WorldWideScience

Sample records for early hematopoiesis inhibition

  1. Early Life Microbiota, Neonatal Immune Maturation and Hematopoiesis

    DEFF Research Database (Denmark)

    Kristensen, Matilde Bylov

    and the commensals in the gut. Hematopoietic stem cells from the fetal liver seed the fetal spleen and bone marrow in perinatal phase. Granulocytosis in neonate mice and man just after birth is a natural event of early life hematopoiesis and likely contributes to elevated counts of neutrophil-like cells...... bowl disease, later in life. The intestinal epithelium makes up a physical and biochemical barrier between the bacteria in the gut lumen and the immune cells in the submocusal tissue. This monolayer of intestinal epithelial cells (IEC) makes up an extremely large surface and is highly important...... in the peripheral blood of newborns. Granular myeloid derived suppressor cells (MDSC) have recently been described in human cord blood. MDSC are potential immunosuppressive cells often described in cancer, inflammation and during sepsis. They evolve from immature myeloid cells during hematopoiesis. Several recent...

  2. Histone acetyltransferase activity of MOF is required for adult but not early fetal hematopoiesis in mice.

    Science.gov (United States)

    Valerio, Daria G; Xu, Haiming; Eisold, Meghan E; Woolthuis, Carolien M; Pandita, Tej K; Armstrong, Scott A

    2017-01-05

    K(lysine) acetyltransferase 8 (KAT8, also known as MOF) mediates the acetylation of histone H4 at lysine 16 (H4K16ac) and is crucial for murine embryogenesis. Lysine acetyltransferases have been shown to regulate various stages of normal hematopoiesis. However, the function of MOF in hematopoietic stem cell (HSC) development has not yet been elucidated. We set out to study the role of MOF in general hematopoiesis by using a Vav1-cre-induced conditional murine Mof knockout system and found that MOF is critical for hematopoietic cell maintenance and HSC engraftment capacity in adult hematopoiesis. Rescue experiments with a MOF histone acetyltransferase domain mutant illustrated the requirement for MOF acetyltransferase activity in the clonogenic capacity of HSCs and progenitors. In stark contrast, fetal steady-state hematopoiesis at embryonic day (E) 14.5 was not affected by homozygous Mof deletion despite dramatic loss of global H4K16ac. Hematopoietic defects start manifesting in late gestation at E17.5. The discovery that MOF and its H4K16ac activity are required for adult but not early and midgestational hematopoiesis supports the notion that multiple chromatin regulators may be crucial for hematopoiesis at varying stages of development. MOF is therefore a developmental-stage-specific chromatin regulator found to be essential for adult but not early fetal hematopoiesis.

  3. Demand-adapted regulation of early hematopoiesis in infection and inflammation.

    Science.gov (United States)

    Takizawa, Hitoshi; Boettcher, Steffen; Manz, Markus G

    2012-03-29

    During systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. Although adaptive immune cells have high proliferative potential, innate immune cells are mostly postmitotic and need to be replenished from bone marrow (BM) hematopoietic stem and progenitor cells. We here review how early hematopoiesis has been shaped to deliver efficient responses to increased need. On the basis of most recent findings, we develop an integrated view of how cytokines, chemokines, as well as conserved pathogen structures, are sensed, leading to divisional activation, proliferation, differentiation, and migration of hematopoietic stem and progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. We also outline how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, and, how clinical benefit is and could be achieved by learning from nature.

  4. Development of the hematopoietic system and disorders of hematopoiesis that present during infancy and early childhood.

    Science.gov (United States)

    Fernández, Karen S; de Alarcón, Pedro A

    2013-12-01

    This article reviews the ontogeny of hematopoiesis (embryonic/fetal/newborn phases) and its regulation and provides examples of the disorders of hematopoiesis that present in the newborn or infant and their pathophysiology. Many of these disorders are discussed in depth in other articles of this issue.

  5. Stathmin 1 in normal and malignant hematopoiesis.

    Science.gov (United States)

    Machado-Neto, João Agostinho; Saad, Sara Teresinha Olalla; Traina, Fabiola

    2014-12-01

    Stathmin 1 is a microtubule destabilizer that plays an important role in cell cycle progression, segregation of chromosomes, clonogenicity, cell motility and survival. Stathmin 1 overexpression has been reported in malignant hematopoietic cells and Stathmin 1 inhibition reduces the highly proliferative potential of leukemia cell lines. However, during the differentiation of primary hematopoietic cells, Stathmin 1 expression decreases in parallel to decreases in the proliferative potential of early hematopoietic progenitors. The scope of the present review is to survey the current knowledge and highlight future perspectives for Stathmin 1 in normal and malignant hematopoiesis, with regard to the expression, function and clinical implications of this protein.

  6. Conditional deletion of Jak2 reveals an essential role in hematopoiesis throughout mouse ontogeny: implications for Jak2 inhibition in humans.

    Directory of Open Access Journals (Sweden)

    Sung O Park

    Full Text Available Germline deletion of Jak2 in mice results in embryonic lethality at E12.5 due to impaired hematopoiesis. However, the role that Jak2 might play in late gestation and postnatal life is unknown. To understand this, we utilized a conditional knockout approach that allowed for the deletion of Jak2 at various stages of prenatal and postnatal life. Specifically, Jak2 was deleted beginning at either mid/late gestation (E12.5, at postnatal day 4 (PN4, or at ∼2 months of age. Deletion of Jak2 beginning at E12.5 resulted in embryonic death characterized by a lack of hematopoiesis. Deletion beginning at PN4 was also lethal due to a lack of erythropoiesis. Deletion of Jak2 in young adults was characterized by blood cytopenias, abnormal erythrocyte morphology, decreased marrow hematopoietic potential, and splenic atrophy. However, death was observed in only 20% of the mutants. Further analysis of these mice suggested that the increased survivability was due to an incomplete deletion of Jak2 and subsequent re-population of Jak2 expressing cells, as conditional deletion in mice having one floxed Jak2 allele and one null allele resulted in a more severe phenotype and subsequent death of all animals. We found that the deletion of Jak2 in the young adults had a differential effect on hematopoietic lineages; specifically, conditional Jak2 deletion in young adults severely impaired erythropoiesis and thrombopoiesis, modestly affected granulopoiesis and monocytopoiesis, and had no effect on lymphopoiesis. Interestingly, while the hematopoietic organs of these mutant animals were severely affected by the deletion of Jak2, we found that the hearts, kidneys, lungs, and brains of these same mice were histologically normal. From this, we conclude that Jak2 plays an essential and non-redundant role in hematopoiesis during both prenatal and postnatal life and this has direct implications regarding the inhibition of Jak2 in humans.

  7. Effects of Ligustrazine on Hematopoiesis in the Early Phase of Bone Marrow Transplantation Mice

    Institute of Scientific and Technical Information of China (English)

    周银莉; 刘文励; 孙汉英; 徐惠珍; 路武; 孙岚; 孟凡凯

    2002-01-01

    Summary: To investigate the effects of Ligustrazine on histogenesis of bone marrow in the early phase of hematopoietic reconstruction in bone marrow transplantation (BMT) mice. The syngeneic BMT mice model was established. The syngeneic BMT mice were orally given 2 mg Ligustrazine twice a day. 1, 3, 5, 7, 10, 15 and 21 day(s) after BMT, peripheral blood granulocytes and bone marrow nucleated cells (BMNC) were counted and the diameter of central vein and the area of micro-vessel in femur were measured. The effect of Ligustrazine on hematopoietic stem cells was observed by colony forming unit of spleen (CFU-S). The effect of Ligustrazine on hemopoietic progenitors was studied by observing the number of progenitors of Granulocytes/Macrophage on day 10 and day 20 after BMT. In Ligustrazine-treated group, the diameter of center veins and the area of micro-vessel of femur were all significantly less than the control group 7, 10, 15, 21 days after BMT (P<0. 01). In addition, Ligustrazine significantly increased the number of CFU-S on day 10and the number of CFU-GM on day 10, 20 after BMT. These results indicate that Ligustrazine can accelerate the histogenesis of hemopoietic bone marrow, which may be one mechanism by which Ligustrazine promotes hematopoietic reconstitution after BMT.

  8. Periportal Extramedullary Hematopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Dong Ho [Dong-A University, Busan (Korea, Republic of)

    2009-12-15

    In a bone marrow failure patient, a soft tissue mass lesion in the periportal area is a rare presentation. We present the sonographic and dynamic CT findings of a histologically confirmed case of hepatic periportal extramedullary hematopoiesis.

  9. Insect immunology and hematopoiesis.

    Science.gov (United States)

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.

  10. Ikaros in hematopoiesis and leukemia

    Institute of Scientific and Technical Information of China (English)

    Sinisa; Dovat

    2011-01-01

    Ikaros is a gene whose activity is essential for normal hematopoiesis.Ikaros acts as a master regulator of lymphoid and myeloid development as well as a tumor suppressor.In cells,Ikaros regulates gene expression via chromatin remodeling.During the past 15 years tremendous advances have been made in understanding the role of Ikaros in hematopoiesis and leukemogenesis.In this Topic Highlights series of reviews,several groups of international experts in this field summarize the experimental data that is shaping the emerging picture of Ikaros function at the biochemical and cellular levels.The articles provide detailed analyses of recent scientific advancements and present models that will serve as a basis for future studies aimed at developing a better understanding of normal hematopoiesis and hematological malignancies and at accelerating the application of this knowledge in clinical practice.

  11. MRI features of epidural extramedullary hematopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Alorainy, Ibrahim A. E-mail: alorainy@ksu.edu.sa; Al-Asmi, Abdullah R.; Carpio, Raquel del

    2000-07-01

    A case of {beta}-thalassemia intermedia with spinal cord compression due to extramedullary hematopoiesis, which was successfully treated by blood transfusion, is presented. Emphasis was made on the MRI appearance of extramedullary hematopoiesis on different pulse sequences. The theories that aimed to explain the involvement of the epidural space by extramedullary hematopoiesis are discussed.

  12. Novel Insights into the Genetic Controls of Primitive and Definitive Hematopoiesis from Zebrafish Models

    Directory of Open Access Journals (Sweden)

    Raman Sood

    2012-01-01

    Full Text Available Hematopoiesis is a dynamic process where initiation and maintenance of hematopoietic stem cells, as well as their differentiation into erythroid, myeloid and lymphoid lineages, are tightly regulated by a network of transcription factors. Understanding the genetic controls of hematopoiesis is crucial as perturbations in hematopoiesis lead to diseases such as anemia, thrombocytopenia, or cancers, including leukemias and lymphomas. Animal models, particularly conventional and conditional knockout mice, have played major roles in our understanding of the genetic controls of hematopoiesis. However, knockout mice for most of the hematopoietic transcription factors are embryonic lethal, thus precluding the analysis of their roles during the transition from embryonic to adult hematopoiesis. Zebrafish are an ideal model organism to determine the function of a gene during embryonic-to-adult transition of hematopoiesis since bloodless zebrafish embryos can develop normally into early larval stage by obtaining oxygen through diffusion. In this review, we discuss the current status of the ontogeny and regulation of hematopoiesis in zebrafish. By providing specific examples of zebrafish morphants and mutants, we have highlighted the contributions of the zebrafish model to our overall understanding of the roles of transcription factors in regulation of primitive and definitive hematopoiesis.

  13. ROCK inhibition prevents early mouse embryo development.

    Science.gov (United States)

    Duan, Xing; Chen, Kun-Lin; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2014-08-01

    ROCK is a Rho-GTPase effector that is important for actin assembly and is involved in various cellular functions, including cell contraction, migration, motility, and tumor cell invasion. In this study, we investigated ROCK expression and function during early mouse embryo development. Inhibiting ROCK by Y-27632 treatment at the zygote stage resulted in first cleavage failure, and most embryos failed to develop to the 8-cell stage. When adding Y-27632 at the 8-cell stage, embryos failed to undergo compaction and could not develop into blastocysts. In addition, fluorescence staining intensity analysis indicated that actin expression at blastomere membranes was significantly reduced. After ROCK inhibition, two or more nuclei were observed in a cell, which indicated possible cytokinesis failure. Moreover, after ROCK inhibition with Y-27632, the phosphorylation levels of LIMK1/2, a downstream molecule of ROCK, were decreased at blastomere membranes. Thus, our results showed conserved roles for ROCK in this mammalian embryo model and indicated that a ROCK-LIMK1/2-actin pathway might regulate cleavage and blastocyst formation during early mouse embryo development.

  14. Integration of Shh and Wnt Signaling Pathways Regulating Hematopoiesis.

    Science.gov (United States)

    Zhou, Zhigang; Wan, Liping; Wang, Chun; Zhou, Kun

    2015-12-01

    To investigate the spatial and temporal programmed expression of Shh and Wnt members during key stages of definitive hematopoiesis and the possible mechanism of Shh and Wnt signaling pathways regulating the proliferation of hematopoietic progenitor cells (HPCs). Spatial and temporal programmed gene expression of Shh and Wnt signaling during hematopoiesis corresponded with c-kit(+)lin(-) HPCs proliferation. C-kit(+)Lin(-) populations derived from aorta-gonad-mesonephros (AGM) of Balb/c mice at E10.5 with increased expression of Shh and Wnt3a demonstrated a greater potential for proliferation. Additionally, supplementation with soluble Shh N-terminal peptide promoted the proliferation of c-kit(+)Lin(-) populations by activating the Wnt signaling pathway, an effect which was inhibited by blocking Shh signaling. A specific inhibitor of wnt signaling was capable of inhibiting Shh-induced proliferation in a similar manner to shh inhibitor. Our results provide valuable information on Shh and Wnt signaling involved in hematopoiesis and highlight the importance of interaction of Shh and Wnt signaling in regulating HPCs proliferation.

  15. Gut microbiota promote hematopoiesis to control bacterial infection.

    Science.gov (United States)

    Khosravi, Arya; Yáñez, Alberto; Price, Jeremy G; Chow, Andrew; Merad, Miriam; Goodridge, Helen S; Mazmanian, Sarkis K

    2014-03-12

    The commensal microbiota impacts specific immune cell populations and their functions at peripheral sites, such as gut mucosal tissues. However, it remains unknown whether gut microbiota control immunity through regulation of hematopoiesis at primary immune sites. We reveal that germ-free mice display reduced proportions and differentiation potential of specific myeloid cell progenitors of both yolk sac and bone marrow origin. Homeostatic innate immune defects may lead to impaired early responses to pathogens. Indeed, following systemic infection with Listeria monocytogenes, germ-free and oral-antibiotic-treated mice display increased pathogen burden and acute death. Recolonization of germ-free mice with a complex microbiota restores defects in myelopoiesis and resistance to Listeria. These findings reveal that gut bacteria direct innate immune cell development via promoting hematopoiesis, contributing to our appreciation of the deep evolutionary connection between mammals and their microbiota.

  16. Periodic Solution of the Hematopoiesis Equation

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2013-01-01

    Full Text Available Wu and Liu (2012 presented some results for the existence and uniqueness of the periodic solutions for the hematopoiesis model. This paper gives a simple approach to find an approximate period of the model.

  17. RapGEF2 is essential for embryonic hematopoiesis but dispensable for adult hematopoiesis.

    Science.gov (United States)

    Satyanarayana, Ande; Gudmundsson, Kristbjorn Orri; Chen, Xiu; Coppola, Vincenzo; Tessarollo, Lino; Keller, Jonathan R; Hou, Steven X

    2010-10-21

    RapGEF2 is one of many guanine nucleotide exchange factors (GEFs) that specifically activate Rap1. Here, we generated RapGEF2 conditional knockout mice and studied its role in embryogenesis and fetal as well as adult hematopoietic stem cell (HSC) regulation. RapGEF2 deficiency led to embryonic lethality at ~ E11.5 due to severe yolk sac vascular defects. However, a similar number of Flk1(+) cells were present in RapGEF2(+/+) and RapGEF2(-/-) yolk sacs indicating that the bipotential early progenitors were in fact generated in the absence of RapGEF2. Further analysis of yolk sacs and embryos revealed a significant reduction of CD41 expressing cells in RapGEF2(-/-) genotype, suggesting a defect in the maintenance of definitive hematopoiesis. RapGEF2(-/-) cells displayed defects in proliferation and migration, and the in vitro colony formation ability of hematopoietic progenitors was also impaired. At the molecular level, Rap1 activation was impaired in RapGEF2(-/-) cells that in turn lead to defective B-raf/ERK signaling. Scl/Gata transcription factor expression was significantly reduced, indicating that the defects observed in RapGEF2(-/-) cells could be mediated through Scl/Gata deregulation. Inducible deletion of RapGEF2 during late embryogenesis in RapGEF2(cko/cko)ER(cre) mice leads to defective fetal liver erythropoiesis. Conversely, inducible deletion in the adult bone marrow, or specific deletion in B cells, T cells, HSCs, and endothelial cells has no impact on hematopoiesis.

  18. Large-Scale Forward Genetic Screening Analysis of Development of Hematopoiesis in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    Kun Wang; Ning Ma; Yiyue Zhang; Wenqing Zhang; Zhibin Huang; Lingfeng Zhao; Wei Liu; Xiaohui Chen; Ping Meng; Qing Lin; Yali Chi; Mengchang Xu

    2012-01-01

    Zebrafish is a powerful model for the investigation of hematopoiesis.In order to isolate novel mutants with hematopoietic defects,large-scale mutagenesis screening of zebrafish was performed.By scoring specific hematopoietic markers,52 mutants were identified and then classified into four types based on specific phenotypic traits.Each mutant represented a putative mutation of a gene regulating the relevant aspect of hematopoiesis,including early macrophage development,early granulopoiesis,embryonic myelopoiesis,and definitive erythropoiesis/lymphopoiesis.Our method should be applicable for other types of genetic screening in zebrafish.In addition,further study of the mutants we identified may help to unveil the molecular basis of hematopoiesis.

  19. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype

    Science.gov (United States)

    Growney, Joseph D.; Shigematsu, Hirokazu; Li, Zhe; Lee, Benjamin H.; Adelsperger, Jennifer; Rowan, Rebecca; Curley, David P.; Kutok, Jeffery L.; Akashi, Koichi; Williams, Ifor R.; Speck, Nancy A.; Gilliland, D. Gary

    2005-01-01

    Homozygous loss of function of Runx1 (Runt-related transcription factor 1 gene) during murine development results in an embryonic lethal phenotype characterized by a complete lack of definitive hematopoiesis. In light of recent reports of disparate requirements for hematopoietic transcription factors during development as opposed to adult hematopoiesis, we used a conditional gene-targeting strategy to effect the loss of Runx1 function in adult mice. In contrast with the critical role of Runx1 during development, Runx1 was not essential for hematopoiesis in the adult hematopoietic compartment, though a number of significant hematopoietic abnormalities were observed. Runx1 excision had lineage-specific effects on B- and T-cell maturation and pronounced inhibition of common lymphocyte progenitor production. Runx1 excision also resulted in inefficient platelet production. Of note, Runx1-deficient mice developed a mild myeloproliferative phenotype characterized by an increase in peripheral blood neutrophils, an increase in myeloid progenitor populations, and extramedullary hematopoiesis composed of maturing myeloid and erythroid elements. These findings indicate that Runx1 deficiency has markedly different consequences during development compared with adult hematopoiesis, and they provide insight into the phenotypic manifestations of Runx1 deficiency in hematopoietic malignancies. PMID:15784726

  20. Mass-like extramedullary hematopoiesis: imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Andrew W. [Synergy Radiology Associates, Houston, TX (United States); Kransdorf, Mark J.; Peterson, Jeffrey J.; Garner, Hillary W. [Mayo Clinic, Department of Radiology, Jacksonville, FL (United States); Murphey, Mark D. [American Institute for Radiologic Pathology, Silver Spring, MD (United States)

    2012-08-15

    To report the imaging appearances of mass-like extramedullary hematopoiesis (EMH), to identify those features that are sufficiently characteristic to allow a confident diagnosis, and to recognize the clinical conditions associated with EMH and the relative incidence of mass-like disease. We retrospectively identified 44 patients with EMH; 12 of which (27%) had focal mass-like lesions and formed the study group. The study group consisted of 6 male and 6 female subjects with a mean age of 58 years (range 13-80 years). All 12 patients underwent CT imaging and 3 of the 12 patients had undergone additional MR imaging. The imaging characteristics of the extramedullary hematopoiesis lesions in the study group were analyzed and recorded. The patient's clinical presentation, including any condition associated with extramedullary hematopoiesis, was also recorded. Ten of the 12 (83%) patients had one or more masses located along the axial skeleton. Of the 10 patients with axial masses, 9 (90%) had multiple masses and 7 (70%) demonstrated internal fat. Eight patients (80%) had paraspinal masses and 4 patients (40%) had presacral masses. Seven patients (70%) had splenomegaly. Eleven of the 12 patients had a clinical history available for review. A predisposing condition for extramedullary hematopoiesis was present in 10 patients and included various anemias (5 cases; 45%), myelofibrosis/myelodysplastic syndrome (4 cases; 36%), and marrow proliferative disorder (1 case; 9%). One patient had no known predisposing condition. Mass-like extramedullary hematopoiesis most commonly presents as multiple, fat-containing lesions localized to the axial skeleton. When these imaging features are identified, extramedullary hematopoiesis should be strongly considered, particularly when occurring in the setting of a predisposing medical condition. (orig.)

  1. The role of Smad signaling in hematopoiesis and translational hematology.

    Science.gov (United States)

    Blank, U; Karlsson, S

    2011-09-01

    Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) of adult individuals and function to produce and regenerate the entire blood and immune system over the course of an individual's lifetime. Historically, HSCs are among the most thoroughly characterized tissue-specific stem cells. Despite this, the regulation of fate options, such as self-renewal and differentiation, has remained elusive, partly because of the expansive plethora of factors and signaling cues that govern HSC behavior in vivo. In the BM, HSCs are housed in specialized niches that dovetail the behavior of HSCs with the need of the organism. The Smad-signaling pathway, which operates downstream of the transforming growth factor-β (TGF-β) superfamily of ligands, regulates a diverse set of biological processes, including proliferation, differentiation and apoptosis, in many different organ systems. Much of the function of Smad signaling in hematopoiesis has remained nebulous due to early embryonic lethality of most knockout mouse models. However, recently new data have been uncovered, suggesting that the Smad-signaling circuitry is intimately linked to HSC regulation. In this review, we bring the Smad-signaling pathway into focus, chronicling key concepts and recent advances with respect to TGF-β-superfamily signaling in normal and leukemic hematopoiesis.

  2. Extramedullary paraspinal hematopoiesis in hereditary spherocytosis

    Directory of Open Access Journals (Sweden)

    Gogia P

    2008-01-01

    Full Text Available Hereditary spherocytosis (HS is a common inherited hemolytic anemia due to red cell membrane defects. Extramedullary hematopoiesis is a compensatory response to insufficient bone marrow blood cell production. The preferred sites of extramedullary hematopoietic involvement are the spleen, liver and lymph nodes; but in HS, the posterior paravertebral mediastinum is also commonly involved. We report a case of a 50-year-old male who presented to us in respiratory distress and with bilateral paravertebral posterior mediastinal masses, which on trucut biopsy were found to be extra-hematopoietic masses; and the patient was found to have hereditary spherocytosis.

  3. Intracranial Extramedullary Hematopoiesis in Beta-Thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Karki, Bivek; Xu, Yi Kai; Wu, Yuan Kui [Nan fang Hospital, Southern Medical University, Guangzhou (China); Tamrakar, Karuna [Zhujiang Hospital, Southern Medical University, Guangzhou (China)

    2012-03-15

    Extramedullary hematopoiesis (EMH) represents tumor-like proliferation of hemopoietic tissue which complicates chronic hemoglobinopathy. Intracranial EMH is an extremely rare occurrence. Magnetic resonance imaging (MRI) offers a precise diagnosis. It is essential to distinguish EMH from other extradural central nervous system tumors, because treatment and prognosis are totally different. Herein, we report the imaging findings of beta-thalassemia in a 13-year-old boy complaining of weakness of left side of the body and gait disturbance; CT and MRI revealed an extradural mass in the right temporoparietal region.

  4. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    Science.gov (United States)

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  5. Myc Roles in Hematopoiesis and Leukemia

    Science.gov (United States)

    Delgado, M. Dolores; León, Javier

    2010-01-01

    Hematopoiesis is a process capable of generating millions of cells every second, as distributed in many cell types. The process is regulated by a number of transcription factors that regulate the differentiation along the distinct lineages and dictate the genetic program that defines each mature phenotype. Myc was first discovered as the oncogene of avian leukemogenic retroviruses; it was later found translocated in human lymphoma. From then on, evidence accumulated showing that c-Myc is one of the transcription factors playing a major role in hematopoiesis. The study of genetically modified mice with overexpression or deletion of Myc has shown that c-Myc is required for the correct balance between self-renewal and differentiation of hematopoietic stem cells (HSCs). Enforced Myc expression in mice leads to reduced HSC pools owing to loss of self-renewal activity at the expense of increased proliferation of progenitor cells and differentiation. c-Myc deficiency consistently results in the accumulation of HSCs. Other models with conditional Myc deletion have demonstrated that different lineages of hematopoietic cells differ in their requirement for c-Myc to regulate their proliferation and differentiation. When transgenic mice overexpress c-Myc or N-Myc in mature cells from the lymphoid or myeloid lineages, the result is lymphoma or leukemia. In agreement, enforced expression of c-Myc blocks the differentiation in several leukemia-derived cell lines capable of differentiating in culture. Not surprising, MYC deregulation is recurrently found in many types of human lymphoma and leukemia. Whereas MYC is deregulated by translocation in Burkitt lymphoma and, less frequently, other types of lymphoma, MYC is frequently overexpressed in acute lymphoblastic and myeloid leukemia, through mechanisms unrelated to chromosomal translocation, and is often associated with disease progression. PMID:21779460

  6. Zebrafish as a model for normal and malignant hematopoiesis

    Directory of Open Access Journals (Sweden)

    Lili Jing

    2011-07-01

    Full Text Available Zebrafish studies in the past two decades have made major contributions to our understanding of hematopoiesis and its associated disorders. The zebrafish has proven to be a powerful organism for studies in this area owing to its amenability to large-scale genetic and chemical screening. In addition, the externally fertilized and transparent embryos allow convenient genetic manipulation and in vivo imaging of normal and aberrant hematopoiesis. This review discusses available methods for studying hematopoiesis in zebrafish, summarizes key recent advances in this area, and highlights the current and potential contributions of zebrafish to the discovery and development of drugs to treat human blood disorders.

  7. Extramedullary paraspinal hematopoiesis in thalassemia: CT and MRI evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsitouridis, J.; Stamos, S.; Hassapopoulou, E.; Tsitouridis, K.; Nikolopoulos, P

    1999-04-01

    We present a comparative CT and MRI study of the paraspinal extramedullary hematopoiesis in 32 thalassemic patients. The patients were classified into four groups according to the MRI and CT imaging findings. Active recent extramedullary paraspinal hematopoietic masses show soft tissue behavior in both CT and MRI. Older inactive masses reveal iron deposition or fatty replacement. Combined imaging findings of paraspinal extramedullary hematopoiesis revealed the phase of its evolution and the correct diagnosis.

  8. Mapping hematopoiesis in a fully regenerative vertebrate: the axolotl.

    Science.gov (United States)

    Lopez, David; Lin, Li; Monaghan, James R; Cogle, Christopher R; Bova, Frank J; Maden, Malcolm; Scott, Edward W

    2014-08-21

    Hematopoietic stem cell (HSC)-derived cells are involved in wound healing responses throughout the body. Unfortunately for mammals, wound repair typically results in scarring and nonfunctional reparation. Among vertebrates, none display such an extensive ability for adult regeneration as urodele amphibians, including 1 of the more popular models: the axolotl. However, a lack of knowledge of axolotl hematopoiesis hinders the use of this animal for the study of hematopoietic cells in scar-free wound healing and tissue regeneration. We used white and cytomegalovirus:green fluorescent protein(+) transgenic white axolotl strains to map sites of hematopoiesis and develop hematopoietic cell transplant methodology. We also established a fluorescence-activated cell sorter enrichment technique for major blood lineages and colony-forming unit assays for hematopoietic progenitors. The liver and spleen are both active sites of hematopoiesis in adult axolotls and contain transplantable HSCs capable of long-term multilineage blood reconstitution. As in zebrafish, use of the white axolotl mutant allows direct visualization of homing, engraftment, and hematopoiesis in real time. Donor-derived hematopoiesis occurred for >2 years in recipients generating stable hematopoietic chimeras. Organ segregation, made possible by embryonic microsurgeries wherein halves of 2 differently colored embryos were joined, indicate that the spleen is the definitive site of adult hematopoiesis.

  9. In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis.

    Science.gov (United States)

    Vanhee, Stijn; De Mulder, Katrien; Van Caeneghem, Yasmine; Verstichel, Greet; Van Roy, Nadine; Menten, Björn; Velghe, Imke; Philippé, Jan; De Bleser, Dominique; Lambrecht, Bart N; Taghon, Tom; Leclercq, Georges; Kerre, Tessa; Vandekerckhove, Bart

    2015-02-01

    Although hematopoietic precursor activity can be generated in vitro from human embryonic stem cells, there is no solid evidence for the appearance of multipotent, self-renewing and transplantable hematopoietic stem cells. This could be due to short half-life of hematopoietic stem cells in culture or, alternatively, human embryonic stem cell-initiated hematopoiesis may be hematopoietic stem cell-independent, similar to yolk sac hematopoiesis, generating multipotent progenitors with limited expansion capacity. Since a MYB was reported to be an excellent marker for hematopoietic stem cell-dependent hematopoiesis, we generated a MYB-eGFP reporter human embryonic stem cell line to study formation of hematopoietic progenitor cells in vitro. We found CD34(+) hemogenic endothelial cells rounding up and developing into CD43(+) hematopoietic cells without expression of MYB-eGFP. MYB-eGFP(+) cells appeared relatively late in embryoid body cultures as CD34(+)CD43(+)CD45(-/lo) cells. These MYB-eGFP(+) cells were CD33 positive, proliferated in IL-3 containing media and hematopoietic differentiation was restricted to the granulocytic lineage. In agreement with data obtained on murine Myb(-/-) embryonic stem cells, bright eGFP expression was observed in a subpopulation of cells, during directed myeloid differentiation, which again belonged to the granulocytic lineage. In contrast, CD14(+) macrophage cells were consistently eGFP(-) and were derived from eGFP-precursors only. In summary, no evidence was obtained for in vitro generation of MYB(+) hematopoietic stem cells during embryoid body cultures. The observed MYB expression appeared late in culture and was confined to the granulocytic lineage.

  10. CREB: A Key Regulator of Normal and Neoplastic Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Salemiz Sandoval

    2009-01-01

    Full Text Available The cAMP response element-binding protein (CREB is a nuclear transcription factor downstream of cell surface receptors and mitogens that is critical for normal and neoplastic hematopoiesis. Previous work from our laboratory demonstrated that a majority of patients with acute myeloid leukemia (AML and acute lymphoid leukemia (ALL overexpress CREB in the bone marrow. To understand the role of CREB in leukemogenesis, we examined the biological effect of CREB overexpression on primary leukemia cells, leukemia cell lines, and CREB overexpressing transgenic mice. Our results demonstrated that CREB overexpression leads to an increase in cellular proliferation and survival. Furthermore, CREB transgenic mice develop a myeloproliferative disorder with aberrant myelopoiesis in both the bone marrow and spleen. Additional research from other groups has shown that the expression of the cAMP early inducible repressor (ICER, a CREB repressor, is also deregulated in leukemias. And, miR-34b, a microRNA that negative regulates CREB expression, is expressed at lower levels in myeloid leukemia cell lines compared to that of healthy bone marrow. Taken together, these data suggest that CREB plays a role in cellular transformation. The data also suggest that CREB-specific signaling pathways could possibly serve as potential targets for therapeutic intervention.

  11. Erythropoietin couples hematopoiesis with bone formation.

    Directory of Open Access Journals (Sweden)

    Yusuke Shiozawa

    Full Text Available BACKGROUND: It is well established that bleeding activates the hematopoietic system to regenerate the loss of mature blood elements. We have shown that hematopoietic stem cells (HSCs isolated from animals challenged with an acute bleed regulate osteoblast differentiation from marrow stromal cells. This suggests that HSCs participate in bone formation where the molecular basis for this activity is the production of BMP2 and BMP6 by HSCs. Yet, what stimulates HSCs to produce BMPs is unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we demonstrate that erythropoietin (Epo activates Jak-Stat signaling pathways in HSCs which leads to the production of BMPs. Critically, Epo also directly activates mesenchymal cells to form osteoblasts in vitro, which in vivo leads to bone formation. Importantly, Epo first activates osteoclastogenesis which is later followed by osteoblastogenesis that is induced by either Epo directly or the expression of BMPs by HSCs to form bone. CONCLUSIONS/SIGNIFICANCE: These data for the first time demonstrate that Epo regulates the formation of bone by both direct and indirect pathways, and further demonstrates the exquisite coupling between hematopoiesis and osteopoiesis in the marrow.

  12. Expression of G alpha 16, a G-protein alpha subunit specific for hematopoiesis in acute leukemia.

    Science.gov (United States)

    Pfeilstöcker, M; Karlic, H; Salamon, J; Krömer, E; Mühlberger, H; Pavlova, B; Selim, U; Tüchler, H; Fritsch, G; Kneissl, S; Heinz, R; Pitterman, E; Paukovits, M R

    1996-07-01

    G-proteins are essential in signal transduction pathways. A G-protein alpha subunit termed G alpha 16 was found to be exclusively expressed in hematopoietic cell lines. In cells derived from patients, G alpha 16 expression has been detected in progenitor- and pre-B ALL cells and also in peripheral blood stem cells (PBSC). In this study, we analyzed G alpha 16 expression using a RT-PCR technique by testing elutriated blood cells from normal donors, PBSC from breast cancer patients and bone marrow or peripheral blood cells from acute leukemia patients. Both of two ALL patients and 15/16 AML patients expressed G alpha 16. In elutriation experiments, G alpha 16 expression was found in fractions containing the highest number of precursor cells but was absent in mature T and B cell fractions. In addition, CD34-enriched PBSC were positive for G alpha 16 expression. Further in vitro experiments using the cell line KG1 showed that G alpha 16 expression was not affected by the growth inhibiting hemoregulatory peptide pEEDCK which has a sequence homology present within G alpha 16. Taken together, these data demonstrate that G alpha 16 is expressed in various normal and malignant hematopietic progenitors but not in their differentiated counterparts. G alpha 16 could play a vital role in signal transduction pathways controlling proliferation in early normal and malignant hematopoiesis.

  13. Clonal hematopoiesis in acquired aplastic anemia

    Science.gov (United States)

    2016-01-01

    Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1. Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. PMID:27121470

  14. Extramedullary Hematopoiesis: An Unusual Finding in Subdural Hematomas

    Directory of Open Access Journals (Sweden)

    Rong Li

    2011-01-01

    Full Text Available We present a case of a 59-year-old man who was found to have clusters of hyperchromatic, small, round nucleated cells within a subdural hematoma removed after a skull fracture. Immunohistochemistry study confirmed that the cells were hematopoietic components predominantly composed of normoblasts. In this paper, we describe the clinical and pathological findings. A brief review of published information on extramedullary hematopoiesis in subdural hematoma and the mechanisms of pathogenesis are also discussed. While extramedullary hematopoiesis is seen anecdotally by neuropathologists in chronic subdural hematomas, only a few cases are documented in the literature. Furthermore, extramedullary hematopoiesis in subdural hematoma can pose a diagnostic challenge for general pathologists who encounter subdural hematoma evacuations seldom in their surgical pathology practices.

  15. Developmental Changes in Visual and Auditory Inhibition in Early Childhood

    Science.gov (United States)

    Guy, Jacalyn; Rogers, Maria; Cornish, Kim

    2012-01-01

    The development of executive functions in the preschool years is not fully understood. Although there exists a large body of research investigating the maturation of executive functioning in school-aged children, little is known about the emergence of such skills, in particular inhibition, among preschool-aged children. Understanding developmental…

  16. Early autophagy activation inhibits podocytes from apoptosis induced by aldosterone

    Institute of Scientific and Technical Information of China (English)

    王文琰

    2013-01-01

    Objective To explore the protection of early autoph-agy activation on podocyte injury induced by aldosterone.Methods In vitro cultured mouse podocyte clones(MPC5) were treated with aldosterone for 6,12,24,48 hrespectively. Apoptosis of podocytes was detected by

  17. Estramustine phosphate reversibly inhibits an early stage during adenovirus replication.

    Science.gov (United States)

    Everitt, E; Ekstrand, H; Boberg, B; Hartley-Asp, B

    1990-01-01

    Estramustine phosphate, an estradiol-mustard conjugate, was shown to reversibly inhibit a stage during the first hour of productive adenovirus 2 infection of HeLa cells. This drug, employed in the therapy of advanced prostatic cancer, specifically interacts with microtubule-associated proteins (MAPs) of the cytoskeleton. The results obtained under physiological conditions in vivo suggest a MAPs-interference with the microtubule-mediated vectorial migration of the virus inoculum to the nucleus. Virus attachment, uncoating kinetics and the appearance of established uncoating intermediates were not affected.

  18. Regulation of Hematopoiesis and Methionine Homeostasis by mTORC1 Inhibitor NPRL2

    Directory of Open Access Journals (Sweden)

    Paul A. Dutchak

    2015-07-01

    Full Text Available Nitrogen permease regulator-like 2 (NPRL2 is a component of a conserved complex that inhibits mTORC1 (mammalian Target Of Rapamycin Complex 1 in response to amino acid insufficiency. Here, we show that NPRL2 is required for mouse viability and that its absence significantly compromises fetal liver hematopoiesis in developing embryos. Moreover, NPRL2 KO embryos have significantly reduced methionine levels and exhibit phenotypes reminiscent of cobalamin (vitamin B12 deficiency. Consistent with this idea, NPRL2 KO liver and mouse embryonic fibroblasts (MEFs show defective processing of the cobalamin-transport protein transcobalamin 2, along with impaired lysosomal acidification and lysosomal gene expression. NPRL2 KO MEFs exhibit a significant defect in the cobalamin-dependent synthesis of methionine from homocysteine, which can be rescued by supplementation with cyanocobalamin. Taken together, these findings demonstrate a role for NPRL2 and mTORC1 in the regulation of lysosomal-dependent cobalamin processing, methionine synthesis, and maintenance of cellular re-methylation potential, which are important during hematopoiesis.

  19. Microsomal protein synthesis inhibition: an early manifestation of gentamicin nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W.M.; Mela-Riker, L.M.; Houghton, D.C.; Gilbert, D.N.; Buss, W.C.

    1988-08-01

    Aminoglycoside antibiotics achieve bacterial killing by binding to bacterial ribosomes and inhibiting protein synthesis. To examine whether similar mechanisms could be present in renal tubular cells prior to the onset of overt proximal tubular necrosis due to these drugs, we isolated microsomes from Fischer rats given 20 mg/kg gentamicin every 12 h subcutaneously for 2 days and from vehicle-injected controls. Concomitant studies of renal structure, function, and mitochondrial respiration were carried out. (3H)leucine incorporation into renal microsomes of treated animals was reduced by 21.9% (P less than 0.01), whereas brain and liver microsomes from the same animals were unaffected. Gentamicin concentration in the renal microsomal preparation was 56 micrograms/ml, a value 7- to 10-fold above concentrations necessary to inhibit bacterial growth. Conventional renal function studies were normal (blood urea, serum creatinine, creatinine clearance). Treated animals showed only a mild reduction of inulin clearance, 0.71 compared with 0.93 ml.min-1.100 g-1 in controls (P less than 0.05), and an increase in urinary excretion of N-acetylglucosaminidase of 20 compared with 14.8 units/l (P less than 0.05). Renal slice transport of p-aminohippuric acid, tetraethylammonium, and the fractional excretion of sodium were well preserved. There was no evidence, as seen by light microscopy, of proximal tubular necrosis. Mitochondrial cytochrome concentrations were normal and respiratory activities only slightly reduced. Processes similar to those responsible for bacterial killing could be involved in experimental gentamicin nephrotoxicity before overt cellular necrosis.

  20. Metformin inhibits early stage diethylnitrosamine‑induced hepatocarcinogenesis in rats.

    Science.gov (United States)

    Jo, Woori; Yu, Eun-Sil; Chang, Minsun; Park, Hyun-Kyu; Choi, Hyun-Ji; Ryu, Jae-Eun; Jang, Sungwoong; Lee, Hyo-Ju; Jang, Ja-June; Son, Woo-Chan

    2016-01-01

    Antitumor effects of metformin have recently emerged despite its original use for type II diabetes. In the present study, the effects of metformin on the development and recurrence of hepatocellular carcinoma (HCC) were investigated using the diethylnitrosamine (DEN)‑induced rat model of HCC. Tumor foci were characterized by gross examination and by histopathological characteristics, including proliferation, hepatic progenitor cell content and the expression of hepatocarcinoma‑specific molecular markers. Potential target molecules of metformin were investigated to determine the molecular mechanism underlying the inhibitory effects of metformin on chemically induced liver tumorigenesis. The antitumor effects of metformin were increased by the reduction of surface nodules and decreased the incidence of altered hepatocellular foci, hepatocellular adenoma and carcinoma. Also, decreased expression levels of glutathione S‑transferase placental form, proliferating cell nuclear antigen and cytokeratin 8 described the inhibitory effects of metformin on HCC. In the present study, Wistar rats receiving treatment with DEN were administered metformin for 16 weeks. In addition, metformin suppressed liver tumorigenesis via an AMPK‑dependent pathway. These results suggested that metformin has promising effects on the early stage of HCC in rats. Therefore, metformin may be used for the prevention of HCC recurrence following primary chemotherapy for HCC and/or for high‑risk patients, including chronic hepatitis and cirrhosis.

  1. Long noncoding RNAs during normal and malignant hematopoiesis.

    Science.gov (United States)

    Alvarez-Dominguez, Juan R; Hu, Wenqian; Gromatzky, Austin A; Lodish, Harvey F

    2014-01-01

    Long noncoding RNAs (lncRNAs) are increasingly recognized to contribute to cellular development via diverse mechanisms during both health and disease. Here, we highlight recent progress on the study of lncRNAs that function in the development of blood cells. We emphasize lncRNAs that regulate blood cell fates through epigenetic control of gene expression, an emerging theme among functional lncRNAs. Many of these noncoding genes and their targets become dysregulated during malignant hematopoiesis, directly implicating lncRNAs in blood cancers such as leukemia. In a few cases, dysregulation of an lncRNA alone leads to malignant hematopoiesis in a mouse model. Thus, lncRNAs may be not only useful as markers for the diagnosis and prognosis of cancers of the blood, but also as potential targets for novel therapies.

  2. Hematopoiesis during development, aging, and disease

    NARCIS (Netherlands)

    Jung, Johannes; Buisman, Sonja; de Haan, Gerald

    2016-01-01

    Hematopoietic stem cells were once considered identical. However, in the mid-1990s, it became apparent that stem cells from a person's early developmental phases are superior to those from adults, and aged stem cells are defective compared with young stem cells. It has since become clear that polyco

  3. Mathematical Models of Human Hematopoiesis Following Acute Radiation Exposure

    Science.gov (United States)

    2014-05-01

    the model predicts. Radiation dose from skin contamination can result in cutaneous injury leading to systemic responses and may im- pact the observed...medical and performance consequences from radiation and combined injuries , thereby enhancing our understanding of the potential impact of a nuclear...subsequently. In addition to the insight gained from combined injury modeling, the models of hematopoiesis and radiation alone provide clini- cally

  4. Spinal Cord Compression Secondary to Extramedullary Hematopoiesis in Thalassemia

    OpenAIRE

    Mohammad Hadi Bagheri; Jalal Jalal Shokouhi; Farrokh Habibzadeh; Aliakbar Ameri

    2003-01-01

    Backgroud/Objective: Extramedullary hematopoiesis (EMH) is a physiological response to chronic anemia and may rarely cause spinal cord compression. Herein, we describe 9 thalassemic patients presenting with signs and symptoms of cord compression either due to epidural mass or spinal canal stenosis secondary to bone widening. Since this emergency condition can be readily diagnosed by MRI and has medical rather than surgical treatment, i.e., blood transfusion and/or low dose radiation therapy, ...

  5. Premature epiphyseal fusion and extramedullary hematopoiesis in thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Colavita, N.; Orazi, C.; Danza, S.M.; Falappa, P.G.; Fabbri, R.

    1987-10-01

    The main skeletal abnormalities in ..beta..-thalassemia are widening of medullary spaces, rarefaction of bone trabeculae, thinning of cortical bone, and perpendicular periosteal spiculation. Premature epiphyseal fusion (PEF) and extramedullary hematopoiesis (EH) are found, though more rarely. The incidence of PEF and EH in 64 patients affected by ..beta..-thalassemia is reported. The different incidence of such complications in thalassemia major and intermedia is reported, and a possible correlation with transfusion regimen is also considered.

  6. Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis

    Science.gov (United States)

    Pozner, Amir; Lotem, Joseph; Xiao, Cuiying; Goldenberg, Dalia; Brenner, Ori; Negreanu, Varda; Levanon, Ditsa; Groner, Yoram

    2007-01-01

    Background Alternative promoters usage is an important paradigm in transcriptional control of mammalian gene expression. However, despite the growing interest in alternative promoters and their role in genome diversification, very little is known about how and on what occasions those promoters are differentially regulated. Runx1 transcription factor is a key regulator of early hematopoiesis and a frequent target of chromosomal translocations in acute leukemias. Mice deficient in Runx1 lack definitive hematopoiesis and die in mid-gestation. Expression of Runx1 is regulated by two functionally distinct promoters designated P1 and P2. Differential usage of these two promoters creates diversity in distribution and protein-coding potential of the mRNA transcripts. While the alternative usage of P1 and P2 likely plays an important role in Runx1 biology, very little is known about the function of the P1/P2 switch in mediating tissue and stage specific expression of Runx1 during development. Results We employed mice bearing a hypomorphic Runx1 allele, with a largely diminished P2 activity, to investigate the biological role of alternative P1/P2 usage. Mice homozygous for the hypomorphic allele developed to term, but died within a few days after birth. During embryogenesis the P1/P2 activity is spatially and temporally modulated. P2 activity is required in early hematopoiesis and when attenuated, development of liver hematopoietic progenitor cells (HPC) was impaired. Early thymus development and thymopoiesis were also abrogated as reflected by thymic hypocellularity and loss of corticomedullary demarcation. Differentiation of CD4/CD8 thymocytes was impaired and their apoptosis was enhanced due to altered expression of T-cell receptors. Conclusion The data delineate the activity of P1 and P2 in embryogenesis and describe previously unknown functions of Runx1. The findings show unequivocally that the role of P1/P2 during development is non redundant and underscore the

  7. Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis

    Directory of Open Access Journals (Sweden)

    Goldenberg Dalia

    2007-07-01

    Full Text Available Abstract Background Alternative promoters usage is an important paradigm in transcriptional control of mammalian gene expression. However, despite the growing interest in alternative promoters and their role in genome diversification, very little is known about how and on what occasions those promoters are differentially regulated. Runx1 transcription factor is a key regulator of early hematopoiesis and a frequent target of chromosomal translocations in acute leukemias. Mice deficient in Runx1 lack definitive hematopoiesis and die in mid-gestation. Expression of Runx1 is regulated by two functionally distinct promoters designated P1 and P2. Differential usage of these two promoters creates diversity in distribution and protein-coding potential of the mRNA transcripts. While the alternative usage of P1 and P2 likely plays an important role in Runx1 biology, very little is known about the function of the P1/P2 switch in mediating tissue and stage specific expression of Runx1 during development. Results We employed mice bearing a hypomorphic Runx1 allele, with a largely diminished P2 activity, to investigate the biological role of alternative P1/P2 usage. Mice homozygous for the hypomorphic allele developed to term, but died within a few days after birth. During embryogenesis the P1/P2 activity is spatially and temporally modulated. P2 activity is required in early hematopoiesis and when attenuated, development of liver hematopoietic progenitor cells (HPC was impaired. Early thymus development and thymopoiesis were also abrogated as reflected by thymic hypocellularity and loss of corticomedullary demarcation. Differentiation of CD4/CD8 thymocytes was impaired and their apoptosis was enhanced due to altered expression of T-cell receptors. Conclusion The data delineate the activity of P1 and P2 in embryogenesis and describe previously unknown functions of Runx1. The findings show unequivocally that the role of P1/P2 during development is non

  8. Early pharmacological inhibition of angiotensin-I converting enzyme activity induces obesity in adulthood

    OpenAIRE

    2015-01-01

    We have investigated early programming of body mass in order to understand the multifactorial etiology of obesity. Considering that the renin-angiotensin system (RAS) is expressed and functional in the white adipose tissue (WAT) and modulates its development, we reasoned whether early transitory inhibition of angiotensin-I converting enzyme activity after birth could modify late body mass development. Therefore, newborn Wistar rats were treated with enalapril (10 mg/kg of body mass) or saline...

  9. GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Xin Gao

    2016-03-01

    Full Text Available Hematopoietic stem cells (HSCs originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5 enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5−/− AGMs. As G-protein-coupled receptors (GPCRs are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis.

  10. Single cell analysis of normal and leukemic hematopoiesis.

    Science.gov (United States)

    Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J

    2017-09-07

    The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.

  11. Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A.

    Science.gov (United States)

    Chaudhuri, Aadel A; So, Alex Yick-Lun; Mehta, Arnav; Minisandram, Aarathi; Sinha, Nikita; Jonsson, Vanessa D; Rao, Dinesh S; O'Connell, Ryan M; Baltimore, David

    2012-03-13

    MicroRNA-125b (miR-125b) is up-regulated in patients with leukemia. Overexpression of miR-125b alone in mice causes a very aggressive, transplantable myeloid leukemia. Before leukemia, these mice do not display elevation of white blood cells in the spleen or bone marrow; rather, the hematopoietic compartment shows lineage-skewing, with myeloid cell numbers dramatically increased and B-cell numbers severely diminished. miR-125b exerts this effect by up-regulating the number of common myeloid progenitors while inhibiting development of pre-B cells. We applied a miR-125b sponge loss of function system in vivo to show that miR-125b physiologically regulates hematopoietic development. Investigating the mechanism by which miR-125b regulates hematopoiesis, we found that, among a panel of candidate targets, the mRNA for Lin28A, an induced pluripotent stem cell gene, was most repressed by miR-125b in mouse hematopoietic stem and progenitor cells. Overexpressing Lin28A in the mouse hematopoietic system mimicked the phenotype observed on inhibiting miR-125b function, leading to a decrease in hematopoietic output. Relevant to the miR-125b overexpression phenotype, we also found that knockdown of Lin28A led to hematopoietic lineage-skewing, with increased myeloid and decreased B-cell numbers. Thus, the miR-125b target Lin28A is an important regulator of hematopoiesis and a primary target of miR-125b in the hematopoietic system.

  12. Stable Early Maternal Report of Behavioral Inhibition Predicts Lifetime Social Anxiety Disorder in Adolescence

    Science.gov (United States)

    Chronis-Tuscano, Andrea; Degnan, Kathryn Amey; Pine, Daniel S.; Perez-Edgar, Koraly; Henderson, Heather A.; Diaz, Yamalis; Raggi, Veronica L.; Fox, Nathan A.

    2009-01-01

    The odds of a lifetime diagnosis of social anxiety disorder increased by 3.79 times for children who had a stable report of behavioral inhibition from their mothers. This finding has important implications for the early identification and prevention of social anxiety disorder.

  13. Baicalein inhibits lipid accumulation by regulating early adipogenesis and m-TOR signaling.

    Science.gov (United States)

    Seo, Min-Jung; Choi, Hyeon-Son; Jeon, Hui-Jeon; Woo, Mi-Seon; Lee, Boo-Yong

    2014-05-01

    Baicalein is a type of flavonoid that originates from Scutellaria baicalensis. In this study, we examined how baicalein inhibits lipid accumulation during adipogenesis in 3T3-L1 cells. Our data show that baicalein inhibited lipid accumulation during adipogenesis in a dose-dependent manner. Baicalein inhibition was limited to the early adipogenic stage. Cell cycle analysis showed that baicalein induced cell cycle arrest in the G0/G1 phase through cyclin downregulation. In addition, baicalein suppressed the mRNA expression of early adipogenic factors leading to downregulation of late adipogenic factors at mRNA and protein levels. Inhibition of adipogenic factors by baicalein was correlated with downregulation of lipid synthetic enzymes. Additionally, baicalein negatively regulated the m-TOR signaling pathway involved in lipid accumulation during adipogenesis, thus inhibiting phosphorylation of m-TOR and p70S6K. In a zebrafish study, baicalein significantly reduced lipid accumulation in Nile Red staining. Consistent with a report using cell lines, mRNA expression of adipogenic factors was decreased in a dose-dependent manner by baicalein. This result reflects a reduction in total triglyceride levels based on a triglyceride assay. Our data suggest that baicalein inhibits lipid accumulation by controlling the cell cycle and m-TOR signaling in 3T3-L1 cells, and its anti-adipogenic effect was found in a zebrafish model.

  14. Postnatal Hematopoiesis and Gut Microbiota in NOD Mice Deviate from C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Dina Silke Malling Damlund

    2016-01-01

    Full Text Available Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND 1–4 in NOD mice. Furthermore, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface in NOD compared to C57BL/6 mice.

  15. Postnatal hematopoiesis and gut microbiota in NOD mice deviate from C57BL/6 mice

    DEFF Research Database (Denmark)

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Hasselby, Jane Preuss

    2016-01-01

    Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate...... from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND) 1-4 in NOD mice. Furthermore......, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface...

  16. Inhibition of early steps in the lentiviral replication cycle by cathelicidin host defense peptides.

    Science.gov (United States)

    Steinstraesser, Lars; Tippler, Bettina; Mertens, Janine; Lamme, Evert; Homann, Heinz-Herbert; Lehnhardt, Marcus; Wildner, Oliver; Steinau, Hans-Ulrich; Uberla, Klaus

    2005-01-18

    The antibacterial activity of host defense peptides (HDP) is largely mediated by permeabilization of bacterial membranes. The lipid membrane of enveloped viruses might also be a target of antimicrobial peptides. Therefore, we screened a panel of naturally occurring HDPs representing different classes for inhibition of early, Env-independent steps in the HIV replication cycle. A lentiviral vector-based screening assay was used to determine the inhibitory effect of HDPs on early steps in the replication cycle and on cell metabolism. Human LL37 and porcine Protegrin-1 specifically reduced lentiviral vector infectivity, whereas the reduction of luciferase activities observed at high concentrations of the other HDPs is primarily due to modulation of cellular activity and/ or cytotoxicity rather than antiviral activity. A retroviral vector was inhibited by LL37 and Protegrin-1 to similar extent, while no specific inhibition of adenoviral vector mediated gene transfer was observed. Specific inhibitory effects of Protegrin-1 were confirmed for wild type HIV-1. Although Protegrin-1 apparently inhibits an early step in the HIV-replication cycle, cytotoxic effects might limit its use as an antiviral agent unless the specificity for the virus can be improved.

  17. Sleep Moderates the Association Between Response Inhibition and Self-Regulation in Early Childhood.

    Science.gov (United States)

    Schumacher, Allyson M; Miller, Alison L; Watamura, Sarah E; Kurth, Salome; Lassonde, Jonathan M; LeBourgeois, Monique K

    2017-01-01

    Early childhood is a time of rapid developmental changes in sleep, cognitive control processes, and the regulation of emotion and behavior. This experimental study examined sleep-dependent effects on response inhibition and self-regulation, as well as whether acute sleep restriction moderated the association between these processes. Preschool children (N = 19; 45.6 ± 2.2 months; 11 female) followed a strict sleep schedule for at least 3 days before each of 2 morning behavior assessments: baseline (habitual nap/night sleep) and sleep restriction (missed nap/delayed bedtime). Response inhibition was evaluated via a go/no-go task. Twelve self-regulation strategies were coded from videotapes of children while attempting an unsolvable puzzle. We then created composite variables representing adaptive and maladaptive self-regulation strategies. Although we found no sleep-dependent effects on response inhibition or self-regulation measures, linear mixed-effects regression showed that acute sleep restriction moderated the relationship between these processes. At baseline, children with better response inhibition were more likely to use adaptive self-regulation strategies (e.g., self-talk, alternate strategies), and those with poorer response inhibition showed increased use of maladaptive self-regulation strategies (e.g., perseveration, fidgeting); however, response inhibition was not related to self-regulation strategies following sleep restriction. Our results showing a sleep-dependent effect on the associations between response inhibition and self-regulation strategies indicate that adequate sleep facilitates synergy between processes supporting optimal social-emotional functioning in early childhood. Although replication studies are needed, findings suggest that sleep may alter connections between maturing emotional and cognitive systems, which have important implications for understanding risk for or resilience to developmental psychopathology.

  18. Transcriptional inhibition of the bacteriophage T7 early promoter region by oligonucleotide triple helix formation.

    Science.gov (United States)

    Ross, C; Samuel, M; Broitman, S L

    1992-12-30

    We have identified a purine-rich triplex binding sequence overlapping a -35 transcriptional early promoter region of the bacteriophage T7. Triplex-forming oligonucleotide designed to bind this target was annealed to T7 templates and introduced into in vitro transcription systems under conditions favoring specific initiation from this promoter. These templates demonstrated significant transcriptional inhibition relative to naked genomic templates and templates mixed with non-triplex-forming oligonucleotide. It is suggested that triplex formation along this target interferes with transcriptional initiation, and this mechanism may hold potential to disrupt bacteriophage T7 early transcription in vivo.

  19. Inhibition of apoptosis in early tooth development alters tooth shape and size.

    Science.gov (United States)

    Kim, J-Y; Cha, Y-G; Cho, S-W; Kim, E-J; Lee, M-J; Lee, J-M; Cai, J; Ohshima, H; Jung, H-S

    2006-06-01

    Apoptosis plays important roles in various stages of organogenesis. In this study, we hypothesized that apoptosis would play an important role in tooth morphogenesis. We examined the role of apoptosis in early tooth development by using a caspase inhibitor, z-VAD-fmk, concomitant with in vitro organ culture and tooth germ transplantation into the kidney capsule. Inhibition of apoptosis at the early cap stage did not disrupt the cell proliferation level when compared with controls. However, the macroscopic morphology of mice molar teeth exhibited dramatic alterations after the inhibition of apoptosis. Crown height was reduced, and mesiodistal diameter was increased in a concentration-dependent manner with z-VAD-fmk treatment. Overall, apoptosis in the enamel knot would be necessary for the proper formation of molar teeth, including appropriate shape and size.

  20. Dexamethasone-Induced Oxidative Stress Enhances Myeloma Cell Radiosensitization While Sparing Normal Bone Marrow Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Soumen Bera

    2010-12-01

    Full Text Available Dexamethasone (Dex and radiation therapy are established modalities in multiple myeloma. In this study, we propose a novel combination of Dex plus radiation that shows superior clonogenic cell killing and apoptosis of myeloma cells and selectively eliminates myeloma cells when cocultured with bone marrow stromal cells (BMSCs. Dex was found to inhibit the release of interleukin-6 from irradiated BMSCs, which is an established myeloma cell proproliferative cytokine. In 5TGM1 model, the combination of Dex with skeletal targeted radiotherapy (153-Sm-EDTMP prolonged median survival time and inhibited radiation-induced myelosuppression. A two-cycle treatment of Dex plus 153-Sm-EDTMP was well tolerated and further improved median survival time. Mechanistically, Dex increased superoxide and hydrogen peroxide production and augmented radiation-induced oxidative stress and cell death of myeloma cells. In contrast, Dex inhibited radiation-induced increase in pro-oxidant levels and enhanced the clonogenic survival in normal hematopoietic stem and progenitor cells. Treatment with either N-acetylcysteine or the combination of polyethylene glycol (PEG-conjugated copper, zinc-superoxide dismutase, and PEG-catalase significantly protected myeloma cells from Dex-induced clonogenic death. Overall, these results demonstrate that Dex in combination with radiotherapy enhances the killing of myeloma cells while protecting normal bone marrow hematopoiesis through a mechanism that involves selective increases in oxidative stress.

  1. Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking.

    Science.gov (United States)

    Hoggatt, J; Pelus, L M

    2010-12-01

    Hematopoietic stem cell (HSC) transplantation is a potentially curative treatment for numerous hematological malignancies. The transplant procedure as performed today takes advantage of HSC trafficking; either egress of HSC from the bone marrow to the peripheral blood, that is, mobilization, for acquisition of the hematopoietic graft, and/or trafficking of HSC from the peripheral blood to bone marrow niches in the recipient patient, that is HSC homing. Numerous studies, many of which are reviewed herein, have defined hematopoietic regulatory mechanisms mediated by the 20-carbon lipid family of eicosanoids, and recent evidence strongly supports a role for eicosanoids in regulation of hematopoietic trafficking, adding a new role whereby eicosanoids regulate hematopoiesis. Short-term exposure of HSC to the eicosanoid prostaglandin E(2) increases CXCR4 receptor expression, migration and in vivo homing of HSC. In contrast, cannabinoids reduce hematopoietic progenitor cell (HPC) CXCR4 expression and induce HPC mobilization when administered in vivo. Leukotrienes have been shown to alter CD34(+) cell adhesion, migration and regulate HSC proliferation, suggesting that eicosanoids have both opposing and complimentary roles in the regulation of hematopoiesis. As numerous FDA approved compounds regulate eicosanoid signaling or biosynthesis, the utility of eicosanoid-based therapeutic strategies to improve hematopoietic transplantation can be rapidly evaluated.

  2. Endothelial Jagged-1 Is Necessary for Homeostatic and Regenerative Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Michael G. Poulos

    2013-09-01

    Full Text Available The bone marrow (BM microenvironment is composed of multiple niche cells that, by producing paracrine factors, maintain and regenerate the hematopoietic stem cell (HSC pool (Morrison and Spradling, 2008. We have previously demonstrated that endothelial cells support the proper regeneration of the hematopoietic system following myeloablation (Butler et al., 2010; Hooper et al., 2009; Kobayashi et al., 2010. Here, we demonstrate that expression of the angiocrine factor Jagged-1, supplied by the BM vascular niche, regulates homeostatic and regenerative hematopoiesis through a Notch-dependent mechanism. Conditional deletion of Jagged-1 in endothelial cells (Jag1(ECKO mice results in a profound decrease in hematopoiesis and premature exhaustion of the adult HSC pool, whereas quantification and functional assays demonstrate that loss of Jagged-1 does not perturb vascular or mesenchymal compartments. Taken together, these data demonstrate that the instructive function of endothelial-specific Jagged-1 is required to support the self-renewal and regenerative capacity of HSCs in the adult BM vascular niche.

  3. The Hippo pathway regulates hematopoiesis in Drosophila melanogaster.

    Science.gov (United States)

    Milton, Claire C; Grusche, Felix A; Degoutin, Joffrey L; Yu, Eefang; Dai, Qi; Lai, Eric C; Harvey, Kieran F

    2014-11-17

    The Salvador-Warts-Hippo (Hippo) pathway is an evolutionarily conserved regulator of organ growth and cell fate. It performs these functions in epithelial and neural tissues of both insects and mammals, as well as in mammalian organs such as the liver and heart. Despite rapid advances in Hippo pathway research, a definitive role for this pathway in hematopoiesis has remained enigmatic. The hematopoietic compartments of Drosophila melanogaster and mammals possess several conserved features. D. melanogaster possess three types of hematopoietic cells that most closely resemble mammalian myeloid cells: plasmatocytes (macrophage-like cells), crystal cells (involved in wound healing), and lamellocytes (which encapsulate parasites). The proteins that control differentiation of these cells also control important blood lineage decisions in mammals. Here, we define the Hippo pathway as a key mediator of hematopoiesis by showing that it controls differentiation and proliferation of the two major types of D. melanogaster blood cells, plasmatocytes and crystal cells. In animals lacking the downstream Hippo pathway kinase Warts, lymph gland cells overproliferated, differentiated prematurely, and often adopted a mixed lineage fate. The Hippo pathway regulated crystal cell numbers by both cell-autonomous and non-cell-autonomous mechanisms. Yorkie and its partner transcription factor Scalloped were found to regulate transcription of the Runx family transcription factor Lozenge, which is a key regulator of crystal cell fate. Further, Yorkie or Scalloped hyperactivation induced ectopic crystal cells in a non-cell-autonomous and Notch-pathway-dependent fashion.

  4. The histone demethylase UTX regulates stem cell migration and hematopoiesis.

    Science.gov (United States)

    Thieme, Sebastian; Gyárfás, Tobias; Richter, Cornelia; Özhan, Günes; Fu, Jun; Alexopoulou, Dimitra; Muders, Michael H; Michalk, Irene; Jakob, Christiane; Dahl, Andreas; Klink, Barbara; Bandola, Joanna; Bachmann, Michael; Schröck, Evelin; Buchholz, Frank; Stewart, A Francis; Weidinger, Gilbert; Anastassiadis, Konstantinos; Brenner, Sebastian

    2013-03-28

    Regulated migration of hematopoietic stem cells is fundamental for hematopoiesis. The molecular mechanisms underlying stem cell trafficking are poorly defined. Based on a short hairpin RNA library and stromal cell-derived factor-1 (SDF-1) migration screening assay, we identified the histone 3 lysine 27 demethylase UTX (Kdm6a) as a novel regulator for hematopoietic cell migration. Using hematopoietic stem and progenitor cells from our conditional UTX knockout (KO) mice, we were able to confirm the regulatory function of UTX on cell migration. Moreover, adult female conditional UTX KO mice displayed myelodysplasia and splenic erythropoiesis, whereas UTX KO males showed no phenotype. During development, all UTX KO female and a portion of UTX KO male embryos developed a cardiac defect, cranioschisis, and died in utero. Therefore, UTY, the male homolog of UTX, can compensate for UTX in adults and partially during development. Additionally, we found that UTX knockdown in zebrafish significantly impairs SDF-1/CXCR4-dependent migration of primordial germ cells. Our data suggest that UTX is a critical regulator for stem cell migration and hematopoiesis.

  5. The NFKB Inducing Kinase Modulates Hematopoiesis During Stress.

    Science.gov (United States)

    González-Murillo, África; Fernández, Lucía; Baena, Sara; Melen, Gustavo J; Sánchez, Rebeca; Sánchez-Valdepeñas, Carmen; Segovia, José C; Liou, Hsiou-Chi; Schmid, Roland; Madero, Luís; Fresno, Manuel; Ramírez, Manuel

    2015-09-01

    The genetic programs that maintain hematopoiesis during steady state in physiologic conditions are different from those activated during stress. Here, we show that hematopoietic stem cells (HSCs) with deficiencies in components of the alternative NFκB pathway (the NFκB inducing kinase, NIK, and the downstream molecule NFκB2) had a defect in response to stressors such as supraphysiological doses of cytokines, chemotherapy, and hematopoietic transplantation. NIK-deficient mice had peripheral blood and bone marrow leukocyte numbers within normal ranges (except for the already reported defects in B-cell maturation); however, HSCs showed significantly slower expansion capacity in in vitro cultures compared to wild-type HSCs. This was due to a delayed cell cycle and increased apoptosis. In vivo experiments showed that NIK-deficient HSCs did not recover at the same pace as controls when challenged with myeloablative chemotherapy. Finally, NIK-deficient HSCs showed a significantly decreased competitive repopulation capacity in vivo. Using HSCs from mice deficient in one of two downstream targets of NIK, that is, either NFκB2 or c-Rel, only NFκB2 deficiency recapitulated the defects detected with NIK-deficient HSCs. Our results underscore the role of NIK and the alternative NFκB pathway for the recovery of normal levels of hematopoiesis after stress.

  6. Cholecalciferol inhibits lipid accumulation by regulating early adipogenesis in cultured adipocytes and zebrafish.

    Science.gov (United States)

    Kim, Joo Hyoun; Kang, Smee; Jung, Yu Na; Choi, Hyeon-Son

    2016-01-15

    Cholecalciferol (CCF) is a common dietary supplement as a precursor of active vitamin D. In the present study, the effect of CCF on lipid accumulation was investigated in adipocyte cells and zebrafish models. CCF effectively inhibited lipid accumulation in both experimental models; this effect was attributed to the CCF-mediated regulation of early adipogenic factors. CCF down-regulated the expressions of CCAAT-enhancer-binding protein-β (C/EBPβ), C/EBPδ, Krueppel-like factor (KLF) 4, and KLF5, while KLF2, a negative adipogenic regulator, was increased by CCF treatment. CCF inhibited cell cycle progression of adipocytes through down-regulation of cyclin A and cyclinD; p-Rb was suppressed by CCF, but p27 was up-regulated with CCF treatment. This CCF-mediated inhibition of cell cycle progression is highly correlated to the inhibitions of extracellular signal-regulated kinase (ERK), serine threonine-specific kinase (AKT), and mammalian target of rapamycin (mTOR). Furthermore, CCF-induced inactivation of acetyl-CoA carboxylase (ACC), a fatty acid synthetic enzyme, with the activation of AMP-activated protein kinase α (AMPKα) was also observed. Consistent with the observations in adipocytes, CCF effectively inhibited lipid accumulation with the down-regulation of adipogenic factors in zebrafish. The present study indicates that CCF showed anti-adipogenic effect in adipocytes and zebrafish, and its inhibitory effect was involved in the regulation of early adipogenic events including cell cycle arrest and activation of AMPKα signaling.

  7. Cellular stress response in Eca-109 cells inhibits apoptosis during early exposure to isorhamnetin.

    Science.gov (United States)

    Shi, C; Fan, L Y; Cai, Z; Liu, Y Y; Yang, C L

    2012-01-01

    The flavonol aglycone isorhamnetin shows anti-proliferative activity in a variety of cancer cells. Previous work, from our laboratory showed that isorhamnetin inhibits the proliferation of human esophageal squamous carcinoma Eca-109 cells in vitro, but only after 72 h of exposure. This led us to propose that isorhamnetin exposure induces a cellular stress response that inhibits the antiproliferative and apoptotic effects of the compound during early exposure. To test this hypothesis, the present study examined the effects of isorhamnetin on Eca-109 cells during the first 72 h of exposure. Cell growth was assessed using the trypan blue exclusion assay, and expression of IκBα, NF-κB/p65, NF-κB/p50, phospho-Akt, Bcl-2, COX-2, Mcl-1, Bax, p53 and Id-1 were analyzed by Western blot. During the first 72 h of exposure, NF-κB/p65 and NF-κB/p50 accumulated in nuclei and expression of COX-2, Bcl-2 and Mcl-1 increased. In contrast, expression of IκBα and Bax fell initially but later increased. Expression of phospho-Akt and p53 showed no detectable change during the first 48 h. Pretreatment with the NF-κB inhibitor MG132 before exposure to isorhamnetin blocked the nuclear accumulation of p50 and p65, thereby inhibiting cell proliferation. These results show that during early exposure of Eca-109 cells to isorhamnetin, the NF-κB signaling pathway is activated and COX-2 expression increases, and this increase in expression partially inhibits isorhamnetin-induced apoptosis. Beyond 72 h of exposure, however, the apoptotic effect of isorhamnetin dominates, leading to inhibition of the NF-κB pathway and of cellular proliferation. These results will need to be taken into account when exploring the use of isorhamnetin against cancer in vivo.

