WorldWideScience

Sample records for early expression jnk

  1. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase.

    Science.gov (United States)

    Chitnis, Nilesh S; D'Costa, Susan M; Paul, Eric R; Bilimoria, Shän L

    2008-01-20

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV(XS); 400 microg/ml), UV-irradiated virus (CIV(UV); 10 microg/ml) and CVPE (CIV protein extract; 10 microg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 microg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV(UV) or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV(UV) particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV(UV), CIV(XS) or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires

  2. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Directory of Open Access Journals (Sweden)

    Maraziotis Theodore

    2007-10-01

    Full Text Available Abstract Background Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Methods Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were used. The labeling index (LI, defined as the percentage of positive (labeled cells out of the total number of tumor cells counted, was determined. Results Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1% in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were

  3. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1 beta-Induced Apoptosis Associated with Abrogated Myc Expression

    DEFF Research Database (Denmark)

    Prause, Michala; Mayer, Christopher Michael; Brorsson, Caroline

    2016-01-01

    The relative contributions of the JNK subtypes in inflammatory β-cell failure and apoptosis are unclear. The JNK protein family consists of JNK1, JNK2, and JNK3 subtypes, encompassing many different isoforms. INS-1 cells express JNK1α1, JNK1α2, JNK1β1, JNK1β2, JNK2α1, JNK2α2, JNK3α1, and JNK3α2 m......RNA isoform transcripts translating into 46 and 54 kDa isoform JNK proteins. Utilizing Lentiviral mediated expression of shRNAs against JNK1, JNK2, or JNK3 in insulin-producing INS-1 cells, we investigated the role of individual JNK subtypes in IL-1β-induced β-cell apoptosis. JNK1 knockdown prevented IL-1β...

  4. Apoptosis and JNK activation are differentially regulated by Fas expression level in renal tubular epithelial cells.

    Science.gov (United States)

    Khan, S; Koepke, A; Jarad, G; Schlessman, K; Cleveland, R P; Wang, B; Konieczkowski, M; Schelling, J R

    2001-07-01

    In chronic renal disease, renal tubular epithelial cell (RTC) Fas expression is up-regulated, leading to apoptotic RTC deletion and tubular atrophy. In vitro, cytokine- or hypoxia-induced up-regulation of Fas expression is associated with RTC apoptosis. In contrast, constitutively expressed, low level RTC Fas does not mediate apoptosis, suggesting that Fas may be coupled to expression level-dependent RTC signaling pathways. Fas is known to signal through JNK in many systems, but the requirement of JNK activation for apoptosis remains controversial. To determine if RTC Fas regulates JNK activity and apoptosis, human RTC were transfected with graded concentrations of a eukaryotic expression vector for murine Fas. Apoptosis was measured by annexin V, TUNEL and PARP cleavage assays. JNK activity was determined by immune complex kinase assay and/or immunoblots with phospho-specific JNK antibodies, in the presence or absence of co-expressed dominant negative JNK constructs. Fas antibody stimulation of RTC with high Fas expression levels (to model RTC phenotype in renal disease) caused a tenfold increase in apoptosis, while RTC with low level Fas expression (to model normal RTC phenotype) were apoptosis-resistant. Fas ligation activated JNK in RTC expressing low levels of Fas, but not in apoptosis-sensitive RTC with increased Fas expression. Dominant negative JNK co-expression failed to inhibit apoptosis in RTC expressing high levels of Fas, suggesting that JNK is neither necessary, nor sufficient, for Fas-dependent apoptosis. At high levels of expression, RTC Fas promotes apoptosis in a JNK-independent manner. At low basal expression, Fas induces JNK activation, but not apoptosis, consistent with novel roles for RTC Fas as a mediator of cell stress or chronic inflammation.

  5. Nitric oxide-induced eosinophil apoptosis is dependent on mitochondrial permeability transition (mPT, JNK and oxidative stress: apoptosis is preceded but not mediated by early mPT-dependent JNK activation

    Directory of Open Access Journals (Sweden)

    Ilmarinen-Salo Pinja

    2012-08-01

    Full Text Available Abstract Background Eosinophils are critically involved in the pathogenesis of asthma. Nitric oxide (NO is produced in high amounts in asthmatic lungs and has an important role as a regulator of lung inflammation. NO was previously shown to induce eosinophil apoptosis mediated via c-jun N-terminal kinase (JNK and caspases. Our aim was to clarify the cascade of events leading to NO-induced apoptosis in granulocyte macrophage-colony stimulating factor (GM-CSF-treated human eosinophils concentrating on the role of mitochondria, reactive oxygen species (ROS and JNK. Methods Apoptosis was determined by flow cytometric analysis of relative DNA content, by Annexin-V labelling and/or morphological analysis. Immunoblotting was used to study phospho-JNK (pJNK expression. Mitochondrial membrane potential was assessed by JC-1-staining and mitochondrial permeability transition (mPT by loading cells with calcein acetoxymethyl ester (AM and CoCl2 after which flow cytometric analysis was conducted. Statistical significance was calculated by repeated measures analysis of variance (ANOVA or paired t-test. Results NO-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP induced late apoptosis in GM-CSF-treated eosinophils. SNAP-induced apoptosis was suppressed by inhibitor of mPT bongkrekic acid (BA, inhibitor of JNK SP600125 and superoxide dismutase-mimetic AEOL 10150. Treatment with SNAP led to late loss of mitochondrial membrane potential. Additionally, we found that SNAP induces early partial mPT (1 h that was followed by a strong increase in pJNK levels (2 h. Both events were prevented by BA. However, these events were not related to apoptosis because SNAP-induced apoptosis was prevented as efficiently when BA was added 16 h after SNAP. In addition to the early and strong rise, pJNK levels were less prominently increased at 20–30 h. Conclusions Here we demonstrated that NO-induced eosinophil apoptosis is mediated via ROS, JNK and late mPT. Additionally

  6. Activation of JNK signaling mediates connective tissue growth factor expression and scar formation in corneal wound healing.

    Directory of Open Access Journals (Sweden)

    Long Shi

    Full Text Available Connective Tissue Growth Factor (CTGF and Transforming growth factor-β1 (TGF-β1 are key growth factors in regulating corneal scarring. Although CTGF was induced by TGF-β1 and mediated many of fibroproliferative effects of TGF-β1, the signaling pathway for CTGF production in corneal scarring remains to be clarified. In the present study, we firstly investigated the effects of c-Jun N-terminal kinase (JNK on CTGF expression induce by TGF-β1 in Telomerase-immortalized human cornea stroma fibroblasts (THSF. Then, we created penetrating corneal wound model and determined the effect of JNK in the pathogenesis of corneal scarring. TGF-β1 activated MAPK pathways in THSF cells. JNK inhibitor significantly inhibited CTGF, fibronectin and collagen I expression induced by TGF-β1 in THSF. In corneal wound healing, the JNK inhibitor significantly inhibited CTGF expression, markedly improved the architecture of corneal stroma and reduced corneal scar formation, but did not have a measurable impact on corneal wound healing in vivo. Our results indicate that JNK mediates the expression of CTGF and corneal scarring in corneal wound healing, and might be considered as specific targets of drug therapy for corneal scarring.

  7. Taxol prevents myocardial ischemia-reperfusion injury by inducing JNK-mediated HO-1 expression.

    Science.gov (United States)

    Cao, Huaming; Wang, Yiping; Wang, Qiang; Wang, Ruxing; Guo, Suxia; Zhao, Xiaoxi; Zhang, Yu; Tong, Debing; Yang, Zhenyu

    2016-01-01

    Ischemia/hypoxia and reperfusion impair mitochondria and produce a large amount of reactive oxygen species (ROS), which lead to mitochondrial and brain damage. Furthermore, heme oxygenase-1 (HO-1) as a cytoprotective gene protects cells against ROS-induced cell death in ischemia-reperfusion injury. Induction of HO-1 is involved in cytoprotective effects of taxol. We hypothesize that taxol protects cardiac myocytes possibly by preserving myocardial mitochondrial function and inducing HO-1 expression through the JNK pathway. In this project, the perfused Langendorff hearts isolated from rats were randomly divided into five groups: control, ischemic, ischemic + taxol (0.1 μM), ischemic + taxol (0.3 μM), and ischemic + taxol (1 μM). Briefly, following a 15 min equilibration period, the control group was subject to normoxic perfusion for 120 min; the ischemia group, normoxic reperfusion for 120 min after 30 min ischemia; the taxol groups, normoxic reperfusion for 120 min after 30-min ischemia with taxol (0.1, 0.3, or 1 μM). The microtubule disruption score, ROS levels, and the activity of mitochondrial electron transport chain complexes I and III were examined by using immunohistochemical methods and free radical detection kits. Western blot assay was employed to study the underlying mechanisms. After Taxol treatment (0.1 µM), the ischemic microtubule disruption score was reduced to 9.8 ± 1.9%. The study revealed that 0.1, 0.3, and 1 μM taxol reduced the level of ROS by 33, 46 and 51%, respectively (p HO-1 increased with taxol treatments, which could be inhibited by the specific inhibitor of JNK, SP600125. Taxol stabilized microtubules and effectively reduced ROS levels during ischemia. It also preserved the activity of mitochondrial complexes I and III. Interestingly, taxol induced the expression of HO-1 via the JNK pathway in cardiac myocytes.

  8. Stretch-induced regulation of angiotensinogen gene expression in cardiac myocytes and fibroblasts: opposing roles of JNK1/2 and p38alpha MAP kinases.

    Science.gov (United States)

    Lal, Hind; Verma, Suresh K; Golden, Honey B; Foster, Donald M; Smith, Manuela; Dostal, David E

    2008-12-01

    The cardiac renin-angiotensin system (RAS) has been implicated in mediating myocyte hypertrophy, remodeling, and fibroblast proliferation in the hemodynamically overloaded heart. However, the intracellular signaling mechanisms responsible for regulation of angiotensinogen (Ao), a substrate of the RAS system, are largely unknown. Here we report the identification of JNK1/2 as a negative, and p38alpha as a major positive regulator of Ao gene expression. Isolated neonatal rat ventricular myocytes (NRVM) and fibroblasts (NRFB) plated on deformable membranes coated with collagen IV, were exposed to 20% equiaxial static-stretch (0-24 h). Mechanical stretch initially depressed Ao gene expression (4 h), whereas after 8 h, Ao gene expression increased in a time-dependent manner. Blockade of JNK1/2 with SP600125 increased basal Ao gene expression in NRVM (10.52+/-1.98 fold, Pstretch-mediated (24 h) Ao gene expression, showing both JNK1 and JNK2 to be negative regulators of Ao gene expression in NRVM and NRFB. Blockade of p38alpha/beta by SB202190 or p38alpha by SB203580 significantly inhibited stretch-induced (24 h) Ao gene expression, whereas expression of wild-type p38alpha increased stretch-induced Ao gene expression in both NRVM (8.41+/-1.50 fold, Pstretch response. Moreover, expression of constitutively active MKK6b (E) significantly stimulated Ao gene expression in the absence of stretch, indicating that p38 activation alone is sufficient to induce Ao gene expression. Taken together p38alpha was demonstrated to be a positive regulator, whereas JNK1/2 was found to be a negative regulator of Ao gene expression. Prolonged stretch diminished JNK1/2 activation, which was accompanied by a reciprocal increase in p38 activation and Ao gene expression. This suggests that a balance in JNK1/2 and p38alpha activation determines the level of Ao gene expression in myocardial cells.

  9. Toll-Like Receptor-3 Mediates HIV-1-Induced Interleukin-6 Expression in the Human Brain Endothelium via TAK1 and JNK Pathways: Implications for Viral Neuropathogenesis.

