and mesenteric lymph node (MLN) lymphocytes from mice housed on wood, compared with cotton bedding. However, bedding type did not influence serum virus-specific antibody responses. These observations indicate that bedding type influences the intestinal immune system and suggest that this issue should be considered by mucosal immunologists and personnel at animal care facilities.

  15. Radiation, Inflammation, and Immune Responses in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Multhoff, Gabriele [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Helmholtz Zentrum München, Clinical Cooperation Group Innate Immunity in Tumor Biology, Munich (Germany); Radons, Jürgen, E-mail: raj10062@web.de [multimmune GmbH, Munich (Germany)

    2012-06-04

    Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR.

  16. Radiation, Inflammation, and Immune Responses in Cancer

    International Nuclear Information System (INIS)

    Multhoff, Gabriele; Radons, Jürgen

    2012-01-01

    Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR.

  17. Cocoa Diet and Antibody Immune Response in Preclinical Studies

    Directory of Open Access Journals (Sweden)

    Mariona Camps-Bossacoma

    2017-06-01

    Full Text Available The ability of cocoa to interact with the immune system in vitro and in vivo has been described. In the latter context, a cocoa-enriched diet in healthy rats was able to modify the immune system’s functionality. This fact could be observed in the composition and functionality of lymphoid tissues, such as the thymus, spleen, and lymph nodes. Consequently, immune effector mechanisms, such as antibody synthesis, were modified. A cocoa-enriched diet in young rats was able to attenuate the serum levels of immunoglobulin (Ig G, IgM, and IgA and also the intestinal IgM and IgA secretion. Moreover, in immunized rats, the intake of cocoa decreased specific IgG1, IgG2a, IgG2c, and IgM concentrations in serum. This immune-regulator potential was then tested in disease models in which antibodies play a pathogenic role. A cocoa-enriched diet was able to partially prevent the synthesis of autoantibodies in a model of autoimmune arthritis in rats and was also able to protect against IgE and T helper 2-related antibody synthesis in two rat models of allergy. Likewise, a cocoa-enriched diet prevented an oral sensitization process in young rats. In this review, we will focus on the influence of cocoa on the acquired branch of the immune function. Therefore, we will focus on how a cocoa diet influences lymphocyte function both in the systemic and intestinal immune system. Likewise, its potential role in preventing some antibody-induced immune diseases is also included. Although further studies must characterize the particular cocoa components responsible for such effects and nutritional studies in humans need to be carried out, cocoa has potential as a nutraceutical agent in some hypersensitivity status.

  18. HTLV-1, Immune Response and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Juarez A S Quaresma

    2015-12-01

    Full Text Available Human T-lymphotropic virus type-1 (HTLV-1 infection is associated with adult T-cell leukemia/lymphoma (ATL. Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA, Systemic Lupus Erythematosus (SLE, and Sjögren’s Syndrome (SS. The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4+ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4+ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity.

  19. [Immune response of Hansen's disease. Review].

    Science.gov (United States)

    Rada, Elsa; Aranzazu, Nacarid; Convit, Jacinto

    2009-12-01

    Hansen's disease presents a wide spectrum of clinical and histopathological manifestations that reflect the nature of the immunological response of the host towards diverse Mycobacterium leprae components. The immunological system, composed by both innate and adaptive immunology, offers protection towards infections of various etiologies, among them bacterial. Bacteria, of course, have developed multiple strategies for evading host defenses, based on either very complex or simple mechanisms, but with a single purpose: to "resist" host attacks and to be able to survive. We have tried to summarize some recent studies in Hansen's disease, with more emphasis in the inmunology area. We think that in the future, all illnesses should also be very strongly related to other important aspects such as the social, environmental and economic, and whose development is not solved in a laboratory.

  20. Immune and clinical response to honeybee venom in beekeepers

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    2016-03-01

    The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  1. Induction of protective immune responses in mice by double DNA ...

    African Journals Online (AJOL)

    Purpose: To investigate the efficacy of a double DNA vaccine encoding of Brucella melitensis omp31 gene and of Escherichia coli eae gene in inducing protective immune response in a mouse model. Methods: After performing PCR assays and cloning both the eae and omp31 genes, the generated DNA vaccines were ...

  2. Impact on allergic immune response after treatment with vitamin A

    DEFF Research Database (Denmark)

    Matheu, Victor; Berggård, Karin; Barrios, Yvelise

    2009-01-01

    ABSTRACT: BACKGROUND: Vitamin A may have some influence on the immune system, but the role in allergy modulation is still unclear. OBJECTIVE: To clarify whether high levels of retinoic acid (RA) affects allergic response in vivo, we used a murine experimental model of airway allergic disease...

  3. Genetic variations in non-specific immune response to ...

    African Journals Online (AJOL)

    Non-specific immune response in three strains of Heterobranchus bidorsalis challenged with the bacterium Aeromonas hydrophilia was evaluated. The study was undertaken in three strains of H. bidorsalis from different ecological zones in Nigeria and the percentage cumulative mortality was lowest and significantly ...

  4. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    These findings indicate that the vaccine induced both a humoral and cellular ... Keywords: Hepatitis B virus, Plasmid DNA, Vaccine, Spleen cytokines, Humoral and cellular immune responses ... produced in mice. ... were performed and HBsAg specific IgM and IgG ..... and protection elicited against Plasmodium berghei.

  5. Cellular immune response in prognosis of Bell's palsy and its ...

    African Journals Online (AJOL)

    Objective: To determine the cellular immune response in Bell's palsy (BP) and its prognostic value in relation to clinical and electrophysiological findings. Methods: Twenty patients with BP were subjected to: Facial nerve paralysis assessment according to House–Brackmann (H&B) grading system, bilateral facial nerve ...

  6. Radiation-induced augmentation of the immune response

    International Nuclear Information System (INIS)

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis

  7. A multiherbal formulation influencing immune response in vitro.

    Science.gov (United States)

    Menghini, L; Leporini, L; Scanu, N; Pintore, G; Ferrante, C; Recinella, L; Orlando, G; Vacca, M; Brunetti, L

    2012-02-01

    Aim of this study was to evaluate the effects of phytocomplexes of Uncaria, Shiitake and Ribes in terms of viability and inflammatory response on immune cell-derived cultures. Standardized extracts of Uncaria, Shitake and Ribes and their commercial formulation were tested on cell lines PBMC, U937 and macrophage. The activity was evaluated in terms of cell viability (MTT test), variations of oxidative marker release (ROS and PGE2) and modulatory effects on immune response (gene expression of IL-6, IL-8 and TNFα, RT-PCR). Cell viability was not affected by extracts, except subtle variations observed only at higher doses (>250 µg/mL). The extract mixture was well tolerated, with no effects on cell viability up to doses of 500 µg/mL. Pre-treatment of macrophages with subtoxic doses of the extracts reduced the basal release of oxidative markers and enhanced the cell response to exogenous oxidant stimulation, as revealed by ROS and PGE2 release reduction. The same treatment on macrophage resulted in a selective modulation of the immune response, as shown by an increase of IL-6 mRNA and, partially, IL-8 mRNA, while a reduction was observed for TNFα mRNA. Data confirm that extracts and their formulations can act as regulator of the immune system with mechanisms involving the oxidative stress and the release of selected proinflammatory cytokines.

  8. Signalling through C-type lectin receptors: shaping immune responses

    NARCIS (Netherlands)

    Geijtenbeek, Teunis B. H.; Gringhuis, Sonja I.

    2009-01-01

    C-type lectin receptors (CLRs) expressed by dendritic cells are crucial for tailoring immune responses to pathogens. Following pathogen binding, CLRs trigger distinct signalling pathways that induce the expression of specific cytokines which determine T cell polarization fates. Some CLRs can induce

  9. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  10. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Berge-Hansen, Linda; Junker, Niels

    2009-01-01

    BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance...... to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T...... of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals...

  11. Hsp90-downregulation influences the heat-shock response, innate immune response and onset of oocyte development in nematodes.

    Directory of Open Access Journals (Sweden)

    Julia Eckl

    Full Text Available Hsp90 is a molecular chaperone involved in the regulation and maturation of kinases and transcription factors. In Caenorhabditis elegans, it contributes to the development of fertility, maintenance of muscle structure, the regulation of heat-shock response and dauer state. To understand the consequences of Hsp90-depletion, we studied Hsp90 RNAi-treated nematodes by DNA microarrays and mass spectrometry. We find that upon development of phenotypes the levels of chaperones and Hsp90 cofactors are increased, while specific proteins related to the innate immune response are depleted. In microarrays, we further find many differentially expressed genes related to gonad and larval development. These genes form an expression cluster that is regulated independently from the immune response implying separate pathways of Hsp90-involvement. Using fluorescent reporter strains for the differentially expressed immune response genes skr-5, dod-24 and clec-60 we observe that their activity in intestinal tissues is influenced by Hsp90-depletion. Instead, effects on the development are evident in both gonad arms. After Hsp90-depletion, changes can be observed in early embryos and adults containing fluorescence-tagged versions of SEPA-1, CAV-1 or PUD-1, all of which are downregulated after Hsp90-depletion. Our observations identify molecular events for Hsp90-RNAi induced phenotypes during development and immune responses, which may help to separately investigate independent Hsp90-influenced processes that are relevant during the nematode's life and development.

  12. Tumor PDT-associated immune response: relevance of sphingolipids

    Science.gov (United States)

    Korbelik, Mladen; Merchant, Soroush; Separovic, Duska M.

    2010-02-01

    Sphingolipids have become recognized as essential effector molecules in signal transduction with involvement in various aspects of cell function and death, immune response and cancer treatment response. Major representatives of sphingolipids family, ceramide, sphingosine and sphingosine-1-phosphate (S1P), have attracted interest in their relevance to tumor response to photodynamic therapy (PDT) because of their roles as enhancers of apoptosis, mediators of cell growth and vasculogenesis, and regulators of immune response. Our recent in vivo studies with mouse tumor models have confirmed that PDT treatment has a pronounced impact on sphingolipid profile in the targeted tumor and that significant advances in therapeutic gain with PDT can be attained by combining this modality with adjuvant treatment with ceramide analog LCL29.

  13. Innate immune responses against foot-and-mouth disease virus: current understanding and future directions.

    Science.gov (United States)

    Summerfield, Artur; Guzylack-Piriou, Laurence; Harwood, Lisa; McCullough, Kenneth C

    2009-03-15

    Foot-and-mouth disease (FMD) represents one of the most economically important diseases of farm animals. The basis for the threat caused by this virus is the high speed of replication, short incubation time, high contagiousness, and high mutation rate resulting in constant antigenic changes. Thus, although protective immune responses against FMD virus (FMDV) can be efficacious, the rapidity of virus replication and spread can outpace immune defence development and overrun the immune system. FMDV can also evade innate immune responses through its ability to shut down cellular protein synthesis, including IFN type I, in susceptible epithelial cells. This is important for virus evolution, as FMDV is quite sensitive to the action of IFN. Despite this, innate immune responses are probably induced in vivo, although detailed studies on this subject are lacking. Accordingly, this interaction of FMDV with cells of the innate immune system is of particular interest. Dendritic cells (DC) can be infected by FMDV and support viral RNA replication, and viral protein synthesis but the latter is inefficient or abortive, leading most often to incomplete replication and progeny virus release. As a result DC can be activated, and particularly in the case of plasmacytoid DC (pDC), this is manifest in terms of IFN-alpha release. Our current state of knowledge on innate immune responses induced by FMDV is still only at a relatively early stage of understanding. As we progress, the investigations in this area will help to improve the design of current vaccines and the development of novel control strategies against FMD.

  14. Memory B-Cell and Antibody Responses Induced by Plasmodium falciparum Sporozoite Immunization

    NARCIS (Netherlands)

    Nahrendorf, W.; Scholzen, A.; Bijker, E.M.; Teirlinck, A.C.; Bastiaens, G.J.H.; Schats, R.; Hermsen, C.C.; Visser, L.G.; Langhorne, J.; Sauerwein, R.W.

    2014-01-01

    BACKGROUND: Immunization of healthy volunteers during receipt of chemoprophylaxis with Plasmodium falciparum sporozoites (CPS-immunization) induces sterile protection from malaria. Antibody responses have long been known to contribute to naturally acquired immunity against malaria, but their

  15. Immunonutrition – the influence of early postoperative glutamine supplementation in enteral/parenteral nutrition on immune response, wound healing and length of hospital stay in multiple trauma patients and patients after extensive surgery

    Directory of Open Access Journals (Sweden)

    Lorenz, Kai J.

    2015-12-01

    Full Text Available Introduction: In the postoperative phase, the prognosis of multiple trauma patients with severe brain injuries as well as of patients with extensive head and neck surgery mainly depends on protein metabolism and the prevention of septic complications. Wound healing problems can also result in markedly longer stays in the intensive care unit and general wards. As a result, the immunostimulation of patients in the postoperative phase is expected to improve their immunological and overall health. Patients and methods: A study involving 15 patients with extensive ENT tumour surgery and 7 multiple-trauma patients investigated the effect of enteral glutamine supplementation on immune induction, wound healing and length of hospital stay. Half of the patients received a glutamine-supplemented diet. The control group received an isocaloric, isonitrogenous diet.Results: In summary, we found that total lymphocyte counts, the percentage of activated CD4+DR+ T helper lymphocytes, the in-vitro response of lymphocytes to mitogens, as well as IL-2 plasma levels normalised faster in patients who received glutamine-supplemented diets than in patients who received isocaloric, isonitrogenous diets and that these parameters were even above normal by the end of the second postoperative week.Summary: We believe that providing critically ill patients with a demand-oriented immunostimulating diet is fully justified as it reduces septic complications, accelerates wound healing, and shortens the length of ICU (intensive care unit and general ward stays.

  16. Immunonutrition - the influence of early postoperative glutamine supplementation in enteral/parenteral nutrition on immune response, wound healing and length of hospital stay in multiple trauma patients and patients after extensive surgery.

    Science.gov (United States)

    Lorenz, Kai J; Schallert, Reiner; Daniel, Volker

    2015-01-01

    In the postoperative phase, the prognosis of multiple trauma patients with severe brain injuries as well as of patients with extensive head and neck surgery mainly depends on protein metabolism and the prevention of septic complications. Wound healing problems can also result in markedly longer stays in the intensive care unit and general wards. As a result, the immunostimulation of patients in the postoperative phase is expected to improve their immunological and overall health. A study involving 15 patients with extensive ENT tumour surgery and 7 multiple-trauma patients investigated the effect of enteral glutamine supplementation on immune induction, wound healing and length of hospital stay. Half of the patients received a glutamine-supplemented diet. The control group received an isocaloric, isonitrogenous diet. In summary, we found that total lymphocyte counts, the percentage of activated CD4+DR+ T helper lymphocytes, the in-vitro response of lymphocytes to mitogens, as well as IL-2 plasma levels normalised faster in patients who received glutamine-supplemented diets than in patients who received isocaloric, isonitrogenous diets and that these parameters were even above normal by the end of the second postoperative week. We believe that providing critically ill patients with a demand-oriented immunostimulating diet is fully justified as it reduces septic complications, accelerates wound healing, and shortens the length of ICU (intensive care unit) and general ward stays.

  17. Evasion of Early Antiviral Responses by Herpes Simplex Viruses

    Science.gov (United States)

    Suazo, Paula A.; Ibañez, Francisco J.; Retamal-Díaz, Angello R.; Paz-Fiblas, Marysol V.; Bueno, Susan M.; Kalergis, Alexis M.; González, Pablo A.

    2015-01-01

    Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators, human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection, replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses (HSVs) must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade detection by host cells and the molecular mechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately leading to neuron infection and the establishment of latency. PMID:25918478

  18. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    International Nuclear Information System (INIS)

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-01-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen

  19. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    Science.gov (United States)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  20. Glycan-mediated modification of the immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Pedersen, Anders E; Wandall, Hans H

    2013-01-01

    Aberrantly glycosylated tumor antigens represent promising targets for the development of anti-cancer vaccines, yet how glycans influence immune responses is poorly understood. Recent studies have demonstrated that GalNAc-glycosylation enhances antigen uptake by dendritic cells as well as CD4(+) T......-cell and humoral responses, but prevents CD8(+) T-cell activation. Here, we briefly discuss the relevance of glycans as candidate targets for anti-cancer vaccines....

  1. T-cell activation and early gene response in dogs.

    Directory of Open Access Journals (Sweden)

    Sally-Anne Mortlock

    Full Text Available T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR, and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA (5μg/ml, including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2, early growth response 1 (EGR1, growth arrest and DNA damage-inducible gene (GADD45B, phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS, early growth response 2 (EGR2, hemogen (HEMGN, polo-like kinase 2 (PLK2 and polo-like kinase 3 (PLK3. Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in

  2. Stochastic responses of tumor–immune system with periodic treatment

    International Nuclear Information System (INIS)

    Li Dong-Xi; Li Ying

    2017-01-01

    We investigate the stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment. Firstly, a mathematical model describing the interaction between tumor cells and immune system under external fluctuations and periodic treatment is established based on the stochastic differential equation. Then, sufficient conditions for extinction and persistence of the tumor cells are derived by constructing Lyapunov functions and Ito’s formula. Finally, numerical simulations are introduced to illustrate and verify the results. The results of this work provide the theoretical basis for designing more effective and precise therapeutic strategies to eliminate cancer cells, especially for combining the immunotherapy and the traditional tools. (paper)

  3. Resiniferatoxin modulates the Th1 immune response and protects the host during intestinal nematode infection.

    Science.gov (United States)

    Muñoz-Carrillo, J L; Contreras-Cordero, J F; Muñoz-López, J L; Maldonado-Tapia, C H; Muñoz-Escobedo, J J; Moreno-García, M A

    2017-09-01

    In the early stage of the intestinal phase of Trichinella spiralis infection, the host triggers a Th1-type immune response with the aim of eliminating the parasite. However, this response damages the host which favours the survival of the parasite. In the search for novel pharmacological strategies that inhibit the Th1 immune response and assist the host against T. spiralis infection, a recent study showed that resiniferatoxin had anti-inflammatory activity contributed to the host in T. spiralis infection. In this study, we evaluated whether RTX modulates the host immune response through the inhibition of Th1 cytokines in the intestinal phase. In addition, it was determined whether the treatment with RTX affects the infectivity of T. spiralis-L1 and the development of the T. spiralis life cycle. Our results show that RTX decreased serum levels of IL-12, INF-γ, IL-1β, TNF-α and parasite burden on muscle tissue. It was observed that T. spiralis-L1 treated with RTX decreased their infectivity affecting the development of the T. spiralis life cycle in mouse. These results demonstrate that RTX is able to inhibit the production of Th1 cytokines, contributing to the defence against T. spiralis, which places it as a potential drug modulator of the immune response. © 2017 John Wiley & Sons Ltd.

  4. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Science.gov (United States)

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Immunization with avian metapneumovirus harboring chicken Fc induces higher immune responses.

    Science.gov (United States)

    Paudel, Sarita; Easwaran, Maheswaran; Jang, Hyun; Jung, Ho-Kyoung; Kim, Joo-Hun; Shin, Hyun-Jin

    2016-07-15

    In this study, we evaluated the immune responses of avian metapneumovirus harboring chicken Fc molecule. Stable Vero cells expressing chicken Fc chimera on its surface (Vero-cFc) were established, and we confirmed that aMPV grown in Vero-cFc incorporated host derived chimera Fc into the aMPV virions. Immunization of chicken with aMPV-cFc induced higher level of antibodies and inflammatory cytokines; (Interferon (IFN)-γ and Interleukin (IL)-1β) compared to those of aMPV. The increased levels of antibodies and inflammatory cytokines in chicken immunized with aMPV-cFc were statistically significantly (p<0.05) to that of aMPV and control. The aMPV-cFc group also generated the highest neutralizing antibody response. After challenges, chickens immunized with aMPV-cFc showed much less pathological signs in nasal turbinates and trachea so that we could confirm aMPV-cFc induced higher protection than that of aMPV. The greater ability of aMPV harboring chicken Fc to that of aMPV presented it as a possible vaccine candidate. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Inflammation and Immune Response in COPD: Where Do We Stand?

    Directory of Open Access Journals (Sweden)

    Nikoletta Rovina

    2013-01-01

    Full Text Available Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs, triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs. Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.

  7. Induction of cell-mediated immunity during early stages of infection with intracellular protozoa

    Directory of Open Access Journals (Sweden)

    Gazzinelli R.T.

    1998-01-01

    Full Text Available Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host. Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.

  8. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  9. Persistence of the immune response induced by BCG vaccination

    Directory of Open Access Journals (Sweden)

    Blitz Rose

    2008-01-01

    Full Text Available Abstract Background Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. Methods A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-γ response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD in a whole blood assay before, 3 months, 12 months (n = 148 and 3 years (n = 19 after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16. Results A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13% failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13% or 3 (3/19; 16% years. IFN-γ response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81% made a detectable IFN-γ response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38% matched unvaccinated controls (p = 0.012; teenagers vaccinated in infancy were 19 times more likely to make an IFN-γ response of > 500 pg/ml than unvaccinated teenagers. Conclusion BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the

  10. Exosome RNA Released by Hepatocytes Regulates Innate Immune Responses to Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Takahisa Kouwaki

    2016-08-01

    Full Text Available The innate immune system is essential for controlling viral infection. Hepatitis B virus (HBV persistently infects human hepatocytes and causes hepatocellular carcinoma. However, the innate immune response to HBV infection in vivo remains unclear. Using a tree shrew animal model, we showed that HBV infection induced hepatic interferon (IFN-γ expression during early infection. Our in vitro study demonstrated that hepatic NK cells produced IFN-γ in response to HBV only in the presence of hepatic F4/80+ cells. Moreover, extracellular vesicles released from HBV-infected hepatocytes contained viral nucleic acids and induced NKG2D ligand expression in macrophages by stimulating MyD88, TICAM-1, and MAVS-dependent pathways. In addition, depletion of exosomes from extracellular vesicles markedly reduced NKG2D ligand expression, suggesting the importance of exosomes for NK cell activation. In contrast, infection of hepatocytes with HBV increased immunoregulatory microRNA levels in extracellular vesicles and exosomes, which were transferred to macrophages, thereby suppressing IL-12p35 mRNA expression in macrophages to counteract the host innate immune response. IFN-γ increased the hepatic expression of DDX60 and augmented the DDX60-dependent degradation of cytoplasmic HBV RNA. Our results elucidated the crucial role of exosomes in antiviral innate immune response against HBV.

  11. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  12. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Radomska

    Full Text Available Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant activity of the vaccine. The antigen (20-40 μg was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.

  13. Immunity to rhabdoviruses in rainbow trout: the antibody response

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lapatra, S.E.

    1999-01-01

    to their occasional detrimental effect on rainbow trout farming. Research efforts have been focused on understanding the mechanisms involved in protective immunity. Several specific and nonspecific cellular and humoral parameters are believed to be involved, but only the antibody response has been characterised......, have demonstrated that rainbow trout can produce specific and highly functional antibodies that are able to neutralise virus pathogenicity in vitro as well as in vivo. The apparently more restricted antibody response to IHNV and VHSV antigens in fish compared to mammals could possibly be explained...... aspects of antibody response and antibody reactivity with IHNV and VHSV antigens....

  14. Early feeding and early life housing conditions influence the response towards a noninfectious lung challenge in broilers.

    Science.gov (United States)

    Simon, K; de Vries Reilingh, G; Bolhuis, J E; Kemp, B; Lammers, A

    2015-09-01

    Early life conditions such as feed and water availability immediately post hatch (PH) and housing conditions may influence immune development and therefore immune reactivity later in life. The current study addressed the consequences of a combination of these 2 early life conditions for immune reactivity, i.e., the specific antibody response towards a non-infectious lung challenge. Broiler chicks received feed and water either immediately p.h. or with a 72 h delay and were either reared in a floor or a cage system. At 4 weeks of age, chicks received either an intra-tracheally administered Escherichia coli lipopolysaccharide (LPS)/Human Serum Albumin (HUSA) challenge or a placebo, and antibody titers were measured up to day 14 after administration of the challenge. Chicks housed on the floor and which had a delayed access to feed p.h. showed the highest antibody titers against HuSA. These chicks also showed the strongest sickness response and poorest performance in response to the challenge, indicating that chicks with delayed access to feed might be more sensitive to an environment with higher antigenic pressure. In conclusion, results from the present study show that early life feeding strategy and housing conditions influence a chick's response to an immune challenge later in life. These 2 early life factors should therefore be taken into account when striving for a balance between disease resistance and performance in poultry. © 2015 Poultry Science Association Inc.