  8. Zebrafish hoxd4a acts upstream of meis1.1 to direct vasculogenesis, angiogenesis and hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Aseervatham Anusha Amali

    Full Text Available Mice lacking the 4th-group paralog Hoxd4 display malformations of the anterior vertebral column, but are viable and fertile. Here, we report that zebrafish embryos having decreased function of the orthologous hoxd4a gene manifest striking perturbations in vasculogenesis, angiogenesis and primitive and definitive hematopoiesis. These defects are preceded by reduced expression of the hemangioblast markers scl1, lmo2 and fli1 within the posterior lateral plate mesoderm (PLM at 13 hours post fertilization (hpf. Epistasis analysis revealed that hoxd4a acts upstream of meis1.1 but downstream of cdx4 as early as the shield stage in ventral-most mesoderm fated to give rise to hemangioblasts, leading us to propose that loss of hoxd4a function disrupts hemangioblast specification. These findings place hoxd4a high in a genetic hierarchy directing hemangioblast formation downstream of cdx1/cdx4 and upstream of meis1.1. An additional consequence of impaired hoxd4a and meis1.1 expression is the deregulation of multiple Hox genes implicated in vasculogenesis and hematopoiesis which may further contribute to the defects described here. Our results add to evidence implicating key roles for Hox genes in their initial phase of expression early in gastrulation.

  9. PDGF/VEGF-Related Receptor Affects Transglutaminase Activity to Control Cell Migration During Crustacean Hematopoiesis.

    Science.gov (United States)

    Junkunlo, Kingkamon; Söderhäll, Kenneth; Noonin, Chadanat; Söderhäll, Irene

    2017-09-14

    The platelet-derived growth factor (PDGF) receptor, a tyrosine kinase (TK) receptor whose ligand is PDGF, is crucial in the transduction of extracellular signals into cells and mediates numerous processes, such as cell proliferation, differentiation, survival, and migration. We demonstrate the important roles of a receptor TK related to the PDGF/VEGF family protein (PVR) in controlling hematopoietic progenitor cell migration by affecting extracellular transglutaminase (TGase) activity. Pl_PVR1, GenBank accession No. KY444650, is highly expressed in hemocytes and the hematopoietic tissue (HPT). Sunitinib malate was used to block the PVF/PVR downstream pathway in HPT cell culture. The addition of Sunitinib also caused the HPT cells to increase in size and begin spreading. An increase in extracellular TGase activity on the HPT cell membrane was observed in a dose-dependent manner after treatment with Sunitinib malate. The presence of crude Ast1 provided a combinatorial beneficial effect that enhanced the number of spreading cells after inhibition of the Pl_PVR downstream signaling cascade. In addition, an increased immunoreactivity for β-tubulin and elongation of β-tubulin filaments were found in Pl_PVR signaling-inhibited cells. The potential roles of PVF/PVR signaling in controlling progenitor cell activity during hematopoiesis in crayfish were investigated and discussed.

  10. Adult somatic progenitor cells and hematopoiesis in oysters.

    Science.gov (United States)

    Jemaà, Mohamed; Morin, Nathalie; Cavelier, Patricia; Cau, Julien; Strub, Jean Marc; Delsert, Claude

    2014-09-01

    Long-lived animals show a non-observable age-related decline in immune defense, which is provided by blood cells that derive from self-renewing stem cells. The oldest living animals are bivalves. Yet, the origin of hemocytes, the cells involved in innate immunity, is unknown in bivalves and current knowledge about mollusk adult somatic stem cells is scarce. Here we identify a population of adult somatic precursor cells and show their differentiation into hemocytes. Oyster gill contains an as yet unreported irregularly folded structure (IFS) with stem-like cells bathing into the hemolymph. BrdU labeling revealed that the stem-like cells in the gill epithelium and in the nearby hemolymph replicate DNA. Proliferation of this cell population was further evidenced by phosphorylated-histone H3 mitotic staining. Finally, these small cells, most abundant in the IFS epithelium, were found to be positive for the stemness marker Sox2. We provide evidence for hematopoiesis by showing that co-expression of Sox2 and Cu/Zn superoxide dismutase, a hemocyte-specific enzyme, does not occur in the gill epithelial cells but rather in the underlying tissues and vessels. We further confirm the hematopoietic features of these cells by the detection of Filamin, a protein specific for a sub-population of hemocytes, in large BrdU-labeled cells bathing into gill vessels. Altogether, our data show that progenitor cells differentiate into hemocytes in the gill, which suggests that hematopoiesis occurs in oyster gills. © 2014. Published by The Company of Biologists Ltd.

  11. Early Childhood Behavioral Inhibition and Social and School Adjustment in Chinese Children: A 5-Year Longitudinal Study

    Science.gov (United States)

    Chen, Xinyin; Chen, Huichang; Li, Dan; Wang, Li

    2009-01-01

    This study examined relations between early behavioral inhibition and social and school outcomes in Chinese children (N = 200). Data on behavioral inhibition were collected from a sample of 2-year-olds in China. Follow-up data on social behaviors, peer relationships, and school performance were collected from multiple sources at 7 years of age.…

  12. "Play Skills" for Shy Children: Development of a "Social Skills Facilitated Play" Early Intervention Program for Extremely Inhibited Preschoolers

    Science.gov (United States)

    Coplan, Robert J.; Schneider, Barry H.; Matheson, Adrienne; Graham, Allison

    2010-01-01

    The aim of the present study was to develop and provide a preliminary evaluation of a social-skills-based early intervention program specifically designed to assist extremely inhibited preschoolers. Participants were a sample of n = 522 extremely inhibited preschool-aged children, who were randomly assigned to either the "Social Skills…

  13. Inhibition during early adolescence predicts alcohol and marijuana use by late adolescence.

    Science.gov (United States)

    Squeglia, Lindsay M; Jacobus, Joanna; Nguyen-Louie, Tam T; Tapert, Susan F

    2014-09-01

    Adolescent substance use has been associated with poorer neuropsychological functioning, but it is unclear if deficits predate or follow the onset of use. The goal of this prospective study was to understand how neuropsychological functioning during early adolescence could predict substance use by late adolescence. At baseline, participants were 175 substance-use-naïve healthy 12- to 14-year-olds (41% female) recruited from local schools. Participants completed extensive interviews and neuropsychological tests. Each year, participants' substance use was assessed. By late adolescence (ages 17 to 18), 105 participants transitioned into substance use and 75 remained substance-naïve. Hierarchical linear regressions examined how baseline cognitive performance predicted subsequent substance use, controlling for common substance use risk factors (i.e., family history, externalizing behaviors, gender, pubertal development, and age). Poorer baseline performance on tests of cognitive inhibition-interference predicted higher follow-up peak drinks on an occasion (β = -.15; p .05). Compromised inhibitory functioning during early adolescence prior to the onset of substance use was related to more frequent and intense alcohol and marijuana use by late adolescence. Inhibition performance could help identify teens at risk for initiating heavy substance use during adolescence, and potentially could be modified to improve outcome. (c) 2014 APA, all rights reserved.

  14. Impaired Early-Response Inhibition in Overweight Females with and without Binge Eating Disorder.

    Directory of Open Access Journals (Sweden)

    Jennifer Svaldi

    Full Text Available Several studies report increased reward sensitivity towards food in overweight individuals. By contrast, data is inconclusive with respect to response inhibition in overweight individuals without binge eating disorder (BED. Hence, the latter was addressed in the present study in a group of overweight/obese females with and without BED and a normal-weight control group without eating disorders.A group of women with BED (n = 29, a group of overweight women without BED (n = 33 and normal-weight females (n = 30 participated in a pictorial priming paradigm, with food items (relevant primes and office utensils (neutral primes and color blobs (neutral primes as stimuli. Increased response priming effects (i.e. priming with switches between stimulus categories were taken as indicators of deficient behavioral inhibition.Priming effects for neutral primes were moderate and comparable across all groups. However, primes associated with the food task set lead to increased priming effects in both overweight groups. But, effects were comparable for overweight/obese participants with and without BED.Results suggest that early response inhibition in the context of food is impaired in overweight individuals compared to normal-weight individuals.

  15. Weed inhibition by sowing legume species in early succession of abandoned fields on Loess Plateau, China

    Science.gov (United States)

    Li, Jin-Hua; Xu, Dang-Hui; Wang, Gang

    2008-01-01

    A major constraint on vegetation succession on abandoned land is dominance by early successional species. Our aim was to inhibit weeds and alter the initial vegetation succession by the introduction of legume species ( Medicago sativa, Melilotus suaveolens, and Astragalus adsurgens) into abandoned fields on the Loess Plateau, China. Results from our study showed that the addition of legume species strongly affected the dominance pattern of the abandoned-field vegetation. The number of naturally colonizing species was inhibited by the introduction of legume species in the first two growing seasons. The strongest effect on weed inhibition appeared by sowing Melilotus suaveolens. Vegetation cover and above-ground biomass increased after introduction of legume species and the number of naturally colonizing plant species showed a positive correlation with above-ground biomass. Later successional species like Stipa breviflora and Astragalus polycladus appeared three years following the introduction of Melilotus suaveolens, indicating that the course of old-field succession may be accelerated by introducing legume species such as Melilotus suaveolens, at least temporarily.

  16. Significance of different animal species in experimental models for in vivo investigations of hematopoiesis

    Directory of Open Access Journals (Sweden)

    Kovačević-Filipović Milica

    2004-01-01

    Full Text Available Numerous discoveries in medicine are results of experiments on different animal species. The most frequently used animals in hematopoiesis investigations are laboratory mice and rats, but so-called big animals, such as pigs, sheep, cats, dogs, and monkeys, evolution-wise closer to humans have a place in experimental hematology as well. The specific problematics of a certain animal specie can lead to fundamental knowledge on certain aspects of the process of hematopoiesis end the biology of stem cells in hematopoiesis. Furthermore, comparative investigations of certain phenomena in different species help in the recognition of the general rules in the living world. In the area f preclinicalinvesti- gations, animal models are an inevitable step in studies of transplantation biology of stem cells in hematopoiesis, as well as in studies of biologically active molecules which have an effect on the hematopoietic system. Knowledge acquired on animal models is applied in both human and veterinary medicine.

  17. Effects of Dosimetrically Guided I-131 Therapy on Hematopoiesis in Patients With Differentiated Thyroid Cancer.

    Science.gov (United States)

    Bikas, Athanasios; Schneider, Mark; Desale, Sameer; Atkins, Frank; Mete, Mihriye; Burman, Kenneth D; Wartofsky, Leonard; Van Nostrand, Douglas

    2016-04-01

    A retrospective analysis was performed to evaluate the effects of dosimetrically-guided I-131 treatment on hematopoiesis. Statistically significant decreases in CBC parameters following a specific time-pattern were shown.

  18. Parabens inhibit the early phase of folliculogenesis and steroidogenesis in the ovaries of neonatal rats.

    Science.gov (United States)

    Ahn, Hyo-Jin; An, Beum-Soo; Jung, Eui-Man; Yang, Hyun; Choi, Kyung-Chul; Jeung, Eui-Bae

    2012-09-01

    Parabens are widely used as anti-microbial agents in the cosmetic and pharmaceutical industries. Recently, parabens have been shown to act as xenoestrogens, a class of endocrine disruptors. In the present study, 55 female pups were given daily subcutaneous injections of methyl-, propyl-, and butyl-paraben or 17beta-estradiol (E2) during neonatal Day 1-7. The ovaries were excised on postnatal Day 8, then fixed and stained with hematoxylin and eosin for histological analysis. The follicles were counted and classified as being in the primordial, early primary, or primary stages. The number of primordial follicles increased while early primary follicles decreased at the high doses of propyl- and butyl-paraben. The levels of anti-Mullerian hormone (AMH) and Foxl2 mRNA increased by propyl- and butyl-parabens whereas kit ligand/stem cell factor (KITL) expression was up regulated only by butyl-paraben. The mRNA levels of StAR and Cyp11a1 were significantly decreased after treatment with methyl-, propyl-, and butyl-parabens. Consistent with its use as a positive control, E2 regulated the expression of KITL, StAR, and Cyp11a1 genes, but surprisingly did not affect AMH and Foxl2 levels. Thus, E2 and parabens had different effects on the regulation of folliculogenic and steroidogenic genes, demonstrating the estrogenic and nonestrogenic properties of parabens in the ovary. Taken together, our data show that parabens stimulated AMH mRNA expression and consequently inhibited the early phase of folliculogenesis in the ovaries of neonatal female rat. The levels of steroidogenic enzymes, indicators of follicle differentiation, appeared to be regulated by parabens through inhibition of their transcriptional repressor, Foxl2. Copyright © 2012 Wiley Periodicals, Inc.

  19. Complement inhibition decreases early fibrogenic events in the lung of septic baboons

    Science.gov (United States)

    Silasi-Mansat, Robert; Zhu, Hua; Georgescu, Constantin; Popescu, Narcis; Keshari, Ravi S; Peer, Glenn; Lupu, Cristina; Taylor, Fletcher B; Pereira, Heloise Anne; Kinasewitz, Gary; Lambris, John D; Lupu, Florea

    2015-01-01

    Acute respiratory distress syndrome (ARDS) induced by severe sepsis can trigger persistent inflammation and fibrosis. We have shown that experimental sepsis in baboons recapitulates ARDS progression in humans, including chronic inflammation and long-lasting fibrosis in the lung. Complement activation products may contribute to the fibroproliferative response, suggesting that complement inhibitors are potential therapeutic agents. We have been suggested that treatment of septic baboons with compstatin, a C3 convertase inhibitor protects against ARDS-induced fibroproliferation. Baboons challenged with 109 cfu/kg (LD50) live E. coli by intravenous infusion were treated or not with compstatin at the time of challenge or 5 hrs thereafter. Changes in the fibroproliferative response at 24 hrs post-challenge were analysed at both transcript and protein levels. Gene expression analysis showed that sepsis induced fibrotic responses in the lung as early as 24 hrs post-bacterial challenge. Immunochemical and biochemical analysis revealed enhanced collagen synthesis, induction of profibrotic factors and increased cell recruitment and proliferation. Specific inhibition of complement with compstatin down-regulated sepsis-induced fibrosis genes, including transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), tissue inhibitor of metalloproteinase 1 (TIMP1), various collagens and chemokines responsible for fibrocyte recruitment (e.g. chemokine (C-C motif) ligand 2 (CCL2) and 12 (CCL12)). Compstatin decreased the accumulation of myofibroblasts and proliferating cells, reduced the production of fibrosis mediators (TGF-β, phospho-Smad-2 and CTGF) and inhibited collagen deposition. Our data demonstrate that complement inhibition effectively attenuates collagen deposition and fibrotic responses in the lung after severe sepsis. Inhibiting complement could prove an attractive strategy for preventing sepsis-induced fibrosis of the lung. PMID:26337158

  20. Early pharmacological inhibition of angiotensin-I converting enzyme activity induces obesity in adulthood

    Directory of Open Access Journals (Sweden)

    Kely ede Picoli Souza

    2015-04-01

    Full Text Available We have investigated early programming of body mass in order to understand the multifactorial etiology of obesity. Considering that the renin-angiotensin system is expressed and functional in the white adipose tissue (WAT and modulates its development, we reasoned whether early transitory inhibition of angiotensin-I converting enzyme activity after birth could modify late body mass development. Therefore, newborn Wistar rats were treated with enalapril (10 mg/kg of body mass or saline, starting at the first day of life until the age of 16 days. Between days 90th and 180th, a group of these animals received high fat diet (HFD. Molecular, biochemical, histological and physiological data were collected. Enalapril treated animals presented hyperphagia, overweight and increased serum level of triglycerides, total cholesterol and leptin, in adult life. Body composition analyses revealed higher fat mass with increased adipocyte size in these animals. Molecular analyses revealed that enalapril treatment increases neuropeptide Y (NPY and cocaine- and amphetamine-regulated transcript (CART gene expression in hypothalamus, fatty acid synthase (FAS and hormone-sensitive lipase (HSL gene expression in retroperitoneal WAT and decreases peroxixome proliferators-activated receptor (PPAR γ, PPARα, uncoupling protein (UCP 2 and UCP3 gene expression in WAT. The results of the current study indicate that enalapril administration during early postnatal development increases body mass, adiposity and serum lipids in adulthood associated with enhanced food intake and decreased metabolic activity in WAT, predisposing to obesity in adulthood.

  1. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells.

    Science.gov (United States)

    Kim, Sang Chon; Kim, Yoo Hoon; Son, Sung Wook; Moon, Eun-Yi; Pyo, Suhkneung; Um, Sung Hee

    2015-11-27

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a naturally found flavonol in many fruits and vegetables and is known to have anti-aging, anti-cancer and anti-viral effects. However, the effects of fisetin on early adipocyte differentiation and the epigenetic regulator controlling adipogenic transcription factors remain unclear. Here, we show that fisetin inhibits lipid accumulation and suppresses the expression of PPARγ in 3T3-L1 cells. Fisetin suppressed early stages of preadipocyte differentiation, and induced expression of Sirt1. Depletion of Sirt1 abolished the inhibitory effects of fisetin on intracellular lipid accumulation and on PPARγ expression. Mechanistically, fisetin facilitated Sirt1-mediated deacetylation of PPARγ and FoxO1, and enhanced the association of Sirt1 with the PPARγ promoter, leading to suppression of PPARγ transcriptional activity, thereby repressing adipogenesis. Lowering Sirt1 levels reversed the effects of fisetin on deacetylation of PPARγ and increased PPARγ transactivation. Collectively, our results suggest the effects of fisetin in increasing Sirt1 expression and in epigenetic control of early adipogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Pulmonary Extramedullary Hematopoiesis in a Patient with Chronic Asthma Resembling Lung Cancer: A Case Report

    Directory of Open Access Journals (Sweden)

    Massood Hosseinzadeh

    2012-01-01

    Full Text Available Background. Extramedullary hematopoiesis is most often seen in reticuloendothelial organs specially spleen, liver, or lymph nodes, and it is rarely seen in lung parenchyma. Almost all reported cases of pulmonary extramedullary hematopoiesis occurred following myeloproliferative disorders specially myelofibrosis. Other less common underlying causes are thalassemia syndromes and other hemoglobinopathies. There was not any reported case of pulmonary extramedullary hematopoiesis in asthmatic patients in the medical literature. Case. Here we reported a 65-year-old lady who was a known case of bronchial asthma with recent developed right lower lobe lung mass. Chest X-ray and CT studies showed an infiltrating mass resembling malignancy. Fine needle aspiration cytology of mass revealed pulmonary extramedullary hematopoiesis. The patient followed for 10 months with serial physical examination and laboratory evaluations which were unremarkable. Conclusion. Extramedullary hematopoiesis of lung parenchyma can be mistaken for lung cancer radiologically. Although previous reported cases occurred with myelofibrosis or hemoglobinopathies, we are reporting the first case of asthma-associated extramedullary hematopoiesis.

  3. Balancing Potency of Platelet Inhibition with Bleeding Risk in the Early Treatment of Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Slattery, David E

    2009-08-01

    Full Text Available Objective: To review available evidence and examine issues surrounding the use of advanced antiplatelet therapy in an effort to provide a practical guide for emergency physicians caring for patients with acute coronary syndromes (ACS.Data Sources: American College of Cardiology/American Heart Association (ACC/AHA 2007 guidelines for the management of patients with unstable angina (UA and non-ST-segment elevation myocardial infarction (NSTEMI, AHA/ACC 2007 focused update for the management of patients with STEMI, selected clinical articles identified through the PubMed database (1965-February 2008, and manual searches for relevant articles identified from those retrieved.Study Selection: English-language controlled studies and randomized clinical trials that assessed the efficacy and safety of antiplatelet therapy in treating patients with all ACS manifestations.Data Extraction and Synthesis: Clinical data, including treatment regimens and patient demographics and outcomes, were extracted and critically analyzed from the selected studies and clinical trials. Pertinent data from relevant patient registries were also evaluated to assess current clinical practice.Conclusions: As platelet activation and aggregation are central to ACS pathology, antiplatelet agents are critical to early treatment. A widely accepted first-line treatment is aspirin, which acts to decrease platelet activation via inhibition of thromboxane A2 synthesis. Thienopyridines, which inhibit ADP-induced platelet activation, and glycoprotein (GP receptor antagonists, which bind to platelet GP IIb/IIIa receptors and hinder their role in platelet aggregation and thrombus formation, provide complementary mechanisms of platelet inhibition and are often employed in combination with aspirin. While the higher levels of platelet inhibition that accompany combination therapy improve protection against ischemic and peri-procedural events, the risk of bleeding is also increased. Thus, the

  4. FANCA safeguards interphase and mitosis during hematopoiesis in vivo.

    Science.gov (United States)

    Abdul-Sater, Zahi; Cerabona, Donna; Potchanant, Elizabeth Sierra; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W Scott; Nalepa, Grzegorz

    2015-12-01

    The Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in nonhematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA crosslinking and anti-mitotic chemotherapeutics in primary FANCA-/- cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers.

  5. Autosomal dominant cyclic hematopoiesis: Genetics, phenotype, and natural history

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, S.E.; Stephens, K.; Dale, D.C. [Univ. of Washington, Seattle, WA (United States)

    1994-09-01

    Autosomal dominant cyclic hematopoiesis (ADCH; cyclic neutropenia) is a rare disorder manifested by transient neutropenia that recurs every three weeks. To facilitate mapping the ADCH gene by genetic linkage analysis, we studied 9 ADCH families with 42 affected individuals. Pedigrees revealed AD inheritance with no evidence for decreased penetrance. Similar intra- and interfamilial variable expression was observed, with no evidence to support heterogeneity. At least 3 families displayed apparent new mutations. Many adults developed chronic neutropenia, while offspring always cycled during childhood. Children displayed recurrent oral ulcers, gingivitis, lymphadenopathy, fever, and skin and other infections with additional symptoms. Interestingly, there were no cases of neonatal infection. Some children required multiple hospitalizations for treatment. Four males under age 18 died of Clostridium sepsis following necrotizing enterocolitis; all had affected mothers. No other deaths due to ADCH were found; most had improvement of symptoms and infections as adults. Adults experienced increased tooth loss prior to age 30 (16 out of 27 adults, with 9 edentulous). No increase in myelodysplasia, malignancy, or congenital anomalies was observed. Recombinant G-CSF treatment resulted in dramatic improvement of symptoms and infections. The results suggest that ADCH is not a benign disorder, especially in childhood, and abdominal pain requires immediate evaluation. Diagnosis of ADCH requires serial blood counts in the proband and at least one CBC in relatives to exclude similar disorders. Genetic counseling requires specific histories as well as CBCs of each family member at risk to determine status regardless of symptom history, especially to assess apparent new mutations.

  6. Fibrillin-1 microfibrils influence adult bone marrow hematopoiesis.

    Science.gov (United States)

    Smaldone, Silvia; Bigarella, Carolina L; Del Solar, Maria; Ghaffari, Saghi; Ramirez, Francesco

    2016-01-01

    We have recently demonstrated that fibrillin-1 assemblies regulate the fate of skeletal stem cells (aka, mesenchymal stem cells [MSCs]) by modulating TGFβ activity within the microenvironment of adult bone marrow niches. Since MSCs can also influence hematopoietic stem cell (HSC) activities, here we investigated adult hematopoiesis in mice with Cre-mediated inactivation of the fibrillin-1 (Fbn1) gene in the mesenchyme of the forming limbs (Fbn1(Prx1-/-) mice). Analyses of 3-month-old Fbn1(Prx1-/-) mice revealed a statistically significant increase of circulating red blood cells, which a differentiation assay correlated with augmented erythropoiesis. This finding, together with evidence of fibrillin-1 deposition in erythroblastic niches, supported the notion that this extracellular matrix protein normally restricts differentiation of erythroid progenitors. Whereas flow cytometry measurements identified a decreased HSC frequency in mutant relative to wild type mice, no appreciable differences were noted with regard to the relative abundance and differentiation potential of myeloid progenitor cells. Together these findings implied that fibrillin-1 normally promotes HSC expansion but does not influence cell lineage commitment. Since local TGFβ hyperactivity has been associated with abnormal osteogenesis in Fbn1(Prx1-/-) mice, 1-month-old mutant and wild type animals were systemically treated for 8weeks with either a pan-TGF-β-neutralizing antibody or an antibody of the same IgG1 isotype. The distinct outcomes of these pharmacological interventions strongly suggest that fibrillin-1 differentially modulates TGFβ activity in HSC vs. erythroid niches.

  7. Aging of the microenvironment influences clonality in hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Virag Vas

    Full Text Available The mechanisms of the age-associated exponential increase in the incidence of leukemia are not known in detail. Leukemia as well as aging are initiated and regulated in multi-factorial fashion by cell-intrinsic and extrinsic factors. The role of aging of the microenvironment for leukemia initiation/progression has not been investigated in great detail so far. Clonality in hematopoiesis is tightly linked to the initiation of leukemia. Based on a retroviral-insertion mutagenesis approach to generate primitive hematopoietic cells with an intrinsic potential for clonal expansion, we determined clonality of transduced hematopoietic progenitor cells (HPCs exposed to a young or aged microenvironment in vivo. While HPCs displayed primarily oligo-clonality within a young microenvironment, aged animals transplanted with identical pool of cells displayed reduced clonality within transduced HPCs. Our data show that an aged niche exerts a distinct selection pressure on dominant HPC-clones thus facilitating the transition to mono-clonality, which might be one underlying cause for the increased age-associated incidence of leukemia.

  8. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation.

    Science.gov (United States)

    Yung, Y L; Nair, H; Gerstell, M F

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  9. Treatment of Glucocorticoids Inhibited Early Immune Responses and Impaired Cardiac Repair in Adult Zebrafish.

    Directory of Open Access Journals (Sweden)

    Wei-Chang Huang

    Full Text Available Myocardial injury, such as myocardial infarction (MI, can lead to drastic heart damage. Zebrafish have the extraordinary ability to regenerate their heart after a severe injury. Upon ventricle resection, fibrin clots seal the wound and serve as a matrix for recruiting myeloid-derived phagocytes. Accumulated neutrophils and macrophages not only reduce the risk of infection but also secrete cytokines and growth factors to promote tissue repair. However, the underlying cellular and molecular mechanisms for how immune responses are regulated during the early stages of cardiac repair are still unclear. We investigated the role and programming of early immune responses during zebrafish heart regeneration. We found that zebrafish treated with an anti-inflammatory glucocorticoid had significantly reduced heart regenerative capacities, consistent with findings in other higher vertebrates. Moreover, inhibiting the inflammatory response led to excessive collagen deposition. A microarray approach was used to assess the differential expression profiles between zebrafish hearts with normal or impaired healing. Combining cytokine profiling and immune-staining, our data revealed that impaired heart regeneration could be due to reduced phagocyte recruitment, leading to diminished angiogenesis and cell proliferation post-cardiac injury. Despite their robust regenerative ability, our study revealed that glucocorticoid treatment could effectively hinder cardiac repair in adult zebrafish by interfering with the inflammatory response. Our findings may help to clarify the initiation of cardiac repair, which could be used to develop a therapeutic intervention that may enhance cardiac repair in humans to compensate for the loss of cardiomyocytes after an MI.

  10. Induction of Epstein-Barr virus early antigens by corticosteroids: inhibition by TPA and retinoic acid.

    Science.gov (United States)

    Bauer, G

    1983-03-15

    Corticosteroids can induce the synthesis of EBV antigens in the Burkitt lymphoma line Daudi. As early as 12 h after application of the drug, an increase of EA-positive cells can be seen, the maximum induction being reached after 2 days. Nanogram amounts per ml of hormone are sufficient for measurable effects. Early antigen induction by corticosteroids does not require replication of viral DNA. Induction by corticosteroid differs from induction by other systems in two major respects: (1) it does not cooperate with other inducers, and (2) it is specifically inhibited by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Induction by corticosteroids, however, shares at least one retinoic acid-sensitive step with induction by chemicals such as TPA, 5-iodo-2-deoxyuridine (IdUrd), n-butyric acid (n-BA) or inducing serum factor. This study defines three qualitatively different effects of TPA in Daudi cells: an inhibitory effect on EBV induction by corticosteroids and two differential types of synergistic effects with serum factor or n-BA, respectively. In this particular cell line, TPA exhibits no inducing capacity when applied alone.

  11. YopH inhibits early pro-inflammatory cytokine responses during plague pneumonia

    Directory of Open Access Journals (Sweden)

    Bubeck Sarah S

    2010-06-01

    Full Text Available Abstract Background Yersinia pestis is the causative agent of pneumonic plague; recently, we and others reported that during the first 24-36 hours after pulmonary infection with Y. pestis pro-inflammatory cytokine expression is undetectable in lung tissues. Results Here, we report that, intranasal infection of mice with CO92 delta yopH mutant results in an early pro-inflammatory response in the lungs characterized by an increase in the pro-inflammatory cytokines Tumor Necrosis Factor-alpha and Interleukin one-beta 24 hours post-infection. CO92 delta yopH colonizes the lung but does not disseminate to the liver or spleen and is cleared from the host within 72 hours post-infection. This is different from what is observed in a wild-type CO92 infection, where pro-inflammatory cytokine expression and immune cell infiltration into the lungs is not detectable until 36-48 h post-infection. CO92 rapidly disseminates to the liver and spleen resulting in high bacterial burdens in these tissues ultimately cumulating in death 72-94 h post-infection. Mice deficient in TNF-alpha are more susceptible to CO92 delta yopH infection with 40% of the mice succumbing to infection. Conclusions Altogether, our results suggest that YopH can inhibit an early pro-inflammatory response in the lungs of mice and that this is an important step in the pathogenesis of infection.

  12. An intracranial extramedullary hematopoiesis in a 34-year-old man with beta thalassemia: a case report

    Directory of Open Access Journals (Sweden)

    Tabesh Homayoun

    2011-12-01

    Full Text Available Abstract Introduction Extramedullary hematopoiesis occurs in approximately 15% of cases of thalassemia. Intracranial deposits of extramedullary hematopoiesis are an extremely rare compensatory process in intermediate and severe thalassemia. Case presentation We present an unusual case of an intracranial extramedullary hematopoiesis with a choroid plexus origin in a 34-year-old Caucasian man with beta thalassemia intermedia, who presented with the complaints of chronic headache and rapid progressive visual loss. Conclusion An intracranial extramedullary hematopoiesis, although extremely rare, should be considered as a potential ancillary diagnosis in any thalassemic patient and therefore appropriate studies should be performed to investigate the probable intracranial ectopic marrow before any surgical intervention.

  13. Combining child social skills training with a parent early intervention program for inhibited preschool children.

    Science.gov (United States)

    Lau, Elizabeth X; Rapee, Ronald M; Coplan, Robert J

    2017-09-01

    Previous studies have demonstrated the efficacy of early intervention for anxiety in preschoolers through parent-education. The current study evaluated a six-session early intervention program for preschoolers at high risk of anxiety disorders in which a standard educational program for parents was supplemented by direct training of social skills to the children. Seventy-two children aged 3-5 years were selected based on high behavioural inhibition levels and concurrently having a parent with high emotional distress. Families were randomly assigned to either the intervention group, which consisted of six parent-education group sessions and six child social skills training sessions, or waitlist. After six months, families on waitlist were offered treatment consisting of parent-education only. Relative to waitlist, children in the combined condition showed significantly fewer clinician-rated anxiety disorders and diagnostic severity and maternal (but not paternal) reported anxiety symptoms and life interference at six months. Mothers also reported less overprotection. These gains were maintained at 12-month follow-up. Parent only education following waitlist produced similar improvements among children. Quasi-experimental comparison between combined and parent-only interventions indicated greater reductions from combined intervention according to clinician reports, but no significant differences on maternal reports. Results suggest that this brief early intervention program for preschoolers with both parent and child components significantly reduces risk and disorder in vulnerable children. The inclusion of a child component might have the potential to increase effects over parent-only intervention. However, future support for this conclusion through long-term, randomised controlled trials is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Bright side of hematopoiesis: Regulatory roles of ARID3a/Bright in human and mouse hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Michelle L. Ratliff

    2014-03-01

    Full Text Available ARID3a/Bright is a DNA binding protein that was originally discovered for its ability to increase immunoglobulin transcription in antigen-activated B cells. It interacts with DNA as a dimer through its ARID, or A/T-rich interacting domain. In association with other proteins, ARID3a increased transcription of the immunoglobulin heavy chain and led to improved chromatin accessibility of the heavy chain enhancer. Constitutive expression of ARID3a in B lineage cells resulted in autoantibody production, suggesting its regulation is important. Abnormal ARID3a expression has also been associated with increased proliferative capacity and malignancy. Roles for ARID3a in addition to interactions with the immunoglobulin locus were suggested by transgenic and knockout mouse models. Over-expression of ARID3a resulted in skewing of mature B cell subsets and altered gene expression patterns of follicular B cells, whereas loss of function resulted in loss of B1 lineage B cells and defects in hematopoiesis. More recent studies showed that loss of ARID3a in adult somatic cells promoted developmental plasticity, alterations in gene expression patterns, and lineage fate decisions. Together, these data suggest new regulatory roles for ARID3a. The genes influenced by ARID3a are likely to play pivotal roles in lineage decisions, highlighting the importance of this understudied transcription factor.

  15. The Bright Side of Hematopoiesis: Regulatory Roles of ARID3a/Bright in Human and Mouse Hematopoiesis.

    Science.gov (United States)

    Ratliff, Michelle L; Templeton, Troy D; Ward, Julie M; Webb, Carol F

    2014-01-01

    ARID3a/Bright is a DNA-binding protein that was originally discovered for its ability to increase immunoglobulin transcription in antigen-activated B cells. It interacts with DNA as a dimer through its ARID, or A/T-rich interacting domain. In association with other proteins, ARID3a increased transcription of the immunoglobulin heavy chain and led to improved chromatin accessibility of the heavy chain enhancer. Constitutive expression of ARID3a in B lineage cells resulted in autoantibody production, suggesting its regulation is important. Abnormal ARID3a expression has also been associated with increased proliferative capacity and malignancy. Roles for ARID3a in addition to interactions with the immunoglobulin locus were suggested by transgenic and knockout mouse models. Over-expression of ARID3a resulted in skewing of mature B cell subsets and altered gene expression patterns of follicular B cells, whereas loss of function resulted in loss of B1 lineage B cells and defects in hematopoiesis. More recent studies showed that loss of ARID3a in adult somatic cells promoted developmental plasticity, alterations in gene expression patterns, and lineage fate decisions. Together, these data suggest new regulatory roles for ARID3a. The genes influenced by ARID3a are likely to play pivotal roles in lineage decisions, highlighting the importance of this understudied transcription factor.

  16. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  17. Conserved hemopoietic transcription factor Cg-SCL delineates hematopoiesis of Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Song, Xiaorui; Wang, Hao; Chen, Hao; Sun, Mingzhe; Liang, Zhongxiu; Wang, Lingling; Song, Linsheng

    2016-04-01

    Hemocytes are the effective immunocytes in bivalves, which have been reported to be derived from stem-like cells in gill epithelium of oyster. In the present work, a conserved haematopoietic transcription factor Tal-1/Scl (Stem Cell Leukemia) was identified in Pacific oyster (Cg-SCL), and it was evolutionarily close to the orthologs in deuterostomes. Cg-SCL was highly distributed in the hemocytes as well as gill and mantle. The hemocyte specific genes Integrin, EcSOD and haematopoietic transcription factors GATA3, C-Myb, c-kit, were down-regulated when Cg-SCL was interfered by dsRNA. During the larval developmental stages, the mRNA transcripts of Cg-SCL gradually increased after fertilization and peaked at early trochophore larvae stage (10 hpf, hours post fertilization), then sharply decreased in late trochophore larvae stage (15 hpf) before resuming in umbo larvae (120 hpf). Whole-mount immunofluorescence assay further revealed that the immunoreactivity of Cg-SCL appeared in blastula larvae with two approximate symmetric spots, and this expression pattern lasted in gastrula larvae. By trochophore, the immunoreactivity formed a ring around the dorsal region and then separated into two remarkable spots at the dorsal side in D-veliger larvae. After bacterial challenge, the mRNA expression levels of Cg-SCL were significantly up-regulated in the D-veliger and umbo larvae, indicating the available hematopoietic regulation in oyster larvae. These results demonstrated that Cg-SCL could be used as haematopoietic specific marker to trace potential developmental events of hematopoiesis during ontogenesis of oyster, which occurred early in blastula stage and maintained until D-veliger larvae.

  18. Signaling by Retinoic Acid in Embryonic and Adult Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Elena Cano

    2014-03-01

    Full Text Available Embryonic and adult hematopoiesis are both finely regulated by a number of signaling mechanisms. In the mammalian embryo, short-term and long-term hematopoietic stem cells (HSC arise from a subset of endothelial cells which constitute the hemogenic endothelium. These HSC expand and give rise to all the lineages of blood cells in the fetal liver, first, and in the bone marrow from the end of the gestation and throughout the adult life. The retinoic acid (RA signaling system, acting through the family of nuclear retinoic acid receptors (RARs and RXRs, is involved in multiple steps of the hematopoietic development, and also in the regulation of the differentiation of some myeloid lineages in adults. In humans, the importance of this RA-mediated control is dramatically illustrated by the pathogeny of acute promyelocytic leukemia, a disease produced by a chromosomal rearrangement fusing the RARa gene with other genes. The aberrant fusion protein is able to bind to RARα target gene promoters to actively suppress gene transcription. Lack of function of RARα leads to a failure in the differentiation of promyelocytic progenitors. In this review we have collected the available information about all the phases of the hematopoietic process in which RA signaling is involved, being essential for steps such as the emergence of HSC from the hemogenic endothelium, or modulating processes such as the adult granulopoiesis. A better knowledge of the RA-mediated signaling mechanisms can contribute to the knowledge of the origin of many pathologies of the hematopoietic system and can provide new clinical avenues for their treatment.

  19. Drosophila hematopoiesis under normal conditions and in response to immune stress.

    Science.gov (United States)

    Letourneau, Manon; Lapraz, Francois; Sharma, Anurag; Vanzo, Nathalie; Waltzer, Lucas; Crozatier, Michèle

    2016-11-01

    The emergence of hematopoietic progenitors and their differentiation into various highly specialized blood cell types constitute a finely tuned process. Unveiling the genetic cascades that control blood cell progenitor fate and understanding how they are modulated in response to environmental changes are two major challenges in the field of hematopoiesis. In the last 20 years, many studies have established important functional analogies between blood cell development in vertebrates and in the fruit fly, Drosophila melanogaster. Thereby, Drosophila has emerged as a powerful genetic model for studying mechanisms that control hematopoiesis during normal development or in pathological situations. Moreover, recent advances in Drosophila have highlighted how intricate cell communication networks and microenvironmental cues regulate blood cell homeostasis. They have also revealed the striking plasticity of Drosophila mature blood cells and the presence of different sites of hematopoiesis in the larva. This review provides an overview of Drosophila hematopoiesis during development and summarizes our current knowledge on the molecular processes controlling larval hematopoiesis, both under normal conditions and in response to an immune challenge, such as wasp parasitism. © 2016 Federation of European Biochemical Societies.

  20. Inhibition of Rho kinase regulates specification of early differentiation events in P19 embryonal carcinoma stem cells.

    Directory of Open Access Journals (Sweden)

    Roman J Krawetz

    Full Text Available BACKGROUND: The Rho kinase pathway plays a key role in many early cell/tissue determination events that take place in embryogenesis. Rho and its downstream effector Rho kinase (ROCK play pivotal roles in cell migration, apoptosis (membrane blebbing, cell proliferation/cell cycle, cell-cell adhesion and gene regulation. We and others have previously demonstrated that inhibition of ROCK blocks endoderm differentiation in embryonal carcinoma stem cells, however, the effect of ROCK inhibition on mesoderm and ectoderm specification has not been fully examined. In this study, the role of ROCK within the specification and differentiation of all three germ layers was examined. METHODOLOGY/PRINCIPAL FINDINGS: P19 cells were treated with the specific ROCK inhibitor Y-27623, and increase in differentiation efficiency into neuro-ectodermal and mesodermal lineages was observed. However, as expected a dramatic decrease in early endodermal markers was observed when ROCK was inhibited. Interestingly, within these ROCK-inhibited RA treated cultures, increased levels of mesodermal or ectodermal markers were not observed, instead it was found that the pluripotent markers SSEA-1 and Oct-4 remained up-regulated similar to that seen in undifferentiated cultures. Using standard and widely accepted methods for reproducible P19 differentiation into all three germ layers, an enhancement of mesoderm and ectoderm differentiation with a concurrent loss of endoderm lineage specification was observed with Y-27632 treatment. Evidence would suggest that this effect is in part mediated through TGF-β and SMAD signaling as ROCK-inhibited cells displayed aberrant SMAD activation and did not return to a 'ground' state after the inhibition had been removed. CONCLUSIONS/SIGNIFICANCE: Given this data and the fact that only a partial rescue of normal differentiation capacity occurred when ROCK inhibition was alleviated, the effect of ROCK inhibition on the differentiation capacity of

  1. Tocopherols inhibit oxidative and nitrosative stress in estrogen-induced early mammary hyperplasia in ACI rats.

    Science.gov (United States)

    Das Gupta, Soumyasri; So, Jae Young; Wall, Brian; Wahler, Joseph; Smolarek, Amanda K; Sae-Tan, Sudathip; Soewono, Kelvin Y; Yu, Haixiang; Lee, Mao-Jung; Thomas, Paul E; Yang, Chung S; Suh, Nanjoo

    2015-09-01

    Oxidative stress is known to play a key role in estrogen-induced breast cancer. This study assessed the chemopreventive activity of the naturally occurring γ-tocopherol-rich mixture of tocopherols (γ-TmT) in early stages of estrogen-induced mammary hyperplasia in ACI rats. ACI rats provide an established model of rodent mammary carcinogenesis due to their high sensitivity to estrogen. Female rats were implanted with 9 mg of 17β-estradiol (E2) in silastic tubings and fed with control or 0.3% γ-TmT diet for 1, 3, 7, and 14 d. γ-TmT increased the levels of tocopherols and their metabolites in the serum and mammary glands of the rats. Histological analysis revealed mammary hyperplasia in the E2 treated rats fed with control or γ-TmT diet. γ-TmT decreased the levels of E2-induced nitrosative and oxidative stress markers, nitrotyrosine, and 8-oxo-dG, respectively, in the hyperplastic mammary tissues. 8-Isoprostane, a marker of oxidative stress in the serum, was also reduced by γ-TmT. Noticeably, γ-TmT stimulated Nrf2-dependent antioxidant response in the mammary glands of E2 treated rats, evident from the induced mRNA levels of Nrf2 and its downstream antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase. Therefore, inhibition of nitrosative/oxidative stress through induction of antioxidant response is the primary effect of γ-TmT in early stages of E2-induced mammary hyperplasia. Due to its cytoprotective activity, γ-TmT could be a potential natural agent for the chemoprevention of estrogen-induced breast cancer.

  2. Soleus stretch reflex inhibition in the early swing phase of gait using deep peroneal nerve stimulation in spastic stroke participants

    NARCIS (Netherlands)

    Voormolen, Marco M.; Ladouceur, Michel; Veltink, Petrus H.; Sinkjaer, Thomas

    2000-01-01

    Objectives: To investigate the feasibility of inhibiting the stretch reflex of the soleus muscle by a conditioning stimulus applied to the deep peroneal nerve in spastic stroke participants during the early swing phase of gait. - Materials and Methods: This study investigated the effect of an

  3. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Li-Jing Shen

    Full Text Available BACKGROUND: Amplification of MYCN (N-Myc oncogene has been reported as a frequent event and a poor prognostic marker in human acute myeloid leukemia (AML. The molecular mechanisms and transcriptional networks by which MYCN exerts its influence in AML are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We introduced murine MYCN gene into embryonic zebrafish through a heat-shock promoter and established the stable germline Tg(MYCN:HSE:EGFP zebrafish. N-Myc downstream regulated gene 1 (NDRG1, negatively controlled by MYCN in human and functionally involved in neutrophil maturation, was significantly under-expressed in this model. Using peripheral blood smear detection, histological section and flow cytometric analysis of single cell suspension from kidney and spleen, we found that MYCN overexpression promoted cell proliferation, enhanced the repopulating activity of myeloid cells and the accumulation of immature hematopoietic blast cells. MYCN enhanced primitive hematopoiesis by upregulating scl and lmo2 expression and promoted myelopoiesis by inhibiting gata1 expression and inducing pu.1, mpo expression. Microarray analysis identified that cell cycle, glycolysis/gluconeogenesis, MAPK/Ras, and p53-mediated apoptosis pathways were upregulated. In addition, mismatch repair, transforming and growth factor β (TGFβ were downregulated in MYCN-overexpressing blood cells (p<0.01. All of these signaling pathways are critical in the proliferation and malignant transformation of blood cells. CONCLUSION/SIGNIFICANCE: The above results induced by overexpression of MYCN closely resemble the main aspects of human AML, suggesting that MYCN plays a role in the etiology of AML. MYCN reprograms hematopoietic cell fate by regulating NDRG1 and several lineage-specific hematopoietic transcription factors. Therefore, this MYCN transgenic zebrafish model facilitates dissection of MYCN-mediated signaling in vivo, and enables high-throughput scale screens to identify the

  4. Kzp Regulates the Transcription of gata2 and pu.1 during Primitive Hematopoiesis in Zebrafish Embryos

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Shaohua Yao; Ting Zhang; Chun Xiao; Yanna Shang; Jin Liu; Xianming Mo

    2012-01-01

    Kaiso zinc finger-containing protein (Kzp),a maternally-derived transcription factor,controls dorsoventral patterning during zebrafish gastrulation.Here,we uncovered a new function for Kzp in zebrafish embryonic primitive hematopoiesis.The depletion of kzp led to defects in primitive hematopoiesis including the development of the erythroid and myeloid lineages.On the other hand,overexpression of kzp caused the ectopic expression of gatal,gata2,and pu.1.Chromosome immunoprecipitation assays revealed that Kzp protein directly binds to gatal,gata2,and pu.1 promoters.Interestingly,the ectopic expression of gata2 was able to rescue the erythroid,but not the myeloid lineage in kzp-depleted zebrafish embryos.gatal expression controlled by Kzp was dependent on gata2 during primitive erythropoiesis.Our results indicate that Kzp is a critical transcriptional factor for the expression of gata2 and pu.1 to modulate primitive hematopoiesis.

  5. Interleukin-6 inhibits early differentiation of ATDC5 chondrogenic progenitor cells.

    Science.gov (United States)

    Nakajima, Shoko; Naruto, Takuya; Miyamae, Takako; Imagawa, Tomoyuki; Mori, Masaaki; Nishimaki, Shigeru; Yokota, Shumpei

    2009-08-01

    Interleukin (IL)-6 is a causative agent of systemic juvenile idiopathic arthritis (sJIA), a chronic inflammatory disease complicated with severe growth impairment. Recent trials of anti-IL-6 receptor monoclonal antibody, tocilizumab, indicated that tocilizumab blocks IL-6/IL-6 receptor-mediated inflammation, and induces catch-up growth in children with sJIA. This study evaluates the effects of IL-6 on chondrogenesis by ATDC5 cells, a clonal murine chondrogenic cell line that provides an excellent model for studying endochondral ossification at growth plate. ATDC5 cells were examined for the expression of IL-6 receptor and gp130 by fluorescence-activated cell sorting analysis. Recombinant murine IL-6 was added to ATDC5 cultures to observe cell differentiation, using a quantitative RT-PCR for the chondrogenic differentiation markers type II collagen, aggrecan, and type X collagen. To block IL-6, the anti-mouse IL-6 receptor monoclonal antibody MR16-1 was added. As a result, the cells expressed IL-6 receptor and gp130. The expression of chondrogenic differentiation marker gene was reduced by IL-6, but this was abrogated by MR16-1. We conclude that IL-6 inhibits early chondrogenesis of ATDC5 cells suggesting that IL-6 may affect committed stem cells at a cellular level during chondrogenic differentiation of growth plate chondrocytes, and that IL-6 may be a cellular-level factor in growth impairment in sJIA.

  6. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses.

    Science.gov (United States)

    Crow, Marni S; Lum, Krystal K; Sheng, Xinlei; Song, Bokai; Cristea, Ileana M

    In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent on the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.

  7. Ectopic Runx1 expression rescues Tal-1-deficiency in the generation of primitive and definitive hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Julia Tornack

    Full Text Available The transcription factors SCL/Tal-1 and AML1/Runx1 control the generation of pluripotent hematopoietic stem cells (pHSC and, thereby, primitive and definitive hematopoiesis, during embryonic development of the mouse from mesoderm. Thus, Runx1-deficient mice generate primitive, but not definitive hematopoiesis, while Tal-1-deficient mice are completely defective. Primitive as well as definitive hematopoiesis can be developed "in vitro" from embryonic stem cells (ESC. We show that wild type, as well as Tal-1(-/- and Runx1(-/- ESCs, induced to differentiation, all expand within 5 days to comparable numbers of Flk1(+ mesodermal cells. While wild type ESCs further differentiate to primitive and definitive erythrocytes, to c-fms(+Gr1(+Mac1(+ myeloid cells, and to B220(+CD19(+ B- and CD4(+/CD8(+ T-lymphoid cells, Runx1(-/- ESCs, as expected, only develop primitive erythrocytes, and Tal-1(-/- ESCs do not generate any hematopoietic cells. Retroviral transduction with Runx1 of Runx1(-/- ESCs, differentiated for 4 days to mesoderm, rescues definitive erythropoiesis, myelopoiesis and lymphopoiesis, though only with 1-10% of the efficiencies of wild type ESC hematopoiesis. Surprisingly, Tal-1(-/- ESCs can also be rescued at comparably low efficiencies to primitive and definitive erythropoiesis, and to myelopoiesis and lymphopoiesis by retroviral transduction with Runx1. These results suggest that Tal-1 expression is needed to express Runx1 in mesoderm, and that ectopic expression of Runx1 in mesoderm is sufficient to induce primitive as well as definitive hematopoiesis in the absence of Tal-1. Retroviral transduction of "in vitro" differentiating Tal-1(-/- and Runx1(-/- ESCs should be a useful experimental tool to probe selected genes for activities in the generation of hematopoietic progenitors "in vitro", and to assess the potential transforming activities in hematopoiesis of mutant forms of Tal-1 and Runx1 from acute myeloid leukemia and related tumors.

  8. Early childhood behavioral inhibition, adult psychopathology and the buffering effects of adolescent social networks: a twenty-year prospective study.

    Science.gov (United States)

    Frenkel, Tahl I; Fox, Nathan A; Pine, Daniel S; Walker, Olga L; Degnan, Kathryn A; Chronis-Tuscano, Andrea

    2015-10-01

    We examined whether the temperament of behavioral inhibition is a significant marker for psychopathology in early adulthood and whether such risk is buffered by peer social networks. Participants (N = 165) were from a prospective study spanning the first two decades of life. Temperament was characterized during infancy and early childhood. Extent of involvement in peer social networks was measured during adolescence, and psychopathology was assessed in early adulthood. Latent Class Analyses generated comprehensive variables at each of three study time-points. Regressions assessed (a) the direct effect of early behavioral inhibition on adult psychopathology (b) the moderating effect of adolescent involvement in social peer networks on the link between temperamental risk and adult psychopathology. Stable behavioral inhibition in early childhood was negatively associated with adult mental health (R(2 ) = .07, p = .005, β = -.26), specifically increasing risk for adult anxiety disorders (R(2) = .04, p = .037, β = .19). These temperament-pathology relations were significantly moderated by adolescent peer group social involvement and network size (Total R(2) = .13, p = .027, β = -.22). Temperament predicted heightened risk for adult anxiety when adolescent social involvement was low (p = .002, β = .43), but not when adolescent social involvement was high. Stable behavioral inhibition throughout early childhood is a risk factor for adult anxiety disorders and interacts with adolescent social involvement to moderate risk. This is the first study to demonstrate the critical role of adolescent involvement in socially active networks in moderating long-lasting temperamental risk over the course of two decades, thus informing prevention/intervention approaches. © 2015 Association for Child and Adolescent Mental Health.

  9. Spinal osteoblastic meningioma with hematopoiesis: radiologic-pathologic correlation and review of the literature.

    Science.gov (United States)

    Cochran, Elizabeth J; Schlauderaff, Abraham; Rand, Scott D; Eckardt, Gerald W; Kurpad, Shekar

    2016-10-01

    Spinal meningiomas associated with bone formation and hematopoiesis are rare tumors with only 3 prior case reports in the literature. We describe a case report of a woman who presented with back pain and an isolated event of urinary incontinence. A calcified spinal canal mass at T8 was identified on computed tomographic and magnetic resonance imaging. A gross total resection of the tumor was performed and pathologic examination showed a meningioma, World Health Organization grade 1, containing bone and bone marrow elements. A review of previously reported cases and a discussion of possible mechanisms of bone and hematopoiesis development in meningioma are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Cholinesterase inhibition and behavioral toxicity of carbofuran on Oreochromis niloticus early life stages.

    Science.gov (United States)

    Pessoa, P C; Luchmann, K H; Ribeiro, A B; Veras, M M; Correa, J R M B; Nogueira, A J; Bainy, A C D; Carvalho, P S M

    2011-10-01

    Nile tilapia Oreochromis niloticus at 9 days post-hatch were exposed in semi-static experiments to the carbamate insecticide carbofuran, which is applied in agricultural systems in Brazil. Although the molecular mechanism of carbofuran toxicity is well known, a detailed understanding of the ecological mechanisms through which carbofuran effects can propagate towards higher levels of biological organization in fish is incomplete. Mortality rates were quantified for larvae exposed for 96 h to 8.3, 40.6, 69.9, 140, 297 and 397 μg/L carbofuran, and the LC(50) 96 h was 214.7 μg/L. In addition, the biochemical biomarker cholinesterase inhibition and behavioral biomarkers related to vision, swimming, prey capture and predator avoidance were quantified in individual larvae, as well as their growth in weight. The behavioral parameters were quantified by analysis of digitally recorded videos of individual larvae within appropriate experimental setups. The activity of the enzyme cholinesterase decreased after exposure to carbofuran with a lowest observed effects concentration (LOEC) of 69.9 μg/L. Visual acuity deficits were detected after carbofuran exposure with a LOEC of 40.6 μg/L. Swimming speed decreased with carbofuran exposure, with a LOEC of 397.6 μg/L. The number of attacks to prey (Daphnia magna nauplii) decreased in larvae exposed to carbofuran, with a LOEC of 397.6 μg/L. Growth in weight was significantly reduced in a dose dependent manner, and all carbofuran groups exhibited a statistically significant decrease in growth when compared to controls (pcarbofuran, and the LOEC was 69.9 μg/L. These results show that exposure of sensitive early life stages of tilapia O. niloticus to sublethal concentrations of carbofuran can affect fundamental aspects of fish larval ecology that are relevant to recruitment of fish populations, and that can be better understood by the application of behavioral biomarkers.

  11. Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication.

    Science.gov (United States)

    Heidary Navid, M; Laszczyk-Lauer, M N; Reichling, J; Schnitzler, P

    2014-09-25

    Antiviral agents frequently applied for treatment of herpesvirus infections include acyclovir and its derivatives. The antiviral effect of a triterpene extract of birch bark and its major pentacyclic triterpenes, i.e. betulin, lupeol and betulinic acid against acyclovir-sensitive and acyclovir-resistant HSV type 1 strains was examined. The cytotoxic effect of a phytochemically defined birch bark triterpene extract (TE) as well as different pentacyclic triterpenes was analyzed in cell culture, and revealed a moderate cytotoxicity on RC-37 cells. TE, betulin, lupeol and betulinic acid exhibited high levels of antiviral activity against HSV-1 in viral suspension tests with IC50 values ranging between 0.2 and 0.5 μg/ml. Infectivity of acyclovir-sensitive and clinical isolates of acyclovir-resistant HSV-1 strains was significantly reduced by all tested compounds and a direct concentration- and time-dependent antiherpetic activity could be demonstrated. In order to determine the mode of antiviral action, TE and the compounds were added at different times during the viral infection cycle. Addition of these drugs to uninfected cells prior to infection or to herpesvirus-infected cells during intracellular replication had low effect on virus multiplication. Minor virucidal activity of triterpenes was observed, however both TE and tested compounds exhibited high anti-herpetic activity when viruses were pretreated with these drugs prior to infection. Pentacyclic triterpenes inhibit acyclovir-sensitive and acyclovir-resistant clinical isolates of HSV-1 in the early phase of infection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Trichinella spiralis: differences between early and late rapid expulsion evident from inhibition studies using cortisone and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bell, R.G.

    1987-12-01

    Cortisone administered once at 100 mg/kg during the first 3 weeks of infection inhibited rapid expulsion. In rats immunized with an abbreviated infection (T/M regime) inhibition averaged approximately 50%, whereas in rats given a complete infection (C.I.) 14% inhibition occurred. Sensitivity to 400 rad whole-body irradiation was greatest 7 days before a challenge infection in all immune rats. Three days after beginning the T/M infection rats were highly susceptible to cortisone but only weakly so to irradiation. Rats immunized by C.I. were equally, but only weakly, susceptible to either cortisone or irradiation 3 days after infection. Acute administration of cortisone 1 or 4 hr prior to challenge did not inhibit rapid expulsion but 60% inhibition occurred when cortisone was given 24 hr prior to challenge. Inhibition of rapid expulsion by irradiation 7 days prior to challenge was not reversed by immune serum and irradiation did not affect antibody titer in treated rats. It was suggested that irradiation 7 days before challenge compromised the intestinal, and not the immunological, component of rapid expulsion. Differences in sensitivity of early and late rapid expulsion to irradiation and cortisone therapy provide further evidence of functional differences between these rejection processes.

  13. Loss of the Homeodomain Transcription Factor Prep1 Perturbs Adult Hematopoiesis in the Bone Marrow.

    Directory of Open Access Journals (Sweden)

    Kentaro Yoshioka

    Full Text Available Prep1, a TALE-family homeodomain transcription factor, has been demonstrated to play a critical role in embryonic hematopoiesis, as its insufficiency caused late embryonic lethality associated with defective hematopoiesis and angiogenesis. In the present study, we generated hematopoietic- and endothelial cell-specific Prep1-deficient mice and demonstrated that expression of Prep1 in the hematopoietic cell compartment is not essential for either embryonic or adult hematopoiesis, although its absence causes significant hematopoietic abnormalities in the adult bone marrow. Loss of Prep1 promotes cell cycling of hematopoietic stem/progenitor cells (HSPC, leading to the expansion of the HSPC pool. Prep1 deficiency also results in the accumulation of lineage-committed progenitors, increased monocyte/macrophage differentiation and arrested erythroid maturation. Maturation of T cells and B cells is also perturbed in Prep-deficient mice. These findings provide novel insight into the pleiotropic roles of Prep1 in adult hematopoiesis that were unrecognized in previous studies using germline Prep1 hypomorphic mice.

  14. The effect of ultraviolet radiation on early stages of activation of human lymphocytes: inhibition is independent of effects on DNA

    DEFF Research Database (Denmark)

    Castellanos, G; Owens, T; Rudd, C;

    1982-01-01

    before mitogen was added to the cultures, but were unaffected if irradiation occurred after 16 h of culture in presence of Con A. Cells irradiated with 84 ergs/mm2 at the onset of culture with mitogen did not show the early increase of cation pump function which is a characteristic of stimulated......Low doses (30-84 ergs/mm2, 1 erg = 10(7) J) of ultraviolet radiation (UV) caused severe inhibition of the proliferation of human lymphocytes in vitro. Greatest inhibition was produced when resting cells were irradiated immediately prior to stimulation with concanavalin A (Con A); this was true...... lymphocytes, when this was measured by means of 86Rb uptake after 2-4 h culture. The mitogen-stimulated activation of cation pump function has previously been shown to be unaffected by concentrations of cycloheximide and actinomycin D which produce virtually complete inhibition of protein and RNA synthesis...

  15. Changes in sensitivity to ethanol-induced social facilitation and social inhibition from early to late adolescence.

    Science.gov (United States)

    Varlinskaya, Elena I; Spear, Linda P

    2004-06-01

    Adolescent rats are more sensitive than adults to ethanol-induced social facilitation, but are less sensitive to the suppression of social interactions seen at higher ethanol doses. Given recent findings that point to age differences in ethanol responsiveness, even within the adolescent period, the present study assessed acute effects of low to moderate doses of ethanol on social behavior of early, mid- or late adolescent rats. Age-related changes in responsiveness to the effects of ethanol on social behavior were apparent even within the adolescent period, with early adolescents being more sensitive to ethanol-induced social facilitation and less sensitive to ethanol-induced social inhibition than mid- and late adolescents. Given that ethanol-induced social facilitation as well as a lower sensitivity to the adverse effects of ethanol may contribute to heavy drinking, this pattern of early adolescent responsiveness to ethanol's social consequences may put them at higher risk for extensive alcohol use.

  16. Immunization of mice with a recombinant adenovirus vaccine inhibits the early growth of Mycobacterium tuberculosis after infection.

    Directory of Open Access Journals (Sweden)

    Edward O Ronan

    Full Text Available BACKGROUND: In pulmonary Mycobacterium tuberculosis (Mtb infection, immune responses are delayed compared to other respiratory infections, so that antigen-specific cells are not detected in the lungs earlier than day 14. Even after parenteral immunization with Bacille Calmette Guerin (BCG or a subunit vaccine, the immune response after Mtb challenge is only slightly accelerated and the kinetics of pulmonary Mtb growth do not differ between naïve and immunized animals up to day 14. METHODS AND FINDINGS: Mice were immunized intranasally with a recombinant adenovirus expressing mycobacterial antigen 85A (Ad85A, challenged by aerosol with Mtb and the kinetics of Mtb growth in the lungs measured. Intranasal immunization with Ad85A inhibits Mtb growth in the early phase of infection, up to day 8. Protection is sustained for at least 7 months and correlates with the presence of antigen-specific activated effector CD8 T cells in the lungs. Antigen 85A-specific T cells respond to antigen presenting cells from the lungs of mice immunized with Ad85A 23 weeks previously, demonstrating the persistence of antigen in the lungs. CONCLUSIONS/SIGNIFICANCE: Intranasal immunization with Ad85A can inhibit early growth of Mtb because it establishes a lung antigen depot and maintains an activated lung-resident lymphocyte population. We propose that an optimal immunization strategy for tuberculosis should aim to induce both lung and systemic immunity, targeting the early and late phases of Mtb growth.

  17. Repetitive transcranial magnetic stimulation regulates L-type Ca(2+) channel activity inhibited by early sevoflurane exposure.

    Science.gov (United States)

    Liu, Yang; Yang, Huiyun; Tang, Xiaohong; Bai, Wenwen; Wang, Guolin; Tian, Xin

    2016-09-01

    Sevoflurane might be harmful to the developing brain. Therefore, it is essential to reverse sevoflurane-induced brain injury. This study aimed to determine whether low-frequency repetitive transcranial magnetic stimulation (rTMS) can regulate L-type Ca(2+) channel activity, which is inhibited by early sevoflurane exposure. Rats were randomly divided into three groups: control, sevoflurane, and rTMS groups. A Whole-cell patch clamp technique was applied to record L-type Ca(2+) channel currents. The I-V curve, steady-state activation and inactivation curves were studied in rats of each group at different ages (1 week, 2 weeks, 3 weeks, 4 weeks and 5 weeks old). In the control group, L-type Ca(2+) channel current density significantly increased from week 2 to week 3. Compared with the control group, L-type Ca(2+) channel currents of rats in the sevoflurane group were significantly inhibited from week 1 to week 3. Activation curves of L-type Ca(2+) channel shifted significantly towards depolarization at week 1 and week 2. Moreover, steady-state inactivation curves shifted towards hyperpolarization from week 1 to week 3. Compared with the sevoflurane group, rTMS significantly increased L-type Ca(2+) channel currents at week 2 and week 3. Activation curves of L-type Ca(2+) channel significantly shifted towards hyperpolarization at week 2. Meanwhile, steady-state inactivation curves significantly shifted towards depolarization at week 2. The period between week 2 and week 3 is critical for the development of L-type Ca(2+) channels. Early sevoflurane exposure inhibits L-type Ca(2+) channel activity and rTMS can regulate L-type Ca(2+) channel activity inhibited by sevoflurane. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Case report and literature review: cardiac tamponade as a complication of pericardial extramedullary hematopoiesis.

    Science.gov (United States)

    Mahadevan, Navin R; Morgan, Elizabeth A; Mitchell, Richard N

    2016-01-01

    Pericardial effusion can cause cardiac tamponade physiology with resultant cardiogenic shock and death. Myelofibrosis, the replacement of marrow cavity by fibrous connective tissue, is a secondary complication of a group of disorders known as myeloproliferative neoplasms, which are clonal processes characterized by abnormal proliferative growth of one or more hematopoietic lineages. One consequence of myelofibrosis is the development of hematopoiesis at other anatomic sites, most commonly the spleen and liver, a phenomenon known as extramedullary hematopoiesis (EMH). Herein we report a case of a man who died from pericardial tamponade due to a subacute pericardial effusion secondary to EMH in the pericardium in the setting of myelofibrosis. This case highlights an unusual etiology for pericardial effusion and tamponade that should be considered in cases of myelofibrosis and stimulates a discussion regarding the mechanisms and anatomic distribution of EMH.

  19. Early diagnosis of acute renal allograft rejection: efficacy of macrophage migration inhibition test as an immunological diagnosis

    Directory of Open Access Journals (Sweden)

    Orita,Kunzo

    1977-06-01

    Full Text Available 1. Three cases of acute rejection were detected by macrophage migration inhibition tests (MIT conducted directly on seven patients who had received renal allografts. The macrophage migration inhibitory factor (MIF activity was positive in all cases 1-2 days before the appearance of acute rejection. 2. After the administration of a high dose of Solu-Medrol (1g/day for 3 days to suppress the acute rejection, MIF activity recovered to its normal level 3 days later. These findings seem to indicate that MIT yields immunologically useful criteria for the early detection of an acute rejection.

  20. The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias.

    OpenAIRE

    Amson, R; Sigaux, F; Przedborski, S; Flandrin, G; Givol, D; Telerman, A

    1989-01-01

    We measured the human pim-1 protooncogene (PIM) expression during fetal development and in hematopoietic malignancies. Our data indicate that during human fetal hematopoiesis the 33-kDa pim product, p33pim, is highly expressed in the liver and spleen. In contrast, at the adult stage it is only slightly expressed in circulating granulocytes. Out of 70 hematopoietic malignancies analyzed, 51 patients and 19 cell lines, p33pim was overexpressed in approximately 30% of the samples, particularly i...

  1. Myelopathy due to Spinal Extramedullary Hematopoiesis in a Patient with Polycythemia Vera

    Science.gov (United States)

    Ito, Shuhei; Hosogane, Naobumi; Nagoshi, Narihito; Yagi, Mitsuru; Iwanami, Akio; Watanabe, Kota; Tsuji, Takashi; Nakamura, Masaya; Matsumoto, Morio; Ishii, Ken

    2017-01-01

    Extramedullary hematopoiesis (EMH) occasionally occurs in patients exhibiting hematological disorders with decreased hematopoietic efficacy. EMH is rarely observed in the spinal epidural space and patients are usually asymptomatic. In particular, in the patients with polycythemia vera, spinal cord compression due to EMH is extremely rare. We report a case of polycythemia vera, in which operative therapy proved to be an effective treatment for myelopathy caused by spinal EMH. PMID:28133558

  2. Cis-cotranscription of two beta globin genes during chicken primitive hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Hiroki Nagai

    Full Text Available Chicken beta globin locus contains four genes, two of which, rho and epsilon, are expressed from the earliest stage of primitive hematopoiesis. Here we show that the transcription of these two genes in the nucleus engages in "on/off" phases. During each "on" phase, cotranscription of rho and epsilon in cis is favored. We propose that these two chicken beta globin genes are transcribed not by competing for a transcription initiation complex, but in a cooperative way.

  3. Pecular Features of Hematopoiesis in the Liver of Mature and Immature Green Frogs (Pelophylax Esculentus Complex

    Directory of Open Access Journals (Sweden)

    Akulenko N. M.

    2016-12-01

    Full Text Available The article describes characteristic features of the hematopoiesis in mature and immature green frogs (Pelophylax esculentus complex. Quantitative differences in liver myelograms were insignificant. However, in a sample of mature animals numerous significant correlations between the number of pigment inclusions in the liver and indicators of erythropoiesis and myelopoiesis were observed. Those correlations were absent in the immature frogs. We concluded that aft er the frogs’ breeding a lack of plastic resources, in particular, hemosiderin remains up to the hibernation.

  4. Zinc finger protein 148 is dispensable for primitive and definitive hematopoiesis in mice.

    Directory of Open Access Journals (Sweden)

    Anna Nilton

    Full Text Available Hematopoiesis is regulated by transcription factors that induce cell fate and differentiation in hematopoietic stem cells into fully differentiated hematopoietic cell types. The transcription factor zinc finger protein 148 (Zfp148 interacts with the hematopoietic transcription factor Gata1 and has been implicated to play an important role in primitive and definitive hematopoiesis in zebra fish and mouse chimeras. We have recently created a gene-trap knockout mouse model deficient for Zfp148, opening up for analyses of hematopoiesis in a conventional loss-of-function model in vivo. Here, we show that Zfp148-deficient neonatal and adult mice have normal or slightly increased levels of hemoglobin, hematocrit, platelets and white blood cells, compared to wild type controls. Hematopoietic lineages in bone marrow, thymus and spleen from Zfp148 (gt/gt mice were further investigated by flow cytometry. There were no differences in T-cells (CD4 and CD8 single positive cells, CD4 and CD8 double negative/positive cells in either organ. However, the fraction of CD69- and B220-positive cells among lymphocytes in spleen was slightly lower at postnatal day 14 in Zfp148 (gt/gt mice compared to wild type mice. Our results demonstrate that Zfp148-deficient mice generate normal mature hematopoietic populations thus challenging earlier studies indicating that Zfp148 plays a critical role during hematopoietic development.

  5. Hepatic Stellate Cells Support Hematopoiesis and are Liver-Resident Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Claus Kordes

    2013-02-01

    Full Text Available Background/Aims: Hematopoiesis can occur in the liver, when the bone marrow fails to provide an adequate environment for hematopoietic stem cells. Hepatic stellate cells possess characteristics of stem/progenitor cells, but their contribution to hematopoiesis is not known thus far. Methods: Isolated hepatic stellate cells from rats were characterized with respect to molecular markers of bone marrow mesenchymal stem cells (MSC and treated with adipocyte or osteocyte differentiation media. Stellate cells of rats were further co-cultured with murine stem cell antigen-1+ hematopoietic stem cells selected by magnetic cell sorting. The expression of murine hematopoietic stem cell markers was analyzed by mouse specific quantitative PCR during co-culture. Hepatic stellate cells from eGFP+ rats were transplanted into lethally irradiated wild type rats. Results: Desmin-expressing stellate cells were associated with hematopoietic sites in the fetal rat liver. Hepatic stellate cells expressed MSC markers and were able to differentiate into adipocytes and osteocytes in vitro. Stellate cells supported hematopoietic stem/progenitor cells during co-culture similar to bone marrow MSC, but failed to differentiate into blood cell lineages after transplantation. Conclusion: Hepatic stellate cells are liver-resident MSC and can fulfill typical functions of bone marrow MSC such as the differentiation into adipocytes or osteocytes and support of hematopoiesis.