    Science.gov (United States)

    Bhargavan, Biju; Kanmogne, Georgette D

    2017-11-11

    HIV-1-associated neurocognitive disorders (HAND) is associated with blood-brain-barrier (BBB) inflammation, and inflammation involves toll-like receptors (TLRs) signaling. It is not known whether primary human brain microvascular endothelial cells (HBMEC), the major BBB component, express TLRs or whether TLRs are involved in BBB dysfunction and HAND. We demonstrate that HBMEC express TLR3, 4, 5, 7, 9, and 10, and TLR3 was the most abundant. HIV-1 and TLR3 activation increased endothelial TLR3 transcription and expression. HIV-1-positive human subjects showed significantly higher TLR3 expression in brain tissues and blood vessels, with higher TLR3 levels in subjects with HAND. HIV-1 and TLR3 activation increased endothelial IL6 expression by 6-to-127-fold (P < 0.001), activated c-jun(serine-63) and SAPK/JNK(Thr183/Tyr185). HIV-1 upregulated IL6 through interleukin-1 receptor-associated-kinase (IRAK)-1/4/TAK1/JNK pathways, via ATP-dependent JNK activation. TLR3 activation upregulated IL6 through TAK1/JNK pathways, via ATP-dependent or -independent JNK activation. HIV-1 and TLR3 activation also upregulated transcription factors associated with IL6 and TAK1/JNK pathways (Jun, CEBPA, STAT1). Blocking TLR3 activation prevented HIV-1- and TLR3 ligands-induced upregulation of these transcription factors, prevented IL6 transcription and expression, c-jun and JNK activation. HIV-1 and TLR3 ligands significantly increased monocytes adhesion and migration through the BBB, and decreased endothelial claudin-5 expression. Blocking TLR3 and JNK activation prevented HIV-1- and TLR3 ligands-induced claudin-5 downregulation, monocytes adhesion and transendothelial migration. These data suggest that viral immune recognition via endothelial TLR3 is involved in endothelial inflammation and BBB dysfunction in HIV/AIDS and HAND. Our data provides novel insights into the molecular basis of these HIV-1- and TLR3-mediated effects.

  10. Synaptic and genomic responses to JNK and AP-1 signaling in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Bohmann Dirk

    2005-06-01

    Full Text Available Abstract Background The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. Results Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. Conclusion This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain.

  11. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes.

    Science.gov (United States)

    Yoshida, Ikuma; Ibuki, Yuko

    2014-12-01

    Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ikuma; Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp

    2014-12-15

    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.

  13. JNK2 promotes endothelial cell alignment under flow.

    Directory of Open Access Journals (Sweden)

    Cornelia Hahn

    Full Text Available Endothelial cells in straight, unbranched segments of arteries elongate and align in the direction of flow, a feature which is highly correlated with reduced atherosclerosis in these regions. The mitogen-activated protein kinase c-Jun N-terminal kinase (JNK is activated by flow and is linked to inflammatory gene expression and apoptosis. We previously showed that JNK activation by flow is mediated by integrins and is observed in cells plated on fibronectin but not on collagen or basement membrane proteins. We now show thatJNK2 activation in response to laminar shear stress is biphasic, with an early peak and a later peak. Activated JNK localizes to focal adhesions at the ends of actin stress fibers, correlates with integrin activation and requires integrin binding to the extracellular matrix. Reducing JNK2 activation by siRNA inhibits alignment in response to shear stress. Cells on collagen, where JNK activity is low, align slowly. These data show that an inflammatory pathway facilitates adaptation to laminar flow, thereby revealing an unexpected connection between adaptation and inflammatory pathways.

  14. Magnolol reduced TNF-α-induced vascular cell adhesion molecule-1 expression in endothelial cells via JNK/p38 and NF-κB signaling pathways.

    Science.gov (United States)

    Liang, Chan-Jung; Lee, Chiang-Wen; Sung, Hsin-Ching; Chen, Yung-Hsiang; Wang, Shu-Huei; Wu, Pei-Jhen; Chiang, Yao-Chang; Tsai, Jaw-Shiun; Wu, Chau-Chung; Li, Chi-Yuan; Chen, Yuh-Lien

    2014-01-01

    Expression of cell adhesion molecules by the endothelium and the attachment of leukocytes to these cells play major roles in inflammation and cardiovascular disorders. Magnolol, a major active component of Magnolia officinalis, has antioxidative and anti-inflammatory properties. In the present study, the effects of magnolol on the expression of vascular cell adhesion molecule-1 (VCAM-1) in human aortic endothelial cells (HAECs) and the related mechanisms were investigated. TNF-α induced VCAM-1 protein expression and mRNA stability were significantly decreased in HAECs pre-treated with magnolol. Magnolol significantly reduced the phosphorylation of ERK, JNK, and p38 in TNF-α-treated HAECs. The decrease in VCAM-1 expression in response to TNF-α treatment was affected by JNK and p38 inhibitors, not by an ERK inhibitor. Magnolol also attenuates NF-κB activation and the translocation of HuR (an RNA binding protein) in TNF-α-stimulated HAECs. The VCAM-1 expression was weaker in the aortas of TNF-α-treated apo-E deficient mice with magnolol treatment. These data demonstrate that magnolol inhibits TNF-α-induced JNK/p38 phosphorylation, HuR translocation, NF-κB activation, and thereby suppresses VCAM-1 expression resulting in reduced leukocyte adhesion. Taken together, these results suggest that magnolol has an anti-inflammatory property and may play an important role in the prevention of atherosclerosis and inflammatory responses.

  15. Advanced oxidation protein products induce apoptosis, and upregulate sclerostin and RANKL expression, in osteocytic MLO-Y4 cells via JNK/p38 MAPK activation.

    Science.gov (United States)

    Yu, Chaoqun; Huang, Dong; Wang, Kunyuan; Lin, Bochuan; Liu, Yuanhang; Liu, Songbo; Wu, Weichi; Zhang, Huiru

    2017-02-01

    Advanced oxidation protein products (AOPPs) are recognized as novel markers of oxidative stress and contribute to various medical conditions, which are associated with secondary osteoporosis. However, little is currently known regarding the role of AOPPs in the development of secondary osteoporosis. As the commander cells of bone remodeling, osteocytes are involved in the pathogenesis of osteoporosis. The present study aimed to determine the cytotoxic mechanisms of AOPPs on osteocytic MLO‑Y4 cells. The results demonstrated that treatment with AOPPs significantly triggered apoptosis of MLO‑Y4 cells, in a dose‑ and time‑dependent manner. Furthermore, exposure to AOPPs induced phosphorylation of c‑Jun N‑terminal kinases (JNK) and p38 mitogen‑activated protein kinases (MAPK). Conversely, N‑acetylcysteine inhibited the activation of JNK and p38 MAPK, thus suggesting that the AOPPs‑induced activation of JNK/p38 MAPK is reactive oxygen species (ROS)‑dependent. In addition, SB203580 and SP600125 suppressed apoptosis, but did not affect ROS production, following AOPPs treatment. Notably, AOPPs also induced a significant upregulation in the expression levels of sclerostin and receptor activator of nuclear factor kappa‑B ligand (RANKL) in a JNK/p38 MAPK-dependent manner. These findings provide novel insights into the molecular mechanisms underlying AOPPs‑mediated cell death, and suggest that modulation of apoptotic pathways via the MAPK signaling cascade may be considered a therapeutic strategy for the prevention and treatment of secondary osteoporosis.

  16. Stretch-Induced Regulation of Angiotensinogen Gene Expression in Cardiac Myocytes and Fibroblasts: Opposing Roles of JNK1/2 and p38α MAP Kinases

    OpenAIRE

    Lal, Hind; Verma, Suresh K.; Golden, Honey B.; Foster, Donald M.; Smith, Manuela; Dostal, David E.

    2008-01-01

    The cardiac renin-angiotensin system (RAS) has been implicated in mediating myocyte hypertrophy, remodeling, and fibroblast proliferation in the hemodynamically overloaded heart. However, the intracellular signaling mechanisms responsible for regulation of angiotensinogen (Ao), a substrate of the RAS system, are largely unknown. Here we report the identification of JNK1/2 as a negative, and p38α as a major positive regulator of Ao gene expression. Isolated neonatal rat ventricular myocytes (N...

  17. TNF-α enhances vascular cell adhesion molecule-1 expression in human bone marrow mesenchymal stem cells via the NF-κB, ERK and JNK signaling pathways.

    Science.gov (United States)

    Lu, Zi-Yuan; Chen, Wan-Cheng; Li, Yong-Hua; Li, Li; Zhang, Hang; Pang, Yan; Xiao, Zhi-Fang; Xiao, Hao-Wen; Xiao, Yang

    2016-07-01

    The migration of circulating mesenchymal stem cells (MSCs) to injured tissue is an important step in tissue regeneration and requires adhesion to the microvascular endothelium. The current study investigated the underlying mechanism of MSC adhesion to endothelial cells during inflammation. In in vitro MSC culture, tumor necrosis factor‑α (TNF‑α) increased the level of vascular cell adhesion molecule‑1 (VCAM‑1) expression in a dose‑dependent manner. The nuclear factor-κB (NF-κB), extracellular signal‑regulated kinase (ERK) and c‑Jun N‑terminal kinase (JNK) signaling pathway inhibitors, pyrrolidine dithiocarbamate (PDTC), U0126 and SP600125, respectively, suppressed VCAM‑1 expression induced by TNF‑α at the mRNA and protein levels (Padhesion to human umbilical vein endothelial cells; however, the inhibitors of NF‑κB, ERK and JNK did not affect this process in these cells. The results of the current study indicate that adhesion of circulating MSCs to the endothelium is regulated by TNF-α-induced VCAM-1 expression, which is potentially mediated by the NF‑κB, ERK and JNK signaling pathways.

  18. The JNK Signaling Pathway in Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Keren Grynberg

    2017-10-01

    Full Text Available Fibrosis of the glomerular and tubulointerstitial compartments is a common feature of chronic kidney disease leading to end-stage renal failure. This fibrotic process involves a number of pathologic mechanisms, including cell death and inflammation. This review focuses on the role of the c-Jun amino terminal kinase (JNK signaling pathway in the development of renal fibrosis. The JNK pathway is activated in response to various cellular stresses and plays an important role in cell death and inflammation. Activation of JNK signaling is a common feature in most forms of human kidney injury, evident in both intrinsic glomerular and tubular cells as well as in infiltrating leukocytes. Similar patterns of JNK activation are evident in animal models of acute and chronic renal injury. Administration of JNK inhibitors can protect against acute kidney injury and suppress the development of glomerulosclerosis and tubulointerstitial fibrosis. In particular, JNK activation in tubular epithelial cells may be a pivotal mechanism in determining the outcome of both acute kidney injury and progression of chronic kidney disease. JNK signaling promotes tubular epithelial cell production of pro-inflammatory and pro-fibrotic molecules as well as tubular cell de-differentiation toward a mesenchymal phenotype. However, the role of JNK within renal fibroblasts is less well-characterized. The JNK pathway interacts with other pro-fibrotic pathways, most notable with the TGF-β/SMAD pathway. JNK activation can augment TGF-β gene transcription, induce expression of enzymes that activate the latent form of TGF-β, and JNK directly phosphorylates SMAD3 to enhance transcription of pro-fibrotic molecules. In conclusion, JNK signaling plays an integral role in several key mechanisms operating in renal fibrosis. Targeting of JNK enzymes has therapeutic potential for the treatment of fibrotic kidney diseases.

  19. Jnk2 effects on tumor development, genetic instability and replicative stress in an oncogene-driven mouse mammary tumor model.