  15. Immune responses of Helicoverpa armigera to different kinds of pathogens

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fan

    2010-03-01

    Full Text Available Abstract Background Insects react against pathogens through innate immunity. The cotton bollworm Helicoverpa armigera (H. armigera is an important defoliator and an extremely destructive pest insect of many crops. The elucidation of the mechanism of the immune response of H. armigera to various pathogens can provide a theoretical basis for new approaches to biologically control this pest. Results Four kinds of pathogens Bacillus thuringiensis, Klebsiella pneumoniae, Candida albicans, and Autographa californica multiple nucleocapsid nucleopolyhedrovirus harbored green fluorescence protein and polyhedron (AcMNPV-GFP were used to challenge the insect. The cellular and humoral immune responses to the pathogens were analyzed in the challenged H. armigera. The results show that in the five kinds of haemocytes, only granulocytes phagocytized the Gram-negative and Gram-positive bacteria and fungi. All haemocytes can be infected by AcMNPV. Fourteen immune-related genes including pattern recognition receptors (PRRs such as peptidoglycan recognition proteins (HaPGRP and HaPGRP C and Gram-Negative Bacteria-Binding Protein (HaGNBP, and antimicrobial peptides (AMPs such as cecropin-1, 2 and 3 (HaCec-1, 2 and 3, lysozyme (HaLys, attacin (HaAtt, gallerimycin-like (HaGall, gloverin-like (HaGlo, moricin-like (HaMor, cobatoxin-like (HaCob, galiomicin-like (HaGali, and immune inducible protein (HaIip appeared in different expression profiles to different pathogen infections. The transcripts of 13 immune related genes (except HaPGRPC are obviously up-regulated by Gram-positive bacteria. HaCec-1 and 3, HaMor, HaAtt, HaLys, HaIip, HaPGRP and HaGNBP are greatly up-regulated after fungal infection. HaGNBP, HaCec-2, HaGall, HaGlo, HaMor, HaCob, HaGali obviously increased in Gram-negative bacterial infection. Only five genes, HaGNBP, HaCec-1, HaGali, HaGlo, and HaLys, are weakly up-regulated after viral infection. The AMP transcripts had higher expression levels than the

  16. CD28 Aptamers as Powerful Immune Response Modulators

    Directory of Open Access Journals (Sweden)

    Fernando Pastor

    2013-01-01

    Full Text Available CD28 is one of the main costimulatory receptors responsible for the proper activation of T lymphocytes. We have isolated two aptamers that bind to the CD28 receptor. As a monomer, one of them interfered with the binding of CD28 to its ligand (B7, precluding the costimulatory signal, whereas the other one was inactive. However, dimerization of any of the anti-CD28 aptamers was sufficient to provide an artificial costimulatory signal. No antibody has featured a dual function (i.e., the ability to work as agonist and antagonist to date. Two different agonistic structures were engineered for each anti-CD28 aptamer. One showed remarkably improved costimulatory properties, surpassing the agonistic effect of an anti-CD28 antibody. Moreover, we showed in vivo that the CD28 agonistic aptamer is capable of enhancing the cellular immune response against a lymphoma idiotype and of prolonging survival of mice which receive the aptamer together with an idiotype vaccine. The CD28 aptamers described in this work could be used to modulate the immune response either blocking the interaction with B7 or enhancing vaccine-induced immune responses in cancer immunotherapy.

  17. Tailoring the Immune Response via Customization of Pathogen Gene Expression.

    Science.gov (United States)

    Runco, Lisa M; Stauft, Charles B; Coleman, J Robert

    2014-01-01

    The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development.

  18. Inhibition of the immune response to experimental fresh osteoarticular allografts

    International Nuclear Information System (INIS)

    Rodrigo, J.J.; Schnaser, A.M.; Reynolds, H.M. Jr.; Biggart, J.M. III; Leathers, M.W.; Chism, S.E.; Thorson, E.; Grotz, T.; Yang, Q.M.

    1989-01-01

    The immune response to osteoarticular allografts is capable of destroying the cartilage--a tissue that has antigens on its cells identical to those on the bone and marrow cells. Osteoarticular allografts of the distal femur were performed in rats using various methods to attempt to temporarily inhibit the antibody response. The temporary systemic immunosuppressant regimens investigated were cyclophosphamide, azathioprine and prednisolone, cyclosporine A, and total lymphoid irradiation. The most successful appeared to be cyclosporine A, but significant side effects were observed. To specifically inhibit the immune response in the allograft antigens without systemically inhibiting the entire immune system, passive enhancement and preadministration of donor blood were tried. Neither was as effective as coating the donor bone with biodegradable cements, a method previously found to be successful. Cyclosporine A was investigated in dogs in a preliminary study of medial compartmental knee allografts and was found to be successful in inhibiting the antibody response and in producing a more successful graft; however, some significant side effects were similarly observed

  19. Protective immune responses during prepatency in goat kids experimentally infected with Eimeria ninakohlyakimovae.

    Science.gov (United States)

    Matos, L; Muñoz, M C; Molina, J M; Rodríguez, F; Perez, D; Lopez, A; Ferrer, O; Hermosilla, C; Taubert, A; Ruiz, A

    2017-08-15

    During the first schizogony, the goat coccidia Eimeria ninakohlyakimovae develops macroschizonts in lacteal duct endothelial cells, whose rupture leads to severe ileal damage and clinical signs during the prepatent period. The immune response elicited against early stages of the parasite development still requires to be investigated. In the present study we have evaluated immune reactions in goat kids primary- and challenged-infected with Eimeria ninakohlyakimovae, and sacrificed during prepatency (7days after challenge). The oocyst output during the primary infection, body weight and clinical condition of all the animals were examined and, at the end of the experiment, all the goat kids were euthanized and subjected to necropsy. Samples were taken from different sections of the ileum, colon and mesenteric lymph nodes (MLN) of primary- and challenged E. ninakohlyakimovae-infected animals. Intestinal leukocyte subpopulations were characterized in E. ninakohlyakimovae-infected mucosa and counts of lymphocytes, eosinophils, polymorphonuclear neutrophils (PMN), globular leukocytes and mast cells were recorded. Additionally, gene expression of caprine IL-2, IL-4, IL-10 and INFγ of ileal, colonic and MLN tissues were performed, as well as the immunohistochemical characterization of immune cells. The E. ninakohlyakimovae primary infection resulted in moderate to severe enteritis with different degrees of diarrhoea and was accompanied by high OPG counts and an increase of most immune cells analyzed when compared to uninfected control animals. Furthermore, eosinophil-, lymphocyte-, globular leukocyte- and mast cell-counts were significantly higher in the challenge group compared to the primary infected animals, whilst the opposite was true for PMN counts. The challenge infection was also associated with moderate increased levels of local mucosal IgA. Interestingly, the number of immature schizonts found at the ileal mucosa was statistically higher in the challenge infected

  20. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14 + monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4 + T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  1. An overview of HCV molecular biology, replication and immune responses

    Directory of Open Access Journals (Sweden)

    Nawaz Zafar

    2011-04-01

    Full Text Available Abstract Hepatitis C virus (HCV causes acute and chronic hepatitis which can eventually lead to permanent liver damage, hepatocellular carcinoma and death. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. In this review, we summarize molecular virology, replication and immune responses against HCV and discussed how HCV escape from adaptive and humoral immune responses. This advance knowledge will be helpful for development of vaccine against HCV and discovery of new medicines both from synthetic chemistry and natural sources.

  2. Immune responses of poultry to Newcastle disease virus.

    Science.gov (United States)

    Kapczynski, Darrell R; Afonso, Claudio L; Miller, Patti J

    2013-11-01

    Newcastle disease (ND) remains a constant threat to poultry producers worldwide, in spite of the availability and global employment of ND vaccinations since the 1950s. Strains of Newcastle disease virus (NDV) belong to the order Mononegavirales, family Paramyxoviridae, and genus Avulavirus, are contained in one serotype and are also known as avian paramyxovirus serotype-1 (APMV-1). They are pleomorphic in shape and are single-stranded, non-segmented, negative sense RNA viruses. The virus has been reported to infect most orders of birds and thus has a wide host range. Isolates are characterized by virulence in chickens and the presence of basic amino acids at the fusion protein cleavage site. Low virulent NDV typically produce subclinical disease with some morbidity, whereas virulent isolates can result in rapid, high mortality of birds. Virulent NDV are listed pathogens that require immediate notification to the Office of International Epizootics and outbreaks typically result in trade embargos. Protection against NDV is through the use of vaccines generated with low virulent NDV strains. Immunity is derived from neutralizing antibodies formed against the viral hemagglutinin and fusion glycoproteins, which are responsible for attachment and spread of the virus. However, new techniques and technologies have also allowed for more in depth analysis of the innate and cell-mediated immunity of poultry to NDV. Gene profiling experiments have led to the discovery of novel host genes modulated immediately after infection. Differences in virus virulence alter host gene response patterns have been demonstrated. Furthermore, the timing and contributions of cell-mediated immune responses appear to decrease disease and transmission potential. In view of recent reports of vaccine failure from many countries on the ability of classical NDV vaccines to stop spread of disease, renewed interest in a more complete understanding of the global immune response of poultry to NDV will be

  3. Enhancement of Immune Memory Responses to Respiratory Infection

    Science.gov (United States)

    2017-08-01

    Unlimited Distribution 13. SUPPLEMENTARY NOTES 14. ABSTRACT Maintenance of long - term immunological memory against pathogens is crucial for the rapid...highly expressed in memory B cells in mice, and Atg7 is required for maintenance of long - term memory B cells needed to protect against influenza...AWARD NUMBER: W81XWH-16-1-0361 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Farrah

  4. Mucosal Immune Regulation in Early Infancy: Monitoring and Intervention

    NARCIS (Netherlands)

    J. Hol (Jeroen)

    2011-01-01

    textabstractThe mucosal immune system of infants is dependent on the maintenance of mucosal homeostasis. Homeostasis results from the interaction between the mucosa and exogenous factors such as dietar and microbial agents. Induction and maintenance of homeostasis is a highly regluated system that

  5. The Influence of Maternal Prenatal and Early Childhood Nutrition and Maternal Prenatal Stress on Offspring Immune System Development and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Andrea Horvath Marques

    2013-07-01

    Full Text Available The developing immune system and central nervous system in the fetus and child are extremely sensitive to both exogenous and endogenous signals. Early immune system programming, leading to changes that can persist over the life course, has been suggested, and other evidence suggests that immune dysregulation in the early developing brain may play a role in neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. The timing of immune dysregulation with respect to gestational age and neurologic development of the fetus may shape the elicited response. This creates a possible sensitive window of programming or vulnerability. This review will explore the effects of prenatal maternal and infant nutritional status (from conception until early childhood as well as prenatal maternal stress and anxiety on early programming of immune function, and how this might influence neurodevelopment. We will describe fetal immune system development and maternal-fetal immune interactions to provide a better context for understanding the influence of nutrition and stress on the immune system. Finally, we will discuss the implications for prevention of neurodevelopmental disorders, with a focus on nutrition. Although certain micronutrient supplements have shown to both reduce the risk of neurodevelopmental disorders and enhance fetal immune development, we do not know whether their impact on immune development contributes to the preventive effect on neurodevelopmental disorders. Future studies are needed to elucidate this relationship, which may contribute to a better understanding of preventative mechanisms. Integrating studies of neurodevelopmental disorders and prenatal exposures with the simultaneous evaluation of neural and immune systems will shed light on mechanisms that underlie individual vulnerability or resilience to neurodevelopmental disorders and ultimately contribute to the development of primary preventions and early

  6. Effect of host nutrition on immunity and local immune response of rabbits to Obeliscoides cuniculi

    International Nuclear Information System (INIS)

    Sinski, E.; Bezubik, B.; Wedrychowicz, H.; Szklarczyk, J.; Doligalska, M.

    1988-01-01

    In a series of experiments carried out on young and adult rabbits the effect of isocaloric low protein diets containing 4% or 8% protein compared with a diet containing 21% protein on Obeliscoides cuniculi infection was studied. The pathogenesis, resistance and local immunity were assessed after single infections with 10,000 larvae or reinfection with 5000 larvae. Live weight gain was reduced in young and adult rabbits fed the low protein diets, but the establishment of parasites was not substantially influenced by protein deprivation. However, development of worms in the histotrophic phase and parasite fecundity were impaired in association with the low protein diet. Moreover, mild anaemia as well as changes in the mucosal immune response as a result of infection were related to the level of dietary protein. (author). 30 refs, 6 figs, 5 tabs

  7. Cancer Immunotherapy and the Immune Response in Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Christoph Renner

    2018-06-01

    Full Text Available Patients with classical Hodgkin lymphoma (cHL have an impaired cellular immune response as indicated by an anergic reaction against standard recall antigens and a diminished rejection reaction of allogeneic skin transplant. This clinical observation can be linked to the histopathological feature of cHL since the typical pattern of a cHL manifestation is characterized by sparse large CD30+ tumor-infiltrating Hodgkin–Reed–Sternberg (HRS cells that are surrounded by a dense inflammatory immune microenvironment with mixed cellularity. Despite this extensive polymorphous inflammatory infiltrate, there is only a poor antitumor immune response seen to the neoplastic HRS cells. This is primarily mediated by a high expression of PD-L1 and PD-L2 ligands on the HRS cell surface which in turn antagonizes the activity of programmed death-1 (PD-1 antigen-positive T cells. PD-L1/L2 overexpression is caused by gene amplification at the 9p24.1 locus and/or latent Epstein–Barr virus infection present in around 40% of cHL cases. The blockade of the PD-L1/L2–PD-1 pathway by monoclonal antibodies can restore local T cell activity and leads to impressive tumor responses, some of which are long lasting and eventually curative. Another feature of HRS cells is the high CD30 antigen expression. Monoclonal antibody technology allowed for the successful development of CD30-specific immunotoxins, bispecific antibodies, and reprogrammed autologous T cells with the first one already approved for the treatment of high risk or relapsed cHL. Altogether, the discovery of the described pathomechanism of immune suppression and the identification of preferential target antigens has rendered cHL to be a prime subject for the successful development of new immunotherapeutic approaches.

  8. Alterations in immune responses in prenatally irradiated dogs

    International Nuclear Information System (INIS)

    Nold, J.B.; Benjamin, S.A.; Miller, G.K.

    1988-01-01

    Immunologic responses were studied in beagle dogs following prenatal (35 days gestation) irradiation to evaluate the effects of ionizing radiation on the developing immune system. Each dog received 1.5 Gy 60 Co gamma irradiation or sham irradiation. Prenatally irradiated dogs exhibited a significant reduction in primary humoral antibody responses to inoculated sheep red blood cells, a T-dependent antigen, and a concurrent decrease in T-helper lymphocyte subpopulations in the peripheral blood at 3 to 4 months of age. Similarly, irradiated fetuses have been shown to have defects in epitheliostromal development of the thymus. It is suggested that the postnatal immunologic deficits may relate to the prenatal thymic injury

  9. Effects of anti-schistosomal chemotherapy on immune responses, protection and immunity. II. Concomitant immunity and immunization with irradiated cercariae

    International Nuclear Information System (INIS)

    Tawfik, A.F.; Colley, D.G.

    1986-01-01

    Resistance of mice to challenge infections of Schistosoma mansoni was evaluated before and after elimination of their primary, established S. mansoni infections with the chemotherapeutic drug praziquantel. Mice treated after either 10 or 20 weeks of primary infection were challenged 6 or 10 weeks after treatment. Mice infected for for 10 weeks prior to treatment expressed progressively less resistance 6 and 10 weeks after treatment. By 10 weeks after treatment significant levels of protection were no longer observed. Resistance waned more slowly if mice were treated 20 weeks after infection, and there was still significant expression of resistance to challenge 10 weeks after treatment. A separate set of experiments evaluated the use of highly irradiated cercariae as a vaccine in mice that had been previously infected with S. mansoni and cured with praziquantel. It was observed that effective immunizations were possible in previously infected mice. These studies demonstrate that established resistance waned after treatment and the rate of loss of protection was dependent upon the duration of infection prior to treatment. Furthermore, the irradiated cercarial vaccine studies indicate that in the murine model induction of immunological resistance was feasible following chemotherapeutic treatment of infected populations

  10. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis.

    Directory of Open Access Journals (Sweden)

    Joseph N Jarvis

    2015-04-01

    Full Text Available Understanding the host immune response during cryptococcal meningitis (CM is of critical importance for the development of immunomodulatory therapies. We profiled the cerebrospinal fluid (CSF immune-response in ninety patients with HIV-associated CM, and examined associations between immune phenotype and clinical outcome. CSF cytokine, chemokine, and macrophage activation marker concentrations were assayed at disease presentation, and associations between these parameters and microbiological and clinical outcomes were examined using principal component analysis (PCA. PCA demonstrated a co-correlated CSF cytokine and chemokine response consisting primarily of Th1, Th2, and Th17-type cytokines. The presence of this CSF cytokine response was associated with evidence of increased macrophage activation, more rapid clearance of Cryptococci from CSF, and survival at 2 weeks. The key components of this protective immune-response were interleukin (IL-6 and interferon-γ, IL-4, IL-10 and IL-17 levels also made a modest positive contribution to the PC1 score. A second component of co-correlated chemokines was identified by PCA, consisting primarily of monocyte chemotactic protein-1 (MCP-1 and macrophage inflammatory protein-1α (MIP-1α. High CSF chemokine concentrations were associated with low peripheral CD4 cell counts and CSF lymphocyte counts and were predictive of immune reconstitution inflammatory syndrome (IRIS. In conclusion CSF cytokine and chemokine profiles predict risk of early mortality and IRIS in HIV-associated CM. We speculate that the presence of even minimal Cryptococcus-specific Th1-type CD4+ T-cell responses lead to increased recruitment of circulating lymphocytes and monocytes into the central nervous system (CNS, more effective activation of CNS macrophages and microglial cells, and faster organism clearance; while high CNS chemokine levels may predispose to over recruitment or inappropriate recruitment of immune cells to the CNS and

  11. Multi-scale modeling of the CD8 immune response

    Energy Technology Data Exchange (ETDEWEB)

    Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Adimy, Mostafa, E-mail: mostafa.adimy@inria.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France); Crauste, Fabien, E-mail: crauste@math.univ-lyon1.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France)

    2016-06-08

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  12. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis

    Directory of Open Access Journals (Sweden)

    Horacio Bach

    2018-01-01

    Full Text Available To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP, the causative agent of Johne’s disease, as the serine/threonine protein kinase G (PknG. In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.

  13. Hypocretin/orexin loss changes the hypothalamic immune response.

    Science.gov (United States)

    Tanaka, Susumu; Takizawa, Nae; Honda, Yoshiko; Koike, Taro; Oe, Souichi; Toyoda, Hiromi; Kodama, Tohru; Yamada, Hisao

    2016-10-01

    Hypocretin, also known as orexin, maintains the vigilance state and regulates various physiological processes, such as arousal, sleep, food intake, energy expenditure, and reward. Previously, we found that when wild-type mice and hypocretin/ataxin-3 littermates (which are depleted of hypothalamic hypocretin-expressing neurons postnatally) were administered lipopolysaccharide (LPS), the two genotypes exhibited significant differences in their sleep/wake cycle, including differences in the degree of increase in sleep periods and in recovery from sickness behaviour. In the present study, we examined changes in the hypothalamic vigilance system and in the hypothalamic expression of inflammatory factors in response to LPS in hypocretin/ataxin-3 mice. Peripheral immune challenge with LPS affected the hypothalamic immune response and vigilance states. This response was altered by the loss of hypocretin. Hypocretin expression was inhibited after LPS injection in both hypocretin/ataxin-3 mice and their wild-type littermates, but expression was completely abolished only in hypocretin/ataxin-3 mice. Increases in the number of histidine decarboxylase (HDC)-positive cells and in Hdc mRNA expression were found in hypocretin/ataxin-3 mice, and this increase was suppressed by LPS. Hypocretin loss did not impact the change in expression of hypothalamic inflammatory factors in response to LPS, except for interferon gamma and colony stimulating factor 3. The number of c-Fos-positive/HDC-positive cells in hypocretin/ataxin-3 mice administered LPS injections was elevated, even during the rest period, in all areas, suggesting that there is an increase in the activity of histaminergic neurons in hypocretin/ataxin-3 mice following LPS injection. Taken together, our results suggest a novel role for hypocretin in the hypothalamic response to peripheral immune challenge. Our findings contribute to the understanding of the pathophysiology of narcolepsy. Copyright © 2016 Elsevier Inc. All

  14. SHORT-TERM STRESS ENHANCES CELLULAR IMMUNITY AND INCREASES EARLY RESISTANCE TO SQUAMOUS CELL CARCINOMA

    OpenAIRE

    Dhabhar, Firdaus S.; Saul, Alison N.; Daugherty, Christine; Holmes, Tyson H.; Bouley, Donna M.; Oberyszyn, Tatiana M.

    2009-01-01

    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposu...

  15. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  16. Redox rhythm reinforces the circadian clock to gate immune response.

    Science.gov (United States)

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  17. Mucosal Immune Regulation in Early Infancy: Monitoring and Intervention

    OpenAIRE

    Hol, Jeroen

    2011-01-01

    textabstractThe mucosal immune system of infants is dependent on the maintenance of mucosal homeostasis. Homeostasis results from the interaction between the mucosa and exogenous factors such as dietar and microbial agents. Induction and maintenance of homeostasis is a highly regluated system that involves different cell types. If homeostasis is lost this may lead to disease, including allergy and chronic intestinal inflammation. In this thesis we observed whether loss of homeostasis leading ...

  18. The immune response of horses to tetanus toxoid.

    Science.gov (United States)

    Jansen, B C; Knoetze, P C

    1979-12-01

    An intramuscular injection of 8-16 Lf tetanus toxoid in water-in-oil emulsion protected adult horses against tetanus for at least 128 weeks. A booster dose of 8 Lf toxoid in aqueous solution protected them for a further period of at least 3 1/2 years. Colostral immunity protected foals for at least 10 weeks. An intramuscular injection of 8 Lf toxoid in water-in-oil emulsion given to foals from immune dams when they were 10-18 weeks old did not elicit any antibody response. They did respond, however, to a booster injection of 8 Lf toxoid in aqueous solution given 12 weeks after the first dose. New-born foals were shown to be inherently unable to respond to an injection of tetanus toxoid.

  19. Impact of Bee Venom Enzymes on Diseases and Immune Responses.

    Science.gov (United States)

    Hossen, Md Sakib; Shapla, Ummay Mahfuza; Gan, Siew Hua; Khalil, Md Ibrahim

    2016-12-27

    Bee venom (BV) is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2), phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.

  20. Impact of Bee Venom Enzymes on Diseases and Immune Responses

    Directory of Open Access Journals (Sweden)

    Md. Sakib Hossen

    2016-12-01

    Full Text Available Bee venom (BV is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2, phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.

  1. Danger Signals Activating the Immune Response after Trauma

    Directory of Open Access Journals (Sweden)

    Stefanie Hirsiger

    2012-01-01

    Full Text Available Sterile injury can cause a systemic inflammatory response syndrome (SIRS that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins as well as exogenous pathogen-associated molecular patterns (PAMPs play a crucial role in the initiation of the immune response. With popularization of the “danger theory,” numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1, interleukin-1α (IL-1α, and interleukin-33 (IL-33 as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.

  2. Glucosinolate metabolites required for an Arabidopsis innate immune response.

    Science.gov (United States)

    Clay, Nicole K; Adio, Adewale M; Denoux, Carine; Jander, Georg; Ausubel, Frederick M

    2009-01-02

    The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.

  3. Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response*

    Science.gov (United States)

    Clay, Nicole K.; Adio, Adewale M.; Denoux, Carine; Jander, Georg; Ausubel, Frederick M.

    2008-01-01

    Summary The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity, and is defined in part by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens. PMID:19095898

  4. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  5. Murine immune responses to oral BCG immunization in the presence or absence of prior BCG sensitization.

    Science.gov (United States)

    Cross, Martin L; Lambeth, Matthew R; Aldwell, Frank E

    2010-02-01

    Oral delivery of live Mycobacterium bovis BCG in a lipid matrix invokes cell-mediated immune (CMI) responses in mice and consequent protection against pulmonary challenge with virulent mycobacteria. To investigate the influence of prior BCG sensitization on oral vaccine efficacy, we assessed CMI responses and BCG colonization of the alimentary tract lymphatics 5 months after oral vaccination, in both previously naive mice and in mice that had been sensitized to BCG by injection 6 months previously. CMI responses did not differ significantly between mice that received subcutaneous BCG followed by oral BCG and those that received either injected or oral BCG alone. In vivo BCG colonization was predominant in the mesenteric lymph nodes after oral vaccination; this colonizing ability was not influenced by prior BCG sensitization. From this murine model study, we conclude that although prior parenteral-route BCG sensitization does not detrimentally affect BCG colonization after oral vaccination, there is no significant immune-boosting effect of the oral vaccine either.