  6. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis.

    Science.gov (United States)

    Koch, Ute; Wilson, Anne; Cobas, Monica; Kemler, Rolf; Macdonald, H Robson; Radtke, Freddy

    2008-01-01

    Hematopietic stem cells (HSCs) maintain life-long hematopoiesis in the bone marrow via their ability to self-renew and to differentiate into all blood lineages. Although a central role for the canonical wnt signaling pathway has been suggested in HSC self-renewal as well as in the development of B and T cells, conditional deletion of beta-catenin (which is considered to be essential for Wnt signaling) has no effect on hematopoiesis or lymphopoiesis. Here, we address whether this discrepancy can be explained by a redundant and compensatory function of gamma-catenin, a close homolog of beta-catenin. Unexpectedly, we find that combined deficiency of beta- and gamma-catenin in hematopoietic progenitors does not impair their ability to self-renew and to reconstitute all myeloid, erythroid, and lymphoid lineages, even in competitive mixed chimeras and serial transplantations. These results exclude an essential role for canonical Wnt signaling (as mediated by beta- and/or gamma-catenin) during hematopoiesis and lymphopoiesis.

  7. The Zebrafish moonshine Gene Encodes Transcriptional Intermediary Factor 1γ, an Essential Regulator of Hematopoiesis

    Science.gov (United States)

    Ransom, David G; Bahary, Nathan; Niss, Knut; Traver, David; Burns, Caroline; Trede, Nikolaus S; Paffett-Lugassy, Noelle; Saganic, Walter J; Lim, C. Anthoney; Hersey, Candace; Zhou, Yi; Barut, Bruce A; Lin, Shuo; Kingsley, Paul D; Palis, James; Orkin, Stuart H

    2004-01-01

    Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon) gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1γ (TIF1γ) (or TRIM33), a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1γ mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1γ mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1γ functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1γ protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates. PMID:15314655

  8. The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis.

    Directory of Open Access Journals (Sweden)

    David G Ransom

    2004-08-01

    Full Text Available Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1gamma (TIF1gamma (or TRIM33, a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1gamma mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1gamma mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1gamma functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1gamma protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates.

  9. The corepressor Tle4 is a novel regulator of murine hematopoiesis and bone development.

    Directory of Open Access Journals (Sweden)

    Justin C Wheat

    Full Text Available Hematopoiesis is a complex process that relies on various cell types, signaling pathways, transcription factors and a specific niche. The integration of these various components is of critical importance to normal blood development, as deregulation of these may lead to bone marrow failure or malignancy. Tle4, a transcriptional corepressor, acts as a tumor suppressor gene in a subset of acute myeloid leukemia, yet little is known about its function in normal and malignant hematopoiesis or in mammalian development. We report here that Tle4 knockout mice are runted and die at around four weeks with defects in bone development and BM aplasia. By two weeks of age, Tle4 knockout mice exhibit leukocytopenia, B cell lymphopenia, and significant reductions in hematopoietic stem and progenitor cells. Tle4 deficient hematopoietic stem cells are intrinsically defective in B lymphopoiesis and exhaust upon stress, such as serial transplantation. In the absence of Tle4 there is a profound decrease in bone mineralization. In addition, Tle4 knockout stromal cells are defective at maintaining wild-type hematopoietic stem cell function in vitro. In summary, we illustrate a novel and essential role for Tle4 in the extrinsic and intrinsic regulation of hematopoiesis and in bone development.

  10. The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment.

    Science.gov (United States)

    Alvarez-Martins, Inês; Remédio, Leonor; Matias, Inês; Diogo, Lucília N; Monteiro, Emília C; Dias, Sérgio

    2016-05-01

    Obstructive sleep apnea (OSA) is a highly prevalent sleep-related breathing disorder which is associated with patient morbidity and an elevated risk of developing hypertension and cardiovascular diseases. There is ample evidence for the involvement of bone marrow (BM) cells in the pathophysiology of cardiovascular diseases but a connection between OSA and modulation of the BM microenvironment had not been established. Here, we studied how chronic intermittent hypoxia (CIH) affected hematopoiesis and the BM microenvironment, in a rat model of OSA. We show that CIH followed by normoxia increases the bone marrow hypoxic area, increases the number of multipotent hematopoietic progenitors (CFU assay), promotes erythropoiesis, and increases monocyte counts. In the BM microenvironment of CIH-subjected animals, the number of VE-cadherin-expressing blood vessels, particularly sinusoids, increased, accompanied by increased smooth muscle cell coverage, while vWF-positive vessels decreased. Molecularly, we investigated the expression of endothelial cell-derived genes (angiocrine factors) that could explain the cellular phenotypes. Accordingly, we observed an increase in colony-stimulating factor 1, vascular endothelium growth factor, delta-like 4, and angiopoietin-1 expression. Our data shows that CIH induces vascular remodeling in the BM microenvironment, which modulates hematopoiesis, increasing erythropoiesis, and circulating monocytes. Our study reveals for the first time the effect of CIH in hematopoiesis and suggests that hematopoietic changes may occur in OSA patients.

  11. Inhibition of early stages of HIV-1 assembly by INI1/hSNF5 transdominant negative mutant S6.

    Science.gov (United States)

    Cano, Jennifer; Kalpana, Ganjam V

    2011-03-01

    INI1/hSNF5 is an HIV-1 integrase (IN) binding protein specifically incorporated into virions. A truncated mutant of INI1 (S6, amino acids 183 to 294) harboring the minimal IN binding Rpt1 domain potently inhibits HIV-1 particle production in a transdominant manner. The inhibition requires interaction of S6 with IN within Gag-Pol. While INI1 is a nuclear protein and harbors a masked nuclear export signal (NES), the transdominant negative mutant S6 is cytoplasmic, due to the unmasking of NES. Here, we examined the effects of subcellular localization of S6 on HIV-1 inhibition and further investigated the stages of assembly that are affected. We found that targeting a nuclear localization signal-containing S6 variant [NLS-S6(Rpt1)] to the nucleoplasm (but not to the nucleolus) resulted in complete reversal of inhibition of particle production. Electron microscopy indicated that although no electron-dense particles at any stage of assembly were seen in cells expressing S6, virions were produced in cells expressing the rescue mutant NLS-S6(Rpt1) to wild-type levels. Immunofluorescence analysis revealed that p24 exhibited a diffuse pattern of localization within the cytoplasm in cells expressing S6 in contrast to accumulation along the membrane in controls. Pulse-chase analysis indicated that in S6-expressing cells, although Gag(Pr55(gag)) protein translation was unaffected, processing and release of p24 were defective. Together, these results indicate that expression of S6 in the cytoplasm interferes with trafficking of Gag-Pol/Gag to the membrane and causes a defective processing leading to inhibition of assembly at an early stage prior to particle formation and budding.

  12. Investigating Practices in Teacher Education That Promote and Inhibit Technology Integration Transfer in Early Career Teachers

    Science.gov (United States)

    Brenner, Aimee M.; Brill, Jennifer M.

    2016-01-01

    The purpose of this study was to identify instructional technology integration strategies and practices in preservice teacher education that contribute to the transfer of technology integration knowledge and skills to the instructional practices of early career teachers. This study used a two-phase, sequential explanatory strategy. Data were…

  13. Evaluation of hypothesized adverse outcome pathway linking thyroid peroxidase inhibition to fish early life stage toxicity

    Science.gov (United States)

    There is an interest in developing alternatives to the fish early-life stage (FELS) test (OECD test guideline 210), for predicting adverse outcomes (e.g., impacts on growth and survival) using less resource-intensive methods. Development and characterization of adverse outcome pa...

  14. RNA interference-mediated targeting of human cytomegalovirus immediate-early or early gene products inhibits viral replication with differential effects on cellular functions.

    Science.gov (United States)

    Xiaofei, E; Stadler, Bradford M; Debatis, Michelle; Wang, Shixia; Lu, Shan; Kowalik, Timothy F

    2012-05-01

    Viral drug toxicity, resistance, and an increasing immunosuppressed population warrant continued research into new avenues for limiting diseases associated with human cytomegalovirus (HCMV). In this study, a small interfering RNA (siRNA), siX3, was designed to target coding sequences within shared exon 3 of UL123 and UL122 transcripts encoding IE1 and IE2 immediate-early proteins of HCMV. Pretreatment of cells with siX3 reduced the levels of viral protein expression, DNA replication, and progeny virus production compared to control siRNA. Two siRNAs against UL54 and overlapping transcripts (UL55-57) were compared to siX3 in HCMV infection and were also found to be effective at inhibiting HCMV replication. Further investigation into the effects of the siRNAs on viral replication showed that pretreatment with each of the siRNAs resulted in an inhibition in the formation of mature replication compartments. The ability of these siRNAs to prevent or reduce certain cytopathic effects associated with HCMV infection was also examined. Infected cells pretreated with siX3, but not siUL54, retained promyelocytic leukemia (PML) protein in cellular PML bodies, an essential component of this host intrinsic antiviral defense. DNA damage response proteins, which are localized in nuclear viral replication compartments, were reduced in the siX3- and siUL54-treated cells. siX3, but not siUL54, prevented DNA damage response signaling early after infection. Therapeutic efficacy was demonstrated by treating cells with siRNAs after HCMV replication had commenced. Together, these findings suggest that siRNAs targeting exon 3 of the major IE genes or the UL54-57 transcripts be further studied for their potential development into anti-HCMV therapeutics.

  15. JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma

    Science.gov (United States)

    Titz, Bjoern; Lomova, Anastasia; Le, Allison; Hugo, Willy; Kong, Xiangju; ten Hoeve, Johanna; Friedman, Michael; Shi, Hubing; Moriceau, Gatien; Song, Chunying; Hong, Aayoung; Atefi, Mohammad; Li, Richard; Komisopoulou, Evangelia; Ribas, Antoni; Lo, Roger S; Graeber, Thomas G

    2016-01-01

    A prominent mechanism of acquired resistance to BRAF inhibitors in BRAFV600-mutant melanoma is associated with the upregulation of receptor tyrosine kinases. Evidences suggested that this resistance mechanism is part of a more complex cellular adaptation process. Using an integrative strategy, we found this mechanism to invoke extensive transcriptomic, (phospho-) proteomic and phenotypic alterations that accompany a cellular transition to a de-differentiated, mesenchymal and invasive state. Even short-term BRAF-inhibitor exposure leads to an early adaptive, differentiation state change—characterized by a slow-cycling, persistent state. The early persistent state is distinct from the late proliferative, resistant state. However, both differentiation states share common signaling alterations including JUN upregulation. Motivated by the similarities, we found that co-targeting of BRAF and JUN is synergistic in killing fully resistant cells; and when used up-front, co-targeting substantially impairs the formation of the persistent subpopulation. We confirmed that JUN upregulation is a common response to BRAF inhibitor treatment in clinically treated patient tumors. Our findings demonstrate that events shared between early- and late-adaptation states provide candidate up-front co-treatment targets. PMID:27648299

  16. Functionalized magnetic nanochains with enhanced MR imaging: A novel nanosystem for targeting and inhibition of early glioma.

    Science.gov (United States)

    Zhang, Yi; Huang, Zhongbing; Wu, Zhi; Yin, Guangfu; Wang, Lei; Gao, Fabao

    2016-04-01

    Absence of efficient targeting limits the application of magnetic nanochains (NCs) in the diagnosis of early brain cancer. Herein, dextran-coated NCs (more than 100 nm length and ∼ 10 nm cores diameter), which were modified by cyclic pentapeptide c(RGDyC) or chlorotoxin (CTX) as the targeting molecules, were fabricated via carbodiimide chemistry and thiol technique. The analysis results revealed that the obtained slender NCs exhibited good biocompatibility, superparamagnetic property, high transverse relaxivity (R2) and longer blood circulation time. The test results of human umbilical vein endothelial cells and U251 human glioma cells indicated that the conjugation of c(RGDyC) could obviously increase the cyto-internalization of c(RGDyC)-NCs, however, CTX modification could significantly enhance accumulation of CTX-NCs in U251 cells, leading to cellular apoptosis. The results of in vivo biodistribution tests and in vivo magnetic resonance (MR) imaging indicated that, although the c(RGDyC)-NCs could target early glioma to some extent and obviously enhance the contrast of MR imaging, CTX-NCs possessed higher tumor-targeting ability and good inhibition effect than the c(RGDyC)-NCs, suggesting that CTX-NCs are promising candidates for the diagnosis and therapy of early glioma.

  17. The role of Ikaros transcriptional factor in normal hematopoiesis and leukemogenesis: biological and clinical aspects

    Directory of Open Access Journals (Sweden)

    V. S. Vshivkoo

    2015-01-01

    Full Text Available Investigation of the pathogenesis and factors effecting recurrence, progression and drug resistance in acute leukemia (AL remains a major challenge for hematology and other related areas. The role of more than 50 genes and proteins in the AL pathogenesis has been shown, including the well-studied tumor suppressor (CDKN2A/CDKN2B, RB1, PTEN, p53, and classical fusion genes (BCR/ABL1, TEL/AML1, E2A/PBX, MLL translocations. In addition, high frequency of aberrations in genes responsible for lymphoid differentiation have been identified such as transcription factors (PAX5, IKZF1 and EBF1, transcriptional regulation of the genes (ETV6, ERG, and signaling pathways of antigen receptors (BTLA, CD200, TOX, BLNK, VPREB1, as well as genes involved in chemoresistance of leukemia cells (NR3C1. In recent studies, Ikaros abnormalities have been reported to be frequently associated with AL. Ikaros is a member of a Kruppel-like family of zinc finger transcription factors that also includes IKZF2 (Helios, IKZF3 (Aiolos, Eos and Pegasus, and encoded by the IKZF1 gene. In hematopoietic cells Ikaros functions as a transcription factor, a key protein controlling T-, B-, NK-, and dendritic cells early differentiation. At the early hematopoiesis stages, it represses the myeloid and erythroid lineages, and stimulates the lymphoid differentiation. Ikaros also normally modulates immune response and plays role of a tumor suppressor in lymphoid malignances. Data from numerous clinical studies confirmed an association between the presence of IKZF1 aberrations and B-cell and, to a lesser extent, T-cell acute lymphoblastic leukemia (ALL development. Besides, loss of Ikaros function was associated with progression of myeloproliferative diseases to acute myeloid leukemia (AML in children. From clinical point of view, particular intragenic IKZF1 deletions and a short (non-functional protein Ikaros isoforms, which may occur as a result of intragenic deletions or aberrant splicing

  18. NOX2 inhibition impairs early muscle gene expression induced by a single exercise bout

    Directory of Open Access Journals (Sweden)

    Carlos Henríquez-Olguín

    2016-07-01

    Full Text Available Reactive oxygen species (ROS participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2 in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB. Moreover, exercise significantly increased NOX2 complex assembly (p47phox-gp91phox interaction demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD, glutathione peroxidase (GPx, citrate synthase (CS, mitochondrial transcription factor A (tfam and interleukin-6 (IL-6 in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p<0.001. These results were corroborated using gp91-dstat in an in-vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.

  19. NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout.

    Science.gov (United States)

    Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M

    2016-01-01

    Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47(phox) levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47(phox)-gp91(phox) interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.

  20. Impulsivity is associated with early sensory inhibition in neurophysiological processing of affective sounds

    Directory of Open Access Journals (Sweden)

    Takahiro eSoshi

    2015-10-01

    Full Text Available Impulsivity is widely related to socially problematic behaviors and psychiatric illness. Previous studies have investigated the relationship between response inhibition and impulsivity. However, no study has intensively examined how impulsivity correlates with automatic sensory processing before the drive for response inhibition to sensory inputs. Sensory gating is an automatic inhibitory function that attenuates the neural response to redundant sensory information and protects higher cognitive functions from the burst of information processing. Although sensory gating functions abnormally in several clinical populations, there is very little evidence supporting sensory gating changes in conjunction with impulsivity traits in non-clinical populations. The present study recruited healthy adults (n = 23 to conduct a neurophysiological experiment using a paired click paradigm and self-report scales assessing impulsive behavioral traits. Auditory stimuli included not only a pure tone, but also white noise, to explore the differences in auditory evoked potential responses between the two stimuli. White noise is more affective than pure tones; therefore, we predicted that the sensory gating of auditory evoked potentials (P50, N100, P200 for white noise would correlate more with self-reported impulsivity than with those for pure tones. Our main findings showed that sensory gating of the P50 and P200 amplitudes significantly correlated with self-reported reward responsiveness and fun-seeking, respectively, only for white noise stimuli, demonstrating that higher-scoring impulsivity subcomponents were related to greater sensory gating. Frequency-domain analyses also revealed that greater desynchronization of the beta band for the second white noise stimulus was associated with higher motor impulsivity scores, suggesting that an impulsivity-related change of sensory gating was associated with attentional modulation. These findings indicate that the

  1. Impaired GABAergic inhibition in the prefrontal cortex of early postnatal phencyclidine (PCP)-treated rats.

    Science.gov (United States)

    Kjaerby, Celia; Broberg, Brian V; Kristiansen, Uffe; Dalby, Nils Ole

    2014-09-01

    A compromised γ-aminobutyric acid (GABA)ergic system is hypothesized to be part of the underlying pathophysiology of schizophrenia. N-methyl-D-aspartate (NMDA) receptor hypofunction during neurodevelopment is proposed to disrupt maturation of interneurons causing an impaired GABAergic transmission in adulthood. The present study examines prefrontal GABAergic transmission in adult rats administered with the NMDA receptor channel blocker, phencyclidine (PCP), for 3 days during the second postnatal week. Whole-cell patch-clamp recordings from pyramidal cells in PCP-treated rats showed a 22% reduction in the frequency of miniature inhibitory postsynaptic currents in layer II/III, but not in layer V pyramidal neurons of the prefrontal cortex. Furthermore, early postnatal PCP treatment caused insensitivity toward effects of the GABA transporter 1 (GAT-1) inhibitor, 1,2,5,6-tetrahydro-1-[2-[[(diphenyl-methylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid, and also diminished currents passed by δ-subunit-containing GABAA receptors in layer II/III pyramidal neurons. The observed impairments in GABAergic function are compatible with the alteration of GABAergic markers as well as cognitive dysfunction observed in early postnatal PCP-treated rats and support the hypothesis that PCP administration during neurodevelopment affects the functionality of interneurons in later life. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Cryptotanshinone inhibits TNF-α-induced early atherogenic events in vitro.

    Science.gov (United States)

    Ahmad, Zuraini; Ng, Chin Theng; Fong, Lai Yen; Bakar, Nurul Ain Abu; Hussain, Nor Hayuti Mohd; Ang, Kok Pian; Ee, Gwendoline Cheng Lian; Hakim, Muhammad Nazrul

    2016-05-01

    Endothelial dysfunction has been implicated in the pathogenesis of atherosclerosis. Salvia miltiorrhiza (danshen) is a traditional Chinese medicine that has been effectively used to treat cardiovascular disease. Cryptotanshinone (CTS), a major lipophilic compound isolated from S. miltiorrhiza, has been reported to possess cardioprotective effects. However, the anti-atherogenic effects of CTS, particularly on tumor necrosis factor-α (TNF-α)-induced endothelial cell activation, are still unclear. This study aimed to determine the effect of CTS on TNF-α-induced increased endothelial permeability, monocyte adhesion, soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), monocyte chemoattractant protein 1 (MCP-1) and impaired nitric oxide production in human umbilical vein endothelial cells (HUVECs), all of which are early events occurring in atherogenesis. We showed that CTS significantly suppressed TNF-α-induced increased endothelial permeability, monocyte adhesion, sICAM-1, sVCAM-1 and MCP-1, and restored nitric oxide production. These observations suggest that CTS possesses anti-inflammatory properties and could be a promising treatment for the prevention of cytokine-induced early atherogenesis.

  3. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    Science.gov (United States)

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  4. Inhibition of nitric oxide synthase lowers fatty acid oxidation in preeclampsia-like mice at early gestational stage

    Institute of Scientific and Technical Information of China (English)

    MA Rui-qiong; SUN Min-na; YANG Zi

    2011-01-01

    Background Preeclampsia is one of hypertensive disorders in pregnancy. It is associated with abnormal lipid metabolism, including fatty acid oxidation metabolism. Long chain 3-hydroxyacyI-CoA dehydrogenase (LCHAD) plays an indispensable role in the oxidation of fatty acids. It has been reported that nitric oxide (NO) is one of the regulatory factors of the fatty acid oxidation pathway. The aim of this research was to investigate whether the nitric oxide synthase (NOS)inhibitor L-NAME may cause down-regulation of LCHAD in the pathogenesis of preeclampsia.Methods Pregnant wild-type (WT) mice were treated with L-NAME or normal saline (NS) during gestation days 7-18 (early group), days 11-18 (mid group) and days 16-18 (late group), and apoE-/- mice served as a control. Systolic blood pressure (SBP), urine protein, feto-placental outcome, plasma lipid levels and NO concentrations were measured, and the expression of mRNA and protein for LCHAD in placental tissue were determined by real-time polymerase chain reaction (RT-PCR) and Western blotting, respectively.Results In WT and apoE-/- mice, SBP and urinary protein increased following L-NAME injection. Fetal and placental weights and NO concentrations were reduced and total cholesterol, triglycerides and free fatty acid levels were increased in early and mid L-NAME groups in WT and apoE-/- mice, compared with the NS group. There was no significant difference between the late L-NAME group and NS group. RT-PCR and Western blotting analysis showed that the mRNA and protein levels of LCHAD expression were significantly down-regulated in the early and mid L-NAME groups but not in the late L-NAME group in the WT and apoE-/- mice compared with the corresponding NS groups.Conclusions Inhibition of NO in early and mid gestation in mice may cause hyperlipidemia and suppression of fatty acid oxidation, whereas preeclampsia-like conditions in late gestation may be a maternal vascular response to inhibition of NO.

  5. Impaired GABAergic Inhibition in the Prefrontal Cortex of Early Postnatal Phencyclidine (PCP)-Treated Rats

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Broberg, Brian V; Kristiansen, Uffe

    2014-01-01

    in adulthood. The present study examines prefrontal GABAergic transmission in adult rats administered with the NMDA receptor channel blocker, phencyclidine (PCP), for 3 days during the second postnatal week. Whole-cell patch-clamp recordings from pyramidal cells in PCP-treated rats showed a 22% reduction...... in the frequency of miniature inhibitory postsynaptic currents in layer II/III, but not in layer V pyramidal neurons of the prefrontal cortex. Furthermore, early postnatal PCP treatment caused insensitivity toward effects of the GABA transporter 1 (GAT-1) inhibitor, 1,2,5,6-tetrahydro-1-[2-[[(diphenyl...... postnatal PCP-treated rats and support the hypothesis that PCP administration during neurodevelopment affects the functionality of interneurons in later life....

  6. Inhibition of early 3-methyl-4-dimethylaminoazobenzene-induced hepatocarcinogenesis by gomisin A in rats.

    Science.gov (United States)

    Nomura, M; Ohtaki, Y; Hida, T; Aizawa, T; Wakita, H; Miyamoto, K

    1994-01-01

    The effects of gomisin A, a lignan component of Schizandra fruits, on hepatocarcinogenesis caused by 3'-methyl-4- dimethylaminoazobenzene (3'-MeDAB) in male Donryu rats were investigated. Gomisin A significantly inhibited the appearance of foci stained for glutathione S-transferase placental form (GST-P) in the liver of rats given feed with 0.06% 3'-MeDAB. Gomisin A (30 mg/kg/daily, po) decreased the concentration of 3'-MeDAB-related azo dyes in the liver, and increased their excretion in the bile. The ratio of diploid to tetraploid nuclei increased during ingestion of 3'-MeDAB, but gomisin A delayed the increase. After the withdrawal of 3'-MeDAB, carcinogen-related azo dyes were not detected in the liver or bile, but the proportion of diploid nuclei remained high, although it decreased with a 0.03% gomisin A diet. The results suggested that the effects of gomisin A are related to improved liver function and reversal of abnormal ploidization.

  7. A DO- and pH-Based Early Warning System of Nitrification Inhibition for Biological Nitrogen Removal Processes

    Directory of Open Access Journals (Sweden)

    Hyunook Kim

    2012-11-01

    Full Text Available In Korea, more than 80% of municipal wastewater treatment plants (WWTPs with capacities of 500 m3·d−1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L−1 Hg2+, 0.5 mg·L−1 allythiourea, or 0.25 mg·L−1 chloroform could be successfully detected.

  8. Magnesium inference screw supports early graft incorporation with inhibition of graft degradation in anterior cruciate ligament reconstruction

    Science.gov (United States)

    Cheng, Pengfei; Han, Pei; Zhao, Changli; Zhang, Shaoxiang; Zhang, Xiaonong; Chai, Yimin

    2016-05-01

    Patients after anterior cruciate ligament (ACL) reconstruction surgery commonly encounters graft failure in the initial phase of rehabilitation. The inhibition of graft degradation is crucial for the successful reconstruction of the ACL. Here, we used biodegradable high-purity magnesium (HP Mg) screws in the rabbit model of ACL reconstruction with titanium (Ti) screws as a control and analyzed the graft degradation and screw corrosion using direct pull-out tests, microCT scanning, and histological and immunohistochemical staining. The most noteworthy finding was that tendon graft fixed by HP Mg screws exhibited biomechanical properties substantially superior to that by Ti screws and the relative area of collagen fiber at the tendon-bone interface was much larger in the Mg group, when severe graft degradation was identified in the histological analysis at 3 weeks. Semi-quantitative immunohistochemical results further elucidated that the MMP-13 expression significantly decreased surrounding HP Mg screws with relatively higher Collagen II expression. And HP Mg screws exhibited uniform corrosion behavior without displacement or loosening in the femoral tunnel. Therefore, our results demonstrated that Mg screw inhibited graft degradation and improved biomechanical properties of tendon graft during the early phase of graft healing and highlighted its potential in ACL reconstruction.

  9. Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer.

    Science.gov (United States)

    Gernapudi, Ramkishore; Yao, Yuan; Zhang, Yongshu; Wolfson, Benjamin; Roy, Sanchita; Duru, Nadire; Eades, Gabriel; Yang, Peixin; Zhou, Qun

    2015-04-01

    The tumor microenvironment plays a critical role in regulating breast tumor progression. Signaling between preadipocytes and breast cancer cells has been found to promote breast tumor formation and metastasis. Exosomes secreted from preadipocytes are important components of the cancer stem cell niche. Mouse preadipocytes (3T3L1) are treated with the natural antitumor compound shikonin (SK) and exosomes derived from mouse preadipocytes are co-cultured with MCF10DCIS cells. We examine how preadipocyte-derived exosomes can regulate early-stage breast cancer via regulating stem cell renewal, cell migration, and tumor formation. We identify a critical miR-140/SOX2/SOX9 axis that regulates differentiation, stemness, and migration in the tumor microenvironment. Next, we find that the natural antitumor compound SK can inhibit preadipocyte signaling inhibiting nearby ductal carcinoma in situ (DCIS) cells. Through co-culture experiments, we find that SK-treated preadipocytes secrete exosomes with high levels of miR-140, which can impact nearby DCIS cells through targeting SOX9 signaling. Finally, we find that preadipocyte-derived exosomes promote tumorigenesis in vivo, providing strong support for the importance of exosomal signaling in the tumor microenvironment. Our data also show that targeting the tumor microenvironment may assist in blocking tumor progression.

  10. Osseous metaplasia and mature bone formation with extramedullary hematopoiesis in follicular adenoma of thyroid gland

    Directory of Open Access Journals (Sweden)

    Harsh Mohan

    2009-07-01

    Full Text Available Follicular adenomas of the thyroid may be subjected to degenerative changes like hemorrhagic and cystic changes, fibrosis, and calcification. Mature bone formation is a rare phenomenon, but extramedullary hematopoiesis (EMH has also been rarely reported in thyroid gland. The combination of mature bone formation and EMH is rarer and has been reported, in a single case report, in a multinodular goitre. We describe a case of follicular adenoma with histologically proven osseous metaplasia and mature bone formation with EMH in a middle- aged woman, which, to our knowledge, is the first case in English language literature.

  11. RUNX1: A MicroRNA Hub in Normal and Malignant Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Nicoletta Sacchi

    2013-01-01

    Full Text Available Hematopoietic development is orchestrated by gene regulatory networks that progressively induce lineage-specific transcriptional programs. To guarantee the appropriate level of complexity, flexibility, and robustness, these networks rely on transcriptional and post-transcriptional circuits involving both transcription factors (TFs and microRNAs (miRNAs. The focus of this review is on RUNX1 (AML1, a master hematopoietic transcription factor which is at the center of miRNA circuits necessary for both embryonic and post-natal hematopoiesis. Interference with components of these circuits can perturb RUNX1-controlled coding and non-coding transcriptional programs in leukemia.

  12. PET CT imaging in extramedullary hematopoiesis and lung cancer surprise in a case with thalassemia intermedia

    Directory of Open Access Journals (Sweden)

    Semra Paydaş

    2011-03-01

    Full Text Available Extramedullary hematopoiesis (EMH is the production of hematopoietic precursors outside the bone marrow cavity, and it causes mass effects according to its localization. Magnetic resonance imaging (MRI and/or computed tomography (CT scans are used most commonly to detect EMH foci. We report herein a case with thalassemia intermedia causing paravertebral mass associated with EMH detected by CT scan. We further evaluated the case with positron emission tomography (PET CT, and lung cancer, which was not revealed in the CT scan, was detected coincidentally.

  13. Extramedullary Hematopoiesis in a Man With β-Thalassemia: An Uncommon Cause of an Adrenal Mass

    Directory of Open Access Journals (Sweden)

    Zeighami

    2015-06-01

    Full Text Available Introduction Extramedullary hematopoiesis (EMH commonly occurs in the spleen, liver and lymph nodes. Rare cases of EMH in the adrenal gland have been reported. Case Presentation We report the case of a 33-year-old man from the South of Iran suffering from major β-thalassemia, who underwent open left adrenalectomy and the histopathology revealed EMH. Conclusions In patients in which a history of hematologic disorders exists, careful imaging and hormonal assay should be done to certify a diagnosis of EMH. However, the surgical management becomes inevitable in certain cases.

  14. Bloody nipple discharge in 2 infants with interesting cytologic findings of extramedullary hematopoiesis and hemophagocytosis.

    Science.gov (United States)

    Pampal, Arzu; Gokoz, Aytac; Sipahi, Tansu; Dogan, Handan; Ergur, Ayca Torel

    2012-04-01

    Bloody nipple discharge in the infantile period is an uncommon finding. Despite its stressful course to the parents, it is generally a benign condition with a spontaneous resolution. The approach to bloody nipple discharge in the infantile period is well documented in the literature even though the number of these cases is limited. We report 2 infants with unilateral bloody nipple discharge. Their physical examination, laboratory, and ultrasound findings were normal but the cytologic examinations of the discharge revealed signs of extramedullary hematopoiesis and hemophagocytosis. These extraordinary findings made us brainstorm on the probable ongoing processes in the infantile breast tissue.

  15. Intracranial involvement in extramedullary hematopoiesis: case report and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, Salwa; Ortiz-Neira, Clara; Shroff, Manohar; Gilday, David; Blaser, Susan [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada)

    2005-06-01

    Intracranial involvement in extramedullary hematopoiesis (EMH) is rare, but it should be suspected in patients with myelofibrosis presenting with chronic severe headache. We present a 9-year-old girl with known myelofibrosis whose headaches were unresponsive to routine treatment. CT and MRI studies of the brain showed diffuse pachymeningeal thickening. CT examinations of the chest and abdomen had demonstrated bilateral thoracic paraspinal masses caused by EMH, suggesting the possibility that the intracranial involvement might also be related to EMH. The diagnosis was confirmed by sulfur colloid isotope scan. (orig.)

  16. Barriers Inhibiting Inquiry-Based Science Teaching and Potential Solutions: Perceptions of Positively Inclined Early Adopters

    Science.gov (United States)

    Fitzgerald, Michael; Danaia, Lena; McKinnon, David H.

    2017-07-01

    In recent years, calls for the adoption of inquiry-based pedagogies in the science classroom have formed a part of the recommendations for large-scale high school science reforms. However, these pedagogies have been problematic to implement at scale. This research explores the perceptions of 34 positively inclined early-adopter teachers in relation to their implementation of inquiry-based pedagogies. The teachers were part of a large-scale Australian high school intervention project based around astronomy. In a series of semi-structured interviews, the teachers identified a number of common barriers that prevented them from implementing inquiry-based approaches. The most important barriers identified include the extreme time restrictions on all scales, the poverty of their common professional development experiences, their lack of good models and definitions for what inquiry-based teaching actually is, and the lack of good resources enabling the capacity for change. Implications for expectations of teachers and their professional learning during educational reform and curriculum change are discussed.

  17. Puerarin enhances superoxide dismutase activity and inhibits RAGE and VEGF expression in retinas of STZ-induced early diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Fang Chen; Hong-Quan Zhang; Jun Zhu; Kai-Yang Liu; Hong Cheng; Guo-Li Li; Shan Xu; Wei-Hong Lv; Zheng-Gao Xie

    2012-01-01

    Objective:To investigate the effects of puerarin on the activity of superoxide dismutase (SOD), and expressions of advanced glycation end-product (AGE) receptor (RAGE) and vascular endothelial growth factor (VEGF) in retinas of streptozotocin (STZ)-induced early diabetic rats. Methods: Diabetic rat models were established by inducing diabetes via intra-peritoneal injection of STZ. Rats were randomly divided into normal (control), diabetic (DM), and DM+puerarin groups. After intra-gastric administration of puerarin (500 mg/kg/day for 4 weeks), levels of SOD and malondialdehyde (MDA) were determined in serum and retina. mRNA and protein expression levels of RAGE and VEGF in retinas were determined by real-time polymerase chain reaction (RT-PCR) (mRNA) and Western blot analysis (protein levels). Results:There was significantly lower SOD activity and significantly higher MDA in serum and retinas of the DM group compared with the two other groups (P<0.05). After treatment with puerarin, SOD activity increased and MDA content decreased in this group (P<0.05). mRNA and protein expression levels of RAGE and VEGF in the DM group were significantly higher than those of the other groups (P<0.05), and decreased after puerarin treatment (P<0.05). Conclusions: Puerarin is able to enhance SOD activity, and inhibit RAGE and VEGF expressions in retinas of STZ-induced early diabetic rats.

  18. Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-Mullerian hormone production in the rat ovary.

    Science.gov (United States)

    Uzumcu, Mehmet; Kuhn, Peter E; Marano, Jason E; Armenti, AnnMarie E; Passantino, Lisa

    2006-12-01

    Methoxychlor [1,1,1-trichloro-2,2-bis(4-methoxyphenyl) ethane; MXC] is a chlorinated hydrocarbon pesticide commonly used in the United States as a replacement for DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane]. While MXC is a weak estrogenic compound, its more active, major metabolite [2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane; HPTE] shows estrogenic, anti-estrogenic, or anti-androgenic properties depending on the receptor subtype with which it interacts. Anti-Mullerian hormone (AMH) is a paracrine factor that suppresses initial follicle recruitment in the ovary. Studies have shown the effects of exposure to MXC on adult ovarian morphology and function. However, the effect of exposure to MXC at an early postnatal stage on pre-pubertal follicular development and ovarian AMH production has not been studied. Around postnatal day (P) 4, most of the primordial follicular assembly in rats is complete, and a large number of primordial follicles transition into the primary follicle stage, a process that is inhibited by estrogen. The objective of this study was to examine the effect of early postnatal (P3-P10) MXC exposure on ovarian morphology and size, follicle number, and AMH production in the pre-pubertal (P20) rat ovary and to investigate the effect of HPTE on AMH production in immature rat granulosa cells in vitro. Female rats were injected (s.c.) daily with vehicle (control) or 1, 10, 50, 100, or 500 mg MXC/kg per day (referred to here as 1MXC, 10MXC, and so forth.) between P3 and P10. On P20, uterine and ovarian weights were determined, ovarian histology was examined, and follicles were counted and classified into primordial, primary, secondary, pre-antral, or antral stages using the two largest serial sections at the center of the ovary. Ovarian AMH production was examined using immunohistochemistry and western blot analysis. The effect of HPTE (0.5-25 microM) on AMH production in cultured immature rat granulosa cells was determined by western blot

  19. Early

    Directory of Open Access Journals (Sweden)

    Kamel Abd Elaziz Mohamed

    2014-04-01

    Conclusion: Early PDT is recommended for patients who require prolonged tracheal intubation in the ICU as outcomes like the duration of mechanical ventilation length of ICU stay and hospital stay were significantly shorter in early tracheostomy.

  20. Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells

    Directory of Open Access Journals (Sweden)

    Bertin Jonathan

    2012-03-01

    Full Text Available Abstract Background Microglia are one of the main cell types to be productively infected by HIV-1 in the central nervous system (CNS. Leukotriene B4 (LTB4 and cysteinyl-leukotrienes such as LTC4 are some of the proinflammatory molecules produced in infected individuals that contribute to neuroinflammation. We therefore sought to investigate the role of leukotrienes (LTs in HIV-1 infection of microglial cells. Methods To evaluate the role of LTs on HIV-1 infection in the CNS, monocyte-derived microglial-like cells (MDMis were utilized in this study. Leukotriene-treated MDMis were infected with either fully replicative brain-derived HIV-1 isolates (YU2 or R5-tropic luciferase-encoding particles in order to assess viral production and expression. The efficacy of various steps of the replication cycle was evaluated by means of p24 quantification by ELISA, luciferase activity determination and quantitative real-time polymerase chain reaction (RT-PCR. Results We report in this study that virus replication is reduced upon treatment of MDMis with LTB4 and LTC4. Additional experiments indicate that these proinflammatory molecules alter the pH-independent entry and early post-fusion events of the viral life cycle. Indeed, LT treatment induced a diminution in integrated proviral DNA while reverse-transcribed viral products remained unaffected. Furthermore, decreased C-C chemokine receptor type 5 (CCR5 surface expression was observed in LT-treated MDMis. Finally, the effect of LTs on HIV-1 infection in MDMis appears to be mediated partly via a signal transduction pathway involving protein kinase C. Conclusions These data show for the first time that LTs influence microglial cell infection by HIV-1, and may be a factor in the control of viral load in the CNS.

  1. Inhibition of early upstream events in prodromal Alzheimer's disease by use of targeted antioxidants.

    Science.gov (United States)

    Prasad, Kedar N; Bondy, Stephen C

    2014-01-01

    A link between Alzheimer's disease (AD) and an excess presence of oxidant free radicals in the brain has frequently been reported. It is generally assumed that such oxidative stress and related cellular damage is caused by inflammatory changes in the brain and is consequent to amyloid deposition. This review makes the argument that elevated oxidative stress in AD is an early causal event in the initiation and advancement of this disease. Oxidative stress can be decreased by enhancing antioxidant enzymes through activation of the cytoplasmic transcriptional factor (Nrf2)/ARE (antioxidant response element) pathway, and by dietary and endogenous antioxidant chemicals. Reduction in the binding ability of Nrf2 to ARE lowers antioxidant enzyme levels. Decreased levels of Nrf2 and augmentation of oxidative stress in AD suggest that the ROS-dependent mechanism of activating the Nrf2/ARE pathway has become unresponsive. A combination of agents that can either activate the Nrf2-ARE pathway by ROS-independent mechanisms, or by acting directly as antioxidant chemicals, may be necessary to reduce oxidative stress in AD. Earlier shortcomings of using individual antioxidants may be due to consideration of antioxidants as pharmacological agents, ignoring the fact that individual antioxidants can be transmuted in the highly oxidant milieu that is present in AD. Interactions between various cellular compartments may require simultaneous examination of more than one agent. The clinical utility of such a more integrative method can reveal interactive effects such as those found in nutritional research and this can compensate for any mechanistic shortcomings of simultaneous testing of more than a single agent.

  2. Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells.

    Science.gov (United States)

    Bertin, Jonathan; Barat, Corinne; Bélanger, Dave; Tremblay, Michel J

    2012-03-16

    Microglia are one of the main cell types to be productively infected by HIV-1 in the central nervous system (CNS). Leukotriene B4 (LTB4) and cysteinyl-leukotrienes such as LTC4 are some of the proinflammatory molecules produced in infected individuals that contribute to neuroinflammation. We therefore sought to investigate the role of leukotrienes (LTs) in HIV-1 infection of microglial cells. To evaluate the role of LTs on HIV-1 infection in the CNS, monocyte-derived microglial-like cells (MDMis) were utilized in this study. Leukotriene-treated MDMis were infected with either fully replicative brain-derived HIV-1 isolates (YU2) or R5-tropic luciferase-encoding particles in order to assess viral production and expression. The efficacy of various steps of the replication cycle was evaluated by means of p24 quantification by ELISA, luciferase activity determination and quantitative real-time polymerase chain reaction (RT-PCR). We report in this study that virus replication is reduced upon treatment of MDMis with LTB4 and LTC4. Additional experiments indicate that these proinflammatory molecules alter the pH-independent entry and early post-fusion events of the viral life cycle. Indeed, LT treatment induced a diminution in integrated proviral DNA while reverse-transcribed viral products remained unaffected. Furthermore, decreased C-C chemokine receptor type 5 (CCR5) surface expression was observed in LT-treated MDMis. Finally, the effect of LTs on HIV-1 infection in MDMis appears to be mediated partly via a signal transduction pathway involving protein kinase C. These data show for the first time that LTs influence microglial cell infection by HIV-1, and may be a factor in the control of viral load in the CNS.

  3. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis

    Science.gov (United States)

    Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón; Carmona, Rita

    2017-01-01

    Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system. PMID:28230720

  4. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Ana Cañete

    2017-02-01

    Full Text Available Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA, acting through nuclear retinoic acid receptors (RARs, is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system.

  5. DEK oncogene expression during normal hematopoiesis and in Acute Myeloid Leukemia (AML).

    Science.gov (United States)

    Logan, Gemma E; Mor-Vaknin, Nirit; Braunschweig, Till; Jost, Edgar; Schmidt, Pia Verena; Markovitz, David M; Mills, Ken I; Kappes, Ferdinand; Percy, Melanie J

    2015-01-01

    DEK is important in regulating cellular processes including proliferation, differentiation and maintenance of stem cell phenotype. The translocation t(6;9) in Acute Myeloid Leukemia (AML), which fuses DEK with NUP214, confers a poor prognosis and a higher risk of relapse. The over-expression of DEK in AML has been reported, but different studies have shown diminished levels in pediatric and promyelocytic leukemias. This study has characterized DEK expression, in silico, using a large multi-center cohort of leukemic and normal control cases. Overall, DEK was under-expressed in AML compared to normal bone marrow (NBM). Studying specific subtypes of AML confirmed either no significant change or a significant reduction in DEK expression compared to NBM. Importantly, the similarity of DEK expression between AML and NBM was confirmed using immunohistochemistry analysis of tissue mircorarrays. In addition, stratification of AML patients based on median DEK expression levels indicated that DEK showed no effect on the overall survival of patients. DEK expression during normal hematopoiesis did reveal a relationship with specific cell types implicating a distinct function during myeloid differentiation. Whilst DEK may play a potential role in hematopoiesis, it remains to be established whether it is important for leukemagenesis, except when involved in the t(6;9) translocation. Copyright © 2014. Published by Elsevier Inc.

  6. Vascular Platform to Define Hematopoietic Stem Cell Factors and Enhance Regenerative Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Michael G. Poulos

    2015-11-01

    Full Text Available Hematopoietic stem cells (HSCs inhabit distinct microenvironments within the adult bone marrow (BM, which govern the delicate balance between HSC quiescence, self-renewal, and differentiation. Previous reports have proposed that HSCs localize to the vascular niche, comprised of endothelium and tightly associated perivascular cells. Herein, we examine the capacity of BM endothelial cells (BMECs to support ex vivo and in vivo hematopoiesis. We demonstrate that AKT1-activated BMECs (BMEC-Akt1 have a unique transcription factor/cytokine profile that supports functional HSCs in lieu of complex serum and cytokine supplementation. Additionally, transplantation of BMEC-Akt1 cells enhanced regenerative hematopoiesis following myeloablative irradiation. These data demonstrate that BMEC-Akt1 cultures can be used as a platform for the discovery of pro-HSC factors and justify the utility of BMECs as a cellular therapy. This technical advance may lead to the development of therapies designed to decrease pancytopenias associated with myeloablative regimens used to treat a wide array of disease states.

  7. ABA inhibits embryo cell expansion and early cell division events during coffee (Coffea arabica 'Rubi') seed germination.

    Science.gov (United States)

    Da Silva, E A Amaral; Toorop, Peter E; Van Lammeren, André A M; Hilhorst, Henk W M

    2008-09-01

    Coffee seed germination represents an interplay between the embryo and the surrounding endosperm. A sequence of events in both parts of the seed determines whether germination will be successful or not. Following previous studies, the aim here was to further characterize the morphology of endosperm degradation and embryo growth with respect to morphology and cell cycle, and the influence of abscisic acid on these processes. Growth of cells in a fixed region of the axis was quantified from light micrographs. Cell cycle events were measured by flow cytometry and by immunocytochemistry, using antibodies against beta-tubulin. Aspects of the endosperm were visualized by light and scanning electron microscopy. The embryonic axis cells grew initially by isodiametric expansion. This event coincided with reorientation and increase in abundance of microtubules and with accumulation of beta-tubulin. Radicle protrusion was characterized by a shift from isodiametric expansion to elongation of radicle cells and further accumulation of beta-tubulin. Early cell division events started prior to radicle protrusion. Abscisic acid decreased the abundance of microtubules and inhibited the growth of the embryo cells, the reorganization of the microtubules, DNA replication in the embryonic axis, the formation of a protuberance and the completion of germination. The endosperm cap cells had smaller and thinner cell walls than the rest of the endosperm. Cells in the endosperm cap displayed compression followed by loss of cell integrity and the appearance of a protuberance prior to radicle protrusion. Coffee seed germination is the result of isodiametric growth of the embryo followed by elongation, at the expense of integrity of endosperm cap cells. The cell cycle, including cell division, is initiated prior to radicle protrusion. ABA inhibits expansion of the embryo, and hence subsequent events, including germination.

  8. Mono(2-ethylhexyl) phthalate accelerates early folliculogenesis and inhibits steroidogenesis in cultured mouse whole ovaries and antral follicles.

    Science.gov (United States)

    Hannon, Patrick R; Brannick, Katherine E; Wang, Wei; Flaws, Jodi A

    2015-05-01

    Humans are ubiquitously exposed to di(2-ethylhexyl) phthalate (DEHP), which is an environmental toxicant present in common consumer products. DEHP potentially targets the ovary through its metabolite mono(2-ethylhexyl) phthalate (MEHP). However, the direct effects of MEHP on ovarian folliculogenesis and steroidogenesis, two processes essential for reproductive and nonreproductive health, are unknown. The present study tested the hypotheses that MEHP directly accelerates early folliculogenesis via overactivation of phosphatidylinositol 3-kinase (PI3K) signaling, a pathway that regulates primordial follicle quiescence and activation, and inhibits the synthesis of steroid hormones by decreasing steroidogenic enzyme levels. Neonatal ovaries from CD-1 mice were cultured for 6 days with vehicle control, DEHP, or MEHP (0.2-20 μg/ml) to assess the direct effects on folliculogenesis and PI3K signaling. Further, antral follicles from adult CD-1 mice were cultured with vehicle control or MEHP (0.1-10 μg/ml) for 24-96 h to establish the temporal effects of MEHP on steroid hormones and steroidogenic enzymes. In the neonatal ovaries, MEHP, but not DEHP, decreased phosphatase and tensin homolog levels and increased phosphorylated protein kinase B levels, leading to a decrease in the percentage of germ cells and an increase in the percentage of primary follicles. In the antral follicles, MEHP decreased the mRNA levels of 17alpha-hydroxylase-17,20-desmolase, 17beta-hydroxysteroid dehydrogenase, and aromatase leading to a decrease in testosterone, estrone, and estradiol levels. Collectively, MEHP mediates the effect of DEHP on accelerated folliculogenesis via overactivating PI3K signaling and inhibits steroidogenesis by decreasing steroidogenic enzyme levels.

  9. Deletion of IFT20 in early stage T lymphocyte differentiation inhibits the development of collagen-induced arthritis

    Institute of Scientific and Technical Information of China (English)

    Xue Yuan; Lee Ann Garrett-Sinha; Debanjan Sarkar; Shuying Yang

    2014-01-01

    IFT20 is the smallest member of the intraflagellar transport protein (IFT) complex B. It is involved in cilia formation. Studies of IFT20 have been confined to ciliated cells. Recently, IFT20 was found to be also expressed in non-ciliated T cells and have functions in immune synapse formation and signaling in vitro. However, how IFT20 regulates T-cell development and activation in vivo is still unknown. We deleted the IFT20 gene in early and later stages of T-cell development by crossing IFT20flox/flox (IFT20f/f) mice with Lck-Cre and CD4-Cre transgenic mice, and investigated the role of IFT20 in T-cell maturation and in the development of T cell-mediated collagen-induced arthritis (CIA). We found that both Lck-Cre/IFT20f/f and CD4-Cre/IFT20f/f mice were indistinguishable from their wild-type littermates in body size, as well as in the morphology and weight of the spleen and thymus. However, the number of CD4-and CD8-positive cells was significantly lower in thymus and spleen in Lck-Cre/IFT20f/f mice. Meanwhile, the incidence and severity of CIA symptoms were significantly decreased, and inflammation in the paw was significantly inhibited in Lck-Cre/IFT20f/f mice compared to Lck-Cre/IFT201/1 littermates. Deletion IFT20 in more mature T cells of CD4-Cre/IFT20f/f mice had only mild effects on the development of T cells and CIA. The expression of IL-1b, IL-6 and TGF-b1 were significantly downregulated in the paw of Lck-Cre/IFT20f/f mice, but just slight decreased in CD4-Cre/IFT20f/f mice. These results demonstrate that deletion of IFT20 in the early stage of T-cell development inhibited CIA development through regulating T-cell development and the expression of critical cytokines.

  10. Genetic pharmacotherapy as an early CNS drug development strategy: testing glutaminase inhibition for schizophrenia treatment in adult mice

    Directory of Open Access Journals (Sweden)

    Susana eMingote

    2016-01-01

    Full Text Available Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to test the therapeutic potential of glutaminase inhibition. We specifically asked whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAG ERT2 cre/+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction — mimicking pharmacological inhibition — strongly

  11. Interferon-gamma enhances tumor necrosis factor-alpha production by inhibiting early phase interleukin-10 transcription.

    Science.gov (United States)

    Shakhov, A N; Woerly, G; Car, B D; Ryffel, B

    1996-12-01

    The ability of cytokine synthesis inhibitory factor or interleukin-10 (IL-10) and interferon-gamma (IFN-gamma) to modulate the production of tumor necrosis factor (TNF-alpha) induced by lipopolysaccharide (LPS) was examined in mouse bone marrow-derived macrophages (BMDM). IFN-gamma profoundly enhances LPS-stimulated TNF-alpha production, whereas IL-10 is markedly inhibitory, demonstrating the opposing effects of IFN-gamma and IL-10 on BMDM. Early neutralization of endogenously produced, LPS-stimulated IL-10 markedly enhanced short term TNF-alpha production, an effect further amplified by the absence of IFN-gamma priming. The regulatory effects of IFN-gamma and IL-10 apparently occurred at the translational (or post-translational) level, with TNF-alpha mRNA steady-state levels remaining unchanged. Furthermore, IFN-gamma exerts its enhancing effect on TNF synthesis by the transcriptional inhibition of IL-10. This in vitro finding was also confirmed in vivo. In the absence of LPS, IFN-gamma was not capable of inducing TNF-alpha production in BMDM, indicating that LPS or other signals are necessary for transcriptional activation. Reduced but significant TNF-alpha production in LPS-injected IFN-gamma receptor -/- mice suggests that IFN-gamma is not an absolute requirement and that other cytokines or cell types contribute in a secondary fashion to the priming of LPS-induced TNF-alpha production in vivo.

  12. Serial CT Findings of Resolving Extramedullary Hematopoiesis as Unilateral Posterior Mediastinal Mass after Splenectomy in Hereditary Spherocytosis: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Mi Yeon; Lee, Ju Won; Kim, Yeo Ju; Kim, Youn Jeong; Kang, Young Hye; Lee, Kyung Hee [Dept. of Radiology, Inha University Hospital, Incheon (Korea, Republic of)

    2012-03-15

    Intrathoracic extramedullary hematopoiesis (EMH) is a rare condition of the hereditary spherocytosis. EMH usually regresses or disappears after treatment; such as splenectomy in the case of spherocytosis. We report a case of hereditary spherocytosis. It is presented with an unilateral paravertebral posterior mediastinal mass. After splenectomy, it revealed shrinkage and fatty replacement on serial CT scans.

  13. Rumba and Haus3 are essential factors for the maintenance of hematopoietic stem/progenitor cells during zebrafish hematopoiesis.

    Science.gov (United States)

    Du, Linsen; Xu, Jin; Li, Xiuling; Ma, Ning; Liu, Yanmei; Peng, Jinrong; Osato, Motomi; Zhang, Wenqing; Wen, Zilong

    2011-02-01

    The hallmark of vertebrate definitive hematopoiesis is the establishment of the hematopoietic stem/progenitor cell (HSPC) pool during embryogenesis. This process involves a defined ontogenic switching of HSPCs in successive hematopoietic compartments and is evolutionarily conserved from teleost fish to human. In zebrafish, HSPCs originate from the ventral wall of the dorsal aorta (VDA), from which they subsequently mobilize to an intermediate hematopoietic site known as the caudal hematopoietic tissue (CHT) and finally colonize the kidney for adult hematopoiesis. Despite substantial understanding of the ontogeny of HSPCs, the molecular basis governing migration, colonization and maintenance of HSPCs remains to be explored fully. Here, we report the isolation and characterization of two zebrafish mutants, rumba(hkz1) and samba(hkz2), that are defective in generating definitive hematopoiesis. We find that HSPC initiation in the VDA and subsequent homing to the CHT are not affected in these two mutants. However, the further development of HSPCs in the CHT is compromised in both mutants. Positional cloning reveals that Rumba is a novel nuclear C2H2 zinc-finger factor with unknown function and samba encodes an evolutionarily conserved protein that is homologous to human augmin complex subunit 3 (HAUS3). Furthermore, we show that these two factors independently regulate cell cycle progression of HSPCs and are cell autonomously required for HPSC development in the CHT. Our study identifies Rumba and Haus3 as two essential regulators of HSPC maintenance during zebrafish fetal hematopoiesis.

  14. Cord Compression due to Extramedullary Hematopoiesis in an Adolescent with Known Beta Thalassemia Major

    Directory of Open Access Journals (Sweden)

    Alan COHLER

    2009-01-01

    Full Text Available We describe a 16 year-old male with ß thalassemia major and gait disturbances that had not been given blood transfusions due to a severe childhood transfusion reaction. Thoracic spine MRI demonstrated hematopoietic marrow throughout the spine and epidural masses causing cord compression consistent with extramedullary hematopoiesis (EMH. After treatment with steroids, radiotherapy and monitored blood transfusions, the patient demonstrated significant improvement of his paraspinal lesions and near complete resolution of his neurological symptoms. While EMH causing cord compression in adolescents is rare in the current era of bone marrow transplantation or chronic transfusions, it should be considered when thalassemia major patients present with neurological deficits. The well defined imaging features of EMH can play a central role in its diagnosis and management, especially because surgical and / or radiotherapeutic intervention are often considered in cases of failed medical treatment.

  15. Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy

    Directory of Open Access Journals (Sweden)

    Ana B. Rodríguez-Peña

    2014-01-01

    Full Text Available Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI L-744,832, or chaetomellic acid A (ChA. Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.

  16. The effect of the zeolite clinoptilolite on serum chemistry and hematopoiesis in mice.

    Science.gov (United States)

    Martin-Kleiner, I; Flegar-Mestric, Z; Zadro, R; Breljak, D; Stanovic Janda, S; Stojkovic, R; Marusic, M; Radacic, M; Boranic, M

    2001-07-01

    Zeolites are natural or synthetic crystalline alumosilicates with ion exchanging properties. Supplied in fodder, they promote biomass production and animal health. Our aim was to assess the effects of the natural zeolite, clinoptilolite, on hematopoiesis, serum electrolytes and essential biochemical indicators of kidney and liver function in mice. Two preparations differing in particle size were tested: a powderized form obtained by countercurrent mechanical treatment of the clinoptilolite (MTCp) and normally ground clinoptilolite (NGCp). Young adult mice were supplied with food containing 12.5, 25 or 50% clinoptilolite powder. Control animals received the same food ration without the clinoptilolite. After 10, 20, 30 and 40 days, six animals from each group were exsanguinated to obtain blood for hematological and serum for biochemical measurements as well as to collect femoral bone marrow for determination of hematopoietic activity. Clinoptilolite ingestion was well tolerated, as judged by comparable body masses of treated and control animals. A 20% increase of the potassium level was detected in mice receiving the zeolite-rich diet, without other changes in serum chemistry. Erythrocyte, hemoglobin and platelet levels in peripheral blood were not materially affected. NGCp caused leukocytosis, with concomitant decline of the GM-CFU content in the bone marrow, which was attributed to intestinal irritation by rough zeolite particles. The mechanically treated clinoptilolite preparation caused similar, albeit less pronounced, changes. In a limited experiment, mice having transplanted mammary carcinoma in the terminal stage showed increased potassium and decreased sodium and chloride levels, severe anemia and leukocytosis, decreased bone marrow cellularity and diminished content of hematopoietic progenitor cells in the marrow. The clinoptilolite preparations ameliorated the sodium and chloride decline, whereas the effects on hematopoiesis were erratic.

  17. Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways.

    Science.gov (United States)

    Jang, Yeon Jeong; Koo, Hyun Jung; Sohn, Eun-Hwa; Kang, Se Chan; Rhee, Dong-Kwon; Pyo, Suhkneung

    2015-07-01

    Obesity is characterized by hypertrophy and/or by the differentiation or adipogenesis of pre-existing adipocytes. In this study, we investigated the inhibitory effects of theobromine, a type of alkaloid in cocoa, on adipocyte differentiation of 3T3-L1 preadipocytes and its mechanisms of action. Theobromine inhibited the accumulation of lipid droplets, the expression of PPARγ and C/EBPα, and the mRNA expression of aP2 and leptin. The inhibition of adipogenic differentiation by theobromine occurred primarily in the early stages of differentiation. In addition, theobromine arrested the cell cycle at the G0/G1 phase and regulated the expressions of CDK2, p27, and p21. Theobromine treatment increased AMPK phosphorylation and knockdown of AMPKα1/α2 prevented the ability of theobromine to inhibit PPARγ expression in the differentiating 3T3-L1 cells. Theobromine reduced the phosphorylation of ERK and JNK. Moreover, the secretion and the mRNA level of TNF-α and IL-6 were inhibited by theobromine treatment. These data suggest that theobromine inhibits adipocyte differentiation during the early stages of adipogenesis by regulating the expression of PPARγ and C/EBPα through the AMPK and ERK/JNK signaling pathways in 3T3-L1 preadipocytes.

  18. Early and transient sodium-hydrogen exchanger isoform 1 inhibition attenuates subsequent cardiac hypertrophy and heart failure following coronary artery ligation.

    Science.gov (United States)

    Kilić, Ana; Huang, Cathy X; Rajapurohitam, Venkatesh; Madwed, Jeffrey B; Karmazyn, Morris

    2014-12-01

    Na(+)/H(+) exchanger 1 (NHE-1) inhibition attenuates the hypertrophic response and heart failure in various experimental models. As the hypertrophic program is rapidly initiated following insult, we investigated whether early and transient administration of a NHE-1 inhibitor will exert salutary effects on cardiomyocyte hypertrophy or heart failure using both in vitro and in vivo approaches. Neonatal cardiomyocytes were treated with the novel, potent, and highly specific NHE-1 inhibitor BIX (N-[4-(1-acetyl-piperidin-4-yl)-3-trifluoromethyl-benzoyl]-guanidine; 100 nM) for 1 hour in the presence of 10 µM phenylephrine, after which the cells were maintained for a further 23 hours in the absence of NHE-1 inhibition. One-hour treatment with the NHE-1 inhibitor prevented phenylephrine-induced hypertrophy, which was associated with prevention of activation of calcineurin, a key component of the hypertrophic process. Experiments were then performed in rats subjected to coronary artery ligation, in which the NHE-1 inhibitor was administered immediately after infarction for a 1-week period followed by a further 5 weeks of sustained coronary artery occlusion in the absence of drug treatment. This approach significantly attenuated left ventricular hypertrophy and improved both left ventricular systolic and diastolic dysfunction, which was also associated with inhibition of calcineurin activation. Our findings indicate that early and transient administration of an NHE-1 inhibitor bestows subsequent inhibition of cardiomyocyte hypertrophy in culture as well as cardiac hypertrophy and heart failure in vivo, suggesting a critical early NHE-1-dependent initiation of the hypertrophic program. The study also suggests a preconditioning-like phenomenon in preventing hypertrophy and heart failure by early and transient NHE-1 inhibition. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  19. The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module

    Directory of Open Access Journals (Sweden)

    Rogers Crystal D

    2011-12-01

    Full Text Available Abstract Background The molecular mechanism that initiates the formation of the vertebrate central nervous system has long been debated. Studies in Xenopus and mouse demonstrate that inhibition of BMP signaling is sufficient to induce neural tissue in explants or ES cells respectively, whereas studies in chick argue that instructive FGF signaling is also required for the expression of neural genes. Although additional signals may be involved in neural induction and patterning, here we focus on the roles of BMP inhibition and FGF8a. Results To address the question of necessity and sufficiency of BMP inhibition and FGF signaling, we compared the temporal expression of the five earliest genes expressed in the neuroectoderm and determined their requirements for induction at the onset of neural plate formation in Xenopus. Our results demonstrate that the onset and peak of expression of the genes vary and that they have different regulatory requirements and are therefore unlikely to share a conserved neural induction regulatory module. Even though all require inhibition of BMP for expression, some also require FGF signaling; expression of the early-onset pan-neural genes sox2 and foxd5α requires FGF signaling while other early genes, sox3, geminin and zicr1 are induced by BMP inhibition alone. Conclusions We demonstrate that BMP inhibition and FGF signaling induce neural genes independently of each other. Together our data indicate that although the spatiotemporal expression patterns of early neural genes are similar, the mechanisms involved in their expression are distinct and there are different signaling requirements for the expression of each gene.

  20. Aryl hydrocarbon receptor inhibition promotes hematolymphoid development from human pluripotent stem cells.

    Science.gov (United States)

    Angelos, Mathew G; Ruh, Paige N; Webber, Beau R; Blum, Robert H; Ryan, Caitlin D; Bendzick, Laura; Shim, Seonhui; Yingst, Ashley M; Tufa, Dejene M; Verneris, Michael R; Kaufman, Dan S

    2017-06-29

    The aryl hydrocarbon receptor (AHR) plays an important physiological role in hematopoiesis. AHR is highly expressed in hematopoietic stem and progenitor cells (HSPCs) and inhibition of AHR results in a marked expansion of human umbilical cord blood-derived HSPCs following cytokine stimulation. It is unknown whether AHR also contributes earlier in human hematopoietic development. To model hematopoiesis, human embryonic stem cells (hESCs) were allowed to differentiate in defined conditions in the presence of the AHR antagonist StemReginin-1 (SR-1) or the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We demonstrate a significant increase in CD34(+)CD31(+) hematoendothelial cells in SR-1-treated hESCs, as well as a twofold expansion of CD34(+)CD45(+) hematopoietic progenitor cells. Hematopoietic progenitor cells were also significantly increased by SR-1 as quantified by standard hematopoietic colony-forming assays. Using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-engineered hESC-RUNX1c-tdTomato reporter cell line with AHR deletion, we further demonstrate a marked enhancement of hematopoietic differentiation relative to wild-type hESCs. We also evaluated whether AHR antagonism could promote innate lymphoid cell differentiation from hESCs. SR-1 increased conventional natural killer (cNK) cell differentiation, whereas TCDD treatment blocked cNK development and supported group 3 innate lymphoid cell (ILC3) differentiation. Collectively, these results demonstrate that AHR regulates early human hematolymphoid cell development and may be targeted to enhance production of specific cell populations derived from human pluripotent stem cells. © 2017 by The American Society of Hematology.

  1. Brain-derived neurotrophic factor improves proliferation of endometrial epithelial cells by inhibition of endoplasmic reticulum stress during early pregnancy.

    Science.gov (United States)

    Lim, Whasun; Bae, Hyocheol; Bazer, Fuller W; Song, Gwonhwa

    2017-12-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family binds to two transmembrane receptors; neurotrophic receptor tyrosine kinase 2 (NTRK2) with high affinity and p75 with low affinity. Although BDNF-NTRK2 signaling in the central nervous system is known, signaling in the female reproductive system is unknown. Therefore, we determined effects of BDNF on porcine endometrial luminal epithelial (pLE) cells isolated from Day 12 of pregnancy, as well as expression of BDNF and NTRK2 in endometria of cyclic and pregnant pigs. BDNF-NTRK2 genes were expressed in uterine glandular (GE) and luminal (LE) epithelia during early pregnancy. In addition, their expression in uterine GE and LE decreased with increasing parity of sows. Recombinant BDNF increased proliferation in pLE cells in a dose-dependent, as well as expression of PCNA and Cyclin D1 in nuclei of pLE cells. BDNF also activated phosphorylation of AKT, P70S6K, S6, ERK1/2, JNK, P38 proteins in pLE cells. In addition, cell death resulting from tunicamycin-induced ER stress was prevented when pLE cells were treated with the combination of tunicamycin and BDNF which also decreased cells in the Sub-G1 phase of the cell cycle. Furthermore, tunicamycin-induced unfolded protein response genes were mostly down-regulated to the basal levels as compared to non-treated pLE cells. Our finding suggests that BDNF acts via NTRK2 to induce development of pLE cells for maintenance of implantation and pregnancy by activating cell signaling via the PI3K and MAPK pathways and by inhibiting ER stress. © 2017 Wiley Periodicals, Inc.

  2. The effect of ultraviolet radiation on early stages of activation of human lymphocytes: inhibition is independent of effects on DNA

    DEFF Research Database (Denmark)

    Castellanos, G; Owens, T; Rudd, C

    1982-01-01

    Low doses (30-84 ergs/mm2, 1 erg = 10(7) J) of ultraviolet radiation (UV) caused severe inhibition of the proliferation of human lymphocytes in vitro. Greatest inhibition was produced when resting cells were irradiated immediately prior to stimulation with concanavalin A (Con A); this was true...

  3. RUNX1B Expression Is Highly Heterogeneous and Distinguishes Megakaryocytic and Erythroid Lineage Fate in Adult Mouse Hematopoiesis

    DEFF Research Database (Denmark)

    Draper, Julia E.; Sroczynska, Patrycja; Tsoulaki, Olga

    2016-01-01

    The Core Binding Factor (CBF) protein RUNX1 is a master regulator of definitive hematopoiesis, crucial for hematopoietic stem cell (HSC) emergence during ontogeny. RUNX1 also plays vital roles in adult mice, in regulating the correct specification of numerous blood lineages. Akin to the other...... mammalian Runx genes, Runx1 has two promoters P1 (distal) and P2 (proximal) which generate distinct protein isoforms. The activities and specific relevance of these two promoters in adult hematopoiesis remain to be fully elucidated. Utilizing a dual reporter mouse model we demonstrate that the distal P1......MegE) populations, coincides with a loss of erythroid (Ery) specification. Accordingly the PreMegE population can be prospectively separated into “pro-erythroid” and “pro-megakaryocyte” populations based on Runx1 P2 activity. Comparative gene expression analyses between Runx1 P2+ and P2- populations indicated...

  4. Deferasirox treatment improved hematopoiesis and led to complete remission in a patient with pure red cell aplasia.

    Science.gov (United States)

    Kojima, Minoru; Machida, Shinichiro; Sato, Ai; Miyamoto, Mitsuki; Moriuchi, Makiko; Ohbayashi, Yoshiaki; Ando, Kiyoshi

    2013-12-01

    A 64-year-old woman developed pure red cell aplasia (PRCA) 4 years after thymectomy for thymoma. During anti-thymocyte globulin treatment, the patient developed cytomegalovirus pneumonia and was thus unable to continue immunosuppressive therapy and became transfusion dependent. Deferasirox was started for treatment with iron overload when serum ferritin increased to >1000 ng/mL. Seven months after initiation of deferasirox treatment, serum ferritin level decreased the normal range and the patient has remained transfusion independent thereafter. Deferasirox was discontinued when serum ferritin level decreased below 500 ng/mL, and she has maintained in complete remission over the last 15 months. Hypotheses have been raised regarding the improvement of hematopoiesis by deferasirox treatment, but the mechanism whereby this might be achieved remains unclear. Deferasirox treatment may be clinically beneficial both by reducing iron overload and by improving hematopoiesis in patients with PRCA.

  5. Cocaine exposure impairs multilineage hematopoiesis of human hematopoietic progenitor cells mediated by the sigma-1 receptor [corrected].

    Science.gov (United States)

    Nixon, Christopher C; Schwartz, Brandon H; Dixit, Dhaval; Zack, Jerome A; Vatakis, Dimitrios N

    2015-03-02

    Prenatal exposure to cocaine is a significant source of fetal and neonatal developmental defects. While cocaine associated neurological and cardiac pathologies are well-documented, it is apparent that cocaine use has far more diverse physiological effects. It is known that in some cell types, the sigma-1 receptor mediates many of cocaine's cellular effects. Here we present a novel and concise investigation into the mechanism that underlies cocaine associated hematopoietic pathology. Indeed, this is the first examination of the effects of cocaine on hematopoiesis. We show that cocaine impairs multilineage hematopoiesis from human progenitors from multiple donors and tissue types. We go on to present the first demonstration of the expression of the sigma-1 receptor in human CD34 + human hematopoietic stem/progenitor cells. Furthermore, we demonstrate that these cocaine-induced hematopoietic defects can be reversed through sigma-1 receptor blockade.

  6. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Libregts, Sten F.W.M.; Nolte, Martijn A., E-mail: m.nolte@sanquin.nl

    2014-12-10

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.