    Directory of Open Access Journals (Sweden)

    Peila Chen

    2010-05-01

    Full Text Available Oncogenes induce cell proliferation leading to replicative stress, DNA damage and genomic instability. A wide variety of cellular stresses activate c-Jun N-terminal kinase (JNK proteins, but few studies have directly addressed the roles of JNK isoforms in tumor development. Herein, we show that jnk2 knockout mice expressing the Polyoma Middle T Antigen transgene developed mammary tumors earlier and experienced higher tumor multiplicity compared to jnk2 wildtype mice. Lack of jnk2 expression was associated with higher tumor aneuploidy and reduced DNA damage response, as marked by fewer pH2AX and 53BP1 nuclear foci. Comparative genomic hybridization further confirmed increased genomic instability in PyV MT/jnk2-/- tumors. In vitro, PyV MT/jnk2-/- cells underwent replicative stress and cell death as evidenced by lower BrdU incorporation, and sustained chromatin licensing and DNA replication factor 1 (CDT1 and p21(Waf1 protein expression, and phosphorylation of Chk1 after serum stimulation, but this response was not associated with phosphorylation of p53 Ser15. Adenoviral overexpression of CDT1 led to similar differences between jnk2 wildtype and knockout cells. In normal mammary cells undergoing UV induced single stranded DNA breaks, JNK2 localized to RPA (Replication Protein A coated strands indicating that JNK2 responds early to single stranded DNA damage and is critical for subsequent recruitment of DNA repair proteins. Together, these data support that JNK2 prevents replicative stress by coordinating cell cycle progression and DNA damage repair mechanisms.

  20. Beta-adrenoceptor Activation by Norepinephrine Enhances Lipopolysaccharide-induced Matrix Metalloproteinase-9 Expression Through the ERK/JNK-c-Fos Pathway in Human THP-1 Cells

    Science.gov (United States)

    Yin, Xiang; Zhou, Linli; Han, Fei; Han, Jie; Zhang, Yuanyuan; Sun, Zewei; Zhao, Wenting; Wang, Zhen

    2017-01-01

    Aim: Atherosclerosis is a chronic inflammatory disease, which leads to thrombosis and acute coronary syndrome. Matrix metalloproteinase-9 (MMP-9) is involved in the stability of the extracellular matrix (ECM) and atherosclerosis plaque. Until now, it is established that lipopolysaccharide (LPS) and norepinephrine (NE) are associated with the pathological process of atherosclerosis. However, the combined effect of LPS and NE on MMP-9 is unclear. We investigated the combined effect of LPS and NE on MMP-9 expression in human monocytes and the mechanism involved in the process. Methods: THP-1 cells were cultured and treated with LPS and/or NE. MMP-9 and TIMP-1 gene and protein expression were detected by real time PCR and ELISA, respectively. MMP-9 activity was detected by gelatin zymography. Adrenoceptor antagonists and MAPKs inhibitors were used to clarify the mechanism. Pathway-related proteins were detected by Western blot. Results: We found that NE enhances LPS-induced MMP-9 and TIMP-1 expression as well as MMP-9 activity in THP-1 cells. This effect is reversed by the beta (β)-adrenoceptor antagonist propranolol, extracellular signal-regulated kinases (ERK) inhibitor U0126, and c-Jun N-terminal kinase (JNK) inhibitor SP600125. NE enhances LPS-induced ERK/JNK phosphorylation. NE up-regulates LPS-induced c-Fos expression, which is counteracted by propranolol, U0126, and SP600125. Furthermore, c-Fos silence reverses the effect of NE on MMP-9 activity. Conclusions: Our results suggest that NE enhances LPS-induced MMP-9 expression through β-adrenergic receptor and downstream ERK/JNK-c-Fos pathway. This study may help us to understand the combined effect and mechanism of NE/LPS on MMP-9 expression. PMID:27237101

  1. Bufalin Induces Mitochondria-Dependent Apoptosis in Pancreatic and Oral Cancer Cells by Downregulating hTERT Expression via Activation of the JNK/p38 Pathway

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2015-01-01

    Full Text Available Bufalin, a digoxin-like active component of the traditional Chinese medicine Chan Su, exhibits potent antitumor activities in many human cancers. Bufalin induces mitochondria-dependent apoptosis in cancer cells, but the detailed molecular mechanisms are largely unknown. hTERT, the catalytic subunit of telomerase, protects against mitochondrial damage by binding to mitochondrial DNA and reducing mitochondrial ROS production. In the present study, we investigated the effects of bufalin on the cell viability, ROS production, DNA damage, and apoptosis of CAPAN-2 human pancreatic and CAL-27 human oral cancer cells. Bufalin reduced CAPAN-2 and CAL-27 cell viability with IC50 values of 159.2 nM and 122.6 nM, respectively. The reduced cell viability was accompanied by increased ROS production, DNA damage, and apoptosis and decreased expression of hTERT. hTERT silencing in CAPAN-2 and CAL-27 cells by siRNA resulted in increased caspase-9/-3 cleavage and DNA damage and decreased cell viability. Collectively, these data suggest that bufalin downregulates hTERT to induce mitochondria-dependent apoptosis in CAPAN-2 and CAL-27 cells. Moreover, bufalin increased the phosphorylation of JNK and p38-MAPK in CAPAN-2 and CAL-27 cells, and blocking the JNK/p38-MAPK pathway using the JNK inhibitor SP600125 or the p38-MAPK inhibitor SB203580 reversed bufalin-induced hTERT downregulation. Thus, the JNK/p38 pathway is involved in bufalin-induced hTERT downregulation and subsequent induction of apoptosis by the mitochondrial pathway.

  2. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures.

    Directory of Open Access Journals (Sweden)

    Yuri Sakamoto

    Full Text Available Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist, and GW9662 (a PPARγ antagonist. Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1 and interleukin 6 (Il6 mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB and c-Jun N-terminal kinase (JNK pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue.

  3. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures

    Science.gov (United States)

    Sakamoto, Yuri; Kanatsu, Junko; Toh, Mariko; Naka, Ayano; Kondo, Kazuo; Iida, Kaoruko

    2016-01-01

    Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue. PMID:26901838

  4. TNF-α promotes osteoclastogenesis through JNK signaling-dependent induction of Semaphorin3D expression in estrogen-deficiency induced osteoporosis.

    Science.gov (United States)

    Sang, Chenglin; Zhang, Jiefeng; Zhang, Yongxian; Chen, Fangjing; Cao, Xuecheng; Guo, Lei

    2017-12-01

    Tumor necrosis factor α (TNF-α)-induced osteoclast formation have been demonstrated to play an important role in the pathogenesis of estrogen deficiency-mediated bone loss, but the exact mechanisms by which TNF-α enhanced osteoclast differentiation were not fully elucidated. The class III semaphorins members were critical to regulate bone homeostasis. Here, we identified a novel mechanism whereby TNF-α increasing Semaphorin3D expression contributes to estrogen deficiency-induced osteoporosis. In this study, we found that Semaphorin3D expression was upregulated by TNF-α during the process of RANKL-induced osteoclast differentiation. Inhibition of Semaphorin3D in pre-osteoclasts could attenuate the stimulatory effects of TNF-α on osteoclast proliferation and differentiation. Mechanistically, blocking of the Jun N-terminal kinase (JNK) signaling markedly rescued TNF-α-induced Semaphorin3D expression, suggesting that JNK signaling was involved in the regulation of Semaphorin3D expression by TNF-α. In addition, silencing of Semaphorin3D in vivo could alleviate estrogen deficiency-induced osteoporosis. Our results revealed a novel function for Semaphorin3D and suggested that increased Semaphorin3D may contribute to enhanced bone loss by increased TNF-α in estrogen deficiency-induced osteoporosis. Thus, Semaphorin3D may provide a potential therapeutic target for the treatment of estrogen-deficiency induced osteoporosis. © 2017 Wiley Periodicals, Inc.

  5. Chrysin inhibits tumor promoter-induced MMP-9 expression by blocking AP-1 via suppression of ERK and JNK pathways in gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Yong Xia

    Full Text Available Cell invasion is a crucial mechanism of cancer metastasis and malignancy. Matrix metalloproteinase-9 (MMP-9 is an important proteolytic enzyme involved in the cancer cell invasion process. High expression levels of MMP-9 in gastric cancer positively correlate with tumor aggressiveness and have a significant negative correlation with patients' survival times. Recently, mechanisms suppressing MMP-9 by phytochemicals have become increasingly investigated. Chrysin, a naturally occurring chemical in plants, has been reported to suppress tumor metastasis. However, the effects of chrysin on MMP-9 expression in gastric cancer have not been well studied. In the present study, we tested the effects of chrysin on MMP-9 expression in gastric cancer cells, and determined its underlying mechanism. We examined the effects of chrysin on MMP-9 expression and activity via RT-PCR, zymography, promoter study, and western blotting in human gastric cancer AGS cells. Chrysin inhibited phorbol-12-myristate 13-acetate (PMA-induced MMP-9 expression in a dose-dependent manner. Using AP-1 decoy oligodeoxynucleotides, we confirmed that AP-1 was the crucial transcriptional factor for MMP-9 expression. Chrysin blocked AP-1 via suppression of the phosphorylation of c-Jun and c-Fos through blocking the JNK1/2 and ERK1/2 pathways. Furthermore, AGS cells pretreated with PMA showed markedly enhanced invasiveness, which was partially abrogated by chrysin and MMP-9 antibody. Our results suggest that chrysin may exert at least part of its anticancer effect by controlling MMP-9 expression through suppression of AP-1 activity via a block of the JNK1/2 and ERK1/2 signaling pathways in gastric cancer AGS cells.

  6. Acteoside inhibits PMA-induced matrix metalloproteinase-9 expression via CaMK/ERK- and JNK/NF-κB-dependent signaling.

    Science.gov (United States)

    Hwang, Yong Pil; Kim, Hyung Gyun; Choi, Jae Ho; Park, Bong Hwan; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-05-01

    Acteoside, an active phenylethanoid glycoside found in bitter tea and many medicinal plants, displays chemopreventive properties. The aim of our study was to determine the effect of acteoside on tumor invasion and migration; the possible mechanisms involved in this inhibition were investigated in human fibrosarcoma HT-1080 cells. We employed invasion, migration and gelatin zymography assays to characterize the effect of acteoside on HT-1080 cells. Transient transfection assays were performed to investigate gene promoter activities, and immunoblot analysis to study its molecular mechanisms of action. We found that acteoside suppresses phorbol-12-myristate-13-acetate (PMA)-enhanced matrix metalloproteinase-9 (MMP-9) expression at the protein, mRNA, and transcriptional levels through the suppression of NF-κB activation. In addition, acteoside repressed the PMA-induced phosphorylation of ERK1/2 (ERK, extracellular regulated kinase) and JNK1/2. Further, we found that acteoside decreased the PMA-induced influx of Ca(2+) and repressed PMA-induced calmodulin-dependent protein kinase (CaMK) phosphorylation. Furthermore, treatment with BAPTA/AM, W7, or capsazepine markedly decreased PMA-induced MMP-9 secretion and cell migration, as well as ERK and JNK/NF-κB activation. Acteoside inhibited PMA-induced invasion and migration of human fibrosarcoma cells via Ca(2+) -dependent CaMK/ERK and JNK/NF-κB-signaling pathways. Acteoside therefore has the potential to be a potent anticancer agent in therapeutic strategies for fibrosarcoma metastasis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. JNK1/2 Activation by an Extract from the Roots of Morus alba L. Reduces the Viability of Multidrug-Resistant MCF-7/Dox Cells by Inhibiting YB-1-Dependent MDR1 Expression

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2013-01-01

    Full Text Available Cancer cells acquire anticancer drug resistance during chemotherapy, which aggravates cancer disease. MDR1 encoded from multidrug resistance gene 1 mainly causes multidrug resistance phenotypes of different cancer cells. In this study, we demonstrate that JNK1/2 activation by an extract from the root of Morus alba L. (White mulberry reduces doxorubicin-resistant MCF-7/Dox cell viability by inhibiting YB-1 regulation of MDR1 gene expression. When MCF-7 or MCF-7/Dox cells, where MDR1 is highly expressed were treated with an extract from roots or leaves of Morus alba L., respectively, the root extract from the mulberry (REM but not the leaf extract (LEM reduced cell viabilities of both MCF-7 and MCF-7/Dox cells, which was enhanced by cotreatment with doxorubicin. REM but not LEM further inhibited YB-1 nuclear translocation and its regulation of MDR1 gene expression. Moreover, REM promoted phosphorylation of c-Jun NH2-terminal kinase 1/2 (JNK1/2 and JNK1/2 inhibitor, SP600125 and rescued REM inhibition of both MDR1 expression and viabilities in MCF-7/Dox cells. Consistently, overexpression of JNK1, c-Jun, or c-Fos inhibited YB-1-dependent MDR1 expression and reduced viabilities in MCF-7/Dox cells. In conclusion, our data indicate that REM-activated JNK-cJun/c-Fos pathway decreases the viability of MCF-7/Dox cells by inhibiting YB-1-dependent MDR1 gene expression. Thus, we suggest that REM may be useful for treating multidrug-resistant cancer cells.