  6. The Lung Immune Response to Nontypeable Haemophilus influenzae (Lung Immunity to NTHi

    Directory of Open Access Journals (Sweden)

    Paul T. King

    2015-01-01

    Full Text Available Haemophilus influenzae is divided into typeable or nontypeable strains based on the presence or absence of a polysaccharide capsule. The typeable strains (such as type b are an important cause of systemic infection, whilst the nontypeable strains (designated as NTHi are predominantly respiratory mucosal pathogens. NTHi is present as part of the normal microbiome in the nasopharynx, from where it may spread down to the lower respiratory tract. In this context it is no longer a commensal and becomes an important respiratory pathogen associated with a range of common conditions including bronchitis, bronchiectasis, pneumonia, and particularly chronic obstructive pulmonary disease. NTHi induces a strong inflammatory response in the respiratory tract with activation of immune responses, which often fail to clear the bacteria from the lung. This results in recurrent/persistent infection and chronic inflammation with consequent lung pathology. This review will summarise the current literature about the lung immune response to nontypeable Haemophilus influenzae, a topic that has important implications for patient management.

  7. [Inflammasome and its role in immunological and inflammatory response at early stage of burns].

    Science.gov (United States)

    Zhang, Fang; Li, Jiahui; Xia, Zhaofan

    2014-06-01

    Inflammasomes are large multi-protein complexes that serve as a platform for caspase-1 activation, and this process induces subsequent maturation and secretion of the proinflammatory cytokines IL-1β and IL-18, as well as pyroptosis. As an important component of the innate immune system, early activation of inflammasomes in a variety of immune cell subsets can mediate inflammatory response and immunological conditions after burn injury. Here, we review the current knowledge of inflammasomes and its role in immunological and inflammatory response at the early stage of burn injury.

  8. Transcriptomic Study on Ovine Immune Responses to Fasciola hepatica Infection.

    Directory of Open Access Journals (Sweden)

    Yan Fu

    2016-09-01

    Full Text Available Fasciola hepatica is not only responsible for major economic losses in livestock farming, but is also a major food-borne zoonotic agent, with 180 million people being at risk of infection worldwide. This parasite is sophisticated in manipulating the hosts' immune system to benefit its own survival. A better understanding of the mechanisms underpinning this immunomodulation is crucial for the development of control strategies such as vaccines.This in vivo study investigated the global gene expression changes of ovine peripheral blood mononuclear cells (PBMC response to both acute & chronic infection of F. hepatica, and revealed 6490 and 2364 differential expressed genes (DEGS, respectively. Several transcriptional regulators were predicted to be significantly inhibited (e.g. IL12 and IL18 or activated (e.g. miR155-5p in PBMC during infection. Ingenuity Pathway Analysis highlighted a series of immune-associated pathways involved in the response to infection, including 'Transforming Growth Factor Beta (TGFβ signaling', 'Production of Nitric Oxide in Macrophages', 'Toll-like Receptor (TLRs Signaling', 'Death Receptor Signaling' and 'IL17 Signaling'. We hypothesize that activation of pathways relevant to fibrosis in ovine chronic infection, may differ from those seen in cattle. Potential mechanisms behind immunomodulation in F. hepatica infection are a discussed.In conclusion, the present study performed global transcriptomic analysis of ovine PBMC, the primary innate/adaptive immune cells, in response to infection with F. hepatica, using deep-sequencing (RNAseq. This dataset provides novel information pertinent to understanding of the pathological processes in fasciolosis, as well as a base from which to further refine development of vaccines.

  9. Immune Response to Sipuleucel-T in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    David I. Quinn

    2012-04-01

    Full Text Available Historically, chemotherapy has remained the most commonly utilized therapy in patients with metastatic cancers. In prostate cancer, chemotherapy has been reserved for patients whose metastatic disease becomes resistant to first line castration or androgen deprivation. While chemotherapy palliates, decreases serum prostate specific antigen and improves survival, it is associated with significant side effects and is only suitable for approximately 60% of patients with castrate-resistant prostate cancer. On that basis, exploration of other therapeutic options such as active secondary hormone therapy, bone targeted treatments and immunotherapy are important. Until recently, immunotherapy has had no role in the treatment of solid malignancies aside from renal cancer and melanoma. The FDA-approved autologous cellular immunotherapy sipuleucel-T has demonstrated efficacy in improving overall survival in patients with metastatic castrate-resistant prostate cancer in randomized clinical trials. The proposed mechanism of action is reliant on activating the patients’ own antigen presenting cells (APCs to prostatic acid phosphatase (PAP fused with granulocyte-macrophage colony stimulating factor (GM-CSF and subsequent triggered T-cell response to PAP on the surface of prostate cancer cells in the patients body. Despite significant prolongation of survival in Phase III trials, the challenge to health care providers remains the dissociation between objective changes in serum PSA or on imaging studies after sipleucel-T and survival benefit. On that basis there is an unmet need for markers of outcome and a quest to identify immunologic or clinical surrogates to fill this role. This review focuses on the impact of sipuleucel-T on the immune system, the T and B cells, and their responses to relevant antigens and prostate cancer. Other therapeutic modalities such as chemotherapy, corticosteroids and GM-CSF and host factors can also affect immune response. The

  10. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  11. Effect of thoracoscopic esophagus cancer surgery on postoperative incision pain as well as non-specific and specific immune response

    Directory of Open Access Journals (Sweden)

    Jin-Long Wu1

    2017-04-01

    Full Text Available Objective: To explore the effect of thoracoscopic esophagus cancer surgery on postoperative incision pain as well as non-specific and specific immune response. Methods: 56 patients with esophageal cancer who accepted surgical treatment in our hospital between March 2011 and February 2016 were collected, the operation methods and related laboratory tests were reviewed, and then they were divided into the thoracoscope group (n=27 who accepted thoracoscopic surgery and the open surgery group (n=29 who accepted traditional thoracotomy. Before operation and 1 d after operation, immune scatter turbidimetry was used to detect serum levels of pain mediators, and flow cytometer was used to detect the levels of nonspecific immune indexes and specific immune indexes. Results: Before operation, the differences in serum pain mediators as well as nonspecific immune response and specific immune response indexes were not statistically significant between two groups of patients (P>0.05. 1 d after operation, serum pain mediators 5-HT, K+ and NE levels of thoracoscope group were lower than those of open surgery group (P<0.05; nonspecific immune response indexes NK cell as well as C3 and C4 levels in peripheral blood of thoracoscope group were significantly higher than those of open surgery group (P<0.05; specific immune response indexes CD4+, CD4+/CD8+, IgA and IgG levels in peripheral blood of thoracoscope group were significantly higher than those of open surgery group (P<0.05. Conclusion: Thoracoscopic esophagus cancer surgery causes less damage, has lighter inhibition on the immune response system, and is an ideal operation method for patients with early middle esophagus cancer.

  12. PERIPHERAL IMMUNE SYSTEM SUPPRESSION IN EARLY ABSTINENT ALCOHOL DEPENDENT INDIVIDUALS: LINKS TO STRESS AND CUE-RELATED CRAVING

    Science.gov (United States)

    Fox, Helen C; Milivojevic, Verica; Angarita, Gustavo A; Stowe, Raymond; Sinha, Rajita

    2017-01-01

    Background Peripheral immune system cytokines may play an integral role in underlying sensitized stress response and alcohol craving during early withdrawal. To date, the nature of these immune changes during early abstinence have not been examined. Methods Thirty-nine early abstinent, treatment-seeking alcohol dependent individuals and 46 socially drinking controls were exposed to three guided imageries: stress, alcohol cue and neutral. These were presented randomly across consecutive days. Plasma measures of tumor necrosis factor alpha (TNFα), tumor necrosis factor receptor 1 (TNFR1), interleukin-6 (IL-6), and interleukin-10 (IL-10), were collected at baseline, immediately after imagery and at various recovery time-points. Ratings of alcohol craving, negative mood and anxiety were also obtained at the same time-points. Results The alcohol group demonstrated decreased basal IL-10 compared with controls particularly following exposure to alcohol cue. They also showed a dampened TNFα and TNFR1 response to stress and cue, respectively, and a generalized suppression of IL-6. In the alcohol group, these immune system adaptations occurred alongside significant elevations in anxiety, negative mood and alcohol craving. Conclusions Findings demonstrate that broad immuno-suppression is still observed in alcohol dependent individuals after three weeks of abstinence and may be linked to motivation for alcohol. PMID:28675117

  13. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    Science.gov (United States)

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  14. Early Microbes Modify Immune System Development and Metabolic Homeostasis-The "Restaurant" Hypothesis Revisited.

    Science.gov (United States)

    Nash, Michael J; Frank, Daniel N; Friedman, Jacob E

    2017-01-01

    The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the "Restaurant" hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD). This review will focus on factors during pregnancy and the neonatal period that impact a neonate's gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research.

  15. Early Microbes Modify Immune System Development and Metabolic Homeostasis—The “Restaurant” Hypothesis Revisited

    Directory of Open Access Journals (Sweden)

    Michael J. Nash

    2017-12-01

    Full Text Available The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the “Restaurant” hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD. This review will focus on factors during pregnancy and the neonatal period that impact a neonate’s gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research.

  16. Early Microbes Modify Immune System Development and Metabolic Homeostasis—The “Restaurant” Hypothesis Revisited

    Science.gov (United States)

    Nash, Michael J.; Frank, Daniel N.; Friedman, Jacob E.

    2017-01-01

    The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the “Restaurant” hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD). This review will focus on factors during pregnancy and the neonatal period that impact a neonate’s gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research. PMID:29326657

  17. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter

    2009-01-01

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper...

  18. Adoptive transfer of natural antibodies to non-immunized chickens affects subsequent antigen-specific humoral and cellular immune responses

    NARCIS (Netherlands)

    Lammers, A.; Klomp, M.E.V.; Nieuwland, M.G.B.; Savelkoul, H.F.J.; Parmentier, H.K.

    2004-01-01

    To determine a regulatory function of natural antibodies in the immune response of chickens, pooled plasma obtained from non-immunized (naive) 15 months old hens was subjected to keyhole limpet hemocyanin (KLH) antigen-affinity chromatography. Purified KLH-binding antibodies were adoptively

  19. Feliform carnivores have a distinguished constitutive innate immune response

    Directory of Open Access Journals (Sweden)

    Sonja K. Heinrich

    2016-05-01

    Full Text Available Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas, the brown hyena (Hyena brunnea, the caracal (Caracal caracal, the cheetah (Acinonyx jubatus, the leopard (Panthera pardus and the lion (Panthera leo using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  20. Yersinia type III effectors perturb host innate immune responses

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  1. [Comparison of immune response after oral and intranasal immunization with recombinant Lactobacillus casei expressing ETEC F41].

    Science.gov (United States)

    Liu, Jiankui; Wei, Chunhua; Hou, Xilin; Wang, Guihua; Yu, Liyun

    2009-04-01

    In order to represent a promising strategy for mucosal vaccination, oral or intranasal immunization of Specific Pathogen Free (SPF) BALB/c mice were performed. The mucosal immunity, systemic immune and protective immune responses were compared after immunization with the recombinant Lactobacillus casei (L. casei) harboring enterotoxigenic Escherichia coli (ETEC) F41. The recombinant fusion proteins were detected by Western blot. Surface localization of the fusion protein was verified by immunofluorescence microscopy and flow cytometry. Six-week-old female SPF BALB/c mice (160 heads) were divided into 4 groups for immunization and control. Oral and intranasal immunization of mice was performed with the recombinant strain L. casei harboring pLA-F41 or pLA. For oral immunization, the mice were inoculated daily on days 0 to 4, 7 to 11, 21 to 25, and 49 to 53. A lighter schedule was used for nasal immunization (days 0 to 2, 7 to 9, 21 and 49). Specific anti-F41 IgG antibody in the serum and specific anti-F41 secret immunoglobulin A (sIgA) antibody in the lung, intestines, vagina fluid and feces of mice were detected by indirect ELISA. The mice orally or intranasally immunized with pLA-F41/L. casei and pLA/IL. casei were challenged with standard-type ETEC F41 (C83919) (2 x 10(3) LD50). Mice immunized with pLA-F41/L. casei could produce remarkable anti-F41 antibody level. More than 90% survived in oral immunization group whereas more than 85% survived in intranasal immunization group after challenged with C83919, all dead in the control group. Ninety percent of the pups survived in oral immunization group whereas 80% survived in intranasal immunization group after challenged with C83919, but only a 5% survival rate for pups that were either immunized with a control pLA vector or unimmunized. Oral or intranasal immunization with recombinant L. casei displaying ETEC F41 antigens on the surface induced effective and similar systemic and mucosal immune responses against the

  2. Serum and mucosal immune responses to an inactivated influenza virus vaccine induced by epidermal powder immunization.

    Science.gov (United States)

    Chen, D; Periwal, S B; Larrivee, K; Zuleger, C; Erickson, C A; Endres, R L; Payne, L G

    2001-09-01

    Both circulating and mucosal antibodies are considered important for protection against infection by influenza virus in humans and animals. However, current inactivated vaccines administered by intramuscular injection using a syringe and needle elicit primarily circulating antibodies. In this study, we report that epidermal powder immunization (EPI) via a unique powder delivery system elicits both serum and mucosal antibodies to an inactivated influenza virus vaccine. Serum antibody responses to influenza vaccine following EPI were enhanced by codelivery of cholera toxin (CT), a synthetic oligodeoxynucleotide containing immunostimulatory CpG motifs (CpG DNA), or the combination of these two adjuvants. In addition, secretory immunoglobulin A (sIgA) antibodies were detected in the saliva and mucosal lavages of the small intestine, trachea, and vaginal tract, although the titers were much lower than the IgG titers. The local origin of the sIgA antibodies was further shown by measuring antibodies released from cultured tracheal and small intestinal fragments and by detecting antigen-specific IgA-secreting cells in the lamina propria using ELISPOT assays. EPI with a single dose of influenza vaccine containing CT or CT and CpG DNA conferred complete protection against lethal challenges with an influenza virus isolated 30 years ago, whereas a prime and boost immunizations were required for protection in the absence of an adjuvant. The ability to elicit augmented circulating antibody and mucosal antibody responses makes EPI a promising alternative to needle injection for administering vaccines against influenza and other diseases.

  3. Immune responses to implanted human collagen graft in rats

    International Nuclear Information System (INIS)

    Quteish, D.; Dolby, A.E.

    1991-01-01

    Immunity to collagen implants may be mediated by cellular and humoral immune responses. To examine the possibility of such immunological reactivity and crossreactivity to collagen, 39 Sprague-Dawley rats (female, 10 weeks old, approximately 250 g wt) were implanted subcutaneously at thigh sites with crosslinked, freeze-dried human placental type I collagen grafts (4x4x2 mm) which had been irradiated (520 Gray) or left untreated. Blood was obtained by intracardiac sampling prior to implantation or from normal rats, and at various times afterwards when the animals were sacrificed. The sera from these animals were examined for circulating antibodies to human, bovine and rat tail (type I) collagens by enzyme-linked immunosorbent assay (ELISA). Also, the lymphoblastogenic responses of spleen lymphocytes from the irradiated collagen-implanted animals were assessed in culture by measuring thymidine uptake with autologous and normal rat sera in the presence of human bovine type I collagens. Implantation of the irradiated and non-irradiated collagen graft in rats led to a significant increase in the level of circulating antibodies to human collagen. Also antibody to bovine and rat tail collagens was detectable in the animals implanted with irradiated collagen grafts but at a lower level than the human collagen. There was a raised lymphoblastogenic response to both human and bovine collagens. The antibody level and lymphoblastogenesis to the tested collagens gradually decreased towards the end of the post-implantation period. (author)

  4. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Science.gov (United States)

    Kong, Ping; McDowell, John M; Hong, Chuanxue

    2017-01-01

    Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF) and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA) and jasmonic acid (JA): eds16 (enhanced disease susceptibility16), pad4 (phytoalexin deficient4), and npr1 (nonexpressor of pathogenesis-related genes1). Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  5. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ping Kong

    Full Text Available Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA and jasmonic acid (JA: eds16 (enhanced disease susceptibility16, pad4 (phytoalexin deficient4, and npr1 (nonexpressor of pathogenesis-related genes1. Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  6. Innate lymphoid cells and their role in immune response regulation

    Directory of Open Access Journals (Sweden)

    Bibiana Patricia Ruiz-Sánchez

    2017-10-01

    Full Text Available Innate lymphoid cells (ILCs are lymphocytes lacking antigen recognition receptors and become activated in response to cytokines and through microbe-associated molecular pattern (MAMP receptors. ILCs are found mainly in mucosal tissues and participate in the immune response against infections and in chronic inflammatory conditions. ILCs are divided in ILC-1, ILC-2 and ILC-3, and these cells have analogue functions to those of immune adaptive response lymphocytes Th1, Th2 and Th17. ILC-1 express T-bet, produce IFNγ, protect against infections with intracellular microorganisms and are related to inflammatory bowel disease immunopathology. ILC-2 express GATA3, produce IL-4, IL-5, IL-13 and amphiregulin, protect against parasitic infections and related to allergy and obesity immunopathology. ILC-3 express ROR(γt, produce IL-17 and IL-22, protect against fungal infections and contribute to tolerance to intestinal microbiota and intestinal repair. They are related to inflammatory bowel disease and psoriasis immunopathology. In general terms, ILCs maintain homeostasis and coadjuvate in the protection against infections.

  7. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization.

    Science.gov (United States)

    Vennema, H; de Groot, R J; Harbour, D A; Dalderup, M; Gruffydd-Jones, T; Horzinek, M C; Spaan, W J

    1990-01-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis was recombined into the genome of vaccinia virus. The recombinant induced spike-protein-specific, in vitro neutralizing antibodies in mice. When kittens were immunized with the recombinant, low titers of neutralizing antibodies were obtained. After challenge with feline infectious peritonitis virus, these animals succumbed earlier than did the control group immunized with wild-type vaccinia virus (early death syndrome). Images PMID:2154621

  8. Immune response to mycobacterial infection: lessons from flow cytometry.

    Science.gov (United States)

    Rovina, Nikoletta; Panagiotou, Marios; Pontikis, Konstantinos; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Koutsoukou, Antonia

    2013-01-01

    Detecting and treating active and latent tuberculosis are pivotal elements for effective infection control; yet, due to their significant inherent limitations, the diagnostic means for these two stages of tuberculosis (TB) to date remain suboptimal. This paper reviews the current diagnostic tools for mycobacterial infection and focuses on the application of flow cytometry as a promising method for rapid and reliable diagnosis of mycobacterial infection as well as discrimination between active and latent TB: it summarizes diagnostic biomarkers distinguishing the two states of infection and also features of the distinct immune response against Mycobacterium tuberculosis (Mtb) at certain stages of infection as revealed by flow cytometry to date.

  9. Immune Response to Mycobacterial Infection: Lessons from Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Nikoletta Rovina

    2013-01-01

    Full Text Available Detecting and treating active and latent tuberculosis are pivotal elements for effective infection control; yet, due to their significant inherent limitations, the diagnostic means for these two stages of tuberculosis (TB to date remain suboptimal. This paper reviews the current diagnostic tools for mycobacterial infection and focuses on the application of flow cytometry as a promising method for rapid and reliable diagnosis of mycobacterial infection as well as discrimination between active and latent TB: it summarizes diagnostic biomarkers distinguishing the two states of infection and also features of the distinct immune response against Mycobacterium tuberculosis (Mtb at certain stages of infection as revealed by flow cytometry to date.

  10. Immune response and histology of humoral rejection in kidney transplantation.

    Science.gov (United States)

    González-Molina, Miguel; Ruiz-Esteban, Pedro; Caballero, Abelardo; Burgos, Dolores; Cabello, Mercedes; Leon, Miriam; Fuentes, Laura; Hernandez, Domingo

    2016-01-01

    The adaptive immune response forms the basis of allograft rejection. Its weapons are direct cellular cytotoxicity, identified from the beginning of organ transplantation, and/or antibodies, limited to hyperacute rejection by preformed antibodies and not as an allogenic response. This resulted in allogenic response being thought for decades to have just a cellular origin. But the experimental studies by Gorer demonstrating tissue damage in allografts due to antibodies secreted by B lymphocytes activated against polymorphic molecules were disregarded. The special coexistence of binding and unbinding between antibodies and antigens of the endothelial cell membranes has been the cause of the delay in demonstrating the humoral allogenic response. The endothelium, the target tissue of antibodies, has a high turnover, and antigen-antibody binding is non-covalent. If endothelial cells are attacked by the humoral response, immunoglobulins are rapidly removed from their surface by shedding and/or internalization, as well as degrading the components of the complement system by the action of MCP, DAF and CD59. Thus, the presence of complement proteins in the membrane of endothelial cells is transient. In fact, the acute form of antibody-mediated rejection was not demonstrated until C4d complement fragment deposition was identified, which is the only component that binds covalently to endothelial cells. This review examines the relationship between humoral immune response and the types of acute and chronic histological lesion shown on biopsy of the transplanted organ. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Variety of immune responses to chronic stress in rats male

    Directory of Open Access Journals (Sweden)

    Іlona S Polovynko

    2016-12-01

    Full Text Available Background. Previously we have been carry out integrated quantitative estimation of neuroendocrine and immune responses to chronic restraint stress in male rats. Revealed that the value of canonical discriminant roots rats subjected to chronic stress different not only on the values of intact animals (by definition, but also among themselves. So we set a goal retrospectively divided stressed rats into three homogeneous groups. Material and methods. The experiment is at 50 white male rats. Of these 10 animals not subjected to any influences and 40 within 7 days subjected to moderate stress by daily 30-minute immobilization. The day after the completion of stressing in portion of the blood immunological parameters were determined by tests I and II levels of WHO. The spleen and thymus did smears for counting spleno- and thymocytograms. Results. The method of cluster analysis (k-means clustering formed three groups-clusters. For further analysis selected 18 parameters that members of each cluster differing minimum and maximum are different from members of other clusters (η2=0,73÷0,15; F=49,0÷3,26; p=10-6÷0,05. We stated that in 16 rats from cluster III the deviation 16 parameters in either side of the average norm almost identical and are in an acceptable range of ±0,5σ. Thus, the immune status of 40% of the rats subjected to moderate chronic stress was resistant to its factors. For the immune status of the 15 (37,5% rats cluster II typical moderate inhibition microphage, killer and T-cellular links in combination with a strong activation macrophage link. Poststressory changes in immunity in 9 rats (22,5% from cluster I differ from those in cluster II both qualitatively and quantitatively. In particular, the rats in this cluster were found no deviations from the norm or reaction blast transformation T-cells nor NK-lymphocytes levels. However, other parameters of T-link and microhage link suppressed more and settings macrophage link appeared

  12. Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum.

    Science.gov (United States)

    Dooley, Helen; Flajnik, Martin F

    2005-03-01

    The cartilaginous fish are the oldest phylogenetic group in which all of the molecular components of the adaptive immune system have been found. Although early studies clearly showed that sharks could produce an IgM-based response following immunization, evidence for memory, affinity maturation and roles for the other isotypes (notably IgNAR) in this group remained inconclusive. The data presented here illustrate that the nurse shark (Ginglymostoma cirratum) is able to produce not only an IgM response, but we also show for the first time a highly antigen-specific IgNAR response. Additionally, under appropriate conditions, a memory response for both isotypes can be elicited. Analysis of the response shows differential expression of pentameric and monomeric IgM. Pentameric IgM provides the 'first line of defense' through high-avidity, low-affinity interaction with antigen. In contrast, monomeric IgM and IgNAR seem responsible for the specific, antigen-driven response. We propose the presence of distinct lineages of B cells in sharks. As there is no conventional isotype switching, each lineage seems pre-determined to express a single isotype (IgM versus IgNAR). However, our data suggest that there may also be specific lineages for the different forms (pentameric versus monomeric) of the IgM isotype.

  13. Hormonal responses during early embryogenesis in maize.

    Science.gov (United States)

    Chen, Junyi; Lausser, Andreas; Dresselhaus, Thomas

    2014-04-01

    Plant hormones have been shown to regulate key processes during embryogenesis in the model plant Arabidopsis thaliana, but the mechanisms that determine the peculiar embryo pattern formation of monocots are largely unknown. Using the auxin and cytokinin response markers DR5 and TCSv2 (two-component system, cytokinin-responsive promoter version #2), as well as the auxin efflux carrier protein PIN1a (PINFORMED1a), we have studied the hormonal response during early embryogenesis (zygote towards transition stage) in the model and crop plant maize. Compared with the hormonal response in Arabidopsis, we found that detectable hormone activities inside the developing maize embryo appeared much later. Our observations indicate further an important role of auxin, PIN1a and cytokinin in endosperm formation shortly after fertilization. Apparent auxin signals within adaxial endosperm cells and cytokinin responses in the basal endosperm transfer layer as well as chalazal endosperm are characteristic for early seed development in maize. Moreover, auxin signalling in endosperm cells is likely to be involved in exogenous embryo patterning as auxin responses in the endosperm located around the embryo proper correlate with adaxial embryo differentiation and outgrowth. Overall, the comparison between Arabidopsis and maize hormone response and flux suggests intriguing mechanisms in monocots that are used to direct their embryo patterning, which is significantly different from that of eudicots.