  7. SELENIUM EFFECT UPON THE RATS' HEMATOPOIESIS IN THE SUBACUTE BENZENE INTOXICATION

    Directory of Open Access Journals (Sweden)

    Pavle Randjelovic

    2001-03-01

    Full Text Available The antioxidants (selenium, vitamins C and E stabilize the cell membrane andprotect the cells from the action of free radicals. On the other hand, the antioxidantsreduce the effects of chemical and physical agenls. Bcsidcs, selenium has animportant role in Transporting electrons in the mitochondria and il is necessary for iheglulathione peroxidase function in the protection from apoplhosis. Benzene is auniversal solvent and has a wide application in chemical industry. Its toxicity ismanifested in the damages done to the central nervous syslem, liver, kidneys andhematopoiesis system. Tn this experiment the Wistar rats were used that wereclassified in three experimental groups regarding the quantity of the receivedselenium. Each group comprised ten animals of both sexes and after two weeks'treatment by selenium of 4,8 and 16 mcg, the animals had received benzene byinlraperiloneal administration in the dose of 1,2 ml/kg of the body weight. Thecounting of the shaped blood elements was done after the selenium pretreatment andafter the benzene intoxication. The obtained results poinl to increased number of alithe blood elements after the selenium pretreatment while after benzene adminislrationthere was a drastic drop of the number of erylhrocyles and leukocytes alongwith moderate lhrombocylopenia. After the sacrifice, Ihe hematopoiesis organs weretaken. The hislological findings of the bone marrow show the emergence ofdisturbances, especially of the red sort cells as well as an obvious fat degeneration which is particularly conspicuous in the second and third groups of animals. Therewas also some damage done to the spleen, especially of its red pulp along with thepresence of a greater number of fresh erythrocytes in the second and third groups.Only the changes were more drastic in the third group. The obtained results show thatselenium in higher concentrations increases the number of erytrocytes andleukocytes which proves that it stimulates highly

  8. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice

    Directory of Open Access Journals (Sweden)

    Qing-Shuo Zhang

    2015-07-01

    Full Text Available Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2−/− mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1–p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  9. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice.

    Science.gov (United States)

    Zhang, Qing-Shuo; Deater, Matthew; Schubert, Kathryn; Marquez-Loza, Laura; Pelz, Carl; Sinclair, David A; Grompe, Markus

    2015-07-01

    Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2(-/-) mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1-p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  10. Early Callous-Unemotional Behavior, Theory-of-Mind, and a Fearful/Inhibited Temperament Predict Externalizing Problems in Middle and Late Childhood.

    Science.gov (United States)

    Song, Ju-Hyun; Waller, Rebecca; Hyde, Luke W; Olson, Sheryl L

    2016-08-01

    Childhood externalizing problems are more likely to be severe and persistent when combined with high levels of callous-unemotional (CU) behavior. A handful of recent studies have shown that CU behavior can also be reliably measured in the early preschool years, which may help to identify young children who are less likely to desist from early externalizing behaviors. The current study extends previous literature by examining the role of CU behavior in very early childhood in the prediction of externalizing problems in both middle and late childhood, and tests whether other relevant child characteristics, including Theory-of-Mind (ToM) and fearful/inhibited temperament moderate these pathways. Multi-method data, including parent reports of child CU behavior and fearful/inhibited temperament, observations of ToM, and teacher-reported externalizing problems were drawn from a prospective, longitudinal study of children assessed at ages 3, 6, and 10 (N = 241; 48 % female). Results demonstrated that high levels of CU behavior predicted externalizing problems at ages 6 and 10 over and above the effect of earlier externalizing problems at age 3, but that these main effects were qualified by two interactions. High CU behavior was related to higher levels of externalizing problems specifically for children with low ToM and a low fearful/inhibited temperament. The results show that a multitude of child characteristics likely interact across development to increase or buffer risk for child externalizing problems. These findings can inform the development of targeted early prevention and intervention for children with high CU behavior.

  11. Supporting and Inhibiting the Well-Being of Early Career Secondary School Teachers: Extending Self-Determination Theory

    Science.gov (United States)

    Hobson, Andrew J.; Maxwell, Bronwen

    2017-01-01

    This paper reports an original examination of the well-being of early career secondary school teachers in England, which extends the evidence bases relating to early career teachers' working lives, teacher well-being, self-determination theory and performativity, respectively. Drawing on a secondary analysis of qualitative data generated for four…

  12. Embryonic Hematopoietic Progenitor Cells Reside in Muscle before Bone Marrow Hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Yuka Tanaka

    Full Text Available In mice, hematopoietic cells home to bone marrow from fetal liver prenatally. To elucidate mechanisms underlying homing, we performed immunohistochemistry with the hematopoietic cell marker c-Kit, and observed c-Kit(+ cells localized inside muscle surrounding bone after 14.5 days post coitum. Flow cytometric analysis showed that CD45(+ c-Kit(+ hematopoietic cells were more abundant in muscle than in bone marrow between 14.5 and 17.5 days post coitum, peaking at 16.5 days post coitum. CD45(+ c-Kit(+ cells in muscle at 16.5 days post coitum exhibited higher expression of Gata2, among several hematopoietic genes, than did fetal liver or bone marrow cells. Colony formation assays revealed that muscle hematopoietic cells possess hematopoietic progenitor activity. Furthermore, exo utero transplantation revealed that fetal liver hematopoietic progenitor cells home to muscle and then to BM. Our findings demonstrate that hematopoietic progenitor cell homing occurs earlier than previously reported and that hematopoietic progenitor cells reside in muscle tissue before bone marrow hematopoiesis occurs during mouse embryogenesis.

  13. csrnp1a is necessary for the development of primitive hematopoiesis progenitors in zebrafish.

    Directory of Open Access Journals (Sweden)

    Jaime Espina

    Full Text Available The CSRNP (cystein-serine-rich nuclear protein transcription factors are conserved from Drosophila to human. Functional studies in mice, through knockout for each of their paralogs, have resulted insufficient to elucidate the function of this family of proteins in vertebrate development. Previously, we described the function of the zebrafish ortholog, Csnrp1/Axud1, showing its essential role in the survival and proliferation of cephalic progenitors. To extend our understanding of this family, we have studied the function of its paralog csrnp1a. Our results show that csrnp1a is expressed from 0 hpf, until larval stages, particularly in cephalic territories and in the intermediate cell mass (ICM. Using morpholinos in wild type and transgenic lines we observed that Csrnp1a knockdown generates a mild reduction in head size and a depletion of blood cells in circulation. This was combined with in situ hybridizations to analyze the expression of different mesodermal and primitive hematopoiesis markers. Morphant embryos have impaired blood formation without disruption of mesoderm specification, angiogenesis or heart development. The reduction of circulating blood cells occurs at the hematopoietic progenitor level, affecting both the erythroid and myeloid lineages. In addition, cell proliferation was also altered in hematopoietic anterior sites, specifically in spi1 expression domain. These and previous observations suggest an important role of Csnrps transcription factors in progenitor biology, both in the neural and hematopoietic linages.

  14. Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis

    Science.gov (United States)

    Demoulin, Jean-Baptiste; Montano-Almendras, Carmen P.

    2012-01-01

    Platelet-derived growth factors (PDGF) bind to two closely related receptor tyrosine kinases, PDGF receptor α and β, which are encoded by the PDGFRA and PDGFRB genes. Aberrant activation of PDGF receptors occurs in myeloid malignancies associated with hypereosinophilia, due to chromosomal alterations that produce fusion genes, such as ETV6-PDGFRB or FIP1L1-PDGFRA. Most patients are males and respond to low dose imatinib, which is particularly effective against PDGF receptor kinase activity. Recently, activating point mutations in PDGFRA were also described in hypereosinophilia. In addition, autocrine loops have been identified in large granular lymphocyte leukemia and HTLV-transformed lymphocytes, suggesting new possible indications for tyrosine kinase inhibitor therapy. Although PDGF was initially purified from platelets more than 30 years ago, its physiological role in the hematopoietic system remains unclear. Hematopoietic defects in PDGF-deficient mice have been reported but appear to be secondary to cardiovascular and placental abnormalities. Nevertheless, PDGF acts directly on several hematopoietic cell types in vitro, such as megakaryocytes, platelets, activated macrophages and, possibly, certain lymphocyte subsets and eosinophils. The relevance of these observations for normal human hematopoiesis remains to be established. PMID:22432087

  15. An engineered multicomponent bone marrow niche for the recapitulation of hematopoiesis at ectopic transplantation sites

    Directory of Open Access Journals (Sweden)

    Mónica S. Ventura Ferreira

    2016-01-01

    Full Text Available Abstract Background Bone marrow (BM niches are often inaccessible for controlled experimentation due to their difficult accessibility, biological complexity, and three-dimensional (3D geometry. Methods Here, we report the development and characterization of a BM model comprising of cellular and structural components with increased potential for hematopoietic recapitulation at ectopic transplantation sites. Cellular components included mesenchymal stromal cells (MSCs and hematopoietic stem and progenitor cells (HSPCs. Structural components included 3D β-tricalcium phosphate (β-TCP scaffolds complemented with Matrigel or collagen I/III gels for the recreation of the osteogenic/extracellular character of native BM. Results In vitro, β-TCP/Matrigel combinations robustly maintained proliferation, osteogenic differentiation, and matrix remodeling capacities of MSCs and maintenance of HSPCs function over time. In vivo, scaffolds promoted strong and robust recruitment of hematopoietic cells to sites of ectopic transplantation, vascularization, and soft tissue formation. Conclusions Our tissue-engineered BM system is a powerful tool to explore the regulatory mechanisms of hematopoietic stem and progenitor cells for a better understanding of hematopoiesis in health and disease.

  16. Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Cristina Pina

    2015-06-01

    Full Text Available We explore cell heterogeneity during spontaneous and transcription-factor-driven commitment for network inference in hematopoiesis. Since individual genes display discrete OFF states or a distribution of ON levels, we compute and combine pairwise gene associations from binary and continuous components of gene expression in single cells. Ddit3 emerges as a regulatory node with positive linkage to erythroid regulators and negative association with myeloid determinants. Ddit3 loss impairs erythroid colony output from multipotent cells, while forcing Ddit3 in granulo-monocytic progenitors (GMPs enhances self-renewal and impedes differentiation. Network analysis of Ddit3-transduced GMPs reveals uncoupling of myeloid networks and strengthening of erythroid linkages. RNA sequencing suggests that Ddit3 acts through development or stabilization of a precursor upstream of GMPs with inherent Meg-E potential. The enrichment of Gata2 target genes in Ddit3-dependent transcriptional responses suggests that Ddit3 functions in an erythroid transcriptional network nucleated by Gata2.

  17. Leptin in chronic kidney disease: a link between hematopoiesis, bone metabolism, and nutrition.

    Science.gov (United States)

    Zhang, Jingjing; Wang, Ningning

    2014-06-01

    Anemia, dyslipidemia, malnutrition, together with mineral and bone disorders are common complications in patients with chronic kidney disease (CKD). All are associated with increased risk of mortality. Leptin is a small peptide hormone that is mainly but not exclusively produced in adipose tissue. It is also secreted by normal human osteoblasts, subchondral osteoblasts, placental syncytiotrophoblasts, and the gastric epithelium. Leptin binds to its receptors in the hypothalamus to regulate bone metabolism and food intake. Leptin also has several other important metabolic effects on peripheral tissues, including the liver, skeletal muscle, and bone marrow. Leptin is cleared principally by the kidney. Not surprisingly, serum leptin appears to increase concurrently with declines in the glomerular filtration rate in patients with CKD. A growing body of evidence suggests that leptin might be closely related to hematopoiesis, nutrition, and bone metabolism in CKD patients. Results are conflicting regarding leptin in patients with CKD, in whom both beneficial and detrimental effects on uremia outcome are found. This review elucidates the discovery of leptin and its receptors, changes in serum or plasma leptin levels, the functions of leptin, relationships between leptin and the complications mentioned above, and pharmaceutical interventions in serum leptin levels in patients with CKD.

  18. The Dtk receptor tyrosine kinase, which binds protein S, is expressed during hematopoiesis.

    Science.gov (United States)

    Crosier, P S; Freeman, S A; Orlic, D; Bodine, D M; Crosier, K E

    1996-02-01

    Dtk (Tyro 3/Sky/Rse/Brt/Tif) belongs to a recently recognized subfamily of receptor tyrosine kinases that also includes Ufo (Axl/Ark) and Mer (Eyk). Ligands for Dtk and Ufo have been identified as protein S and the related molecule Gas6, respectively. This study examined expression of Dtk during ontogeny of the hematopoietic system and compared the pattern of expression with that of Ufo. Both receptors were abundantly expressed in differentiating embryonic stem cells, yolk sac blood islands, para-aortic splanchnopleural mesoderm, fractionated AA4+ fetal liver cells, and fetal thymus from day 14 until birth. Although Ufo was expressed at moderate levels in adult bone marrow, expression of Dtk in this tissue was barely detectable. In adult bone marrow subpopulations fractionated using counterflow centrifugal elutriation, immunomagnetic bead selection for lineage-depletion and FACS sorting for c-kit expression, very low levels of Dtk and/or Ufo were detected in some cell fractions. These results suggest that Dtk and Ufo are likely to be involved in the regulation of hematopoiesis, particularly during the embryonic stages of blood cell development.

  19. The role of variant histone H2AV in Drosophila melanogaster larval hematopoiesis.

    Science.gov (United States)

    Grigorian, Melina; DeBruhl, Heather; Lipsick, Joseph S

    2017-04-15

    Replication-independent histone variants can replace the canonical replication-dependent histones. Vertebrates have multiple H2A variant histones, including H2AZ and H2AX that are present in most eukaryotes. H2AZ regulates transcriptional activation as well as the maintenance of gene silencing, while H2AX is important in DNA damage repair. The fruit fly Drosophila melanogaster has only one histone H2A variant (H2AV), which is a chimera of H2AZ and H2AX. In this study we found that lack of H2AV led to the formation of black melanotic masses in Drosophila third instar larvae. The formation of these masses was found in conjunction with a loss of the majority of the primary lymph gland lobes. Interestingly, the cells of the posterior signaling center were preserved in these mutants. Reduction of H2AV levels by RNAi knockdown caused a milder phenotype that preserved the lymph gland structure but that included precocious differentiation of the prohemocytes located within the medullary zone and the secondary lobes of the lymph gland. Mutant rescue experiments suggest that the H2AZ-like rather than the H2AX-like function of H2AV is primarily required for normal hematopoiesis. © 2017. Published by The Company of Biologists Ltd.

  20. Itga2b regulation at the onset of definitive hematopoiesis and commitment to differentiation.

    Directory of Open Access Journals (Sweden)

    Stephanie Dumon

    Full Text Available Product of the Itga2b gene, CD41 contributes to hematopoietic stem cell (HSC and megakaryocyte/platelet functions. CD41 expression marks the onset of definitive hematopoiesis in the embryo where it participates in regulating the numbers of multipotential progenitors. Key to platelet aggregation, CD41 expression also characterises their precursor, the megakaryocyte, and is specifically up regulated during megakaryopoiesis. Though phenotypically unique, megakaryocytes and HSC share numerous features, including key transcription factors, which could indicate common sub-regulatory networks. In these respects, Itga2b can serve as a paradigm to study features of both developmental-stage and HSC- versus megakaryocyte-specific regulations. By comparing different cellular contexts, we highlight a mechanism by which internal promoters participate in Itga2b regulation. A developmental process connects epigenetic regulation and promoter switching leading to CD41 expression in HSC. Interestingly, a similar process can be observed at the Mpl locus, which codes for another receptor that defines both HSC and megakaryocyte identities. Our study shows that Itga2b expression is controlled by lineage-specific networks and associates with H4K8ac in megakaryocyte or H3K27me3 in the multipotential hematopoietic cell line HPC7. Correlating with the decrease in H3K27me3 at the Itga2b Iocus, we find that following commitment to megakaryocyte differentiation, the H3K27 demethylase Jmjd3 up-regulation influences both Itga2b and Mpl expression.

  1. K-ras/PI3K-Akt signaling is essential for zebrafish hematopoiesis and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Lihui Liu

    Full Text Available The RAS small GTPases orchestrate multiple cellular processes. Studies on knock-out mice showed the essential and sufficient role of K-RAS, but not N-RAS and H-RAS in embryonic development. However, many physiological functions of K-RAS in vivo remain unclear. Using wild-type and fli1:GFP transgenic zebrafish, we showed that K-ras-knockdown resulted in specific hematopoietic and angiogenic defects, including the impaired expression of erythroid-specific gene gata1 and sse3-hemoglobin, reduced blood circulation and disorganized blood vessels. Expression of either K-rasC40 that links to phosphoinositide 3-kinase (PI3K activation, or Akt2 that acts downstream of PI3K, could rescue both hematopoietic and angiogenic defects in the K-ras knockdown. Consistently, the functional rescue by k-ras mRNA was significantly suppressed by wortmannin, a PI3K-specific inhibitor. Our results provide direct evidence that PI3K-Akt plays a crucial role in mediating K-ras signaling during hematopoiesis and angiogenesis in vivo, thus offering new targets and alternative vertebrate model for studying these processes and their related diseases.

  2. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice

    Science.gov (United States)

    Fuster, José J.; MacLauchlan, Susan; Zuriaga, María A.; Polackal, Maya N.; Ostriker, Allison C.; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A. B.; Cooper, Matthew A.; Andrés, Vicente; Hirschi, Karen K.; Martin, Kathleen A.; Walsh, Kenneth

    2017-01-01

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2-mutant cells in atherosclerosis-prone, low-density lipoprotein receptor–deficient (Ldlr−/−) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome–mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. PMID:28104796

  3. Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Yi-Fen Lu

    2016-12-01

    Full Text Available Hematopoietic stem cell (HSC transplantation is curative for malignant and genetic blood disorders, but is limited by donor availability and immune-mismatch. Deriving HSCs from patient-matched embryonic/induced-pluripotent stem cells (ESCs/iPSCs could address these limitations. Prior efforts in murine models exploited ectopic HoxB4 expression to drive self-renewal and enable multi-lineage reconstitution, yet fell short in delivering robust lymphoid engraftment. Here, by titrating exposure of HoxB4-ESC-HSC to Notch ligands, we report derivation of engineered HSCs that self-renew, repopulate multi-lineage hematopoiesis in primary and secondary engrafted mice, and endow adaptive immunity in immune-deficient recipients. Single-cell analysis shows that following engraftment in the bone marrow niche, these engineered HSCs further specify to a hybrid cell type, in which distinct gene regulatory networks of hematopoietic stem/progenitors and differentiated hematopoietic lineages are co-expressed. Our work demonstrates engineering of fully functional HSCs via modulation of genetic programs that govern self-renewal and lineage priming.

  4. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis.

    Science.gov (United States)

    Trompette, Aurélien; Gollwitzer, Eva S; Yadava, Koshika; Sichelstiel, Anke K; Sprenger, Norbert; Ngom-Bru, Catherine; Blanchard, Carine; Junt, Tobias; Nicod, Laurent P; Harris, Nicola L; Marsland, Benjamin J

    2014-02-01

    Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

  5. The epigenetic regulator CXXC finger protein 1 is essential for murine hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Kristin T Chun

    Full Text Available CXXC finger protein 1 (Cfp1, encoded by the Cxxc1 gene, binds to DNA sequences containing an unmethylated CpG dinucleotide and is an epigenetic regulator of both cytosine and histone methylation. Cxxc1-null mouse embryos fail to gastrulate, and Cxxc1-null embryonic stem cells are viable but cannot differentiate, suggesting that Cfp1 is required for chromatin remodeling associated with stem cell differentiation and embryogenesis. Mice homozygous for a conditional Cxxc1 deletion allele and carrying the inducible Mx1-Cre transgene were generated to assess Cfp1 function in adult animals. Induction of Cre expression in adult animals led to Cfp1 depletion in hematopoietic cells, a failure of hematopoiesis with a nearly complete loss of lineage-committed progenitors and mature cells, elevated levels of apoptosis, and death within two weeks. A similar pathology resulted following transplantation of conditional Cxxc1 bone marrow cells into wild type recipients, demonstrating this phenotype is intrinsic to Cfp1 function within bone marrow cells. Remarkably, the Lin- Sca-1+ c-Kit+ population of cells in the bone marrow, which is enriched for hematopoietic stem cells and multi-potential progenitor cells, persists and expands in the absence of Cfp1 during this time frame. Thus, Cfp1 is necessary for hematopoietic stem and multi-potential progenitor cell function and for the developmental potential of differentiating hematopoietic cells.

  6. Expression and inhibition of matrix metalloproteinase (MMP)-8, MMP-9 and MMP-12 in early colonic anastomotic repair

    DEFF Research Database (Denmark)

    Krarup, Peter-Martin; Eld, Mikkel; Heinemeier, Katja

    2013-01-01

    Submucosal collagen is paramount for colonic anastomotic integrity. Matrix metalloproteinases (MMPs) mediate collagen degradation that increases the risk of wound dehiscence. Although broad-spectrum MMP inhibitors are beneficial for anastomotic strength, they can cause adverse reactions. Knowledge...... of specific MMPs responsible for the weakening of anastomoses can be used to optimise MMP inhibition therapy. We aimed to quantify transcript and protein levels of multiple MMPs in colonic anastomoses and evaluate the effect of inhibiting the MMPs that displayed the highest expression levels on anastomotic...

  7. Effect of ATM and HDAC Inhibition on Etoposide-Induced DNA Damage in Porcine Early Preimplantation Embryos: e0142561

    National Research Council Canada - National Science Library

    HaiYang Wang; YiBo Luo; ZiLi Lin; In-Won Lee; Jeongwoo Kwon; Xiang-Shun Cui; Nam-Hyung Kim

    2015-01-01

      Oocyte maturation and embryonic development are sensitive to DNA damage. Compared with somatic cells or oocytes, little is known about the response to DNA damage in early preimplantation embryos...

  8. GSK3β Inhibition Promotes Efficient Myeloid and Lymphoid Hematopoiesis from Non-human Primate-Induced Pluripotent Stem Cells.

    Science.gov (United States)

    D'Souza, Saritha S; Maufort, John; Kumar, Akhilesh; Zhang, Jiuchun; Smuga-Otto, Kimberley; Thomson, James A; Slukvin, Igor I

    2016-02-09

    Advances in the scalable production of blood cells from induced pluripotent stem cells (iPSCs) open prospects for the clinical translation of de novo generated blood products, and evoke the need for preclinical evaluation of their efficacy, safety, and immunogenicity in large animal models. Due to substantial similarities with humans, the outcomes of cellular therapies in non-human primate (NHP) models can be readily extrapolated to a clinical setting. However, the use of this model is hampered by relatively low efficiency of blood generation and lack of lymphoid potential in NHP-iPSC differentiation cultures. Here, we generated transgene-free iPSCs from different NHP species and showed the efficient induction of mesoderm, myeloid, and lymphoid cells from these iPSCs using a GSK3β inhibitor. Overall, our studies enable scalable production of hematopoietic progenitors from NHP-iPSCs, and lay the foundation for preclinical testing of iPSC-based therapies for blood and immune system diseases in an NHP model.

  9. GSK3β Inhibition Promotes Efficient Myeloid and Lymphoid Hematopoiesis from Non-human Primate-Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Saritha S. D'Souza

    2016-02-01

    Full Text Available Advances in the scalable production of blood cells from induced pluripotent stem cells (iPSCs open prospects for the clinical translation of de novo generated blood products, and evoke the need for preclinical evaluation of their efficacy, safety, and immunogenicity in large animal models. Due to substantial similarities with humans, the outcomes of cellular therapies in non-human primate (NHP models can be readily extrapolated to a clinical setting. However, the use of this model is hampered by relatively low efficiency of blood generation and lack of lymphoid potential in NHP-iPSC differentiation cultures. Here, we generated transgene-free iPSCs from different NHP species and showed the efficient induction of mesoderm, myeloid, and lymphoid cells from these iPSCs using a GSK3β inhibitor. Overall, our studies enable scalable production of hematopoietic progenitors from NHP-iPSCs, and lay the foundation for preclinical testing of iPSC-based therapies for blood and immune system diseases in an NHP model.

  10. Extramedullary hematopoiesis is associated with lower cardiac iron loading in chronically transfused thalassemia patients.

    Science.gov (United States)

    Ricchi, Paolo; Meloni, Antonella; Spasiano, Anna; Neri, Maria Giovanna; Gamberini, Maria Rita; Cuccia, Liana; Caruso, Vincenzo; Gerardi, Calogera; D'Ascola, Domenico Giuseppe; Rosso, Rosamaria; Campisi, Saveria; Rizzo, Michele; Terrazzino, Fabrizia; Vangosa, Alessandra Briatico; Chiodi, Elisabetta; Missere, Massimiliano; Mangione, Maurizio; Positano, Vincenzo; Pepe, Alessia

    2015-11-01

    The aim of this study was to evaluate, in a large cohort of chronically transfused patients, whether the presence of extramedullary hematopoiesis (EMH) accounts for the typical patterns of cardiac iron distribution and/or cardiac function parameters. We retrospectively selected 1,266 thalassemia major patients who had undergone regular transfusions (611 men and 655 women; mean age: 31.3 ± 8.9 years, range: 4.2-66.6 years) and were consecutively enrolled within the Myocardial Iron Overload in Thalassemia network. The presence of EMH was evaluated based on steady-state free precession sequences; cardiac and liver iron overloads were quantified using a multiecho T2* approach; cardiac function parameters and pulmonary diameter were quantified using the steady-state free precession sequences; and myocardial fibrosis was evaluated using the late gadolinium enhancement technique. EMH was detected in 167 (13.2%) patients. The EMH+ patients had significantly lower cardiac iron overload than that of the EMH- patients (P = 0.003). The patterns of cardiac iron distribution were significantly different in the EMH+ and EMH- patients (P < 0.0001), with a higher prevalence of patients with no myocardial iron overload and heterogeneous myocardial iron overload and no significant global heart iron in the EMH+ group EMH+ patients had a significantly higher left ventricle mass index (P = 0.001) and a significantly higher pulmonary artery diameter (P = 0.002). In conclusion, in regularly transfused thalassemia patients, EMH was common and was associated with a thalassemia intermedia-like pattern of cardiac iron deposition despite regular transfusion therapy.

  11. Screening of herbal extracts influencing hematopoiesis and their chemical genetic effects in embryonic zebrafish

    Institute of Scientific and Technical Information of China (English)

    Rajaretinam Rajesh Kannan; Samuel Gnana Prakash Vincent

    2012-01-01

    Objective: To screen the herbal extracts influencing the hematopoietic stem cells (HSC) in zebrafish embryos and their chemical genetic effects. Methods: The herbals used in this study had been widely applicable in Siddha medicines in South India. Herbal extracts were treated in zebrafish embryos at 4 d post fertilization and the extracts inducing the HSC were enumerated in hemocytometer. The biocompatibility and the organogenesis of the screened extracts were assessed in the zebrafish embryos for their chemical genetic effects. The LC50 values were calculated with their parallel control. The blood cells were enumerated. Results: The level of RBC was found increased in the Bergera koenigii (B. koenigii) at 15 μg/mL (P<0.05), Mimosa pudica (M. pudica) at 20 μg/mL (P<0.05) and Solanum trilobatum (S. trilobatum) at 25 μg/mL (P<0.05) and decreased RBC level was found in Phyllanthus niruri (P. niruri) at 30 μg/mL (P<0.05). The WBC count was found increased in S. trilobatum at 20 μg/mL (P<0.05) and Annona muricata (Annona muricata) at 15 μg/mL (P<0.05) and the Vitis quadrangularis (V. quadrangularis) at 20 μg/mL (P<0.05) decreased the WBC level. There were no notable effects in heart beats and the chemical genetic effects were observed at higher concentration of the extract resulting in Pericardial bulging, trunk tail flexure with heart edema, fin fold deformities etc. Conclusions: This in vivo based screening of Hematopoiesis is an inexpensive assay to screen herbal compounds and found that S. trilobatum extract influenced embryonic HSC in zebrafish, which could be a therapeutic for blood related disorders.

  12. Artesunate and artelinic acid: association of embryotoxicity, reticulocytopenia, and delayed stimulation of hematopoiesis in pregnant rats.

    Science.gov (United States)

    Clark, Robert L; Brannen, Kimberly C; Sanders, James E; Hoberman, Alan M

    2011-02-01

    The artemisinin antimalarials cause embryo death and malformations in animals by killing embryonic erythroblasts. Groups of pregnant rats (N = 4) were administered 35 and 48 µmol/kg artesunate and 17.2, 28.7, 48, 96, and 191 µmol/kg artelinic acid as a single oral dose on gestational day (GD) 12. Litters were examined on GD21. The ED(50) for embryo death with artelinic acid (23.4 µmol/kg) was just slightly lower than that for decreased reticulocyte count at 24 hr postdose (33.5 µmol/kg) and both had similarly steep dose responses (maximal effects of total litter loss and ∼60% decreases in reticulocyte count at 48 µmol/kg). Results with artesunate were similar. The correlation coefficient between embryo death and decreased reticulocyte count was 0.82 (pembryotoxicity and reticulocytopenia is suggestive of a common mechanism-artemisinin-induced mitochondrial damage leading to cell death. At 9 days postdose, treatment with artesunate and artelinic acid also caused increases in counts of reticulocytes, lymphocytes, basophils, and monocytes (up to 3.7 ×, 1.7 ×, 4.7 ×, and 1.7 × control, respectively). This stimulation of hematopoiesis may have been mediated by the direct oxidative conversion of artesunate or artelinic acid to the artemisininyl hydroperoxide within the bone marrow cells or by an indirect increase in reactive oxygen species. The high correlation between embryotoxicity and reticulocytopenia further supports the assertion that therapeutic dosage regimens of artemisinins that cause decreases in reticulocyte count in pregnant women during the putative critical period (approximately postconception wk 3 to 9) are at risk of also causing adverse effects on the embryo.

  13. Impact of behavioral inhibition and parenting style on internalizing and externalizing problems from early childhood through adolescence.

    Science.gov (United States)

    Williams, Lela Rankin; Degnan, Kathryn A; Perez-Edgar, Koraly E; Henderson, Heather A; Rubin, Kenneth H; Pine, Daniel S; Steinberg, Laurence; Fox, Nathan A

    2009-11-01

    Behavioral inhibition (BI) is characterized by a pattern of extreme social reticence, risk for internalizing behavior problems, and possible protection against externalizing behavior problems. Parenting style may also contribute to these associations between BI and behavior problems (BP). A sample of 113 children was assessed for BI in the laboratory at 14 and 24 months of age, self-report of maternal parenting style at 7 years of age, and maternal report of child internalizing and externalizing BP at 4, 7, and 15 years. Internalizing problems at age 4 were greatest among behaviorally inhibited children who also were exposed to permissive parenting. Furthermore, greater authoritative parenting was associated with less of an increase in internalizing behavior problems over time and greater authoritarian parenting was associated with a steeper decline in externalizing problems. Results highlight the importance of considering child and environmental factors in longitudinal patterns of BP across childhood and adolescence.

  14. Executive functions in early childhood: interrelations and structural development of inhibition, set-shifting and working memory

    Directory of Open Access Journals (Sweden)

    Paolo Stievano

    2013-04-01

    Full Text Available The aim of the present study is to examine the interrelations of executive function (EF tasks with general cognitive ability and linguistic level in preschool children. The analyses of the correlation between EF sub-domains, particularly inhibition and set-shifting, have been studied to comprehend the ontogenesis of EFs. Task analysis has allowed us to identify which EF sub-domains are prevalent in each task, with particular attention to inhibition and set-shifting definitions. The sample was composed of 40 typically developing children from 48 to 69 months old (M=58 months, SD=5.02; 28 boys and 12 girls. The results give some insight into the development of executive functions, their utility in clinical assessment and indication.

  15. Mas-related gene (Mrg) C receptors inhibit mechanical allodynia and spinal microglia activation in the early phase of neuropathic pain in rats.

    Science.gov (United States)

    Wang, Dongmei; Xue, Yaping; Chen, Yajuan; Ruan, Liqin; Hong, Yanguo

    2016-04-01

    Mas-related gene (Mrg) C receptors are exclusively expressed in the trigeminal and dorsal root ganglia (DRG). However, their functional roles are poorly understood. This study was aimed to determine the effect of MrgC receptors on pain hypersensitivity in the early phase of neuropathic pain and its underlying mechanisms. Intrathecal (i.t.) administration of the selective MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22) at 1 or 10nmol attenuated mechanical allodynia one day after L5 spinal nerve ligation (SNL) surgery. I.t. BAM8-22 (10 nmol) inhibited SNL-induced microglia activation in the spinal dorsal horn on day 2 post-SNL. The BAM8-22 treatment also abolished SNL-induced upregulation of neuronal nitric oxide synthesis (nNOS) in the dorsal root ganglia (DRG). On the other hand, SNL, but not sham, surgery reduced the expression of MrgC receptor mRNA in the injured L5 DRG without changing thier levels in the adjacent uninjured L4 or L6 DRG on day 2 following the surgery. These results suggest that the activation of MrgC receptors can relieve pain hypersensitivity by the inhibition of nNOS increase in DRG neurons and microglia activation in the spinal dorsal horn in the early time following peripheral nerve injury. This study provides evidence that MrgC receptors could be targeted as a novel therapy for neuropathic pain with limited unwanted effects.

  16. Mdivi-1 Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats, Possibly via Inhibition of Drp1-Activated Mitochondrial Fission and Oxidative Stress.

    Science.gov (United States)

    Wu, Pei; Li, Yuchen; Zhu, Shiyi; Wang, Chunlei; Dai, Jiaxing; Zhang, Guang; Zheng, Bingjie; Xu, Shancai; Wang, Ligang; Zhang, Tongyu; Zhou, PeiQuan; Zhang, John H; Shi, Huaizhang

    2017-02-16

    Mdivi-1 is a selective inhibitor of mitochondrial fission protein, Drp1, and can penetrate the blood-brain barrier. Previous studies have shown that Mdivi-1 improves neurological outcomes after ischemia, seizures and trauma but it remains unclear whether Mdivi-1 can attenuate early brain injury after subarachnoid hemorrhage (SAH). We thus investigated the therapeutic effect of Mdivi-1 on early brain injury following SAH. Rats were randomly divided into four groups: sham; SAH; SAH + vehicle; and SAH + Mdivi-1. The SAH model was induced by standard intravascular perforation and all of the rats were subsequently sacrificed 24 h after SAH. Mdivi-1 (1.2 mg/kg) was administered to rats 30 min after SAH. We found that Mdivi-1 markedly improved neurologic deficits, alleviated brain edema and BBB permeability, and attenuated apoptotic cell death. Mdivi-1 also significantly reduced the expression of cleaved caspase-3, Drp1 and p-Drp1((Ser616)), attenuated the release of Cytochrome C from mitochondria, inhibited excessive mitochondrial fission, and restored the ultra-structure of mitochondria. Furthermore, Mdivi-1 reduced levels of MDA, 3-NT, and 8-OHdG, and improved SOD activity. Taken together, our data suggest that Mdivi-1 exerts neuroprotective effects against cell death induced by SAH and the underlying mechanism may be inhibition of Drp1-activated mitochondrial fission and oxidative stress.

  17. Initial investigation of a hypothesized link between thyroid peroxidase inhibition and fish early-life stage toxicity

    Science.gov (United States)

    There is an interest in developing alternatives to the fish early-life stage (FELS) test (OECD test guideline 210), for predicting adverse outcomes (e.g., impacts on growth and survival) using less resource-intensive methods. Development and characterization of adverse outcome pa...

  18. Effects of angiotensin-converting enzyme inhibition in low-risk patients early after coronary artery bypass surgery

    NARCIS (Netherlands)

    Rouleau, Jean L.; Warnica, Wayne J.; Baillot, Richard; Block, Pierre J.; Chocron, Sidney; Johnstone, David; Myers, Martin G.; Calciu, Cristina-Dana; Dalle-Ave, Sonia; Martineau, Pierre; Mormont, Christine; van Gilst, Wiek H.

    2008-01-01

    Background-Early after coronary artery bypass surgery (CABG), activation of numerous neurohumoral and endogenous vasodilator systems occurs that could be influenced favorably by angiotensin-converting enzyme inhibitors. Methods and Results-The Ischemia Management with Accupril post -bypass Graft via

  19. Histological analyses demonstrate the temporary contribution of yolk sac, liver, and bone marrow to hematopoiesis during chicken development.

    Directory of Open Access Journals (Sweden)

    Priscila Tavares Guedes

    Full Text Available The use of avian animal models has contributed to the understanding of many aspects of the ontogeny of the hematopoietic system in vertebrates. However, specific events that occur in the model itself are still unclear. There is a lack of consensus, among previous studies, about which is the intermediate site responsible for expansion and differentiation of hematopoietic cells, and the liver's contribution to the development of this system. Here we aimed to evaluate the presence of hematopoiesis in the yolk sac and liver in chickens, from the stages of intra-aortic clusters in the aorta-genital ridges-mesonephros (AGM region until hatching, and how it relates to the establishment of the bone marrow. Gallus gallus domesticus L. embryos and their respective yolk sacs at embryonic day 3 (E3 and up to E21 were collected and processed according to standard histological techniques for paraffin embedding. The slides were stained with hematoxylin-eosin, Lennert's Giemsa, and Sirius Red at pH 10.2, and investigated by light microscopy. This study demonstrated that the yolk sac was a unique hematopoietic site between E4 and E12. Hematopoiesis occurred in the yolk sac and bone marrow between E13 and E20. The liver showed granulocytic differentiation in the connective tissue of portal spaces at E15 and onwards. The yolk sac showed expansion of erythrocytic and granulocytic lineages from E6 to E19, and E7 to E20, respectively. The results suggest that the yolk sac is the major intermediate erythropoietic and granulopoietic site where expansion and differentiation occur during chicken development. The hepatic hematopoiesis is restricted to the portal spaces and represented by the granulocytic lineage.

  20. Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Noriko [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Miura, Yasuo, E-mail: ym58f5@kuhp.kyoto-u.ac.jp [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Yao, Hisayuki [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Iwasa, Masaki; Fujishiro, Aya [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Division of Gastroenterology and Hematology, Shiga University of Medical Science, Shiga 520-2192 (Japan); Fujii, Sumie [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Hirai, Hideyo [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Takaori-Kondo, Akifumi [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Ichinohe, Tatsuo [Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Maekawa, Taira [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan)

    2016-01-22

    Bone marrow (BM) microenvironment has a crucial role in supporting hematopoiesis. Here, by using a microarray analysis, we demonstrate that human BM mesenchymal stromal/stem cells (MSCs) in an early osteoinductive stage (e-MSCs) are characterized by unique hematopoiesis-associated gene expression with an enhanced hematopoiesis-supportive ability. In comparison to BM-MSCs without osteoinductive treatment, gene expression in e-MSCs was significantly altered in terms of their cell adhesion- and chemotaxis-related profiles, as identified with Gene Ontology and Gene Set Enrichment Analysis. Noteworthy, expression of the hematopoiesis-associated molecules CXCL12 and vascular cell adhesion molecule 1 was remarkably decreased in e-MSCs. e-MSCs supported an enhanced expansion of CD34{sup +} hematopoietic stem and progenitor cells, and generation of myeloid lineage cells in vitro. In addition, short-term osteoinductive treatment favored in vivo hematopoietic recovery in lethally irradiated mice that underwent BM transplantation. e-MSCs exhibited the absence of decreased stemness-associated gene expression, increased osteogenesis-associated gene expression, and apparent mineralization, thus maintaining the ability to differentiate into adipogenic cells. Our findings demonstrate the unique biological characteristics of e-MSCs as hematopoiesis-regulatory stromal cells at differentiation stage between MSCs and osteoprogenitor cells and have significant implications in developing new strategy for using pharmacological osteoinductive treatment to support hematopoiesis in hematopoietic stem and progenitor cell transplantation. - Highlights: • Human BM-MSCs in an early osteoinductive stage (e-MSCs) support hematopoiesis. • Adhesion- and chemotaxis-associated gene signatures are altered in e-MSCs. • Expression of CXCL12 and VCAM1 is remarkably decreased in e-MSCs. • e-MSCs are at differentiation stage between MSCs and osteoprogenitor cells. • Osteoinductive treatment

  1. Nodulation control of crack fertilization technique reduced the growth inhibition of soybean caused by short-term waterlogging at early vegetative stage

    Directory of Open Access Journals (Sweden)

    Koji Yamane

    2016-07-01

    Full Text Available Waterlogging is the constraint for soybean growth and yield, because soybean is often cultivated in upland fields converted from paddy in Japan. However, efficient cultivation techniques for alleviating the adverse effects have not been developed. We have proposed the new soybean cultivation technique named crack fertilization which enables yield increase due to enhancing new root growth and N acquisition by increasing nodulation. Waterlogging induces N deficiency due to the suppression of nutrient uptake by the inhibition of root growth and nodule activity. Thus, it is hypothesized that crack fertilization would be effective to alleviate the inhibition of soybean growth and yield. The soybean cultivar of Sachiyutaka was planted in 1/5000 a Wagner pots and root boxes. Two separate waterlogging treatments were imposed to soybean plants at different growth stages, V1 and R4, and crack fertilization was done at V3. After these treatments, soybean plants were sampled at R5 in 2012 and 2013 experiments, respectively. Waterlogging at V1 and R4 inhibited the growth and yield of soybean and nodule growth, and the decreases in physiological parameters of soybean such as photosynthesis, chlorophyll content, and xylem sap exudation rate were observed. The adverse effects of waterlogging at V1 were alleviated by crack fertilization at V3, whereas crack fertilization could not alleviate the adverse effects of waterlogging at R4. Thus, crack fertilization after waterlogging at early vegetative stage would be the cultivation technique that enables to alleviate the adverse effects.

  2. Extramedullary hematopoiesis presenting as a compressive cord and cerebral lesion in a patient without a significant hematologic disorder: a case report

    Directory of Open Access Journals (Sweden)

    Seddighi Amir

    2010-10-01

    Full Text Available Abstract Introduction Intracranial or spinal compressive lesions due to extramedullary hematopoiesis have been reported in the medical literature. Most of the reported cases are extradural lesions or, on rare occasions, foci within another neoplasm such as hemangioblastoma, meningioma or pilocytic astrocytoma. Often these cases occur in patients with an underlying hematological disorder such as acute myelogenic leukemia, myelofibrosis, or other myelodysplastic syndromes. Such lesions have also been reported in thalassemia major. Case presentation We report the case of a 43-year-old Iranian woman in whom extramedullary hematopoiesis presented as a compressive cord lesion and then later as an intracranial lesion. Conclusions To the best of our knowledge, we document the first reported case of sacral, lumbar, thoracic and cranial involvement in the same patient with extramedullary hematopoiesis, which seems both rare and remarkable.

  3. Inhibition of early AAA formation by aortic intraluminal pentagalloyl glucose (PGG) infusion in a novel porcine AAA model

    DEFF Research Database (Denmark)

    Kloster, Brian O; Lund, Lars; Lindholt, Jes S

    2016-01-01

    to prevent or delay their expansion. In this study, we investigated whether intraluminal delivered pentagalloyl glucose (PGG) can impair the early AAA development in a porcine model. METHODS: The infrarenal aorta was exposed in thirty pigs. Twenty underwent an elastase based AAA inducing procedure and ten...... of these received an additional intraluminal PGG infusion. The final 10 were sham operated and served as controls. RESULTS: All pigs who only had an elastase infusion developed macroscopically expanding AAAs. In pigs treated with an additional PGG infusion the growth rate of the AP-diameter rapidly returned...... and histology. CONCLUSION: In our model, intraluminal delivered PGG is able to penetrate the aortic wall from the inside and impair the early AAA development by stabilizing the elastic lamellae and preserving their integrity. The principle holds a high clinical potential if it can be translated to human...

  4. Modeling Organic Anion-Transporting Polypeptide 1B1 Inhibition to Elucidate Interaction Risks in Early Drug Design.

    Science.gov (United States)

    Zamora, Ismael; Winiwarter, Susanne

    2016-10-01

    The importance of transporter proteins for the disposition of drugs has become increasingly apparent during the past decade. A noted drug-drug interaction risk is the inhibition of organic anion-transporting polypeptides (OATPs), key transporters for the liver uptake of the widely used statins. We show here the development of a ligand-based in silico model for interaction with OATP1B1, an important representative of the OATP family. The model is based on a structural overlay of 6 known OATP1B1 inhibitors. A data set of about 150 compounds with published OATP1B1 inhibition data was compared to the resulting "transportophor," and a similarity threshold was defined to distinguish between active and inactive molecules. In addition, using a statistical model based on physicochemical properties of the compounds as prefilter was found to enhance the overall predictivity of the model (final accuracy 0.73, specificity 074, and sensitivity 0.71, based on 126 compounds). The combined model was validated using an in-house data set (accuracy, specificity, and sensitivity were 0.63, 0.59, and 0.78, respectively; 62 compounds). The model gives also a structural overlay to the most similar template enabling visualization of where a change in a given structure might reduce the interaction with the transporter.

  5. ROCK inhibition with fasudil promotes early functional recovery of spinal cord injury in rats by enhancing microglia phagocytosis.

    Science.gov (United States)

    Fu, Pei-cai; Tang, Rong-hua; Wan, Yue; Xie, Min-jie; Wang, Wei; Luo, Xiang; Yu, Zhi-yuan

    2016-02-01

    Emerging evidence indicates that microglia activation plays an important role in spinal cord injury (SCI) caused by trauma. Studies have found that inhibiting the Rho/Rho-associated protein kinase (ROCK) signaling pathway can reduce inflammatory cytokine production by microglia. In this study, Western blotting was conducted to detect ROCK2 expression after the SCI; the ROCK Activity Assay kit was used for assay of ROCK pathway activity; microglia morphology was examined using the CD11b antibody; electron microscopy was used to detect microglia phagocytosis; TUNEL was used to detect tissue cell apoptosis; myelin staining was performed using an antibody against myelin basic protein (MBP); behavioral outcomes were evaluated according to the methods of Basso, Beattie, and Bresnahan (BBB). We observed an increase in ROCK activity and microglial activation after SCI. The microglia became larger and rounder and contained myelin-like substances. Furthermore, treatment with fasudil inhibited neuronal cells apoptosis, alleviated demyelination and the formation of cavities, and improved motor recovery. The experimental evidence reveals that the ROCK inhibitor fasudil can regulate microglial activation, promote cell phagocytosis, and improve the SCI microenvironment to promote SCI repair. Thus, fasudil may be useful for the treatment of SCI.

  6. Rapamycin ameliorates inflammation and fibrosis in the early phase of cirrhotic portal hypertension in rats through inhibition of mTORC1 but not mTORC2.

    Directory of Open Access Journals (Sweden)

    Weijie Wang

    Full Text Available OBJECTIVE: Hepatic stellate cells (HSCs transdifferentiation and subsequent inflammation are important pathological processes involved in the formation of cirrhotic portal hypertension. This study characterizes the pathogenetic mechanisms leading to cholestatic liver fibrosis and portal hypertension, and focuses on mammalian target of rapamycin (mTOR pathway as a potential modulator in the early phase of cirrhotic portal hypertension. METHODS: Early cirrhotic portal hypertension was induced by bile duct ligation (BDL for three weeks. One week after operation, sham-operated (SHAM and BDL rats received rapamycin (2 mg/kg/day by intraperitoneal injection for fourteen days. Vehicle-treated SHAM and BDL rats served as controls. Fibrosis, inflammation, and portal pressure were evaluated by histology, morphometry, and hemodynamics. Expressions of pro-fibrogenic and pro-inflammatory genes in liver were measured by RT-PCR; alpha smooth muscle actin (α-SMA and antigen Ki67 were detected by immunohistochemistry; expressions of AKT/mTOR signaling molecules, extracellular-signal-regulated kinase 1/2 (ERK1/2, p-ERK1/2, and interleukin-1 beta (IL-1β were assessed by western blot. RESULTS: The AKT/mTOR signaling pathway was markedly activated in the early phase of cirrhotic portal hypertension induced by BDL in rats. mTOR blockade by rapamycin profoundly improved liver function by limiting inflammation, fibrosis and portal pressure. Rapamycin significantly inhibited the expressions of phosphorylated 70KD ribosomal protein S6 kinase (p-P70S6K and phosphorylated ribosomal protein S6 (p-S6 but not p-AKT Ser473 relative to their total proteins in BDL-Ra rats. Those results suggested that mTOR Complex 1 (mTORC1 rather than mTORC2 was inhibited by rapamycin. Interestingly, we also found that the level of p-ERK1/2 to ERK1/2 was significantly increased in BDL rats, which was little affected by rapamycin. CONCLUSIONS: The AKT/mTOR signaling pathway played an important

  7. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations

    DEFF Research Database (Denmark)

    Galán-Díez, Marta; Isa, Adiba; Ponzetti, Marco;

    2016-01-01

    of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5...... patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue...

  8. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero.

    Directory of Open Access Journals (Sweden)

    Marina Gálvez-Peralta

    Full Text Available Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn(2+/(HCO(3(-(2 symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo homozygotes from gestational day(GD-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+ and Slc39a8(neo/neo offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele; this cross generated viable Slc39a8(neo/neo_BTZIP8-3(+/+ pups showing none of the above-mentioned congenital defects-proving Slc39a8(neo/neo causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis.

  9. A herpes simplex virus scaffold peptide that binds the portal vertex inhibits early steps in viral replication.

    Science.gov (United States)

    Yang, Kui; Wills, Elizabeth; Baines, Joel D

    2013-06-01

    Previous experiments identified a 12-amino-acid (aa) peptide that was sufficient to interact with the herpes simplex virus 1 (HSV-1) portal protein and was necessary to incorporate the portal into capsids. In the present study, cells were treated at various times postinfection with peptides consisting of a portion of the Drosophila antennapedia protein, previously shown to enter cells efficiently, fused to either wild-type HSV-1 scaffold peptide (YPYYPGEARGAP) or a control peptide that contained changes at positions 4 and 5. These 4-tyrosine and 5-proline residues are highly conserved in herpesvirus scaffold proteins and were previously shown to be critical for the portal interaction. Treatment early in infection with subtoxic levels of wild-type peptide reduced viral infectivity by over 1,000-fold, while the mutant peptide had little effect on viral yields. In cells infected for 3 h in the presence of wild-type peptide, capsids were observed to transit to the nuclear rim normally, as viewed by fluorescence microscopy. However, observation by electron microscopy in thin sections revealed an aberrant and significant increase of DNA-containing capsids compared to infected cells treated with the mutant peptide. Early treatment with peptide also prevented formation of viral DNA replication compartments. These data suggest that the antiviral peptide stabilizes capsids early in infection, causing retention of DNA within them, and that this activity correlates with peptide binding to the portal protein. The data are consistent with the hypothesis that the portal vertex is the conduit through which DNA is ejected to initiate infection.

  10. Effects of thrombin inhibition with melagatran on renal hemodynamics and function and liver integrity during early endotoxemia

    DEFF Research Database (Denmark)

    Nitescu, Nicoletta; Grimberg, Elisabeth; Ricksten, Sven-Erik

    2007-01-01

    in thiobutabarbital-anesthetized rats by an intravenous bolus dose of lipopolysaccharide (LPS; 6 mg/kg). Sham-Saline, LPS-Saline, and LPS-Melagatran study groups received isotonic saline or melagatran immediately before (0.75 micromol/kg iv) and continuously during (0.75 micromol.kg(-1).h(-1) iv) 4.5 h of endotoxemia....... Kidney function, renal blood flow (RBF), and intrarenal cortical and outer medullary perfusion (OMLDF) measured by laser-Doppler flowmetry were analyzed throughout. Markers of liver injury and tumor necrosis factor (TNF)-alpha were measured in plasma after 4.5 h of endotoxemia. In addition, liver....... Melagatran did not diminish histological abnormalities in the liver or the elevated hepatic gene expression of TNF-alpha, intercellular adhesion molecule-1, and inducible nitric oxide synthase in endotoxemic rats. In summary, thrombin inhibition with melagatran preserved renal OMLDF, attenuated liver...

  11. Immediate-early gene product ICP22 inhibits the trans-transcription activating function of P53-mdm-2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As a product of HSVI immediate-early gene, ICP22 is capable of interacting with various cellular tran-scriptive and regulatory molecules during viral infection so as to impact the normal cellular molecular mechanism. ICP22 expressed in transfected cells can push the cells’ entering into S phase with binding to mdm-1 promoter region and impact its trans-transcription activating effect by P53. Consequently, the MDM-2 binds to P53, and the degradation effects by the ubiquitous pathway are decreased, improving indirectly the P53 levels in cells and making the cells progress into the S phase.

  12. Immediate-early gene product ICP22 inhibits the trans-transcription activating function of P53-mdm-2

    Institute of Scientific and Technical Information of China (English)

    GUO HongXiong; CUN Wei; LIU LongDing; WANG LiChun; ZHAO HongLing; DONG ChengHong; LI QiHan

    2007-01-01

    As a product of HSVI immediate-early gene, ICP22 is capable of interacting with various cellular transcriptive and regulatory molecules during viral infection so as to impact the normal cellular molecular mechanism. ICP22 expressed in transfected cells can push the cells' entering into S phase with binding to mdm-1 promoter region and impact its trans-transcription activating effect by P53. Consequently, the MDM-2 binds to P53, and the degradation effects by the ubiquitous pathway are decreased, improving indirectly the P53 levels in cells and making the cells progress into the S phase.

  13. Inhibition of the early asthmatic response to inhaled allergen by the 5-lipoxygenase activating protein inhibitor GSK2190915: a dose–response study

    Directory of Open Access Journals (Sweden)

    Singh D

    2013-12-01

    Full Text Available Dave Singh,1 Malcolm Boyce,2 Virginia Norris,3 Sandra E Kent,3 Jane H Bentley31University of Manchester, Medicines Evaluation Unit, University Hospital of South Manchester, Manchester, UK; 2Hammersmith Medicines Research, London, UK; 3GlaxoSmithKline, Middlesex, UKBackground: GSK2190915, a 5-lipoxygenase activating protein inhibitor, inhibits the production of cysteinyl leukotrienes and leukotriene B4 and 5-oxo-6,8,11,14-eicosatetraenoic acid. We have previously reported that GSK2190915 100 mg daily inhibits early and late asthmatic responses to inhaled allergen; the effects of lower doses have not been reported. This study assessed the dose–response effects of GSK2190915 10 mg and 50 mg on the early asthmatic response (EAR to inhaled allergen.Methods: Nineteen subjects with mild asthma and an EAR were enrolled in a randomized, double-blind, three-way crossover study of GSK2190915 10 mg, 50 mg, and placebo orally once-daily for 3 days. Allergen challenge was performed 2 hours after the third dose.Results: Compared with placebo, GSK2190915 10 mg and 50 mg caused significant, dose-dependent attenuation of the minimum forced expiratory volume at 1 second (FEV1 absolute change from baseline; mean treatment differences were 0.21 L (95% confidence interval [CI] 0.04 L, 0.38 L and 0.41 L (95% CI 0.24 L, 0.58 L, respectively. GSK2190915 50 mg was more effective than 10 mg; mean difference between treatments was 0.20 L, (95% CI 0.03 L, 0.36 L. Compared with placebo, GSK2190915 50 mg, but not 10 mg, significantly inhibited the weighted mean FEV1 absolute change from baseline.Conclusion: GSK2190915 50 mg attenuated the EAR similarly to GSK2190915 100 mg in our previous study, suggesting 50 mg is at the top of the dose–response curve. GSK2190915 10 mg is a suboptimal dose. The EAR can be used to assess the therapeutic dose of a new treatment for asthma.Keywords: GSK2190915, FLAP inhibitor, early asthmatic response

  14. Functional consequences of perturbed CXCL12 signal processing: analyses of immature hematopoiesis in GRK6-deficient mice.

    Science.gov (United States)

    Chudziak, Doreen; Spohn, Gabriele; Karpova, Darja; Dauber, Katrin; Wiercinska, Eliza; Miettinen, Johanna A; Papayannopoulou, Thalia; Bönig, Halvard

    2015-03-15

    Hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) in an environment rich in CXCL12, the ligand for CXCR4, which is constitutively expressed on all immature hematopoietic cells in BM. This ligand-receptor pair critically controls HSPC retention and (relative) quiescence in BM. Interestingly, in a chemokine-abundant environment, CXCR4 surface expression and CXCL12 sensitivity of BM-residing HSPCs are continuously maintained. The mechanisms underlying this peculiar pattern of G-protein signal integration by BM-HSPCs are unknown. G-protein receptor kinases (GRKs) control receptor function by phosphorylating the intracellular domains upon ligand-induced activation, which results in receptor internalization and transient refractoriness. Using, therefore, a GRK6-deficient (GRK6(-/-)) mouse, we sought to address how perturbed ligand-induced CXCR4 (in)activation affects HSPC behavior in vitro and in vivo. In vitro, GRK6(-/-) HSPCs were characterized by hyper-responsiveness to CXCL12, as expected. In vivo, GRK6(-/-) immature hematopoiesis was characterized by a marked expansion of immature hematopoiesis in spleens and a modest repopulation defect in serial competitive transplantation. Enforced mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was normal, as was hematopoietic regeneration after noncompetitive transplantation or pharmacological myelosuppression. These observations illustrate that GRK-mediated restriction of CXCR4 signal input after ligand engagement is largely dispensable for BM-resident HSPCs, which may explain how continuous CXCL12 responsiveness of BM-HSPCs can be maintained.

  15. Very Small Embryonic-Like Stem Cells: A Potential Developmental Link Between Germinal Lineage and Hematopoiesis in Humans.

    Science.gov (United States)

    Virant-Klun, Irma

    2016-01-15

    It has been suggested that hematopoietic stem/progenitor cells (HSPCs) could become specified from a population of migrating primordial germ cells (PGCs), precursors of gametes, during embryogenesis. Some recent experimental data demonstrated that the cell population that is usually considered to be PGCs, moving toward the gonadal ridges of an embryo, contains a subset of cells coexpressing several germ cell and hematopoietic markers and possessing hematopoietic activity. Experimental data showed that bone morphogenetic protein 4 (BMP4) generates PGCs from mouse bone marrow-derived pluripotent stem cells. Interestingly, functional reproductive hormone receptors have been identified in HSPCs, thus indicating their potential role in reproductive function. Several reports have demonstrated fertility restoration and germ cell generation after bone marrow transplantation in both animal models and humans. A potential link between HSPCs and germinal lineage might be represented by very small embryonic-like stem cells (VSELs), which have been found in adult human bone marrow, peripheral blood, and umbilical cord blood, express a specific pattern of pluripotency, germinal lineage, and hematopoiesis, and are proposed to persist in adult tissues and organs from the embryonic period of life. Stem cell populations, similar to VSELs, expressing several genes related to pluripotency and germinal lineage, especially to PGCs, have been discovered in adult human reproductive organs, ovaries and testicles, and were related to primitive germ cell-like cell development in vitro, thus supporting the idea of VSELs as a potential link between germinal lineage and hematopoiesis.

  16. Deficiency of MIWI2 (Piwil4 induces mouse erythroleukemia cell differentiation, but has no effect on hematopoiesis in vivo.

    Directory of Open Access Journals (Sweden)

    James E Jacobs

    Full Text Available Piwi proteins and their small non-coding RNA partners are involved in the maintenance of stem cell character and genome integrity in the male germ cells of mammals. MIWI2, one of the mouse Piwi-like proteins, is expressed in the prepachytene phase of spermatogenesis during the period of de novo methylation. Absence of this protein leads to meiotic defects and a progressive loss of germ cells. There is an accumulation of evidence that Piwi proteins may be active in hematopoietic tissues. Thus, MIWI2 may have a role in hematopoietic stem and/or progenitor cell self-renewal and differentiation, and defects in MIWI2 may lead to abnormal hematopoiesis. MIWI2 mRNA can be detected in a mouse erythroblast cell line by RNA-seq, and shRNA-mediated knockdown of this mRNA causes the cells to take on characteristics of differentiated erythroid precursors. However, there are no detectable hematopoietic abnormalities in a MIWI2-deficient mouse model. While subtle, non-statistically significant changes were noted in the hematopoietic function of mice without a functional MIWI2 gene when compared to wild type mice, our results show that MIWI2 is not solely necessary for hematopoiesis within the normal life span of a mouse.

  17. Active enhancers are delineated de novo during hematopoiesis, with limited lineage fidelity among specified primary blood cells.

    Science.gov (United States)

    Luyten, Annouck; Zang, Chongzhi; Liu, X Shirley; Shivdasani, Ramesh A

    2014-08-15

    Tissues may adopt diverse strategies to establish specific transcriptional programs in daughter lineages. In intestinal crypts, enhancers for genes expressed in both major cell types appear broadly permissive in stem and specified progenitor cells. In blood, another self-renewing tissue, it is unclear when chromatin becomes permissive for transcription of genes expressed in distinct terminal lineages. Using chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq) to profile activating histone marks, we studied enhancer dynamics in primary mouse blood stem, progenitor, and specified cells. Stem and multipotent progenitor cells show scant H3K4me2 marking at enhancers bound by specific transcription factors in their committed progeny. Rather, enhancers are modulated dynamically and serially, with substantial loss and gain of H3K4me2, at each cellular transition. Quantitative analysis of these dynamics accurately modeled hematopoiesis according to Waddington's notion of epigenotypes. Delineation of enhancers in terminal blood lineages coincides with cell specification, and enhancers active in single lineages show well-positioned H3K4me2- and H3K27ac-marked nucleosomes and DNaseI hypersensitivity in other cell types, revealing limited lineage fidelity. These findings demonstrate that enhancer chronology in blood cells differs markedly from that in intestinal crypts. Chromatin dynamics in hematopoiesis provide a useful foundation to consider classical observations such as cellular reprogramming and multilineage locus priming.

  18. Mucosal vaccination with heterologous viral vectored vaccine targeting subdominant SIV accessory antigens strongly inhibits early viral replication

    DEFF Research Database (Denmark)

    Xu, Huanbin; Andersson, Anne-Marie Carola; Ragonnaud, Emeline

    2017-01-01

    Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat......, vif, rev and vpr antigens fused to the MHC class II associated invariant chain. Immunizations induced broad T cell responses in all vaccinees. Following up to 10 repeated low-dose intrarectal challenges, vaccinees suppressed early viral replication (P=0.01) and prevented the peak viremia in 5....../6 animals. Despite consistently undetectable viremia in 2 out of 6 vaccinees, all animals showed evidence of infection induced immune responses indicating that infection had taken place. Vaccinees, with and without detectable viremia better preserved their rectal CD4+ T cell population and had reduced...

  19. Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response.

    Directory of Open Access Journals (Sweden)

    Flavia L Ribeiro-Gomes

    2012-02-01

    Full Text Available Neutrophils and dendritic cells (DCs converge at localized sites of acute inflammation in the skin following pathogen deposition by the bites of arthropod vectors or by needle injection. Prior studies in mice have shown that neutrophils are the predominant recruited and infected cells during the earliest stage of Leishmania major infection in the skin, and that neutrophil depletion promotes host resistance to sand fly transmitted infection. How the massive influx of neutrophils aimed at wound repair and sterilization might modulate the function of DCs in the skin has not been previously addressed. The infected neutrophils recovered from the skin expressed elevated apoptotic markers compared to uninfected neutrophils, and were preferentially captured by dermal DCs when injected back into the mouse ear dermis. Following challenge with L. major directly, the majority of the infected DCs recovered from the skin at 24 hr stained positive for neutrophil markers, indicating that they acquired their parasites via uptake of infected neutrophils. When infected, dermal DCs were recovered from neutrophil depleted mice, their expression of activation markers was markedly enhanced, as was their capacity to present Leishmania antigens ex vivo. Neutrophil depletion also enhanced the priming of L. major specific CD4(+ T cells in vivo. The findings suggest that following their rapid uptake by neutrophils in the skin, L. major exploits the immunosuppressive effects associated with the apoptotic cell clearance function of DCs to inhibit the development of acquired resistance until the acute neutrophilic response is resolved.

  20. Global Tumor RNA Expression in Early Establishment of Experimental Tumor Growth and Related Angiogenesis following Cox-Inhibition Evaluated by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Kent Lundholm

    2007-01-01

    Full Text Available Altered expression of COX-2 and overproduction of prostaglandins, particularly prostaglandin E2, are common in malignant tumors. Consequently, non-steroidal anti-inflammatory drugs (NSAIDs attenuate tumor net growth, tumor related cachexia, improve appetite and prolong survival. We have also reported that COX-inhibition (indomethacin interfered with early onset of tumor endothelial cell growth, tumor cell proliferation and apoptosis. It is however still unclear whether such effects are restricted to metabolic alterations closely related to eicosanoid pathways and corresponding regulators, or whether a whole variety of gene products are involved both up- and downstream effects of eicosanoids. Therefore, present experiments were performed by the use of an in vivo, intravital chamber technique, where micro-tumor growth and related angiogenesis were analyzed by microarray to evaluate for changes in global RNA expression caused by indomethacin treatment. Indomethacin up-regulated 351 and down-regulated 1852 genes significantly (p < 0.01; 1066 of these genes had unknown biological function. Genes with altered expression occurred on all chromosomes. Our results demonstrate that indomethacin altered expression of a large number of genes distributed among a variety of processes in the carcinogenic progression involving angiogenesis, apoptosis, cell-cycling, cell adhesion, inflammation as well as fatty acid metabolism and proteolysis. It remains a challenge to distinguish primary key alterations from secondary adaptive changes in transcription of genes altered by cyclooxygenase inhibition.

  1. Early low-frequency stimulation of the pudendal nerve can inhibit detrusor overactivity and delay progress of bladder fibrosis in dogs with spinal cord injuries.

    Science.gov (United States)

    Li, P; Liao, L; Chen, G; Zhang, F; Tian, Y

    2013-09-01

    To determine the inhibitory effects of pudendal nerve stimulation (5 Hz) on bladder overactivity at the early stage of spinal cord injury (SCI) in dogs, and to explore the possible effects on delayed progression of bladder fibrosis after SCI. The study was performed using six dogs with spinal cord transection at the T9–T10 level. Group 1 (three dogs) under went low-frequency electrical stimulation of the pudendal nerve 1 day after spinal cord transection. Group 2 (three dogs) underwent only spinal cord transection. All dogs underwent urodynamic examination at 1 and 3 months after SCI. The bladders were removed for histological examination of fibrosis at 3 months after SCI. Bladder capacity and compliance were significantly increased (Pstimulation in group 1 when compared with group 2 at 1 and 3 months after SCI. Non-voiding contractions (NVCs) were inhibited in group 1 compared with group 2. Collagen fibers were significantly increased and elastic fibers were significantly decreased (PEarly low-frequency pudendal nerve stimulation can inhibit detrusor overactivity (DO), increase bladder capacity and delay the progression of bladder fibrosis.

  2. Lipopolysaccharide-enhanced early proliferation of insulin secreting NIT-1 cell is associated with nuclear factor-kappaBmediated inhibition of caspase 3 cleavage

    Institute of Scientific and Technical Information of China (English)

    LIU Shan-ying; LIANG Qi-jun; LIN Tian-xin; FAN Xin-lan; LIANG Ying; Uwe Heemann; LI Yan

    2011-01-01

    Background Increased levels of plasma lipopolysaccharide (LPS) have been found in obesity and diabetes patients.This study was to investigate the effect of LPS on pancreatic beta-cell viability and the involvement of caspase 3 in NIT-1 cell line.Methods Mouse insulinoma NIT-1 cells were treated with LPS for the indicated time and dose.Cell viability was measured by cell counting kit-8 reagent.Toll-like receptor 4 (TLR4),caspase 3 and cleaved caspase 3 were detected by Western blotting.Insulin was determined by radioimmunoassay (RIA).Results LPS promoted NIT-1 cell proliferation at 1 μg/ml,peaked at 72 hours of incubation.A reduction in cleavage of caspase 3 was observed upon LPS treatment.Bay11-7082,a specific inhibitor of nuclear factor (NF)-κB,blunted LPS-induced inhibition of caspase 3 cleavage.Reduction in chronic insulin secretion was observed after treatment with LPS at 1 μg/ml for 48 and 72 hours,not for 24 hours.TLR4 protein was upregulated when NIT-1 cells were treated with LPS at 1 pg/ml for 24 hours.Conclusions LPS promotes early NIT-1 cell proliferation in association with NF-κB-mediated inhibition of caspase 3 cleavage.LPS exerts a time-dependent inhibitory effect on chronic insulin secretion from NIT-1 cells.

  3. HSV-2 immediate-early protein US1 inhibits IFN-β production by suppressing association of IRF-3 with IFN-β promoter.

    Science.gov (United States)

    Zhang, Mudan; Liu, Yalan; Wang, Ping; Guan, Xinmeng; He, Siyi; Luo, Sukun; Li, Chang; Hu, Kai; Jin, Wei; Du, Tao; Yan, Yan; Zhang, Zhenfeng; Zheng, Zhenhua; Wang, Hanzhong; Hu, Qinxue

    2015-04-01

    HSV-2 is the major cause of genital herpes, and its infection increases the risk of HIV-1 acquisition and transmission. After initial infection, HSV-2 can establish latency within the nervous system and thus maintains lifelong infection in humans. It has been suggested that HSV-2 can inhibit type I IFN signaling, but the underlying mechanism has yet to be determined. In this study, we demonstrate that productive HSV-2 infection suppresses Sendai virus (SeV) or polyinosinic-polycytidylic acid-induced IFN-β production. We further reveal that US1, an immediate-early protein of HSV-2, contributes to such suppression, showing that US1 inhibits IFN-β promoter activity and IFN-β production at both mRNA and protein levels, whereas US1 knockout significantly impairs such capability in the context of HSV-2 infection. US1 directly interacts with DNA binding domain of IRF-3, and such interaction suppresses the association of nuclear IRF-3 with the IRF-3 responsive domain of IFN-β promoter, resulting in the suppression of IFN-β promoter activation. Additional studies demonstrate that the 217-414 aa domain of US1 is critical for the suppression of IFN-β production. Our results indicate that HSV-2 US1 downmodulates IFN-β production by suppressing the association of IRF-3 with the IRF-3 responsive domain of IFN-β promoter. Our findings highlight the significance of HSV-2 US1 in inhibiting IFN-β production and provide insights into the molecular mechanism by which HSV-2 evades the host innate immunity, representing an unconventional strategy exploited by a dsDNA virus to interrupt type I IFN signaling pathway.

  4. BACE1 inhibition by microdose lithium formulation NP03 rescues memory loss and early stage amyloid neuropathology.

    Science.gov (United States)

    Wilson, E N; Do Carmo, S; Iulita, M F; Hall, H; Ducatenzeiler, A; Marks, A R; Allard, S; Jia, D T; Windheim, J; Cuello, A C

    2017-08-01

    Lithium is first-line therapy for bipolar affective disorder and has recently been shown to have protective effects in populations at risk for Alzheimer's disease (AD). However, the mechanism underlying this protection is poorly understood and consequently limits its possible therapeutic application in AD. Moreover, conventional lithium formulations have a narrow therapeutic window and are associated with a severe side effect profile. Here we evaluated a novel microdose formulation of lithium, coded NP03, in a well-characterized rat model of progressive AD-like amyloid pathology. This formulation allows microdose lithium delivery to the brain in the absence of negative side effects. We found that NP03 rescued key initiating components of AD pathology, including inactivating GSK-3β, reducing BACE1 expression and activity, and reducing amyloid levels. Notably, NP03 rescued memory loss, impaired CRTC1 promoter binding of synaptic plasticity genes and hippocampal neurogenesis. These results raise the possibility that NP03 be of therapeutic value in the early or preclinical stages of AD.