  8. p38 MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A expression in doxorubicin-treated endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Paolo Spallarossa

    Full Text Available Patients treated with low-dose anthracyclines often show late onset cardiotoxicity. Recent studies suggest that this form of cardiotoxicity is the result of a progenitor cell disease. In this study we demonstrate that Cord Blood Endothelial Progenitor Cells (EPCs exposed to low, sub-apoptotic doses of doxorubicin show a senescence phenotype characterized by increased SA-b-gal activity, decreased TRF2 and chromosomal abnormalities, enlarged cell shape, and disarrangement of F-actin stress fibers accompanied by impaired migratory ability. P16( INK4A localizes in the cytoplasm of doxorubicin-induced senescent EPCs and not in the nucleus as is the case in EPCs rendered senescent by different stimuli. This localization together with the presence of an arrest in G2, and not at the G1 phase boundary, which is what usually occurs in response to the cell cycle regulatory activity of p16(INK4A, suggests that doxorubicin-induced p16( INK4A does not regulate the cell cycle, even though its increase is closely associated with senescence. The effects of doxorubicin are the result of the activation of MAPKs p38 and JNK which act antagonistically. JNK attenuates the senescence, p16( INK4A expression and cytoskeleton remodeling that are induced by activated p38. We also found that conditioned medium from doxorubicin-induced senescent cardiomyocytes does not attract untreated EPCs, unlike conditioned medium from apoptotic cardiomyocytes which has a strong chemoattractant capacity. In conclusion, this study provides a better understanding of the senescence of doxorubicin-treated EPCs, which may be helpful in preventing and treating late onset cardiotoxicity.

  9. Aciculatin inhibits lipopolysaccharide-mediated inducible nitric oxide synthase and cyclooxygenase-2 expression via suppressing NF-κB and JNK/p38 MAPK activation pathways

    Directory of Open Access Journals (Sweden)

    Chen Chien-Chih

    2011-05-01

    Full Text Available Abstract Objectives Natural products have played a significant role in drug discovery and development. Inflammatory mediators such as inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 have been suggested to connect with various inflammatory diseases. In this study, we explored the anti-inflammatory potential of aciculatin (8-((2R,4S,5S,6R-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl-5-hydroxy-2-(4-hydroxyphenyl-7-methoxy-4H-chromen-4-one, one of main components of Chrysopogon aciculatis, by examining its effects on the expression and activity of iNOS and COX-2 in lipopolysaccharide (LPS-activated macrophages. Methods We used nitrate and prostaglandin E2 (PGE2 assays to examine inhibitory effect of aciculatin on nitric oxide (NO and PGE2 levels in LPS-activated mouse RAW264.7 macrophages and further investigated the mechanisms of aciculatin suppressed LPS-mediated iNOS/COX-2 expression by western blot, RT-PCR, reporter gene assay and confocal microscope analysis. Results Aciculatin remarkably decreased the LPS (1 μg/mL-induced mRNA and protein expression of iNOS and COX-2 as well as their downstream products, NO and PGE2 respectively, in a concentration-dependent manner (1-10 μM. Such inhibition was found, via immunoblot analyses, reporter gene assays, and confocal microscope observations that aciculatin not only acts through significant suppression of LPS-induced NF-κB activation, an effect highly correlated with its inhibitory effect on LPS-induced IκB kinase (IKK activation, IκB degradation, NF-κB phosphorylation, nuclear translocation and binding of NF-κB to the κB motif of the iNOS and COX-2 promoters, but also suppressed phosphorylation of JNK/p38 mitogen-activated protein kinases (MAPKs. Conclusion Our results demonstrated that aciculatin exerts potent anti-inflammatory activity through its dual inhibitory effects on iNOS and COX-2 by regulating NF-κB and JNK/p38 MAPK pathways.

  10. Punicalagin attenuates osteoclast differentiation by impairing NFATc1 expression and blocking Akt- and JNK-dependent pathways.

    Science.gov (United States)

    Iwatake, Mayumi; Okamoto, Kuniaki; Tanaka, Takashi; Tsukuba, Takayuki

    2015-09-01

    Punicalagin is a bioactive polyphenol that is classified as an ellagitannin. Although punicalagin has been shown to have various pharmacological effects, such as anti-oxidative, anti-inflammatory, and anti-tumor effects, no studies have reported the effects of punicalagin on osteoclasts (OCLs). In this study, we investigated the effects of punicalagin on OCL differentiation by receptor activator of nuclear factor kappa-B ligand in the murine monocytic RAW-D cell line and bone marrow-derived macrophages (BMMs). Treatment with punicalagin significantly inhibited OCL formation from RAW-D cells and BMMs and prevented bone resorption of BMM-derived OCLs. Moreover, punicalagin impaired multinucleation and actin-ring formation in OCLs, and decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), which is a master regulator of OCL differentiation, and concomitantly reduced the expression levels of Src and cathepsin K, which are transcriptionally regulated by NFATc1. The effects of punicalagin on intracellular signaling during the OCL differentiation of BMMs indicated that punicalagin-treated OCLs displayed markedly reduced phosphorylation of Jun N-terminal kinase and Akt, and partially impaired phosphorylation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and inhibitor of nuclear factor kappa-B alpha compared with untreated OCLs. Thus, punicalagin may affect bone metabolism by inhibiting OCL differentiation.

  11. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML

    Science.gov (United States)

    Volk, Andrew; Li, Jing; Xin, Junping; You, Dewen; Zhang, Jun; Liu, Xinli; Xiao, Yechen; Breslin, Peter; Li, Zejuan; Wei, Wei; Schmidt, Rachel; Li, Xingyu; Zhang, Zhou; Kuo, Paul C.; Nand, Sucha; Zhang, Jianke; Chen, Jianjun

    2014-01-01

    Leukemic stem cells (LSCs) isolated from acute myeloid leukemia (AML) patients are more sensitive to nuclear factor κB (NF-κB) inhibition-induced cell death when compared with hematopoietic stem and progenitor cells (HSPCs) in in vitro culture. However, inadequate anti-leukemic activity of NF-κB inhibition in vivo suggests the presence of additional survival/proliferative signals that can compensate for NF-κB inhibition. AML subtypes M3, M4, and M5 cells produce endogenous tumor necrosis factor α (TNF). Although stimulating HSPC with TNF promotes necroptosis and apoptosis, similar treatment with AML cells (leukemic cells, LCs) results in an increase in survival and proliferation. We determined that TNF stimulation drives the JNK–AP1 pathway in a manner parallel to NF-κB, leading to the up-regulation of anti-apoptotic genes in LC. We found that we can significantly sensitize LC to NF-κB inhibitor treatment by blocking the TNF–JNK–AP1 signaling pathway. Our data suggest that co-inhibition of both TNF–JNK–AP1 and NF-κB signals may provide a more comprehensive treatment paradigm for AML patients with TNF-expressing LC. PMID:24842373

  12. Stimulation of JNK Phosphorylation by the PTTH in Prothoracic Glands of the Silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Shi-Hong Gu

    2018-02-01

    Full Text Available In this study, phosphorylation of c-Jun N-terminal kinase (JNK by the prothoracicotropic hormone (PTTH was investigated in prothoracic glands (PGs of the silkworm, Bombyx mori. Results showed that JNK phosphorylation was stimulated by the PTTH in time- and dose-dependent manners. In vitro activation of JNK phosphorylation in PGs by the PTTH was also confirmed in an in vivo experiment, in which a PTTH injection greatly increased JNK phosphorylation in PGs of day-6 last instar larvae. JNK phosphorylation caused by PTTH stimulation was greatly inhibited by U73122, a potent and specific inhibitor of phospholipase C (PLC and an increase in JNK phosphorylation was also detected when PGs were treated with agents (either A23187 or thapsigargin that directly elevated the intracellular Ca2+ concentration, thereby indicating involvement of PLC and Ca2+. Pretreatment with an inhibitor (U0126 of mitogen-activated protein kinase (MAPK/extracellular signal-regulated kinase (ERK kinase (MEK and an inhibitor (LY294002 of phosphoinositide 3-kinase (PI3K failed to significantly inhibit PTTH-stimulated JNK phosphorylation, indicating that ERK and PI3K were not related to JNK. We further investigated the effect of modulation of the redox state on JNK phosphorylation. In the presence of either an antioxidant (N-acetylcysteine, NAC or diphenylene iodonium (DPI, PTTH-stimulated JNK phosphorylation was blocked. The JNK kinase inhibitor, SP600125, markedly inhibited PTTH-stimulated JNK phosphorylation and ecdysteroid synthesis. The kinase assay of JNK in PGs confirmed its stimulation by PTTH and inhibition by SP600125. Moreover, PTTH treatment did not affect JNK or Jun mRNA expressions. Based on these findings, we concluded that PTTH stimulates JNK phosphorylation in Ca2+- and PLC-dependent manners and that the redox-regulated JNK signaling pathway is involved in PTTH-stimulated ecdysteroid synthesis in B. mori PGs.