  14. Cord blood gene expression supports that prenatal exposure to perfluoroalkyl substances causes depressed immune functionality in early childhood.

    Science.gov (United States)

    Pennings, Jeroen L A; Jennen, Danyel G J; Nygaard, Unni C; Namork, Ellen; Haug, Line S; van Loveren, Henk; Granum, Berit

    2016-01-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds that have widespread use in consumer and industrial applications. PFAS are considered environmental pollutants that have various toxic properties, including effects on the immune system. Recent human studies indicate that prenatal exposure to PFAS leads to suppressed immune responses in early childhood. In this study, data from the Norwegian BraMat cohort was used to investigate transcriptomics profiles in neonatal cord blood and their association with maternal PFAS exposure, anti-rubella antibody levels at 3 years of age and the number of common cold episodes until 3 years. Genes associated with PFAS exposure showed enrichment for immunological and developmental functions. The analyses identified a toxicogenomics profile of 52 PFAS exposure-associated genes that were in common with genes associated with rubella titers and/or common cold episodes. This gene set contains several immunomodulatory genes (CYTL1, IL27) as well as other immune-associated genes (e.g. EMR4P, SHC4, ADORA2A). In addition, this study identified PPARD as a PFAS toxicogenomics marker. These markers can serve as the basis for further mechanistic or epidemiological studies. This study provides a transcriptomics connection between prenatal PFAS exposure and impaired immune function in early childhood and supports current views on PPAR- and NF-κB-mediated modes of action. The findings add to the available evidence that PFAS exposure is immunotoxic in humans and support regulatory policies to phase out these substances.

  15. Innate Immune Response to Rift Valley Fever Virus in Goats

    Science.gov (United States)

    Nfon, Charles K.; Marszal, Peter; Zhang, Shunzhen; Weingartl, Hana M.

    2012-01-01

    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings. PMID:22545170

  16. Immunizations with hepatitis B viral antigens and a TLR7/8 agonist adjuvant induce antigen-specific immune responses in HBV-transgenic mice

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-12-01

    Conclusions: Immunization with CL097-conjugated HBV-Ag reversed immune tolerance in HBV-Tg mice and induced antigen-specific immune responses. TLR7/8 agonists appear to be potent adjuvants for the induction of antigen-specific Th1 responses in an immune tolerant state.

  17. Development of ileal cytokine and immunoglobulin expression levels in response to early feeding in broilers and layers

    NARCIS (Netherlands)

    Simon, K.; Vries Reilingh, de G.; Kemp, B.; Lammers, A.

    2014-01-01

    Provision of feed in the immediate posthatch period may influence interaction between intestinal microbiota and immune system, and consequently immunological development of the chick. This study addressed ileal immune development in response to early feeding in 2 chicken breeds selected for

  18. Differential immune microenvironments and response to immune checkpoint blockade amongst molecular subtypes of murine medulloblastoma

    Science.gov (United States)

    Pham, Christina D.; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M.; Yearley, Jennifer H.; Sayour, Elias J.; Pei, Yanxin; Moore, Colin; McLendon, Roger E.; Huang, Jianping; Sampson, John H.; Wechsler-Reya, Robert; Mitchell, Duane A.

    2016-01-01

    PURPOSE Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma (MB), the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and Group 3 MB for preclinical evaluation in immunocompetent C57BL/6 mice. METHODS AND RESULTS Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid derived suppressor cells and tumor-associated macrophages in murine SHH model tumors compared with Group 3 tumors. However, murine Group 3 tumors had higher percentages of CD8+ PD-1+ T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial Group 3 tumors compared to SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1+ peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3+ T cells within the tumor microenvironment. CONCLUSIONS This is the first immunologic characterization of preclinical models of molecular subtypes of MB and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. PMID:26405194

  19. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma.

    Science.gov (United States)

    Pham, Christina D; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M; Yearley, Jennifer H; Sayour, Elias J; Pei, Yanxin; Moore, Colin; McLendon, Roger E; Huang, Jianping; Sampson, John H; Wechsler-Reya, Robert; Mitchell, Duane A

    2016-02-01

    Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma, the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and group 3 medulloblastoma for preclinical evaluation in immunocompetent C57BL/6 mice. Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in murine SHH model tumors compared with group 3 tumors. However, murine group 3 tumors had higher percentages of CD8(+) PD-1(+) T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial group 3 tumors compared with SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1(+) peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3(+) T cells within the tumor microenvironment. This is the first immunologic characterization of preclinical models of molecular subtypes of medulloblastoma and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. ©2015 American Association for Cancer Research.

  20. Epithelium-innate immune cell axis in mucosal responses to SIV.

    Science.gov (United States)

    Shang, L; Duan, L; Perkey, K E; Wietgrefe, S; Zupancic, M; Smith, A J; Southern, P J; Johnson, R P; Haase, A T

    2017-03-01

    In the SIV (simian immunodeficiency virus)-rhesus macaque model of HIV-1 (human immunodeficiency virus type I) transmission to women, one hallmark of the mucosal response to exposure to high doses of SIV is CD4 T-cell recruitment that fuels local virus expansion in early infection. In this study, we systematically analyzed the cellular events and chemoattractant profiles in cervical tissues that precede CD4 T-cell recruitment. We show that vaginal exposure to the SIV inoculum rapidly induces chemokine expression in cervical epithelium including CCL3, CCL20, and CXCL8. The chemokine expression is associated with early recruitment of macrophages and plasmacytoid dendritic cells that are co-clustered underneath the cervical epithelium. Production of chemokines CCL3 and CXCL8 by these cells in turn generates a chemokine gradient that is spatially correlated with the recruitment of CD4 T cells. We further show that the protection of SIVmac239Δnef vaccination against vaginal challenge is correlated with the absence of this epithelium-innate immune cell-CD4 T-cell axis response in the cervical mucosa. Our results reveal a critical role for cervical epithelium in initiating early mucosal responses to vaginal infection, highlight an important role for macrophages in target cell recruitment, and provide further evidence of a paradoxical dampening effect of a protective vaccine on these early mucosal responses.

  1. Histological chorioamnionitis shapes the neonatal transcriptomic immune response.

    Science.gov (United States)

    Weitkamp, Jörn-Hendrik; Guthrie, Scott O; Wong, Hector R; Moldawer, Lyle L; Baker, Henry V; Wynn, James L

    2016-07-01

    Histologic chorioamnionitis (HCA) is commonly associated with preterm birth and deleterious post-natal outcomes including sepsis and necrotizing enterocolitis. Transcriptomic analysis has been used to uncover gene signatures that permit diagnosis and prognostication, show new therapeutic targets, and reveal mechanisms that underlie differential outcomes with other complex disease states in neonates such as sepsis. To define the transcriptomic and inflammatory protein response in peripheral blood among infants with exposure to histologic chorioamnionitis. Prospective, observational study. Uninfected preterm neonates retrospectively categorized based on placental pathology with no HCA exposure (n=18) or HCA exposure (n=15). We measured the transcriptomic and inflammatory mediator response in prospectively collected whole blood. We found 488 significant (p<0.001), differentially expressed genes in whole blood samples among uninfected neonates with HCA exposure that collectively represented activated innate and adaptive immune cellular pathways and revealed a potential regulatory role for the pleotropic microRNA molecule miR-155. Differentially secreted plasma cytokines in patients with HCA exposure compared to patients without HCA included MCP-1, MPO, and MMP-9 (p<0.05). Exposure to HCA distinctively activates the neonatal immune system in utero with potentially long-term health consequences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Monitoring Immune Responses in Organ Recipients by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Al-Mukhalafi Zuha

    2001-01-01

    Full Text Available Allograft rejection remains a major barrier to successful organ transplan-tation. Cellular and humoral immune responses play a critical role in mediating graft rejection. During the last few years, monoclonal antibodies have been used as a new specific therapeutic approach in the prevention of allograft rejection. Recently, the technology of flow cytometry has become a useful tool for monitoring immunological responses in transplant recipients. The application of this valuable tool in clinical transplantation at the present time is aimed at, i determining the extent of immuno-suppressive therapy through T-cell receptor analysis of cellular components, ii monitoring levels of alloreactive antibodies to identify high-risk recipients (sensitized patients in the pre-operative period and iii to predict rejection by monitoring their development post-operatively. In future, further development of this technology may demonstrate greater benefit to the field of organ transplantation.

  3. Immunization

    Science.gov (United States)

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  4. Humoral immune responses of pregnant Guinea pigs Immunized with live attenuated Rhodococcus equi

    Directory of Open Access Journals (Sweden)

    Mawlood Abass Ali Al- Graibawi

    2018-02-01

    Full Text Available The potential to increase passive transfer of specific Rhodococcus equi (R.equi humoral immunity to newborn by preparturient vaccination of their dams was investigated in Pregnant Guinea pigs as a pilot study. Attenuated autogenous vaccine was prepared from a Congo red negative (CR- R.equi local isolate mixed with adjuvant (potassium alum sulphate, tested for sterility, safety and potency prior to vaccination .Two groups of pregnant G. pigs were used, the first group was vaccinated twice subcutaneously (S.C with the prepared vaccine at five and three weeks prior parturition, the second group was inoculated with adjuvant plus phosphate buffer saline (PBS twice s.c and kept as control. Offspring from the vaccinated dams had revealed high titers of specific R. equi antibody as detected by tube agglutination (TA and passive haemagglutination (PH test and showed protection against challenge dose. The results revealed that vaccination of pregnant G. pigs with the prepared attenuated vaccine was safe and efficient method to protect their offspring against experimental challenge with virulent R.equi. Vaccination was associated with increased humoral immune response in vaccinated group.

  5. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum

    Science.gov (United States)

    Teixeira, Luzia; Moreira, João; Melo, Joana; Bezerra, Filipa; Marques, Raquel M; Ferreirinha, Pedro; Correia, Alexandra; Monteiro, Mariana P; Ferreira, Paula G; Vilanova, Manuel

    2015-01-01

    The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet+ cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue. PMID:25581844

  6. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    International Nuclear Information System (INIS)

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses

  7. Short-term and long-term antibody response by mice after immunization against Neisseria meningitidis B or diphtheria toxoid

    Directory of Open Access Journals (Sweden)

    G.P. Silva

    2013-02-01

    Full Text Available Serogroup B Neisseria meningitidis (MenB is a major cause of invasive disease in early childhood worldwide. The only MenB vaccine available in Brazil was produced in Cuba and has shown unsatisfactory efficacy when used to immunize millions of children in Brazil. In the present study, we compared the specific functional antibody responses evoked by the Cuban MenB vaccine with a standard vaccine against diphtheria (DTP: diphtheria, tetanus, pertussis after primary immunization and boosting of mice. The peak of bactericidal and opsonic antibody titers to MenB and of neutralizing antibodies to diphtheria toxoid (DT was reached after triple immunization with the MenB vaccine or DTP vaccine, respectively. However, 4 months after immunization, protective DT antibody levels were present in all DTP-vaccinated mice but in only 20% of the mice immunized against MenB. After 6 months of primary immunization, about 70% of animals still had protective neutralizing DT antibodies, but none had significant bactericidal antibodies to MenB. The booster doses of DTP or MenB vaccines produced a significant antibody recall response, suggesting that both vaccines were able to generate and maintain memory B cells during the period studied (6 months post-triple immunization. Therefore, due to the short duration of serological memory induced by the MenB vaccine (VA-MENGOC-BC® vaccine, its use should be restricted to outbreaks of meningococcal disease.

  8. Temperature influences the expression profiling of immune response genes in rainbow trout following DNA vaccination and VHS virus infection

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Gautier, Laurent; Rasmussen, Jesper Skou

    balancing mechanism of the immune system. An experimental VHSV challenge was performed 7 weeks pv. Similar protection levels of approximately 10% mortality were found for the vaccinated fish, regardless of temperature during immunisation and challenge, whereas the course and level of mortality among...... an early unspecific antiviral response as well as a long-lasting specific protection. However, temperature appears to influence immune response with respect to the nature and duration of the protective mechanisms. In this study, groups of fish were temperature acclimated, vaccinated and challenged at three...... different temperatures (5, 10 and 15ºC). Tissue and organ samples were collected at numerous time points post vaccination (pv) and post viral challenge (pch). Then, gene expression levels of a two immune genes (Vig-1 and Mx3) involved in unspecific antiviral response mechanisms were determined by Q...

  9. Biochemical, histopathological and morphological profiling of a rat model of early immune stimulation: relation to psychopathology.

    Directory of Open Access Journals (Sweden)

    Anna Kubesova

    Full Text Available Perinatal immune challenge leads to neurodevelopmental dysfunction, permanent immune dysregulation and abnormal behaviour, which have been shown to have translational validity to findings in human neuropsychiatric disorders (e.g. schizophrenia, mood and anxiety disorders, autism, Parkinson's disease and Alzheimer's disease. The aim of this animal study was to elucidate the influence of early immune stimulation triggered by systemic postnatal lipopolysaccharide administration on biochemical, histopathological and morphological measures, which may be relevant to the neurobiology of human psychopathology. In the present study of adult male Wistar rats we examined the brain and plasma levels of monoamines (dopamine, serotonin, their metabolites, the levels of the main excitatory and inhibitory neurotransmitters glutamate and γ-aminobutyric acid and the levels of tryptophan and its metabolites from the kynurenine catabolic pathway. Further, we focused on histopathological and morphological markers related to pathogenesis of brain diseases--glial cell activation, neurodegeneration, hippocampal volume reduction and dopaminergic synthesis in the substantia nigra. Our results show that early immune stimulation in adult animals alters the levels of neurotransmitters and their metabolites, activates the kynurenine pathway of tryptophan metabolism and leads to astrogliosis, hippocampal volume reduction and a decrease of tyrosine hydroxylase immunoreactivity in the substantia nigra. These findings support the crucial pathophysiological role of early immune stimulation in the above mentioned neuropsychiatric disorders.

  10. Protective immunization with B16 melanoma induces antibody response and not cytotoxic T cell response

    International Nuclear Information System (INIS)

    Sarzotti, M.; Sriyuktasuth, P.; Klimpel, G.R.; Cerny, J.

    1986-01-01

    C57BL/6 mice immunized with three intraperitoneal injections of syngeneic, irradiated B16 melanoma cells, became resistant to B16 tumor challenge. Immunized mice had high levels of serum antibody against a membrane antigen of B16 cells. The B16 antigen recognized by the anti-B16 sera formed a major band of 90 KD in gel electrophoresis. The anti-B16 antibody was partially protective when mixed with B16 cells and injected into normal recipient mice. Surprisingly, B16 resistance mice were incapable of generating cytotoxic T cells (CTL) specific for the B16 tumor. Both spleen and lymph node cell populations from immunized mice did not generate B16-specific CTL. Allogeneic mice (DBA/2 or C3H) were also unable to generate B16-specific CTL: however, alloreactive CTL produced in these strains of mice by immunization with C57BL/6 lymphocytes, did kill B16 target cells. Interestingly, spleen cells from syngeneic mice immunized with B16 tumor produced 6-fold more interleukin-2 (IL-2) than normal spleen cells, in vitro. These data suggest that immunization with B16 tumor activates a helper subset of T cells (for antibody and IL-2 production) but not the effector CTL response

  11. Enhancement of anamnestic immunospecific antibody response in orally immunized chickens

    DEFF Research Database (Denmark)

    Mayo, Susan; Carlsson, Hans-Erik; Zagon, Andrea

    2008-01-01

    Production of immunospecific egg yolk antibodies (IgY antibodies) in egg laying hens through oral immunization is an attractive alternative to conventional antibody production in mammals for economic reasons as well as for animal welfare reasons. Oral immunization results in a systemic humoral...... of the immunization in week 18, demonstrating the presence of memory cells following the two initial oral immunizations. Considering that oral immunization results in approximately ten times lower concentrations of immunospecific antibodies in the egg yolk, compared to traditional subcutaneous immunization schemes...

  12. GSL-enriched membrane microdomains in innate immune responses.

    Science.gov (United States)

    Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa

    2013-06-01

    Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.

  13. Immune response in pemphigus and beyond: progresses and emerging concepts.

    Science.gov (United States)

    Di Zenzo, Giovanni; Amber, Kyle T; Sayar, Beyza S; Müller, Eliane J; Borradori, Luca

    2016-01-01

    Pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are two severe autoimmune bullous diseases of the mucosae and/or skin associated with autoantibodies directed against desmoglein (Dsg) 3 and/or Dsg1. These two desmosomal cadherins, typifying stratified epithelia, are components of cell adhesion complexes called desmosomes and represent extra-desmosomal adhesion receptors. We herein review the advances in our understanding of the immune response underlying pemphigus, including human leucocyte antigen (HLA) class II-associated genetic susceptibility, characteristics of pathogenic anti-Dsg antibodies, antigenic mapping studies as well as findings about Dsg-specific B and T cells. The pathogenicity of anti-Dsg autoantibodies has been convincingly demonstrated. Disease activity and clinical phenotype correlate with anti-Dsg antibody titers and profile while passive transfer of anti-Dsg IgG from pemphigus patients' results in pemphigus-like lesions in neonatal and adult mice. Finally, adoptive transfer of splenocytes from Dsg3-knockout mice immunized with murine Dsg3 into immunodeficient mice phenotypically recapitulates PV. Although the exact pathogenic mechanisms leading to blister formation have not been fully elucidated, intracellular signaling following antibody binding has been found to be necessary for inducing cell-cell dissociation, at least for PV. These new insights not only highlight the key role of Dsgs in maintenance of tissue homeostasis but are expected to progressively change pemphigus management, paving the way for novel targeted immunologic and pharmacologic therapies.

  14. Immune response modulation by curcumin in a latex allergy model

    Directory of Open Access Journals (Sweden)

    Raju Raghavan

    2007-01-01

    Full Text Available Abstract Background There has been a worldwide increase in allergy and asthma over the last few decades, particularly in industrially developed nations. This resulted in a renewed interest to understand the pathogenesis of allergy in recent years. The progress made in the pathogenesis of allergic disease has led to the exploration of novel alternative therapies, which include herbal medicines as well. Curcumin, present in turmeric, a frequently used spice in Asia has been shown to have anti-allergic and inflammatory potential. Methods We used a murine model of latex allergy to investigate the role of curcumin as an immunomodulator. BALB/c mice were exposed to latex allergens and developed latex allergy with a Th2 type of immune response. These animals were treated with curcumin and the immunological and inflammatory responses were evaluated. Results Animals exposed to latex showed enhanced serum IgE, latex specific IgG1, IL-4, IL-5, IL-13, eosinophils and inflammation in the lungs. Intragastric treatment of latex-sensitized mice with curcumin demonstrated a diminished Th2 response with a concurrent reduction in lung inflammation. Eosinophilia in curcumin-treated mice was markedly reduced, co-stimulatory molecule expression (CD80, CD86, and OX40L on antigen-presenting cells was decreased, and expression of MMP-9, OAT, and TSLP genes was also attenuated. Conclusion These results suggest that curcumin has potential therapeutic value for controlling allergic responses resulting from exposure to allergens.

  15. Viral infection model with periodic lytic immune response

    International Nuclear Information System (INIS)

    Wang Kaifa; Wang Wendi; Liu Xianning

    2006-01-01

    Dynamical behavior and bifurcation structure of a viral infection model are studied under the assumption that the lytic immune response is periodic in time. The infection-free equilibrium is globally asymptotically stable when the basic reproductive ratio of virus is less than or equal to one. There is a non-constant periodic solution if the basic reproductive ratio of the virus is greater than one. It is found that period doubling bifurcations occur as the amplitude of lytic component is increased. For intermediate birth rates, the period triplication occurs and then period doubling cascades proceed gradually toward chaotic cycles. For large birth rate, the period doubling cascade proceeds gradually toward chaotic cycles without the period triplication, and the inverse period doubling can be observed. These results can be used to explain the oscillation behaviors of virus population, which was observed in chronic HBV or HCV carriers

  16. System immune response to vaccination on FDG-PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Mingos, Mark; Howard, Stephanie; Giaclone, Micholas; Kozono, David; Jacene, Heather [Brigham and Women' s Hospital, Boston (United States)

    2016-12-15

    A patient with newly diagnosed right lung cancer had transient 18F-fluorodeoxyglucose (FDG)-avid left axillary lymph nodes and intense splenic FDG uptake on positron emission tomography (PET)/computed tomography (CT). History revealed that the patient received a left-sided influenza vaccine 2-3 days before the examination. Although inflammatory FDG uptake in ipsilateral axillary nodes is reported, to our knowledge, this is the first report of visualization of the systemic immune response in the spleen related to the influenza vaccination on FDG-PET/CT. The history, splenic uptake and time course on serial FDG-PET/CT helped to avoid a false-positive interpretation for progressing lung cancer and alteration of the radiation therapy plan.

  17. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  18. System immune response to vaccination on FDG-PET/CT

    International Nuclear Information System (INIS)

    Mingos, Mark; Howard, Stephanie; Giaclone, Micholas; Kozono, David; Jacene, Heather

    2016-01-01

    A patient with newly diagnosed right lung cancer had transient 18F-fluorodeoxyglucose (FDG)-avid left axillary lymph nodes and intense splenic FDG uptake on positron emission tomography (PET)/computed tomography (CT). History revealed that the patient received a left-sided influenza vaccine 2-3 days before the examination. Although inflammatory FDG uptake in ipsilateral axillary nodes is reported, to our knowledge, this is the first report of visualization of the systemic immune response in the spleen related to the influenza vaccination on FDG-PET/CT. The history, splenic uptake and time course on serial FDG-PET/CT helped to avoid a false-positive interpretation for progressing lung cancer and alteration of the radiation therapy plan

  19. THE IMPACT OF PERSISTENT HERPESVIRUS INFECTION ON IMMUNITY AND VACCINATION RESPONSE

    Directory of Open Access Journals (Sweden)

    Volyanskiy AYu

    2016-09-01

    Full Text Available In this review we summarize current knowledge on the ability of latent herpesviruses to modulate the immunity and response to vaccination. Nearly all humans are latently infected with multiple herpesviruses but little is known about virus-host interactions. Meanwhile, the study of the immune response to Epshtein-Barr virus (EBV and сytomegalovirus (CMV has revealed significant regulatory effects on the immune system. During the primary infection a human cytomegalovirus is predominately found in peripheral blood monocytes and polymorphonuclear leukocytes. However, the virus can not be replicated in these cells. CMV induces the survival and differentiation of infected monocytes into long-lived macrophages capable of supporting viral replication and the release of virions, which infect CD34+ myeloid progenitor cells. CMV latently persists in myeloid progenitor cells and monocytes and reactivates during their differentiation into macrophages. CMV-infected monocytes exhibit a unique reprogramming of their differentiation and secret both pro-inflammatory M1- and anti-inflammatory M2-associated cytokines. But cytomegalovirus induced macrophage phenotype skewed towards pro-inflammatory M1 type. MV has profound effects on the composition and function of both T cells and NK cells. CMV constantly reactivates during differentiation of monocytes into macrophages. Consequently, persons with latent CMV infection have substantially increased numbers and proportions of CD8+ T cells that lead to exhaustion and an early onset of immunosenescence. Also, it has been shown that the latent CMV virus infection markedly increases the proportion of NK cells expressing the activating NKG2C receptor. So, it has been proposed that CMV alters the composition of T cell and NK cell subsets and accelerates immune aging. Given the capacity of CMV to alter a macrophage, as well as NK and T cell responses it is reasonable to hypothesize that latent infection would alter the

  20. Anterior Chamber-Associated Immune Deviation (ACAID: An Acute Response to Ocular Insult Protects from Future Immune-Mediated Damage?

    Directory of Open Access Journals (Sweden)

    Robert E. Cone

    2009-01-01

    Full Text Available The “immune privilege” that inhibits immune defense mechanisms that could lead to damage to sensitive ocular tissue is based on the expression of immunosuppressive factors on ocular tissue and in ocular fluids. In addition to this environmental protection, the injection of antigen into the anterior chamber or infection in the anterior chamber induces a systemic suppression of potentially damaging cell-mediated and humoral responses to the antigen. Here we discuss evidence that suggests that Anterior Chamber-Associated Immune Deviation (ACAID a is initiated by an ocular response to moderate inflammation that leads to a systemic immunoregulatory response. Injection into the anterior chamber induces a rise in TNF-α and MCP-1 in aqueous humor and an infiltration of circulating F4/80 + monocytes that home to the iris. The induction of ACAID is dependent on this infiltration of circulating monocytes that eventually emigrate to the thymus and spleen where they induce regulatory T cells that inhibit the inductive or effector phases of a cell-mediated immune response. ACAID therefore protects the eye from the collateral damage of an immune response to infection by suppressing a future potentially damaging response to infection.