  5. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation.

    Science.gov (United States)

    Matsubara, Victor Haruo; Wang, Yi; Bandara, H M H N; Mayer, Marcia Pinto Alves; Samaranayake, Lakshman P

    2016-07-01

    We evaluated the inhibitory effects of the probiotic Lactobacillus species on different phases of Candida albicans biofilm development. Quantification of biofilm growth and ultrastructural analyses were performed on C. albicans biofilms treated with Lactobacillus rhamnosus, Lactobacillus casei, and Lactobacillus acidophilus planktonic cell suspensions as well as their supernatants. Planktonic lactobacilli induced a significant reduction (p  0.05), but significantly reduced the early stages of Candida biofilm formation (p Candida hyphal differentiation, leading to a predominance of budding growth. All lactobacilli negatively impacted C. albicans yeast-to-hyphae differentiation and biofilm formation. The inhibitory effects of the probiotic Lactobacillus on C. albicans entailed both cell-cell interactions and secretion of exometabolites that may impact on pathogenic attributes associated with C. albicans colonization on host surfaces and yeast filamentation. This study clarifies, for the first time, the mechanics of how Lactobacillus species may antagonize C. albicans host colonization. Our data elucidate the inhibitory mechanisms that define the probiotic candicidal activity of lactobacilli, thus supporting their utility as an adjunctive therapeutic mode against mucosal candidal infections.

  6. Early Beneficial Effect of Matrix Metalloproteinase Inhibition on BBB Permeability as Measured by MRI Countered by Impaired Long-Term Recovery After Stroke in Rat Brain

    Science.gov (United States)

    Sood, Rohit; Taheri, Saeid; Candelario-Jalil, Eduardo; Estrada, Eduardo Y.; Rosenberg, Gary A.

    2008-01-01

    Proteolytic disruption of the extracellular matrix with opening of the blood-brain barrier (BBB) due to MMPs occurs in reperfusion injury after stroke. MMP inhibition blocks the early disruption of the BBB, but the long-term consequences of short-term MMP inhibition are not known. Recently, a method to quantify BBB permeability by graphical methods was described that provides a way to study both early disruption of the BBB and long-term effects on recovery in the same animal. We used a broad-spectrum MMP inhibitor, BB1101, to determine both the usefulness of the MRI method for treatment studies and the long-term effects on recovery. MRI studies were performed in control (N=6) and drug treated (N=8) groups on a dedicated 4.7T MRI scanner. Adult WKY rats had a 2 hr MCAO and an MRI study after 3 hrs of reperfusion, which consisted of T2 and diffusion-weighted technique. Additionally, a rapid T1 mapping protocol was also implemented to acquire one pre-Gd-DTPA baseline data set followed by post injection data sets at 3 min intervals for 45 min. The same animal was imaged again at 48 hrs for lesion size estimation. Data was post processed pixel-wise to generate ADC and permeability coefficient maps. Treatment with BB-1101 significantly reduced BBB permeability at 3 hrs, but failed to reduce lesion size at 48 hrs. Behavioral studies showed impairment in recovery in treated rats. MRI allowed for the monitoring of multiple parameters in the same animal. Our studies showed that BB-1101 was an excellent inhibitor of the BBB damage. However, results show that BB-1101 may be responsible for significant deterioration in neurological status of treated animals. While these preliminary results suggest that BB-1101 is useful in reducing early BBB leakage due to reperfusion injury in stroke, further studies will be needed to determine whether the later detrimental effects can be eliminated by shorter time course of drug delivery. PMID:17700631

  7. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα.

    Science.gov (United States)

    Hasan, Salma; Lacout, Catherine; Marty, Caroline; Cuingnet, Marie; Solary, Eric; Vainchenker, William; Villeval, Jean-Luc

    2013-08-22

    The acquired gain-of-function V617F mutation in the Janus Kinase 2 (JAK2(V617F)) is the main mutation involved in BCR/ABL-negative myeloproliferative neoplasms (MPNs), but its effect on hematopoietic stem cells as a driver of disease emergence has been questioned. Therefore, we reinvestigated the role of endogenous expression of JAK2(V617F) on early steps of hematopoiesis as well as the effect of interferon-α (IFNα), which may target the JAK2(V617F) clone in humans by using knock-in mice with conditional expression of JAK2(V617F) in hematopoietic cells. These mice develop a MPN mimicking polycythemia vera with large amplification of myeloid mature and precursor cells, displaying erythroid endogenous growth and progressing to myelofibrosis. Interestingly, early hematopoietic compartments [Lin-, LSK, and SLAM (LSK/CD48-/CD150+)] increased with the age. Competitive repopulation assays demonstrated disease appearance and progressive overgrowth of myeloid, Lin-, LSK, and SLAM cells, but not lymphocytes, from a low number of engrafted JAK2(V617F) SLAM cells. Finally, IFNα treatment prevented disease development by specifically inhibiting JAK2(V617F) cells at an early stage of differentiation and eradicating disease-initiating cells. This study shows that JAK2(V617F) in mice amplifies not only late but also early hematopoietic cells, giving them a proliferative advantage through high cell cycling and low apoptosis that may sustain MPN emergence but is lost upon IFNα treatment.

  8. Protective effects of resveratrol on the inhibition of hippocampal neurogenesis induced by ethanol during early postnatal life.

    Science.gov (United States)

    Xu, Le; Yang, Yang; Gao, Lixiong; Zhao, Jinghui; Cai, Yulong; Huang, Jing; Jing, Sheng; Bao, Xiaohang; Wang, Ying; Gao, Junwei; Xu, Haiwei; Fan, Xiaotang

    2015-07-01

    Ethanol (EtOH) exposure during early postnatal life triggers obvious neurotoxic effects on the developing hippocampus and results in long-term effects on hippocampal neurogenesis. Resveratrol (RSV) has been demonstrated to exert potential neuroprotective effects by promoting hippocampal neurogenesis. However, the effects of RSV on the EtOH-mediated impairment of hippocampal neurogenesis remain undetermined. Thus, mice were pretreated with RSV and were later exposed to EtOH to evaluate its protective effects on EtOH-mediated toxicity during hippocampal development. The results indicated that a brief exposure of EtOH on postnatal day 7 resulted in a significant impairment in hippocampal neurogenesis and a depletion of hippocampal neural precursor cells (NPCs). This effect was attenuated by pretreatment with RSV. Furthermore, EtOH exposure resulted in a reduction in spine density on the granular neurons of the dentate gyrus (DG), and the spines exhibited a less mature morphological phenotype characterized by a higher proportion of stubby spines and a lower proportion of mushroom spines. However, RSV treatment effectively reversed these responses. We further confirmed that RSV treatment reversed the EtOH-induced down-regulation of hippocampal pERK and Hes1 protein levels, which may be related to the proliferation and maintenance of NPCs. Furthermore, EtOH exposure in the C17.2 NPCs also diminished cell proliferation and activated apoptosis, which could be reversed by pretreatment of RSV. Overall, our results suggest that RSV pretreatment protects against EtOH-induced defects in neurogenesis in postnatal mice and may thus play a critical role in preventing EtOH-mediated toxicity in the developing hippocampus.

  9. Decreased oxygen tension lowers reactive oxygen species and apoptosis and inhibits osteoblast matrix mineralization through changes in early osteoblast differentiation.

    Science.gov (United States)

    Nicolaije, Claudia; Koedam, Marijke; van Leeuwen, Johannes P T M

    2012-04-01

    Accumulating data show that oxygen tension can have an important effect on cell function and fate. We used the human pre-osteoblastic cell line SV-HFO, which forms a mineralizing extracellular matrix, to study the effect of low oxygen tension (2%) on osteoblast differentiation and mineralization. Mineralization was significantly reduced by 60-70% under 2% oxygen, which was paralleled by lower intracellular levels of reactive oxygen species (ROS) and apoptosis. Following this reduction in ROS the cells switched to a lower level of protection by down-regulating their antioxidant enzyme expression. The downside of this is that it left the cells more vulnerable to a subsequent oxidative challenge. Total collagen content was reduced in the 2% oxygen cultures and expression of matrix genes and matrix-metabolizing enzymes was significantly affected. Alkaline phosphatase activity and RNA expression as well as RUNX2 expression were significantly reduced under 2% oxygen. Time phase studies showed that high oxygen in the first phase of osteoblast differentiation and prior to mineralization is crucial for optimal differentiation and mineralization. Switching to 2% or 20% oxygen only during mineralization phase did not change the eventual level of mineralization. In conclusion, this study shows the significance of oxygen tension for proper osteoblast differentiation, extra cellular matrix (ECM) formation, and eventual mineralization. We demonstrated that the major impact of oxygen tension is in the early phase of osteoblast differentiation. Low oxygen in this phase leaves the cells in a premature differentiation state that cannot provide the correct signals for matrix maturation and mineralization.

  10. Focal extra-axial hemorrahagic mass with subdural hemorrhage secondare to extramedullary hematopoiesis in idiopathic myelodysplastic sindrome.

    Science.gov (United States)

    Di Ieva, A; Di Lieva, A; Aimar, E; Tancioni, F; Levi, D; Debernardi, A; Pisano, P; Rahal, D; Nozza, A; Magagnoli, M; Gaetani, P

    2007-03-01

    Idiopathic myelodysplastic syndrome is a disease characterized by a clonal stem cell disorder in which megacaryocitic and granulocytic lineages are mainly involved; extramedullary myeloid metaplasia is due to abnormal location of myeloid tissue in other organs than bone marrow. Rarely the central nervous system is involved. When it happens, it is typical to find masses around the brain and pachymeningeal thickening, but it is very rare to find it associated with subdural haemorrhage, as in the case we describe in the present article. Considering our case and the literature we can suggest that radiological images associated with the clinical history of the patient suggestive for extramedullary hematopoiesis can be sufficient for a correct diagnosis and for a radiotherapy treatment, demanding surgery in the case of diagnostic doubts, massive hemorrahages or neurological decifits caused by the focal lesions.

  11. Potential Pitfalls of the Mx1-Cre System: Implications for Experimental Modeling of Normal and Malignant Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Talia Velasco-Hernandez

    2016-07-01

    Full Text Available Conditional knockout mice are commonly used to study the function of specific genes in hematopoiesis. Different promoters that drive Cre expression have been utilized, with the interferon-inducible Mx1-Cre still being the most commonly used “deleter strain” in experimental hematology. However, different pitfalls associated with this system could lead to misinterpretation in functional studies. We present here two of these issues related to the use of Mx1-Cre: first, a high spontaneous recombination rate when applying commonly used techniques in experimental hematology, and second, undesired short-term consequences of the use of polyinosinic:polycytidylic acid, including changes in cellular phenotypes that, however, resolve within days. Our studies emphasize therefore that proper controls are crucial when modeling gene deletion using the Mx1-Cre transgene.

  12. Potential Pitfalls of the Mx1-Cre System: Implications for Experimental Modeling of Normal and Malignant Hematopoiesis.

    Science.gov (United States)

    Velasco-Hernandez, Talia; Säwén, Petter; Bryder, David; Cammenga, Jörg

    2016-07-12

    Conditional knockout mice are commonly used to study the function of specific genes in hematopoiesis. Different promoters that drive Cre expression have been utilized, with the interferon-inducible Mx1-Cre still being the most commonly used "deleter strain" in experimental hematology. However, different pitfalls associated with this system could lead to misinterpretation in functional studies. We present here two of these issues related to the use of Mx1-Cre: first, a high spontaneous recombination rate when applying commonly used techniques in experimental hematology, and second, undesired short-term consequences of the use of polyinosinic:polycytidylic acid, including changes in cellular phenotypes that, however, resolve within days. Our studies emphasize therefore that proper controls are crucial when modeling gene deletion using the Mx1-Cre transgene.

  13. Early growth response gene-1 decoy oligonucleotides inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia of autogenous vein graft in rabbits.

    Science.gov (United States)

    Wang, Xisheng; Mei, Yunqing; Ji, Qiang; Feng, Jing; Cai, Jianzhi; Xie, Shiliang

    2015-07-01

    The excess proliferation of vascular smooth muscle cells (VSMCs) and the development of intimal hyperplasia is a hallmark of vein graft failure. This study aimed to verify that a single intraoperative transfection of early growth response gene-1 (Egr-1) decoy oligonucleotide (ODN) can suppress vein graft proliferation of VSMCs and intimal hyperplasia. In a rabbit model, jugular veins were treated with Egr-1 decoy ODN, scrambled decoy ODN, Fugene6, or were left untreated, then grafted to the carotid artery. The vein graft samples were obtained 48 h, 1, 2 or 3 weeks after surgery. The thickness of the intima and intima/media ratio in the grafts was analysed by haematoxylin-eosin (HE) staining. The expression of the Egr-1 decoy ODN transfected in the vein was analysed using fluorescent microscopy. Egr-1 mRNA was measured using reverse transcription-polymerase chain reaction. The expression of Egr-1 protein was analysed by Western blot and immunohistochemistry. Transfection efficiency of the ODN was confirmed by 4', 6-diamidino-2-phenylindole staining. In the grafts treated with Egr-1 decoy ODN, our study achieved statistically significant inhibition of intimal hyperplasia by ∼58% at 3 weeks. Transfection of Egr-1 decoy ODNs decreased the protein expression of Egr-1 and Egr-1 mRNA. We confirmed that gene therapy using in vivo transfection of an Egr-1 decoy ODN significantly inhibits proliferation of VSMC and intimal hyperplasia of vein grafts in a rabbit model. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Inhibition of MMP-2-mediated cellular invasion by NF-κB inhibitor DHMEQ in 3D culture of breast carcinoma MDA-MB-231 cells: A model for early phase of metastasis.

    Science.gov (United States)

    Ukaji, Tamami; Lin, Yinzhi; Okada, Shoshiro; Umezawa, Kazuo

    2017-02-08

    The three-dimensional (3D) culture of cancer cells provides an environmental condition closely related to the condition in vivo. It would especially be an ideal model for the early phase of metastasis, including the detachment and invasion of cancer cells from the primary tumor. In one hand, dehydroxymethylepoxyquinomicin (DHMEQ), an NF-κB inhibitor, is known to inhibit cancer progression and late phase metastasis in animal experiments. In the present research, we studied the inhibitory activity on the 3D invasion of breast carcinoma cells. Breast carcinoma MDA-MB-231 cells showed the most active invasion from spheroid among the cell lines tested. DHMEQ inhibited the 3D invasion of cells at the 3D-nontoxic concentrations. The PCR array analysis using RNA isolated from the 3D on-top cultured cells indicated that matrix metalloproteinase (MMP)-2 expression is lowered by DHMEQ. Knockdown of MMP-2 and an MMP inhibitor, GM6001, both inhibited the invasion. DHMEQ was shown to inhibit the promoter activity of MMP-2 in the reporter assay. Thus, DHMEQ was shown to inhibit NF-κB/MMP-2-dependent cellular invasion in 3D-cultured MDA-MB-231 cells, suggesting that DHMEQ would inhibit the early phase of metastasis.

  15. Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats.

    Science.gov (United States)

    Zhang, Tingting; Su, Jingyuan; Guo, Bingyu; Wang, Kaiwen; Li, Xiaoming; Liang, Guobiao

    2015-09-01

    Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. Inflammation has been considered as the major contributor to brain damage after SAH. SAH induces a systemic increase in pro-inflammatory cytokines and chemokines. Disruption of blood-brain barrier (BBB) facilitates the influx of inflammatory cells. It has been reported that the activation of toll-like receptor 4 (TLR4)/NF-κB signaling pathway plays a vital role in the central nervous system diseases. Apigenin, a common plant flavonoid, possesses anti-inflammation effect. In this study, we focused on the effects of apigenin on EBI following SAH and its anti-inflammation mechanism. Our results showed that apigenin (20mg/kg) administration significantly attenuated EBI (including brain edema, BBB disruption, neurological deficient, severity of SAH, and cell apoptosis) after SAH in rats by suppressing the expression of TLR4, NF-κB and their downstream pro-inflammatory cytokines in the cortex and by up-regulating the expression of tight junction proteins of BBB. Double immunofluorescence staining demonstrated that TLR4 was activated following SAH in neurons, microglia cells, and endothelial cells but not in astrocytes. Apigenin could suppress the activation of TLR4 induced by SAH and inhibit apoptosis of cells in the cortex. These results suggested that apigenin could attenuate EBI after SAH in rats by suppressing TLR4-mediated inflammation and protecting against BBB disruption. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Angiotensin-converting enzyme inhibition curbs tyrosine nitration of mitochondrial proteins in the renal cortex during the early stage of diabetes mellitus in rats.

    Science.gov (United States)

    Ishii, Naohito; Carmines, Pamela K; Yokoba, Masanori; Imaizumi, Hiroyuki; Ichikawa, Tsuyoshi; Ikenagasa, Hideki; Kodera, Yoshio; Oh-Ishi, Masamichi; Aoki, Yoshikazu; Maeda, Tadakazu; Takenaka, Tsuneo; Katagiri, Masato

    2013-04-01

    Experiments were performed to evaluate the hypothesis that ACE (angiotensin-converting enzyme) inhibition (enalapril) suppresses 3-NT (3-nitrotyrosine) production in the renal cortex during the early stage of Type 1 DM (diabetes mellitus) in the rat. Enalapril was administered chronically for 2 weeks to subsets of STZ (streptozotocin)-induced DM and vehicle-treated sham rats. O(2)(-) (superoxide anion) and NO(x) (nitrate+nitrite) levels were measured in the media bathing renal cortical slices after 90 min incubation in vitro. SOD (superoxide dismutase) activity and 3-NT content were measured in the renal cortex homogenate. Renal cortical nitrated protein was identified by proteomic analysis. Renal cortical production of O(2)(-) and 3-NT was increased in DM rats; however, enalapril suppressed these changes. DM rats also exhibited elevated renal cortical NO(x) production and SOD activity, and these changes were magnified by enalapril treatment. 2-DE (two-dimensional gel electrophoresis)-based Western blotting revealed more than 20 spots with positive 3-NT immunoreactivity in the renal cortex of DM rats. Enalapril treatment blunted the DM-induced increase in tyrosine nitration of three proteins ACO2, GDH1 and MMSDH (aconitase 2, glutamate dehydrogenase 1 and methylmalonate-semialdehyde dehydrogenase), each of which resides in mitochondria. These data are consistent with enalapril preventing DM-induced tyrosine nitration of mitochondrial proteins by a mechanism involving suppression of oxidant production and enhancement of antioxidant capacity, including SOD activation.

  17. Angiotensin-converting enzyme inhibition curbs tyrosine nitration of mitochondrial proteins in the renal cortex during the early stage of diabetes mellitus in rats

    Science.gov (United States)

    Ishii, Naohito; Carmines, Pamela K.; Yokoba, Masanori; Imaizumi, Hiroyuki; Ichikawa, Tsuyoshi; Ikenagasa, Hideki; Kodera, Yoshio; Oh-Ishi, Masamichi; Aoki, Yoshikazu; Maeda, Tadakazu; Takenaka, Tsuneo; Katagiri, Masato

    2012-01-01

    Experiments were performed to evaluate the hypothesis that ACE (angiotensin-converting enzyme) inhibition (enalapril) suppresses 3-NT (3-nitrotyrosine) production in the renal cortex during the early stage of Type 1 DM (diabetes mellitus) in the rat. Enalapril was administered chronically for 2 weeks to subsets of STZ (streptozotocin)-induced DM and vehicle-treated sham rats. O2− (superoxide anion) and NOx (nitrate+nitrite) levels were measured in the media bathing renal cortical slices after 90 min incubation in vitro. SOD (superoxide dismutase) activity and 3-NT content were measured in the renal cortex homogenate. Renal cortical nitrated protein was identified by proteomic analysis. Renal cortical production of O2− and 3-NT was increased in DM rats; however, enalapril suppressed these changes. DM rats also exhibited elevated renal cortical NOx production and SOD activity, and these changes were magnified by enalapril treatment. 2-DE (two-dimensional gel electrophoresis)-based Western blotting revealed more than 20 spots with positive 3-NT immunoreactivity in the renal cortex of DM rats. Enalapril treatment blunted the DM-induced increase in tyrosine nitration of three proteins ACO2, GDH1 and MMSDH (aconitase 2, glutamate dehydrogenase 1 and methylmalonate-semialdehyde dehydrogenase), each of which resides in mitochondria. These data are consistent with enalapril preventing DM-induced tyrosine nitration of mitochondrial proteins by a mechanism involving suppression of oxidant production and enhancement of antioxidant capacity, including SOD activation. PMID:23130652

  18. 6-Bromoisatin Found in Muricid Mollusc Extracts Inhibits Colon Cancer Cell Proliferation and Induces Apoptosis, Preventing Early Stage Tumor Formation in a Colorectal Cancer Rodent Model

    Directory of Open Access Journals (Sweden)

    Babak Esmaeelian

    2013-12-01

    Full Text Available Muricid molluscs are a natural source of brominated isatin with anticancer activity. The aim of this study was to examine the safety and efficacy of synthetic 6-bromoisatin for reducing the risk of early stage colorectal tumor formation. The purity of 6-bromoisatin was confirmed by 1H NMR spectroscopy, then tested for in vitro and in vivo anticancer activity. A mouse model for colorectal cancer was utilized whereby colonic apoptosis and cell proliferation was measured 6 h after azoxymethane treatment by hematoxylin and immunohistochemical staining. Liver enzymes and other biochemistry parameters were measured in plasma and haematological assessment of the blood was conducted to assess potential toxic side-effects. 6-Bromoisatin inhibited proliferation of HT29 cells at IC50 223 μM (0.05 mg/mL and induced apoptosis without increasing caspase 3/7 activity. In vivo 6-bromoisatin (0.05 mg/g was found to significantly enhance the apoptotic index (p ≤ 0.001 and reduced cell proliferation (p ≤ 0.01 in the distal colon. There were no significant effects on mouse body weight, liver enzymes, biochemical factors or blood cells. However, 6-bromoisatin caused a decrease in the plasma level of potassium, suggesting a diuretic effect. In conclusion this study supports 6-bromoisatin in Muricidae extracts as a promising lead for prevention of colorectal cancer.

  19. Inhibition of replication of HIV-1 at both early and late stages of the viral life cycle by single-chain antibody against viral integrase.

    Science.gov (United States)

    Kitamura, Y; Ishikawa, T; Okui, N; Kobayashi, N; Kanda, T; Shimada, T; Miyake, K; Yoshiike, K

    1999-02-01

    Retroviruses including HIV-1 integrates a DNA copy of their RNA genome into cellular DNA of the infected cell. This reaction, essential and unique to replication of retroviruses, is mediated by the viral enzyme, integrase (IN). We constructed a recombinant gene encoding a single-chain, antigen-binding peptide (scAb2-19), which interacted with a carboxyl terminal part of HIV-1 IN. HeLa CD4 cells expressing scAb2-19 localized in either cytoplasmic or nuclear compartment were resistant to HIV-1 infection at an multiplicity of infection (MOI) of 0.25 or 0.063, but the resistance was overcome when MOI was increased to 1. To determine whether this resistance was due to inhibition of the early events, transduction experiments were performed with a replication-incompetent HIV-1 vector carrying bacterial lacZ driven by an internal Tat-independent cytomegalovirus immediate early promoter. Both cytoplasmic and nuclear expressions of scAb2-19 resulted in decrease in the transduction efficiency on HeLa CD4 cells. This implies that an early step of replication--before or during integration--was affected by the scAb2-19. Furthermore, cytoplasmic expression of scAb2-19 did not affect the viral amount released from the cells transfected with HIV-1 infectious clone DNA (pLAI). However, infectivity relative to reverse transcriptase activity was lower for virions released from the 293T cells cotransfected with pLAI and the cytoplasmic scAb2-19 expression plasmid than for those released from the 293T cells transfected with pLAI alone. This implies that scAb2-19 reduced infectivity of released virions by interfering a late step of the viral replication. The single-chain, antigen-binding peptide molecule may prove useful not only for studies of the functions of IN and its role in the viral life cycle but also for developing a gene therapy strategy against AIDS.

  20. The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans

    OpenAIRE

    Pant, Vinod; Quintás-Cardama, Alfonso; Lozano, Guillermina

    2012-01-01

    Aberrations in the p53 tumor suppressor pathway are associated with hematologic malignancies. p53-dependent cell cycle control, senescence, and apoptosis functions are actively involved in maintaining hematopoietic homeostasis under normal and stress conditions. Whereas loss of p53 function promotes leukemia and lymphoma development in humans and mice, increased p53 activity inhibits hematopoietic stem cell function and results in myelodysplasia. Thus, exquisite regulation of p53 activity is ...

  1. Immune activation modulates hematopoiesis through interactions between CD27 and CD70

    NARCIS (Netherlands)

    Nolte, MA; Arens, R; van Os, R; van Oosterwijk, M; Hooibrink, B; van Lier, RAW; van Oers, MHJ

    2005-01-01

    The differentiation of hematopoietic stem cells into mature blood cell lineages is tightly regulated. Here we report that CD27, which is expressed on stem and early progenitor cells in bone marrow, can be important in this process. Deletion of CD27 increased the myeloid colony - forming potential of

  2. Eltrombopag, a thrombopoietin receptor agonist, enhances human umbilical cord blood hematopoietic stem/primitive progenitor cell expansion and promotes multi-lineage hematopoiesis

    OpenAIRE

    2012-01-01

    Umbilical cord blood (UCB) transplantation has emerged as promising therapy, but is challenged by scarcity of stem cells. Eltrombopag is a non-peptide, thrombopoietin (TPO) receptor agonist, which selectively activates c-Mpl in humans and chimpanzees. We investigated eltrombopag’s effects on human UCB hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) expansion, and its effects on hematopoiesis in vivo. Eltrombopag selectively augmented the expansion of human CD45+, CD34+, ...

  3. Ethyl Pyruvate Attenuates Early Brain Injury Following Subarachnoid Hemorrhage in the Endovascular Perforation Rabbit Model Possibly Via Anti-inflammation and Inhibition of JNK Signaling Pathway.

    Science.gov (United States)

    Lv, Tao; Miao, Yi-Feng; Jin, Yi-Chao; Yang, Shao-Feng; Wu, Hui; Dai, Jiong; Zhang, Xiao-Hua

    2017-02-25

    Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is the main cause to poor outcomes of SAH patients, and early inflammation plays an important role in the acute pathophysiological events. It has been demonstrated that ethyl pyruvate (EP) has anti-inflammatory and neuroprotective effects in various critical diseases, however, the role of EP on EBI following SAH remains to be elucidated. Our study aimed to evaluate the effects of EP on EBI following SAH in the endovascular perforation rabbit model. All rabbits were randomly divided into three groups: sham, SAH + Vehicle (equal volume) and SAH + EP (30 mg/kg/day). MRI was performed to estimate the reliability of the EBI at 24 and 72 h after SAH. Neurological scores were recorded to evaluate the neurological deficit, ELISA kit was used to measure the level of tumor necrosis factor-α (TNF-α), and western blot was used to detect the expression of TNF-α, tJNK, pJNK, bax and bcl-2 at 24 and 72 h after SAH. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Fluoro-jade B (FJB) staining were used to detect neuronal apoptosis and neurodegeneration respectively, meanwhile hematoxylin and eosin (H&E) staining was used to assess the degree of vasospasm. Our results demonstrated that EP alleviated brain tissue injury (characterized by diffusion weighted imaging and T2 sequence in MRI scan), and significantly improved neurological scores at 72 h after SAH. EP decreased the level of TNF-α and downregulated pJNK/tJNK and bax/bcl-2 in cerebral cortex and hippocampus effectively both at 24 and 72 h after SAH. Furthermore, EP reduced TUNEL and FJB positive cells significantly. In conclusion, the present study supported that EP afforded neuroprotective effects possibly via reducing TNF-α expression and inhibition of the JNK signaling pathway. Therefore, EP may be a potent therapeutic agent to attenuate EBI following SAH.

  4. Quantitative trait mapping reveals a regulatory axis involving peroxisome proliferator-activated receptors, PRDM16, transforming growth factor-β2 and FLT3 in hematopoiesis.

    Science.gov (United States)

    Avagyan, Serine; Aguilo, Francesca; Kamezaki, Kenjiro; Snoeck, Hans-Willem

    2011-12-01

    Hematopoiesis is the process whereby BM HSCs renew to maintain their number or to differentiate into committed progenitors to generate all blood cells. One approach to gain mechanistic insight into this complex process is the investigation of quantitative genetic variation in hematopoietic function among inbred mouse strains. We previously showed that TGF-β2 is a genetically determined positive regulator of hematopoiesis. In the presence of unknown nonprotein serum factors TGF-β2, but not TGF-β1 or -β3, enhances progenitor proliferation in vitro, an effect that is subject to mouse strain-dependent variation mapping to a locus on chr.4, Tb2r1. TGF-β2-deficient mice show hematopoietic defects, demonstrating the physiologic role of this cytokine. Here, we show that TGF-β2 specifically and predominantly cell autonomously enhances signaling by FLT3 in vitro and in vivo. A coding polymorphism in Prdm16 (PR-domain-containing 16) underlies Tb2r1 and differentially regulates transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ), identifying lipid PPAR ligands as the serum factors required for regulation of FLT3 signaling by TGF-β2. We furthermore show that PPARγ agonists play a FLT3-dependent role in stress responses of progenitor cells. These observations identify a novel regulatory axis that includes PPARs, Prdm16, and TGF-β2 in hematopoiesis.

  5. Growth inhibition in early life-stage tests predicts full life-cycle toxicity effects of lead in the freshwater pulmonate snail, Lymnaea stagnalis.

    Science.gov (United States)

    Munley, Kathleen M; Brix, Kevin V; Panlilio, Jennifer; Deforest, David K; Grosell, Martin

    2013-03-15

    The freshwater pulmonate snail, Lymnaea stagnalis, is the most sensitive freshwater organism tested to date for several metals (Co, Cu, Pb, Ni) based on 28 d early life-stage (ELS) tests in which growth was the most sensitive endpoint. The United States Environmental Protection Agency (USEPA) has expressed concern that growth in 28 d ELS tests with mollusks may overpredict toxicity because of the potential for recovery in a full life-cycle (LC) test. Consequently, the USEPA only accepts the survival endpoint for these tests in establishing water quality criteria (WQC). To address this concern, the current study aimed to test the sensitivity of L. stagnalis to Pb in a 56 d full LC test evaluating survival, growth, reproductive and embryonic growth endpoints and compare the estimated effect levels to those established using the 28 d ELS test design. The most sensitive endpoints in this study were 28 d growth and 56 d egg mass production, both with a NOEC of Snails exposed to 1.0 and 2.7 μg L(-1) Pb showed full and partial recovery from growth inhibition between 28 and 56 d. While this recovery supports the USEPA's concern about the 28 d growth endpoint; considering the reproductive lifespan of L. stagnalis and the recovery dose-response, we conclude that the 28 d growth endpoint will be within a factor of 3 of full LC endpoints. This is consistent with the level of precision previously determined for fish ELS tests, which the USEPA accepts for WQC derivation, and suggests that tests using 28 d ELS growth endpoint for L. stagnalis may be acceptable for inclusion in WQC derivation.

  6. Epstein-Barr Virus Immediate-Early Protein Zta Co-Opts Mitochondrial Single-Stranded DNA Binding Protein To Promote Viral and Inhibit Mitochondrial DNA Replication▿

    Science.gov (United States)

    Wiedmer, Andreas; Wang, Pu; Zhou, Jing; Rennekamp, Andrew J.; Tiranti, Valeria; Zeviani, Massimo; Lieberman, Paul M.

    2008-01-01

    Disruption of cellular metabolic processes and usurpation of host proteins are hallmarks of herpesvirus lytic infection. Epstein-Barr virus (EBV) lytic replication is initiated by the immediate-early protein Zta. Zta is a multifunctional DNA binding protein that stimulates viral gene transcription, nucleates a replication complex at the viral origin of lytic replication, and inhibits cell cycle proliferation. To better understand these functions and identify cellular collaborators of Zta, we purified an epitope-tagged version of Zta in cells capable of supporting lytic replication. FLAG-tagged Zta was purified from a nuclear fraction using FLAG antibody immunopurification and peptide elution. Zta-associated proteins were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by mass spectrometry. The Zta-associated proteins included members of the HSP70 family and various single-stranded DNA and RNA binding proteins. The nuclear replication protein A subunits (RPA70 and RPA32) and the human mitochondrial single-stranded DNA binding protein (mtSSB) were confirmed by Western blotting to be specifically enriched in the FLAG-Zta immunopurified complex. mtSSB coimmunoprecipitated with endogenous Zta during reactivation of EBV-positive Burkitt lymphoma and lymphoblastoid cell lines. Small interfering RNA depletion of mtSSB reduced Zta-induced lytic replication of EBV but had only a modest effect on transcription activation function. A point mutation in the Zta DNA binding domain (C189S), which is known to reduce lytic cycle replication, eliminated mtSSB association with Zta. The predominantly mitochondrial localization of mtSSB was shifted to partly nuclear localization in cells expressing Zta. Mitochondrial DNA synthesis and genome copy number were reduced by Zta-induced EBV lytic replication. We conclude that Zta interaction with mtSSB serves the dual function of facilitating viral and blocking mitochondrial DNA replication. PMID:18305033

  7. Epstein-Barr virus immediate-early protein Zta co-opts mitochondrial single-stranded DNA binding protein to promote viral and inhibit mitochondrial DNA replication.

    Science.gov (United States)

    Wiedmer, Andreas; Wang, Pu; Zhou, Jing; Rennekamp, Andrew J; Tiranti, Valeria; Zeviani, Massimo; Lieberman, Paul M

    2008-05-01

    Disruption of cellular metabolic processes and usurpation of host proteins are hallmarks of herpesvirus lytic infection. Epstein-Barr virus (EBV) lytic replication is initiated by the immediate-early protein Zta. Zta is a multifunctional DNA binding protein that stimulates viral gene transcription, nucleates a replication complex at the viral origin of lytic replication, and inhibits cell cycle proliferation. To better understand these functions and identify cellular collaborators of Zta, we purified an epitope-tagged version of Zta in cells capable of supporting lytic replication. FLAG-tagged Zta was purified from a nuclear fraction using FLAG antibody immunopurification and peptide elution. Zta-associated proteins were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by mass spectrometry. The Zta-associated proteins included members of the HSP70 family and various single-stranded DNA and RNA binding proteins. The nuclear replication protein A subunits (RPA70 and RPA32) and the human mitochondrial single-stranded DNA binding protein (mtSSB) were confirmed by Western blotting to be specifically enriched in the FLAG-Zta immunopurified complex. mtSSB coimmunoprecipitated with endogenous Zta during reactivation of EBV-positive Burkitt lymphoma and lymphoblastoid cell lines. Small interfering RNA depletion of mtSSB reduced Zta-induced lytic replication of EBV but had only a modest effect on transcription activation function. A point mutation in the Zta DNA binding domain (C189S), which is known to reduce lytic cycle replication, eliminated mtSSB association with Zta. The predominantly mitochondrial localization of mtSSB was shifted to partly nuclear localization in cells expressing Zta. Mitochondrial DNA synthesis and genome copy number were reduced by Zta-induced EBV lytic replication. We conclude that Zta interaction with mtSSB serves the dual function of facilitating viral and blocking mitochondrial DNA replication.

  8. TNF-TNFR2/p75 signaling inhibits early and increases delayed nontargeted effects in bone marrow-derived endothelial progenitor cells.

    Science.gov (United States)

    Sasi, Sharath P; Song, Jin; Park, Daniel; Enderling, Heiko; McDonald, J Tyson; Gee, Hannah; Garrity, Brittany; Shtifman, Alexander; Yan, Xinhua; Walsh, Kenneth; Natarajan, Mohan; Kishore, Raj; Goukassian, David A

    2014-05-16

    TNF-α, a pro-inflammatory cytokine, is highly expressed after being irradiated (IR) and is implicated in mediating radiobiological bystander responses (RBRs). Little is known about specific TNF receptors in regulating TNF-induced RBR in bone marrow-derived endothelial progenitor cells (BM-EPCs). Full body γ-IR WT BM-EPCs showed a biphasic response: slow decay of p-H2AX foci during the initial 24 h and increase between 24 h and 7 days post-IR, indicating a significant RBR in BM-EPCs in vivo. Individual TNF receptor (TNFR) signaling in RBR was evaluated in BM-EPCs from WT, TNFR1/p55KO, and TNFR2/p75KO mice, in vitro. Compared with WT, early RBR (1-5 h) were inhibited in p55KO and p75KO EPCs, whereas delayed RBR (3-5 days) were amplified in p55KO EPCs, suggesting a possible role for TNFR2/p75 signaling in delayed RBR. Neutralizing TNF in γ-IR conditioned media (CM) of WT and p55KO BM-EPCs largely abolished RBR in both cell types. ELISA protein profiling of WT and p55KO EPC γ-IR-CM over 5 days showed significant increases in several pro-inflammatory cytokines, including TNF-α, IL-1α (Interleukin-1 alpha), RANTES (regulated on activation, normal T cell expressed and secreted), and MCP-1. In vitro treatments with murine recombinant (rm) TNF-α and rmIL-1α, but not rmMCP-1 or rmRANTES, increased the formation of p-H2AX foci in nonirradiated p55KO EPCs. We conclude that TNF-TNFR2 signaling may induce RBR in naïve BM-EPCs and that blocking TNF-TNFR2 signaling may prevent delayed RBR in BM-EPCs, conceivably, in bone marrow milieu in general.

  9. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer's disease-like amyloid pathology.

    Science.gov (United States)

    Ferretti, Maria Teresa; Allard, Simon; Partridge, Vanessa; Ducatenzeiler, Adriana; Cuello, A Claudio

    2012-04-02

    A growing body of evidence indicates that inflammation is one of the earliest neuropathological events in Alzheimer's disease. Accordingly, we have recently shown the occurrence of an early, pro-inflammatory reaction in the hippocampus of young, three-month-old transgenic McGill-Thy1-APP mice in the absence of amyloid plaques but associated with intracellular accumulation of amyloid beta petide oligomers. The role of such a pro-inflammatory process in the progression of the pathology remained to be elucidated. To clarify this we administered minocycline, a tetracyclic derivative with anti-inflammatory and neuroprotective properties, to young, pre-plaque McGill-Thy1-APP mice for one month. The treatment ended at the age of three months, when the mice were still devoid of plaques. Minocycline treatment corrected the up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 observed in young transgenic placebo mice. Furthermore, the down-regulation of inflammatory markers correlated with a reduction in amyloid precursor protein levels and amyloid precursor protein-related products. Beta-site amyloid precursor protein cleaving enzyme 1 activity and levels were found to be up-regulated in transgenic placebo mice, while minocycline treatment restored these levels to normality. The anti-inflammatory and beta-secretase 1 effects could be partly explained by the inhibition of the nuclear factor kappa B pathway. Our study suggests that the pharmacological modulation of neuroinflammation might represent a promising approach for preventing or delaying the development of Alzheimer's disease neuropathology at its initial, pre-clinical stages. The results open new vistas to the interplay between inflammation and amyloid pathology.

  10. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer's disease-like amyloid pathology

    Directory of Open Access Journals (Sweden)

    Ferretti Maria

    2012-04-01

    Full Text Available Abstract Background A growing body of evidence indicates that inflammation is one of the earliest neuropathological events in Alzheimer's disease. Accordingly, we have recently shown the occurrence of an early, pro-inflammatory reaction in the hippocampus of young, three-month-old transgenic McGill-Thy1-APP mice in the absence of amyloid plaques but associated with intracellular accumulation of amyloid beta petide oligomers. The role of such a pro-inflammatory process in the progression of the pathology remained to be elucidated. Methods and results To clarify this we administered minocycline, a tetracyclic derivative with anti-inflammatory and neuroprotective properties, to young, pre-plaque McGill-Thy1-APP mice for one month. The treatment ended at the age of three months, when the mice were still devoid of plaques. Minocycline treatment corrected the up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 observed in young transgenic placebo mice. Furthermore, the down-regulation of inflammatory markers correlated with a reduction in amyloid precursor protein levels and amyloid precursor protein-related products. Beta-site amyloid precursor protein cleaving enzyme 1 activity and levels were found to be up-regulated in transgenic placebo mice, while minocycline treatment restored these levels to normality. The anti-inflammatory and beta-secretase 1 effects could be partly explained by the inhibition of the nuclear factor kappa B pathway. Conclusions Our study suggests that the pharmacological modulation of neuroinflammation might represent a promising approach for preventing or delaying the development of Alzheimer's disease neuropathology at its initial, pre-clinical stages. The results open new vistas to the interplay between inflammation and amyloid pathology.

  11. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms.

    Science.gov (United States)

    Chalk, Alistair M; Liddicoat, Brian J J; Walkley, Carl R; Singbrant, Sofie

    2014-12-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014) in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457) provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

  12. Retroviral vector integration in post-transplant hematopoiesis in mice conditioned with either submyeloablative or ablative irradiation.

    Science.gov (United States)

    Sadat, M A; Dirscherl, S; Sastry, L; Dantzer, J; Pech, N; Griffin, S; Hawkins, T; Zhao, Y; Barese, C N; Cross, S; Orazi, A; An, C; Goebel, W S; Yoder, M C; Li, X; Grez, M; Cornetta, K; Mooney, S D; Dinauer, M C

    2009-12-01

    X-linked chronic granulomatous disease (X-CGD) is an inherited immunodeficiency with absent phagocyte NADPH-oxidase activity caused by defects in the gene-encoding gp91(phox). Here, we evaluated strategies for less intensive conditioning for gene therapy of genetic blood disorders without selective advantage for gene correction, such as might be used in a human X-CGD protocol. We compared submyeloablative with ablative irradiation as conditioning in murine X-CGD, examining engraftment, oxidase activity and vector integration in mice transplanted with marrow transduced with a gamma-retroviral vector for gp91(phox) expression. The frequency of oxidase-positive neutrophils in the donor population was unexpectedly higher in many 300 cGy-conditioned mice compared with lethally irradiated recipients, as was the fraction of vector-marked donor secondary CFU-S12. Vector integration sites in marrow, spleen and secondary CFU-S12 DNA from primary recipients were enriched for cancer-associated genes, including Evi1, and integrations in or near cancer-associated genes were more frequent in marrow and secondary CFU-S12 from 300 cGy-conditioned mice compared with fully ablated mice. These findings support the concept that vector integration can confer a selection bias, and suggest that the intensity of the conditioning regimen may further influence the effects of vector integration on clonal selection in post-transplant engraftment and hematopoiesis.

  13. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms

    Directory of Open Access Journals (Sweden)

    Alistair M. Chalk

    2014-12-01

    Full Text Available The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014 in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457 provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

  14. Primary Myelofibrosis Presenting as Extramedullary Hematopoiesis in a Transplanted Liver Graft: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ghulam Rehman Mohyuddin

    2016-01-01

    Full Text Available Primary myelofibrosis (PMF commonly results in extramedullary hematopoiesis (EMH in the spleen and liver as well as a variety of other organs. We present a first report of a unique presentation of PMF in a liver transplant recipient patient as EMH in the transplanted liver graft. A 76-year-old man with history of cryptogenic cirrhosis received cadaveric liver transplantation in 1996. He maintained a normal graft function and stable hematologic parameters until 2013 when he presented with anemia and progressive fatigue. Extensive work-up did not identify the etiology of the recent decline in his hemoglobin; thus a liver biopsy was done which showed findings of EMH within the sinusoids with increased megakaryocytes, some with atypical morphology. A BM biopsy revealed a hypercellular marrow, moderately increased reticulin fibrosis, and features consistent with primary myelofibrosis. Abdominal imaging showed a normal-size spleen and did not identify any sites of EMH outside of the liver. The diagnosis of myelofibrosis was thus made, and this case demonstrated predominant tropism to a transplanted liver graft with absence of EMH elsewhere. We would thus like to emphasize that findings of EMH in subjects with no preexisting hematologic neoplasm should warrant close follow-up and assessment.

  15. Analysis of hematopoiesis in mice irradiated with 500 mGy of X rays at different stages of development

    Energy Technology Data Exchange (ETDEWEB)

    Grande, T.; Bueren, J.A. [U. de Biologia Molecular y Celular, Madrid (Spain)

    1995-09-01

    We have investigated whether a relatively low dose of 500 mGy of X rays given as a single acute irradiation at different stages of pre-and postnatal development induces significant changes in the content of femoral hematopoietic progenitores during a 1-year period after irradiation. Data obtained show that, in the case of 4-day-old embryos as well as in 2-day, 8-day and 12-week-old mice, this dose is below the threshold capable of inducing a long-term impairment of hematopoiesis in the mouse. Nevertheless, in mice irradiated at the 13th or the 17th day postconception, a hematopoietic dysfunction consisting of a significant reduction in the proportion of femoral granulocyte-macrophage colony-forming units (CFU-GM) was manifested 1 year after irradiation. Our study confirms that, for most stages of development in the mouse, a single acute X irradiation of 500 mGy is below the threshold dose capable of inducing deterministic effects in the mouse hematopoietic system, although it reveals the induction of a significant impairment in the CFU-GM population when irradiation is given at the late stages of embryonic development. 24 refs., 4 figs.

  16. Effects of adenovirus mediated vascular endothelial growth factor gene transfer on reconstitution of hematopoiesis in post-bone marrow transplantation mice

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhao-dong; ZOU Ping; HU Xian-shi; YOU Yong; CHEN Zhi-chao; HUANG Shi-ang

    2005-01-01

    Background Bone marrow transplantation (BMT) conditioning procedure is considered as the cause of damage to bone marrow microvasculature and the delay of hematopoiesis recovery. However, hematopoiesis regulation post BMT by vascular endothelial growth factor (VEGF) has not yet been studied. In this study, adenovirus were used to investigate the effects of VEGF gene transfer on preventing damages to bone marrow microenvironment and its promotion of hematopoiesis in post-BMT mice.Methods Recombinant adenovirus (Ad)-enhanced green fluorescent protein (EGFP)/hVEGF165 was injected via tail vein into BALB/c mice undergoing syngeneic BMT. During the different phases post BMT, the distribution of adenovirus and the plasma levels of hVEGF were measured as well as the numbers of white blood cells (WBC), platelet (PLT) and red blood cells (RBC) in peripheral blood. At the same time, the mice were injected with Chinese ink via tail vein, following which the tibias were separated and were used for analysis of bone marrow microvasculature surface area and cellularity.Results Significant expression of EGFP and hVEGF was observed in multiple organs at different phases post BMT, and the plasma level of hVEGF was up to (866.67±97.13) pg/ml. The recovery of WBC, PLT and RBC of the group treated with recombinant adenovirus Ad-EGFP/hVEGF165 were significantly more rapid than those of other BMT groups (P0.05]. The restoration of hematopoiesis was retarded more than that of microvasculature. The cellularity of bone marrow in each group was still lower than that of normal control [(62.3±4.0)%, P<0.05] at the 30th day post BMT, but the percentage in group treated with VEGF at the 20th and 30th days post BMT [(46.5±5.0)% and (55.1±4.5)%] exceeded those of other BMT groups (P<0.05, respectively).Conclusion VEGF gene transfer mediated by adenovirus may protect the hematopoietic microenvironment to promote the restoration of hematopoiesis in post-BMT mice.

  17. The Histone Methyltransferase Activity of MLL1 Is Dispensable for Hematopoiesis and Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Bibhu P. Mishra

    2014-05-01

    Full Text Available Despite correlations between histone methyltransferase (HMT activity and gene regulation, direct evidence that HMT activity is responsible for gene activation is sparse. We address the role of the HMT activity for MLL1, a histone H3 lysine 4 (H3K4 methyltransferase critical for maintaining hematopoietic stem cells (HSCs. Here, we show that the SET domain, and thus HMT activity of MLL1, is dispensable for maintaining HSCs and supporting leukemogenesis driven by the MLL-AF9 fusion oncoprotein. Upon Mll1 deletion, histone H4 lysine 16 (H4K16 acetylation is selectively depleted at MLL1 target genes in conjunction with reduced transcription. Surprisingly, inhibition of SIRT1 is sufficient to prevent the loss of H4K16 acetylation and the reduction in MLL1 target gene expression. Thus, recruited MOF activity, and not the intrinsic HMT activity of MLL1, is central for the maintenance of HSC target genes. In addition, this work reveals a role for SIRT1 in opposing MLL1 function.

  18. The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice

    Science.gov (United States)

    Toribio, Ramiro E.; Brown, Holly A.; Novince, Chad M.; Marlow, Brandlyn; Hernon, Krista; Lanigan, Lisa G.; Hildreth, Blake E.; Werbeck, Jillian L.; Shu, Sherry T.; Lorch, Gwendolen; Carlton, Michelle; Foley, John; Boyaka, Prosper; McCauley, Laurie K.; Rosol, Thomas J.

    2010-01-01

    The functions of parathyroid hormone-related protein (PTHrP) on morphogenesis, cell proliferation, apoptosis, and calcium homeostasis have been attributed to its N terminus. Evidence suggests that many of these effects are not mediated by the N terminus but by the midregion, a nuclear localization sequence (NLS), and C terminus of the protein. A knock-in mouse lacking the midregion, NLS, and C terminus of PTHrP (PthrpΔ/Δ) was developed. PthrpΔ/Δ mice had craniofacial dysplasia, chondrodysplasia, and kyphosis, with most mice dying by d 5 of age. In bone, there were fewer chondrocytes and osteoblasts per area, bone mass was decreased, and the marrow was less cellular, with erythroid hypoplasia. Cellular proliferation was impaired, and apoptosis was increased. Runx2, Ocn, Sox9, Crtl1, β-catenin, Runx1, ephrin B2, cyclin D1, and Gata1 were underexpressed while P16/Ink4a, P21, GSK-3β, Il-6, Ffg3, and Ihh were overexpressed. Mammary gland development was aberrant, and energy metabolism was deregulated. These results establish that the midregion, NLS, and C terminus of PTHrP are crucial for the commitment of osteogenic and hematopoietic precursors to their lineages, and for survival, and many of the effects of PTHrP on development are not mediated by its N terminus. The down-regulation of Runx1, Runx2, and Sox9 indicates that PTHrP is a modulator of transcriptional activation during stem cell commitment. Toribio, R. E., Brown, H. A., Novince, C. M., Marlow, B. Hernon, K., Lanigan, L. G., Hildreth III, B. E., Werbeck, J. L., Shu, S. T., Lorch, G., Carlton, M., Foley, J., Boyaka, P., McCauley, L. K., Rosol, T. J. The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice. PMID:20145205

  19. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse

    Science.gov (United States)

    Ou, Xuan; Chae, Hee-Don; Wang, Rui-Hong; Shelley, William C.; Cooper, Scott; Taylor, Tammi; Kim, Young-June; Deng, Chu-Xia; Yoder, Mervin C.

    2011-01-01

    SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1−/− mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1−/− mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1+/++/−, and −/− mice. SIRT1−/− ESCs formed fewer mature blast cell colonies. Replated SIRT1−/− blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1−/−-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1−/− ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased β-H1 globin, β-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1−/− ESC differentiation deficiencies. SIRT1−/− yolk sacs manifested fewer primitive erythroid precursors. SIRT1−/− and SIRT1+/− adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis. PMID:20966168

  20. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    Directory of Open Access Journals (Sweden)

    Claudia Tulotta

    2016-02-01

    Full Text Available Triple-negative breast cancer (TNBC is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC.

  1. [Thymus Development in Early Ontogeny: A Comparative Aspect].

    Science.gov (United States)

    Vasil'ev, K A; Polevshchikov, A V

    2015-01-01

    This review is dedicated to comparative analysis of the early stages of thymus ontogeny in fish, amphibians, and mammals. Morphological and molecular-genetic aspects of the formation of thymic stroma, colonization of this organ with T-cell progenitors, and interaction of different cell populations in the course of organogenesis are considered. Particular attention is given to the hematopoietic role of the thymus during embryogenesis and new data on the origin of T-cell progenitors. The hypothesis about the possible presence in the organ of a self-sustaining population of stem cells, formed regardless of fetal hematopoiesis areas, is discussed.

  2. Stable isotope composition of biogas allows early warning of complete process failure as a result of ammonia inhibition in anaerobic digesters.

    Science.gov (United States)

    Lv, Zuopeng; Hu, Meng; Harms, Hauke; Richnow, Hans Hermann; Liebetrau, Jan; Nikolausz, Marcell

    2014-09-01

    Four 15-L lab-scale continuous stirred tank reactors were operated under mesophilic conditions to investigate the effect of ammonia inhibition. Stable isotope fingerprinting of biogas was applied as a process monitoring tool. Ammonia inhibition was initiated by amendment of chicken manure to maize silage fed reactors. During the accumulation of ammonia, the concentration of volatile fatty acids increased while the biogas production and pH decreased. However, in one reactor, an inhibited steady state with stable gas production even at high ammonia levels was achieved, while the other reactor proceeded to complete process failure. A depletion of the δ(13)CH4 and δ(13)CO2 values preceded the process inhibition. Moreover, the stable isotope composition of biogas also forecasted the complete process failure earlier than other standard parameters. The stable isotope analyses of biogas have a potential for mechanistic insights in anaerobic processes, and may be used to pre-warn process failure under stress conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Extramedullary pulmonary hematopoiesis causing pulmonary hypertension and severe tricuspid regurgitation detected by {sup 99m} technetium sulfur colloid bone marrow scan and single-photon emission computed tomography/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Syed Zama; Clarke, Michael John; Kannivelu, Anbalagan; Chinchure, Dinesh; Srinivasan, Sivasubramanian [Dept. of Diagnostic Radiology, Khoo Teck Puat Hospital, Singapore (Singapore)

    2014-06-15

    Extramedullary pulmonary hematopoiesis is a rare entity with a limited number of case reports in the available literature only. We report the case of a 66-year-old man with known primary myelofibrosis, in whom a {sup 99m}technetium sulfur colloid bone marrow scan with single-photon emission computed tomography (SPECT)/CT revealed a pulmonary hematopoiesis as the cause of pulmonary hypertension and severe tricuspid regurgitation. To the best of our knowledge, this is the first description of {sup 99m} technetium sulfur colloid SPECT/CT imaging in this rare condition.

  4. Eltrombopag, a thrombopoietin receptor agonist, enhances human umbilical cord blood hematopoietic stem/primitive progenitor cell expansion and promotes multi-lineage hematopoiesis.

    Science.gov (United States)

    Sun, Hongliang; Tsai, Ying; Nowak, Irena; Liesveld, Jane; Chen, Yuhchyau

    2012-09-01

    Umbilical cord blood (UCB) transplantation has emerged as a promising therapy, but it is challenged by scarcity of stem cells. Eltrombopag is a non-peptide, thrombopoietin (TPO) receptor agonist, which selectively activates c-Mpl in humans and chimpanzees. We investigated eltrombopag's effects on human UCB hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) expansion, and its effects on hematopoiesis in vivo. Eltrombopag selectively augmented the expansion of human CD45+, CD34+, and CD41+ cells in bone marrow compartment without effects on mouse bone marrow cells in the NOD/SCID mice xenotransplant model. Consequently, eltrombopag increased peripheral human platelets and white blood cells. We further examined effects in the STAT and AKT signaling pathways in serum-free cultures. Eltrombopag expanded human CD34+ CD38-, CD34+, and CD41+ cells. Both eltrombopag and recombinant human TPO (rhTPO) induced phosphorylation of STAT5 of CD34+ CD41-, CD34- CD41+, and CD34- CD41- cells. rhTPO preferentially induced pSTAT3, pAKT, and more pSTAT5 in CD34- C41+ cells, while eltrombopag had no effects on pSTAT3. In conclusion, eltrombopag enhanced expansion of HSCs/HPCs of human UCB in vivo and in vitro, and promoted multi-lineage hematopoiesis through the expansion of bone marrow HSCs/HPCs of human UCB in vivo. Eltrombopag differed somewhat from rhTPO in the signal transduction pathways by favoring earlier HSC/HPC populations.

  5. The hematopoiesis in gill and its role in the immune response of Pacific oyster Crassostrea gigas against secondary challenge with Vibrio splendidus.

    Science.gov (United States)

    Li, Yiqun; Song, Xiaorui; Wang, Weilin; Wang, Lingling; Yi, Qilin; Jiang, Shuai; Jia, Zhihao; Du, Xinyu; Qiu, Limei; Song, Linsheng

    2017-06-01

    Increasing evidences have demonstrated that the invertebrate gill is a predominant tissue participating in the immune response during pathogen challenge. In the present study, the hematopoiesis and immune activities in gill of Pacific oyster Crassostrea gigas were investigated. Stem-like cells with big nuclei and thin cytoplasm were found in the tubules of gill filaments, where DNA synthesis is active and hemocytes production are exuberant. The oysters primarily stimulated by formaldehyde-killed Vibrio splendidus exhibited stronger immune responses and enhanced cell regeneration in gill when they encountered the secondary challenge of live V. splendidus. After the secondary stimulation with V. splendidus, the expression levels of CgClec-4 and CgIFN in the gill of oysters pre-stimulated with formaldehyde-killed V. splendidus were significantly higher (p challenge with V. splendidus. ROS production was also enhanced (p challenge. The phagocytic rate in gill of oysters pre-stimulated with formaldehyde-killed V. splendidus was significantly increased (p challenge with live V. splendidus, showing faster response than that pre-stimulated with filter-sterilized sea water. These results collectively showed that the immune parameters in gill were apparently enhanced after secondary challenge with live V. splendidus, indicating that hematopoiesis might participate in immune priming in Pacific oyster C. gigas.

  6. [Cytokines and hematopoiesis].

    Science.gov (United States)

    Mannoni, P

    1993-03-01

    The identification and purification of haemopoietic growth regulators have resulted in a better understanding of control mechanisms. Cloning and expression of the corresponding genes have shown that most of the activities observed correspond to specific glycoproteins produced by cells from numerous tissues, including those of bone marrow stroma and immune system. These cytokines activate the responsive cells through specific receptors expressed on their membranes. They exert an accurate control of haematopoiesis in a network of synergistic and antagonistic factors. The exact identification of their biological activities, together with the possibility of producing them in large amounts by genetic recombination, have already resulted in their therapeutic use with, in certain cases, a remarkable efficiency.

  7. The first double-blind, randomised, parallel-group certolizumab pegol study in methotrexate-naive early rheumatoid arthritis patients with poor prognostic factors, C-OPERA, shows inhibition of radiographic progression.

    Science.gov (United States)

    Atsumi, Tatsuya; Yamamoto, Kazuhiko; Takeuchi, Tsutomu; Yamanaka, Hisashi; Ishiguro, Naoki; Tanaka, Yoshiya; Eguchi, Katsumi; Watanabe, Akira; Origasa, Hideki; Yasuda, Shinsuke; Yamanishi, Yuji; Kita, Yasuhiko; Matsubara, Tsukasa; Iwamoto, Masahiro; Shoji, Toshiharu; Okada, Toshiyuki; van der Heijde, Désirée; Miyasaka, Nobuyuki; Koike, Takao

    2016-01-01

    To evaluate efficacy and safety of combination therapy using certolizumab pegol (CZP) and methotrexate (MTX) as first-line treatment for MTX-naive, early rheumatoid arthritis (RA) with poor prognostic factors, compared with MTX alone. MTX-naive, early RA patients with ≤12 months persistent disease, high anti-cyclic citrullinated peptide, and either rheumatoid factor positive and/or presence of bone erosions were enrolled in this multicentre, double-blind, randomised placebo (PBO)-controlled study. Patients were randomised 1:1 to CZP+MTX or PBO+MTX for 52 weeks. Primary endpoint was inhibition of radiographic progression (change from baseline in modified Total Sharp Score (mTSS CFB)) at week 52. Secondary endpoints were mTSS CFB at week 24, and clinical remission rates at weeks 24 and 52. 316 patients randomised to CZP+MTX (n=159) or PBO+MTX (n=157) had comparable baseline characteristics reflecting features of early RA (mean disease duration: 4.0 vs 4.3 months; Disease Activity Score 28-joint assessment (DAS28)) (erythrocyte sedimentation rate (ESR)): 5.4 vs 5.5; mTSS: 5.2 vs 6.0). CZP+MTX group showed significantly greater inhibition of radiographic progression relative to PBO+MTX at week 52 (mTSS CFB=0.36 vs 1.58; p<0.001) and week 24 (mTSS CFB=0.26 vs 0.86; p=0.003). Clinical remission rates (Simple Disease Activity Index, Boolean and DAS28 (ESR)) of the CZP+MTX group were significantly higher compared with those of the PBO+MTX group, at weeks 24 and 52. Safety results in both groups were similar, with no new safety signals observed with addition of CZP to MTX. In MTX-naive early RA patients with poor prognostic factors, CZP+MTX significantly inhibited structural damage and reduced RA signs and symptoms, demonstrating the efficacy of CZP in these patients. (NCT01451203). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Trans-activated interferon-alpha2 delivered to T cells by SV40 inhibits early stages in the HIV-1 replicative cycle.

    Science.gov (United States)

    Cordelier, Pierre; Calarota, Sandra A; Strayer, David S

    2002-10-01

    Several lines of evidence suggest a potential major role for interferon (IFN) in controlling HIV-1 replication. However, this inhibition is moderate and is reversible upon IFN removal. To achieve prolonged high concentrations of IFN at the site of infection, we devised an SV40-based vector, SV[HIVLTR]IFN, to direct the synthesis of human IFN-alpha2, by employing a virus-trans-activated human IFN-alpha2 gene to be transcribed in response to HIV-1 infection. Expression of IFN-alpha2 was confirmed by Northern and Western blotting, in SV[HIVLTR]IFN-transduced, HIV-1-challenged human lymphocyte lines and primary human lymphocytes. SV[HIVLTR]IFN-transduced cells showed no evidence of HIV-1-related cytophatic effects when challenged with high doses of HIV-1(NL4-3). As measured by supernatant HIV-1 p24 antigen concentration, IFN-alpha2-expressing cell lines and peripheral blood lymphocytes (PBL) were protected from high-dose challenges of HIV-1. rSV40-delivered IFN-alpha2 inhibited gp120 protein synthesis and expression of HIV-1 mRNAs. Finally, Southern analysis revealed that levels of proviral DNA were markedly reduced in SV[HIVLTR]IFN-transduced cells compared to control cultures. IFN-alpha2 expression driven by HIVLTR delivered by an rSV40 vector thus strongly inhibits HIV-1 replication, probably by blocking a preintegration step in HIV-1 infection. Targeted expression of IFN-alpha2 delivered by SV40 can thus repress HIV-1 replication, and may be a useful approach to HIV-1 treatment.

  9. The rationale and design of the antihypertensives and vascular, endothelial, and cognitive function (AVEC trial in elderly hypertensives with early cognitive impairment: Role of the renin angiotensin system inhibition

    Directory of Open Access Journals (Sweden)

    Hart Meaghan

    2009-11-01

    Full Text Available Abstract Background Prior evidence suggests that the renin angiotensin system and antihypertensives that inhibit this system play a role in cognitive, central vascular, and endothelial function. Our objective is to conduct a double-blind randomized controlled clinical trial, the antihypertensives and vascular, endothelial, and cognitive function (AVEC, to compare 1 year treatment of 3 antihypertensives (lisinopril, candesartan, or hydrochlorothiazide in their effect on memory and executive function, cerebral blood flow, and central endothelial function of seniors with hypertension and early objective evidence of executive or memory impairments. Methods/Design The overall experimental design of the AVEC trial is a 3-arm double blind randomized controlled clinical trial. A total of 100 community eligible individuals (60 years or older with hypertension and early cognitive impairment are being recruited from the greater Boston area and randomized to lisinopril, candesartan, or hydrochlorothiazide ("active control" for 12 months. The goal of the intervention is to achieve blood pressure control defined as SBP 20 and without clinical diagnosis of dementia or Alzheimer's disease. Individuals who are currently receiving antihypertensives are eligible to participate if the participants and the primary care providers are willing to taper their antihypertensives. Participants undergo cognitive assessment, measurements of cerebral blood flow using Transcranial Doppler, and central endothelial function by measuring changes in cerebral blood flow in response to changes in end tidal carbon dioxide at baseline (off antihypertensives, 6, and 12 months. Our outcomes are change in cognitive function score (executive and memory, cerebral blood flow, and carbon dioxide cerebral vasoreactivity. Discussion The AVEC trial is the first study to explore impact of antihypertensives in those who are showing early evidence of cognitive difficulties that did not reach the

  10. A Study of Cortical Excitability, Central Motor Conduction, and Cortical Inhibition Using Single Pulse Transcranial Magnetic Stimulation in Patients with Early Frontotemporal and Alzheimer's Dementia.

    Science.gov (United States)

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor; Nagaraju, B C; Philip, Mariamma

    2016-01-01

    Degenerative cortical dementias affect several million people worldwide. Early diagnosis and categorization are essential for initiating appropriate pharmacological and nonpharmacological treatment so that deterioration can be postponed, and disability adjusted life years can be saved both for the patient and for the caregiver. Therefore, an early, simple, noninvasive biomarker will serve as a boon. Patients who satisfied probable Alzheimer's disease (AD) or frontotemporal dementia (FTD) using international consensus criteria for FTD and National Institute of Neurological Disorders and Stroke-AD and Related Disorders Association criteria for AD were evaluated using single pulse transcranial magnetic stimulation with figure of eight coil and motor evoked potential from right first dorsal interossei. Resting threshold (MT), central motor conduction time (CMCT), and silent period (SP) were evaluated. Resting MT and SP are reduced in patients with Alzheimer's disease whereas CMCT is prolonged in patients with FTD and SP is in the lower limit of normal in both conditions. The patterns of central motor conduction and MT are distinctly different in patients with early Alzheimer's disease (AD) and FTD.

  11. A study of cortical excitability, central motor conduction, and cortical inhibition using single pulse transcranial magnetic stimulation in patients with early frontotemporal and Alzheimer′s dementia

    Directory of Open Access Journals (Sweden)

    Sadanandavalli Retnaswami Chandra

    2016-01-01

    Full Text Available Introduction: Degenerative cortical dementias affect several million people worldwide. Early diagnosis and categorization are essential for initiating appropriate pharmacological and nonpharmacological treatment so that deterioration can be postponed, and disability adjusted life years can be saved both for the patient and for the caregiver. Therefore, an early, simple, noninvasive biomarker will serve as a boon. Patients and Methods: Patients who satisfied probable Alzheimer′s disease (AD or frontotemporal dementia (FTD using international consensus criteria for FTD and National Institute of Neurological Disorders and Stroke-AD and Related Disorders Association criteria for AD were evaluated using single pulse transcranial magnetic stimulation with figure of eight coil and motor evoked potential from right first dorsal interossei. Resting threshold (MT, central motor conduction time (CMCT, and silent period (SP were evaluated. Results: Resting MT and SP are reduced in patients with Alzheimer′s disease whereas CMCT is prolonged in patients with FTD and SP is in the lower limit of normal in both conditions. Conclusion: The patterns of central motor conduction and MT are distinctly different in patients with early Alzheimer′s disease (AD and FTD.

  12. Early social isolation disrupts latent inhibition and increases dopamine D2 receptor expression in the medial prefrontal cortex and nucleus accumbens of adult rats.

    Science.gov (United States)

    Han, Xiao; Li, Nanxin; Xue, Xiaofang; Shao, Feng; Wang, Weiwen

    2012-04-04

    Adolescence is a critical period for neurodevelopment. In the present study, we investigated the effects of peri-adolescent social isolation on latent inhibition (LI) and dopamine D2 receptor expression in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) of young adult rats. Male Sprague-Dawley rats were randomly divided into adolescent isolation (ISO; isolated housing, 21-34 days of age) and social housing (SOC) groups. LI was tested at postnatal day 56. After behavioral testing, the number of dopamine D2 receptor-expressing cells was determined using immunohistochemistry. Adolescent social isolation impaired LI and increased the number of cells expressing the D2 receptor in the mPFC and NAc. The results suggest that adolescent social isolation produces profound effects on cognitive and dopaminergic function in adult rats, and could be used as an animal model of various neurodevelopmental disorders.

  13. CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity.

    Science.gov (United States)

    Li, Yuheng; Zhong, Guohui; Sun, Weijia; Zhao, Chengyang; Zhang, Pengfei; Song, Jinping; Zhao, Dingsheng; Jin, Xiaoyan; Li, Qi; Ling, Shukuan; Li, Yingxian

    2015-01-01

    The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity.

  14. Transforming Growth Factor-Beta Inhibition Reduces Progression of Early Choroidal Neovascularization Lesions in Rats: P17 and P144 Peptides

    Science.gov (United States)

    Zarranz-Ventura, Javier; Fernández-Robredo, Patricia; Recalde, Sergio; Salinas-Alamán, Angel; Borrás-Cuesta, Francisco; Dotor, Javier; García-Layana, Alfredo

    2013-01-01

    The purpose of this study was to assess the effects of transforming growth factor beta (TGF-β) inhibitor peptides (P17 & P144) on early laser-induced choroidal neovascularization (LI-CNV) lesions in rats, two weeks after laser CNV induction. Seventy-one Long Evans rats underwent diode laser application in an established LI-CNV model. Baseline fluorescein angiography (FA) was performed 14 days following laser procedure, and treatments were administered 16 days post-laser application via different administration routes. Intravenous groups included control (IV-Control), P17 (IV-17), and P144 (IV-144) groups, whereas intravitreal groups included P17 (IVT-17), P144 (IVT-144), and a mixture of both peptides (IVT-17+144) (with fellow eyes receiving vehicle alone). CNV evolution was assessed using FA performed weekly for four weeks after treatment. Following sacrifice, VEGF, TGF-β, COX-2, IGF-1, PAI-1, IL-6, MMP-2, MMP-9, and TNF-α gene expression was assessed using RT-PCR. VEGF and p-SMAD2 protein levels were also assessed by western-blot, while MMP-2 activity was assessed with gelatin zymography. Regarding the FA analysis, the mean CNV area was lower from the 3rd week in IVT-17 and IVT-144 groups, and also from the 2nd week in IVT-17+144. Biochemical analysis revealed that gene expression was lower for VEGF and COX-2 genes in IV-17 and IV-144 groups, VEGF gene in IVT-17+144 group and MMP-2 gene in IVT-17 and IVT-144 groups. VEGF protein expression was also decreased in IV-17, IV-144, IVT-17 and IVT-144, whereas pSMAD-2 levels were lower in IV-17, IV-144 and IVT-17+144 groups. Zymogram analysis revealed decreased MMP-2 activity in IV-17, IV-144, IVT-17 and IVT-144 groups. These data suggest that the use of TGF-β inhibitor peptides (P17 & P144) decrease the development of early CNV lesions by targeting different mediators than those typically affected using current anti-angiogenic therapies. Its potential role in the treatment of early CNV appears promising as a single

  15. Transforming growth factor-beta inhibition reduces progression of early choroidal neovascularization lesions in rats: P17 and P144 peptides.