  13. JNK signalling is necessary for a Wnt- and stem cell-dependent regeneration programme

    Science.gov (United States)

    Tejada-Romero, Belen; Carter, Jean-Michel; Mihaylova, Yuliana; Neumann, Bjoern; Aboobaker, A. Aziz

    2015-01-01

    Regeneration involves the integration of new and old tissues in the context of an adult life history. It is clear that the core conserved signalling pathways that orchestrate development also play central roles in regeneration, and further study of conserved signalling pathways is required. Here we have studied the role of the conserved JNK signalling cascade during planarian regeneration. Abrogation of JNK signalling by RNAi or pharmacological inhibition blocks posterior regeneration and animals fail to express posterior markers. While the early injury-induced expression of polarity markers is unaffected, the later stem cell-dependent phase of posterior Wnt expression is not established. This defect can be rescued by overactivation of the Hh or Wnt signalling pathway to promote posterior Wnt activity. Together, our data suggest that JNK signalling is required to establish stem cell-dependent Wnt expression after posterior injury. Given that Jun is known to be required in vertebrates for the expression of Wnt and Wnt target genes, we propose that this interaction may be conserved and is an instructive part of planarian posterior regeneration. PMID:26062938

  14. Phosphatidylinositol 3-kinase gamma mediates shear stress-dependent activation of JNK in endothelial cells.

    Science.gov (United States)

    Go, Y M; Park, H; Maland, M C; Darley-Usmar, V M; Stoyanov, B; Wetzker, R; Jo, H

    1998-11-01

    Shear stress differentially activates extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) by mechanisms involving Galphai2 and Gbeta/gamma proteins, respectively, in bovine aortic endothelial cells (BAEC). The early events in this signaling mechanism by which G proteins regulate ERK and JNK in response to shear stress have not been defined. Here we show that BAEC endogenously express a G protein-dependent form of phosphatidylinositol 3-kinase, PI3Kgamma, and its activity is stimulated by shear stress. PI3Kgamma activity was measured in vitro using BAEC that were transiently transfected with an epitope-tagged PI3Kgamma (vsv-PI3Kgamma). Exposure of BAEC to shear stress rapidly and transiently stimulated the activity of vsv-PI3Kgamma (maximum by 15 s, with a return to basal after 1-min exposure to 5 dyn/cm2 shear stress). Activity of vsv-PI3Kgamma was stimulated by shear stress intensities as low as 0.5 dyn/cm2. Treatment of BAEC with an inhibitor of PI3K, wortmannin, inhibited shear-dependent activation of JNK but had no effect on that of ERK. Furthermore, expression of a kinase-inactive mutant (PI3KgammaK799R) in BAEC inhibited the shear-dependent activation of JNK but not ERK. Taken together, these results suggest that PI3Kgamma selectively regulates the shear-sensitive JNK pathway. This differential and novel signaling pathway may be responsible for coordinating various mechanosensitive events in endothelial cells.

  15. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  16. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    Science.gov (United States)

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  17. Oxidative stress-induced JNK activation contributes to proinflammatory phenotype of aging diabetic mesangial cells.

    Science.gov (United States)

    Wu, Jin; Mei, Changlin; Vlassara, Helen; Striker, Gary E; Zheng, Feng

    2009-12-01

    Chronic inflammation and increased oxidative stress (OS) play an important role in diabetic nephropathy progression. Herein, we show that mesangial cells from streptozotocin-induced aging diabetic mice, a model of progressive diabetic nephropathy, exhibited increased OS and a proinflammatory phenotype characterized by elevated chemokines and ICAM-1 expression. This phenotypic change was consistent with the extensive inflammatory lesions present in aging diabetic kidneys and was not found in mesangial cells from old and young controls or young diabetic mice. Activation of the c-Jun NH(2)-terminal kinase (JNK) pathway was a likely contributor to the proinflammatory phenotype of aging diabetic mesangial cells since 1) phosphorylated JNK levels and JNK kinase activity were increased in these cells, 2) suppression of JNK significantly decreased monocyte chemoattractant protein-1 (MCP-1) production in these cells, and 3) activation of JNK in normal mesangial cells induced inflammation. Elevated OS in aging diabetic mesangial cells may be a cause of JNK activation and inflammation, because antioxidant treatment decreased JNK phosphorylation and MCP-1 production. Additionally, decreased expression of mitogen-activated protein kinase phosphatase 5 (MKP5) may also contribute to increased JNK and inflammation in aging diabetic mesangial cells since overexpression of MKP5 in these cells normalized phosphorylated JNK levels and reversed the proinflammatory phenotype. Moreover, knocking down of MKP5 expression in old control mesangial cells resulted in JNK activation and MCP-1 production, a phenotype seen in aging diabetic mesangial cells. Interestingly, MKP5 phosphatase activity was diminished by free radicals in vitro. Thus, OS may induce inflammation in mesangial cells by activating JNK through either a direct activation of JNK or indirectly by suppression of MKP5 activity. Proinflammatory phenotype of mesangial cells may contribute to chronic inflammatory lesions and disease

  18. Regulation of the JNK3 signaling pathway during islet isolation: JNK3 and c-fos as new markers of islet quality for transplantation.

    Directory of Open Access Journals (Sweden)

    Saida Abdelli

    Full Text Available Stress conditions generated throughout pancreatic islet processing initiate the activation of pro-inflammatory pathways and beta-cell destruction. Our goal is to identify relevant and preferably beta-specific markers to assess the activation of beta-cell stress and apoptotic mechanisms, and therefore the general quality of the islet preparation prior to transplantation. Protein expression and activation were analyzed by Western blotting and kinase assays. ATP measurements were performed by a luminescence-based assay. Oxygen consumption rate (OCR was measured based on standard protocols using fiber optic sensors. Total RNA was used for gene expression analyzes. Our results indicate that pancreas digestion initiates a potent stress response in the islets by activating two stress kinases, c-Jun N-terminal Kinase (JNK and p38. JNK1 protein levels remained unchanged between different islet preparations and following culture. In contrast, levels of JNK3 increased after islet culture, but varied markedly, with a subset of preparations bearing low JNK3 expression. The observed changes in JNK3 protein content strongly correlated with OCR measurements as determined by the Spearman's rank correlation coefficient rho [Formula: see text] in the matching islet samples, while inversely correlating with c-fos mRNA expression [Formula: see text]. In conclusion, pancreas digestion recruits JNK and p38 kinases that are known to participate to beta-cell apoptosis. Concomitantly, the islet isolation alters JNK3 and c-fos expression, both strongly correlating with OCR. Thus, a comparative analysis of JNK3 and c-fos expression before and after culture may provide for novel markers to assess islet quality prior to transplantation. JNK3 has the advantage over all other proposed markers to be islet-specific, and thus to provide for a marker independent of non-beta cell contamination.

  19. JNK1 protects against glucolipotoxicity-mediated beta-cell apoptosis

    DEFF Research Database (Denmark)

    Prause, Michala; Christensen, Dan Ploug; Billestrup, Nils

    2014-01-01

    Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity. Endoplas......Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity....... Endoplasmic reticulum (ER) and oxidative stress are elicited by palmitate and high glucose concentrations further potentiating JNK activity. Our aim was to determine the role of the JNK subtypes JNK1, JNK2 and JNK3 in palmitate and high glucose-induced β-cell apoptosis. We established insulin-producing INS1...... INS1 cells showed increased apoptosis and cleaved caspase 9 and 3 compared to non-sense shRNA expressing control INS1 cells when exposed to palmitate and high glucose associated with increased CHOP expression, ROS formation and Puma mRNA expression. JNK2 shRNA expressing INS1 cells did not affect...

  20. Short-hairpin RNA-induced suppression of adenine nucleotide translocase-2 in breast cancer cells restores their susceptibility to TRAIL-induced apoptosis by activating JNK and modulating TRAIL receptor expression

    Directory of Open Access Journals (Sweden)

    Kim Chul-Woo

    2010-09-01

    Full Text Available Abstract Background Tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL; apo2 ligand induces apoptosis in cancer cells but has little effect on normal cells. However, many cancer cell types are resistant to TRAIL-induced apoptosis, limiting the clinical utility of TRAIL as an anti-cancer agent. We previously reported that the suppression of adenine nucleotide translocase-2 (ANT2 by short-hairpin RNA (shRNA induces apoptosis of breast cancer cells, which frequently express high levels of ANT2. In the present study, we examined the effect of RNA shRNA-induced suppression of ANT2 on the resistance of breast cancer cells to TRAIL-induced apoptosis in vitro and in vivo. Results ANT2 shRNA treatment sensitized MCF7, T47 D, and BT474 cells to TRAIL-induced apoptosis by up-regulating the expression of TRAIL death receptors 4 and 5 (DR4 and DR5 and down-regulating the TRAIL decoy receptor 2 (DcR2. In MCF7 cells, ANT2 knockdown activated the stress kinase c-Jun N-terminal kinase (JNK, subsequently stabilizing and increasing the transcriptional activity of p53 by phosphorylating it at Thr81; it also enhanced the expression and activity of DNA methyltransferase 1 (DNMT1. ANT2 shRNA-induced overexpression of DR4/DR5 and TRAIL sensitization were blocked by a p53 inhibitor, suggesting that p53 activation plays an important role in the transcriptional up-regulation of DR4/DR5. However, ANT2 knockdown also up-regulated DR4/DR5 in the p53-mutant cell lines BT474 and T47 D. In MCF7 cells, ANT2 shRNA treatment led to DcR2 promoter methylation and concomitant down-regulation of DcR2 expression, consistent with the observed activation of DNMT1. Treatment of the cells with a demethylating agent or JNK inhibitor prevented the ANT2 shRNA-induced down-regulation of DcR2 and activation of both p53 and DNMT1. In in vivo experiments using nude mice, ANT2 shRNA caused TRAIL-resistant MCF7 xenografts to undergo TRAIL-induced cell death, up-regulated DR4/DR5

  1. Oxidative Stress Induces Mouse Follicular Granulosa Cells Apoptosis via JNK/FoxO1 Pathway.

    Science.gov (United States)

    Weng, Qiannan; Liu, Zequn; Li, Bojiang; Liu, Kaiqing; Wu, Wangjun; Liu, Honglin

    2016-01-01

    The c-Jun N-terminal protein kinase (JNK) plays an important role in the regulation of cell apoptosis. Forkhead box O (FoxO) transcription factors are involved in diverse biological processes, including cellular metabolism, cell apoptosis, and cell cycle. However, the JNK/FoxO1 pathway involved in the process of apoptosis induced by oxidative stress remains to be elucidated. Here, we demonstrated that the JNK activity significantly increased in response to oxidative stress in mouse follicular granulosa cells (MGCs). SP600125, a selective JNK inhibitor, attenuated the oxidative stress-induced MGCs apoptosis. Oxidative stress enhanced the FoxO1 nuclear translocation by activating the JNK activity. Moreover, JNK mediated the dissociation of FoxO1 from 14-3-3 proteins in MGCs after the treatment with H2O2. Finally, oxidative stress up-regulated the expression of FoxO1 via JNK mediation of FoxO1 self-regulation in MGCs. Taken together, our findings suggest that JNK/FoxO1 is involved in the regulation of oxidative stress-induced cell apoptosis in MGCs.