  1. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors.

    Science.gov (United States)

    Chester, Cariad; Marabelle, Aurelien; Houot, Roch; Kohrt, Holbrook E

    2015-04-01

    Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Early Screening for Tetrahydrobiopterin Responsiveness in Phenylketonuria.

    Science.gov (United States)

    Porta, Francesco; Spada, Marco; Ponzone, Alberto

    2017-08-01

    Since 2007, synthetic tetrahydrobiopterin (BH4) has been approved as a therapeutic option in BH4-responsive phenylketonuria (PKU) and since 2015 extended to infants younger than 4 years in Europe. The current definition of BH4 responsiveness relies on the observation of a 20% to 30% blood phenylalanine (Phe) decrease after BH4 administration, under nonstandardized conditions. By this definition, however, patients with the same genotype or even the same patients were alternatively reported as responsive or nonresponsive to the cofactor. These inconsistencies are troubling, as frustrating patient expectations and impairing cost-effectiveness of BH4-therapy. Here we tried a quantitative procedure through the comparison of the outcome of a simple Phe and a combined Phe plus BH4 loading in a series of infants with PKU, most of them harboring genotypes already reported as BH4 responsive. Under these ideal conditions, blood Phe clearance did not significantly differ after the 2 types of loading, and a 20% to 30% decrease of blood Phe occurred irrespective of BH4 administration in milder forms of PKU. Such early screening for BH4 responsiveness, based on a quantitative assay, is essential for warranting an evidence-based and cost-effective therapy in those patients with PKU eventually but definitely diagnosed as responsive to the cofactor. Copyright © 2017 by the American Academy of Pediatrics.

  3. Experimental murine fascioliasis derives early immune suppression with increased levels of TGF-β and IL-4.

    Science.gov (United States)

    Chung, Joon-Yong; Bae, Young-An; Yun, Doo-Hee; Yang, Hyun-Jong; Kong, Yoon

    2012-12-01

    In fascioliasis, T-helper 2 (Th2) responses predominate, while little is known regarding early immune phenomenon. We herein analyzed early immunophenotype changes of BALB/c, C57BL/6, and C3H/He mice experimentally infected with 5 Fasciola hepatica metacercariae. A remarkable expansion of CD19(+) B cells was observed as early as week 1 post-infection while CD4(+)/CD8(+) T cells were down-regulated. Accumulation of Mac1(+) cells with time after infection correlated well with splenomegaly of all mice strains tested. The expression of tumor necrosis factor (TNF)-α mRNA in splenocytes significantly decreased while that of IL-4 up-regulated. IL-1β expression was down-modulated in BALB/c and C57BL/6 mice, but not in C3H/He. Serum levels of transforming growth factor (TGF)-β were considerably elevated in all mice during 3 weeks of infection period. These collective results suggest that experimental murine fascioliasis might derive immune suppression with elevated levels of TGF-β and IL-4 during the early stages of infection.

  4. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    Science.gov (United States)

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  5. Sex-specific consequences of an induced immune response on reproduction in a moth.

    Science.gov (United States)

    Barthel, Andrea; Staudacher, Heike; Schmaltz, Antje; Heckel, David G; Groot, Astrid T

    2015-12-16

    Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life histories, sex-specific resource investment strategies to achieve an optimal immune response following an infection can be expected. We investigated immune response induction of females and males of Heliothis virescens in response to the entomopathogenic bacterium Serratia entomophila, and its effects on mating success and the female sexual signal. We found that females had higher expression levels of immune-related genes after bacterial challenge than males. However, males maintained a higher baseline expression of immune-related genes than females. The increased investment in immunity of female moths was negatively correlated with mating success and the female sexual signal. Male mating success was unaffected by bacterial challenge. Our results show that the sexes differed in their investment strategies: females invested in immune defense after a bacterial challenge, indicating facultative immune deployment, whereas males had higher baseline immunity than females, indicating immune maintenance. Interestingly, these differences in investment were reflected in the mate choice assays. As female moths are the sexual signallers, females need to invest resources in their attractiveness. However, female moths appeared to invest in immunity at the cost of reproductive effort.

  6. Contributions of immune responses to developmental resistance in Lymantria dispar challenged with baculovirus

    Science.gov (United States)

    James McNeil; Diana Cox-Foster; James Slavicek; Kelli. Hoover

    2010-01-01

    How the innate immune system functions to defend insects from viruses is an emerging field of study. We examined the impact of melanized encapsulation, a component of innate immunity that integrates both cellular and humoral immune responses, on the success of the baculovirus Lymantria dispar multiple nucleocapsid nucleopolyhedrovirus (LdMNPV) in its...

  7. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    Science.gov (United States)

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  8. Sub-meninges implantation reduces immune response to neural implants.

    Science.gov (United States)

    Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L

    2013-04-15

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. Published by Elsevier B.V.

  9. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  10. Humoral immune response to measles and varicella vaccination in former very low birth weight preterm infants

    OpenAIRE

    Carolina Schlindwein Mariano Ferreira; Maria Cristina Abrão Aued Perin; Maria Isabel de Moraes-Pinto; Raquel Maria Simão-Gurge; Ana Lucia Goulart; Lily Yin Weckx; Amélia Miyashiro Nunes dos Santos

    2018-01-01

    Introduction: Immune response to vaccination in infants born prematurely may be lower than in infants born at full-term. Some clinical factors might be associated with humoral immune response. Objectives: The objectives of this study were to compare the immune response to measles and varicella vaccination in infants born prematurely with those born at full-term and to analyze factors associated with measles and varicella antibody levels. Methods: Prospective study including two groups o...

  11. Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model

    Science.gov (United States)

    Limmer, Stefanie; Haller, Samantha; Drenkard, Eliana; Lee, Janice; Yu, Shen; Kocks, Christine; Ausubel, Frederick M.; Ferrandon, Dominique

    2011-01-01

    An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host–pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated. PMID:21987808

  12. CAF01 potentiates immune responses and efficacy of an inactivated influenza vaccine in ferrets

    DEFF Research Database (Denmark)

    Martel, Cyril Jean-Marie; Agger, Else Marie; Poulsen, Julie Juul

    2011-01-01

    response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6'-dibehenate, CAF01) was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different...

  13. Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective

    Directory of Open Access Journals (Sweden)

    Isabelle Laforest-Lapointe

    2017-07-01

    Full Text Available Alterations in gut microbial colonization during early life have been reported in infants that later developed asthma, allergies, type 1 diabetes, as well as in inflammatory bowel disease patients, previous to disease flares. Mechanistic studies in animal models have established that microbial alterations influence disease pathogenesis via changes in immune system maturation. Strong evidence points to the presence of a window of opportunity in early life, during which changes in gut microbial colonization can result in immune dysregulation that predisposes susceptible hosts to disease. Although the ecological patterns of microbial succession in the first year of life have been partly defined in specific human cohorts, the taxonomic and functional features, and diversity thresholds that characterize these microbial alterations are, for the most part, unknown. In this review, we summarize the most important links between the temporal mosaics of gut microbial colonization and the age-dependent immune functions that rely on them. We also highlight the importance of applying ecology theory to design studies that explore the interactions between this complex ecosystem and the host immune system. Focusing research efforts on understanding the importance of temporally structured patterns of diversity, keystone groups, and inter-kingdom microbial interactions for ecosystem functions has great potential to enable the development of biologically sound interventions aimed at maintaining and/or improving immune system development and preventing disease.

  14. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-09-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  15. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-01-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1–3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4–6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs. PMID:28854172

  16. The Relationship Between Morphological Symmetry and Immune Response in Wild-Caught Adult Bush-Crickets

    Directory of Open Access Journals (Sweden)

    Åsa Berggren

    2009-09-01

    Full Text Available Despite interest in the relationship between fluctuating asymmetry (FA, immune response and ecological factors in insects, little data are available from wild populations. In this study we measured FA and immune response in 370 wild-caught male bush-crickets, Metrioptera roeseli, from 20 experimentally introduced populations in southern-central Sweden. Individuals with more-symmetric wings had a higher immune response as measured by the cellular encapsulation of a surgically-implanted nylon monofilament. However, we found no relationship between measures of FA in other organs (i.e. tibia and maxillary palp and immune response, suggesting that this pattern may reflect differing selection pressures.

  17. Immune responses in cattle vaccinated with gamma-irradiated Anaplasma marginale

    International Nuclear Information System (INIS)

    Sharma, S.P.; Bansal, G.C.

    1986-01-01

    The infectivity and immunogenecity of gamma-irradiated Anaplasma marginale organisms were studied in bovine calves. The severity of Anaplasma infection based on per cent infected red blood cells, haematological values and mortality was more in animals immunized with blood exposed to 60 kR in comparison to those inoculated with blood irradiated at 70, 80 and 90 kR. The immunizing controls demonstrated a significantly high parasitaemia, marked anaemia and more deaths. Marked and prolonged cell-mediated and humoral immune responses detectable in the first 3 weeks of post-immunization may be responsible for conferring of protective immunity. (author)

  18. The impact of early immune destruction on the kinetics of postacute viral replication in rhesus monkey infected with the simian-human immunodeficiency virus 89.6P

    International Nuclear Information System (INIS)

    Zhang Zhiqiang; Schleif, William A.; Casimiro, Danilo R.; Handt, Larry; Chen, Minchun; Davies, Mary-Ellen; Liang Xiaoping; Fu Tongming; Tang Aimin; Wilson, Keith A.; McElhaugh, Michael; Carella, Anthony; Tan, Charles; Connolly, Brett; Hill, Susan; Klein, Hilton; Emini, Emilio A.; Shiver, John W.

    2004-01-01

    Set-point viral load is positively correlated with the extent of initial viral replication in pathogenic simian-human immunodeficiency virus (SHIV) infection. To elucidate the mechanisms underlying the correlation, we conducted a systematic investigation in rhesus monkeys infected with the highly pathogenic SHIV 89.6P. This model is widely used in the preclinical evaluation of AIDS vaccine candidates and a thorough understanding of the model's biology is important to the proper interpretation of these evaluations. We found that the levels of peak viremia were positively correlated not only with the levels of set-point viremia but, importantly, with the extent of initial overall immune destruction as indicated by the degree of CD4 + T cell depletion and lymph node germinal center (GC) formation. The extent of initial overall immune destruction was inversely correlated with subsequent development and maintenance of virus-specific cellular and humoral immune responses. Thus, these data suggest that the extent of early immune damage determines the development and durability of virus-specific immunity, thereby playing a critical role in establishing the levels of set-point viral replication in SHIV infection. Vaccines that limit both the initial viral replication and the extent of early immune damage will therefore mediate long-term virus replication control and mitigation of long-term immune destruction in this model of immunodeficiency virus infection

  19. Polar lipids of Burkholderia pseudomallei induce different host immune responses.

    Directory of Open Access Journals (Sweden)

    Mercedes Gonzalez-Juarrero

    Full Text Available Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.

  20. Invitro immune responses in children following BCG vaccination

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi V

    2006-01-01

    Full Text Available Introduction: There is still no consensus on the efficacy of BCG vaccine in the prevention of tuberculosis. This study therefore addressed the question of the magnitude of immunity afforded by BCG, by studying the effector mechanisms of protection in children. The main objectives were to assess the degree of immunity conferred by BCG vaccine in children and to identify the most immunogenic antigen(s of BCG by conducting in-vitro studies. Materials and methods: Children in the age-group of 1 to 10 years, were categorized: (A normal, and vaccinated with BCG during the first year, n=45, (B normal, without scar and with no evident history of vaccination, n=31: and (C children admitted in the hospital with a confirmed diagnosis of tuberculosis, n=31. Fractions of BCG were obtained by lysis, sonication, separation by gel chromatography, HPLC and confirmed by SDS-PAGE. In lymphoproliferative assays PBMC were cultured and stimulated with either Concanavalin-A or Tuberculin or the fractions of BCG. Stimulation indices (SI in lymphoproliferation, CD4/CD8 cells, levels of Interferon-γ (IFN- γ in the culture supernatants were measured by ELISA. Results: The vaccinated children displayed significantly high (P< 0.05 mean values of SI in LTT, CD4/CD8 cell ratio against the unfractionated, 67kDa fraction and BCG-CF Ags. While 100% of the vaccinated children had positive lymphoproliferation indices to BCG-CF, only 8.3% of the unvaccinated children were positive. Conclusion: Some of the components of BCG induced a strong Thl cell response in children. These immunogenic antigens were present in the whole cell lysate. The use of BCG vaccine for tuberculosis is worthwhile till a new vaccine is developed.

  1. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    Science.gov (United States)

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  2. Positive regulation of humoral and innate immune responses induced by inactivated Avian Influenza Virus vaccine in broiler chickens.

    Science.gov (United States)

    Abdallah, Fatma; Hassanin, Ola

    2015-12-01

    Avian Influenza (AI) vaccines are widely used for mammals and birds in a trial to eliminate the Avian Influenza virus (AIV) infection from the world. However and up till now the virus is still existed via modulation of its antigenic structure to evade the pressure of host immune responses. For a complete understanding of the immune responses following AI vaccination in chickens, the modulations of the chickens humoral immune responses and interferon-alpha signaling pathway, as a fundamental part of the innate immune responses, were investigated. In our study, we measured the humoral immune response using hemagglutination-inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) tests. In addition, chicken interferon-alpha pathway components was measured at RNA levels using Quantitative Real-time PCR (qRT-PCR) following one dose of inactivated H5N1 influenza vaccine at 14 days of age. In this study, the protective levels of humoral antibody responses were observed at 14, 21 and 28 days following immunization with inactivated (Re-1/H5N1) AI vaccine. In the chicken spleen cells, up regulation in the chicken interferon-alpha pathway components (MX1 & IRF7) was existed as early as 48 h post vaccination and remained until 28 days post vaccination at the endogenous state. However, after the recall with ex-vivo stimulation, the up regulation was more pronounced in the transcriptional factor (IRF7) compared to the antiviral gene (MX1) at 28 days post vaccination. So far, from our results it appears that the inactivated H5N1 vaccine can trigger the chicken interferon-alpha signaling pathway as well as it can elicit protective humoral antibody responses.

  3. Cell-mediated immune response: a clinical review of the therapeutic potential of human papillomavirus vaccination.

    Science.gov (United States)

    Meyer, Sonja Izquierdo; Fuglsang, Katrine; Blaakaer, Jan

    2014-12-01

    This clinical review aims to assess the efficacy of human papillomavirus 16/18 (HPV16/18) vaccination on the cell-mediated immune response in women with existing cervical intraepithelial neoplasia or cervical cancer induced by HPV16 or HPV18. A focused and thorough literature search conducted in five different databases found 996 publications. Six relevant articles were chosen for further review. In total, 154 patients (>18 years of age) were enrolled in prospective study trials with 3-15 months of follow up. The vaccine applications were administered two to four times. The vaccines contained different combinations of HPV16 and HPV18 and early proteins, E6 and E7. The primary outcome was the cell-mediated immune response. Correlation to clinical outcome (histopathology) and human leukocyte antigen genes were secondary endpoints. All vaccines triggered a detectable cell-mediated immune response, some of which were statistically significant. Correlations between immunological response and clinical outcome (histopathology) were not significant, so neoplasms may not be susceptible to vaccine-generated cytotoxic T cells (CD8(+)). Prophylactic HPV vaccines have been introduced to reduce the incidence of cervical cancer in young women. Women already infected with HPV could benefit from a therapeutic HPV vaccination. Hence, it is important to continue the development of therapeutic HPV vaccines to lower the rate of HPV-associated malignancies and crucial to evaluate vaccine efficacy clinically. This clinical review represents an attempt to elucidate the theories supporting the development of an HPV vaccine with a therapeutic effect on human papillomavirus-induced malignancies of the cervix. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  4. Ag85-focused T-cell immune response controls Mycobacterium avium chronic infection.

    Directory of Open Access Journals (Sweden)

    Bruno Cerqueira-Rodrigues

    Full Text Available CD4+ T cells are essential players for the control of mycobacterial infections. Several mycobacterial antigens have been identified for eliciting a relevant CD4+ T cell mediated-immune response, and numerous studies explored this issue in the context of Mycobacterium tuberculosis infection. Antigen 85 (Ag85, a highly conserved protein across Mycobacterium species, is secreted at the early phase of M. tuberculosis infection leading to the proliferation of Ag85-specific CD4+ T cells. However, in the context of Mycobacterium avium infection, little is known about the expression of this antigen and the elicited immune response. In the current work, we investigated if a T cell receptor (TCR repertoire mostly, but not exclusively, directed at Ag85 is sufficient to mount a protective immune response against M. avium. We show that P25 mice, whose majority of T cells express a transgenic TCR specific for Ag85, control M. avium infection at the same level as wild type (WT mice up to 20 weeks post-infection (wpi. During M. avium infection, Ag85 antigen is easily detected in the liver of 20 wpi mice by immunohistochemistry. In spite of the propensity of P25 CD4+ T cells to produce higher amounts of interferon-gamma (IFNγ upon ex vivo stimulation, no differences in serum IFNγ levels are detected in P25 compared to WT mice, nor enhanced immunopathology is detected in P25 mice. These results indicate that a T cell response dominated by Ag85-specific T cells is appropriate to control M. avium infection with no signs of immunopathology.

  5. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials.

    Science.gov (United States)

    Franz, Sandra; Rammelt, Stefan; Scharnweber, Dieter; Simon, Jan C

    2011-10-01

    A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses.

    Directory of Open Access Journals (Sweden)

    Elyse Kozlowski

    Full Text Available Alveolar macrophages orchestrate pulmonary innate immunity and are essential for early immune surveillance and clearance of microorganisms in the airways. Inflammatory signaling must be sufficiently robust to promote host defense but limited enough to prevent excessive tissue injury. Macrophages in the lungs utilize multiple transcriptional and post-transcriptional mechanisms of inflammatory gene expression to delicately balance the elaboration of immune mediators. RNA terminal uridyltransferases (TUTs, including the closely homologous family members Zcchc6 (TUT7 and Zcchc11 (TUT4, have been implicated in the post-transcriptional regulation of inflammation from studies conducted in vitro. In vivo, we observed that Zcchc6 is expressed in mouse and human primary macrophages. Zcchc6-deficient mice are viable and born in Mendelian ratios and do not exhibit an observable spontaneous phenotype under basal conditions. Following an intratracheal challenge with S. pneumoniae, Zcchc6 deficiency led to a modest but significant increase in the expression of select cytokines including IL-6, CXCL1, and CXCL5. These findings were recapitulated in vitro whereby Zcchc6-deficient macrophages exhibited similar increases in cytokine expression due to bacterial stimulation. Although loss of Zcchc6 also led to increased neutrophil emigration to the airways during pneumonia, these responses were not sufficient to impact host defense against infection.

  7. Vaxfectin enhances antigen specific antibody titers and maintains Th1 type immune responses to plasmid DNA immunization.

    Science.gov (United States)

    Reyes, L; Hartikka, J; Bozoukova, V; Sukhu, L; Nishioka, W; Singh, G; Ferrari, M; Enas, J; Wheeler, C J; Manthorpe, M; Wloch, M K

    2001-06-14

    Antigen specific immune responses were characterized after intramuscular immunization of BALB/c mice with 5 antigen encoding plasmid DNAs (pDNAs) complexed with Vaxfectin, a cationic lipid formulation. Vaxfectin increased IgG titers for all of the antigens with no effect on the CTL responses to the 2 antigens for which CTL assays were performed. Both antigen specific IgG1 and IgG2a were increased, although IgG2a remained greater than IgG1. Furthermore, Vaxfectin had no effect on IFN-gamma or IL-4 production by splenocytes re-stimulated with antigen, suggesting that the Th1 type responses typical of intramuscular pDNA immunization were not altered. Studies with IL-6 -/- mice suggest that the antibody enhancement is IL-6 dependent and results in a correlative increase in antigen specific antibody secreting cells.

  8. Digital quantification of gene expression in sequential breast cancer biopsies reveals activation of an immune response.

    Directory of Open Access Journals (Sweden)

    Rinath M Jeselsohn

    Full Text Available Advancements in molecular biology have unveiled multiple breast cancer promoting pathways and potential therapeutic targets. Large randomized clinical trials remain the ultimate means of validating therapeutic efficacy, but they require large cohorts of patients and are lengthy and costly. A useful approach is to conduct a window of opportunity study in which patients are exposed to a drug pre-surgically during the interval between the core needle biopsy and the definitive surgery. These are non-therapeutic studies and the end point is not clinical or pathological response but rather evaluation of molecular changes in the tumor specimens that can predict response. However, since the end points of the non-therapeutic studies are biologic, it is critical to first define the biologic changes that occur in the absence of treatment. In this study, we compared the molecular profiles of breast cancer tumors at the time of the diagnostic biopsy versus the definitive surgery in the absence of any intervention using the Nanostring nCounter platform. We found that while the majority of the transcripts did not vary between the two biopsies, there was evidence of activation of immune related genes in response to the first biopsy and further investigations of the immune changes after a biopsy in early breast cancer seem warranted.

  9. Effect of oral administration of Lactobacillus paracasei L9 on mouse systemic immunity and the immune response in the intestine

    Directory of Open Access Journals (Sweden)

    Zhu Yuanbo

    2016-01-01

    Full Text Available A probiotic strain Lactobacillus paracasei L9,which was isolated from human intestine, was investigated for its immunomodulatory activity in vivo. Results showed that L9 improved systemic immunity by enhancing the phagocytic activity of peritoneal macrophages, the proliferation ratio of splenocytes, the IgG level in the serum and the level of IgA in the mucosa. Further, L9induced theTh1-polarized immune response by elevating the IFN-γ/IL-4 ratio in the mucosa. This effect was confirmed by the enhanced IL-12-inducing activity of macrophages after in vitro stimulation of L9. Also detected was increased expression of TLR-2mRNA in the mucosa. We predict that L9 could enhance innate immunity by activating TLR-2 in the mucosa, and enhance acquired immunity by promoting Th1 polarization through induced production of IL-12 by macrophages.

  10. Role of Activin A in Immune Response to Breast Cancer

    Science.gov (United States)

    2014-12-01

    Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014-1022, 2013 10. Ji R-R, Chasalow SD, Wang L, et al: An immune... cells also generate reactive oxygen and nitrogen species that modify the chemokine and antigen receptors on CTLs both in the lymphoid organs and in the... cells . endogenous, evolutionarily conserved intracellular molecules that are released upon necrotic cell death. By linking the innate and adaptive immune

  11. Children developing asthma by school-age display aberrant immune responses to pathogenic airway bacteria as infants

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Pedersen, Susanne Brix; Thysen, Anna Hammerich

    2014-01-01

    Asthma is a highly prevalent chronic lung disease that commonly originates in early childhood. Colonisation of neonatal airways with the pathogenic bacterial strains H. influenzae, M. catarrhalis and S. pneumoniae is associated with increased risk of later childhood asthma. We hypothesized that c...... that children developing asthma have an abnormal immune response to pathogenic bacteria in infancy. We aimed to assess the bacterial immune response in asymptomatic infants and the association with later development of asthma by age 7 years.......Asthma is a highly prevalent chronic lung disease that commonly originates in early childhood. Colonisation of neonatal airways with the pathogenic bacterial strains H. influenzae, M. catarrhalis and S. pneumoniae is associated with increased risk of later childhood asthma. We hypothesized...

  12. Chemokine-mediated immune responses in the female genital tract mucosa.

    Science.gov (United States)

    Deruaz, Maud; Luster, Andrew D

    2015-04-01

    The genital tract mucosa is the site where sexually transmitted infections gain entry to the host. The immune response at this site is thus critical to provide innate protection against pathogens that are seen for the very first time as well as provide long-term pathogen-specific immunity, which would be required for an effective vaccine against sexually transmitted infection. A finely regulated immune response is therefore required to provide an effective barrier against pathogens without compromising the capacity of the genital tract to allow for successful conception and fetal development. We review recent developments in our understanding of the immune response in the female genital tract to infectious pathogens, using herpes simplex virus-2, human immunodeficiency virus-1 and Chlamydia trachomatis as examples, with a particular focus on the role of chemokines in orchestrating immune cell migration necessary to achieve effective innate and adaptive immune responses in the female genital tract.