    Directory of Open Access Journals (Sweden)

    Javier Zarranz-Ventura

    Full Text Available The purpose of this study was to assess the effects of transforming growth factor beta (TGF-β inhibitor peptides (P17 & P144 on early laser-induced choroidal neovascularization (LI-CNV lesions in rats, two weeks after laser CNV induction. Seventy-one Long Evans rats underwent diode laser application in an established LI-CNV model. Baseline fluorescein angiography (FA was performed 14 days following laser procedure, and treatments were administered 16 days post-laser application via different administration routes. Intravenous groups included control (IV-Control, P17 (IV-17, and P144 (IV-144 groups, whereas intravitreal groups included P17 (IVT-17, P144 (IVT-144, and a mixture of both peptides (IVT-17+144 (with fellow eyes receiving vehicle alone. CNV evolution was assessed using FA performed weekly for four weeks after treatment. Following sacrifice, VEGF, TGF-β, COX-2, IGF-1, PAI-1, IL-6, MMP-2, MMP-9, and TNF-α gene expression was assessed using RT-PCR. VEGF and p-SMAD2 protein levels were also assessed by western-blot, while MMP-2 activity was assessed with gelatin zymography. Regarding the FA analysis, the mean CNV area was lower from the 3(rd week in IVT-17 and IVT-144 groups, and also from the 2(nd week in IVT-17+144. Biochemical analysis revealed that gene expression was lower for VEGF and COX-2 genes in IV-17 and IV-144 groups, VEGF gene in IVT-17+144 group and MMP-2 gene in IVT-17 and IVT-144 groups. VEGF protein expression was also decreased in IV-17, IV-144, IVT-17 and IVT-144, whereas pSMAD-2 levels were lower in IV-17, IV-144 and IVT-17+144 groups. Zymogram analysis revealed decreased MMP-2 activity in IV-17, IV-144, IVT-17 and IVT-144 groups. These data suggest that the use of TGF-β inhibitor peptides (P17 & P144 decrease the development of early CNV lesions by targeting different mediators than those typically affected using current anti-angiogenic therapies. Its potential role in the treatment of early CNV appears promising

  16. An indole alkaloid from a tribal folklore inhibits immediate early event in HSV-2 infected cells with therapeutic efficacy in vaginally infected mice.

    Directory of Open Access Journals (Sweden)

    Paromita Bag

    Full Text Available Herpes genitalis, caused by HSV-2, is an incurable genital ulcerative disease transmitted by sexual intercourse. The virus establishes life-long latency in sacral root ganglia and reported to have synergistic relationship with HIV-1 transmission. Till date no effective vaccine is available, while the existing therapy frequently yielded drug resistance, toxicity and treatment failure. Thus, there is a pressing need for non-nucleotide antiviral agent from traditional source. Based on ethnomedicinal use we have isolated a compound 7-methoxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole (HM from the traditional herb Ophiorrhiza nicobarica Balkr, and evaluated its efficacy on isolates of HSV-2 in vitro and in vivo. The cytotoxicity (CC50, effective concentrations (EC50 and the mode of action of HM was determined by MTT, plaque reduction, time-of-addition, immunofluorescence (IFA, Western blot, qRT-PCR, EMSA, supershift and co-immunoprecipitation assays; while the in vivo toxicity and efficacy was evaluated in BALB/c mice. The results revealed that HM possesses significant anti-HSV-2 activity with EC50 of 1.1-2.8 µg/ml, and selectivity index of >20. The time kinetics and IFA demonstrated that HM dose dependently inhibited 50-99% of HSV-2 infection at 1.5-5.0 µg/ml at 2-4 h post-infection. Further, HM was unable to inhibit viral attachment or penetration and had no synergistic interaction with acyclovir. Moreover, Western blot and qRT-PCR assays demonstrated that HM suppressed viral IE gene expression, while the EMSA and co-immunoprecipitation studies showed that HM interfered with the recruitment of LSD-1 by HCF-1. The in vivo studies revealed that HM at its virucidal concentration was nontoxic and reduced virus yield in the brain of HSV-2 infected mice in a concentration dependent manner, compared to vaginal tissues. Thus, our results suggest that HM can serve as a prototype to develop non-nucleotide antiviral lead targeting the viral IE

  17. MCS-18, a natural product isolated from Helleborus purpurascens, inhibits maturation of dendritic cells in ApoE-deficient mice and prevents early atherosclerosis progression.

    Science.gov (United States)

    Dietel, Barbara; Muench, Rabea; Kuehn, Constanze; Kerek, Franz; Steinkasserer, Alexander; Achenbach, Stephan; Garlichs, Christoph D; Zinser, Elisabeth

    2014-08-01

    Inflammation accelerates both plaque progression and instability in the pathogenesis of atherosclerosis. The inhibition of dendritic cell (DC) maturation is a promising approach to suppress excessive inflammatory immune responses and has been shown to be protective in several autoimmune models. The aim of this study was to investigate the immune modulatory effects of the natural substance MCS-18, an inhibitor of DC maturation, regarding the progression of atherosclerosis in ApoE-deficient mice. ApoE-deficient mice were fed for twelve weeks with a Western-type diet (n = 32) or normal chow (control group; n = 16). Animals receiving high-fat diet were treated with MCS-18 (500 μg/kg body weight, n = 16) or saline (n = 16) twice a week. After 12 weeks, animals were transcardially perfused and sacrificed. The percentage of mature DCs (CD3(-)/CD19(-)/CD14(-)/NK1.1(-)/CD11c(+)/MHCII(+)/CD83(+)/CD86(+)) and T cell subpopulations (CD4(+)/CD25(+)/Foxp3(+), CD3/CD4/CD8) was analyzed in peripheral blood and in the spleen using flow cytometry. Plaque size was determined in the aortic root and the thoracoabdominal aorta using en-face staining. Immunohistochemical stainings served to detect inflammatory cells in the aortic root. Several cytokines and chemokines were determined in serum using multiplex assays. In splenic cells derived from saline-treated atherosclerotic mice an increased DC maturation, reflected by the upregulation of CD83 and CD86 expression, was observed. The enhanced expression of both maturation markers was absent in MCS-18 treated atherosclerotic mice. While the percentage of splenic Foxp3 expressing Treg was increased in animals receiving MCS-18 compared to saline-treated atherosclerotic mice, cytotoxic T cells were reduced in the spleen and in atherosclerotic lesions of the aortic root. Furthermore, proatherogenic cytokines (e.g. IL-6 and IFN-γ) and chemokines (e.g. MIP-1β) were decreased in serum of MCS-18-treated animals when compared to saline

  18. An indole alkaloid from a tribal folklore inhibits immediate early event in HSV-2 infected cells with therapeutic efficacy in vaginally infected mice.

    Science.gov (United States)

    Bag, Paromita; Ojha, Durbadal; Mukherjee, Hemanta; Halder, Umesh Chandra; Mondal, Supriya; Chandra, Nidhi S; Nandi, Suman; Sharon, Ashoke; Sarkar, Mamta Chawla; Chakrabarti, Sekhar; Chattopadhyay, Debprasad

    2013-01-01

    Herpes genitalis, caused by HSV-2, is an incurable genital ulcerative disease transmitted by sexual intercourse. The virus establishes life-long latency in sacral root ganglia and reported to have synergistic relationship with HIV-1 transmission. Till date no effective vaccine is available, while the existing therapy frequently yielded drug resistance, toxicity and treatment failure. Thus, there is a pressing need for non-nucleotide antiviral agent from traditional source. Based on ethnomedicinal use we have isolated a compound 7-methoxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole (HM) from the traditional herb Ophiorrhiza nicobarica Balkr, and evaluated its efficacy on isolates of HSV-2 in vitro and in vivo. The cytotoxicity (CC50), effective concentrations (EC50) and the mode of action of HM was determined by MTT, plaque reduction, time-of-addition, immunofluorescence (IFA), Western blot, qRT-PCR, EMSA, supershift and co-immunoprecipitation assays; while the in vivo toxicity and efficacy was evaluated in BALB/c mice. The results revealed that HM possesses significant anti-HSV-2 activity with EC50 of 1.1-2.8 µg/ml, and selectivity index of >20. The time kinetics and IFA demonstrated that HM dose dependently inhibited 50-99% of HSV-2 infection at 1.5-5.0 µg/ml at 2-4 h post-infection. Further, HM was unable to inhibit viral attachment or penetration and had no synergistic interaction with acyclovir. Moreover, Western blot and qRT-PCR assays demonstrated that HM suppressed viral IE gene expression, while the EMSA and co-immunoprecipitation studies showed that HM interfered with the recruitment of LSD-1 by HCF-1. The in vivo studies revealed that HM at its virucidal concentration was nontoxic and reduced virus yield in the brain of HSV-2 infected mice in a concentration dependent manner, compared to vaginal tissues. Thus, our results suggest that HM can serve as a prototype to develop non-nucleotide antiviral lead targeting the viral IE transcription for the

  19. Low-frequency stimulation inhibits epileptogenesis by modulating the early network of the limbic system as evaluated in amygdala kindling model.

    Science.gov (United States)

    Wang, Yi; Xu, Zhenghao; Cheng, Hui; Guo, Yi; Xu, Cenglin; Wang, Shuang; Zhang, Jianmin; Ding, Meiping; Chen, Zhong

    2014-09-01

    Low-frequency stimulation (LFS) is emerging as a new option for the treatment of epilepsy. The present study was designed to determine whether there is a crucial period for the treatment of epileptogenesis with LFS. LFS was delivered at different time-points to evaluate its anti-epileptogenic effect on amygdala-kindling rats. (18)F-fluorodeoxyglucose small-animal positron-emission tomography (microPET) and multi-channel EEG recording (MER) were used to investigate the dynamics of brain networks during epileptogenesis and LFS treatment. Interestingly, LFS delivered in the first 7 days significantly retarded the progression of behavioral seizure stages and shortened the afterdischarge duration (ADD), LFS delivered throughout the whole process resulted in similar effects. However, if LFS was delivered at the beginning of seizure stage 2 or 3 (5 ± 0.3 days during kindling acquisition), it had no anti-epileptogenic effect and even prolonged the ADD and enhanced synchronization of the EEGs. MicroPET study revealed a notable hypometabolism in the amygdala, piriform cortex, entorhinal cortex and other regions in the limbic system during the period from seizure stage 0 to stage 2 or 3. The glucose metabolism in those regions was specifically increased by LFS. MER further verified that an early network of afterdischarge spread was formed in those brain regions during kindling acquisition. Thus, we provided direct evidence that modulation of the early network in the limbic system is crucial for the anti-epileptogenic effect of LFS in amygdaloid-kindling rats.

  20. EPO improves the proliferation and inhibits apoptosis of trophoblast and decidual stromal cells through activating STAT-5 and inactivating p38 signal in human early pregnancy.

    Science.gov (United States)

    Ji, Yu Qing; Zhang, Yu Quan; Li, Ming Qing; Du, Mei Rong; Wei, Wei Wei; Li, Da Jin

    2011-01-01

    The erythropoietin (EPO) belongs to the family of angiogenic factors, which is regulated by Hypoxia-inducible factor- 1α (HIF-1α). As known, EPO are expressed in human villi and decidua, but the function is not clear. In this study, we investigated the expression and roles of HIF-1α, EPO and its receptor (EPOR) in the biological functions of trophoblast and decidual stromal cell (DSC) in human early pregnancy. The expression of EPO, EPOR and HIF-1α was evaluated in the villi and deciduas by RT-PCR and immunohistochemistry. Thereafter, we silenced HIF-1α expression in HTR-8/SVneo cell line and decidual stromal cells (DSCs). The effects of EPO on the proliferation and apoptosis of trophoblasts and DSCs, and activation of signal molecules were investigated by BrdU proliferation assay, flow cytometry and western blot, respectively. We have observed that the HIF-1α silence results in the lower expression of EPO in trophoblasts and DSCs. The anti-EPO neutralizing antibody can inactivate the phosphorylation of STAT5 and activate p38 of these cells in a dosage-dependent manner. Furthermore, the expressions of EPO, EPOR and HIF-1α in the villi and decidua from the unexplained miscarriage were significantly lower than that of the normal early pregnancy. This study suggests that HIF-1α may regulate the expression of EPO, which plays a favorable regulatory role in the proliferation and survival of human first-trimester trophoblast cells and DSCs via inactivating p38 and activating STAT5 in an autocrine manner, while the inadequate EPO expression at maternal-fetal interface may lead to pregnancy wastage in humans.

  1. Early and late inhibitions elicited by a peripheral visual cue on manual response to a visual target: Are they based on Cartesian coordinates?

    Directory of Open Access Journals (Sweden)

    Fábio V. Magalhães

    2005-01-01

    Full Text Available A non-informative cue (C elicits an inhibition of manual reaction time (MRT to a visual target (T. We report an experiment to examine if the spatial distribution of this inhibitory effect follows Polar or Cartesian coordinate systems. C appeared at one out of 8 isoeccentric (7o positions, the C-T angular distances (in polar coordinates were 0º or multiples of 45º and ISI were 100 or 800ms. Our main findings were: (a MRT was maximal when C- T distance was 0o and minimal when C-T distance was 180o and (b besides an angular distance effect, there is a meridian effect. When C and T occurred in the same quadrant, MRT was longer than when T and C occurred at the same distance (45o but on different sides of vertical or horizontal meridians. The latter finding indicates that the spatial distribution of the cue inhibitory effects is based on a Cartesian coordinate system.

  2. Blockade of spinal nerves inhibits expression of neural growth factor in the myocardium at an early stage of acute myocardial infarction in rats.

    Science.gov (United States)

    Yue, W; Guo, Z

    2012-09-01

    Neural growth factor (NGF) is required for healing and sprouting of cardiac sympathetic and sensory nerves and plays important roles in cardiac protection, sustaining cardiac function and regeneration in ischaemic heart disease. The overexpression or lack of the NGF could be harmful to the heart. In this study, we examined the role of spinal nerves in the modulation of expression of the NGF in the myocardium at risk of ischaemia soon after acute myocardial infarction in rats. Coronary artery occlusion (CAO) was carried out in anaesthetized rats with and without preconditioning of blockade of the spinal nerves. The expression of the NGF protein and mRNA in the myocardium at risk of ischaemia was examined using immunohistochemical assay, enzyme-linked immunosorbent assay, and real-time quantitative reverse transcription polymerase chain reaction assay. In the left ventricle, immunoreactive cells and fibre-like structures were mainly located in the myocardium and in the epicardium. The NGF protein expression was increased by two-fold in the myocardium at risk of ischaemia during the 60 min of CAO, while the NGF mRNA was up-regulated three-fold, at 360 min after acute myocardial infarction. The blockade of the spinal nerves completely abolished the up-regulation of the NGF in the myocardium (Pmyocardial infarction, an effect which can be inhibited by the blockade of these nerves.

  3. Thin coatings based on ZnO@C18-usnic acid nanoparticles prepared by MAPLE inhibit the development of Salmonella enterica early biofilm growth

    Science.gov (United States)

    Stan, Miruna Silvia; Constanda, Sabrina; Grumezescu, Valentina; Andronescu, Ecaterina; Ene, Ana Maria; Holban, Alina Maria; Vasile, Bogdan Stefan; Mogoantă, Laurenţiu; Bălşeanu, Tudor-Adrian; Mogoşanu, George Dan; Socol, Gabriel; Grumezescu, Alexandru Mihai; Dinischiotu, Anca; Lazar, Veronica; Chifiriuc, Mariana Carmen

    2016-06-01

    The aim of this study was to develop a nanostructured bioactive surface based on zinc oxide, sodium stearate (C18) and usnic acid (UA) exhibiting harmless effects with respect to the human cells, but with a significant antimicrobial effect, limiting the attachment and biofilm formation of food pathogens. ZnO nanoparticles were synthesized by sol-gel method and functionalized with C18 and UA. The coatings were fabricated by matrix assisted pulsed laser evaporation technique (MAPLE) and further characterized by TEM, SEM, SAED, XRD and IRM. The biological characterization of the prepared coatings consisted in cytotoxicity and antimicrobial assays. The cytotoxicity of ZnO@C18 and ZnO@C18-UA films was evaluated with respect to the human skin fibroblasts (CCD 1070SK cell line) by phase contrast microscopy, MTT assay and nitric oxide (NO) release. The covered surfaces exhibited a decreased cell attachment, effect which was more pronounced in the presence of UA as shown by purple formazan staining of adhered cells. The unattached fibroblasts remained viable after 24 h in the culture media as it was revealed by their morphology analysis and NO level which were similar to uncovered slides. The quantitative microbiological assays results have demonstrated that the bioactive coatings have significantly inhibited the adherence and biofilm formation of Salmonella enterica. The obtained results recommend these materials as efficient approaches in developing anti-adherent coatings for various industrial, medical and food processing applications.

  4. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism.

    Science.gov (United States)

    Kumar, Arvind; Singh, Harminder Pal; Batish, Daizy R; Kaur, Shalinder; Kohli, Ravinder Kumar

    2016-07-01

    The present study investigated the impact of 1800-MHz electromagnetic field radiations (EMF-r), widely used in mobile communication, on the growth and activity of starch-, sucrose-, and phosphate-hydrolyzing enzymes in Zea mays seedlings. We exposed Z. mays to modulated continuous wave homogenous EMF-r at specific absorption rate (SAR) of 1.69±0.0 × 10(-1) W kg(-1) for ½, 1, 2, and 4 h. The analysis of seedlings after 7 days revealed that short-term exposure did not induce any significant change, while longer exposure of 4 h caused significant growth and biochemical alterations. There was a reduction in the root and coleoptile length with more pronounced effect on coleoptile growth (23 % reduction on 4-h exposure). The contents of photosynthetic pigments and total carbohydrates declined by 13 and 18 %, respectively, in 4-h exposure treatments compared to unexposed control. The activity of starch-hydrolyzing enzymes-α- and β-amylases-increased by ∼92 and 94 %, respectively, at an exposure duration of 4 h, over that in the control. In response to 4-h exposure treatment, the activity of sucrolytic enzymes-acid invertases and alkaline invertases-was increased by 88 and 266 %, whereas the specific activities of phosphohydrolytic enzymes (acid phosphatases and alkaline phosphatases) showed initial increase up to ≤2 h duration and then declined at >2 h exposure duration. The study concludes that EMF-r-inhibited seedling growth of Z. mays involves interference with starch and sucrose metabolism.

  5. α₂-Adrenoceptor-mediated inhibition of catecholamine release from the adrenal medulla of spontaneously hypertensive rats is preserved in the early stages of hypertension.

    Science.gov (United States)

    Moura, Eduardo; Pinto, Carina E; Caló, Ana; Serrão, Maria P; Afonso, Joana; Vieira-Coelho, Maria A

    2011-10-01

    In this study, we evaluated the effect of α(2) -adrenoceptor activation on catecholamine release from the adrenal medulla of pre-hypertensive (6-week-old) and hypertensive (16-week-old) spontaneously hypertensive rats (SHR) and of age-matched normotensive control Wistar Kyoto (WKY) rats. Catecholamine overflow from isolated adrenal medullae was evoked by the nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) in the absence and presence of the α(2) -adrenoceptor agonist medetomidine (MED). The spontaneous outflow of adrenaline was similar between age-matched SHR and WKY rats. However, the spontaneous outflow of noradrenaline was significantly lower in SHR compared with age-matched WKY rats. DMPP (0.1-3 mM) increased the outflow of noradrenaline and adrenaline in a concentration-dependent manner. The E(max) values for adrenaline overflow were similar between strains, but the E(max) values for noradrenaline overflow were significantly lower in SHR. The EC(50) values for noradrenaline and adrenaline overflow were significantly higher in SHR compared with age-matched WKY rats. MED (0.1-300 nM) reduced the DMPP-evoked overflow (DMPP 500 μM) of noradrenaline and adrenaline in a concentration-dependent manner and was capable of totally inhibiting this effect. The inhibitory action of MED was similar between age-matched SHR and WKY rats. In the adrenals, the α(2A)- and α(2B)-adrenoceptor subtypes had the highest mRNA expression levels; the α(2C)-adrenoceptor subtype had the lowest mRNA expression levels. The mRNA levels for the three subtypes were similar between strains. In conclusion, in SHR during the development of hypertension, adrenal α(2) -adrenoceptor inhibitory function is conserved, accompanied by reduced noradrenaline release and unchanged adrenaline release.

  6. In Vivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases

    NARCIS (Netherlands)

    Biasco, Luca; Pellin, Danilo; Scala, Serena; Dionisio, Francesca; Basso-Ricci, Luca; Leonardelli, Lorena; Scaramuzza, Samantha; Baricordi, Cristina; Ferrua, Francesca; Cicalese, Maria Pia; Giannelli, Stefania; Neduva, Victor; Dow, David J; Schmidt, Manfred; Von Kalle, Christof; Roncarolo, Maria Grazia; Ciceri, Fabio; Vicard, Paola; Wit, Ernst; Di Serio, Clelia; Naldini, Luigi; Aiuti, Alessandro

    2016-01-01

    Hematopoietic stem/progenitor cells (HSPCs) are capable of supporting the lifelong production of blood cells exerting a wide spectrum of functions. Lentiviral vector HSPC gene therapy generates a human hematopoietic system stably marked at the clonal level by vector integration sites (ISs). Using IS

  7. Short-term inhibition of prostaglandin synthesis has no effect on the elevated glomerular filtration rate of early insulin-dependent diabetes

    DEFF Research Database (Denmark)

    Christiansen, J S; Feldt-Rasmussen, B; Parving, H H

    1985-01-01

    Glomerular filtration rate and renal plasma flow (constant infusion technique using 125I-iothalamate and 131I-hippuran) were measured twice within a 1-week interval in nine young males with insulin-dependent diabetes of short duration (2-5 years). The study was performed in a randomized double......-blind design, with the patients receiving either indomethacin (150 mg/day) or placebo for 3 days before the study. Measures of metabolic control did not change. No differences were found in glomerular filtration rate (144 +/- 9 versus 144 +/- 9 ml/min X 1.73 m2, mean +/- S.E.M.) or renal plasma flow (579...... +/- 43 versus 560 +/- 52 ml/min X 1.73 m2), when measured during placebo or indomethacin treatment, respectively. It is concluded that the steady-state enhancement of glomerular filtration rate and renal plasma flow found in early insulin-dependent diabetes is not due to an excessive activity...

  8. Levels of Hematopoiesis inhibitor N-acetyl-seryl-aspartyl-lysyl-proline partially explain the occurrence of anemia in heart failure

    NARCIS (Netherlands)

    van der Meer, P; Lipsic, E; Westenbrink, BD; van de Wal, RMA; Schoemaker, RG; Vellenga, E; van Veldhuisen, DJ; Voors, AA; van Gilst, WH

    2005-01-01

    Background - Anemia is common in patients with chronic heart failure (CHF) and is associated with a poor prognosis. However, only a minority of patients with CHF have impaired renal function or underlying hematinic deficiencies. It has been shown that inhibition of the renin-angiotensin system is

  9. Hypoxia inducible factor-1α inhibition produced anti-allodynia effect and suppressed inflammatory cytokine production in early stage of mouse complex regional pain syndrome model.

    Science.gov (United States)

    Hsiao, Hung-Tsung; Lin, Ya-Chi; Wang, Jeffrey Chi-Fei; Tsai, Yu-Chuan; Liu, Yen-Chin

    2016-03-01

    Complex regional pain syndrome (CRPS) is related to microcirculation impairment associated with tissue hypoxia and peripheral cytokine overproduction in the affected limb. Previous studies suggest that the pathogenesis involves hypoxia inducible factor-1α (HIF-1α) and exaggerated regional inflammatory response. 1-methylpropyl 2-imidazolyl disulfide (PX-12) acts as the thioredoxin-1 (Trx-1) inhibitor and decreases the level of HIF-1α, and can rapidly be metabolized for Trx-1 redox inactivation. This study hypothesized that PX-12 can decrease the cytokine production for nociceptive sensitization in the hypoxia-induced pain model. CD1 mice weighing around 30 g were used. The animal CRPS model was developed via the chronic post-ischaemic pain (CPIP) model. The model was induced by using O-rings on the ankles of the mice hind limbs to produce 3-h ischaemia-reperfusion injury on the paw. PX-12 (25 mg/kg, 5 mg/kg) was given through tail vein injection immediately after ischaemia. Animal behaviour was tested using the von Frey method for 7 days. Local paw skin tissue was harvest from three groups (control, 5 mg/kg, 25 mg/kg) 2 h after injection of PX-12. The protein expression of interleukin-1β (IL-1β) and HIF-1α was analysed with the Western blotting method. Mice significantly present an anti-allodynia effect in a dose-related manner after the PX-12 administration. Furthermore, PX-12 not only decreased the expression of HIF-1α but also decreased the expression of IL-1β over the injured palm. This study, therefore, shows the first evidence of the anti-allodynia effect of PX-12 in a CPIP animal model for pain behaviour. The study concluded that inhibition of HIF-1α may produce an analgesic effect and the associated suppression of inflammatory cytokine IL-1β in a CPIP model. © 2016 John Wiley & Sons Australia, Ltd.

  10. Interleukin-10 inhibits autonomous myelopoiesis in patients with myelofibrosis.

    Science.gov (United States)

    Geissler, Klaus; Jäger, Eva; Öhler, Leopold; Gisslinger, Heinz; Jäger, Ulrich; Lechner, Klaus

    2015-09-01

    The spontaneous formation of colony-forming units granulocyte/macrophage (CFU-GM) in semisolid cultures has been shown to be due to the endogenous release of cytokines and/or to the hypersensitivity of cells against growth factors. We have reported that increased autonomous CFU-GM growth is an in vitro characteristic of myelofibrosis (MF) which may reflect aberrant hematopoiesis in vivo. Because of its cytokine synthesis-inhibiting action, we speculated that interleukin-10 (IL-10) may inhibit pathological overproduction of myeloid cells in MF by suppression of autonomous myelopoiesis. In this study, IL-10 significantly inhibited autonomous CFU-GM formation in vitro from peripheral blood mononuclear cells (PB MNC) in 10 of 11 patients with MF tested. In all patients, there was a mean inhibition of 69% ranging from 35% to 100%. Suppression of autonomous CFU-GM formation by IL-10 was dose dependent and reversible by the addition of anti-IL-10 antibodies. Our results indicate that IL-10 is a potentially useful molecule to affect aberrant myelopoiesis in patients with MF.

  11. Early Growth Inhibition Is Followed by Increased Metastatic Disease with Vitamin D (Calcitriol) Treatment in the TRAMP Model of Prostate Cancer

    Science.gov (United States)

    Karasik, Ellen; Gillard, Bryan; Moser, Michael T.; Johnson, Candace S.; Trump, Donald L.; Foster, Barbara A.

    2014-01-01

    The active metabolite of vitamin D3, 1,25-dihydroxyvitamin D3 (calcitriol) has antiproliferative effects in non-aggressive prostate cancer, however, its effects in more aggressive model systems are still unclear. In these studies, effects of calcitriol and a less-calcemic vitamin D analog, QW-1624F2-2 (QW), were tested in vivo, using the aggressive autochthonous transgenic adenocarcinoma of mouse prostate (TRAMP) model. To study prevention of androgen-stimulated prostate cancer, vehicle, calcitriol (20 µg/kg), or QW (50 µg/kg) were administered to 4 week-old TRAMP mice intraperitoneal (i.p.) 3×/week on a MWF schedule for 14 weeks. Calcitriol and QW slowed progression of prostate cancer as indicated by reduced urogenital tract (p = 0.0022, calcitriol; p = 0.0009, QW) and prostate weights (p = 0.0178, calcitriol; p = 0.0086, QW). However, only calcitriol increased expression of the pro-differentiation marker, cadherin 1 (p = 0.0086), and reduced tumor proliferation (p = 0.0467). By contrast, neither vitamin D analog had any effect on castration resistant prostate cancer in mice treated pre- or post-castration. Interestingly, although vitamin D showed inhibitory activity against primary tumors in hormone-intact mice, distant organ metastases seemed to be enhanced following treatment (p = 0.0823). Therefore, TRAMP mice were treated long-term with calcitriol to further examine effects on metastasis. Calcitriol significantly increased the number of distant organ metastases when mice were treated from 4 weeks-of-age until development of palpable tumors (20–25 weeks-of-age)(p = 0.0003). Overall, data suggest that early intervention with vitamin D in TRAMP slowed androgen-stimulated tumor progression, but prolonged treatment resulted in development of a resistant and more aggressive disease associated with increased distant organ metastasis. PMID:24586868

  12. Inhibition of the processing of miR-25 by HIPK2-Phosphorylated-MeCP2 induces NOX4 in early diabetic nephropathy

    Science.gov (United States)

    Oh, Hyung Jung; Kato, Mitsuo; Deshpande, Supriya; Zhang, Erli; Sadhan, Das; Lanting, Linda; Wang, Mei; Natarajan, Rama

    2016-01-01

    Phosphorylated methyl-CpG binding protein2 (p-MeCP2) suppresses the processing of several microRNAs (miRNAs). Homeo-domain interacting protein kinase2 (HIPK2) phosphorylates MeCP2, a known transcriptional repressor. However, it is not known if MeCP2 and HIPK2 are involved in processing of miRNAs implicated in diabetic nephropathy. p-MeCP2 and HIPK2 levels were significantly increased, but Seven in Absentia Homolog1 (SIAH1), which mediates proteasomal degradation of HIPK2, was decreased in the glomeruli of streptozotocin injected diabetic mice. Among several miRNAs, miR-25 and its precursor were significantly decreased in diabetic mice, whereas primary miR-25 levels were significantly increased. NADPH oxidase4 (NOX4), a target of miR-25, was significantly increased in diabetic mice. Protein levels of p-MeCP2, HIPK2, and NOX4 were increased in high glucose (HG)- or TGF-β-treated mouse glomerular mesangial cells (MMCs). miR-25 (primary, precursor, and mature) and mRNA levels of genes indicated in the in vivo study showed similar trends of regulation in MMCs treated with HG or TGF-β. The HG- or TGF-β-induced upregulation of p-MeCP2, NOX4 and primary miR-25, but downregulation of precursor and mature miR-25, were attenuated by Hipk2 siRNA. These results demonstrate a novel role for the SIAH1/HIPK2/MeCP2 axis in suppressing miR-25 processing and thereby upregulating NOX4 in early diabetic nephropathy. PMID:27941951

  13. Intranasal immunization with heat shock protein 60 induces CD4(+) CD25(+) GARP(+) and type 1 regulatory T cells and inhibits early atherosclerosis.

    Science.gov (United States)

    Zhong, Y; Tang, H; Wang, X; Zeng, Q; Liu, Y; Zhao, X I; Yu, K; Shi, H; Zhu, R; Mao, X

    2016-03-01

    Atherosclerosis is an autoimmune inflammatory disease involving both innate and adaptive immune mechanisms. Immune tolerance induction may have therapeutic potential for the suppression of atherosclerosis. Current interest is directed towards mucosal tolerance induction, especially nasal tolerance. Previous studies have shown that heat shock protein 60 (HSP60) is recognized as an important autoantigen in atherosclerosis, and nasal or oral HSP60 can induce tolerance and ameliorate atherosclerosis by inducing several subsets of regulatory T cells (Tregs ) such as latency-associated peptide (LAP)(+) and forkhead box transcription factor 3 (FoxP3)(+) Tregs. However, little is known regarding the detailed mechanisms of nasal tolerance. Here, we again investigated the impact of nasal HSP60 on atherosclerosis and the mechanisms underlying the anti-atherosclerosis responses. We found that nasal HSP60 caused a significant 33·6% reduction in plaque size at the aortic root in the early stages of atherosclerosis (P increase in activated CD4(+) CD25(+) glycoprotein A repetitions predominant (GARP)(+) Tregs, type 1 Tregs (Tr1 cells), and CD4(+) CD25(+) FoxP3(+) Tregs, as well as a marked decrease in the numbers of type 1 and 17 T helper cells was detected in the spleens and cervical lymph nodes of HSP60-treated mice. Moreover, nasal HSP60 increases the production of transforming growth factor (TGF)-β and interleukin (IL)-10 and decreases the secretion of IFN-γ and IL-17. Interestingly, the atheroprotective role of nasal HSP60 treatment was abrogated partly by the neutralization of IL-10. Our findings show that nasal administration of HSP60 can attenuate atherosclerotic formation by inducing GARP(+) Tregs, Tr1 cells and FoxP3(+) Tregs, and that these Tregs maintain immune homeostasis by secreting IL-10 and TGF-β. © 2015 British Society for Immunology.

  14. Early growth inhibition is followed by increased metastatic disease with vitamin D (calcitriol treatment in the TRAMP model of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Adebusola Alagbala Ajibade

    Full Text Available The active metabolite of vitamin D3, 1,25-dihydroxyvitamin D3 (calcitriol has antiproliferative effects in non-aggressive prostate cancer, however, its effects in more aggressive model systems are still unclear. In these studies, effects of calcitriol and a less-calcemic vitamin D analog, QW-1624F2-2 (QW, were tested in vivo, using the aggressive autochthonous transgenic adenocarcinoma of mouse prostate (TRAMP model. To study prevention of androgen-stimulated prostate cancer, vehicle, calcitriol (20 µg/kg, or QW (50 µg/kg were administered to 4 week-old TRAMP mice intraperitoneal (i.p. 3×/week on a MWF schedule for 14 weeks. Calcitriol and QW slowed progression of prostate cancer as indicated by reduced urogenital tract (p = 0.0022, calcitriol; p = 0.0009, QW and prostate weights (p = 0.0178, calcitriol; p = 0.0086, QW. However, only calcitriol increased expression of the pro-differentiation marker, cadherin 1 (p = 0.0086, and reduced tumor proliferation (p = 0.0467. By contrast, neither vitamin D analog had any effect on castration resistant prostate cancer in mice treated pre- or post-castration. Interestingly, although vitamin D showed inhibitory activity against primary tumors in hormone-intact mice, distant organ metastases seemed to be enhanced following treatment (p = 0.0823. Therefore, TRAMP mice were treated long-term with calcitriol to further examine effects on metastasis. Calcitriol significantly increased the number of distant organ metastases when mice were treated from 4 weeks-of-age until development of palpable tumors (20-25 weeks-of-age(p = 0.0003. Overall, data suggest that early intervention with vitamin D in TRAMP slowed androgen-stimulated tumor progression, but prolonged treatment resulted in development of a resistant and more aggressive disease associated with increased distant organ metastasis.

  15. Efficacy of ALK5 inhibition in myelofibrosis

    Science.gov (United States)

    Zhao, Wanke; Ho, Wanting Tina; Han, Ying; Murdun, Cem; Mailloux, Adam W.; Zhang, Ling; Wang, Xuefeng; Budhathoki, Anjali; Pradhan, Kith; Rapaport, Franck; Wang, Huaquan; Shao, Zonghong; Ren, Xiubao; Steidl, Ulrich; Levine, Ross L.; Zhao, Zhizhuang Joe; Verma, Amit; Epling-Burnette, Pearlie K.

    2017-01-01

    Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-β family members are profibrotic cytokines and we observed significant TGF-β1 isoform overexpression in a large cohort of primary MF patient samples. Significant overexpression of TGF-β1 was also observed in murine clonal MPLW515L megakaryocytic cells. TGF-β1 stimulated the deposition of excessive collagen by mesenchymal stromal cells (MSCs) by activating the TGF-β receptor I kinase (ALK5)/Smad3 pathway. MSCs derived from MPLW515L mice demonstrated sustained overproduction of both collagen I and collagen III, effects that were abrogated by ALK5 inhibition in vitro and in vivo. Importantly, use of galunisertib, a clinically active ALK5 inhibitor, significantly improved MF in both MPLW515L and JAK2V617F mouse models. These data demonstrate the role of malignant hematopoietic stem cell (HSC)/TGF-β/MSC axis in the pathogenesis of MF, and provide a preclinical rationale for ALK5 blockade as a therapeutic strategy in MF.

  16. Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis

    Science.gov (United States)

    Sánchez-Abarca, Luis Ignacio; Rosón-Burgo, Beatriz; Redondo, Alba; Rico, Ana; Preciado, Silvia; Ortega, Rebeca; Rodríguez, Concepción; Muntión, Sandra; Hernández-Hernández, Ángel; De Las Rivas, Javier; González, Marcos; González Porras, José Ramón; del Cañizo, Consuelo; Sánchez-Guijo, Fermín

    2017-01-01

    There is evidence of continuous bidirectional cross-talk between malignant cells and bone marrow-derived mesenchymal stromal cells (BM-MSC), which favors the emergence and progression of myeloproliferative neoplastic (MPN) diseases. In the current work we have compared the function and gene expression profile of BM-MSC from healthy donors (HD-MSC) and patients with MPN (JAK2V617F), showing no differences in the morphology, proliferation and differentiation capacity between both groups. However, BM-MSC from MPN expressed higher mean fluorescence intensity (MIF) of CD73, CD44 and CD90, whereas CD105 was lower when compared to controls. Gene expression profile of BM-MSC showed a total of 169 genes that were differentially expressed in BM-MSC from MPN patients compared to HD-MSC. In addition, we studied the ability of BM-MSC to support the growth and survival of hematopoietic stem/progenitor cells (HSPC), showing a significant increase in the number of CFU-GM colonies when MPN-HSPC were co-cultured with MPN-MSC. Furthermore, MPN-MSC showed alteration in the expression of genes associated to the maintenance of hematopoiesis, with an overexpression of SPP1 and NF-kB, and a downregulation of ANGPT1 and THPO. Our results suggest that BM-MSC from JAK2+ patients differ from their normal counterparts and favor the maintenance of malignant clonal hematopoietic cells. PMID:28796790

  17. Expression of p21(Cip1/Waf1/Sdi1) and p27(Kip1) cyclin-dependent kinase inhibitors during human hematopoiesis.

    Science.gov (United States)

    Taniguchi, T; Endo, H; Chikatsu, N; Uchimaru, K; Asano, S; Fujita, T; Nakahata, T; Motokura, T

    1999-06-15

    Expression of p21 and p27 cyclin-dependent kinase inhibitors is associated with induced differentiation and cell-cycle arrest in some hematopoietic cell lines. However, it is not clear how these inhibitors are expressed during normal hematopoiesis. We examined various human hematopoietic colonies derived from cord blood CD34(+) cells, bone marrow, and peripheral blood cells using a quantitative reverse transcription-polymerase chain reaction assay, immunochemistry, and/or Western blot analysis. p21 mRNA was expressed increasingly over time in all of the colonies examined (granulocytes, macrophages, megakaryocytes, and erythroblasts), whereas p27 mRNA levels remained low, except for erythroid bursts. Erythroid bursts expressed both p21 and p27 mRNAs with differentiation but expressed neither protein, whereas both proteins were expressed in megakaryocytes and peripheral blood monocytes. In bone marrow, p21 was immunostained almost exclusively in a subset of megakaryocytes and p27 protein was present in megakaryocytes, plasma cells, and endothelial cells. In megakaryocytes, reciprocal expression of p27 to Ki-67 was evident and an inverse relationship between p21 and Ki-67 positivities was also present, albeit less obvious. These observations suggest that a complex lineage-specific regulation is involved in p21 and p27 expression and that these inhibitors are involved in cell-cycle exit in megakaryocytes.

  18. Third party cord blood transplant boosts autologous hematopoiesis in a case of persistent bone marrow aplasia after double transplant failure for β-thalassemia major

    Directory of Open Access Journals (Sweden)

    Giuseppe Visani

    2013-04-01

    Full Text Available A 9-year-old female received a double allogeneic stem cell transplant (SCT from an ABO-incompatible HLA-matched sibling for β-thalassemia major, without achieving a complete donor chimerism. Subsequently, the patient received autologous SCT and five donor lymphocyte infusion, without increasing donor chimerism. After the double transplant failure, we performed an unrelated transplant from a full-matched umbilical cord blood (UCBT. Due to the severe immunosuppression of the patient, we did not administer any conditioning regimen nor GVHD prophylaxis. On day +40 after UCBT, trilinear engraftment was documented. Surprisingly, the hematopoietic reconstitution was related to the re-expansion of the autologous (β-thalassemic hematopoietic stem cell, as documented by chimerism studies on both peripheral blood and bone marrow. At present, 30 months after UCBT, there is stable hematopoietic autologous reconstitution. This is the first description of the restoration of autologous hematopoiesis obtained with cord blood infusion in a thalassemia-major patient after a double transplant failure.

  19. A20 zinc finger protein inhibits TNF-induced apoptosis and stress response early in the signaling cascades and independently of binding to TRAF2 or 14-3-3 proteins.

    Science.gov (United States)

    Lademann, U; Kallunki, T; Jäättelä, M

    2001-03-01

    A20 zinc finger protein is a negative regulator of tumor necrosis factor (TNF)-induced signaling pathways leading to apoptosis, stress response and inflammation. A20 has been shown to bind to TNF-receptor-associated factor 2 (TRAF2) and 14-3-3 chaperone proteins. Our data indicate that the zinc finger domain of A20 is sufficient and that neither TRAF2 nor 14-3-3 binding is necessary for the inhibitory effects of A20. Mutations in the 14-3-3 binding site of A20 did, however, result in a partial cleavage of A20 protein suggesting that 14-3-3 chaperone proteins may stabilize A20. Furthermore, we show that A20 acts early in TNF-induced signaling cascades blocking both TNF-induced rapid activation of c-Jun N-terminal kinase and processing of the receptor-associated caspase-8. Taken together our data indicate that the zinc finger domain of A20 contains all necessary functional domains required for the inhibition of TNF signaling and that A20 may function at the level of the receptor signaling complex.

  20. Cell fate decisions in malignant hematopoiesis: leukemia phenotype is determined by distinct functional domains of the MN1 oncogene.

    Directory of Open Access Journals (Sweden)

    Courteney K Lai

    Full Text Available Extensive molecular profiling of leukemias and preleukemic diseases has revealed that distinct clinical entities, like acute myeloid (AML and T-lymphoblastic leukemia (T-ALL, share similar pathogenetic mutations. It is not well understood how the cell of origin, accompanying mutations, extracellular signals or structural differences in a mutated gene determine the phenotypic identity of leukemias. We dissected the functional aspects of different protein regions of the MN1 oncogene and their effect on the leukemic phenotype, building on the ability of MN1 to induce leukemia without accompanying mutations. We found that the most C-terminal region of MN1 was required to block myeloid differentiation at an early stage, and deletion of an extended C-terminal region resulted in loss of myeloid identity and cell differentiation along the T-cell lineage in vivo. Megakaryocytic/erythroid lineage differentiation was blocked by the N-terminal region. In addition, the N-terminus was required for proliferation and leukemogenesis in vitro and in vivo through upregulation of HoxA9, HoxA10 and Meis2. Our results provide evidence that a single oncogene can modulate cellular identity of leukemic cells based on its active gene regions. It is therefore likely that different mutations in the same oncogene may impact cell fate decisions and phenotypic appearance of malignant diseases.

  1. Hematopoietic Stem/Progenitor Cells Express Several Functional Sex Hormone Receptors—Novel Evidence for a Potential Developmental Link Between Hematopoiesis and Primordial Germ Cells

    Science.gov (United States)

    Mierzejewska, Katarzyna; Borkowska, Sylwia; Suszynska, Ewa; Suszynska, Malwina; Poniewierska-Baran, Agata; Maj, Magda; Pedziwiatr, Daniel; Adamiak, Mateusz; Abdel-Latif, Ahmed; Kakar, Sham S.; Ratajczak, Janina; Kucia, Magda

    2015-01-01

    Evidence has accumulated that hematopoietic stem progenitor cells (HSPCs) share several markers with the germline, a connection supported by reports that prolactin, androgens, and estrogens stimulate hematopoiesis. To address this issue more directly, we tested the expression of receptors for pituitary-derived hormones, such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), on purified murine bone marrow (BM) cells enriched for HSPCs and tested the functionality of these receptors in ex vivo signal transduction studies and in vitro clonogenic assays. We also tested whether administration of pituitary- and gonad-derived sex hormones (SexHs) increases incorporation of bromodeoxyuridine (BrdU) into HSPCs and expansion of hematopoietic clonogenic progenitors in mice and promotes recovery of blood counts in sublethally irradiated animals. We report for the first time that HSPCs express functional FSH and LH receptors and that both proliferate in vivo and in vitro in response to stimulation by pituitary SexHs. Furthermore, based on our observations that at least some of CD45− very small embryonic-like stem cells (VSELs) may become specified into CD45+ HSPCs, we also evaluated the expression of pituitary and gonadal SexHs receptors on these cells and tested whether these quiescent cells may expand in vivo in response to SexHs administration. We found that VSELs express SexHs receptors and respond in vivo to SexHs stimulation, as evidenced by BrdU accumulation. Since at least some VSELs share several markers characteristic of migrating primordial germ cells and can be specified into HSPCs, this observation sheds new light on the BM stem cell hierarchy. PMID:25607657

  2. Inhibition of the Mitochondrial Protease ClpP as a Therapeutic Strategy for Human Acute Myeloid Leukemia.

    Science.gov (United States)

    Cole, Alicia; Wang, Zezhou; Coyaud, Etienne; Voisin, Veronique; Gronda, Marcela; Jitkova, Yulia; Mattson, Rachel; Hurren, Rose; Babovic, Sonja; Maclean, Neil; Restall, Ian; Wang, Xiaoming; Jeyaraju, Danny V; Sukhai, Mahadeo A; Prabha, Swayam; Bashir, Shaheena; Ramakrishnan, Ashwin; Leung, Elisa; Qia, Yi Hua; Zhang, Nianxian; Combes, Kevin R; Ketela, Troy; Lin, Fengshu; Houry, Walid A; Aman, Ahmed; Al-Awar, Rima; Zheng, Wei; Wienholds, Erno; Xu, Chang Jiang; Dick, John; Wang, Jean C Y; Moffat, Jason; Minden, Mark D; Eaves, Connie J; Bader, Gary D; Hao, Zhenyue; Kornblau, Steven M; Raught, Brian; Schimmer, Aaron D

    2015-06-08

    From an shRNA screen, we identified ClpP as a member of the mitochondrial proteome whose knockdown reduced the viability of K562 leukemic cells. Expression of this mitochondrial protease that has structural similarity to the cytoplasmic proteosome is increased in leukemic cells from approximately half of all patients with AML. Genetic or chemical inhibition of ClpP killed cells from both human AML cell lines and primary samples in which the cells showed elevated ClpP expression but did not affect their normal counterparts. Importantly, Clpp knockout mice were viable with normal hematopoiesis. Mechanistically, we found that ClpP interacts with mitochondrial respiratory chain proteins and metabolic enzymes, and knockdown of ClpP in leukemic cells inhibited oxidative phosphorylation and mitochondrial metabolism.

  3. Inhibition of the mitochondrial protease, ClpP, as a therapeutic strategy for human acute myeloid leuekmia

    Science.gov (United States)

    Cole, Alicia; Wang, Zezhou; Coyaud, Etienne; Voisin, Veronique; Gronda, Marcela; Jitkova, Yulia; Mattson, Rachel; Hurren, Rose; Babovic, Sonja; Maclean, Neil; Restall, Ian; Wang, Xiaoming; Jeyaraju, Danny V.; Sukhai, Mahadeo A.; Prabha, Swayam; Bashir, Shaheena; Ramakrishnan, Ashwin; Leung, Elisa; Qia, Yi Hua; Zhang, Nianxian; Combes, Kevin R.; Ketela, Troy; Lin, Fengshu; Houry, Walid A.; Aman, Ahmed; Al-awar, Rima; Zheng, Wei; Wienholds, Erno; Xu, Chang Jiang; Dick, John; Wang, Jean C.Y.; Moffat, Jason; Minden, Mark D.; Eaves, Connie J.; Bader, Gary D.; Hao, Zhenyue; Kornblau, Steven M.; Raught, Brian; Schimmer, Aaron D.

    2015-01-01

    Summary From an shRNA screen, we identified ClpP as a member of the mitochondrial proteome whose knockdown reduced the viability of K562 leukemic cells. Expression of this mitochondrial protease that has structural similarity to the cytoplasmic proteosome is increased in the leukemic cells from approximately half of patients with AML. Genetic or chemical inhibition of ClpP killed cells from both human AML cell lines and primary samples in which the cells showed elevated ClpP expression, but did not affect their normal counterparts. Importantly, Clpp knockout mice were viable with normal hematopoiesis. Mechanistically, we found ClpP interacts with mitochondrial respiratory chain proteins and metabolic enzymes, and knockdown of ClpP in leukemic cells inhibited oxidative phosphorylation and mitochondrial metabolism. PMID:26058080

  4. Infant Predictors of Behavioural Inhibition

    Science.gov (United States)

    Moehler, Eva; Kagan, Jerome; Oelkers-Ax, Rieke; Brunner, Romuald; Poustka, Luise; Haffner, Johann; Resch, Franz

    2008-01-01

    Behavioural inhibition in the second year of life is a hypothesized predictor for shyness, social anxiety and depression in later childhood, adolescence and even adulthood. To search for the earliest indicators of this fundamental temperamental trait, this study examined whether behavioural characteristics in early infancy can predict behavioural…

  5. Early Developments, 2002.

    Science.gov (United States)

    Winton, Pam, Ed.; Buysse, Virginia, Ed.

    2002-01-01

    This document consists of the three 2002 issues of a journal reporting new research in early child development conducted by the Frank Porter Graham Child Development Center (FPG) at the University of North Carolina at Chapel Hill. Articles in the Winter 2002 issue highlight some current work at FPG on factors that enhance or inhibit social and…

  6. Thrombopoietin mobilizes CD34+ cell subsets into peripheral blood and expands multilineage progenitors in bone marrow of cancer patients with normal hematopoiesis.

    Science.gov (United States)

    Murray, L J; Luens, K M; Estrada, M F; Bruno, E; Hoffman, R; Cohen, R L; Ashby, M A; Vadhan-Raj, S

    1998-03-01

    Thrombopoietin (TPO), the primary regulator of megakaryocytopoiesis, also mediates biologic effects in vitro on hematopoietic cells more primitive than those committed to the megakaryocyte (MK) lineage. To assess the spectrum of hematopoietic effects of recombinant human (rh)TPO in vivo, we evaluated its proliferative effect on bone marrow (BM) progenitor cells, its maturation effect on BM MKs, and its mobilizing effect on peripheral blood (PB) progenitor cells during a phase I clinical laboratory investigation in which rhTPO was administered to cancer patients with normal hematopoiesis. Twelve patients received a single dose of rhTPO (0.3, 0.6, 1.2, or 2.4 microg/kg of body weight) prior to chemotherapy. BM and PB samples from these patients were analyzed 1 to 2 days before (baseline) and 7 days after rhTPO administration. At higher doses (1.2-2.4 microg/kg), rhTPO produced increased concentrations of primitive CD34+Thy-1+Lin-cells (mean 2.1-fold), CD34+mpl+ cells (mean 5.2-fold), CD34+CD41+CD14- promegakaryoblasts (mean 2.9-fold), and myeloerythroid colony-forming cells (mean threefold) in BM. No significant increases in the frequency of BM colony-forming unit (CFU)-MK were observed. Elevated numbers of both immature (2N-8N) and more mature (64N and 128N) CD41+ MKs were detected in BM, with modal ploidy remaining at 16N. Higher doses of rhTPO (1.2-2.4 microg/kg) also induced increased concentrations of CD34+ cell subsets in PB, including both primitive CD34+Thy-1+Lin- (mean 8.8-fold) and MK lineage-committed CD34+CD41+CD14- cells (mean 14.6-fold) as well as various myeloerythroid colony-forming cells (mean 3.6- to 5.5-fold). These results demonstrate that rhTPO given as a single dose not only promotes proliferation and maturation of cells of the MK lineage, but also expands the pool of BM primitive hematopoietic cells. In addition, rhTPO induces mobilization of hematopoietic progenitors into peripheral circulation. The extent to which such multilineage effects on

  7. Hemorrhage Exacerbates Radiation Effects on Survival, Leukocytopenia, Thrombopenia, Erythropenia, Bone Marrow Cell Depletion and Hematopoiesis, and Inflammation-Associated microRNAs Expression in Kidney.

    Directory of Open Access Journals (Sweden)

    Juliann G Kiang

    Full Text Available Exposure to high-dose radiation results in detrimental effects on survival. The effects of combined trauma, such as radiation in combination with hemorrhage, the typical injury of victims exposed to a radiation blast, on survival and hematopoietic effects have yet to be understood. The purpose of this study was to evaluate the effects of radiation injury (RI combined with hemorrhage (i.e., combined injury, CI on survival and hematopoietic effects, and to investigate whether hemorrhage (Hemo enhanced RI-induced mortality and hematopoietic syndrome. Male CD2F1 mice (10 weeks old were given one single exposure of γ- radiation (60Co at various doses (0.6 Gy/min. Within 2 hr after RI, animals under anesthesia were bled 0% (Sham or 20% (Hemo of total blood volume via the submandibular vein. In these mice, Hemo reduced the LD50/30 for 30-day survival from 9.1 Gy (RI to 8.75 Gy (CI with a DMF of 1.046. RI resulted in leukocytopenia, thrombopenia, erythropenia, and bone marrow cell depletion, but decreased the caspase-3 activation response. RI increased IL-1β, IL-6, IL-17A, and TNF-α concentrations in serum, bone marrow, ileum, spleen, and kidney. Some of these adverse alterations were magnified by CI. Erythropoietin production was increased in kidney and blood more after CI than RI. Furthermore, CI altered the global miRNAs expression in kidney and the ingenuity pathway analysis showed that miRNAs viz., let-7e, miR-30e and miR-29b that were associated with hematopoiesis and inflammation. This study provides preliminary evidence that non-lethal Hemo exacerbates RI-induced mortality and cell losses associated with high-dose γ-radiation. We identified some of the initial changes occurring due to CI which may have facilitated in worsening the injury and hampering the recovery of animals ultimately resulting in higher mortality.

  8. Hematopoiesis Primer Modeling Combined Injury

    Science.gov (United States)

    2012-05-01

    2010 Feb; 125( Suppl 2):S3-23. Dainiak N, J.K. Waselenko. Biology and clinical features of radiation injury in adults [Internet]. UpToDate ® 2004...Available from: http://www.sassit.co.za/Journals/General%20complications/ UpToDate %C2%AE%20%27Biolog y%20and%20clinical%20features%20of%20radiation

  9. Mechanisms of early visual processing in the medulla of the locust optic lobe: how self-inhibition, spatial-pooling, and signal rectification contribute to the properties of transient cells.

    Science.gov (United States)

    Osorio, D

    1991-10-01

    In the arthropod medulla, which is the second ganglion on the afferent visual pathway, a column of about 40 cells represents each point in space (i.e. compound eye facet). Some stages of visual processing underlying the responses of one class of cells in the locust medulla have been identified. These transient cells give very similar responses to intensity increments and decrements, and also to pulses and steps; there is no spontaneous activity and a stimulus causes one or two spikes to fire at fixed latencies. Movement, however, produces a prolonged spike discharge by successive excitation of subunits within the receptive field. One of the main features of the transient cells' responses is a self-inhibition which attenuates responses to successive stimuli at one point. This inhibition is restricted to the outputs of single receptor (rhabdom), it decays after about 100 ms, and is polarity sensitive so that stimuli of one polarity (e.g. dimming) do not inhibit responses to stimuli of the opposite polarity (e.g. brightening). The inhibition effectively alters the contrast threshold of the cells, because after adaptation with stimuli of one contrast, a modest (less than 20%) increase in contrast is sufficient to elicit an unadapted response. Transient cells are not directionally selective and there are no local spatio-temporal interactions of the kind necessary for directional selectivity. But, by analogy with the directional veto in directionally selective cells in the rabbit retina (Barlow & Levick, 1965), self-inhibition is suggested as a mechanism of non-directional motion detection. After the inhibition, there is some spatial pooling of signals which is followed by rectification. The transient cells' spiking outputs could abstract a refined subset of visual information which may encode the presence, but not the direction, amplitude, or polarity of moving object borders.

  10. Matriz extracelular e enzimas degradatórias na hematopoese e doenças onco-hematológicas Extracellular matrix in hematopoiesis and hematologic malignancies

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2008-10-01

    Full Text Available A matriz extracelular (MEC é uma rede complexa composta por quatro grandes classes de macromoléculas: colágenos, proteoglicanos (PGs, glicosaminoglicanos (GAGs e glicoproteínas adesivas. As interações entre as células e a MEC são cruciais para determinar os padrões de comportamento celular, tais como crescimento, morte, diferenciação e motilidade. A hematopoese é o sistema responsável pela produção das células sangüíneas. O controle da proliferação e diferenciação destas células é feito através da interação das células com o microambiente da medula óssea (matriz extracelular. A adesão de progenitores hematopoéticos a moléculas da MEC e a ativação das integrinas são modulados por uma variedade de citocinas e fatores de crescimento, e esta modulação parece ser o mecanismo de regulação que influencia a proliferação de células-tronco e progenitores hematopoéticos, migração transendotelial ou transestromal e homing. Tanto no processo de migração, homing e invasão tumoral, as células seguem os seguintes passos: 1 - Degradação da MEC por enzimas secretadas pelas células: metaloproteinases, colagenases, plasmina, catepsinas, glicosidases e heparanases; 2 - Locomoção das células na região da MEC previamente degradada pelas enzimas; 3 - Adesão das células via receptores específicos da superfície celular, que geralmente interagem com componentes da MEC. Nas doenças onco-hematológicas, a interação das células neoplásicas com a matriz extracelular também influencia na agressividade e prognóstico da doença.The extracellular matrix (ECM is a complex structure composed of collagens, proteoglycans, glycosaminoglycans and adhesive glycoproteins. Interactions between the cells and the ECM are crucial to determine cell behavior, such as growth, death, differentiation and motility. Hematopoiesis is the system responsible for the production of blood cells. The control of proliferation and

  11. Regression of extramedullary hematopoiesis with hydroxyurea therapy in ß-thalassemia intermedia Regressão da hematopoese extramedular na talassemia intermédia após terapia com hidroxiuréia

    Directory of Open Access Journals (Sweden)

    Perla Vicari

    2006-03-01

    Full Text Available Excessive ineffective erythropoiesis in thalassemia intermedia may cause extramedullary hematopoiesis (EMH, resulting in spleen and liver enlargement or masses in several tissues, mainly paravertebrally. Other less frequent locations of diffuse compensatory EMH are kidneys, adrenal glands, breasts, spinal cord, pleura, pericardium, duramater, adipose tissue and skin, although intrathoracic extramedullary hematopoiesis is a rare condition. Management strategies have included radiation and transfusion therapy. Hydroxyurea with transfusion therapy has been associated with clinical regression of EMH in thalassemia. We report an uncommon case of intrathoracic EMH in a patient with beta-thalassemia intermedia, that showed significant recovery with HU therapy.A excessiva eritropoese ineficaz na talassemia pode causar hemato-poese extramedular (HEM, resultando em hepatomegalia, esplenomegalia e massas de tecido hematopoético em diversos tecidos. Localizações de HEM compensatória menos freqüentes são rins, glândulas adrenais, canal medular, pleura, pericárdio, duramáter, tecido adiposo e pele. Entretanto, HEM intratorácica é condição rara. Estratégias terapêuticas incluem radiação e transfusões sanguíneas. O uso de hidroxiuréia concomitante a terapêutica transfusional foi associado à regressão clínica da HEM na talassemia. Nós descrevemos um caso de HEM intratorácica em paciente portadora de talassemia intermédia, com significante regressão do quadro após terapêutica isolada com hidroxiuréia.

  12. Treatment research on early diabetic nephropathy rats by resveratrol inhibiting mesangial cell%白藜芦醇抑制系膜细胞增殖治疗糖尿病大鼠早期肾损害的研究

    Institute of Scientific and Technical Information of China (English)

    刘珊珊; 江蓓; 李冰; 韩霞; 郭玲; 宋剑; 白凤; 甄军晖; 胡昭

    2014-01-01

    Objective To investigate the potential renoprotective effect of resveratrol (RSV)on dia-betic nephropathy and mesangial cell,to provide experimental evidence for treatment of resveratrol on diabetic nephropathy. Methods Male diabetic Wistar rats were injected with to induce diabetic rats,and were ran-domly divided into diabetic group (DM group,n=8)and RSV treated group (RSV group,n=8). The nor-mal Wistar rats were enrolled as control group (C group,n =8). After 8 weeks,fasting plasma glucose (FPG),serum creatinine (SCr),Kidney weight/body weight (Kw/Bw),24 h amount of urine protein and the pathologic changes of renal tissue were compared in three groups. Cultured rat mesangial cells (RMC)were exposed to advaneed glyeation endproduets (AGE)in the absence and presence of indicated concentrations of resveratrol (2.5,5.0 and 1 0.0 μmol/L)and were divided into control group (C group),AGE group,RSV 2.5 ,5.0 and 1 0.0 groups. Proliferation,cell cycle and apoptosis of RMC were analyzed. Results After 8 weeks,the levels of FPG,SCr,Kw/Bw,24 h amount of urine protein of DMgroup were higher than those of C group (P<0.01 ). The levels of FPG,SCr,Kw/Bw and 24 h amount of urine protein of RSV group were lower than those of DM group (P<0.05 ,P<0.01 ). The pathologic changes were ameliorated in RSV group. Pro-liferation in AGE group was significantly higher compared to C group (P<0.01 ). Proliferation of all RSV groups were lower compared to AGE group (P<0.01 ). The percent of G1 in AGE group increased relative to C group (P<0.05 ). The percent of G1 in RSV5 and RSV1 0 groups decreased compared to AGE group (P<0.05 ,P<0.01 ). The percent of S in AGE group reduced compared to C group (P<0.05 ). The percent of S in RSV5 and RSV1 0 groups increased compared to AGE group (P<0.05 ,P<0.01 ). The percent of apopto-sis in RSV5 and RSV1 0 groups were higher compared to AGE group (P<0.05 ,P<0.01 ). Conclusion Resveratrol can improve early renal damage in diabetic rats,the mechanism may be

  13. Transplante de células-tronco hematopoéticas e a regeneração da hematopoese Hematopoietic stem cell transplant and recovery of hematopoiesis

    Directory of Open Access Journals (Sweden)

    Afonso C. Vigorito

    2009-08-01

    reconstitution after using mobilized peripheral blood is faster compared to bone marrow. Umbilical cord blood has emerged as another rich source of hematopoietic stem cells for transplantation. The minimal risk to the donor and the rapid availability are among the great advantages of this stem cell source. The slow recovery of neutrophil and platelet counts is the major clinical concern. Bone marrow biopsy is an important tool for obtaining information regarding the hematopoietic recovery after hematopoietic stem cell transplantation. The histopathological hematopoietic reconstitution of the bone marrow after umbilical cord blood transplantation is delayed compared to bone marrow transplantation. However, gradual hematopoietic recovery is seen, and afterwards no other differences comparing bone marrow and umbilical cord transplants are observed. Bone marrow histology does not elucidate the genotypic origin of post-transplant hematopoiesis. Hence, chimerism analysis has become an important instrument for engraftment surveillance, and is the basis for treatment intervention to avoid graft rejection, to maintain engraftment, and to treat clinical imminent relapse by immunotherapy. This review focuses on the hematopoietic recovery after hematopoietic stem cell transplantation.

  14. The IFITMs Inhibit Zika Virus Replication

    Directory of Open Access Journals (Sweden)

    George Savidis

    2016-06-01

    Full Text Available Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses.

  15. Changes in the expression of LIMP-2 during cerulein-induced pancreatitis in rats: Effect of inhibition of leukocyte infiltration, cAMP and MAPKs early on in its development.

    Science.gov (United States)

    García-Hernández, Violeta; Sarmiento, Nancy; Sánchez-Bernal, Carmen; Coveñas, Rafael; Hernández-Hernández, Angel; Calvo, José J; Sánchez-Yagüe, Jesús

    2016-03-01

    Lysosomal integral membrane protein-2 (LIMP-2) is an important protein in lysosomal biogenesis and function and also plays a role in the tissue inflammatory response. It is known that lysosomes play a central role in acute pancreatitis, with inflammatory cell infiltration triggering the disease early on. In this study we report increases in pancreatic LIMP-2 protein and mRNA levels as early events that occur during the development of cerulein (Cer)-induced acute pancreatitis (AP) in rats. GdCl3, a macrophage inhibitor, but not FK506, a T lymphocyte inhibitor, was able to reverse the increase in LIMP-2 expression after Cer treatment, although such reversion was abolished if the animals were depleted of neutrophils due to a vinblastine sulfate pre-treatment. Immunostaining revealed that the cellular source of LIMP-2 was mainly acinar cells. Additionally, pre-treatments with the MAPKs inhibitors SP600125 and PD98059, inhibitors of JNK and ERK½ activation, respectively, but not of rolipram, a type IV phosphodiesterase inhibitor, suppressed the increase in the expression of LIMP-2 after Cer administration. Together, these results indicate that neutrophils are able to drive a macrophage activation that would regulate the increase in LIMP-2 expression during the early phase of Cer-induced AP, with the stress kinases JNK and ERK½ also playing a coordinated role in the increase of LIMP-2 expression due to Cer.

  16. Factors significantly increasing or inhibiting early stages of malignant melanoma (M.M.) and non-invasive evaluation of new treatment by ingestion and external application of optimal doses of the most effective anti-M.M. substances: haritaki, cilantro, vitamin D3, nori, EPA with DHA, & application of special (+) solar energy stored paper, which reduced the M.M. active area & asbestos rapidly.

    Science.gov (United States)

    Omura, Yoshiaki; Jones, Marilyn; Duvvi, Harsha; Paluch, Kamila; Shimotsuura, Yasuhiro; Ohki, Motomu

    2013-01-01

    Sterilizing the pre-cancer skin of malignant melanoma (M.M.) with 70% Isopropyl alcohol intensified malignancy & the malignant response extended to surrounding normal looking skin, while sterilizing with 80% (vodka) or 12% (plum wine) ethyl alcohol completely inhibited M.M. in the area (both effects lasted for about 90 minutes initially). Burnt food (bread, vegetables, meat, and fish), a variety of smoked & non-smoked fish-skin, many animal's skin, pepper, Vitamin C over 75 mg, mango, pineapple, coconut, almond, sugars, Saccharine & Aspartame, garlic, onion, etc & Electromagnetic field from cellular phones worsened M.M. & induced abnormal M.M. response of surrounding skin. We found the following factors inhibit early stage of M.M. significantly: 1) Increasing normal cell telomere, by taking 500 mg Haritaki, often reached between 400-1150 ng& gradually diminished, but the M.M. response was completely inhibited until normal cell telomeres are reduced to 150 ng, which takes 6-8 hours. More than 70 mg Vitamin C, Orange Juice, & other high Vitamin C containing substances shouldn't be taken because they completely inhibit the effects of Haritaki. 2) We found Chrysotile asbestos & Tremolite asbestos (% of the Chrysotile amount) coexist. A special Cilantro tablet was used to remove asbestos & some toxic metals. 3) Vitamin D3 400 I.U. has a maximum inhibiting effect on M.M. but 800 I.U. or higher promotes malignancy. 4) Noricontaining Iodine, etc., was used. 5) EPA 180 mm with DHA 120 mg was most effectively used after metastasis to the surrounding skin was eliminated. When we combined 1 Cilantro tablet & Vitamin D3 400 I.U. withsmall Nori pieces & EPA with DHA, the effect of complete inhibition of M.M. lasted 9-11 hours. When these anti-M.M.substances (Haritaki, Vitamin D3, Cilantro, Nori, EPA. with DHA) were taken together, the effect lasted 12-14 hoursand M.M. involvement in surrounding normal-looking skin disappeared rapidly & original dark brown or black are as

  17. Extramedullary hemopoiesis with undiagnosed, early myelofibrosis causing spastic compressive myelopathy: Case report and review

    Directory of Open Access Journals (Sweden)

    Dewan Udita

    2010-01-01

    Full Text Available Extramedullary hemopoiesis (EMH is a common compensatory phenomenon associated with chronic hemolytic anemia. Abnormal hemopoietic tissue usually develops in sites responsible for fetal hemopoiesis, such as spleen, liver and kidney; however, other regions such as the spine may also become involved. In this study, a patient presenting with spastic paraparesis due to EMH in the dorsal spine is described. A 62-year-old man presented with paraparesis. Magnetic resonance imaging revealed a large lesion involving the T2-L2 vertebral levels with a large extradural component causing thecal sac compression. Laminectomy with excision of mass was carried out. The histopathology revealed EMH. The patient had no known cause for EMH at the time of diagnosis but, subsequently, a bone marrow examination revealed early myelofibrosis. This case represents the rare occurrence of a large extradural extramedullary hematopoiesis in a patient with no known predisposing factor for hemopoiesis at the time of presentation.

  18. Five Transcription Factors and FGF Pathway Inhibition Efficiently Induce Erythroid Differentiation in the Epiblast

    Directory of Open Access Journals (Sweden)

    Wei Weng

    2014-03-01

    Full Text Available Primitive erythropoiesis follows a stereotypic developmental program of mesoderm ventralization and internalization, hemangioblast formation and migration, and erythroid lineage specification. Induction of erythropoiesis is inefficient in either ES/iPS cells in vitro or nonhemangioblast cell populations in vivo. Using the chick model, we report that epiblast cells can be directly and efficiently differentiated into the erythroid lineage by expressing five hematopoietic transcription regulators (SCL+LMO2+GATA2+LDB1+E2A and inhibiting the FGF pathway. We show that these five genes are expressed with temporal specificity during normal erythropoiesis. Initiation of SCL and LMO2 expression requires FGF activity, whereas erythroid differentiation is enhanced by FGF inhibition. The lag between hematopoiesis and erythropoiesis is attributed to sequential coregulator expression and hemangioblast migration. Globin gene transcription can be ectopically and prematurely induced by manipulating the availability of these factors and the FGF pathway activity. We propose that similar approaches can be taken for efficient erythroid differentiation in vitro.

  19. Early clerkships

    NARCIS (Netherlands)

    Kamalski, Digna M. A.; Ter Braak, Edith W. M. T.; Ten Cate, Olle Th. J.; Borleffs, Jan C. C.

    2007-01-01

    Background: Early clinical experience is being introduced in innovative, vertically integrated undergraduate medical curricula. While in many cases, this early clinical experience is limited to the presence of patients during lectures, in Utrecht students gain 'hands on' experience of daily clinical

  20. Role of SDF-1 (CXCL12) in regulating hematopoietic stem and progenitor cells traffic into the liver during extramedullary hematopoiesis induced by G-CSF, AMD3100 and PHZ.

    Science.gov (United States)

    Mendt, Mayela; Cardier, Jose E

    2015-12-01

    The stromal cell derived factor 1 (SDF-1/CXCL12) plays an essential role in the homing of hematopoietic stem and progenitor cells (HSPCs) to bone marrow (BM). It is not known whether SDF-1 may also regulate the homing of HSPCs to the liver during extramedullary hematopoiesis (EMH). Here, we investigated the possible role of SDF-1 in attracting HSPCs to the liver during experimental EMH induced by the hematopoietic mobilizers G-CSF, AMD3100 and phenylhydrazine (PHZ). Mice treated with G-CSF, AMD3100 and PHZ showed a significant increase in the expression of SDF-1 in the liver sinusoidal endothelial cells (LSECs) microenvironments. Liver from mice treated with the hematopoietic mobilizers showed HSPCs located adjacent to the LSEC microenvironments, expressing high levels of SDF-1. An inverse relationship was found between the hepatic SDF-1 levels and those in the BM. In vitro, LSEC monolayers induced the migration of HSPCs, and this effect was significantly reduced by AMD3100. In conclusion, our results provide the first evidence showing that SDF-1 expressed by LSEC can be a major player in the recruitment of HSPCs to the liver during EMH induced by hematopoietic mobilizers.