  2. Protective effect of resveratrol against nigrostriatal pathway injury in striatum via JNK pathway.

    Science.gov (United States)

    Li, Dan; Liu, Nan; Zhao, Liang; Tong, Lei; Kawano, Hitoshi; Yan, Hong-Jing; Li, Hong-Peng

    2017-01-01

    Nigrostriatal pathway injury is one of the traumatic brain injury models that usually lead to neurological dysfunction or neuron necrosis. Resveratrol-induced benefits have recently been demonstrated in several models of neuronal degeneration diseases. However, the protective properties of resveratrol against neurodegeneration have not been explored definitely. Thus, we employ the nigrostriatal pathway injury model to mimic the insults on the brain. Resveratrol decreased the p-ERK expression and increased the p-JNK expression compared to the DMSO group, but not alter the p38 MAPK proteins around the lesion site by Western blot. Prior to the injury, mice were infused with resveratrol intracerebroventricularly with or without JNK-IN-8, a specific c-JNK pathway inhibitor for JNK1, JNK2 and JNK4. The study assessed modified improved neurological function score (mNSS) and beam/walking test, the level of inflammatory cytokines IL-1β, IL-6 and TNF-α, and striatal expression of Bax and Bcl-2 proteins associated with neuronal apoptosis. The results revealed that resveratrol exerted a neuroprotective effect as shown by the improved mNSS and beam latency, anti-inflammatory effects as indicated by the decreased level of IL-1β, TNF-α and IL-6. Furthermore, resveratrol up-regulated the protein expression of p-JNK and Bcl-2, down-regulated the expression of Bax and the number of Fluoro-Jade C (FJC) positive neurons. However, these advantages of resveratrol were abolished by JNK-IN-8 treatment. Overall, we demonstrated that resveratrol treatment attenuates the nigrostriatal pathway injury-induced neuronal apoptosis and inflammation via activation of c-JNK signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity

    Science.gov (United States)

    2012-01-01

    Background As proinflammatory cytokines seem to play a role in discogenic back pain, substances exhibiting anti-inflammatory effects on intervertebral disc cells may be used as minimal-invasive therapeutics for intradiscal/epidural injection. The purpose of this study was to investigate the anti-inflammatory and anti-catabolic potential of curcuma, which has been used in the Indian Ayurvedic medicine to treat multiple ailments for a long time. Methods Human disc cells were treated with IL-1β to induce an inflammatory/catabolic cascade. Different extracts of curcuma as well as curcumin (= a component selected based on results with curcuma extracts and HPLC/MS analysis) were tested for their ability to reduce mRNA expression of proinflammatory cytokines and matrix degrading enzymes after 6 hours (real-time RT-PCR), followed by analysis of typical inflammatory signaling mechanisms such as NF-κB (Western Blot, Transcription Factor Assay), MAP kinases (Western Blot) and Toll-like receptors (real-time RT-PCR). Quantitative data was statistically analyzed using a Mann Whitney U test with a significance level of p curcuma DMSO extract significantly reduced levels of IL-6, MMP1, MMP3 and MMP13. The DMSO-soluble component curcumin, whose occurrence within the DMSO extract was verified by HPLC/MS, reduced levels of IL-1β, IL-6, IL-8, MMP1, MMP3 and MMP13 and both caused an up-regulation of TNF-α. Pathway analysis indicated that curcumin did not show involvement of NF-κB, but down-regulated TLR2 expression and inhibited the MAP kinase JNK while activating p38 and ERK. Conclusions Based on its anti-inflammatory and anti-catabolic effects, intradiscal injection of curcumin may be an attractive treatment alternative. However, whether the anti-inflammatory properties in vitro lead to analgesia in vivo will need to be confirmed in an appropriate animal model. PMID:22909087

  4. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK

    Directory of Open Access Journals (Sweden)

    Santiago Vernia

    2016-03-01

    Full Text Available The cJun NH2-terminal kinase (JNK-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21 is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.

  5. 13-Acetoxysarcocrassolide Induces Apoptosis on Human Gastric Carcinoma Cells Through Mitochondria-Related Apoptotic Pathways: p38/JNK Activation and PI3K/AKT Suppression

    Directory of Open Access Journals (Sweden)

    Ching-Chyuan Su

    2014-10-01

    Full Text Available 13-acetoxysarcocrassolide (13-AC, an active compound isolated from cultured Formosa soft coral Sarcophyton crassocaule, was found to possess anti-proliferative and apoptosis-inducing activities against AGS (human gastric adenocarcinoma cells gastric carcinoma cells. The anti-tumor effects of 13-AC were determined by MTT assay, colony formation assessment, cell wound-healing assay, TUNEL/4,6-Diamidino-2-phenylindole (DAPI staining, Annexin V-fluorescein isothiocyanate/propidium iodide (PI staining and flow cytometry. 13-AC inhibited the growth and migration of gastric carcinoma cells in a dose-dependent manner and induced both early and late apoptosis as assessed by flow cytometer analysis. 13-AC-induced apoptosis was confirmed through observation of a change in ΔΨm, up-regulated expression levels of Bax and Bad proteins, down-regulated expression levels of Bcl-2, Bcl-xl and Mcl-1 proteins, and the activation of caspase-3, caspase-9, p38 and JNK. Furthermore, inhibition of p38 and JNK activity by pretreatment with SB03580 (a p38-specific inhibitor and SP600125 (a JNK-specific inhibitor led to rescue of the cell cytotoxicity of 13-AC-treated AGS cells, indicating that the p38 and the JNK pathways are also involved in the 13-AC-induced cell apoptosis. Together, these results suggest that 13-AC induces cell apoptosis against gastric cancer cells through triggering of the mitochondrial-dependent apoptotic pathway as well as activation of the p38 and JNK pathways.

  6. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation.

    Science.gov (United States)

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2009-03-15

    Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O(2)(-)) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O(2)(-) production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.

  7. HDAC inhibitor, scriptaid, induces glioma cell apoptosis through JNK activation and inhibits telomerase activity.

    Science.gov (United States)

    Sharma, Vivek; Koul, Nitin; Joseph, Christy; Dixit, Deobrat; Ghosh, Sadashib; Sen, Ellora

    2010-08-01

    The present study identified a novel mechanism of induction of apoptosis in glioblastoma cells by scriptaid - a histone deacetylase (HDAC) inhibitor. Scriptaid reduced glioma cell viability by increasing Jun N-terminal kinase (JNK) activation. Although scriptaid induced activation of both p38MAPK and JNK, it was the inhibition of JNK that attenuated scriptaid-induced apoptosis significantly. Scriptaid also increased the expression of (i) p21 and p27 involved in cell-cycle regulation and (ii) γH2AX associated with DNA damage response in a JNK-dependent manner. Treatment with scriptaid increased Ras activity in glioma cells, and transfection of cells with constitutively active RasV12 further sensitized glioma cells to scriptaid-induced apoptosis. Scriptaid also inhibited telomerase activity independent of JNK. Taken together, our findings indicate that scriptaid (i) induces apoptosis and reduces glioma cell proliferation by elevating JNK activation and (ii) also decreases telomerase activity in a JNK-independent manner. © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  8. Drosophila DOCK family protein sponge regulates the JNK pathway during thorax development.

    Science.gov (United States)

    Morishita, Kazushige; Ozasa, Fumito; Eguchi, Koichi; Yoshioka, Yasuhide; Yoshida, Hideki; Hiai, Hiroshi; Yamaguchi, Masamitsu

    2014-01-01

    The dedicator of cytokinesis (DOCK) family proteins that are conserved in a wide variety of species are known as DOCK1-DOCK11 in mammals. The Sponge (Spg) is a Drosophila counterpart to the mammalian DOCK3. Specific knockdown of spg by pannir-GAL4 or apterous-GAL4 driver in wing discs induced split thorax phenotype in adults. Reduction of the Drosophila c-Jun N-terminal kinase (JNK), basket (bsk) gene dose enhanced the spg knockdown-induced phenotype. Conversely, overexpression of bsk suppressed the split thorax phenotype. Monitoring JNK activity in the wing imaginal discs by immunostaining with anti-phosphorylated JNK (anti-pJNK) antibody together with examination of lacZ expression in a puckered-lacZ enhancer trap line revealed the strong reduction of the JNK activity in the spg knockdown clones. This was further confirmed by Western immunoblot analysis of extracts from wing discs of spg knockdown fly with anti-pJNK antibody. Furthermore, the Duolink in situ Proximity Ligation Assay method detected interaction signals between Spg and Rac1 in the wing discs. Taken together, these results indicate Spg positively regulates JNK pathway that is required for thorax development and the regulation is mediated by interaction with Rac1.

  9. Alteration of JNK-1 signaling in skeletal muscle fails to affect glucose homeostasis and obesity-associated insulin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Martin Pal

    Full Text Available Obesity and associated metabolic disturbances, such as increased circulating fatty acids cause prolonged low grade activation of inflammatory signaling pathways in liver, skeletal muscle, adipose tissue and even in the CNS. Activation of inflammatory pathways in turn impairs insulin signaling, ultimately leading to obesity-associated type 2 diabetes mellitus. Conventional JNK-1 knock out mice are protected from high fat diet-induced insulin resistance, characterizing JNK-1-inhibition as a potential approach to improve glucose metabolism in obese patients. However, the cell type-specific role of elevated JNK-1 signaling as present during the course of obesity has not been fully elucidated yet. To investigate the functional contribution of altered JNK-1 activation in skeletal muscle, we have generated a ROSA26 insertion mouse strain allowing for Cre-activatable expression of a JNK-1 constitutive active construct (JNK(C. To examine the consequence of skeletal muscle-restricted JNK-1 overactivation in the development of insulin resistance and glucose metabolism, JNK(C mice were crossed to Mck-Cre mice yielding JNK(SM-C mice. However, despite increased muscle-specific JNK activation, energy homeostasis and glucose metabolism in JNK(SM-C mice remained largely unaltered compared to controls. In line with these findings, obese mice with skeletal muscle specific disruption of JNK-1, did not affect energy and glucose homeostasis. These experiments indicate that JNK-1 activation in skeletal muscle does not account for the major effects on diet-induced, JNK-1-mediated deterioration of insulin action and points towards a so far underappreciated role of JNK-1 in other tissues than skeletal muscle during the development of obesity-associated insulin resistance.

  10. Activation of NAG-1 via JNK signaling revealed an isochaihulactone-triggered cell death in human LNCaP prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Sung-Ying

    2011-04-01

    Full Text Available Abstract Background We explored the mechanisms of cell death induced by isochaihulactone treatment in LNCaP cells. Methods LNCaP cells were treated with isochaihulactone and growth inhibition was assessed. Cell cycle profiles after isochaihulactone treatment were determined by flow cytometry. Expression levels of cell cycle regulatory proteins, caspase 9, caspase 3, and PARP were determined after isochaihulactone treatment. Signaling pathway was verified by inhibitors pre-treatment. Expression levels of early growth response gene 1 (EGR-1 and nonsteroidal anti-inflammatory drug-activated gene 1 (NAG-1 were determined to investigate their role in LNCaP cell death. NAG-1 expression was knocked down by si-NAG-1 siRNA transfection. Rate of cell death and proliferation were obtained by MTT assay. Results Isochaihulactone caused cell cycle arrest at G2/M phase in LNCaP cells, which was correlated with an increase of p53 and p21 levels and downregulation of the checkpoint proteins cdc25c, cyclin B1, and cdc2. Bcl-2 phosphorylation and caspase activation were also observed. Isochaihulactone induced phosphorylation of c-Jun-N-terminal kinase (JNK, and JNK inhibitor partially reduced isochaihulactone-induced cell death. Isochaihulactone also induced the expressions of EGR-1 and NAG-1. Expression of NAG-1 was reduced by JNK inhibitor, and knocking down of NAG-1 inhibited isochaihulactone-induced cell death. Conclusions Isochaihulactone apparently induces G2/M cell cycle arrest via downregulation of cyclin B1 and cdc2, and induces cellular death by upregulation of NAG-1 via JNK activation in LNCaP cells.

  11. Integrin-dependent activation of the JNK signaling pathway by mechanical stress.

    Directory of Open Access Journals (Sweden)

    Andrea Maria Pereira

    Full Text Available Mechanical force is known to modulate the activity of the Jun N-terminal kinase (JNK signaling cascade. However, the effect of mechanical stresses on JNK signaling activation has previously only been analyzed by in vitro detection methods. It still remains unknown how living cells activate the JNK signaling cascade in response to mechanical stress and what its functions are in stretched cells.We assessed in real-time the activity of the JNK pathway in Drosophila cells by Fluorescence Lifetime Imaging Microscopy (FLIM, using an intramolecular phosphorylation-dependent dJun-FRET (Fluorescence Resonance Energy Transfer biosensor. We found that quantitative FRET-FLIM analysis and confocal microscopy revealed sustained dJun-FRET biosensor activation and stable morphology changes in response to mechanical stretch for Drosophila S2R+ cells. Further, these cells plated on different substrates showed distinct levels of JNK activity that associate with differences in cell morphology, integrin expression and focal adhesion organization.These data imply that alterations in the cytoskeleton and matrix attachments may act as regulators of JNK signaling, and that JNK activity might feed back to modulate the cytoskeleton and cell adhesion. We found that this dynamic system is highly plastic; at rest, integrins at focal adhesions and talin are key factors suppressing JNK activity, while multidirectional static stretch leads to integrin-dependent, and probably talin-independent, Jun sensor activation. Further, our data suggest that JNK activity has to coordinate with other signaling elements for the regulation of the cytoskeleton and cell shape remodeling associated with stretch.