  13. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV

    Directory of Open Access Journals (Sweden)

    Edgar Rascón-Castelo

    2015-11-01

    Full Text Available The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV. We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC. Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein than against nsp (nsp2. In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed.

  14. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α-Galactosylceramide-Stimulated Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    2013-01-01

    Full Text Available Natural killer dendritic cells (NKDCs possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT cells is required for the anti-tumor immune responses that are elicited by α-galactosylceramide (α-GC in mice. The rapid and strong expression of interferon-γ by NKDCs after α-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α-GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  15. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences.

    Science.gov (United States)

    Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis

    2017-02-01

    Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Hygiene and other early childhood influences on the subsequent function of the immune system.

    Science.gov (United States)

    Rook, Graham A W; Lowry, Christopher A; Raison, Charles L

    2015-08-18

    The immune system influences brain development and function. Hygiene and other early childhood influences impact the subsequent function of the immune system during adulthood, with consequences for vulnerability to neurodevelopmental and psychiatric disorders. Inflammatory events during pregnancy can act directly to cause developmental problems in the central nervous system (CNS) that have been implicated in schizophrenia and autism. The immune system also acts indirectly by "farming" the intestinal microbiota, which then influences brain development and function via the multiple pathways that constitute the gut-brain axis. The gut microbiota also regulates the immune system. Regulation of the immune system is crucial because inflammatory states in pregnancy need to be limited, and throughout life inflammation needs to be terminated completely when not required; for example, persistently raised levels of background inflammation during adulthood (in the presence or absence of a clinically apparent inflammatory stimulus) correlate with an increased risk of depression. A number of factors in the perinatal period, notably immigration from rural low-income to rich developed settings, caesarean delivery, breastfeeding and antibiotic abuse have profound effects on the microbiota and on immunoregulation during early life that persist into adulthood. Many aspects of the modern western environment deprive the infant of the immunoregulatory organisms with which humans co-evolved, while encouraging exposure to non-immunoregulatory organisms, associated with more recently evolved "crowd" infections. Finally, there are complex interactions between perinatal psychosocial stressors, the microbiota, and the immune system that have significant additional effects on both physical and psychiatric wellbeing in subsequent adulthood. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights

  17. Evolution of the Immune Response to Chronic Airway Colonization with Aspergillus fumigatus Hyphae.

    Science.gov (United States)

    Urb, Mirjam; Snarr, Brendan D; Wojewodka, Gabriella; Lehoux, Mélanie; Lee, Mark J; Ralph, Benjamin; Divangahi, Maziar; King, Irah L; McGovern, Toby K; Martin, James G; Fraser, Richard; Radzioch, Danuta; Sheppard, Donald C

    2015-09-01

    Airway colonization by the mold Aspergillus fumigatus is common in patients with underlying lung disease and is associated with chronic airway inflammation. Studies probing the inflammatory response to colonization with A. fumigatus hyphae have been hampered by the lack of a model of chronic colonization in immunocompetent mice. By infecting mice intratracheally with conidia embedded in agar beads (Af beads), we have established an in vivo model to study the natural history of airway colonization with live A. fumigatus hyphae. Histopathological examination and galactomannan assay of lung homogenates demonstrated that hyphae exited beads and persisted in the lungs of mice up to 28 days postinfection without invasive disease. Fungal lesions within the airways were surrounded by a robust neutrophilic inflammatory reaction and peribronchial infiltration of lymphocytes. Whole-lung cytokine analysis from Af bead-infected mice revealed an increase in proinflammatory cytokines and chemokines early in infection. Evidence of a Th2 type response was observed only early in the course of colonization, including increased levels of interleukin-4 (IL-4), elevated IgE levels in serum, and a mild increase in airway responsiveness. Pulmonary T cell subset analysis during infection mirrored these results with an initial transient increase in IL-4-producing CD4(+) T cells, followed by a rise in IL-17 and Foxp3(+) cells by day 14. These results provide the first report of the evolution of the immune response to A. fumigatus hyphal colonization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Isotope-based immunological techniques. Their use in assessment of immune competence and the study of immune responses to pathogens

    International Nuclear Information System (INIS)

    Duffus, W.P.H.

    1984-01-01

    The influence of isotope-based techniques on both assessment of immune competence and immune response to pathogens is discussed. Immunodeficiencies acquired as a result of factors like malnutrition and concomitant disease can severely affect not only attempts to intensify and improve production but also successful immune response against important vaccines such as rinderpest and foot-and-mouth disease. Isotope-based techniques, with their accuracy, speed and small sample volume, are ideally suited for assessing immunocompetence. One of the main drawbacks remains antigen purity, an area where research should now be concentrated. Lymphocyte transformation is widely used to assess cell-mediated immuno-competence but techniques to assess biological functions such as phagocytosis and cell-mediated cytotoxicity could more usefully reflect immune status. These latter techniques utilize isotopes such as 3 H, 14 C, 32 P and 125 I. Investigation of specific cell-mediated immune response often requires a labelled target. Suitable isotopes such as 51 Cr, 99 Tcsup(m), 75 Se and 3 H are compared for their capacity to label both mammalian and parasite targets. Suggestions are made on a number of areas of research that might usefully be encouraged and supported in order to improve applied veterinary immunology in tropical countries. (author)

  19. Effects of Stressor Controllability on Acute Stress Responses: Cardiovascular, Neuroendocrine, and Immune Responses

    OpenAIRE

    磯和, 勅子; Isowa, Tokiko

    2008-01-01

    This thesis is concerned with the effects of controllability over acute stressors on psychological and physiological responses intermediated by immune, cardiovascular, neuroendocrine systems. The effects of stressor controllability have been examined in animal studies based on the learned helplessness theory. However, there were few studies in human. Especially, there were remarkably few studies that examined the effects of stressor controllability on immunological system. In addition, result...

  20. Estradiol and Progesterone Strongly Inhibit the Innate Immune Response of Mononuclear Cells in Newborns ▿

    Science.gov (United States)

    Giannoni, Eric; Guignard, Laurence; Knaup Reymond, Marlies; Perreau, Matthieu; Roth-Kleiner, Matthias; Calandra, Thierry; Roger, Thierry

    2011-01-01

    Newborns are particularly susceptible to bacterial infections due to qualitative and quantitative deficiencies of the neonatal innate immune system. However, the mechanisms underlying these deficiencies are poorly understood. Given that fetuses are exposed to high concentrations of estradiol and progesterone during gestation and at time of delivery, we analyzed the effects of these hormones on the response of neonatal innate immune cells to endotoxin, bacterial lipopeptide, and Escherichia coli and group B Streptococcus, the two most common causes of early-onset neonatal sepsis. Here we show that at concentrations present in umbilical cord blood, estradiol and progesterone are as powerful as hydrocortisone for inhibition of cytokine production by cord blood mononuclear cells (CBMCs) and newborn monocytes. Interestingly, CBMCs and newborn monocytes are more sensitive to the effects of estradiol and progesterone than adult peripheral blood mononuclear cells and monocytes. This increased sensitivity is associated with higher expression levels of estrogen and membrane progesterone receptors but is independent of a downregulation of Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response gene 88 in newborn cells. Estradiol and progesterone mediate their anti-inflammatory activity through inhibition of the NF-κB pathway but not the mitogen-activated protein kinase pathway in CBMCs. Altogether, these results suggest that elevated umbilical cord blood concentrations of estradiol and progesterone acting on mononuclear cells expressing high levels of steroid receptors contribute to impair innate immune responses in newborns. Therefore, intrauterine exposure to estradiol and progesterone may participate in increasing susceptibility to infection during the neonatal period. PMID:21518785

  1. Immune Regulator MCPIP1 Modulates TET Expression during Early Neocortical Development

    Directory of Open Access Journals (Sweden)

    Huihui Jiang

    2016-09-01

    Full Text Available MCPIP1 is a recently identified immune regulator that plays critical roles in preventing immune disorders, and is also present in the brain. Currently an unresolved question remains as to how MCPIP1 performs its non-immune functions in normal brain development. Here, we report that MCPIP1 is abundant in neural progenitor cells (NPCs and newborn neurons during the early stages of neurogenesis. The suppression of MCPIP1 expression impairs normal neuronal differentiation, cell-cycle exit, and concomitant NPC proliferation. MCPIP1 is important for maintenance of the NPC pool. Notably, we demonstrate that MCPIP1 reduces TET (TET1/TET2/TET3 levels and then decreases 5-hydroxymethylcytosine levels. Furthermore, the MCPIP1 interaction with TETs is involved in neurogenesis and in establishing the proper number of NPCs in vivo. Collectively, our findings not only demonstrate that MCPIP1 plays an important role in early cortical neurogenesis but also reveal an unexpected link between neocortical development, immune regulators, and epigenetic modification.

  2. Early-Life Food Nutrition, Microbiota Maturation and Immune Development Shape Life-Long Health.

    Science.gov (United States)

    Zhou, Xiaoli; Du, Lina; Shi, Ronghua; Chen, Zhidong; Zhou, Yiming; Li, Zongjie

    2018-06-06

    The current knowledge about early-life nutrition and environmental factors that affect the interaction between the symbiotic microbiota and the host immune system has demonstrated novel regulatory target for treating allergic diseases, autoimmune disorders and metabolic syndrome. Various kinds of food nutrients (such as dietary fiber, starch, polyphenols and proteins) can provide energy resources for both intestinal microbiota and the host. The indigestible food components are fermented by the indigenous gut microbiota to produce diverse metabolites, including short-chain fatty acids, bile acids and trimethylamine-N-oxide, which can regulate the host metabolized physiology, immunity homeostasis and health state. Therefore it is commonly believed early-life perturbation of the microbial community structure and the dietary nutrition interference on the child mucosal immunity contribute to the whole life susceptibility to chronic diseases. In all, the combined interrelationship between food ingredients nutrition, intestinal microbiota configurations and host system immunity provides new therapeutic targets to treat various kinds of pathogenic inflammations and chronic diseases.

  3. Hemagglutinating virus of Japan envelope (HVJ-E) can enhance the immune responses of swine immunized with killed PRRSV vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhihong [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); China Institute of Veterinary Drug Control, Beijing 100081 (China); Zhang, Quan [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Wang, Zaishi [China Institute of Veterinary Drug Control, Beijing 100081 (China); Zhang, Zhongqiu [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); Veterinary Bureau, Ministry of Agriculture of the People' s Republic of China, Beijing 100125 (China); Guo, Pengju [Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangdong 510640 (China); Zhao, Deming, E-mail: zhaodm@cau.edu.cn [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer We investigated the immunoadjuvant effects of HVJ-E on killed PRRSV vaccine. Black-Right-Pointing-Pointer HVJ-E enhanced the humoral and cellular responses of the piglets to PRRSV. Black-Right-Pointing-Pointer It is suggested that HVJ-E could be developed as a new-type adjuvant for mammals. -- Abstract: Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically detrimental pig pathogen that causes significant losses for the pig industry. The immunostimulatory effects of hemagglutinating virus of Japan envelope (HVJ-E) in cancer therapy and the adjuvant efficacy of HVJ-E have been previously evaluated. The objective of this study was to investigate the adjuvant effects of HVJ-E on immunization with killed PRRSV vaccine, and to evaluate the protective effects of this immunization strategy against virulent PRRSV infection in piglets. Next, the PRRSV-specific antibody response, lymphocyte proliferation, PRRSV-specific IL-2, IL-10 and IFN-{gamma} production, and the overall protection efficacy were evaluated to assess the immune responses of the piglets. The results showed that the piglets inoculated simultaneously with killed PRRSV vaccine and HVJ-E had a significantly stronger immune response than those inoculated with killed PRRSV vaccine alone. Our results suggest that HVJ-E could be employed as an effective adjuvant to enhance the humoral and cellular responses of piglets to PRRSV.

  4. Pathogen entrapment by transglutaminase--a conserved early innate immune mechanism.

    Directory of Open Access Journals (Sweden)

    Zhi Wang

    2010-02-01

    Full Text Available Clotting systems are required in almost all animals to prevent loss of body fluids after injury. Here, we show that despite the risks associated with its systemic activation, clotting is a hitherto little appreciated branch of the immune system. We compared clotting of human blood and insect hemolymph to study the best-conserved component of clotting systems, namely the Drosophila enzyme transglutaminase and its vertebrate homologue Factor XIIIa. Using labelled artificial substrates we observe that transglutaminase activity from both Drosophila hemolymph and human blood accumulates on microbial surfaces, leading to their sequestration into the clot. Using both a human and a natural insect pathogen we provide functional proof for an immune function for transglutaminase (TG. Drosophila larvae with reduced TG levels show increased mortality after septic injury. The same larvae are also more susceptible to a natural infection involving entomopathogenic nematodes and their symbiotic bacteria while neither phagocytosis, phenoloxidase or-as previously shown-the Toll or imd pathway contribute to immunity. These results firmly establish the hemolymph/blood clot as an important effector of early innate immunity, which helps to prevent septic infections. These findings will help to guide further strategies to reduce the damaging effects of clotting and enhance its beneficial contribution to immune reactions.

  5. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosol...ic DNA recognition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic D

  6. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load,

  7. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  8. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available va Correia J. Vaccine. 2004 Dec 6;22 Suppl 1:S25-30. (.png) (.svg) (.html) (.csml) Show Innate immune responses during infection. Pub...medID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ,

  9. Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    NARCIS (Netherlands)

    Hagenaars, T J; Fischer, E A J; Jansen, C A; Rebel, J M J; Spekreijse, D; Vervelde, L; Backer, J A; de Jong, M.C.M.; Koets, A P

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β

  10. Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible Magnetic Fluids

    Science.gov (United States)

    2008-08-01

    SUBJECT TERMS Cancer therapy by localized immune response, Magneto -rehological Fluids 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...Metastasized Breast Cancer by Localized Therapy utilizing Biocompatible Magnetic Fluids PRINCIPAL INVESTIGATOR: Cahit Evrensel...2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy utilizing

  11. Effects of alcohol consumption on the allergen-specific immune response in mice

    DEFF Research Database (Denmark)

    Linneberg, Allan; Roursgaard, Martin; Hersoug, Lars-Georg

    2008-01-01

    There is evidence that chronic alcohol consumption impairs the T-helper 1 (Th1) lymphocyte-regulated cell-mediated immune response possibly favoring a Th2 deviation of the immune response. Moreover, a few epidemiological studies have linked alcohol consumption to allergen-specific IgE sensitization....

  12. Selected physiotherapeutic techniques and immune response in low back pain

    Directory of Open Access Journals (Sweden)

    Piotr Gawda

    2017-04-01

    Full Text Available Physiotherapy, as an element of medical rehabilitation, comprises such methods of function improvement as: massage, kinesiotherapy, physical therapy or manual therapy. In this area, medicine offers a wide range of treatment methods, practically at every stage of a patient’s recovery. Physiotherapy is used to enhance quality of life of people with disabilities, chronic diseases or after injuries, but also as a form of prevention of dysfunctions. The aim of the study  is to present the influence of physiotherapy of low back pain on factors of immune response based on literature review. Effectiveness of a given treatment is most easily noticeable in clinical practice. It is usually the patient who evaluates the efficiency of treatment, through experiencing less pain, easier performance of certain actions or overall better functioning in everyday life. Apart from registering the subjective experience of patients, the focus is on finding objective methods of evaluating effectiveness of physiotherapy and on attempts at scientific explanation of noticeable and perceptible influence of rehabilitation treatment. This also applies to the treatment of lumbar-sacral pain. The involvement of many inflammatory mediators such as nitric oxide, interleukins, matrix metalloproteinases, prostaglandin , tumor necrosis factor alpha and a group of cytokines. and a variety of cytokines have already been  identified in the dysfunction of this region.

  13. Balneotherapy, Immune System, and Stress Response: A Hormetic Strategy?

    Directory of Open Access Journals (Sweden)

    Isabel Gálvez

    2018-06-01

    Full Text Available Balneotherapy is a clinically effective complementary approach in the treatment of low-grade inflammation- and stress-related pathologies. The biological mechanisms by which immersion in mineral-medicinal water and the application of mud alleviate symptoms of several pathologies are still not completely understood, but it is known that neuroendocrine and immunological responses—including both humoral and cell-mediated immunity—to balneotherapy are involved in these mechanisms of effectiveness; leading to anti-inflammatory, analgesic, antioxidant, chondroprotective, and anabolic effects together with neuroendocrine-immune regulation in different conditions. Hormesis can play a critical role in all these biological effects and mechanisms of effectiveness. The hormetic effects of balneotherapy can be related to non-specific factors such as heat—which induces the heat shock response, and therefore the synthesis and release of heat shock proteins—and also to specific biochemical components such as hydrogen sulfide (H2S in sulfurous water and radon in radioactive water. Results from several investigations suggest that the beneficial effects of balneotherapy and hydrotherapy are consistent with the concept of hormesis, and thus support a role for hormesis in hydrothermal treatments.

  14. Autophagy in the immune response to tuberculosis: clinical perspectives.

    LENUS (Irish Health Repository)

    Ní Cheallaigh, C

    2011-06-01

    A growing body of evidence points to autophagy as an essential component in the immune response to tuberculosis. Autophagy is a direct mechanism of killing intracellular Mycobacterium tuberculosis and also acts as a modulator of proinflammatory cytokine secretion. In addition, autophagy plays a key role in antigen processing and presentation. Autophagy is modulated by cytokines; it is stimulated by T helper type 1 (Th1) cytokines such as tumour necrosis factor (TNF)-α and interferon (IFN)-γ, and is inhibited by the Th2 cytokines interleukin (IL)-4 and IL-13 and the anti-inflammatory cytokine IL-10. Vitamin D, via cathelicidin, can also induce autophagy, as can Toll-like receptor (TLR)-mediated signals. Autophagy-promoting agents, administered either locally to the lungs or systemically, could have a clinical application as adjunctive treatment of drug-resistant and drug-sensitive tuberculosis. Moreover, vaccines which effectively induce autophagy could be more successful in preventing acquisition or reactivation of latent tuberculosis.

  15. The placental barrier in allogenic immune conflict in spontaneous early abortions: immunohistochemical and morphological study.

    Science.gov (United States)

    Gurevich, Pavel; Elhayany, Asher; Milovanov, Andrey P; Halperin, Reuvit; Kaganovsky, Ella; Zusman, Itzhak; Ben-Hur, Herzel

    2007-11-01

    Morphologic changes in the placental barrier in spontaneous early abortions under the maternal-embryonic immune conflict, and the role of maternal immunoglobulins (Igs) in these changes. We examined chorionic villi and other tissues obtained from 54 aborts between weeks 3.5 and 8 of pregnancy. Material was divided into two groups. Group 1 (control) contained 15 medically recommended and spontaneous early aborts with no signs of inflammations or pathologic immune processes. Group 2 contained 39 spontaneous early aborts with acute chorionic villitis. Immunohistochemical and morphometric methods were used to study the Igs, different types of immunocompetent cells, and apoptosis-related components of the placental barrier. Acute villitis was found to be characterized by the destruction of all components of the chorionic villi, thrombovasculitis with apoptosis of the endothelium of capillaries and erythroblasts, mucous swelling of the basal membrane, and coagulation of the blood proteins. Due to destruction of the capillaries, the number of avasculate villi increased, and the average number of capillaries per villus decreased. The extremely high number of phagolysosomes with IgG and IgA in the villous monocytes in the group 2 indicates an increase in the phagocytic activity of monocytes against maternal Igs and may reflect the presence of mother-embryo immune conflict. Apoptosis of monocytes and a high number of promonocytes were seen accompanied by a high concentration of p53 protein. A large disturbance in the trophoblast occurred with disappearance of bcl-2 and the appearance of Fas ligand. Massive destruction of maternal Igs in embryonic monocytes and acute villitis in the placental barrier are manifested during the mother-embryo immune conflict, and this may be one of the reasons of spontaneous early abortions.

  16. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva

    Science.gov (United States)

    CH Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-01-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates. PMID:27192936

  17. The role of radiotherapy for the induction of antitumor immune responses

    International Nuclear Information System (INIS)

    Multhoff, G.; Helmholtz-Zentrum Muenchen; Gaipl, U.S.; Niedermann, G.

    2012-01-01

    Effective radiotherapy is aimed to control the growth of the primary carcinoma and to induce a long-term specific antitumor immune response against the primary tumor, recurrence and metastases. The contribution covers the following issues: T cells and tumor specific immune responses, dendritic cells (DCs) start adaptive immune responses, NK (natural killer) cells for HLA independent tumor control, abscopal effects of radiotherapy, combination of radiotherapy and immune therapy, radiotherapy contribution to the induction of immunogenic cell death, combinability of radiotherapy and DC activation, combinability of radiotherapy and NK cell therapy. It turns out that the combination of radio-chemotherapy and immune therapy can change the microenvironment initiating antitumor immune reactions that inhibit the recurrence risk and the development of metastases.

  18. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract.

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    Full Text Available Salmonella enterica serovar Typhimurium (ST is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux in the GIT of mice pretreated with streptomycin. Photonic emission (PE was measured in GIT extracts (stomach, small intestine, cecum and colon at various time periods post-infection (PI. PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1 the faster elimination of ST-lux in the feces, and (2 reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1 increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2 elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.

  19. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract.

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Munro, Patrick; Boyer, Laurent; Anty, Rodolphe; Imbert, Véronique; Terciolo, Chloé; André, Fréderic; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean-François; Czerucka, Dorota

    2014-01-01

    Salmonella enterica serovar Typhimurium (ST) is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT) and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI) was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux) in the GIT of mice pretreated with streptomycin. Photonic emission (PE) was measured in GIT extracts (stomach, small intestine, cecum and colon) at various time periods post-infection (PI). PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1) the faster elimination of ST-lux in the feces, and (2) reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1) increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2) elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.

  20. Potential use of salivary markers for longitudinal monitoring of inflammatory immune responses to vaccination

    NARCIS (Netherlands)

    Lim, Pei Wen; Garssen, Johan; Sandalova, Elena

    2016-01-01

    Vaccination, designed to trigger a protective immune response against infection, is a trigger for mild inflammatory responses. Vaccination studies can address the question of inflammation initiation, levels, and resolution as well as its regulation for respective studied pathogens. Such studies

  1. CHRONOVAC VOYAGEUR: A study of the immune response to yellow fever vaccine among infants previously immunized against measles.

    Science.gov (United States)

    Goujon, Catherine; Gougeon, Marie-Lise; Tondeur, Laura; Poirier, Béatrice; Seffer, Valérie; Desprès, Philippe; Consigny, Paul-Henri; Vray, Muriel

    2017-10-27

    For administration of multiple live attenuated vaccines, the Advisory Committee on Immunization Practices recommends either simultaneous immunization or period of at least 28days between vaccines, due to a possible reduction in the immune response to either vaccine. The main objective of this study was to compare the immune response to measles (alone or combined with mumps and rubella) and yellow fever vaccines among infants aged 6-24months living in a yellow fever non-endemic country who had receivedmeasles and yellow fever vaccines before travelling to a yellow fever endemic area. A retrospective, multicenter case-control study was carried out in 7 travel clinics in the Paris area from February 1st 2011 to march 31, 2015. Cases were defined as infants immunized with the yellow fever vaccine and with the measles vaccine, either alone or in combination with mumps and rubella vaccine, with a period of 1-27days between each immunization. For each case, two controls were matched based on sex and age: a first control group (control 1) was defined as infants having received the measles vaccine and the yellow fever vaccine simultaneously; a second control group (control 2) was defined as infants who had a period of more than 27days between receiving the measles vaccine and yellow fever vaccine. The primary endpoint of the study was the percentage of infants with protective immunity against yellow fever, measured by the titer of neutralizing antibodies in a venous blood sample. One hundred and thirty-one infants were included in the study (62 cases, 50 infants in control 1 and 19 infants in control 2). Of these, 127 (96%) were shown to have a protective titer of yellow fever antibodies. All 4 infants without a protective titer of yellow fever antibodies were part of control group 1. The measles vaccine, alone or combined with mumps and rubella vaccines, appears to have no influence on humoral immune response to the yellow fever vaccine when administered between 1 and 27

  2. Salmonella Typhi Colonization Provokes Extensive Transcriptional Changes Aimed at Evading Host Mucosal Immune Defense During Early Infection of Human Intestinal Tissue

    Directory of Open Access Journals (Sweden)

    K.P. Nickerson

    2018-05-01

    Full Text Available Commensal microorganisms influence a variety of host functions in the gut, including immune response, glucose homeostasis, metabolic pathways and oxidative stress, among others. This study describes how Salmonella Typhi, the pathogen responsible for typhoid fever, uses similar strategies to escape immune defense responses and survive within its human host. To elucidate the early mechanisms of typhoid fever, we performed studies using healthy human intestinal tissue samples and “mini-guts,” organoids grown from intestinal tissue taken from biopsy specimens. We analyzed gene expression changes in human intestinal specimens and bacterial cells both separately and after colonization. Our results showed mechanistic strategies that S. Typhi uses to rearrange the cellular machinery of the host cytoskeleton to successfully invade the intestinal epithelium, promote polarized cytokine release and evade immune system activation by downregulating genes involved in antigen sampling and presentation during infection. This work adds novel information regarding S. Typhi infection pathogenesis in humans, by replicating work shown in traditional cell models, and providing new data that can be applied to future vaccine development strategies. Keywords: Typhoid fever, Salmonella, Snapwell™ system, Human tissue, Terminal ileum, Immune system, Innate immunity, Immune evasion, Host-pathogen interaction, Vaccine development, Intestinal organoids, Organoid monolayer

  3. Children with asthma by school age display aberrant immune responses to pathogenic airway bacteria as infants

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Pedersen, Susanne Brix; Thysen, Anna Hammerich

    2014-01-01

    childhood asthma. We hypothesized that children with asthma have an abnormal immune response to pathogenic bacteria in infancy. ObjectiveWe aimed to assess the bacterial immune response in asymptomatic infants and the association with later development of asthma by age 7 years. MethodsThe Copenhagen...... was assessed based on the pattern of cytokines produced and T-cell activation. ResultsThe immune response to pathogenic bacteria was different in infants with asthma by 7 years of age (P = .0007). In particular, prospective asthmatic subjects had aberrant production of IL-5 (P = .008), IL-13 (P = .057), IL-17...... (P = .001), and IL-10 (P = .028), whereas there were no differences in T-cell activation or peripheral T-cell composition. ConclusionsChildren with asthma by school age exhibited an aberrant immune response to pathogenic bacteria in infancy. We propose that an abnormal immune response to pathogenic...