  1. Screening and Analysis of Janelia FlyLight Project Enhancer-Gal4 Strains Identifies Multiple Gene Enhancers Active During Hematopoiesis in Normal and Wasp-Challenged Drosophila Larvae.

    Science.gov (United States)

    Tokusumi, Tsuyoshi; Tokusumi, Yumiko; Brahier, Mark S; Lam, Victoria; Stoller-Conrad, Jessica R; Kroeger, Paul T; Schulz, Robert A

    2017-02-09

    A GFP expression screen has been conducted on >1000 Janelia FlyLight Project enhancer-Gal4 lines to identify transcriptional enhancers active in the larval hematopoietic system. A total of 190 enhancers associated with 87 distinct genes showed activity in cells of the third instar larval lymph gland and hemolymph. That is, gene enhancers were active in cells of the lymph gland posterior signaling center (PSC), medullary zone (MZ), and/or cortical zone (CZ), while certain of the transcriptional control regions were active in circulating hemocytes. Phenotypic analyses were undertaken on 81 of these hematopoietic-expressed genes, with nine genes characterized in detail as to gain- and loss-of-function phenotypes in larval hematopoietic tissues and blood cells. These studies demonstrated the functional requirement of the cut gene for proper PSC niche formation, the hairy, Btk29A, and E2F1 genes for blood cell progenitor production in the MZ domain, and the longitudinals lacking, dFOXO, kayak, cap-n-collar, and delilah genes for lamellocyte induction and/or differentiation in response to parasitic wasp challenge and infestation of larvae. Together, these findings contribute substantial information to our knowledge of genes expressed during the larval stage of Drosophila hematopoiesis and newly identify multiple genes required for this developmental process.

  2. Screening and Analysis of Janelia FlyLight Project Enhancer-Gal4 Strains Identifies Multiple Gene Enhancers Active During Hematopoiesis in Normal and Wasp-Challenged Drosophila Larvae

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Tokusumi

    2017-02-01

    Full Text Available A GFP expression screen has been conducted on >1000 Janelia FlyLight Project enhancer-Gal4 lines to identify transcriptional enhancers active in the larval hematopoietic system. A total of 190 enhancers associated with 87 distinct genes showed activity in cells of the third instar larval lymph gland and hemolymph. That is, gene enhancers were active in cells of the lymph gland posterior signaling center (PSC, medullary zone (MZ, and/or cortical zone (CZ, while certain of the transcriptional control regions were active in circulating hemocytes. Phenotypic analyses were undertaken on 81 of these hematopoietic-expressed genes, with nine genes characterized in detail as to gain- and loss-of-function phenotypes in larval hematopoietic tissues and blood cells. These studies demonstrated the functional requirement of the cut gene for proper PSC niche formation, the hairy, Btk29A, and E2F1 genes for blood cell progenitor production in the MZ domain, and the longitudinals lacking, dFOXO, kayak, cap-n-collar, and delilah genes for lamellocyte induction and/or differentiation in response to parasitic wasp challenge and infestation of larvae. Together, these findings contribute substantial information to our knowledge of genes expressed during the larval stage of Drosophila hematopoiesis and newly identify multiple genes required for this developmental process.

  3. The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body γ-Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moroni, Maria, E-mail: maria.moroni@usuhs.edu [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Ngudiankama, Barbara F. [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland (United States); Christensen, Christine [Division of Comparative Pathology, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Olsen, Cara H. [Biostatistics Consulting Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Owens, Rossitsa [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Lombardini, Eric D. [Veterinary Medicine Department, Armed Forces Research Institute of Medical Sciences, Bangkok (Thailand); Holt, Rebecca K. [Veterinary Science Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Whitnall, Mark H. [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States)

    2013-08-01

    Purpose: We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials: Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results: The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusions: These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes.

  4. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  5. Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin.

    Science.gov (United States)

    Kiss, Alexi; Koppel, Aaron C; Anders, Joanna; Cataisson, Christophe; Yuspa, Stuart H; Blumenberg, Miroslav; Efimova, Tatiana

    2016-05-01

    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment.

  6. Early literacy

    DEFF Research Database (Denmark)

    Jensen, Anders Skriver

    2012-01-01

    This paper discusses findings from the Danish contribution to the EASE project, a European research project running from 2008 to 2010 on early literacy in relation to the transition from childcare to school. It explores a holistic, inclusive approach to early literacy that resists a narrow...... and schools. The paper also draws on Gee’s (2001, 2003, 2004, 2008) sociocultural approach to literacy, and Honneth’s (2003, 2006) concept of recognition. Emphasizing participation and recognition as key elements, it claims that stakeholders in early liter- acy must pay attention to how diverse early literacy...... opportunities empower children, especially when these opportunities are employed in a project-based learning environ- ment in which each child is able to contribute to the shared literacy events....

  7. A Rabbit Model of Hormone-induced Early Avascular Necrosis of the Femoral Head

    Institute of Scientific and Technical Information of China (English)

    QIAN WEN; LIMA; YAN-PING CHEN; LIN YANG; WEI LUO; XIAO-NING WANG

    2008-01-01

    Objective To establish an experimental model of early stage avascular necrosis of the femoral head (ANFH) caused by corticosteroid in adult rabbits and to observe the pathological changes with various imaging techniques. Methods ANFH was induced by a combination of hypersensitivity vasculitis caused by injection of horse serum and subsequent administration of a high dose of corticosteroid. The pathological changes were detected with digital radiography (DR), computed tomography (CT), magnetic resonance imaging (MRI), ink artery infusion angiography, hematoxylin--eosin staining, and mmunohistochemistry. Results The imageological and athological changes corresponded to the clinical characteristics of early stage ANFH. DR showed bilaterally increased bone density, an unclear epiphyseal line, and blurred texture of cancellous bone. CT showed spot-like low-density imaging of cancellous bone, thinner cortical bone, osteoporosis, and an unclear epiphyseal line. MRI showed bone marrow edema and spot-like high signals in T2-weighted imaging in cancellous bone. Ink artery infusion angiography showed fewer obstructed blood vessels in the femoral head. HE staining of pathological sections showed fewer trabeculae and thin bone, an increased proportion of empty osteocyte lacunae, decreased hematopoiesis, thrombosis, and fat cell hypertrophy. Lmmunohistochemistry showed attenuated expression of vascular endothelial growth factor in osteoblasts and chondrocytes, and on the inner membrane of blood vessels. Conclusion Experimental rabbit model of early stage ANFH caused by corticosteroid can be successfully established and provide the foundation for developing effective methods to treat early stage ANFH.

  8. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway.

    Directory of Open Access Journals (Sweden)

    Harry F Heijnen

    Full Text Available Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA, for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS. The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS. We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.

  9. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway.

    Directory of Open Access Journals (Sweden)

    Harry F Heijnen

    Full Text Available Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA, for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS. The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS. We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.

  10. Practice patterns and clinical outcomes among non-ST-segment elevation acute coronary syndrome (NSTE-ACS) patients presenting to primary and tertiary hospitals: insights from the EARLY glycoprotein IIb/IIIa inhibition in NSTE-ACS (EARLY-ACS) trial.

    Science.gov (United States)

    Toleva, Olga; Westerhout, Cynthia M; Senaratne, Manohara P J; Bode, Christoph; Lindroos, Magnus; Sulimov, Vitaly A; Montalescot, Gilles; Newby, L Kristin; Giugliano, Robert P; Van de Werf, Frans; Armstrong, Paul W

    2014-11-15

    We evaluated patients at tertiary [both percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) capable] and primary hospitals in the EARLY-ACS trial. Early invasive management is recommended for high-risk non-ST-segment elevation acute coronary syndromes. We evaluated outcomes in 9,204 patients presenting to: tertiary sites, primary sites with transfer to tertiary sites ("transferred") and those who remained at primary sites ("non-transfer"). There were 348 tertiary (n = 7,455 patients) and 89 primary hospitals [n = 1,749 patients (729 transferred; 1,020 non-transfer)]. Significant delays occurred in time from symptom onset to angiography (49 hr), PCI (53h), and CABG (178 hr) for transferred patients (P HR): 0.64 (0.47-0.87), P = 0.005]: there was no difference between transferred and tertiary patients [5.2% vs. 6.3%; adjusted HR: 0.80 (0.58-1.12), P = 0.202]. Despite similar rates of catheterization, GUSTO severe/moderate bleeding within 120 hr was less in non-transfer [3.1% vs. 6.7% (tertiary); adjusted OR: 0.47 (0.32-0.68), P best long-term survival. © 2014 Wiley Periodicals, Inc.

  11. Effect of radiation on normal hematopoiesis and on viral induced cancers of the hematopoietic system. Technical progress report, August 1, 1974--May 1, 1975. [Mice, x radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okunewick, J.P.

    1975-01-01

    Studies carried out during the above period on viral leukemia have conclusively shown that the pluripotent hematopoietic colony forming stem cell (CFU-S) is a target cell for the leukemia virus. Treatment of this cell population with antiserum prepared in syngeneic mice against the disease resulted in inactivation of up to 50 percent of the CFU-S obtained from the spleens of viral leukemic mice. At the same time, normal serum had no effect on these cells, nor did the antiserum have any effect on normal CFU-S. Data indicated that a considerable time delay, on the order of a week, preceded the expression of the viral antigen in the leukemic CFU-S, but that it could be seen at all times after that up to the terminal point of the disease. We examined the effect of the virus on DNA synthesis (S-phase cells) in the CFU-S immediately after virus injection. The results showed that a doubling of the number of cells in S could be seen as early as four hours after introduction of the virus into the animal. Studies with ethidium bromide, an inhibitor of viral reverse transcriptase, were found to be in agreement with this observation. When given to viral leukemic animals in combination with fractionated exposure to x-ray, the data suggested that ethidium bromide did act to extend survival somewhat, but not much over that seen through the use of x-ray alone.

  12. Reciprocal inhibition in man.

    Science.gov (United States)

    Crone, C

    1993-11-01

    Reciprocal inhibition is the automatic antagonist alpha motor neurone inhibition which is evoked by contraction of the agonist muscle. This so-called natural reciprocal inhibition is a ubiquitous and pronounced phenomenon in man and must be suspected of playing a major role in the control of voluntary movements. The spinal pathways underlying this inhibitory phenomenon were studied. The disynaptic reciprocal Ia inhibitory pathway between the tibial anterior muscle and the soleus alpha motor neurones was identified and described in man. It was shown that the inhibition can be evoked in most healthy subjects at rest, but the degree of inhibition varies considerably from one subject to another. It was concluded that it corresponds to the disynaptic reciprocal Ia inhibitory pathway which has been extensively described in animal experiments. The disynaptic reciprocal inhibition was shown to increase during the dynamic phase of a dorsiflexion movement of the foot, but not during the tonic phase. However, when the peripheral afferent feedback from the contracting muscle was blocked by ischaemia, an increase of the inhibition was revealed also during the tonic phase of the dorsiflexion. The concealment of this increase during unrestrained peripheral feedback from the muscle was thought to be due to the post-activation depression mechanism; a mechanism which was described further and which probably involves reduced transmitter release at Ia afferent terminals as a result of previous activation of these afferent fibers. Hence the hypothesis was supported that alpha motor neurones and the corresponding inhibitory interneurones, which project reciprocal inhibition to the antagonist motor neurones, are activated in parallel during voluntary contraction of agonist muscles. An additional reciprocal inhibitory mechanism, the long latency reciprocal inhibition, was described between the tibial anterior muscle and the soleus alpha motor neurones. It was shown to be evoked by group I

  13. The changes of CD34+ cells in C57 mouse bone marrow after irradiation and their roles in dysfunction of hematopoiesis%辐射小鼠骨髓CD34+细胞的变化及其意义

    Institute of Scientific and Technical Information of China (English)

    马增春; 高月; 刘永学; 谭洪玲; 张立; 陶来宝; 陈鹏

    2001-01-01

    Objective To observe the changes of CD34+ cells in C57 mouse bone marrow after irradiation and investigate the role of apoptosis in radiation-induced dysfunction of hematopoiesis. MethodsFlow cytometric enumeration of CD34+ hematopietic stem and progenitor cells by double fluorescent labeling apoptosis detection by Annexin V-FITC kit,and cell cycle detection by PI labeling were carried out. Results  ①Compared with the normal group,the percentage of CD34+ cells in bone marrow nucleated cells decreased at least for 14 days after irradiation,and the changes were related with irradiation doses.②At 6 h after irradiation,the largest amount of apoptopic cells could be detected.③Bone marrow cell cycle was perturbed after 5.5 Gy irradiation. Conclusion The percentage of CD34+ hematopietic stem and progenitor cells in C57 mouse bone marrow decreased after irradiation,and apoptosis might be responsible for the changes of the bone marrow cells.%目的 研究γ射线照射后C57小鼠骨髓中CD34+细胞的数量变化规律及其意义。方法 流式细胞仪测定CD34+细胞在骨髓有核细胞中的比例;Annexin V-FITC试剂盒检测骨髓细胞的凋亡;细胞固定后PI染色测定细胞周期。结果 ①CD34+细胞在骨髓有核细胞中的比例随照射剂量的加大而降低,在5.5 Gy照射后14 d内小鼠CD34+细胞的减少表现为持续性;②小鼠照射后6 h骨髓细胞凋亡率最高,以5.5 Gy照射组最为明显;③5.5 Gy照射后小鼠骨髓细胞周期紊乱。结论 γ射线损伤骨髓中的干祖细胞,造成骨髓中干祖细胞的数量减少,其途径之一是诱导骨髓细胞凋亡。

  14. Potentiation of latent inhibition.

    Science.gov (United States)

    Rodriguez, Gabriel; Hall, Geoffrey

    2008-07-01

    Rats were given exposure either to an odor (almond) or a compound of odor plus taste (almond plus saline), prior to training in which the odor served as the conditioned stimulus. It was found, for both appetitive and aversive procedures, that conditioning was retarded by preexposure (a latent inhibition effect), and the extent of the retardation was greater in rats preexposed to the compound (i.e., latent inhibition to the odor was potentiated by the presence of the taste). In contrast, the presence of the taste during conditioning itself overshadowed learning about the odor. We argue that the presence of the salient taste in compound with the odor enhances the rate of associative learning, producing a rapid loss in the associability of the odor. This loss of associability will generate both overshadowing and the potentiation of latent inhibition that is observed after preexposure to the compound.

  15. Inhibition of influenza A virus replication by rifampicin and selenocystamine

    Energy Technology Data Exchange (ETDEWEB)

    Hamzehei, M.; Ledinko, N.

    1980-01-01

    The effects of selenocystamine, an inhibitor of influenza virus RNA-dependent RNA polymerase in vitro activity, in the antibiotic rifampicin were studied on influenza A/PR/8/34 (HON1) infection in embryonated eggs. Both drugs completely inhibited hemagglutinating and infective virus yields when added at relatively early times postinfection. Maximal inhibition was produced by apparently noncytotoxic concentrations of 50 microgram of selenocystamine, or of 400 microgram of rifampicin, per egg.

  16. Early Astronomy

    Science.gov (United States)

    Thurston, Hugh

    The earliest investigations that can be called scientific are concerned with the sky: they are the beginnings of astronomy. Many early civilizations produced astronomical texts, and several cultures that left no written records left monuments and artifacts-ranging from rock paintings to Stonehenge-that show a clear interest in astronomy. Civilizations in China, Mesopotamia, India and Greece had highly developed astronomies, and the astronomy of the Mayas was by no means negligible. Greek astronomy, as developed by the medieval Arab philosophers, evolved into the astronomy of Copernicus. This displaced the earth from the central stationary position that almost all earlier astronomies had assumed. Soon thereafter, in the first decades of the seventeenth century, Kepler found the true shape of the planetary orbits and Galileo introduced the telescope for astronomical observations.

  17. 铁过载对骨髓损伤小鼠造血功能的作用及机制研究%Effects and mechanism of iron overload on hematopoiesis in mice with bone marrow injury

    Institute of Scientific and Technical Information of China (English)

    柴笑; 赵明峰; 李德冠; 张宇辰; 卢文艺; 曹小立; 孟娟霞; 游权; 孟爱民

    2014-01-01

    Objective To explore effects of iron overload on hematopoiesis in mice with bone marrow injury and its possible mechanism(s).Methods C57BL/6 mice were divided into control,iron,irradiation,irradiation+iron groups.The iron-overloaded model of bone marrow injury was set up after mice were exposed to the dose of 4 Gy total body irradiation and (or) were injected iron dextran intraperitoneally.Iron overload was confirmed by observing iron deposits in mice and bone marrow labile iron pool.Additionally,the number of peripheral blood and bone marrow mononuclear cells and the frequency of erythroid cells and myeloid cells were counted and hematopoietic function was assessed.Results ①Iron overload occurred by bone marrow biopsy and flow cytometry analysis.②Compared with control group,the number ofplatelets [(801.9±81.2) × 109/L vs (926.0±28.2) × 109/L] and BMMNC and the frequency of erythroid cells and myeloid cells decreased.Moreover,hematopoietic colony forming units and single-cell cloning counts decreased significantly in irradiation group (P < 0.05).③Compared with irradiation group,the number of platelets [(619.0±60.9) × 109/L vs (801.9±81.2) × 109/L] and the frequency of erythroid cells and myeloid cells decreased; moreover,hematopoietic colony forming units and singlecell cloning counts decreased significantly in irradiation + iron group (P<0.05).④Compared with irradiation group,ROS level increased by 1.94 fold in BMMNC,1.93 fold in erythroid cells and 2.70 fold in myeloid cells,respectively (P < 0.05).Conclusions The dose of 4 Gy total body irradiation caused bone marrow damage and iron overload based on this injury model,which could damage bone marrow hematopoietic function aggravatingly.And further study found that iron overload was closely related to increased ROS level in BMMNC.The findings would be helpful to further study the injury mechanism of iron overload on the hematopoiesis of bone marrow.%目的 探讨铁过载对骨髓损伤小

  18. Establishment of Iron Overloaded Bone Marrow Model In Vitro and Its Impact on Hematopoiesis%铁过载骨髓造血细胞体外模型的建立及其对造血的影响

    Institute of Scientific and Technical Information of China (English)

    谢芳; 赵明峰; 朱海波; 肖霞; 徐新女; 穆娟; 李玉明

    2011-01-01

    This study was to establish an iron overload bone marrow (BM) model by co-culturing the mononuclear cells from BM with iron, and investigate its hematopoiesis changes. The iron overload model was set up by adding different concentration of ferric citrate (FAC) into the mononuclear cells from BM and culturing for different time, and the model was confirmed by detecting labile iron pool (LLP). Then the apoptosis of hematopoietic cells, ability of hematopoietic colony forming (CFU-E, BFU-E, CFU-GM and CFU-mix) and percentage of the CD34 + cells of the BM cells all were determined. The changes of these indexes were tested after the iron-overloaded BM was treated with deferasirox (DFO). The results showed that after BM cells were cultured with FAC at different concentrations for different time, the LLP increased in time-and concentration-dependent manners. The intracellular LIP reached maximum level when cultured at 400 μmol/L of FAC for 24 hours. The detection of BM cell hematopoietic function found that the apoptotic rate of the FAC-treated cells (24.8 ± 2.99% ) increased significantly, as compared with normal control ( 8.9 ±0.96%) (p <0.01 ). The ability of hematopoietic colony forming in FAC-treated cells decreased markedly, as compared with normal control (p < 0.05 ). The percentage of CD34 + cells of FAC-treated cells (0.39 ± 0.07 % ) also decreased significantly, as compared with normal control (0.91 ±0. 12% ) (p <0.01 ). And these changes could be alleviated by adding DFO. It is concluded that the iron-overloaded model has been set by adding iron into the mononuclear cells from BM in vitro, and the hematopoietic funtion of iron-overloaded BM is deficient. These changes can be alleviated by removing the excess iron from the BM cells through treating with DFO. These findings would be helpful to further study the mechanism of iron-overload on the hematopoiesis of BM and also useful to fmd the way to treat iron-overload patients with hematopoietic

  19. GATA2 is associated with familial early-onset coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Jessica J Connelly

    2006-08-01

    Full Text Available The transcription factor GATA2 plays an essential role in the establishment and maintenance of adult hematopoiesis. It is expressed in hematopoietic stem cells, as well as the cells that make up the aortic vasculature, namely aortic endothelial cells and smooth muscle cells. We have shown that GATA2 expression is predictive of location within the thoracic aorta; location is suggested to be a surrogate for disease susceptibility. The GATA2 gene maps beneath the Chromosome 3q linkage peak from our family-based sample set (GENECARD study of early-onset coronary artery disease. Given these observations, we investigated the relationship of several known and novel polymorphisms within GATA2 to coronary artery disease. We identified five single nucleotide polymorphisms that were significantly associated with early-onset coronary artery disease in GENECARD. These results were validated by identifying significant association of two of these single nucleotide polymorphisms in an independent case-control sample set that was phenotypically similar to the GENECARD families. These observations identify GATA2 as a novel susceptibility gene for coronary artery disease and suggest that the study of this transcription factor and its downstream targets may uncover a regulatory network important for coronary artery disease inheritance.

  20. Quorum sensing inhibition

    DEFF Research Database (Denmark)

    Persson, T.; Givskov, Michael Christian; Nielsen, J.

    2005-01-01

    /receptor transcriptional regulator in some clinically relevant Gram-negative bacteria. The present review contains all reported compound types that are currently known to inhibit the QS transcriptional regulator in Gram-negative bacteria. These compounds are sub-divided into two main groups, one comprising structural...

  1. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  2. Epigenetic regulation of normal and malignant hematopoiesis

    NARCIS (Netherlands)

    Klauke, Karin

    2013-01-01

    Stamcellen zijn nodig voor de vorming van alle cellen in ons lichaam gedurende ons hele leven. In bijna ieder orgaan zijn stamcellen ontdekt. Stamcellen hebben de unieke eigenschap om, relatief ongelimiteerd, zichzelf te vernieuwen, waardoor vanuit één stamcel twee stamcellen ontstaan. Hierdoor blij

  3. Dlk1 in normal and abnormal hematopoiesis

    DEFF Research Database (Denmark)

    Sakajiri, S; O'kelly, J; Yin, D

    2005-01-01

    megakaryocytic differentiation of both CMK megakaryoblasts as well as normal CD34(+) hematopoietic stem cells. High serum levels of Dlk1 occurred in RA (4/10) and essential thrombocythemia (2/10) patients. Functional studies showed that forced expression of Dlk1 enhanced proliferation of K562 cells growing in 1...

  4. Epigenetic regulation of normal and malignant hematopoiesis

    NARCIS (Netherlands)

    Klauke, Karin

    2013-01-01

    Stamcellen zijn nodig voor de vorming van alle cellen in ons lichaam gedurende ons hele leven. In bijna ieder orgaan zijn stamcellen ontdekt. Stamcellen hebben de unieke eigenschap om, relatief ongelimiteerd, zichzelf te vernieuwen, waardoor vanuit één stamcel twee stamcellen ontstaan. Hierdoor

  5. Long noncoding RNA in hematopoiesis and immunity.

    Science.gov (United States)

    Satpathy, Ansuman T; Chang, Howard Y

    2015-05-19

    Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The Notch Ligand Delta-Like 4 Regulates Multiple Stages of Early Hemato-Vascular Development

    Science.gov (United States)

    Neves, Hélia; Gomes, Andreia C.; Saavedra, Pedro; Carvalho, Catarina C.; Duarte, António; Cidadão, António; Parreira, Leonor

    2012-01-01

    Background In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis. Methodology/Principal Findings Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4+/− and Dll4−/− embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis. Conclusions/Significance This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis. PMID:22514637

  7. Acute inhibition of corticosteroidogenesis by inhibitors of calmodulin action.

    Science.gov (United States)

    Carsia, R V; Moyle, W R; Wolff, D J; Malamed, S

    1982-11-01

    To identify the possible role of calmodulin in ACTH function, we tested the ability of chlorpromazine (CP) and other calmodulin antagonists to inhibit steroidogenesis of isolated adrenocortical cells of the rat. CP reversibly inhibited maximal ACTH-induced corticosterone (B) production. The presence of the drug did not alter the ED50 of ACTH stimulation (3.2 X 10(3) pg/ml), suggesting that it inhibited ACTH-induced steroidogenesis in a noncompetitive manner. The CP concentration required for half-maximal inhibition was 8.2 microM, a value close to the dissociation constant of the CP-calmodulin complex (5.3 microM). Concentrations greater than 40 microM resulted in complete inhibition. Similar concentrations of CP inhibited ACTH-induced cAMP accumulation in a dose-dependent manner, indicating an effect of the drug on early events in ACTH action. In addition, CP also apparently acted at a site distal to the point of cAMP formation, as shown by the finding that it inhibited cAMP-induced B production. CP inhibition of ACTH-induced B production was independent of the Ca2+ concentration, suggesting that the drug did not compete with Ca2+ directly. Concentrations of CP greater than 20 microM inhibited protein synthesis as measured by leucine incorporation into cellular proteins. Thus, although the inhibitory effect of high concentrations of CP on steroidogenesis might be explained by an effect on protein synthesis, the inhibition seen at 10 microM appeared to be independent of protein synthesis. Other antagonists of calmodulin action inhibited maximal ACTH-induced B production with the following relative potencies: trifluoperazine greater than CP greater than haloperidol greater than chlordiazepoxide. This order is similar to that reported for inhibition of calmodulin-activated phosphodiesterase and for binding to calmodulin. These findings suggest that calmodulin may modulate the effect of ACTH on steroidogenesis at multiple sites.

  8. Direct renin inhibition in chronic kidney disease

    DEFF Research Database (Denmark)

    Persson, Frederik; Rossing, Peter; Parving, Hans-Henrik

    2013-01-01

    that renin inhibition could hold potential for improved treatment in patients with chronic kidney disease, with diabetic nephropathy as an obvious group of patients to investigate, as the activity of the renin-angiotensin-aldosterone system is enhanced in these patients and as there is an unmet need...... early as a beneficial effect was unlikely and there was an increased frequency of side effects. Also in non-diabetic kidney disease a few intervention studies have been carried out, but there is no ongoing hard outcome study. In this review we provide the current evidence for renin inhibition in chronic...... kidney disease by reporting of the studies published so far as well as perspective on the future possibilites....

  9. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  10. Inhibition and Brain Work

    OpenAIRE

    Buzsáki, György; Kaila, Kai; Raichle, Marcus

    2007-01-01

    The major part of the brain’s energy budget (~60%–80%) is devoted to its communication activities. While inhibition is critical to brain function, relatively little attention has been paid to its metabolic costs. Understanding how inhibitory interneurons contribute to brain energy consumption (brain work) is not only of interest in understanding a fundamental aspect of brain function but also in understanding functional brain imaging techniques which rely on measurements related to blood flow...

  11. Early Development of Definitive Erythroblasts from Human Pluripotent Stem Cells Defined by Expression of Glycophorin A/CD235a, CD34, and CD36

    Directory of Open Access Journals (Sweden)

    Bin Mao

    2016-11-01

    Full Text Available The development of human erythroid cells has been mostly examined in models of adult hematopoiesis, while their early derivation during embryonic and fetal stages is largely unknown. We observed the development and maturation of erythroblasts derived from human pluripotent stem cells (hPSCs by an efficient co-culture system. These hPSC-derived early erythroblasts initially showed definitive characteristics with a glycophorin A+ (GPA+ CD34lowCD36− phenotype and were distinct from adult CD34+ cell-derived ones. After losing CD34 expression, early GPA+CD36− erythroblasts matured into GPA+CD36low/+ stage as the latter expressed higher levels of β-globin along with a gradual loss of mesodermal and endothelial properties, and terminally suppressed CD36. We establish a unique in vitro model to trace the early development of hPSC-derived erythroblasts by serial expression of CD34, GPA, and CD36. Our findings may provide insight into the understanding of human early erythropoiesis and, ultimately, therapeutic potential.

  12. 地中海贫血胸部髓外造血影像表现(附6例分析)%Imaging findings of intrathoracic extramedullary hematopoiesis in thalassemia:sixe cases report

    Institute of Scientific and Technical Information of China (English)

    杨军克; 黄筠洋; 俞雷; 岑炳奎; 黄晓

    2012-01-01

    目的 探讨地中海贫血胸部髓外造血组织增生的影像表现,提高影像诊断和鉴别诊断.方法 回顾性分析经临床证实的6例地中海贫血继发髓外造血(EMH)的胸部影像学资料,β-地中海贫血5例,α-地中海贫血1例.胸部X线平片6例,CT平扫4例,MRI平扫及增强2例.结果 影像表现为两侧脊柱旁瘤样软组织肿块影,4例合并胸壁肋骨下EMH,1例合并胸壁肋骨下、肺部及胸段椎管内多部位EMH;2例β-地中海贫血EMH见纤细骨针样钙化,MRI上呈等T1等T2信号,轻-中度强化;1例α-地中海贫血EMH巨大,密度不均,T1、T2呈等、高信号,轻-中度不均匀强化,2年后X线平片观察EMH大小有变化.CT引导下穿刺活检,镜下大部分为脂肪组织,并见片状坏死灶.结论 地中海贫血继发EMH,依据影像表现特点,结合临床及实验室检查可做出正确诊断.%Objective To investigate the imaging findings of intrathoracic extramedullary hematopoiesis(EMH) in thalassemia,so that to improve its diagnosis and differential diagnosis.Methods Clinical and imaging findings of 6 cases with EMH in thalassemia were retrospectively analyzed.There were Beta-thalassemia in 5 cases and Alpha-thalassemia in 1 case; 6 cases were examined by chest X-ray,CT plain scans in A cases, MRI plain scan and contrast-enhanced scan in 2 cases were performed.Results The imaging features of EMH were tumor-like masses at the posterior mediastinum of bilateral paravertebral, and accompanied with chest wall EMH in 4 cases,chest wall,lung and spinal canal EMH in 1 case.The calcific shadows of bony trabecula-like inside the masses were seen in 2 cases with Beta-thalassemia, and on MRI, EMH were of same signal intensity as compared to adjacent muscles on T1WI and T2WI,and slight to mild homogeneous enhancement after intravenous contrast administration.1 case with Alpha-thalassemia, the signal intensity or density of the lesions was inhomogeneous,and isointense and high signal

  13. Inhibition of placenta growth factor with TB-403

    DEFF Research Database (Denmark)

    Nielsen, Dorte Lisbet; Sengeløv, Lisa

    2012-01-01

    targeting angiogenesis. AREAS COVERED: The data are obtained by searching in the PubMed database. The search terms used included antiangiogenic therapy, TB-403 (RO5323441), placenta growth factor (PlGF) and VEGFR-1 (Flt-1). We review preclinical data concerning the function and inhibition of Pl......GF and summarize data on expression of PlGF in cancer patients. Data from early-phase clinical trials of TB-403 (RO5323441), a monoclonal antibody inhibiting PlGF, are discussed. Future development strategies, therapeutic potentials and limitations of TB-403 are further evaluated. EXPERT OPINION: There are some...... conflicting data on the function of PlGF and the importance of its role in primary tumor growth. Data from some preclinical models of PlGF inhibition and early-phase clinical trials with TB-403 are, however, promising, although the true potential of the drug is yet to be determined. Further clinical...

  14. Highly reflective reasoners show no signs of belief inhibition.

    Science.gov (United States)

    Svedholm-Häkkinen, Annika M

    2015-01-01

    The processes underlying individual differences in reasoning performance are not entirely understood. What do people who do well on reasoning tasks where beliefs and logic conflict do differently from other people? Because abundant evidence shows that even poorer reasoners detect these conflicts, it has been suggested that individual differences in reasoning performance arise from inhibition failures later in the reasoning process. The present paper argues that a minority of highly skilled reasoners may deviate from this general reasoning process from an early stage. Two studies investigated signs of belief inhibition using a lexical access paradigm (Study 1) and a negative priming paradigm (Study 2). Study 1 showed that while other people exhibited signs of belief inhibition following a belief-logic conflict, people with the highest disposition for cognitive reflection did not. In Study 2, this finding was replicated and similar results were also obtained when comparing groups with higher and lower general cognitive ability. Two possible explanations are discussed. The reasoners with a highly reflective cognitive style or high general cognitive ability may have engaged and inhibited belief processing but if so, they may have been exceptionally efficient at recovering from it, wherefore no belief inhibition effects were found. An alternative account is that these reasoners started Type 2 processing directly, without first engaging in and then inhibiting belief-based processing. Under either explanation, the results indicate that individual differences in reasoning may partly arise from differences that occur early in the reasoning process.

  15. Tumor necrosis factor receptors support murine hematopoietic progenitor function in the early stages of engraftment.

    Science.gov (United States)

    Pearl-Yafe, Michal; Mizrahi, Keren; Stein, Jerry; Yolcu, Esma S; Kaplan, Ofer; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir

    2010-07-01

    Tumor necrosis factor (TNF) family receptors/ligands are important participants in hematopoietic homeostasis, in particular as essential negative expansion regulators of differentiated clones. As a prominent injury cytokine, TNF-alpha has been traditionally considered to suppress donor hematopoietic stem and progenitor cell function after transplantation. We monitored the involvement of TNF receptors (TNF-R) 1 and 2 in murine hematopoietic cell engraftment and their inter-relationship with Fas. Transplantation of lineage-negative (lin(-)) bone marrow cells (BMC) from TNF receptor-deficient mice into wild-type recipients showed defective early engraftment and loss of durable hematopoietic contribution upon recovery of host hematopoiesis. Consistently, cells deficient in TNF receptors had reduced competitive capacity as compared to wild-type progenitors. The TNF receptors were acutely upregulated in bone marrow (BM)-homed donor cells (wild-type) early after transplantation, being expressed in 60%-75% of the donor cells after 6 days. Both TNF receptors were detected in fast cycling, early differentiating progenitors, and were ubiquitously expressed in the most primitive progenitors with long-term reconstituting potential (lin(-)c-kit(+) stem cell antigen (SCA)-1(+)). BM-homed donor cells were insensitive to apoptosis induced by TNF-alpha and Fas-ligand and their combination, despite reciprocal inductive cross talk between the TNF and Fas receptors. The engraftment supporting effect of TNF-alpha is attributed to stimulation of progenitors through TNF-R1, which involves activation of the caspase cascade. This stimulatory effect was not observed for TNF-R2, and this receptor did not assume redundant stimulatory function in TNFR1-deficient cells. It is concluded that TNF-alpha plays a tropic role early after transplantation, which is essential to successful progenitor engraftment.

  16. Latent inhibition in schizophrenia.

    Science.gov (United States)

    Swerdlow, N R; Braff, D L; Hartston, H; Perry, W; Geyer, M A

    1996-05-01

    Latent inhibition (LI) refers to the retarded acquisition of a conditioned response that occurs if the subject being tested is first preexposed to the to-be-conditioned stimulus (CS) without the paired unconditioned stimulus (UCS). Because the 'irrelevance' of the to-be-conditioned stimulus is established during non-contingent preexposure, the slowed acquisition of the CS-UCS association is thought to reflect the process of overcoming this learned irrelevance. Latent inhibition has been reported to be diminished in acutely hospitalized schizophrenia patients. If acutely hospitalized schizophrenia patients are preexposed to the CS, they learn the association as fast as, and perhaps faster than, patients who are not preexposed to the CS. This finding has been interpreted as reflecting the inability of acute schizophrenia patients to ignore irrelevant stimuli. In this study, the LI paradigm was identical to the one used in previous reports of LI deficits in schizophrenia patients (Baruch et al., 1988). Latent inhibition was observed in normal control subjects (n = 73), including individuals identified as 'psychosis-prone' based on established screening criteria, and in anxiety (n = 19) and mood disorder (n = 13) patients. Learning scores (trials to criterion) in "acutely' hospitalized as well as "chronic' hospitalized schizophrenia patients (n = 45) were significantly elevated in both preexposed and non-preexposed subjects, compared to controls. Acute schizophrenia patients exhibited intact LI. Separate cohorts of acute and chronic schizophrenia patients (n = 23) and normal controls (n = 34) exhibited intact LI when tested in a new, easier-to-acquire computerized LI paradigm. These results fail to identify specific LI deficits in schizophrenia patients, and raise the possibility that previously observed LI deficits in schizophrenia patients may reflect, at least in part, performance deficits related to learning acquisition.

  17. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat

    Science.gov (United States)

    Seluanov, Andrei; Hine, Christopher; Azpurua, Jorge; Feigenson, Marina; Bozzella, Michael; Mao, Zhiyong; Catania, Kenneth C.; Gorbunova, Vera

    2009-01-01

    The naked mole-rat is the longest living rodent with a maximum lifespan exceeding 28 years. In addition to its longevity, naked mole-rats have an extraordinary resistance to cancer as tumors have never been observed in these rodents. Furthermore, we show that a combination of activated Ras and SV40 LT fails to induce robust anchorage-independent growth in naked mole-rat cells, while it readily transforms mouse fibroblasts. The mechanisms responsible for the cancer resistance of naked mole-rats were unknown. Here we show that naked mole-rat fibroblasts display hypersensitivity to contact inhibition, a phenomenon we termed “early contact inhibition.” Contact inhibition is a key anticancer mechanism that arrests cell division when cells reach a high density. In cell culture, naked mole-rat fibroblasts arrest at a much lower density than those from a mouse. We demonstrate that early contact inhibition requires the activity of p53 and pRb tumor suppressor pathways. Inactivation of both p53 and pRb attenuates early contact inhibition. Contact inhibition in human and mouse is triggered by the induction of p27Kip1. In contrast, early contact inhibition in naked mole-rat is associated with the induction of p16Ink4a. Furthermore, we show that the roles of p16Ink4a and p27Kip1 in the control of contact inhibition became temporally separated in this species: the early contact inhibition is controlled by p16Ink4a, and regular contact inhibition is controlled by p27Kip1. We propose that the additional layer of protection conferred by two-tiered contact inhibition contributes to the remarkable tumor resistance of the naked mole-rat. PMID:19858485

  18. Beneficial bacteria inhibit cachexia.

    Science.gov (United States)

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny.

  19. Attention Biases to Threat Link Behavioral Inhibition to Social Withdrawal over Time in Very Young Children

    Science.gov (United States)

    Perez-Edgar, Koraly; Reeb-Sutherland, Bethany C.; McDermott, Jennifer Martin; White, Lauren K.; Henderson, Heather A.; Degnan, Kathryn A.; Hane, Amie A.; Pine, Daniel S.; Fox, Nathan A.

    2011-01-01

    Behaviorally inhibited children display a temperamental profile characterized by social withdrawal and anxious behaviors. Previous research, focused largely on adolescents, suggests that attention biases to threat may sustain high levels of behavioral inhibition (BI) over time, helping link early temperament to social outcomes. However, no prior…

  20. Behavioral Inhibition and Anxiety: The Moderating Roles of Inhibitory Control and Attention Shifting

    Science.gov (United States)

    White, Lauren K.; McDermott, Jennifer Martin; Degnan, Kathryn A.; Henderson, Heather A.; Fox, Nathan A.

    2011-01-01

    Behavioral inhibition (BI), a temperament identified in early childhood, is associated with social reticence in childhood and an increased risk for anxiety problems in adolescence and adulthood. However, not all behaviorally inhibited children remain reticent or develop an anxiety disorder. One possible mechanism accounting for the variability in…

  1. Dsh homolog DVL3 mediates resistance to IGFIR inhibition by regulating IGF-RAS signaling

    OpenAIRE

    Gao, Shan; Bajrami, Ilirjana; Verrill, Clare; Kigozi, Asha; Ouaret, Djamila; Aleksic, Tamara; Asher, Ruth; Han, Cheng; Allen, Paul; Bailey, Deborah; Feller, Stephan; Kashima, Takeshi; Athanasou, Nicholas; Blay, Jean-Yves; Schmitz, Sandra

    2014-01-01

    Drugs that inhibit insulin-like growth factor 1 (IGFI) receptor IGFIR were encouraging in early trials, but predictive biomarkers were lacking and the drugs provided insufficient benefit in unselected patients. In this study, we used genetic screening and downstream validation to identify the WNT pathway element DVL3 as a mediator of resistance to IGFIR inhibition. Sensitivity to IGFIR inhibition was enhanced specifically in vitro and in vivo by genetic or pharmacologic blockade of DVL3. In b...

  2. Ezrin is highly expressed in early thymocytes, but dispensable for T cell development in mice.

    Directory of Open Access Journals (Sweden)

    Meredith H Shaffer

    Full Text Available BACKGROUND: Ezrin/radixin/moesin (ERM proteins are highly homologous proteins that function to link cargo molecules to the actin cytoskeleton. Ezrin and moesin are both expressed in mature lymphocytes, where they play overlapping roles in cell signaling and polarity, but their role in lymphoid development has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: We characterized ERM protein expression in lymphoid tissues and analyzed the requirement for ezrin expression in lymphoid development. In wildtype mice, we found that most cells in the spleen and thymus express both ezrin and moesin, but little radixin. ERM protein expression in the thymus was differentially regulated, such that ezrin expression was highest in immature thymocytes and diminished during T cell development. In contrast, moesin expression was low in early thymocytes and upregulated during T cell development. Mice bearing a germline deletion of ezrin exhibited profound defects in the size and cellularity of the spleen and thymus, abnormal thymic architecture, diminished hematopoiesis, and increased proportions of granulocytic precursors. Further analysis using fetal liver chimeras and thymic transplants showed that ezrin expression is dispensable in hematopoietic and stromal lineages, and that most of the defects in lymphoid development in ezrin(-/- mice likely arise as a consequence of nutritional stress. CONCLUSIONS/SIGNIFICANCE: We conclude that despite high expression in lymphoid precursor cells, ezrin is dispensable for lymphoid development, most likely due to redundancy with moesin.

  3. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  4. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  5. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification

    Institute of Scientific and Technical Information of China (English)

    Clara Bueno; Agustin F Femández; Mario F Fraga; Inmaculada Moreno-Gimeno; Deborah Burks; Maria del Carmen Plaza-Calonge; Juan C Rodríguez-Manzaneque; Pablo Menendez; Rosa Montes; Gustavo J Melen; Verónica Ramos-Mejia; Pedro J Real; Verónica Ayllón; Laura Sanchez; Gertrudis Ligero; Iván Gutierrez-Aranda

    2012-01-01

    The MLL-AF4 fusion gene is a hallmark genomic aberration in high-risk acute lymphoblastic leukemia in inants.Although it is well established that MLL-AF4 arises prenatally during human development,its effects on hematopoieric development in utero remain unexplored.We have created a human-specific cellular system to study early hemato-endothelial development in MLL-AF4-expressing human embryonic stem cells (hESCs).Functional studies,clonal analysis and gene expression profiling reveal that expression of MLL-AF4 in hESCs has a phenotypic,functional and gene expression impact.MLL-AF4 acts as a global transcriptional activator and a positive regulator of homeobox gene expression in hESCs.Functionally,MLL-AF4 enhances the specification of hemogenic precursors from hESCs but strongly impairs further hematopoietic commitment in favor of an endothelial cell fate.MLL-AF4 hESCs are transcriptionally primed to differentiate towards hemogenic precursors prone to endothelial maturation,as reflected by the marked upregulation of master genes associated to vascular-endothelial functions and early hematopoiesis.Furthermore,we report that MLL-AF4 expression is not sufficient to transform hESC-derived hematopoietic cells.This work illustrates how hESCs may provide unique insights into human development and further our understanding of how leukemic fusion genes,known to arise prenatally,regulate human embryonic hematopoietic specification.

  6. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis

    NARCIS (Netherlands)

    Degu, A.; Hatew, B.; Nunes-Nesi, A.; Shlizerman, L.; Zur, N.; Fernie, A.R.; Blumwald, E.; Sadka, A.

    2011-01-01

    Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development

  7. Omega-3 polyunsaturated fatty acids inhibit inflammation during the early stage of acute pancreatitis%ω-3多不饱和脂肪酸在体外胰腺腺泡细胞培养体系中的炎症调控作用及机制

    Institute of Scientific and Technical Information of China (English)

    程锐; 蔡欣然; 周浩辉; 韩圣华; 朱金海; 陈辉星; 陈燕凌

    2012-01-01

    Objective To investigate the therapeutic effects of ω -3 polyunsaturated fatty acids ( PUFAs) during the early stage of acute pancreatitis. Methods AR42J pancreatic acinar cells were divided into three groups: A, untreated control; B, pretreated with the ω -3 PUFA docosahexaenoic acid ( DHA) and stimulated with cerulein to simulate the inflammatory response of acute pancreatitis; and C, stimulated with cerulein only. Expression of inflammatory cytokines (TNFa and IL -6) and a regulator of reactive oxygen species ( UCP2) was measured by real - time PCR. Expression of the NF - ΚB p65 subunit in nuclear protein was detected by Western blotting. Necrotic and ap-optotic cells were detected by staining with Hoechest33342 and propidium iodide, respectively. Results Cerulein -stimulated cells had significantly higher levels of TNFa, IL -6, and UCP -2 mRNA expression, NF - ΚB p65 protein, and cell necrosis (groups B and C vs group A, P<0. 05 ). DHA pretreatment significantly reduced the levels of all cerulein - stimulated changes ( group B vs group C, P < 0. 05 ). Conclusion ω -3 PUKAs may inhibit the inflammatory reaction during the early stage of acute pancreatitis.%目的 探讨ω-3多不饱和脂肪酸(ω-3 PUFAs)对急性胰腺炎早期炎症反应的作用.方法 培养胰腺腺泡细胞系AR42J,随机分为A组(空白对照)、B组(ω-3 PUFAs预处理后蛙皮素刺激)、C组(仅用蛙皮素刺激);实时荧光定量PCR检测各组细胞肿瘤坏死因子(TNF)α、白细胞介素(IL) -6和线粒体解偶联蛋白-2(UCP-2)mRNA表达;Western Blot检测细胞核中NF-κB p65亚单位的含量;Hoeehst33342/PI染色检测细胞坏死.结果 B组TNFα、IL -6、UCP-2 mRNA表达水平、细胞核NF - κBp 65含量及细胞坏死率与C组相比均明显减少,差异有统计学意义[(0.69±0.10)vs(1.34±0.19),P<0.001;(0.69±0.06) vs( 1.39±0.06),P<0.001;(0.58±0.12)vs(1.26±0.07),P<0.001;(0.54±0.09) vs (0.92±0.09),P<0.001;(0.20±0.01)vs(0.35±0.03),P<0

  8. Can Arousal Modulate Response Inhibition?

    Science.gov (United States)

    Weinbach, Noam; Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai

    2015-01-01

    The goal of the present study was to examine if and how arousal can modulate response inhibition. Two competing hypotheses can be drawn from previous literature. One holds that alerting cues that elevate arousal should result in an impulsive response and therefore impair response inhibition. The other suggests that alerting enhances processing of…

  9. Lateral inhibition during nociceptive processing

    DEFF Research Database (Denmark)

    Quevedo, Alexandre S.; Mørch, Carsten Dahl; Andersen, Ole Kæseler

    2017-01-01

    of skin. Thus, the stimulation of the skin region between the endpoints of the lines appears to produce inhibition. These findings indicate that lateral inhibition limits spatial summation of pain and is an intrinsic component of nociceptive information processing. Disruption of such lateral inhibition......Spatial summation of pain is the increase of perceived intensity that occurs as the stimulated area increases. Spatial summation of pain is sub-additive in that increasing the stimulus area produces a disproportionately small increase in the perceived intensity of pain. A possible explanation...... for sub-additive summation may be that convergent excitatory information is modulated by lateral inhibition. To test the hypothesis that lateral inhibition may limit spatial summation of pain, we delivered different patterns of noxious thermal stimuli to the abdomens of 15 subjects using a computer...

  10. Inhibition of Bacillus subtilis growth and sporulation by threonine.

    Science.gov (United States)

    Lamb, D H; Bott, K F

    1979-01-01

    A 1-mg/ml amount of threonine (8.4 mM) inhibited growth and sporulation of Bacillus subtilis 168. Inhibition of sporulation was efficiently reversed by valine and less efficiently by pyruvate, arginine, glutamine, and isoleucine. Inhibition of vegetative growth was reversed by asparate and glutamate as well as by valine, arginine, or glutamine. Cells in minimal growth medium were inhibited only transiently by very high concentrations of threonine, whereas inhibition of sporulation was permanent. Addition of threonine prevented the normal increase in alkaline phosphatase and reduced the production of extracellular protease by about 50%, suggesting that threonine blocked the sporulation process relatively early. 2-Ketobutyrate was able to mimic the effect of threonine on sporulation. Sporulation in a strain selected for resistance to azaleucine was partially resistant. Seventy-five percent of the mutants selected for the ability to grow vegetatively in the presence of high threonine concentrations were found to be simultaneously isoleucine auxotrophs. In at least one of these mutants, the threonine resistance phenotpye could not be dissociated from the isoleucine requirement by transformation. This mutation was closely linked to a known ilvA mutation (recombination index, 0.16). This strain also had reduced intracellular threonine deaminase activity. These results suggest that threonine inhibits B. subtilis by causing valine starvation.

  11. Alpha oscillatory correlates of motor inhibition in the aged brain

    Directory of Open Access Journals (Sweden)

    Marlene eBoenstrup

    2015-10-01

    Full Text Available Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha-power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time - early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains.

  12. Bioassays for the determination of nitrification inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Grunditz, Camilla

    1999-07-01

    Requirements for nitrogen reduction in wastewater treatment plants were introduced in Sweden in the early 1990's. This was a governmental move to reduce the nitrogen discharges to the Baltic and Kattegat in order to prevent eutrophication. The nitrification process in wastewater treatment plants is performed by nitrifying bacteria. These are susceptible to inhibition and it is of great importance that the influent water does not contain toxic compounds. Therefore, there is a need for assays for the determination of nitrification inhibition. This thesis describes the development and applications of such bioassays. Pure cultures of Nitrosomonas sp. and Nitrobacter sp. were isolated from activated sludge of a wastewater treatment plant. These cultures were used as test organisms in the development of bioassays for nitrification inhibition measurements. The assays are based on two different principles; cell suspensions of the bacteria, performed in test tubes, and mediated amperometric biosensors with the bacteria immobilised. Ammonia oxidation and nitrite oxidation are studied separately without interference from other organisms, which makes it easier to interpret the results. The cell suspension assays were applied to samples of industrial and municipal wastewater. The Nitrosomonas and Nitrobacter assays showed to have different inhibition patterns. A large percentage of the Swedish municipal wastewater treatment plants were found to receive inhibitory influent water, but the inhibition level was generally low. Compared to an assay based on activated sludge, the screening method, the pure culture assays found more samples of influent water strongly inhibitory or stimulating. The highest correlation was found between the screening method and the Nitrosomonas assay. The Nitrobacter assay was found to be the most sensitive method. Assessment of toxicity of a number of chemical substances was studied using the biosensors, together with the cell suspension assays

  13. Kinetic evaluation of the inhibition of protein glycation during heating.

    Science.gov (United States)

    Akıllıoğlu, H Gül; Gökmen, Vural

    2016-04-01

    This study aimed to investigate the kinetics of early stage of the Maillard reaction by a reversible bimolecular reaction mechanism and also to evaluate the compatibility of enzyme inhibition kinetics for calculating the inhibitory activity of protein anti-glycation agents. Model systems composed of ovalbumin, glucose, and anti-glycation agents (tannic acid or calcium ion) at different molar ratios were heated at 90 °C for different times in dry state or in solution. Heated samples were analysed for furosine, acid derivative of N-ε-fructoselysine (FL), to monitor the progression of the early glycation stage. Compared to a control, presence of calcium ions and tannic acid decreased FL formation significantly (pglycation of ovalbumin by a mixed non-competitive mechanism in both dry and in solution conditions; while the mode of inhibition by tannic acid was found to be purely non-competitive in the dry state.

  14. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells

    DEFF Research Database (Denmark)

    Langlois, Thierry; da Costa Reis Monte Mor, Barbara; Lenglet, Gaëlle

    2014-01-01

    Ten-Eleven-Translocation 2 (TET2) belongs to the TET protein family that catalyzes the conversion of 5-methylcytosine into 5-hydroxymethylcytosine and plays a central role in normal and malignant adult hematopoiesis. Yet, the role of TET2 in human hematopoietic development remains largely unknown...

  15. Autism: Why Act Early?

    Science.gov (United States)

    ... What's this? Submit Button Past Emails CDC Features Autism: Why Act Early? Language: English Español (Spanish) Recommend ... helped the world make sense." Florida teenager with Autism Spectrum Disorder "Because my parents acted early, I ...

  16. Cancer treatment -- early menopause

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000912.htm Cancer treatment - early menopause To use the sharing features on this page, please enable JavaScript. Certain types of cancer treatments can cause women to have early menopause. This ...

  17. Overview of Early Intervention

    Science.gov (United States)

    ... infant or toddler for early intervention (e.g., Down syndrome, Fragile X syndrome). Determining eligibility | The results of the evaluation will be used to determine your child’s eligibility for early intervention services. You and a ...

  18. Early Retirement Programs.

    Science.gov (United States)

    Everett, Peter W.

    1984-01-01

    Early retirement programs offer individuals an alternative to the work ethic while allowing them to maintain job security. Examples are given of several early, partial, and phased retirement programs currently being used in universities and public school systems. (DF)

  19. Inhibition and impulsivity: behavioral and neural basis of response control.

    Science.gov (United States)

    Bari, Andrea; Robbins, Trevor W

    2013-09-01

    In many circumstances alternative courses of action and thoughts have to be inhibited to allow the emergence of goal-directed behavior. However, this has not been the accepted view in the past and only recently has inhibition earned its own place in the neurosciences as a fundamental cognitive function. In this review we first introduce the concept of inhibition from early psychological speculations based on philosophical theories of the human mind. The broad construct of inhibition is then reduced to its most readily observable component which necessarily is its behavioral manifestation. The study of 'response inhibition' has the advantage of dealing with a relatively simple and straightforward process, the overriding of a planned or already initiated action. Deficient inhibitory processes profoundly affect everyday life, causing impulsive conduct which is generally detrimental for the individual. Impulsivity has been consistently linked to several types of addiction, attention deficit/hyperactivity disorder, mania and other psychiatric conditions. Our discussion of the behavioral assessment of impulsivity will focus on objective laboratory tasks of response inhibition that have been implemented in parallel for humans and other species with relatively few qualitative differences. The translational potential of these measures has greatly improved our knowledge of the neurobiological basis of behavioral inhibition and impulsivity. We will then review the current models of behavioral inhibition along with their expression via underlying brain regions, including those involved in the activation of the brain's emergency 'brake' operation, those engaged in more controlled and sustained inhibitory processes and other ancillary executive functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. 联合检测糖化血红蛋白、尿微量白蛋白、胱抑素C和同型半胱氨酸在糖尿病早期肾损害诊断中的临床意义%Clinical Significance of Joint Detection, Glycosylated Hemoglobin, Urine Trace Albumin Urinary Inhibition, Cystatin-C and Homocysteine with Early Renal Damage in Diabetes

    Institute of Scientific and Technical Information of China (English)

    林华峰; 兰忠诚; 李丽

    2015-01-01

    目的:探讨联合检测糖化血红蛋白(HbA1c)、尿微量白蛋白(UmA1c)、胱抑素C(CysC)和同型半胱氨酸(Hcy)在预测、诊断和治疗糖尿病早期肾病的关系。方法检测108例单纯糖尿病组和52例糖尿病早期肾病的HbA1c、CysC、Hcy、UmA1c水平变化;以100例健康体检者为对照组。结果糖尿病早期肾病组的几项检测水平均高于单纯糖尿病组和健康对照组,差异有统计学意义(P<0.05);在单纯糖尿病和健康对照组比较中CysC、HbA1c水平差异有统计学意义(P<0.05);而Hcy和UmA1c差异无统计学意义(P>0.05)。结论联合检测HbA1c、CysC、Hcy、UmA1c可提高糖尿病肾病的早期诊断效率,并在控制血糖和病程进展中有监测作用,对于延缓甚至逆转糖尿病早期肾病具有积极意义。%Objective To explore the combined detection of glycosylated hemoglobin (HbA1c), urine trace albumin urinary inhibition (UmA1c), Cystatin-C (CysC) and homocysteine (Hcy) in the prediction, diagnosis and treatment of early diabetic nephropathy.Methods 108 cases of simple diabetes group and 52 cases of early diabetic nephropathy HbA1c, CysC, Hcy, UmA1c level changes; in 100 cases of healthy physical examination for the control group.Results Several levels of early diabetic nephropathy group were higher than simple diabetes group and healthy controls, the difference was statistically signiifcant (P0.05).Conclusion The combined detection of HbA1c, CysC, Hcy, UmA1c can improve the efifciency of the early diagnosis of diabetic nephropathy, and in the control of blood sugar and progression monitoring function, to slow or reverse diabetes early kidney disease has positive signiifcance.

  1. Early Evolution of Vertebrate Mybs: An Integrative Perspective Combining Synteny, Phylogenetic, and Gene Expression Analyses.

    Science.gov (United States)

    Campanini, Emeline B; Vandewege, Michael W; Pillai, Nisha E; Tay, Boon-Hui; Jones, Justin L; Venkatesh, Byrappa; Hoffmann, Federico G

    2015-10-15

    The genes in the Myb superfamily encode for three related transcription factors in most vertebrates, A-, B-, and c-Myb, with functionally distinct roles, whereas most invertebrates have a single Myb. B-Myb plays an essential role in cell division and cell cycle progression, c-Myb is involved in hematopoiesis, and A-Myb is involved in spermatogenesis and regulating expression of pachytene PIWI interacting RNAs, a class of small RNAs involved in posttranscriptional gene regulation and the maintenance of reproductive tissues. Comparisons between teleost fish and tetrapods suggest that the emergence and functional divergence of the Myb genes were linked to the two rounds of whole-genome duplication early in vertebrate evolution. We combined phylogenetic, synteny, structural, and gene expression analyses of the Myb paralogs from elephant shark and lampreys with data from 12 bony vertebrates to reconstruct the early evolution of vertebrate Mybs. Phylogenetic and synteny analyses suggest that the elephant shark and Japanese lamprey have copies of the A-, B-, and c-Myb genes, implying their origin could be traced back to the common ancestor of lampreys and gnathostomes. However, structural and gene expression analyses suggest that their functional roles diverged between gnathostomes and cyclostomes. In particular, we did not detect A-Myb expression in testis suggesting that the involvement of A-Myb in the pachytene PIWI interacting RNA pathway is probably a gnathostome-specific innovation. We speculate that the secondary loss of a central domain in lamprey A-Myb underlies the functional differences between the cyclostome and gnathostome A-Myb proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Model Based Analysis of Clonal Developments Allows for Early Detection of Monoclonal Conversion and Leukemia

    Science.gov (United States)

    Thielecke, Lars; Glauche, Ingmar

    2016-01-01

    The availability of several methods to unambiguously mark individual cells has strongly fostered the understanding of clonal developments in hematopoiesis and other stem cell driven regenerative tissues. While cellular barcoding is the method of choice for experimental studies, patients that underwent gene therapy carry a unique insertional mark within the transplanted cells originating from the integration of the retroviral vector. Close monitoring of such patients allows accessing their clonal dynamics, however, the early detection of events that predict monoclonal conversion and potentially the onset of leukemia are beneficial for treatment. We developed a simple mathematical model of a self-stabilizing hematopoietic stem cell population to generate a wide range of possible clonal developments, reproducing typical, experimentally and clinically observed scenarios. We use the resulting model scenarios to suggest and test a set of statistical measures that should allow for an interpretation and classification of relevant clonal dynamics. Apart from the assessment of several established diversity indices we suggest a measure that quantifies the extension to which the increase in the size of one clone is attributed to the total loss in the size of all other clones. By evaluating the change in relative clone sizes between consecutive measurements, the suggested measure, referred to as maximum relative clonal expansion (mRCE), proves to be highly sensitive in the detection of rapidly expanding cell clones prior to their dominant manifestation. This predictive potential places the mRCE as a suitable means for the early recognition of leukemogenesis especially in gene therapy patients that are closely monitored. Our model based approach illustrates how simulation studies can actively support the design and evaluation of preclinical strategies for the analysis and risk evaluation of clonal developments. PMID:27764218

  3. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels.

    Science.gov (United States)

    Burger, Kaspar; Mühl, Bastian; Harasim, Thomas; Rohrmoser, Michaela; Malamoussi, Anastassia; Orban, Mathias; Kellner, Markus; Gruber-Eber, Anita; Kremmer, Elisabeth; Hölzel, Michael; Eick, Dirk

    2010-04-16

    Drugs for cancer therapy belong to different categories of chemical substances. The cellular targets for the therapeutic efficacy are often not unambiguously identified. Here, we describe the process of ribosome biogenesis as a target of a large variety of chemotherapeutic drugs. We determined the inhibitory concentration of 36 chemotherapeutic drugs for transcription and processing of ribosomal RNA by in vivo labeling experiments. Inhibitory drug concentrations were correlated to the loss of nucleolar integrity. The synergism of drugs inhibiting ribosomal RNA synthesis at different levels was studied. Drugs inhibited ribosomal RNA synthesis either at the level of (i) rRNA transcription (e.g. oxaliplatin, doxorubicin, mitoxantrone, methotrexate), (ii) early rRNA processing (e.g. camptothecin, flavopiridol, roscovitine), or (iii) late rRNA processing (e.g. 5-fluorouracil, MG-132, homoharringtonine). Blockage of rRNA transcription or early rRNA processing steps caused nucleolar disintegration, whereas blockage of late rRNA processing steps left the nucleolus intact. Flavopiridol and 5-fluorouracil showed a strong synergism for inhibition of rRNA processing. We conclude that inhibition of ribosome biogenesis by chemotherapeutic drugs potentially may contribute to the efficacy of therapeutic regimens.

  4. TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy

    Institute of Scientific and Technical Information of China (English)

    Chengyan Wang; Liying Du; Yang Gao; Ming Yin; Mingxiao Ding; Hongkui Deng; Xuming Tang; Xiaomeng Sun; Zhenchuan Miao; Yaxin Lv; Yanlei Yang; Huidan Zhang; Pengbo Zhang; Yang Liu

    2012-01-01

    Embryonic hematopoiesis is a complex process.Elucidating the mechanism regulating hematopoietic differentiation from pluripotent stem cells would allow us to establish a strategy to efficiently generate hematopoietic cells.However,the mechanism governing the generation of hematopoietic progenitors from human embryonic stem cells (hESCs)remains unknown.Here,on the basis of the emergence of CD43+ hematopoietic cells from hemogenic endothelial (HE) cells,we demonstrated that VEGF was essential and sufficient,and that bFGF was synergistic with VEGF to specify the HE cells and the subsequent transition into CD43+ hematopoietic cells.Significantly,we identified TGFβ as a novel signal to regulate hematopoietic development,as the TGFβ inhibitor SB 431542 significantly promoted the transition from HE cells into CD43+ hematopoietic progenitor cells (HPCs) during hESC differentiation.By defining these critical signaling factors during hematopoietic differentiation,we can efficiently generate HPCs from hESCs.Our strategy could offer an in vitro model to study early human hematopoietic development.

  5. Evidence that neomycin inhibits human cytomegalovirus infection of fibroblasts.

    Science.gov (United States)

    Lobert, P E; Hober, D; Delannoy, A S; Wattré, P

    1996-01-01

    The effect of phosphoinositide-binding aminoglycosides, such as neomycin, gentamicin and streptomycin, on human cytomegalovirus (HCMV) infection of human fibroblasts MRC-5 was studied. The inhibition of HCMV infection was obtained with all of these molecules but neomycin was more effective than the others. We showed that the inoculation of the cells with cell-free viral suspension in presence of neomycin concentrations above 5 mM at 37 degrees C, inhibited more than 98% the HCMV infection. However, the preincubation of the fibroblasts with neomycin at 4 degrees C, before the removal of the drug and the inoculation of the cells, induced only a 30% decrease in the number of infected cells. Addition of neomycin after the HCMV-binding at 4 degrees C or the infection of the cells was less efficient to inhibit HCMV infection than the standard incubation of neomycin during inoculation of the fibroblasts. Indeed, 1 hour after the inoculation of the cells at 37 degrees C, neomycin still inhibited HCMV infection, but 4 hours after the inoculation, this drug had no effect on HCMV infection. Our findings demonstrated that neomycin must be present at the time of infection in order to exert a full inhibiting effect. The effect of neomycin on the HCMV infection was almost immediate upon the addition of the drug (binding and/or internalization) and after the virus internalization (inhibition of immediate-early events). We suggest that neomycin and other aminoglycoside antibiotics may interact with HCMV glycoproteins for binding to similar structural features of cell surface heparan sulfate proteoglycans and may inhibit HCMV infection in fibroblasts by disrupting phosphoinositide-mediated events in the cells.

  6. Lateral inhibition during nociceptive processing.

    Science.gov (United States)

    Quevedo, Alexandre S; Mørch, Carsten Dahl; Andersen, Ole K; Coghill, Robert C

    2017-06-01

    Spatial summation of pain (SSP) is the increase of perceived intensity that occurs as the stimulated area increases. Spatial summation of pain is subadditive in that increasing the stimulus area produces a disproportionately small increase in the perceived intensity of pain. A possible explanation for subadditive summation may be that convergent excitatory information is modulated by lateral inhibition. To test the hypothesis that lateral inhibition may limit SSP, we delivered different patterns of noxious thermal stimuli to the abdomens of 15 subjects using a computer-controlled CO2 laser. Lines (5 mm wide) of variable lengths (4, 8 cm) were compared with 2-point stimuli delivered at the same position/separation as the length of lines. When compared with one-point control stimuli, 2-point stimulus patterns produced statistically significant SSP, while no such summation was detected during line stimulus patterns. Direct comparison of pain intensity evoked by 2-point pattern stimuli with line pattern stimuli revealed that 2-point patterns were perceived as significantly more painful, despite the fact that the 2-point pattern stimulated far smaller areas of skin. Thus, the stimulation of the skin region between the endpoints of the lines appears to produce inhibition. These findings indicate that lateral inhibition limits SSP and is an intrinsic component of nociceptive information processing. Disruption of such lateral inhibition may contribute substantially to the radiation of some types of chronic pain.

  7. Optimizing Early Retirement Decisions.

    Science.gov (United States)

    2007-11-02

    the military. The U.S. Army’s early retirement program is a temporary one designed to allow some soldiers to leave the service prior to 20 years of...whether it makes financial sense for an officer to select early retirement . A spreadsheet formulation is developed and used to indicate if and when...an officer should select early retirement . The program investigates the decision that various civilian salary levels and various assumed discount rates.

  8. Activated sludge inhibition capacity index

    Directory of Open Access Journals (Sweden)

    V. Surerus

    2014-06-01

    Full Text Available Toxic compounds in sewage or industrial wastewater may inhibit the biological activity of activated sludge impairing the treatment process. This paper evaluates the Inhibition Capacity Index (ICI for the assessment of activated sludge in the presence of toxicants. In this study, activated sludge was obtained from industrial treatment plants and was also synthetically produced. Continuous respirometric measurements were carried out in a reactor, and the oxygen uptake rate profile obtained was used to evaluate the impact of inhibiting toxicants, such as dissolved copper, phenol, sodium alkylbenzene sulfonate and amoxicillin, on activated sludge. The results indicate that ICI is an efficient tool to quantify the intoxication capacity. The activated sludge from the pharmaceutical industry showed higher resistance than the sludge from other sources, since toxicants are widely discharged in the biological treatment system. The ICI range was from 58 to 81% when compared to the synthetic effluent with no toxic substances.

  9. Homo economicus belief inhibits trust.

    Directory of Open Access Journals (Sweden)

    Ziqiang Xin

    Full Text Available As a foundational concept in economics, the homo economicus assumption regards humans as rational and self-interested actors. In contrast, trust requires individuals to believe partners' benevolence and unselfishness. Thus, the homo economicus belief may inhibit trust. The present three experiments demonstrated that the direct exposure to homo economicus belief can weaken trust. And economic situations like profit calculation can also activate individuals' homo economicus belief and inhibit their trust. It seems that people's increasing homo economicus belief may serve as one cause of the worldwide decline of trust.

  10. Homo economicus belief inhibits trust.

    Science.gov (United States)

    Xin, Ziqiang; Liu, Guofang

    2013-01-01

    As a foundational concept in economics, the homo economicus assumption regards humans as rational and self-interested actors. In contrast, trust requires individuals to believe partners' benevolence and unselfishness. Thus, the homo economicus belief may inhibit trust. The present three experiments demonstrated that the direct exposure to homo economicus belief can weaken trust. And economic situations like profit calculation can also activate individuals' homo economicus belief and inhibit their trust. It seems that people's increasing homo economicus belief may serve as one cause of the worldwide decline of trust.

  11. Early College High Schools

    Science.gov (United States)

    Dessoff, Alan

    2011-01-01

    For at-risk students who stand little chance of going to college, or even finishing high school, a growing number of districts have found a solution: Give them an early start in college while they still are in high school. The early college high school (ECHS) movement that began with funding from the Bill and Melinda Gates Foundation 10 years ago…

  12. Early Retirement Payoff

    Science.gov (United States)

    Fitzpatrick, Maria D.; Lovenheim, Michael F.

    2014-01-01

    As public budgets have grown tighter over the past decade, states and school districts have sought ways to control the growth of spending. One increasingly common strategy employed to rein in costs is to offer experienced teachers with high salaries financial incentives to retire early. Although early retirement incentive (ERI) programs have been…

  13. IL-1β Inhibits Human Osteoblast Migration

    Science.gov (United States)

    Hengartner, Nina-Emily; Fiedler, Jörg; Ignatius, Anita; Brenner, Rolf E

    2013-01-01

    Bone has a high capacity for self-renewal and repair. Prolonged local secretion of interleukin 1β (IL-1β), however, is known to be associated with severe bone loss and delayed fracture healing. Since induction of bone resorption by IL-1β may not sufficiently explain these pathologic processes, we investigated, in vitro, if and how IL-1β affects migration of multipotent mesenchymal stromal cells (MSC) or osteoblasts. We found that homogenous exposure to IL-1β significantly diminished both nondirectional migration and site-directed migration toward the chemotactic factors platelet-derived growth factor (PDGF)-BB and insulinlike growth factor 1 (IGF-1) in osteoblasts. Exposure to a concentration gradient of IL-1β induced an even stronger inhibition of migration and completely abolished the migratory response of osteoblasts toward PDGF-BB, IGF-1, vascular endothelial growth factor A (VEGF-A) and the complement factor C5a. IL-1β induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases (JNK) activation and inhibition of these signaling pathways suggested an involvement in the IL-1β effects on osteoblast migration. In contrast, basal migration of MSC and their migratory activity toward PDGF-BB was found to be unaffected by IL-1β. These results indicate that the presence of IL-1β leads to impaired recruitment of osteoblasts which might influence early stages of fracture healing and could have pathological relevance for bone remodeling in inflammatory bone disease. PMID:23508571

  14. Strigolactone inhibition of shoot branching

    NARCIS (Netherlands)

    Gomez-Roldan, M.V.; Fermas, S.; Brewer, P.B.; Puech-Pages, V.; Dun, E.A.; Pillot, J.P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.C.; Bouwmeester, H.J.; Becard, G.; Beveridge, C.A.; Rameau, C.; Rochange, S.F.