  12. Role of the JNK Pathway in Varicella-Zoster Virus Lytic Infection and Reactivation.

    Science.gov (United States)

    Kurapati, Sravya; Sadaoka, Tomohiko; Rajbhandari, Labchan; Jagdish, Balaji; Shukla, Priya; Ali, Mir A; Kim, Yong Jun; Lee, Gabsang; Cohen, Jeffrey I; Venkatesan, Arun

    2017-09-01

    Mechanisms of neuronal infection by varicella-zoster virus (VZV) have been challenging to study due to the relatively strict human tropism of the virus and the paucity of tractable experimental models. Cellular mitogen-activated protein kinases (MAPKs) have been shown to play a role in VZV infection of nonneuronal cells, with distinct consequences for infectivity in different cell types. Here, we utilize several human neuronal culture systems to investigate the role of one such MAPK, the c-Jun N-terminal kinase (JNK), in VZV lytic infection and reactivation. We find that the JNK pathway is specifically activated following infection of human embryonic stem cell-derived neurons and that this activation of JNK is essential for efficient viral protein expression and replication. Inhibition of the JNK pathway blocked viral replication in a manner distinct from that of acyclovir, and an acyclovir-resistant VZV isolate was as sensitive to the effects of JNK inhibition as an acyclovir-sensitive VZV isolate in neurons. Moreover, in a microfluidic-based human neuronal model of viral latency and reactivation, we found that inhibition of the JNK pathway resulted in a marked reduction in reactivation of VZV. Finally, we utilized a novel technique to efficiently generate cells expressing markers of human sensory neurons from neural crest cells and established a critical role for the JNK pathway in infection of these cells. In summary, the JNK pathway plays an important role in lytic infection and reactivation of VZV in physiologically relevant cell types and may provide an alternative target for antiviral therapy. IMPORTANCE Varicella-zoster virus (VZV) has infected over 90% of people worldwide. While primary infection leads to the typically self-limiting condition of chickenpox, the virus can remain dormant in the nervous system and may reactivate later in life, leading to shingles or inflammatory diseases of the nervous system and eye with potentially severe consequences. Here

  13. JNK Promotes Epithelial Cell Anoikis by Transcriptional and Post-translational Regulation of BH3-Only Proteins

    Directory of Open Access Journals (Sweden)

    Nomeda Girnius

    2017-11-01

    Full Text Available Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis. While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that JNK acts through a BAK/BAX-dependent apoptotic pathway by increasing BIM expression and phosphorylating BMF, leading to death of detached epithelial cells.

  14. Kupffer Cell-Derived Tnf Triggers Cholangiocellular Tumorigenesis through JNK due to Chronic Mitochondrial Dysfunction and ROS.

    Science.gov (United States)

    Yuan, Detian; Huang, Shan; Berger, Emanuel; Liu, Lei; Gross, Nina; Heinzmann, Florian; Ringelhan, Marc; Connor, Tracy O; Stadler, Mira; Meister, Michael; Weber, Julia; Öllinger, Rupert; Simonavicius, Nicole; Reisinger, Florian; Hartmann, Daniel; Meyer, Rüdiger; Reich, Maria; Seehawer, Marco; Leone, Valentina; Höchst, Bastian; Wohlleber, Dirk; Jörs, Simone; Prinz, Marco; Spalding, Duncan; Protzer, Ulrike; Luedde, Tom; Terracciano, Luigi; Matter, Matthias; Longerich, Thomas; Knolle, Percy; Ried, Thomas; Keitel, Verena; Geisler, Fabian; Unger, Kristian; Cinnamon, Einat; Pikarsky, Eli; Hüser, Norbert; Davis, Roger J; Tschaharganeh, Darjus F; Rad, Roland; Weber, Achim; Zender, Lars; Haller, Dirk; Heikenwalder, Mathias

    2017-06-12

    Intrahepatic cholangiocarcinoma (ICC) is a highly malignant, heterogeneous cancer with poor treatment options. We found that mitochondrial dysfunction and oxidative stress trigger a niche favoring cholangiocellular overgrowth and tumorigenesis. Liver damage, reactive oxygen species (ROS) and paracrine tumor necrosis factor (Tnf) from Kupffer cells caused JNK-mediated cholangiocellular proliferation and oncogenic transformation. Anti-oxidant treatment, Kupffer cell depletion, Tnfr1 deletion, or JNK inhibition reduced cholangiocellular pre-neoplastic lesions. Liver-specific JNK1/2 deletion led to tumor reduction and enhanced survival in Akt/Notch- or p53/Kras-induced ICC models. In human ICC, high Tnf expression near ICC lesions, cholangiocellular JNK-phosphorylation, and ROS accumulation in surrounding hepatocytes are present. Thus, Kupffer cell-derived Tnf favors cholangiocellular proliferation/differentiation and carcinogenesis. Targeting the ROS/Tnf/JNK axis may provide opportunities for ICC therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. IAP Suppression of Apoptosis Involves Distinct Mechanisms: the TAK1/JNK1 Signaling Cascade and Caspase Inhibition

    Science.gov (United States)

    Sanna, M. Germana; Correia, Jean da Silva; Ducrey, Odile; Lee, Jongdae; Nomoto, Ken; Schrantz, Nicolas; Deveraux, Quinn L.; Ulevitch, Richard J.

    2002-01-01

    The antiapoptotic properties of the inhibitor of apoptosis (IAP) family of proteins have been linked to caspase inhibition. We have previously described an alternative mechanism of XIAP inhibition of apoptosis that depends on the selective activation of JNK1. Here we report that two other members of the IAP family, NAIP and ML-IAP, both activate JNK1. Expression of catalytically inactive JNK1 blocks NAIP and ML-IAP protection against ICE- and TNF-α-induced apoptosis, indicating that JNK1 activation is necessary for the antiapoptotic effect of these proteins. The MAP3 kinase, TAK1, appears to be an essential component of this antiapoptotic pathway since IAP-mediated activation of JNK1, as well as protection against TNF-α- and ICE-induced apoptosis, is inhibited when catalytically inactive TAK1 is expressed. In addition, XIAP, NAIP, and JNK1 bind to TAK1. Importantly, expression of catalytically inactive TAK1 did not affect XIAP inhibition of caspase activity. These data suggest that XIAP's antiapoptotic activity is achieved by two separate mechanisms: one requiring TAK1-dependent JNK1 activation and the second involving caspase inhibition. PMID:11865055

  16. Involvement of the JNK/FOXO3a/Bim Pathway in Neuronal Apoptosis after Hypoxic-Ischemic Brain Damage in Neonatal Rats.

    Directory of Open Access Journals (Sweden)

    Deyuan Li

    Full Text Available c-Jun N-terminal kinase (JNK plays a key role in the regulation of neuronal apoptosis. Previous studies have revealed that forkhead transcription factor (FOXO3a is a critical effector of JNK-mediated tumor suppression. However, it is not clear whether the JNK/FOXO3a pathway is involved in neuronal apoptosis in the developing rat brain after hypoxia-ischemia (HI. In this study, we generated an HI model using postnatal day 7 rats. Fluorescence immunolabeling and Western blot assays were used to detect the distribution and expression of total and phosphorylated JNK and FOXO3a and the pro-apoptotic proteins Bim and CC3. We found that JNK phosphorylation was accompanied by FOXO3a dephosphorylation, which induced FOXO3a translocation into the nucleus, resulting in the upregulation of levels of Bim and CC3 proteins. Furthermore, we found that JNK inhibition by AS601245, a specific JNK inhibitor, significantly increased FOXO3a phosphorylation, which attenuated FOXO3a translocation into the nucleus after HI. Moreover, JNK inhibition downregulated levels of Bim and CC3 proteins, attenuated neuronal apoptosis and reduced brain infarct volume in the developing rat brain. Our findings suggest that the JNK/FOXO3a/Bim pathway is involved in neuronal apoptosis in the developing rat brain after HI. Agents targeting JNK may offer promise for rescuing neurons from HI-induced damage.

  17. JNK1, but not JNK2, is required in two mechanistically distinct models of inflammatory arthritis

    DEFF Research Database (Denmark)

    Denninger, Katja; Rasmussen, Susanne B; Larsen, Jeppe Madura

    2011-01-01

    The roles of the c-Jun N-terminal kinases (JNKs) in inflammatory arthritis have been investigated; however, the roles of each isotype (ie, JNK1 and JNK2) in rheumatoid arthritis and conclusions about whether inhibition of one or both is necessary for amelioration of disease are unclear. By using ...

  18. Facial expression decoding in early Parkinson's disease.

    Science.gov (United States)

    Pell, Marc D; Leonard, Carol L

    2005-05-01

    The ability to derive emotional and non-emotional information from unfamiliar, static faces was evaluated in 21 adults with idiopathic Parkinson's disease (PD) and 21 healthy control subjects. Participants' sensitivity to emotional expressions was comprehensively assessed in tasks of discrimination, identification, and rating of five basic emotions: happiness, (pleasant) surprise, anger, disgust, and sadness. Subjects also discriminated and identified faces according to underlying phonemic ("facial speech") cues and completed a neuropsychological test battery. Results uncovered limited evidence that the processing of emotional faces differed between the two groups in our various conditions, adding to recent arguments that these skills are frequently intact in non-demented adults with PD [R. Adolphs, R. Schul, D. Tranel, Intact recognition of facial emotion in Parkinson's disease, Neuropsychology 12 (1998) 253-258]. Patients could also accurately interpret facial speech cues and discriminate the identity of unfamiliar faces in a normal manner. There were some indications that basal ganglia pathology in PD contributed to selective difficulties recognizing facial expressions of disgust, consistent with a growing literature on this topic. Collectively, findings argue that abnormalities for face processing are not a consistent or generalized feature of medicated adults with mild-moderate PD, prompting discussion of issues that may be contributing to heterogeneity within this literature. Our results imply a more limited role for the basal ganglia in the processing of emotion from static faces relative to speech prosody, for which the same PD patients exhibited pronounced deficits in a parallel set of tasks [M.D. Pell, C. Leonard, Processing emotional tone from speech in Parkinson's disease: a role for the basal ganglia, Cogn. Affect. Behav. Neurosci. 3 (2003) 275-288]. These diverging patterns allow for the possibility that basal ganglia mechanisms are more engaged by

  19. The mechanism by which MEK/ERK regulates JNK and p38 activity in polyamine depleted IEC-6 cells during apoptosis.

    Science.gov (United States)

    Bavaria, Mitul N; Jin, Shi; Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Polyamine-depletion inhibited apoptosis by activating ERK1/2, while, preventing JNK1/2 activation. MKP-1 knockdown by SiRNA increased ERK1/2, JNK1/2, and p38 phosphorylation and apoptosis. Therefore, we predicted that polyamines might regulate MKP1 via MEK/ERK and thereby apoptosis. We examined the role of MEK/ERK in the regulation of MKP1 and JNK, and p38 activities and apoptosis. Inhibition of MKP-1 activity with a pharmacological inhibitor, sanguinarine (SA), increased JNK1/2, p38, and ERK1/2 activities without causing apoptosis. However, pre-activation of these kinases by SA significantly increased camptothecin (CPT)-induced apoptosis suggesting different roles for MAPKs during survival and apoptosis. Inhibition of MEK1 activity prevented the expression of MKP-1 protein and augmented CPT-induced apoptosis, which correlated with increased activities of JNK1/2, caspases, and DNA fragmentation. Polyamine depleted cells had higher levels of MKP-1 protein and decreased JNK1/2 activity and apoptosis. Inhibition of MEK1 prevented MKP-1 expression and increased JNK1/2 and apoptosis. Phospho-JNK1/2, phospho-ERK2, MKP-1, and the catalytic subunit of PP2Ac formed a complex in response to TNF/CPT. Inactivation of PP2Ac had no effect on the association of MKP-1 and JNK1. However, inhibition of MKP-1 activity decreased the formation of the MKP-1, PP2Ac and JNK complex. Following inhibition by SA, MKP-1 localized in the cytoplasm, while basal and CPT-induced MKP-1 remained in the nuclear fraction. These results suggest that nuclear MKP-1 translocates to the cytoplasm, binds phosphorylated JNK and p38 resulting in dephosphorylation and decreased activity. Thus, MEK/ERK activity controls the levels of MKP-1 and, thereby, regulates JNK activity in polyamine-depleted cells.