  4. Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens.

    Science.gov (United States)

    Grayfer, Leon; Andino, Francisco De Jesús; Chen, Guangchun; Chinchar, Gregory V; Robert, Jacques

    2012-07-01

    Ranaviruses (RV, Iridoviridae) are large double-stranded DNA viruses that infect fish, amphibians and reptiles. For ecological and commercial reasons, considerable attention has been drawn to the increasing prevalence of ranaviral infections of wild populations and in aquacultural settings. Importantly, RVs appear to be capable of crossing species barriers of numerous poikilotherms, suggesting that these pathogens possess a broad host range and potent immune evasion mechanisms. Indeed, while some of the 95-100 predicted ranavirus genes encode putative evasion proteins (e.g., vIFα, vCARD), roughly two-thirds of them do not share significant sequence identity with known viral or eukaryotic genes. Accordingly, the investigation of ranaviral virulence and immune evasion strategies is promising for elucidating potential antiviral targets. In this regard, recombination-based technologies are being employed to knock out gene candidates in the best-characterized RV member, Frog Virus (FV3). Concurrently, by using animal infection models with extensively characterized immune systems, such as the African clawed frog, Xenopus laevis, it is becoming evident that components of innate immunity are at the forefront of virus-host interactions. For example, cells of the macrophage lineage represent important combatants of RV infections while themselves serving as targets for viral infection, maintenance and possibly dissemination. This review focuses on the recent advances in the understanding of the RV immune evasion strategies with emphasis on the roles of the innate immune system in ranaviral infections.

  5. Regulation of immune responses and tolerance: the microRNA perspective

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-01-01

    Summary Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/ or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. PMID:23550642

  6. F4+ ETEC infection and oral immunization with F4 fimbriae elicits an IL-17-dominated immune response.

    Science.gov (United States)

    Luo, Yu; Van Nguyen, Ut; de la Fe Rodriguez, Pedro Y; Devriendt, Bert; Cox, Eric

    2015-10-21

    Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. Porcine-specific ETEC strains possess different fimbrial subtypes of which F4 fimbriae are the most frequently associated with ETEC-induced diarrhea in piglets. These F4 fimbriae are potent oral immunogens that induce protective F4-specific IgA antibody secreting cells at intestinal tissues. Recently, T-helper 17 (Th17) cells have been implicated in the protection of the host against extracellular pathogens. However, it remains unknown if Th17 effector responses are needed to clear ETEC infections. In the present study, we aimed to elucidate if ETEC elicits a Th17 response in piglets and if F4 fimbriae trigger a similar response. F4(+) ETEC infection upregulated IL-17A, IL-17F, IL-21 and IL-23p19, but not IL-12 and IFN-γ mRNA expression in the systemic and mucosal immune system. Similarly, oral immunization with F4 fimbriae triggered a Th17 signature evidenced by an upregulated mRNA expression of IL-17F, RORγt, IL-23p19 and IL-21 in the peripheral blood mononuclear cells (PBMCs). Intriguingly, IL-17A mRNA levels were unaltered. To further evaluate this difference between systemic and mucosal immune responses, we assayed the cytokine mRNA profile of F4 fimbriae stimulated PBMCs. F4 fimbriae induced IL-17A, IL-17F, IL-22 and IL-23p19, but downregulated IL-17B mRNA expression. Altogether, these data indicate a Th17 dominated response upon oral immunization with F4 fimbriae and F4(+) ETEC infection. Our work also highlights that IL-17B and IL-17F participate in the immune response to protect the host against F4(+) ETEC infection and could aid in the design of future ETEC vaccines.

  7. Role of IL-12 and IFN-γ in immune response to toxoplasma gondii infection

    International Nuclear Information System (INIS)

    Moawad, M.A.F.; ElGawish, M.A.M.

    2004-01-01

    Interlenkin 12 (IL-12) is a potent immunoregulatory molecule that is critically involved in a wide range of diseases. In several murine models of intracellular infection, endogenous IL-12 has been shown to be crucial for the generation of a protective Th1 response in a primary infection for a intracellular pathogens. Interferon-gamma (IFN-γ) is also an important mediator of cellular immunity against microbial pathogens and tumor cells due to its potent capacity to activate macrophages for enhanced cytotoxicity. The aim of the present study is to evaluate the immune response to toxoplasma gondii after primary inflection (infected groups and secondary infection (re-infected groups for over 19 weeks (the time of the experiment). the evaluation was assessed by measurements of levels of IL-12 and IFN-γ using ELISA technique in the sera of these infected rats. The results demonstrated that the primary immune response induced a fluctuation in the levels of IL-12 in the sera of infected rats, which reached maximum value of 122.6 ±1.4 pg/ml after 15 weeks of primary infection. While, in the challenged groups (secondary immune response, re-infected groups) the levels of IL-12 were generally lower than that of the primary immune response. On the other hand, IFN-γ levels increased significantly in the secondary immune response (re-infected groups) as compared to primary immune response 9 infected groups) In conclusion, the results suggest that IL-12 might have a role in the defense mechanism against intracellular infection with T-gondii especially in primary immune response than in the secondary immune response. This is in contrast to IFN-γ that takes the up-hand in secondary immune response to T-gondii infection

  8. Coccidiosis Immunization: Effects of Mushroom and Herb Polysaccharides on Immune Responses of Chickens Infected with Eimeria Tenella

    NARCIS (Netherlands)

    Guo, F.C.; Kwakkel, R.P.; Williams, B.A.; Suo, X.; Li, W.K.; Verstegen, M.W.A.

    2005-01-01

    An experiment was conducted to investigate the effects of polysaccharide extracts (E) of two mushrooms, Lentinus edodes (LenE) and Tremella fuciformis (TreE), and an herb, Astragalus membranaceus (AstE), on the immune responses of chickens infected with Eimeria tenella. A total of 180 broiler

  9. [The humoral immune response in mice induced by recombinant Lactococcus lactis expressing HIV-1 gag].

    Science.gov (United States)

    Zhao, Xiaofei; Zhang, Cairong; Liu, Xiaojuan; Ma, Zhenghai

    2014-11-01

    To analyze the humoral immune response induced by recombinant Lactococcus lactis expressing HIV-1 gag in mice immunized orally, intranasally, subcutaneously or in the combined way of above three. Fifty BALB/c mice were randomly divided into 5 groups, 10 mice per group. The mice were immunized consecutively three times at two week intervals with 10(9) CFU of recombinant Lactococcus lactis expressing gag through oral, intranasal, subcutaneous administration or the mix of them. The mice that were immunized orally with Lactococcus lactis containing PMG36e served as a control group. The sera of mice were collected before primary immunization and 2 weeks after each immunization to detect the gag specific IgG by ELISA. Compared with the control group, the higher titer of serum gag specific IgG was detected in the four groups immunized with recombinant Lactococcus lactis expressing gag, and it was the highest in the mixed immunization group (PLactococcus lactis expressing gag can induce humoral immune response in mice by oral, intranasal, subcutaneous injection or the mix of them, and the mixed immunization can enhance the immune effects of Lactococcus lactis vector vaccine.

  10. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs

    Science.gov (United States)

    Persson, Josefine; Zhang, Yuan; Olafsdottir, Thorunn A.; Thörn, Karolina; Cairns, Tina M.; Wegmann, Frank; Sattentau, Quentin J.; Eisenberg, Roselyn J.; Cohen, Gary H.; Harandi, Ali M.

    2016-01-01

    Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes. PMID:28082979

  11. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs.

    Science.gov (United States)

    Persson, Josefine; Zhang, Yuan; Olafsdottir, Thorunn A; Thörn, Karolina; Cairns, Tina M; Wegmann, Frank; Sattentau, Quentin J; Eisenberg, Roselyn J; Cohen, Gary H; Harandi, Ali M

    2016-01-01

    Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes.

  12. Manipulating the in vivo immune response by targeted gene knockdown.

    Science.gov (United States)

    Lieberman, Judy

    2015-08-01

    Aptamers, nucleic acids selected for high affinity binding to proteins, can be used to activate or antagonize immune mediators or receptors in a location and cell-type specific manner and to enhance antigen presentation. They can also be linked to other molecules (other aptamers, siRNAs or miRNAs, proteins, toxins) to produce multifunctional compounds for targeted immune modulation in vivo. Aptamer-siRNA chimeras (AsiCs) that induce efficient cell-specific knockdown in immune cells in vitro and in vivo can be used as an immunological research tool or potentially as an immunomodulating therapeutic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    International Nuclear Information System (INIS)

    Martins, Estefania M.N.; Andrade, Antero S.R.; Resende, Maria Aparecida de; Reis, Bernardo S.; Goes, Alfredo M.

    2009-01-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - γ, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-γ production was maintained indicating that a Th1 pattern was dominant. For

  14. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Estefania M.N.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maresend@mono.icb.ufmg.br; Reis, Bernardo S.; Goes, Alfredo M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia], e-mail: goes@mono.icb.ufmg.br, e-mail: brsgarbi@mono.icb.ufmg.br

    2009-07-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - {gamma}, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-{gamma} production was maintained indicating that a Th1 pattern was

  15. Suppression of the primary immune response in rainbow trout, Salmo gairdneri, sublethally exposed to tritiated water during embryogenesis

    International Nuclear Information System (INIS)

    Strand, J.A.

    1975-01-01

    Antibody synthesis in response to vaccination with a 0.1 cc (1.8 x 10 8 cells/cc) intraperitoneally injected heat-killed strain of Flexibacter columnaris was employed to investigate the effect of tritium irradiation (0, 0.04, 0.4, 4.0 and 40.0 rads total dose for 20 days during embryogenesis) on development of the primary immune response in 5-month rainbow trout, Salmo gairdneri. Total serum protein measurements and electrophoretic separation of blood serum proteins followed by densitometric analyses were performed to assess the potential for qualitative and quantitative changes in blood serum components which conceivably accounted for suppressed immune responsiveness in tritium-irradiated fish. Data on the biological effects of tritium on early life stages in terms of hatchability, abnormality, latent mortality, and growth were also collected. A review of all experiments directed at determining the effects of early radiation exposure on the parameters of hatchability, incidence of abnormality, latent mortality and depressed growth, revealed considerable variation among similar treatments and indicated that significant effects at dose levels of 50 rads and below were not consistently demonstrated. While present experimental results demonstrated that the primary immune response in juvenile rainbow trout was significantly suppressed following embryonic exposure to tritium at essentially the 1.0 μCi/ml level, and perhaps at the 0.1 μCi/ml level, these concentrations are no less than 5 to 6 orders of magnitude above present levels for tritium in the aquatic environment

  16. Studies on immune responses to Epstein-Barr virus among A-bomb survivors

    International Nuclear Information System (INIS)

    Kusunoki, Y.; Kyoizumi, S.; Ozaki, K.; Cologne, J.B.; Akiyama, M.

    1992-01-01

    Previous studies revealed that reactivity of T-lymphocytes to phytohemag-glutinin and allo-antigens as well as the number of mature CD5 + T cells are decreased among atomic bomb survivors. Possible radiation effects were suggested for impairment of antibody production to certain type A influenza viruses and for an increased prevalence rate of hepatitis B virus surface antigen in sera among survivors. These findings lead to research of effects of A-bomb radiation on immune responses to certain ubiquitous viruses such as Epstein-Barr Virus. Reactivation of EBV induced by depression of immune competence might be reflected by changes in serum titers of these antibodies. Significant increases in titers of antiviral capsed antigen IgC or anti-early antigen (EA) IgC and frequent absence o.r low levels of anti- EBV-associated nuclear antigen antibodies were observed in immunologically compromised individuals. Without regard to diseases, occurrence of significant titers of anti-EA IgC in healthy sero-positive individuals has been ascribed to reactivation of the viral carrier stage. This study examines serum titers of these anti-EBV antibodies to investigate whether any alteration of immune competence to the virus was detectable in relation to the previous A-bomb radiation exposure. Also, an attempt was made to evaluated T-cell responses to EBV in A-bomb survivors for the purpose of understanding involvement of T-cell function in reactivation of the virus, using the precursor frequency analysis of cytotoxic lymphocytes against autologous B cell transformed in vitro with EBV. (author). 13 refs., 2 figs., 1 tab

  17. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection

    Science.gov (United States)

    Cardoso, Mariana S.; Reis-Cunha, João Luís; Bartholomeu, Daniella C.

    2016-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host’s immune system, using strategies that can be traced to the parasite’s life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as glycosylphosphatidylinositol-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the coexpression of several related, but not identical, epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi

  18. HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin

    Science.gov (United States)

    Amador-Cañizares, Yalena; Martínez-Donato, Gillian; Álvarez-Lajonchere, Liz; Vasallo, Claudia; Dausá, Mariacarla; Aguilar-Noriega, Daylen; Valenzuela, Carmen; Raíces, Ivette; Dubuisson, Jean; Wychowski, Czeslaw; Cinza-Estévez, Zurina; Castellanos, Marlén; Núñez, Magdalys; Armas, Anny; González, Yaimé; Revé, Ismariley; Guerra, Ivis; Pérez Aguiar, Ángel; Dueñas-Carrera, Santiago

    2014-01-01

    AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230. METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided. RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response. CONCLUSION: CIGB-230, combined with IFN

  19. Costs of mounting an immune response during pregnancy in a lizard.

    Science.gov (United States)

    Meylan, Sandrine; Richard, Murielle; Bauer, Sophie; Haussy, Claudy; Miles, Donald

    2013-01-01

    Immune defenses are of great benefit to hosts, but reducing the impact of infection by mounting an immune response also entails costs. However, the physiological mechanisms that generate the costs of an immune response remain poorly understood. Moreover, the majority of studies investigating the consequences of an immune challenge in vertebrates have been conducted on mammals and birds. The aim of this study is to investigate the physiological costs of mounting an immune response during gestation in an ectothermic species. Indeed, because ectothermic species are unable to internally regulate their body temperature, the apportionment of resources to homeostatic activities in ectothermic species can differ from that in endothermic species. We conducted this study on the common lizard Zootoca vivipara. We investigated the costs of mounting an immune response by injecting females with sheep red blood cells and quantified the consequences to reproductive performance (litter mass and success) and physiological performance (standard metabolic rate, endurance, and phytohemagglutinin response). In addition, we measured basking behavior. Our analyses revealed that mounting an immune response affected litter mass, physiological performance, and basking behavior. Moreover, we demonstrated that the modulation of an immune challenge is impacted by intrinsic factors, such as body size and condition.

  20. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations.

    Science.gov (United States)

    Marchandeau, Stéphane; Pontier, Dominique; Guitton, Jean-Sébastien; Letty, Jérôme; Fouchet, David; Aubineau, Jacky; Berger, Francis; Léonard, Yves; Roobrouck, Alain; Gelfi, Jacqueline; Peralta, Brigitte; Bertagnoli, Stéphane

    2014-03-04

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen.

  1. Qualitative and quantitative evaluation of donkeys responses to immunization by rabbits' IgG

    International Nuclear Information System (INIS)

    Hassan, A. M. E.; Saeed, A. M.

    2012-12-01

    In this study two apparently healthy donkeys were immunized with highly pure rabbit's 1gG using a revised protocol. Qualitative test using the same immuno gen was done as a primary test to eva lute the immune system response. However, the same 1gG was iodinated with 1 25I using chloramine T method and the labeled 1gG was used to quantitatively study the immune response. The two donkeys showed good response with the younger one having the best response. The obtained donkey anti rabbit sera was used as separating agent for RIA assay for human PRL. (Author)

  2. Competition for Antigen between Th1 and Th2 Responses Determines the Timing of the Immune Response Switch during Mycobaterium avium Subspecies paratuberulosis Infection in Ruminants

    Science.gov (United States)

    Magombedze, Gesham; Eda, Shigetoshi; Ganusov, Vitaly V.

    2014-01-01

    Johne's disease (JD), a persistent and slow progressing infection of ruminants such as cows and sheep, is caused by slow replicating bacilli Mycobacterium avium subspecies paratuberculosis (MAP) infecting macrophages in the gut. Infected animals initially mount a cell-mediated CD4 T cell response against MAP which is characterized by the production of interferon (Th1 response). Over time, Th1 response diminishes in most animals and antibody response to MAP antigens becomes dominant (Th2 response). The switch from Th1 to Th2 response occurs concomitantly with disease progression and shedding of the bacteria in feces. Mechanisms controlling this Th1/Th2 switch remain poorly understood. Because Th1 and Th2 responses are known to cross-inhibit each other, it is unclear why initially strong Th1 response is lost over time. Using a novel mathematical model of the immune response to MAP infection we show that the ability of extracellular bacteria to persist outside of macrophages naturally leads to switch of the cellular response to antibody production. Several additional mechanisms may also contribute to the timing of the Th1/Th2 switch including the rate of proliferation of Th1/Th2 responses at the site of infection, efficiency at which immune responses cross-inhibit each other, and the rate at which Th1 response becomes exhausted over time. Our basic model reasonably well explains four different kinetic patterns of the Th1/Th2 responses in MAP-infected sheep by variability in the initial bacterial dose and the efficiency of the MAP-specific T cell responses. Taken together, our novel mathematical model identifies factors of bacterial and host origin that drive kinetics of the immune response to MAP and provides the basis for testing the impact of vaccination or early treatment on the duration of infection. PMID:24415928

  3. The immune response of the human brain to abdominal surgery

    DEFF Research Database (Denmark)

    Forsberg, Anton; Cervenka, Simon; Jonsson Fagerlund, Malin

    2017-01-01

    OBJECTIVE: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans....... This study examines the short- and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. METHODS: Eight males undergoing prostatectomy under general...... anesthesia were included. Prior to surgery (baseline), at postoperative days 3 to 4, and after 3 months, patients were examined using [11C]PBR28 brain PET imaging to assess brain immune cell activation. Concurrently, systemic inflammatory biomarkers, ex vivo blood tests on immunoreactivity...

  4. Nutritional modulation of the immune response in poultry

    Science.gov (United States)

    Economic efficiency demanded by the poultry industry has pushed selection towards high production with improved feed conversion ratios (FCR) and high yield; however, selection based heavily on growth characteristics and other phenotypic traits has adversely affected immune competence. Despite incre...

  5. Immune responses to influenza virus and its correlation to age and inherited factors

    Directory of Open Access Journals (Sweden)

    Azadeh Bahadoran

    2016-11-01

    Full Text Available Influenza viruses belong to the family Orthomyxoviridae of enveloped viruses and are an important cause of respiratory infections worldwide. The influenza virus is able to infect a wide variety species as diverse as poultry, marine, pigs, horses and humans. Upon infection with influenza virus the innate immunity plays a critical role in efficient and rapid control of viral infections as well as in adaptive immunity initiation. The humoral immune system produces antibodies against different influenza antigens, of which the HA-specific antibody is the most important for neutralization of the virus and thus prevention of illness. Cell mediated immunity including CD4+ helper T cells and CD8+ cytotoxic T cells are the other arms of adaptive immunity induced upon influenza virus infection. The complex inherited factors and age related changes are associated with the host immune responses. Here, we review the different components of immune responses against influenza virus. Additionally, the correlation of the immune response to age and inherited factors has been discussed. These determinations lead to a better understanding of the limitations of immune responses for developing improved vaccines to control influenza virus infection.

  6. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    Directory of Open Access Journals (Sweden)

    Hong Zhong

    2018-01-01

    Full Text Available In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  7. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    Science.gov (United States)

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  8. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.

    Science.gov (United States)

    Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.

  9. Preexisting Salmonella-specific immunity interferes with the subsequent development of immune responses against the Salmonella strains delivering H9N2 hemagglutinin.

    Science.gov (United States)

    Hajam, Irshad Ahmed; Lee, John Hwa

    2017-06-01

    Recombinant Salmonella strains expressing foreign heterologous antigens have been extensively studied as promising live vaccine delivery vehicles. In this study, we constructed attenuated smooth (S-HA) and rough (R-HA) Salmonella strains expressing hemagglutinin (HA) of H9N2, a low pathogenic avian influenza A virus. We then investigated the HA-specific immune responses following oral immunization with either S-HA or R-HA strain in chicken model. We further examined the effects of the preexisting anti-Salmonella immunity on the subsequent elicitation of the HA and the Salmonella ompA specific immune responses. Our results showed that primary immunization with either the S-HA or the R-HA strain elicited comparable HA-specific immune responses and the responses were significantly (pSalmonella vector control. When chickens were pre-immunized with the smooth Salmonella carrier alone and then vaccinated with either S-HA or R-HA strain 3, 6 and 9 weeks later, respectively, significant reductions were seen for HA-specific immune responses at week 6, a point which corresponded to the peak of the primary Salmonella-specific antibody responses. No reductions were seen at week 3 and 9, albeit, the HA-specific immune responses were boosted at week 9, a point which corresponded to the lowest primary Salmonella-specific antibody responses. The ompA recall responses remain refractory at week 3 and 6 following deliberate immunization with the carrier strain, but were significantly (pSalmonella immunity inhibits antigen-specific immune responses and this effect could be avoided by carefully selecting the time point when carrier-specific immune responses are relatively low. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma.

    Science.gov (United States)

    Dhabhar, Firdaus S; Saul, Alison N; Daugherty, Christine; Holmes, Tyson H; Bouley, Donna M; Oberyszyn, Tatiana M

    2010-01-01

    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposure would enhance protective immunity and increase resistance to SCC. Control and short-term stress groups were treated identically except that the short-term stress group was restrained (2.5h) before each of nine UV-exposure sessions (minimum erythemal dose, 3-times/week) during weeks 4-6 of the 10-week UV exposure protocol. Tumors were measured weekly, and tissue collected at weeks 7, 20, and 32. Chemokine and cytokine gene expression was quantified by real-time PCR, and CD4+ and CD8+ T cells by flow cytometry and immunohistochemistry. Compared to controls, the short-term stress group showed greater cutaneous T-cell attracting chemokine (CTACK)/CCL27, RANTES, IL-12, and IFN-gamma gene expression at weeks 7, 20, and 32, higher skin infiltrating T cell numbers (weeks 7 and 20), lower tumor incidence (weeks 11-20) and fewer tumors (weeks 11-26). These results suggest that activation of short-term stress physiology increased chemokine expression and T cell trafficking and/or function during/following UV exposure, and enhanced Type 1 cytokine-driven cell-mediated immunity that is crucial for resistance to SCC. Therefore, the physiological fight-or-flight stress response and its adjuvant-like immuno-enhancing effects, may provide a novel and important mechanism for enhancing immune system mediated tumor-detection/elimination that merits further investigation.