    2008-01-01

    A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence

  15. Strigolactone inhibition of shoot branching

    NARCIS (Netherlands)

    Gomez-Roldan, M.V.; Fermas, S.; Brewer, P.B.; Puech-Pages, V.; Dun, E.A.; Pillot, J.P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.C.; Bouwmeester, H.J.; Becard, G.; Beveridge, C.A.; Rameau, C.; Rochange, S.F.

    2008-01-01

    A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence

  16. Methanogenic inhibition by arsenic compounds.

    Science.gov (United States)

    Sierra-Alvarez, Reyes; Cortinas, Irail; Yenal, Umur; Field, Jim A

    2004-09-01

    The acute acetoclastic methanogenic inhibition of several inorganic and organic arsenicals was assayed. Trivalent species, i.e., methylarsonous acid and arsenite, were highly inhibitory, with 50% inhibitory concentrations of 9.1 and 15.0 microM, respectively, whereas pentavalent species were generally nontoxic. The nitrophenylarsonate derivate, roxarsone, displayed moderate toxicity.

  17. Inhibition of carcinogenesis by tea.

    Science.gov (United States)

    Yang, Chung S; Maliakal, Pius; Meng, Xiaofeng

    2002-01-01

    Tea has received a great deal of attention because tea polyphenols are strong antioxidants, and tea preparations have inhibitory activity against tumorigenesis. The bioavailability and biotransformation of tea polyphenols, however, are key factors limiting these activities in vivo. The inhibition of tumorigenesis by green or black tea preparations has been demonstrated in animal models on different organ sites such as skin, lung, oral cavity, esophagus, forestomach, stomach, small intestine, colon, pancreas, and mammary gland. Epidemiological studies, however, have not yielded clear conclusions concerning the protective effects of tea consumption against cancer formation in humans. The discrepancy between the results from humans and animal models could be due to 1) the much higher doses of tea used in animals in comparison to human consumption, 2) the differences in causative factors between the cancers in humans and animals, and 3) confounding factors limiting the power of epidemiological studies to detect an effect. It is possible that tea may be only effective against specific types of cancer caused by certain etiological factors. Many mechanisms have been proposed for the inhibition of carcinogenesis by tea, including the modulation of signal transduction pathways that leads to the inhibition of cell proliferation and transformation, induction of apoptosis of preneoplastic and neoplastic cells, as well as inhibition of tumor invasion and angiogenesis. These mechanisms need to be evaluated and verified in animal models or humans in order to gain more understanding on the effect of tea consumption on human cancer.

  18. Testing of Biologically Inhibiting Surface

    DEFF Research Database (Denmark)

    Bill Madsen, Thomas; Larsen, Erup

    2003-01-01

    The main purpose of this course is to examine a newly developed biologically inhibiting material with regards to galvanic corrosion and electrochemical properties. More in detail, the concern was how the material would react when exposed to cleaning agents, here under CIP cleaning (Cleaning...

  19. Islam Does Not Inhibit Science.

    Science.gov (United States)

    Shanavas, T. O.

    1999-01-01

    Compares the science/religion relationship in both Christian and Islamic countries. Presents Muslim scholars' ideas about the presence of humans on earth. Presents ideas on active nature, Noah's curse, and the age of the universe. Refutes the notion that Islam inhibited science and advocates the belief that Islam promoted science. (YDS)

  20. Epigallocatechin gallate inhibits endothelial exocytosis.

    Science.gov (United States)

    Yamakuchi, Munekazu; Bao, Clare; Ferlito, Marcella; Lowenstein, Charles J

    2008-07-01

    Consumption of green tea is associated with a decrease in cardiovascular mortality. The beneficial health effects of green tea are attributed in part to polyphenols, organic compounds found in tea that lower blood pressure, reduce body fat, decrease LDL cholesterol, and inhibit inflammation. We hypothesized that epigallocatechin gallate (EGCG), the most abundant polyphenol in tea, inhibits endothelial exocytosis, the initial step in leukocyte trafficking and vascular inflammation. To test this hypothesis, we treated human umbilical-vein endothelial cells with EGCG and other polyphenols, and then measured endothelial exocytosis. We found that EGCG decreases endothelial exocytosis in a concentration-dependent manner, with the effects most prominent after 4 h of treatment. Other catechin polyphenols had no effect on endothelial cells. By inhibiting endothelial exocytosis, EGCG decreases leukocyte adherence to endothelial cells. In searching for the mechanism by which EGCG affects endothelial cells, we found that EGCG increases Akt phosphorylation, eNOS phosphorylation, and nitric oxide (NO) production. NOS inhibition revealed that NO mediates the anti-inflammatory effects of EGCG. Our data suggest that polyphenols can decrease vascular inflammation by increasing the synthesis of NO, which blocks endothelial exocytosis.

  1. Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts.

    Science.gov (United States)

    Apelbaum, A; Burgoon, A C; Anderson, J D; Lieberman, M

    1981-08-01

    Ethylene production in apple fruit and protoplasts and in leaf tissue was inhibited by spermidine or spermine. These polyamines, as well as putrescine, inhibited auxin-induced ethylene production and the conversion of methionine and 1-aminocyclopropane-1-carboxylic acid to ethylene. Polyamines were more effective as inhibitors of ethylene synthesis at the early, rather than at the late, stages of fruit ripening. Ca(2+) in the incubation medium reduced the inhibitory effect caused by the amines. A possible mode of action by which polyamines inhibit ethylene production is discussed.

  2. Memory consolidation in human sleep depends on inhibition of glucocorticoid release.

    Science.gov (United States)

    Plihal, W; Born, J

    1999-09-09

    Early sleep dominated by slow-wave sleep has been found to be particularly relevant for declarative memory formation via hippocampo-neocortical networks. Concurrently, early nocturnal sleep is characterized by an inhibition of glucocorticoid release from the adrenals. Here, we show in healthy humans that this inhibition serves to support declarative memory consolidation during sleep. Elevating plasma glucocorticoid concentration during early sleep by administration of cortisol impaired consolidation of paired associate words, but not of non-declarative memory of visuomotor skills. Since glucocorticoid concentration was enhanced only during retention sleep, but not during acquisition or retrieval, a specific effect on the consolidation process is indicated. Blocking mineralocorticoid receptors by canrenoate did not affect memory, suggesting inactivation of glucocorticoid receptors to be the essential prerequisite for memory consolidation during early sleep.

  3. Effect of carbon monoxide inhibition on the growth of an aquatic streptomycete

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, D.E.; Silvey, J.K.G.

    1971-01-01

    A recent investigation has shown that the primary mycelium of aquatic streptomycetes is facultatively aerobic while the secondary mycelium is obligately aerobic. The nature of the differences in aerobic metabolism of various morphological phases in the life history was determined by carbon monoxide inhibition. A slide culture chamber technique which allowed continuous microscopic observation of the growing organism while in various gas environments was used. Two distinct patterns of inhibition were observed. The development of early stages of the life history was inhibited by carbon monoxide in the light and the dark. The site of this inhibition could not be determined. The later stages were inhibited only by carbon monoxide in the dark. This suggested a dependence of the secondary mycelium on the activity of cytochrome oxidase. Thus, the primary and secondary mycelial stages were found to be physiologically distinct.

  4. Dynamics of early histopathological changes in GVHD after busulphan/cyclophosphamide conditioning regimen.

    Science.gov (United States)

    Al-Hashmi, Sulaiman; Hassan, Zuzana; Sadeghi, Behnam; Rozell, Björn; Hassan, Moustapha

    2011-08-15

    Hematopoietic stem cell transplantation (HSCT) is a curative treatment for otherwise incurable diseases. Conditioning regimen is an important part of HSCT and consists of chemotherapy with or without irradiation. Conditioning exerts myelosuppressive, immunosuppressive and antitumor effects, but also contributes to HSCT-related complications including graft-versus-host disease (GVHD). Since almost 50% of the transplanted patients are conditioned with cytostatics without irradiation, we developed and characterized a GVHD mouse model following conditioning with busulphan and cyclophosphamide. Recipient Balb/c female mice were treated with busulphan (20 mg/kg/day for 4 days) and cyclophosphamide (100 mg/kg/day for two days). After one day of rest, recipient mice were transplanted with 2×10(7) bone marrow and 3×10(7) spleen cells from male C57BL/6 (allogeneic group) or female Balb/c (syngeneic/control group) mice. The allogeneic, but not syngeneic transplanted mice developed GVHD. Histopathology of the major internal organs (liver, pancreas, spleen, lungs, heart and kidney) was examined before conditioning start, after conditioning's end and 5, 7 and 21 days after transplantation using hematoxylin-eosin staining. Decreased spleen cellularity and diminished glycogen content in the liver were observed after conditioning regimen. Histopathological changes such as vasculitis, inflammation and apoptotic cell forms in liver, spleen, pancreas, lungs and heart were observed in allogeneic transplanted mice, however, only hypocellular spleen and extramedullar hematopoiesis were detected in syngeneic transplanted animals. No morphological changes were observed in kidney in either HSCT setting. This is the first study describing early histopathological changes after conditioning regimen with busulphan/cyclophosphamide and dynamics of GVHD development in several major internal organs.

  5. S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection.

    Science.gov (United States)

    Martínez, María Guadalupe; Prado Acosta, Mariano; Candurra, Nélida A; Ruzal, Sandra M

    2012-06-15

    It has been previously described that S-layer binds to the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209). It was also shown that DC-SIGN is a cell-surface adhesion factor that enhances viral entry of several virus families. Among those, Junin virus (JUNV) entry is enhanced in cells expressing DC-SIGN and for that reason surface-layer protein (S-layer) of Lactobacillus acidophilus ATCC 4365 was evaluated as a possible JUNV inhibitor. Experiments using 3T3 cells stably expressing DC-SIGN, showed an almost complete inhibition of JUNV infection when they were treated with S-layer in a similar extend as the inhibition shown by mannan. However no inhibition effect was observed in 3T3 wild type cells or in 3T3 cells expressing liver/lymph node-specific ICAM-3 grabbing nonintegrin (L-SIGN or DC-SIGNR or CD209L). Treatments with S-layer during different times in the infection demonstrated that inhibition was only observed when S-layer was presented in early stages of the viral infection. This inhibition does not involve the classic recognition of mannose by this C-type lectin as the S-layer showed no evidence to be glycosylated. In fact, the highly basic nature of the S-layer (pI>9.5) seems to be involved in electrostatic interactions between DC-SIGN and S-layer, since high pH abolished the inhibitory effect on infection cause by the S-layer. In silico analysis predicts a Ca(2+)-dependant carbohydrate recognition domain in the SlpA protein. This novel characteristic of the S-layer, a GRAS status protein, contribute to the pathogen exclusion reported for this probiotic strain and may be applied as an antiviral agent to inhibit several kinds of viruses.

  6. Early events in axon/dendrite polarization.

    Science.gov (United States)

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure.

  7. Clathrin-mediated endocytosis is inhibited during mitosis.

    Science.gov (United States)

    Fielding, Andrew B; Willox, Anna K; Okeke, Emmanuel; Royle, Stephen J

    2012-04-24

    A long-standing paradigm in cell biology is the shutdown of endocytosis during mitosis. There is consensus that transferrin uptake is inhibited after entry into prophase and that it resumes in telophase. A recent study proposed that endocytosis is continuous throughout the cell cycle and that the observed inhibition of transferrin uptake is due to a decrease in available transferrin receptor at the cell surface, and not to a shutdown of endocytosis. This challenge to the established view is gradually becoming accepted. Because of this controversy, we revisited the question of endocytic activity during mitosis. Using an antibody uptake assay and controlling for potential changes in surface receptor density, we demonstrate the strong inhibition of endocytosis in mitosis of CD8 chimeras containing any of the three major internalization motifs for clathrin-mediated endocytosis (YXXΦ, [DE]XXXL[LI], or FXNPXY) or a CD8 protein with the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor. The shutdown is not gradual: We describe a binary switch from endocytosis being "on" in interphase to "off" in mitosis as cells traverse the G(2)/M checkpoint. In addition, we show that the inhibition of transferrin uptake in mitosis occurs despite abundant transferrin receptor at the surface of HeLa cells. Our study finds no support for the recent idea that endocytosis continues during mitosis, and we conclude that endocytosis is temporarily shutdown during early mitosis.

  8. Beryllium nitrate inhibits fibroblast migration to disrupt epimorphic regeneration.

    Science.gov (United States)

    Cook, Adam B; Seifert, Ashley W

    2016-10-01

    Epimorphic regeneration proceeds with or without formation of a blastema, as observed for the limb and skin, respectively. Inhibition of epimorphic regeneration provides a means to interrogate the cellular and molecular mechanisms that regulate it. In this study, we show that exposing amputated limbs to beryllium nitrate disrupts blastema formation and causes severe patterning defects in limb regeneration. In contrast, exposing full-thickness skin wounds to beryllium only causes a delay in skin regeneration. By transplanting full-thickness skin from ubiquitous GFP-expressing axolotls to wild-type hosts, we demonstrate that beryllium inhibits fibroblast migration during limb and skin regeneration in vivo Moreover, we show that beryllium also inhibits cell migration in vitro using axolotl and human fibroblasts. Interestingly, beryllium did not act as an immunostimulatory agent as it does in Anurans and mammals, nor did it affect keratinocyte migration, proliferation or re-epithelialization, suggesting that the effect of beryllium is cell type-specific. While we did not detect an increase in cell death during regeneration in response to beryllium, it did disrupt cell proliferation in mesenchymal cells. Taken together, our data show that normal blastema organogenesis cannot occur without timely infiltration of local fibroblasts and highlights the importance of positional information to instruct pattern formation during regeneration. In contrast, non-blastemal-based skin regeneration can occur despite early inhibition of fibroblast migration and cell proliferation.

  9. Clathrin-mediated endocytosis is inhibited during mitosis

    Science.gov (United States)

    Fielding, Andrew B.; Willox, Anna K.; Okeke, Emmanuel; Royle, Stephen J.

    2012-01-01

    A long-standing paradigm in cell biology is the shutdown of endocytosis during mitosis. There is consensus that transferrin uptake is inhibited after entry into prophase and that it resumes in telophase. A recent study proposed that endocytosis is continuous throughout the cell cycle and that the observed inhibition of transferrin uptake is due to a decrease in available transferrin receptor at the cell surface, and not to a shutdown of endocytosis. This challenge to the established view is gradually becoming accepted. Because of this controversy, we revisited the question of endocytic activity during mitosis. Using an antibody uptake assay and controlling for potential changes in surface receptor density, we demonstrate the strong inhibition of endocytosis in mitosis of CD8 chimeras containing any of the three major internalization motifs for clathrin-mediated endocytosis (YXXΦ, [DE]XXXL[LI], or FXNPXY) or a CD8 protein with the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor. The shutdown is not gradual: We describe a binary switch from endocytosis being “on” in interphase to “off” in mitosis as cells traverse the G2/M checkpoint. In addition, we show that the inhibition of transferrin uptake in mitosis occurs despite abundant transferrin receptor at the surface of HeLa cells. Our study finds no support for the recent idea that endocytosis continues during mitosis, and we conclude that endocytosis is temporarily shutdown during early mitosis. PMID:22493256

  10. Context-dependent latent inhibition in preweanling rats.

    Science.gov (United States)

    Revillo, D A; Gaztañaga, M; Aranda, E; Paglini, M G; Chotro, M G; Arias, C

    2014-11-01

    Preexposure to a conditioned stimulus (CS) usually weakens conditioning, an effect known as latent inhibition. Similar to other learning interference effects, latent inhibition has been characterized as context-dependent, which means that the magnitude of this effect can be attenuated by changing the context between the different phases of the procedure (e.g., preexposure and conditioning). Latent inhibition has been found with a variety of procedures in infant rats, but the few studies that examined the context-dependency of this phenomenon during this ontogenetic period found no context-change effect. The present study explored the context-dependency of latent inhibition during infancy using a conditioned taste aversion preparation and employing contexts enriched with distinctive odors to increase the possible efficacy of the context manipulation. Experiment 1 showed that three preexposures to the CS (saccharin) were sufficient to retard conditioning to the same CS, although this effect was also observed in a control group preexposed to an alternative taste stimulus (saline), in comparison with a non-preexposed control group. In Experiment 2a, the CS-preexposure effect was found to be specific to the preexposed CS when the number of preexposures was increased. This effect was revealed as context-dependent in Experiment 2b, since it was attenuated by changing the context between preexposure and conditioning. The present result is consistent with recent studies showing the context-dependency of extinction in preweanling rats, thus demonstrating these animals' capacity to learn about context early on in their development.

  11. ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport.

    Science.gov (United States)

    Xu, L; Spinas, G A; Niessen, M

    2010-08-01

    The endoplasmic reticulum (ER) is the intra-cellular site, where secreted and membrane proteins are synthesized. ER stress and activation of the unfolded protein response (UPR) contribute to insulin resistance and the development of diabetes in obesity. It was shown previously in hepatocytes that the UPR activates c-jun N-terminal kinase (JNK), which phosphorylates insulin receptor substrate (IRS) proteins on serine residues thereby inhibiting insulin signal transduction. Here we describe how ER stress affects insulin signaling and the biological function of adipocytes. In addition to inhibition of IRS we found that ER stress downregulates the expression of the insulin receptor. Concomitantly, insulin-induced activation of Akt/PKB and of ERK1/2 was strongly inhibited. Ectopic expression of IRS1 or IRS2 strongly counteracted the inhibitory effect of ER stress on insulin signaling while pharmacological inhibition of JNK with SP600125 resulted only in a mild improvement. ER stress decreased the secretion of the adipokines adiponectin and leptin, but strongly increased secretion of IL-6. ER stress inhibited expression and insulin-induced phosphorylation of AS160, reduced lipolysis but did not inhibit glucose transport. Finally, supernatants collected from 3T3-L1 adipocytes undergoing ER stress improved or impaired proliferation when used to condition the culture medium of INS-1E beta-cells dependent on the degree of ER stress. It appears that ER stress in adipocytes might initially lead to changes resembling early prediabetic stages, which at least in part support the regulation of systemic energy homeostasis. Copyright Georg Thieme Verlag KG Stuttgart New York.

  12. Early Option Exercise

    DEFF Research Database (Denmark)

    Heje Pedersen, Lasse; Jensen, Mads Vestergaard

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal when...... it reduces short-sale costs, transaction costs, or funding costs. We provide consistent empirical evidence, documenting billions of dollars of early exercise for options and convertible bonds using unique data on actual exercise decisions and frictions. Our model can explain as much as 98% of early exercises...

  13. Early Option Exercise

    DEFF Research Database (Denmark)

    Jensen, Mads Vestergaard; Heje Pedersen, Lasse

    2016-01-01

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal when...... it reduces short-sale costs, transaction costs, or funding costs. We provide consistent empirical evidence, documenting billions of dollars of early exercise for options and convertible bonds using unique data on actual exercise decisions and frictions. Our model can explain as much as 98% of early exercises...

  14. Early Head Start Evaluation

    Data.gov (United States)

    U.S. Department of Health & Human Services — Longitudinal information from an evaluation where children were randomly assigned to Early Head Start or community services as usual;direct assessments and...

  15. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  16. (Reconceptualizing Early Childhood Education)?

    African Journals Online (AJOL)

    denise

    Second, I must stress the immensely precious and ..... 'useless' subjects such as emotions, sensitivity, .... a range of different sociological fields including early childhood, gender, .... The origins of intelligence in children (M. Cook, Trans.).

  17. Biogeochemistry: Early phosphorus redigested

    Science.gov (United States)

    Poulton, Simon W.

    2017-02-01

    Atmospheric oxygen was maintained at low levels throughout huge swathes of Earth's early history. Estimates of phosphorus availability through time suggest that scavenging from anoxic, iron-rich oceans stabilized this low-oxygen world.

  18. Embracing early literacy indicators

    DEFF Research Database (Denmark)

    Broström, Stig; Hansen, Ole Henrik; Jensen, Anders Skriver

    2010-01-01

    Abstract til paper om early literacy indikatorer. Det paper abstractet er knyttet til var en del af et inviteret, selvorganiseret symposium som afrapporterede EASE-projektet (www.ease-eu.com) på OMEP's 26. verdenskongres....

  19. Corrosion Chemistry in Inhibited HDA.

    Science.gov (United States)

    1980-11-30

    Titanium and chromium have sufficiently low Flade potentials to pass- ivate in non-oxidising acids, but Iron will only exhibit self-passivity if the...inhibition e.g. involving organic and pickling inhibitors* the rest potential can actually 4.5,4.6become more negative " This is due to cathodic rather...media. 321 stainless steel, titanium stabilised, was the particular steel studied, being very similar in composition to the 347also stainless steel

  20. Notch Signaling Inhibits Axon Regeneration

    OpenAIRE

    Bejjani, Rachid El; Hammarlund, Marc

    2012-01-01

    Many neurons have limited capacity to regenerate their axons after injury. Neurons in the mammalian CNS do not regenerate, and even neurons in the PNS often fail to regenerate to their former targets. This failure is likely due in part to pathways that actively restrict regeneration; however, only a few factors that limit regeneration are known. Here, using single-neuron analysis of regeneration in vivo, we show that Notch/lin-12 signaling inhibits the regeneration of mature C. elegans neuron...

  1. Early Prediction of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Leona C. Poon

    2014-01-01

    Full Text Available Effective screening for the development of early onset preeclampsia (PE can be provided in the first-trimester of pregnancy. Screening by a combination of maternal risk factors, uterine artery Doppler, mean arterial pressure, maternal serum pregnancy-associated plasma protein-A, and placental growth factor can identify about 95% of cases of early onset PE for a false-positive rate of 10%.

  2. Early Mover Advantages

    OpenAIRE

    Bijwaard, Govert; Janssen, Maarten; Maasland, Emiel

    2005-01-01

    This paper analyzes empirically whether and if so to what extent later entrants in the European mobile telephony industry have a disadvantage vis-à-vis incumbents and early mover entrants. To analyze this question a dynamic model of market share development and a series of static models are considered. There is clear evidence of early mover advantage, mainly caused by the influence of the penetration rate: it pays to enter when still few people have acquired a mobile telephone. Another import...

  3. Early childhood aggression

    OpenAIRE

    Alink, Lenneke Rosalie Agnes

    2006-01-01

    In this thesis the development, stability, and correlates of early childhood aggression were investigated. The normative development was examined in a general population sample using questionnaires completed by the parents of 12-, 24-, and 36-month-old children and again one year later. Results showed an early childhood aggression curve, with increasing rates of aggression in the second year of life and decreasing rates in the fourth year. One-year stabilities were moderate for 12-month-olds ...

  4. Th2 cytokines inhibit lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Ira L Savetsky

    Full Text Available Lymphangiogenesis is the process by which new lymphatic vessels grow in response to pathologic stimuli such as wound healing, inflammation, and tumor metastasis. It is well-recognized that growth factors and cytokines regulate lymphangiogenesis by promoting or inhibiting lymphatic endothelial cell (LEC proliferation, migration and differentiation. Our group has shown that the expression of T-helper 2 (Th2 cytokines is markedly increased in lymphedema, and that these cytokines inhibit lymphatic function by increasing fibrosis and promoting changes in the extracellular matrix. However, while the evidence supporting a role for T cells and Th2 cytokines as negative regulators of lymphatic function is clear, the direct effects of Th2 cytokines on isolated LECs remains poorly understood. Using in vitro and in vivo studies, we show that physiologic doses of interleukin-4 (IL-4 and interleukin-13 (IL-13 have profound anti-lymphangiogenic effects and potently impair LEC survival, proliferation, migration, and tubule formation. Inhibition of these cytokines with targeted monoclonal antibodies in the cornea suture model specifically increases inflammatory lymphangiogenesis without concomitant changes in angiogenesis. These findings suggest that manipulation of anti-lymphangiogenic pathways may represent a novel and potent means of improving lymphangiogenesis.

  5. Conditioned inhibition and reinforcement rate.

    Science.gov (United States)

    Harris, Justin A; Kwok, Dorothy W S; Andrew, Benjamin J

    2014-07-01

    We investigated conditioned inhibition in a magazine approach paradigm. Rats were trained on a feature negative discrimination between an auditory conditioned stimulus (CS) reinforced at one rate versus a compound of that CS and a visual stimulus (L) reinforced at a lower rate. This training established L as a conditioned inhibitor. We then tested the inhibitory strength of L by presenting it in compound with other auditory CSs. L reduced responding when tested with a CS that had been reinforced at a high rate, but had less or even no inhibitory effect when tested with a CS that had been reinforced at a low rate. The inhibitory strength of L was greater if it signaled a decrease in reinforcement from an already low rate than if it signaled an equivalent decrease in reinforcement from a high rate. We conclude that the strength of inhibition is not a linear function of the change in reinforcement that it signals. We discuss the implications of this finding for models of learning (e.g., Rescorla & Wagner, 1972) that identify inhibition with a difference (subtraction) rule.

  6. Spiroethers of German chamomile inhibit production of aflatoxin G and trichothecene mycotoxin by inhibiting cytochrome P450 monooxygenases involved in their biosynthesis.

    Science.gov (United States)

    Yoshinari, Tomoya; Yaguchi, Atsushi; Takahashi-Ando, Naoko; Kimura, Makoto; Takahashi, Haruo; Nakajima, Takashi; Sugita-Konishi, Yoshiko; Nagasawa, Hiromichi; Sakuda, Shohei

    2008-07-01

    The essential oil of German chamomile showed specific inhibition toward aflatoxin G(1) (AFG(1)) production, and (E)- and (Z)-spiroethers were isolated as the active compounds from the oil. The (E)- and (Z)-spiroethers inhibited AFG(1) production of Aspergillus parasiticus with inhibitory concentration 50% (IC(50)) values of 2.8 and 20.8 microM, respectively, without inhibiting fungal growth. Results of an O-methylsterigmatocystin (OMST) conversion study indicated that the spiroethers specifically inhibited the OMST to AFG(1) pathway. A cytochrome P450 monooxygenase, CYPA, is known as an essential enzyme for this pathway. Because CYPA has homology with TRI4, a key enzyme catalyzing early steps in the biosynthesis of trichothecenes, the inhibitory actions of the two spiroethers against TRI4 reactions and 3-acetyldeoxynivalenol (3-ADON) production were tested. (E)- and (Z)-spiroethers inhibited the enzymatic activity of TRI4 dose-dependently and interfered with 3-ADON production by Fusarium graminearum, with IC(50) values of 27.1 and 103 microM, respectively. Our results suggest that the spiroethers inhibited AFG(1) and 3-ADON production by inhibiting CYPA and TRI4, respectively.

  7. Inhibition of Embryonic Genes to Control Colorectal Cancer Metastasis

    Science.gov (United States)

    2012-09-01

    determined that NANOG binds to the NEDD9 promoter as predicted by Boyer et al. (5). Our current hypothesis is that NEDD9 is a mediator by which NANOG...Omics work that the Institute of Medicine is doing in the wake of the Duke genetics fiasco which she helped identify. We will produce a manuscript on...from the early data that NANOG protein is expressed in more than 40% of colon carcinomas analyzed so far. Task 2a. Determine whether inhibition of

  8. How early is early dark energy?

    CERN Document Server

    Pettorino, Valeria; Wetterich, Christof

    2013-01-01

    We investigate constraints on early dark energy (EDE) from the Cosmic Microwave Background (CMB) anisotropy, taking into account data from WMAP9 combined with latest small scale measurements from the South Pole Telescope (SPT). For a constant EDE fraction we propose a new parametrization with one less parameter but still enough to provide similar results to the ones previously studied in literature. The main emphasis of our analysis, however, compares a new set of different EDE parametrizations that reveal how CMB constraints depend on the redshift epoch at which Dark Energy was non negligible. We find that bounds on EDE get substantially weaker if dark energy starts to be non-negligible later, with early dark energy fraction Omega_e free to go up to about 5% at 2 sigma if the onset of EDE happens at z < 100. Tight bounds around 1-2% are obtained whenever dark energy is present at last scattering, even if its effects switch off afterwards. We show that the CMB mainly constrains the presence of Dark Energy ...

  9. Neuroscience of inhibition for addiction medicine: From prediction of initiation to prediction of relapse

    Science.gov (United States)

    Moeller, Scott J.; Bederson, Lucia; Alia-Klein, Nelly; Goldstein, Rita Z.

    2017-01-01

    A core deficit in drug addiction is the inability to inhibit maladaptive drug-seeking behavior. Consistent with this deficit, drug-addicted individuals show reliable cross-sectional differences from healthy non-addicted controls during tasks of response inhibition accompanied by brain activation abnormalities as revealed by functional neuroimaging. However, it is less clear whether inhibition-related deficits predate the transition to problematic use, and, in turn, whether these deficits predict the transition out of problematic substance use. Here, we review longitudinal studies of response inhibition in children/adolescents with little substance experience and longitudinal studies of already-addicted individuals attempting to sustain abstinence. Results show that response inhibition, and its underlying neural correlates, predict both substance use outcomes (onset and abstinence). Neurally, key roles were observed for multiple regions of the frontal cortex (e.g., inferior frontal gyrus, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex). In general, less activation of these regions during response inhibition predicted not only the onset of substance use, but interestingly, also better abstinence-related outcomes among individuals already addicted. The role of subcortical areas, although potentially important, is less clear because of inconsistent results and because these regions are less classically reported in studies of healthy response inhibition. Overall, this review indicates that response inhibition is not simply a manifestation of current drug addiction, but rather a core neurocognitive dimension that predicts key substance use outcomes. Early intervention in inhibitory deficits could have high clinical and public health relevance. PMID:26806776

  10. Inhibition of growth of Toxoplasma gondii in cultured fibroblasts by human recombinant gamma interferon.

    Science.gov (United States)

    Pfefferkorn, E R; Guyre, P M

    1984-01-01

    The growth of Toxoplasma gondii in cultured human fibroblasts was inhibited by recombinant human gamma interferon at concentrations of 8 to 16 U/ml. The interferon was titrated by observing a total inhibition of parasite plaque formation 7 days after infection. Inhibition of the growth of T. gondii in the early days after infection was measured by marked reductions in the incorporation of radioactive uracil, a precursor that can only be used by the parasites. This assay showed that when cells were pretreated with gamma interferon for 1 day and then infected, inhibition of T. gondii growth could be readily detected 1 or 2 days after infection. When the pretreatment was omitted and parasites and gamma interferon were added at the same time, no inhibition of parasite growth could be detected 1 day later, although it was apparent after 2 days. Cultures from which the gamma interferon had been removed by washing after a 1-day treatment showed inhibition of T. gondii growth. Gamma interferon had no effect on the viability of extracellular parasites, but it did inhibit the synthesis of host cell RNA and protein by ca. 50% 3 days after treatment. This degree of inhibition is unlikely, of itself, to compromise the growth of T. gondii. Recombinant alpha and beta interferons had no effect on the growth of T. gondii. Images PMID:6425215

  11. Inhibition of Sindbis Virus Release by Media of Low Ionic Strength: an Electron Microscope Study

    Science.gov (United States)

    Waite, Marilynn R. F.; Brown, Dennis T.; Pfefferkorn, Elmer R.

    1972-01-01

    Release of Sindbis virus from infected cells is inhibited by lowering the ionic strength of the medium. To determine the nature of the inhibited step, we examined, by electron microscopy, both freeze-etched and thin-sectioned preparations which had been fixed with either glutaraldehyde or formaldehyde. Inhibitory medium had two different effects on Sindbis virus release: virus budding was partially inhibited, and those virions which did mature were precipitated on the surface of the cell. Freeze-etched, inhibited cells showed very few viral buds. After shift to normal medium, the number of budding virions increased dramatically, far exceeding the quantity found in normal controls. Thus, low ionic strength medium clearly inhibited an early stage of virus maturation. The results were the same regardless of the fixative. Thin sections of glutaraldehyde-fixed, inhibited cells contained large extracellular aggregates of mature virus which were not present in similar, formaldehyde-fixed preparations. Fixation of radioactively-labeled, inhibited cultures revealed that approximately half of the virus that could be released from inhibited cells by raising the ionic strength of the medium could also be released by formaldehyde, but not by glutaraldehyde. This fraction probably represents mature virus attached to the cell surface by the ionic conditions. Images PMID:4672394

  12. Retrospective Assessment of Behavioral Inhibition in Infants and Toddlers: Development of a Parent Report Questionnaire

    Science.gov (United States)

    Gensthaler, A.; Mohler, E.; Resch, F.; Paulus, F.; Schwenck, C.; Freitag, C. M.; Goth, K.

    2013-01-01

    A behaviorally inhibited temperament in early childhood has been identified as a potential risk factor for anxiety disorders in children and adolescents. The purpose of our investigation was the development and evaluation of the factor structure, reliability and validity of the first retrospective parent report measure to assess behavioral…

  13. Discriminating anisometropic amblyopia from myopia based on interocular inhibition.

    Science.gov (United States)

    Jia, Wuli; Zhou, Jiawei; Lu, Zhong-Lin; Lesmes, Luis A; Huang, Chang-Bing

    2015-09-01

    Amblyopia screening during childhood is critical for early detection and successful treatment. In the current study, we develop and evaluate a screening method that exploits the imbalanced interocular inhibition between amblyopic and fellow eyes. In nineteen subjects with anisometropic amblyopia and twenty-two age-matched subjects with myopia, we measured the area under the contrast sensitivity functions (AUCSFs) in eight monocular conditions defined by the tested eye (left, right), patching of the untested eye (translucent, opaque), and refractive status (corrected, uncorrected). For each tested eye, we defined the inhibition index as the ratio between the AUCSF values obtained in the translucent and opaque patching conditions of the untested eye. To evaluate the screening potential of the inhibition index, we compared results from patients with amblyopia and myopia. With and without optical correction, the index was significantly lower in the amblyopic eye than in the fellow eye of the amblyopic subjects and both eyes of the myopic subjects. No significant difference was found among the two eyes of the myopic subjects and the fellow eyes of the amblyopic subjects. With the inhibition index as the predictor, a logistic regression model successfully discriminated amblyopic eyes from myopic eyes with 100% accuracy in the uncorrected condition. In the corrected condition, with the inhibition index and interocular visual acuity difference as predictors, amblyopic eyes were likewise discriminated from myopic eyes with 100% accuracy. This pattern of CSF changes, caused by the different patching modes of the untested eye, provides a potential CSF signature to discriminate anisometropic amblyopia from myopia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Early bile duct cancer

    Institute of Scientific and Technical Information of China (English)

    Jae Myung Cha; Myung-Hwan Kim; Se Jin Jang

    2007-01-01

    Bile duct cancers are frequently diagnosed as advanced diseases. Over half of patients with advanced bile duct cancer present with unresectable malignancies and their prognosis has been very poor even after curative resections. Although there has been a need to diagnose bile duct cancer at its early stage, it has been a difficult goal to achieve due to our lack of knowledge regarding this disease entity. Early bile duct cancer may be defined as a carcinoma whose invasion is confined within the fibromuscular layer of the extrahepatic bile duct or intrahepatic large bile duct without distant metastasis irrespective of lymph node involvement. Approximately 3%-10% of resected bile duct cancers have been reported to be early cancers in the literature. The clinicopathological features of patients with early bile duct cancer differ from those of patients with advanced bile duct cancer, with more frequent asymptomatic presentation, characteristic histopathological findings,and excellent prognosis. This manuscript is organized to emphasize the need for convening an international consensus to develop the concept of early bile duct cancer.

  15. Early diagnosis of early stage lung cancer

    Directory of Open Access Journals (Sweden)

    Andrej Debeljak

    2005-11-01

    Full Text Available Background: For the detection of premalignant changes of bronchial mucosa and early stages of lung cancer frequent chest X-ray, spiral low dose computed tomography, fluorescence bronchoscopy, sputum cytology (also with automated systems with genetic and molecular changes in the sputum cells and bronchial mucosa were used. These screening methods of the high-risk groups for lung cancer achieved: earlier diagnosis of lung cancer in lower stage, higher operability, longer 5-year survival, but without mortality reduction.Conclusions: In the clinical practice we can examine higher risk groups for lung cancer in randomised control trials with multimodality approach: frequent chest low-dose fast spiral computed tomography, sputum cytology with genetic and molecular examinations and fluorescence bronchoscopy. Smoking cessation remains the best means to achieve mortality reduction from lung cancer.

  16. Early Reionization in Cosmology

    CERN Document Server

    Durrer, R

    1993-01-01

    The cosmic microwave background (CMB) anisotropies have turned out to represent one of the most stringent 'bottle necks' for scenarios of large scale structure formation. As a possibility to relax this constraint, it has been proposed that early reionization can damp CMB fluctuations on small scales due to photon diffusion in the ionized plasma. As an example, I investigate the recently proposed scenario with cold dark matter (CDM) and texture seeds. There, an analysis of CMB anisotropies shows that early reionization is a crucial ingredient for this scenario. Without damping, the small scale anisotropies would dominate and exceed observed limits. In this paper I present analytical and numerical results for the amount of damping due to early reionization for CMB perturbations induced by a collapsing texture. Furthermore, the spectral distortion of the CMB due to Compton scattering of the hotter plasma electrons is calculated. Next I discuss the physical processes which lead to a system of coupled ordinary dif...

  17. Early detection of psychosis

    DEFF Research Database (Denmark)

    Larsen, T. K.; Melle, I.; Auestad, B.

    2011-01-01

    Background During the last decades we have seen a new focus on early treatment of psychosis. Several reviews have shown that duration of untreated psychosis (DUP) is correlated to better outcome. However, it is still unknown whether early treatment will lead to a better long-term outcome....... This study reports the effects of reducing DUP on 5-year course and outcome.Method During 1997â€"2000 a total of 281 consecutive patients aged >17 years with first episode non-affective psychosis were recruited, of which 192 participated in the 5-year follow-up. A comprehensive early detection (ED) programme...... with public information campaigns and low-threshold psychosis detection teams was established in one healthcare area (ED-area), but not in a comparable area (no-ED area). Both areas ran equivalent treatment programmes during the first 2 years and need-adapted treatment thereafter.Results At the start...

  18. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant.

    Science.gov (United States)

    Song, Ningxia; Gao, Lei; Qiu, Huiying; Huang, Chongmei; Cheng, Hui; Zhou, Hong; Lv, Shuqing; Chen, Li; Wang, Jianmin

    2015-07-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft‑versus‑host disease (aGVHD). However, the role of MSCs in graft‑versus‑leukemia remains to be determined. In the present study, we co‑cultured C57BL/6 mouse bone marrow (BM)‑derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit‑8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)‑10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies.

  19. Early Islamic Syria

    DEFF Research Database (Denmark)

    Walmsley, Alan

    After more than a century of neglect, a profound revolution is occurring in the way archaeology addresses and interprets developments in the social history of early Islamic Syria-Palestine. This concise book offers an innovative assessment of social and economic developments in Syria...... for considerable cultural and economic continuity rather than devastation and unrelenting decline. Much new, and increasingly non-elite, architectural evidence and an ever-growing corpus of material culture indicate that Syria-Palestine entered a new age of social richness in the early Islamic period, even...

  20. Early life vaccination

    DEFF Research Database (Denmark)

    Nazerai, Loulieta; Bassi, Maria Rosaria; Uddbäck, Ida Elin Maria

    2016-01-01

    the first period of life and provide a pertinent alternative in infant vaccinology. To address this, infant mice were vaccinated with three different adenoviral vectors and the CD8+ T-cell response after early life vaccination was explored. We assessed the frequency, polyfunctionality and in vivo...... cytotoxicity of the elicited memory CD8+ T cells, as well as the potential of these cells to respond to secondary infections and confer protection. We further tested the impact of maternal immunity against our replication-deficient adenoviral vector during early life vaccination. Overall, our results indicate...

  1. The Earth's early evolution.

    Science.gov (United States)

    Bowring, S A; Housh, T

    1995-09-15

    The Archean crust contains direct geochemical information of the Earth's early planetary differentiation. A major outstanding question in the Earth sciences is whether the volume of continental crust today represents nearly all that formed over Earth's history or whether its rates of creation and destruction have been approximately balanced since the Archean. Analysis of neodymium isotopic data from the oldest remnants of Archean crust suggests that crustal recycling is important and that preserved continental crust comprises fragments of crust that escaped recycling. Furthermore, the data suggest that the isotopic evolution of Earth's mantle reflects progressive eradication of primordial heterogeneities related to early differentiation.

  2. Self-regulation, ego depletion, and inhibition.

    Science.gov (United States)

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it.

  3. Reflex excitability regulates prepulse inhibition.

    Science.gov (United States)

    Schicatano, E J; Peshori, K R; Gopalaswamy, R; Sahay, E; Evinger, C

    2000-06-01

    Presentation of a weak stimulus, a prepulse, before a reflex-evoking stimulus decreases the amplitude of the reflex response relative to reflex amplitude evoked without a preceding prepulse. For example, presenting a brief tone before a trigeminal blink-eliciting stimulus significantly reduces reflex blink amplitude. A common explanation of such data are that sensory processing of the prepulse modifies reflex circuit behavior. The current study investigates the converse hypothesis that the intrinsic characteristics of the reflex circuit rather than prepulse processing determine prepulse modification of trigeminal and acoustic reflex blinks. Unilateral lesions of substantia nigra pars compacta neurons created rats with hyperexcitable trigeminal reflex blinks but normally excitable acoustic reflex blinks. In control rats, presentation of a prepulse reduced the amplitude of both trigeminal and acoustic reflex blinks. In 6-OHDA-lesioned rats, however, the same acoustic prepulse facilitated trigeminal reflex blinks but inhibited acoustic reflex blinks. The magnitude of prepulse modification correlated with reflex excitability. Humans exhibited the same pattern of prepulse modification. An acoustic prepulse facilitated the trigeminal reflex blinks of subjects with hyperexcitable trigeminal reflex blinks caused by Parkinson's disease. The same prepulse inhibited trigeminal reflex blinks of age-matched control subjects. Prepulse modification also correlated with trigeminal reflex blink excitability. These data show that reflex modification by a prepulse reflects the intrinsic characteristics of the reflex circuit rather than an external adjustment of the reflex circuit by the prepulse.

  4. Graphene: corrosion-inhibiting coating.

    Science.gov (United States)

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  5. Developing the quality of early childhood mentoring institutions

    Directory of Open Access Journals (Sweden)

    Sri Hartini

    2017-09-01

    Full Text Available The study was to uncover the concept of quality improvement, the supporting and the inhibiting factors within the quality improve and the quality improvement in the early childhood mentoring institutions/kindergarten. The study was a qualitative research. The subjects in the study were kindergarten principals, kindergarten teachers and parents. The data were gathered by means of observation, interview and documentation. For the data analysis, the researcher selected the qualitative descriptive data analysis method. The results of the study were as follows. First, the concept of educational quality improvement in the early childhood mentoring institutions/ kindergarten has been improveed from the vision, the mission and the objectives and the concept includes the aspects of planning, process and output which has synergy from one to another. The planning has been formulated in the curriculum, the syllabus and the daily activity plan. Second, the approach, the strategy and the technique of quality improvement has maximized the well-qualified schools’ resources, have been supported by the sufficient facilities and have been funded by the sufficient budget. Third, the supporting factors within the quality improvement of early childhood mentoring institutions/kindergarten have been the increasing awareness within the society toward the significance of early childhood mentoring institutions, the massive socialization conducted by the Office of Education through the provision of training programs in relation to the early childhood mentoring institution/kindergarten management and the human resources empowerment toward developing the quality of early childhood mentoring institutions. Fourth, the inhibiting factors within the quality improvement of early childhood mentoring institutions have been the lack of society care and participation, the less quality human resources that early childhood mentoring institutions have, the fund limitation, the

  6. The Auditory-Evoked N2 and P3 Components in the Stop-Signal Task: Indices of Inhibition, Response-Conflict or Error-Detection?

    Science.gov (United States)

    Dimoska, Aneta; Johnstone, Stuart J.; Barry, Robert J.

    2006-01-01

    The N2 and P3 components have been separately associated with response inhibition in the stop-signal task, and more recently, the N2 has been implicated in the detection of response-conflict. To isolate response inhibition activity from early sensory processing, the present study compared processing of the stop-signal with that of a…

  7. Associations Between Behavioral Inhibition and Children's Social Problem Solving Behavior During Social Exclusion.

    Science.gov (United States)

    Walker, Olga L; Henderson, Heather A; Degnan, Kathryn A; Penela, Elizabeth C; Fox, Nathan A

    2014-08-01

    The current study examined the associations between the early childhood temperament of behavioral inhibition and children's displays of social problem-solving (SPS) behavior during social exclusion. During toddlerhood (ages 2-3), maternal report and behavioral observations of behavioral inhibition were collected. At age 7, children's SPS behaviors were observed during a laboratory social exclusion task based on the commonly used Cyberball game. Results showed that behavioral inhibition was positively associated with displayed social withdrawal and negatively associated with assertive behavior during the observed social exclusion task at 7 years of age. These results add to our understanding of inhibited children's SPS behaviors during social exclusion and provide evidence for the associations between toddler temperament and children's social behavior during middle childhood.

  8. Early Cosmology Constrained

    CERN Document Server

    Verde, Licia; Pigozzo, Cassio; Heavens, Alan F; Jimenez, Raul

    2016-01-01

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the $\\Lambda$CDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95\\% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter $\\Omega_{\\rm MR} < 0.006$ and extra radiation parameterised as extra effective neutrino species $2.3 < N_{\\rm eff} < 3.2$ when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond $\\Lambda$CDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way ...

  9. Early Learning in CRESPAR.

    Science.gov (United States)

    Wasik, Barbara A.; Karweit, Nancy; Bond, Mary Alice; Woodruff, Lannette Burns; Jaeger, Gary; Adee, Sarah

    2000-01-01

    Summarizes research conducted by the Early Learning Program during the first 5 years of operation of the Center for Research on the Education of Children Placed At Risk (CRESPAR). Describes two integrated areas of research: practices that promote the development of language and literacy skills and systemic issues of school policy and teacher…

  10. Introduction to "Early psychosis

    DEFF Research Database (Denmark)

    McGorry, Patrick; Nordentoft, Merete; Simonsen, Erik

    2005-01-01

    warrants careful analysis. The Third International Early Psychosis Conference proved to be a watershed and was the largest and most vibrant meeting to that point. This preface aims to set the scene for a selection of contributions, derived from the array of new evidence reported in Copenhagen, and recently...

  11. Early childhood aggression

    NARCIS (Netherlands)

    Alink, Lenneke Rosalie Agnes

    2006-01-01

    In this thesis the development, stability, and correlates of early childhood aggression were investigated. The normative development was examined in a general population sample using questionnaires completed by the parents of 12-, 24-, and 36-month-old children and again one year later. Results show

  12. Early Mover Advantages

    NARCIS (Netherlands)

    G.E. Bijwaard (Govert); M.C.W. Janssen (Maarten); E. Maasland (Emiel)

    2004-01-01

    textabstractIn this paper we analyze empirically whether and if so to what extent later entrants in the European mobile telephony industry have a disadvantage vis-à-vis incumbents and early mover entrants. To analyze this question we consider a series of static models and a dynamic model of market s

  13. Teaching polymorphism early

    DEFF Research Database (Denmark)

    2005-01-01

    Is it possible to teach dynamic polymorphism early? What techniques could facilitate teaching it in Java. This panel will bring together people who have considered this question and attempted to implement it in various ways, some more completely than others. It will also give participants an oppo...

  14. Early Adolescent Ego Development.

    Science.gov (United States)

    James, Michael A.

    1980-01-01

    Presented are the theoretical characteristics of social identity in early adolescence (ages 10 to 15). It is suggested that no longer is identity thought to begin with adolescence, but may have its beginnings in the preteen years. The article draws heavily on Eriksonian concepts. (Editor/KC)

  15. Early Childhood Trauma

    Science.gov (United States)

    National Child Traumatic Stress Network, 2010

    2010-01-01

    Early childhood trauma generally refers to the traumatic experiences that occur to children aged 0-6. Because infants' and young children's reactions may be different from older children's, and because they may not be able to verbalize their reactions to threatening or dangerous events, many people assume that young age protects children from the…

  16. Early malignant syphilis*

    Science.gov (United States)

    Ortigosa, Yara Martins; Bendazzoli, Paulo Salomão; Barbosa, Angela Marques; Ortigosa, Luciena Cegatto Martins

    2016-01-01

    Early malignant syphilis is a rare and severe variant of secondary syphilis. It is clinically characterized by lesions, which can suppurate and be accompanied by systemic symptoms such as high fever, asthenia, myalgia, and torpor state. We report a diabetic patient with characteristic features of the disease showing favorable evolution of the lesions after appropriate treatment. PMID:28300925

  17. Creativity: The Early Years

    Science.gov (United States)

    Shade, Rick; Shade, Patti Garrett

    2016-01-01

    There is a myth that some people are creative and others are not. However, all children are born creative. They love to explore, ask questions, and are incredibly imaginative. Parents are key in nurturing their child's creativity in the early years. This article offers resources and strategies parents can use at different ages and stages (newborn,…

  18. Music in Early Childhood.

    Science.gov (United States)

    Feierabend, John

    1990-01-01

    Argues that music activities in early childhood education foster a variety of developmental skills. Analyzes Howard Gardner's theory of multiple intelligences, contending that music intelligence is a separate intelligence. Provides ways to identify and promote musical intelligence. Suggests methods for encouraging musical development. Using songs…

  19. Teaching polymorphism early

    DEFF Research Database (Denmark)

    2005-01-01

    Is it possible to teach dynamic polymorphism early? What techniques could facilitate teaching it in Java. This panel will bring together people who have considered this question and attempted to implement it in various ways, some more completely than others. It will also give participants...

  20. Intracortical modulation, and not spinal inhibition, mediates placebo analgesia.

    Science.gov (United States)

    Martini, M; Lee, M C H; Valentini, E; Iannetti, G D

    2015-02-01

    Suppression of spinal responses to noxious stimulation has been detected using spinal fMRI during placebo analgesia, which is therefore increasingly considered a phenomenon caused by descending inhibition of spinal activity. However, spinal fMRI is technically challenging and prone to false-positive results. Here we recorded laser-evoked potentials (LEPs) during placebo analgesia in humans. LEPs allow neural activity to be measured directly and with high enough temporal resolution to capture the sequence of cortical areas activated by nociceptive stimuli. If placebo analgesia is mediated by inhibition at spinal level, this would result in a general suppression of LEPs rather than in a selective reduction of their late components. LEPs and subjective pain ratings were obtained in two groups of healthy volunteers - one was conditioned for placebo analgesia while the other served as unconditioned control. Laser stimuli at three suprathreshold energies were delivered to the right hand dorsum. Placebo analgesia was associated with a significant reduction of the amplitude of the late P2 component. In contrast, the early N1 component, reflecting the arrival of the nociceptive input to the primary somatosensory cortex (SI), was only affected by stimulus energy. This selective suppression of late LEPs indicates that placebo analgesia is mediated by direct intracortical modulation rather than inhibition of the nociceptive input at spinal level. The observed cortical modulation occurs after the responses elicited by the nociceptive stimulus in the SI, suggesting that higher order sensory processes are modulated during placebo analgesia.

  1. Measuring early plaque formation clinically.

    Science.gov (United States)

    Maliska, Alessandra N; Weidlich, Patricia; Gomes, Sabrina C; Oppermann, Rui V

    2006-01-01

    To test a system of measuring early plaque formation (EPF) and its subgingival extension as related to the presence or absence of a plaque free zone (PFZ). EPF was measured by three independent examiners following two consecutive 72-hour periods of undisturbed plaque build-up. One of the examiners further measured EPF following a 96-hour period in the presence of chlorhexidine or placebo. The classification system was composed of criterion 0 (plaque-free dental surface), criterion 1 (presence of plaque and PFZ) and criterion 2 (absence of PFZ, subgingival extension of plaque). Intra- and inter-examiner reliability were evaluated by means of the percentage of absolute agreement (c), Kappa (k) and Kendall (kd) coefficients. The third experiment consisted of a double-blind, placebo-controlled, cross-over trial. Plaque build-up in the presence of 0.12% chlorhexidine was assessed by employing the classification system described. The percentage of absolute intra- and inter-examiner agreement ranged from 85.43% to 75.63% and from 77.31% to 75.35% respectively. Chlorhexidine and placebo rinses showed similar percentages of criterion 1 surfaces, 62.6% and 51.5% respectively (p = 0.343). Of the surfaces, 44.3% showed criterion 2 after the use of placebo, while 3.4% of surfaces showed this criterion with the chlorhexidine (p = 0.007). The events associated with EPF can be appropriately scored with this classification system. Chlorhexidine rinses inhibit both the plaque colonization of the dental surfaces as well as its subgingival extension.

  2. Inhibition of mouse peritoneal macrophage DNA synthesis by infection with the Arenavirus Pichinde. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, A.M.; Jahrling, P.B.; Merrill, P.; Tobery, S.

    1983-01-19

    Macrophage DNA synthesis and proliferation occur during the development of cell-mediated immunity and in the early non-specific reaction to infection. Arenaviruses have a predilection for infection of cells of the reticuloendothelial system and in this study we have examined the effect of the arenavirus Pichinde on macrophage DNA synthesis. We have found that infection of mouse peritoneal macrophages with Pichinde caused a profound dose dependent inhibition of the DNA synthesis induced by macrophage growth factor/colony stimulating factor. At a multiplicity of inoculum of five there is a 75-95% inhibition of DNA synthesis. Viable virus is necessary for inhibition since Pichinde inactivated by heat or cobalt irradiation had no effect. Similarly, virus pre-treated with an antiserum to Pichinde was without inhibitory effect. Inhibition was demonstrated by measuring DNA synthesis spectrofluorometrically as well as by 3H-thymidine incorporation. The inhibition of DNA synthesis was not associated with any cytopathology. There was no evidence that the inhibition was due to soluble factors, such as prostaglandins or interferon, released by infected cells. These studies demonstrate, for the first time in vitro, a significant alteration in macrophage function caused by infection with an arenavirus. It is possible that inhibition of macrophage proliferation represents a mechanism by which some microorganisms interfere with host resistance.

  3. Greener Approach towards Corrosion Inhibition

    Directory of Open Access Journals (Sweden)

    Neha Patni

    2013-01-01

    Full Text Available Corrosion control of metals is technically, economically, environmentally, and aesthetically important. The best option is to use inhibitors for protecting metals and alloys against corrosion. As organic corrosion inhibitors are toxic in nature, so green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Also plant products are inexpensive, renewable, and readily available. Tannins, organic amino acids, alkaloids, and organic dyes of plant origin have good corrosion-inhibiting abilities. Plant extracts contain many organic compounds, having polar atoms such as O, P, S, and N. These are adsorbed on the metal surface by these polar atoms, and protective films are formed, and various adsorption isotherms are obeyed. Various types of green inhibitors and their effect on different metals are mentioned in the paper.

  4. Inhibiting scale in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, M.J.; Adler, S.F.

    1972-09-27

    An oil well treatment is described to inhibit the formation of hard scale by precipitation from the oil well brine of scale-forming water insoluble sulfate, carbonate, and other salts. The process consists of incorporating into the oil well during a fracturing treatment, a fluid containing a solid polymeric material characterized by molecular weight in the range of 1,000 to 15,000 and a substantially linear structure, derived by the linear polymerization of at least one monoolefinically unsaturated compound through the olefinically unsaturated group. The linear structure has pendent groups, 50% of which are carboxy groups, the carboxy groups being neutralized with a sufficient proportion of at least one compound having a cation of a metal selected from alkaline earth metals, chromium, aluminum, iron, cobalt, zinc, nickel or copper to render the polymer soluble in water at 25$C to a concentration of not more than 50 ppm. (8 claims)

  5. Characterization of early autophagy signaling by quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer Tg; Zarei, Mostafa; Sprenger, Adrian;

    2014-01-01

    Under conditions of nutrient shortage autophagy is the primary cellular mechanism ensuring availability of substrates for continuous biosynthesis. Subjecting cells to starvation or rapamycin efficiently induces autophagy by inhibiting the MTOR signaling pathway triggering increased autophagic flux....... To elucidate the regulation of early signaling events upon autophagy induction, we applied quantitative phosphoproteomics characterizing the temporal phosphorylation dynamics after starvation and rapamycin treatment. We obtained a comprehensive atlas of phosphorylation kinetics within the first 30 min upon...

  6. Effect of arachidonic acid supplementation and cyclooxygenase/lipoxygenase inhibition on the development of early bovine embryos Influência do ácido araquidónico e da inibição da ciclo-oxigenase ou lipo-oxigenase no desenvolvimento inicial de embriões bovinos

    Directory of Open Access Journals (Sweden)

    Rosa Maria Pereira

    2006-04-01

    Full Text Available The effect of arachidonic acid (AA cascade on bovine embryo development in a granulosa cell co-culture system was studied. Arachidonic acid (100 µM was supplemented from 1-cell to 8-16 cell block stage (first three days of co-culture and from 1-cell to hatching. Specific cyclooxygenase (indomethacin, 28 µM and lipoxygenase (nordihydroguaiaretic acid - NDGA, 28 µM inhibitors were used from 1-cell to 8-16 cell block stage with AA. Embryo development was assessed by cleavage, day 7-day 8 and hatched embryo rates and by measuring growth rates through development stages found in days 7-10 of culture (day 0 = insemination day. Embryo quality was scored at day 8. A 6.5-10.4% increase on cleavage rate after AA supplementation was found. This AA supplementation from 1-cell to hatching delayed embryo growth rate beyond day 7 and a reduction on hatching rate was detected. When AA supplementation was restricted to the first three days of co-culture those negative effects were overcome. Also, indomethacin and NDGA prevented the positive effect of AA and induced a significant reduction on cleavage, respectively. NDGA further decreased day 7 embryo rate and quality. Results suggest that AA has a two-phase action on bovine embryos, promoting early development and impairing embryo growth from day 7 onwards and hatching rates. Both cyclooxygenase and lipoxygenase were found to be important pathways to promote cleavage.Estudou-se a influência da cascata do ácido araquidónico (AA no desenvolvimento de embriões bovinos produzidos in vitro em co-cultura com células da granulosa. Os embriões foram suplementados com AA (100 µM desde o estádio de 1 célula até 8-16 células (primeiros três dias de co-cultura ou até a eclosão. Introduziram-se inibidores específicos da ciclo-oxigenase (indometacina, 28 µM e da lipo-oxigenase (ácido nordihidroguaiarético - NDGA, 28 µM, juntamente com o ácido araquidónico, desde o estádio de 1 célula até 8-16 c

  7. Early remodeling of the neocortex upon episodic memory encoding.

    Science.gov (United States)

    Bero, Adam W; Meng, Jia; Cho, Sukhee; Shen, Abra H; Canter, Rebecca G; Ericsson, Maria; Tsai, Li-Huei

    2014-08-12

    Understanding the mechanisms by which long-term memories are formed and stored in the brain represents a central aim of neuroscience. Prevailing theory suggests that long-term memory encoding involves early plasticity within hippocampal circuits, whereas reorganization of the neocortex is thought to occur weeks to months later to subserve remote memory storage. Here we report that long-term memory encoding can elicit early transcriptional, structural, and functional remodeling of the neocortex. Parallel studies using genome-wide RNA sequencing, ultrastructural imaging, and whole-cell recording in wild-type mice suggest that contextual fear conditioning initiates a transcriptional program in the medial prefrontal cortex (mPFC) that is accompanied by rapid expansion of the synaptic active zone and postsynaptic density, enhanced dendritic spine plasticity, and increased synaptic efficacy. To address the real-time contribution of the mPFC to long-term memory encoding, we performed temporally precise optogenetic inhibition of excitatory mPFC neurons during contextual fear conditioning. Using this approach, we found that real-time inhibition of the mPFC inhibited activation of the entorhinal-hippocampal circuit and impaired the formation of long-term associative memory. These findings suggest that encoding of long-term episodic memory is associated with early remodeling of neocortical circuits, identify the prefrontal cortex as a critical regulator of encoding-induced hippocampal activation and long-term memory formation, and have important implications for understanding memory processing in healthy and diseased brain states.

  8. Latent inhibition in human adults without masking.

    Science.gov (United States)

    Escobar, Martha; Arcediano, Francisco; Miller, Ralph R

    2003-09-01

    Latent inhibition refers to attenuated responding to Cue X observed when the X-outcome pairings are preceded by X-alone presentations. It has proven difficult to obtain in human adults unless the preexposure (X-alone) presentations are embedded within a masking (i.e., distracting) task. The authors hypothesized that the difficulty in obtaining latent inhibition with unmasked tasks is related to the usual training procedures, in which the preexposure and conditioning experiences are separated by a set of instructions. Experiment 1 reports latent inhibition without masking in a task in which preexposure and conditioning occur without interruption. Experiments 2 and 3 demonstrate that this attenuation in responding to target Cue X does not pass a summation test for conditioned inhibition and is context specific, thereby confirming that it is latent inhibition. Experiments 3 and 4 confirm that introducing instructions between preexposure and conditioning disrupts latent inhibition.

  9. Early Childhood Caries

    Directory of Open Access Journals (Sweden)

    Yumiko Kawashita

    2011-01-01

    Full Text Available Dental caries is one of the most common childhood diseases, and people continue to be susceptible to it throughout their lives. Although dental caries can be arrested and potentially even reversed in its early stages, it is often not self-limiting and progresses without proper care until the tooth is destroyed. Early childhood caries (ECC is often complicated by inappropriate feeding practices and heavy infection with mutans streptococci. Such children should be targeted with a professional preventive program that includes oral hygiene instructions for mothers or caregivers, along with fluoride and diet counseling. However, these strategies alone are not sufficient to prevent dental caries in high-risk children; prevention of ECC also requires addressing the socioeconomic factors that face many families in which ECC is endemic. The aim of this paper is to systematically review information about ECC and to describe why many children are suffering from dental caries.

  10. The Early Sarmatian Knight

    Directory of Open Access Journals (Sweden)

    Yablonsky Leonid T.

    2013-06-01

    Full Text Available During the study of the Early Sarmatian burials in the burial mounds near Filippovka village (Ilek district, Orenburg oblast, a large quantity of weapons and accessories were found, which make it possible to reconstruct the military costume. All the armament items from the burial can be divided into two major groups: offensive and defensive. The former includes bows and arrows, slingshots, spears, stilettos and war hammers (“bec de corbin” type; the latter is represented by a helmet and two varieties of scaly armor, made of iron and bone or horn. The accessories of the military costume found include sword-belt buckles with zoomorphic images, as well as a torque and a bracelet, which apparently served as insignia. The reconstructed image of an elite Early Sarmatian warrior is somewhat similar to the appearance of a Western European knight, but the Sarmatian knight was about 2000 years older.

  11. Early life vaccination

    DEFF Research Database (Denmark)

    Nazerai, Loulieta; Bassi, Maria Rosaria; Uddbäck, Ida Elin Maria;

    2016-01-01

    Intracellular pathogens represent a serious threat during early life. Importantly, even though the immune system of newborns may be characterized as developmentally immature, with a propensity to develop Th2 immunity, significant CD8+ T-cell responses may still be elicited in the context of optimal...... priming. Replication deficient adenoviral vectors have been demonstrated to induce potent CD8+ T-cell response in mice, primates and humans. The aim of the present study was therefore to assess whether replication-deficient adenovectors could overcome the risk of overwhelming antigen stimulation during...... the first period of life and provide a pertinent alternative in infant vaccinology. To address this, infant mice were vaccinated with three different adenoviral vectors and the CD8+ T-cell response after early life vaccination was explored. We assessed the frequency, polyfunctionality and in vivo...

  12. Samuel Goudsmit - Early Influences

    Science.gov (United States)

    Goudsmit, Esther

    2010-03-01

    Samuel Goudsmit, born in 1902 in The Hague, Netherlands, earned his Ph.D. at the University of Leiden in 1926 with Paul Ehrenfest. The present talk will describe some aspects of his background and early formative years in order to provide context for the broad range of his professional life. Sam belonged to a large tribe of paternal and maternal uncles, aunts and first cousins; including his parents, grandparents and sister Ro, they numbered forty. Sam was the first of the tribe to be educated beyond high school. Early interests as a child and later as a university student in the Netherlands prefigured his significant and diverse contributions in several realms including not only physics but also teaching, Egyptology and scientific Intelligence. Bibliographic sources will include: The American Institute of Physics' Oral History Transcripts and photographs from the Emilio Segre visual archives, memoirs and conversations of those who knew Sam and also letters to his daughter, Esther.

  13. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Andrej Udelnow

    Full Text Available BACKGROUND: Omeprazole has recently been described as a modulator of tumour chemoresistance, although its underlying molecular mechanisms remain controversial. Since pancreatic tumours are highly chemoresistant, a logical step would be to investigate the pharmacodynamic, morphological and biochemical effects of omeprazole on pancreatic cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Dose-effect curves of omeprazole, pantoprazole, gemcitabine, 5-fluorouracil and the combinations of omeprazole and 5-fluorouracil or gemcitabine were generated for the pancreatic cancer cell lines MiaPaCa-2, ASPC-1, Colo357, PancTu-1, Panc1 and Panc89. They revealed that omeprazole inhibited proliferation at probably non-toxic concentrations and reversed the hormesis phenomena of 5-fluorouracil. Electron microscopy showed that omeprazole led to accumulation of phagophores and early autophagosomes in ASPC-1 and MiaPaCa-2 cells. Signal changes indicating inhibited proliferation and programmed cell death were found by proton NMR spectroscopy of both cell lines when treated with omeprazole which was identified intracellularly. Omeprazole modulates the lysosomal transport pathway as shown by Western blot analysis of the expression of LAMP-1, Cathepsin-D and β-COP in lysosome- and Golgi complex containing cell fractions. Acridine orange staining revealed that the pump function of the vATPase was not specifically inhibited by omeprazole. Gene expression of the autophagy-related LC3 gene as well as of Bad, Mdr-1, Atg12 and the vATPase was analysed after treatment of cells with 5-fluorouracil and omeprazole and confirmed the above mentioned results. CONCLUSIONS: We hypothesise that omeprazole interacts with the regulatory functions of the vATPase without inhibiting its pump function. A modulation of the lysosomal transport pathway and autophagy is caused in pancreatic cancer cells leading to programmed cell death. This may circumvent common resistance mechanisms of

  14. Early Permian bipedal reptile.

    Science.gov (United States)

    Berman, D S; Reisz, R R; Scott, D; Henrici, A C; Sumida, S S; Martens, T

    2000-11-03

    A 290-million-year-old reptilian skeleton from the Lower Permian (Asselian) of Germany provides evidence of abilities for cursorial bipedal locomotion, employing a parasagittal digitigrade posture. The skeleton is of a small bolosaurid, Eudibamus cursoris, gen. et sp. nov. and confirms the widespread distribution of Bolosauridae across Laurasia during this early stage of amniote evolution. E. cursoris is the oldest known representative of Parareptilia, a major clade of reptiles.

  15. Hands of early primates.

    Science.gov (United States)

    Boyer, Doug M; Yapuncich, Gabriel S; Chester, Stephen G B; Bloch, Jonathan I; Godinot, Marc

    2013-12-01

    Questions surrounding the origin and early evolution of primates continue to be the subject of debate. Though anatomy of the skull and inferred dietary shifts are often the focus, detailed studies of postcrania and inferred locomotor capabilities can also provide crucial data that advance understanding of transitions in early primate evolution. In particular, the hand skeleton includes characteristics thought to reflect foraging, locomotion, and posture. Here we review what is known about the early evolution of primate hands from a comparative perspective that incorporates data from the fossil record. Additionally, we provide new comparative data and documentation of skeletal morphology for Paleogene plesiadapiforms, notharctines, cercamoniines, adapines, and omomyiforms. Finally, we discuss implications of these data for understanding locomotor transitions during the origin and early evolutionary history of primates. Known plesiadapiform species cannot be differentiated from extant primates based on either intrinsic hand proportions or hand-to-body size proportions. Nonetheless, the presence of claws and a different metacarpophalangeal [corrected] joint form in plesiadapiforms indicate different grasping mechanics. Notharctines and cercamoniines have intrinsic hand proportions with extremely elongated proximal phalanges and digit rays relative to metacarpals, resembling tarsiers and galagos. But their hand-to-body size proportions are typical of many extant primates (unlike those of tarsiers, and possibly Teilhardina, which have extremely large hands). Non-adapine adapiforms and omomyids exhibit additional carpal features suggesting more limited dorsiflexion, greater ulnar deviation, and a more habitually divergent pollex than observed plesiadapiforms. Together, features differentiating adapiforms and omomyiforms from plesiadapiforms indicate increased reliance on vertical prehensile-clinging and grasp-leaping, possibly in combination with predatory behaviors in

  16. Early bioenergetic evolution

    Science.gov (United States)

    Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.

    2013-01-01

    Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution

  17. Early modern sport

    OpenAIRE

    Huggins, Mike

    2017-01-01

    The "early modern" has always suffered problems of periodization. Its beginnings overlap with the Late Middle Ages when sport and athletic exercise were moving away from military training. It encompasses the Renaissance, Reformation, and Counter-Reformation and the scientific shifts of the Age of Enlightenment, movements that were diverse chronologically, geographically, culturally and intellectually. Some historians link its beginnings to block-printing, the beginning of the Tudor period, or...

  18. Early Detection Of Cancer

    Directory of Open Access Journals (Sweden)

    V B Bhatnagar

    1987-04-01

    Full Text Available Farly detection of cancer is based upon three fundamental assumptions, firstly that the trea'ment of benign and precancerous lesions reduces the incidence of cancer, secondly, that the treatment of in situ cancers is conducive to total cure and thirdly that early diagnosis and management of invasive cancer ensures be.ter survival. When patient seeks medical advice for vague symptoms, which could however be due to a possible malignant tumour at a particular site, the alert clinician should investigate the patient immediately to exclude cancer. At this stage cancer is usually not significantly advanced.Currently the U. I. C. C. (International Union for Cancer Control} is studying the epidemiology of cancers in various countries The importance of this is two folds : Firstly by focussing attention on a section of population vulnerable to a particular cancer an early detection is facilitated Secondly by changing the causative factors responsible to a particular cancer, the incidence of that cancer can be reduced e. g. reduction in lung cancer following campaigns against ciguette smoking and reductioi in breast cancer after campaigns for advocating breast feeding of infants, lowering fat consumption and encouraging self palpation of breast regularly.Indeed early diagnosis of cancer implies diagnosis of cancer in almost a symptomatic stage It involves motiva’ion of the population towards acquisitio : of knowledge, attitude and practice.. Epidemiologies and clinicians should be able to recognise high risk cases exposed to particular neoplasia and knowledge of alarming symptoms should be pro- pogated for wide publicity through common available media and means. Probable cases should have regular clhrcal examination periodically and relevant investigations including radiological, imaging techniques and Bio-Chemical examination should be undertaken as and when desired Suspicious lesions should be investigated by specific tests including smear cytology

  19. Informing early intervention: preschool predictors of anxiety disord