  11. Lack of mucosal immune reconstitution during prolonged treatment of acute and early HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Saurabh Mehandru

    2006-12-01

    Full Text Available During acute and early HIV-1 infection (AEI, up to 60% of CD4(+ T cells in the lamina propria of the lower gastrointestinal (GI tract are lost as early as 2-4 wk after infection. Reconstitution in the peripheral blood during therapy with highly active antiretroviral therapy (HAART is well established. However, the extent of immune reconstitution in the GI tract is unknown.Fifty-four AEI patients and 18 uninfected control participants underwent colonic biopsy. Forty of the 54 AEI patients were followed after initiation of antiretroviral therapy (18 were studied longitudinally with sequential biopsies over a 3-y period after beginning HAART, and 22 were studied cross sectionally after 1-7 y of uninterrupted therapy. Lymphocyte subsets, markers of immune activation and memory in the peripheral blood and GI tract were determined by flow cytometry and immunohistochemistry. In situ hybridization was performed in order to identify persistent HIV-1 RNA expression. Of the patients studied, 70% maintained, on average, a 50%-60% depletion of lamina propria lymphocytes despite 1-7 y of HAART. Lymphocytes expressing CCR5 and both CCR5 and CXCR4 were persistently and preferentially depleted. Levels of immune activation in the memory cell population, CD45RO+ HLA-DR+, returned to levels seen in the uninfected control participants in the peripheral blood, but were elevated in the GI tract of patients with persistent CD4+ T cell depletion despite therapy. Rare HIV-1 RNA-expressing cells were detected by in situ hybridization.Apparently suppressive treatment with HAART during acute and early infection does not lead to complete immune reconstitution in the GI mucosa in the majority of patients studied, despite immune reconstitution in the peripheral blood. Though the mechanism remains obscure, the data suggest that there is either viral or immune-mediated accelerated T cell destruction or, possibly, alterations in T cell homing to the GI tract. Although clinically

  12. The Host Immune Response to Streptococcus pneumoniae: Bridging Innate and Adaptive Immunity

    Science.gov (United States)

    2006-07-06

    P.J. (1989) Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro. Infect. Immun. 57: 2006-2013. Stoop, J.N., van der Molen ...antibiotics. Clin. Microbiol. Rev. 3: 171-196. Knapp, S., Wieland, C.W., van ’t Veer, C., Takeuchi, O., Akira, S., Florquin, S., and van der Poll...R.G., Baan, C.C., van der Laan, L.J., Kuipers, E.J., Kusters, J.G., and Janssen, H.L. (2005) Regulatory T cells contribute to the impaired immune

  13. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Utke, Katrin; Kock, Holger; Schuetze, Heike

    2008-01-01

    injection site rather than to injection sites of heterologous vaccines, suggesting the antigen specificity of homing. By demonstrating CMC responses to distinct viral proteins and homing in rainbow trout, these results substantially contribute to the understanding of the teleost immune system.......To identify viral proteins that induce cell-mediated cytotoxicity (CMC) against viral hemorrhagic septicemia virus (VHSV)-infected cells, rainbow trout were immunized with DNA vectors encoding the glycoprotein G or the nucleocapsid protein N of VHSV. The G protein was a more potent trigger...... of cytotoxic cells than the N protein. Peripheral blood leukocytes (PBL) isolated from trout immunized against the G protein killed both VHSV-infected MHC class I matched (RTG-2) and VHSV-infected xenogeneic (EPC) target cells, suggesting the involvement of both cytotoxic T lymphocytes (CTL) and NK cells...

  14. Innate immune responses to gut microbiota differ between oceanic and freshwater threespine stickleback populations

    Directory of Open Access Journals (Sweden)

    Kathryn Milligan-Myhre

    2016-02-01

    Full Text Available Animal hosts must co-exist with beneficial microbes while simultaneously being able to mount rapid, non-specific, innate immune responses to pathogenic microbes. How this balance is achieved is not fully understood, and disruption of this relationship can lead to disease. Excessive inflammatory responses to resident microbes are characteristic of certain gastrointestinal pathologies such as inflammatory bowel disease (IBD. The immune dysregulation of IBD has complex genetic underpinnings that cannot be fully recapitulated with single-gene-knockout models. A deeper understanding of the genetic regulation of innate immune responses to resident microbes requires the ability to measure immune responses in the presence and absence of the microbiota using vertebrate models with complex genetic variation. Here, we describe a new gnotobiotic vertebrate model to explore the natural genetic variation that contributes to differences in innate immune responses to microbiota. Threespine stickleback, Gasterosteus aculeatus, has been used to study the developmental genetics of complex traits during the repeated evolution from ancestral oceanic to derived freshwater forms. We established methods to rear germ-free stickleback larvae and gnotobiotic animals monoassociated with single bacterial isolates. We characterized the innate immune response of these fish to resident gut microbes by quantifying the neutrophil cells in conventionally reared monoassociated or germ-free stickleback from both oceanic and freshwater populations grown in a common intermediate salinity environment. We found that oceanic and freshwater fish in the wild and in the laboratory share many intestinal microbial community members. However, oceanic fish mount a strong immune response to residential microbiota, whereas freshwater fish frequently do not. A strong innate immune response was uniformly observed across oceanic families, but this response varied among families of freshwater fish

  15. Altered neurological function in mice immunized with early endosome antigen 1

    Directory of Open Access Journals (Sweden)

    Fritzler Marvin J

    2004-01-01

    Full Text Available Abstract Background Autoantibodies directed against the 160 kDa endosome protein early endosome antigen 1 (EEA1 are seen in patients with neurological diseases. To determine if antibodies to EEA1 have a neuropathological effect, mice from three major histocompatability haplotype backgrounds (H2q, H2b and H2d were immunized with EEA1 (amino acids 82–1411 that was previously shown to contain the target EEA1 epitopes. The mice were then subjected to five neuro-behavioural tests: grid walking, forelimb strength, open field, reaching and rotarod. Results The immunized SWR/J mice with sustained anti-EEA1 antibodies had significantly reduced forelimb strength than the control non-immune mice of the same strain, and BALB/CJ immune mice demonstrated significantly more forelimb errors on the grid walk test than the control group. Conclusions Antibodies to recombinant EEA1 in mice may mediate neurological deficits that are consistent with clinical features of some humans that spontaneously develop anti-EEA1 autoantibodies.

  16. A specific primed immune response in Drosophila is dependent on phagocytes.

    Directory of Open Access Journals (Sweden)

    Linh N Pham

    2007-03-01

    Full Text Available Drosophila melanogaster, like other invertebrates, relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae. This protective effect exhibits coarse specificity for S. pneumoniae and persists for the life of the fly. Although not all microbial challenges induced this specific primed response, we find that a similar specific protection can be elicited by Beauveria bassiana, a natural fly pathogen. To characterize this primed response, we focused on S. pneumoniae-induced protection. The mechanism underlying this protective effect requires phagocytes and the Toll pathway. However, activation of the Toll pathway is not sufficient for priming-induced protection. This work contradicts the paradigm that insect immune responses cannot adapt and will promote the search for similar responses overlooked in organisms with an adaptive immune response.

  17. The immunocompetence handicap hypothesis in two sexually dimorphic pinniped species - there a sex difference in immunity during early development?

    NARCIS (Netherlands)

    Hall, A.J.; Engelhard, G.H.; Brasseur, S.M.J.M.; Vecchione, A.; Burton, H.R.; Reijnders, P.J.H.

    2003-01-01

    The 'immunocompetence handicap hypothesis' predicts that highly sexually dimorphic and polygynous species will exhibit sex differences in immunity. We tested this hypothesis in southern elephant and grey seals during their early development by measuring the following parameters: leucocyte counts,

  18. The immunocompetence handicap hypothesis in two sexually dimorphic pinniped species - is there a sex difference in immunity during early development?

    NARCIS (Netherlands)

    Hall, AJ; Englehard, GH; Brasseur, SMJM; Vecchione, A; Burton, HR; Reijnders, PJH

    2003-01-01

    The 'immunocompetence handicap hypothesis' predicts that highly sexually dimorphic and polygynous species will exhibit sex differences in immunity. We tested this hypothesis in southern elephant and grey seals during their early development by measuring the following parameters: leucocyte counts,

  19. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis.

    Science.gov (United States)

    Lemieux, Maxime W; Sonzogni-Desautels, Karine; Ndao, Momar

    2017-12-24

    In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between T H 1/T H 2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  20. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis

    Directory of Open Access Journals (Sweden)

    Maxime W. Lemieux

    2017-12-01

    Full Text Available In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  1. Interplay between immune responses to HLA and non-HLA self-antigens in allograft rejection.

    Science.gov (United States)

    Angaswamy, Nataraju; Tiriveedhi, Venkataswarup; Sarma, Nayan J; Subramanian, Vijay; Klein, Christina; Wellen, Jason; Shenoy, Surendra; Chapman, William C; Mohanakumar, T

    2013-11-01

    Recent studies strongly suggest an increasing role for immune responses against self-antigens (Ags) which are not encoded by the major histocompatibility complex in the immunopathogenesis of allograft rejection. Although, improved surgical techniques coupled with improved methods to detect and avoid sensitization against donor human leukocyte antigen (HLA) have improved the immediate and short term function of transplanted organs. However, acute and chronic rejection still remains a vexing problem for the long term function of the transplanted organ. Immediately following organ transplantation, several factors both immune and non immune mechanisms lead to the development of local inflammatory milieu which sets the stage for allograft rejection. Traditionally, development of antibodies (Abs) against mismatched donor HLA have been implicated in the development of Ab mediated rejection. However, recent studies from our laboratory and others have demonstrated that development of humoral and cellular immune responses against non-HLA self-Ags may contribute in the pathogenesis of allograft rejection. There are reports demonstrating that immune responses to self-Ags especially Abs to the self-Ags as well as cellular immune responses especially through IL17 has significant pro-fibrotic properties leading to chronic allograft failure. This review summarizes recent studies demonstrating the role for immune responses to self-Ags in allograft immunity leading to rejection as well as present recent evidence suggesting there is interplay between allo- and autoimmunity leading to allograft dysfunction. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  2. Study of the integrated immune response induced by an inactivated EV71 vaccine.

    Directory of Open Access Journals (Sweden)

    Longding Liu

    Full Text Available Enterovirus 71 (EV71, a major causative agent of hand-foot-and-mouth disease (HFMD, causes outbreaks among children in the Asia-Pacific region. A vaccine is urgently needed. Based on successful pre-clinical work, phase I and II clinical trials of an inactivated EV71 vaccine, which included the participants of 288 and 660 respectively, have been conducted. In the present study, the immune response and the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs of 30 infants (6 to 11 months immunized with this vaccine or placebo and consented to join this study in the phase II clinical trial were analyzed. The results showed significantly greater neutralizing antibody and specific T cell responses in vaccine group after two inoculations on days 0 and 28. Additionally, more than 600 functional genes that were up- or down-regulated in PBMCs were identified by the microarray assay, and these genes included 68 genes associated with the immune response in vaccine group. These results emphasize the gene expression profile of the immune system in response to an inactivated EV71 vaccine in humans and confirmed that such an immune response was generated as the result of the positive mobilization of the immune system. Furthermore, the immune response was not accompanied by the development of a remarkable inflammatory response.NCT01391494 and NCT01512706.

  3. RNA-seq analysis of early enteromyxosis in turbot (Scophthalmus maximus): new insights into parasite invasion and immune evasion strategies.

    Science.gov (United States)

    Ronza, Paolo; Robledo, Diego; Bermúdez, Roberto; Losada, Ana Paula; Pardo, Belén G; Sitjà-Bobadilla, Ariadna; Quiroga, María Isabel; Martínez, Paulino

    2016-07-01

    Enteromyxum scophthalmi, an intestinal myxozoan parasite, is the causative agent of a threatening disease for turbot (Scophthalmus maximus, L.) aquaculture. The colonisation of the digestive tract by this parasite leads to a cachectic syndrome associated with high morbidity and mortality rates. This myxosporidiosis has a long pre-patent period and the first detectable clinical and histopathological changes are subtle. The pathogenic mechanisms acting in the early stages of infection are still far from being fully understood. Further information on the host-parasite interaction is needed to assist in finding efficient preventive and therapeutic measures. Here, a RNA-seq-based transcriptome analysis of head kidney, spleen and pyloric caeca from experimentally-infected and control turbot was performed. Only infected fish with early signs of infection, determined by histopathology and immunohistochemical detection of E. scophthalmi, were selected. The RNA-seq analysis revealed, as expected, less intense transcriptomic changes than those previously found during later stages of the disease. Several genes involved in IFN-related pathways were up-regulated in the three organs, suggesting that the IFN-mediated immune response plays a main role in this phase of the disease. Interestingly, an opposite expression pattern had been found in a previous study on severely infected turbot. In addition, possible strategies for immune system evasion were suggested by the down-regulation of different genes encoding complement components and acute phase proteins. At the site of infection (pyloric caeca), modulation of genes related to different structural proteins was detected and the expression profile indicated the inhibition of cell proliferation and differentiation. These transcriptomic changes provide indications regarding the mechanisms of parasite attachment to and invasion of the host. The current results contribute to a better knowledge of the events that characterise the early

  4. Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-2-0032 TITLE: Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines PRINCIPAL INVESTIGATOR...CONTRACT NUMBER Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines 5b. GRANT NUMBER W81XWH-16-2-0032 5c. PROGRAM ELEMENT...cell) responses will be measured using molecular and cellular approaches and the data analyzed using a systems biology approach. During the first

  5. Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-2-0031 TITLE: Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines PRINCIPAL...SUBTITLE 5a. CONTRACT NUMBER Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines 5b. GRANT NUMBER W81XWH-16-2-0031 5c...adaptive (T and B cell) responses will be measured using molecular and cellular approaches and the data analyzed using a systems biology approach

  6. The rate of immune escape vanishes when multiple immune responses control an HIV infection

    NARCIS (Netherlands)

    van Deutekom, Hanneke W. M.; Wijnker, Gilles; de Boer, Rob J.

    2013-01-01

    During the first months of HIV infection, the virus typically evolves several immune escape mutations. These mutations are found in epitopes in viral proteins and reduce the impact of the CD8⁺ T cells specific for these epitopes. Recent data show that only a subset of the epitopes escapes, that most

  7. Two different mechanisms of immune-complex trapping in the mouse spleen during immune responses

    NARCIS (Netherlands)

    Yoshida, K.; van den Berg, T. K.; Dijkstra, C. D.

    1993-01-01

    The capacity of immune-complex (IC) trapping was examined using purified horse radish peroxidase (HRP)-anti-HRP (PAP) on frozen sections of mouse spleen in vitro. We investigated the trapping mechanisms by applying the IC with or without fresh mouse serum added on the spleen sections of naive as

  8. Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles

    International Nuclear Information System (INIS)

    Guo Lizheng; Lu Xiaoyan; Kang, S.-M.; Chen Changyi; Compans, Richard W.; Yao Qizhi

    2003-01-01

    To enhance mucosal immune responses using simian/human immunodeficiency virus-like particles (SHIV VLPs), we have produced novel phenotypically mixed chimeric influenza HA/SHIV VLPs and used them to immunize C57BL/6J mice intranasally. Antibody and cytotoxic T-cell (CTL) responses as well as cytokine production in both systemic and mucosal sites were compared after immunization with SHIV VLPs or chimeric HA/SHIV VLPs. By using enzyme-linked immunosorbent assay (ELISA), the levels of serum IgG and mucosal IgA to the HIV envelope protein (Env) were found to be highest in the group immunized with chimeric HA/SHIV VLPs. Furthermore, the highest titer of serum neutralizing antibody against HIV Env was found with the group immunized with chimeric HA/SHIV VLPs. Analysis of the IgG1/IgG2a ratio indicated that a T H 1-oriented immune response resulted from these VLP immunizations. HA/SHIV VLP-immunized mice also showed significantly higher CTL responses than those observed in SHIV VLP-immunized mice. Moreover, a MHC class I restricted T-cell activation ELISPOT assay showed a mixed type of T H 1/T H 2 cytokines in the HA/SHIV VLP-immunized mice, indicating that the chimeric VLPs can enhance both humoral and cellular immune responses to the HIV Env protein at multiple mucosal and systemic sites. The results indicate that incorporation of influenza HA into heterotypic VLPs may be highly effective for targeting vaccines to mucosal surfaces

  9. Anopheles gambiae antiviral immune response to systemic O'nyong-nyong infection.

    Directory of Open Access Journals (Sweden)

    Joanna Waldock

    Full Text Available Mosquito-borne viral diseases cause significant burden in much of the developing world. Although host-virus interactions have been studied extensively in the vertebrate host, little is known about mosquito responses to viral infection. In contrast to mosquitoes of the Aedes and Culex genera, Anopheles gambiae, the principal vector of human malaria, naturally transmits very few arboviruses, the most important of which is O'nyong-nyong virus (ONNV. Here we have investigated the A. gambiae immune response to systemic ONNV infection using forward and reverse genetic approaches.We have used DNA microarrays to profile the transcriptional response of A. gambiae inoculated with ONNV and investigate the antiviral function of candidate genes through RNAi gene silencing assays. Our results demonstrate that A. gambiae responses to systemic viral infection involve genes covering all aspects of innate immunity including pathogen recognition, modulation of immune signalling, complement-mediated lysis/opsonisation and other immune effector mechanisms. Patterns of transcriptional regulation and co-infections of A. gambiae with ONNV and the rodent malaria parasite Plasmodium berghei suggest that hemolymph immune responses to viral infection are diverted away from melanisation. We show that four viral responsive genes encoding two putative recognition receptors, a galectin and an MD2-like receptor, and two effector lysozymes, function in limiting viral load.This study is the first step in elucidating the antiviral mechanisms of A. gambiae mosquitoes, and has revealed interesting differences between A. gambiae and other invertebrates. Our data suggest that mechanisms employed by A. gambiae are distinct from described invertebrate antiviral immunity to date, and involve the complement-like branch of the humoral immune response, supressing the melanisation response that is prominent in anti-parasitic immunity. The antiviral immune response in A. gambiae is thus

  10. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    Science.gov (United States)

    Owens, T; Renno, T; Taupin, V; Krakowski, M

    1994-12-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.

  11. Report 10. Cooperative immune responses of different generations of mice

    International Nuclear Information System (INIS)

    Savtsova, Z.D.; Kovbasyuk, S.A.; Yudina, O.Yu.; Zaritskaya, M.Yu.; Voejkova, I.M.; Orlovskij, A.A.; Indyk, V.M.; Serkiz, Ya.I.

    1991-01-01

    The immune status of mice has been assessed by the whole complex of data. The permanent action of low-level radiation has been shown to suppress considerably the rate of reactions of the delayed-type hypersensitivity and graft-versus host disease, as well as NK and specific cytolytic T-lymphocyte activity. The dynamics of accumulation and the levels of antibodies in the serum, lung and trachea extracts are virtually invariable. The resistance of experimental animals to influenza is lower than that of non-irradiated mice of the same line and age. The data obtained indicate that the immune disturbances revealed are connected not only with the alteration of lymphoid cell populations, but also with the alteration of the immune regulation mechanisms

  12. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model.

    Directory of Open Access Journals (Sweden)

    Peter Liehl

    2006-06-01

    Full Text Available Pathogens have developed multiple strategies that allow them to exploit host resources and resist the immune response. To study how Drosophila flies deal with infectious diseases in a natural context, we investigated the interactions between Drosophila and a newly identified entomopathogen, Pseudomonas entomophila. Flies orally infected with P. entomophila rapidly succumb despite the induction of both local and systemic immune responses, indicating that this bacterium has developed specific strategies to escape the fly immune response. Using a combined genetic approach on both host and pathogen, we showed that P. entomophila virulence is multi-factorial with a clear differentiation between factors that trigger the immune response and those that promote pathogenicity. We demonstrate that AprA, an abundant secreted metalloprotease produced by P. entomophila, is an important virulence factor. Inactivation of aprA attenuated both the capacity to persist in the host and pathogenicity. Interestingly, aprA mutants were able to survive to wild-type levels in immune-deficient Relish flies, indicating that the protease plays an important role in protection against the Drosophila immune response. Our study also reveals that the major contribution to the fly defense against P. entomophila is provided by the local, rather than the systemic immune response. More precisely, our data points to an important role for the antimicrobial peptide Diptericin against orally infectious Gram-negative bacteria, emphasizing the critical role of local antimicrobial peptide expression against food-borne pathogens.

  13. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    Science.gov (United States)

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  14. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice

    DEFF Research Database (Denmark)

    Brennan, F.R.; Bellaby, T.; Helliwell, S.M.

    1999-01-01

    The humoral immune responses to the D2 peptide of fibronectin-binding protein B (FnBP) of Staphylococcus aureus, expressed on the plant virus cowpea mosaic virus (CPMV), were evaluated after mucosal delivery to mice. Intranasal immunization of these chimeric virus particles (CVPs), either alone...

  15. The effect of environmental temperature on immune response and metabolism of the young chicken

    NARCIS (Netherlands)

    Henken, A.M.

    1982-01-01

    The effect of environmental temperature on immune response and metabolism was studied in young chickens. Immunization was performed by injecting intramuscularly 0.5 ml packed SRBC (sheep red blood cells) in both thighs of 32 days old pullets ( WarrenSSL ). The

  16. Energetic and developmental costs of mounting an immune response in greenfinches (Carduelis chloris)

    NARCIS (Netherlands)

    Amat, Juan A.; Aguilera, Eduardo; Visser, G. Henk

    It is assumed that there is a trade-off between the costs allocated to mounting an immune defence and those allocated to costly functions such as breeding and moulting. The physiological basis for this is that mounting an immune response to pathogen challenge has energetic and/or nutrient costs

  17. Indian Hedgehog Suppresses a Stromal Cell–Driven Intestinal Immune Response

    Directory of Open Access Journals (Sweden)

    B. Florien Westendorp

    2018-01-01

    Conclusions: We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast-derived CXCL12, and migration of immune cells into the lamina propria.

  18. Sex-specific consequences of an induced immune response on reproduction in a moth

    NARCIS (Netherlands)

    Barthel, A.; Staudacher, H.; Schmalz, A.; Heckel, D.G.; Groot, A.T.

    2015-01-01

    Background Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life

  19. INFLUENCE OF PROBIOTIC CULTURE LACTOBACILLUS RHAMNOSUS GG (LGG) ON IMMUNE RESPONSE OF ORGANISM

    OpenAIRE

    A.V. Surzhik

    2009-01-01

    This article presents review of data of influence of probiotic culture Lactobacillus rhamnosus GG on intestinal biocenosis. Main attention was given to influence of L. rhamnosus GG on functions of immune system.Key words: probiotics, Lactobacillus rhamnosus GG, immune response.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2009;8(2):54-58)

  20. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot

  1. Bovine immune response to inoculation with Neospora caninum surface antigen SRS2 lipopeptides mimics immune response to infection with live parasites.

    Science.gov (United States)

    Baszler, Timothy V; Shkap, Varda; Mwangi, Waithaka; Davies, Christopher J; Mathison, Bruce A; Mazuz, Monica; Resnikov, Dror; Fish, Lea; Leibovitch, Benjamin; Staska, Lauren M; Savitsky, Igor

    2008-04-01

    Infection of cattle with Neospora caninum protozoa, the causative agent of bovine protozoal abortion, results in robust cellular and humoral immune responses, particularly CD4(+) T-lymphocyte activation and gamma interferon (IFN-gamma) secretion. In the present study, N. caninum SRS2 (NcSRS2) T-lymphocyte-epitope-bearing subunits were incorporated into DNA and peptide preparations to assess CD4(+) cell proliferation and IFN-gamma T-lymphocyte-secretion immune responses in cattle with predetermined major histocompatibility complex (MHC) genotypes. In order to optimize dendritic-cell processing, NcSRS2 DNA vaccine was delivered with granulocyte macrophage-colony-stimulating factor and Flt3 ligand adjuvant. The synthesized NcSRS2 peptides were coupled with a palmitic acid molecule (lipopeptide) and delivered with Freund's adjuvant. Cattle vaccinated with NcSRS2 DNA vaccine alone did not induce T-lymphocyte activation or IFN-gamma secretion, whereas subsequent booster inoculation with NcSRS2-lipopeptides induced robust NcSRS2-specific immune responses. Compared to the response in control animals, NcSRS2-lipopeptide-immunized cattle had significantly increased NcSRS2-specific T-lymphocyte proliferation, numbers of IFN-gamma-secreting peripheral blood mononuclear cells, and immunoglobulin G1 (IgG1) and IgG2a antibody levels. The findings show that N. caninum NcSRS2 subunits bearing T-lymphocyte epitopes induced cell-mediated immune responses similar to the protective immune responses previously described against live parasite infection, namely T-lymphocyte activation and IFN-gamma secretion. The findings support the investigation of NcSRS2 immunogens for protection against N. caninum-induced fetal infection and abortion in cattle.

  2. Immune responses to hair dyes containing toluene-2,5-diamine

    DEFF Research Database (Denmark)

    Schmidt, J D; Johansen, J D; Nielsen, M M

    2014-01-01

    BACKGROUND: Toluene-2,5-diamine (PTD) is the most frequently used dye in oxidative hair dyes on the Scandinavian market. However, little is known about