  20. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK activation correlates with the analgesic effects of ketamine in neuropathic pain

    Directory of Open Access Journals (Sweden)

    Wang Wen

    2011-01-01

    Full Text Available Abstract Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK, a member of mitogen-activated protein kinase (MAPK family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS-induced phosphorylated JNK (pJNK expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain.

  1. Polycomb and Hox Genes Control JNK-Induced Remodeling of the Segment Boundary during Drosophila Morphogenesis

    Directory of Open Access Journals (Sweden)

    Solange Roumengous

    2017-04-01

    Full Text Available In segmented tissues, anterior and posterior compartments represent independent morphogenetic domains, which are made of distinct lineages separated by boundaries. During dorsal closure of the Drosophila embryo, specific “mixer cells” (MCs are reprogrammed in a JNK-dependent manner to express the posterior determinant engrailed (en and cross the segment boundary. Here, we show that JNK signaling induces de novo expression of en in the MCs through repression of Polycomb (Pc and release of the en locus from the silencing PcG bodies. Whereas reprogramming occurs in MCs from all thoracic and abdominal segments, cell mixing is restricted to the central abdominal region. We demonstrate that this spatial control of MC remodeling depends on the antagonist activity of the Hox genes abdominal-A and Abdominal-B. Together, these results reveal an essential JNK/en/Pc/Hox gene regulatory network important in controlling both the plasticity of segment boundaries and developmental reprogramming.

  2. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    Science.gov (United States)

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (pobese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (pobese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  3. Apical deficiency triggers JNK-dependent apoptosis in the embryonic epidermis of Drosophila

    Science.gov (United States)

    Kolahgar, Golnar; Bardet, Pierre-Luc; Langton, Paul F.; Alexandre, Cyrille; Vincent, Jean-Paul

    2011-01-01

    Epithelial homeostasis and the avoidance of diseases such as cancer require the elimination of defective cells by apoptosis. Here, we investigate how loss of apical determinants triggers apoptosis in the embryonic epidermis of Drosophila. Transcriptional profiling and in situ hybridisation show that JNK signalling is upregulated in mutants lacking Crumbs or other apical determinants. This leads to transcriptional activation of the pro-apoptotic gene reaper and to apoptosis. Suppression of JNK signalling by overexpression of Puckered, a feedback inhibitor of the pathway, prevents reaper upregulation and apoptosis. Moreover, removal of endogenous Puckered leads to ectopic reaper expression. Importantly, disruption of the basolateral domain in the embryonic epidermis does not trigger JNK signalling or apoptosis. We suggest that apical, not basolateral, integrity could be intrinsically required for the survival of epithelial cells. In apically deficient embryos, JNK signalling is activated throughout the epidermis. Yet, in the dorsal region, reaper expression is not activated and cells survive. One characteristic of these surviving cells is that they retain discernible adherens junctions despite the apical deficit. We suggest that junctional integrity could restrain the pro-apoptotic influence of JNK signalling. PMID:21693518

  4. JNK mitogen-activated protein kinase limits calcium-dependent chloride secretion across colonic epithelial cells.

    LENUS (Irish Health Repository)

    Donnellan, Fergal

    2010-01-01

    Neuroimmune agonists induce epithelial Cl(-) secretion through elevations in intracellular Ca2+ or cAMP. Previously, we demonstrated that epidermal growth factor receptor (EGFR) transactivation and subsequent ERK MAPK activation limits secretory responses to Ca2+-dependent, but not cAMP-dependent, agonists. Although JNK MAPKs are also expressed in epithelial cells, their role in regulating transport function is unknown. Here, we investigated the potential role for JNK in regulating Cl(-) secretion in T(84) colonic epithelial cells. Western blot analysis revealed that a prototypical Ca2+-dependent secretagogue, carbachol (CCh; 100 microM), induced phosphorylation of both the 46-kDa and 54-kDa isoforms of JNK. This effect was mimicked by thapsigargin (TG), which specifically elevates intracellular Ca2+, but not by forskolin (FSK; 10 microM), which elevates cAMP. CCh-induced JNK phosphorylation was attenuated by the EGFR inhibitor, tyrphostin-AG1478 (1 microM). Pretreatment of voltage-clamped T(84) cells with SP600125 (2 microM), a specific JNK inhibitor, potentiated secretory responses to both CCh and TG but not to FSK. The effects of SP600125 on CCh-induced secretion were not additive with those of the ERK inhibitor, PD98059. Finally, in apically permeabilized T(84) cell monolayers, SP600125 potentiated CCh-induced K+ conductances but not Na+\\/K+ATPase activity. These data demonstrate a novel role for JNK MAPK in regulating Ca2+ but not cAMP-dependent epithelial Cl(-) secretion. JNK activation is mediated by EGFR transactivation and exerts its antisecretory effects through inhibition of basolateral K+ channels. These data further our understanding of mechanisms regulating epithelial secretion and underscore the potential for exploitation of MAPK-dependent signaling in treatment of intestinal transport disorders.

  5. JNK signaling regulates E-cadherin junctions in germline cysts and determines primordial follicle formation in mice.

    Science.gov (United States)

    Niu, Wanbao; Wang, Ye; Wang, Zhengpin; Xin, Qiliang; Wang, Yijing; Feng, Lizhao; Zhao, Lihua; Wen, Jia; Zhang, Hua; Wang, Chao; Xia, Guoliang

    2016-05-15

    Physiologically, the size of the primordial follicle pool determines the reproductive lifespan of female mammals, while its establishment largely depends on a process of germline cyst breakdown during the perinatal period. The mechanisms regulating this process are poorly understood. Here we demonstrate that c-Jun amino-terminal kinase (JNK) signaling is crucial for germline cyst breakdown and primordial follicle formation. JNK was specifically localized in oocytes and its activity increased as germline cyst breakdown progressed. Importantly, disruption of JNK signaling with a specific inhibitor (SP600125) or knockdown technology (Lenti-JNK-shRNAs) resulted in significantly suppressed cyst breakdown and primordial follicle formation in cultured mouse ovaries. Our results show that E-cadherin is intensely expressed in germline cysts, and that its decline is necessary for oocyte release from the cyst. However, inhibition of JNK signaling leads to aberrantly enhanced localization of E-cadherin at oocyte-oocyte contact sites. WNT4 expression is upregulated after SP600125 treatment. Additionally, similar to the effect of SP600125 treatment, WNT4 overexpression delays cyst breakdown and is accompanied by abnormal E-cadherin expression patterns. In conclusion, our results suggest that JNK signaling, which is inversely correlated with WNT4, plays an important role in perinatal germline cyst breakdown and primordial follicle formation by regulating E-cadherin junctions between oocytes in mouse ovaries. © 2016. Published by The Company of Biologists Ltd.

  6. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival.

    Science.gov (United States)

    Steed, Emily; Elbediwy, Ahmed; Vacca, Barbara; Dupasquier, Sébastien; Hemkemeyer, Sandra A; Suddason, Tesha; Costa, Ana C; Beaudry, Jean-Bernard; Zihni, Ceniz; Gallagher, Ewen; Pierreux, Christophe E; Balda, Maria S; Matter, Karl

    2014-03-03

    MarvelD3 is a transmembrane component of tight junctions, but there is little evidence for a direct involvement in the junctional permeability barrier. Tight junctions also regulate signaling mechanisms that guide cell proliferation; however, the transmembrane components that link the junction to such signaling pathways are not well understood. In this paper, we show that MarvelD3 is a dynamic junctional regulator of the MEKK1-c-Jun NH2-terminal kinase (JNK) pathway. Loss of MarvelD3 expression in differentiating Caco-2 cells resulted in increased cell migration and proliferation, whereas reexpression in a metastatic tumor cell line inhibited migration, proliferation, and in vivo tumor formation. Expression levels of MarvelD3 inversely correlated with JNK activity, as MarvelD3 recruited MEKK1 to junctions, leading to down-regulation of JNK phosphorylation and inhibition of JNK-regulated transcriptional mechanisms. Interplay between MarvelD3 internalization and JNK activation tuned activation of MEKK1 during osmotic stress, leading to junction dissociation and cell death in MarvelD3-depleted cells. MarvelD3 thus couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival.

  7. Mixed lineage kinase-3/JNK1 axis promotes migration of human gastric cancer cells following gastrin stimulation.

    Science.gov (United States)

    Mishra, Prajna; Senthivinayagam, Subramanian; Rangasamy, Velusamy; Sondarva, Gautam; Rana, Basabi

    2010-03-01

    Gastrin is a gastrointestinal peptide hormone, secreted by the gastric G cells and can exist as a fully processed amidated form (G17) or as unprocessed forms. All forms of gastrin possess trophic properties towards the gastrointestinal mucosa. An understanding of the signaling pathways involved is important to design therapeutic approaches to target gastrin-mediated cellular events. The studies described here were designed to identify the signaling pathways by which amidated gastrin (G17) mediates cancer cell migration. These studies indicated a time- and dose-dependent increase in gastric cancer cell migration after G17 stimulation, involving cholecystokinin 2 receptor. G17-induced migration was preceded by activation of MAPK pathways and was antagonized after pretreatment with SP600125, a pharmacological inhibitor of c-Jun-NH(2)-terminal kinase (JNK) pathway. Knockdown of endogenous JNK1 expression via small interference RNA (JNK1-siRNA) inhibited G17-induced phosphorylation of c-Jun and migration, and overexpression of wild-type JNK1 or constitutive active JNK1 promoted G17-induced migration. Studies designed to identify the MAPK kinase kinase member mediating JNK activation indicated the involvement of mixed lineage kinase-3 (MLK3), which was transiently activated upon G17 treatment. Inhibition of MLK3 pathway via a pan-MLK inhibitor or knockdown of MLK3 expression by MLK3-siRNA antagonized G17-induced migration. Incubation with G17 also resulted in an induction of matrix metalloproteinase 7 promoter activity, which is known to mediate migration and invasion pathways in cancer cells. Modulation of MLK3, JNK1, and c-Jun pathways modulated G17-induced matrix metalloproteinase 7 promoter activation. These studies indicate that the MLK3/JNK1 axis mediates G17-induced gastric cancer cell migration, which can be targeted for designing novel therapeutic strategies for treating gastric malignancies.

  8. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease.

    Science.gov (United States)

    Yao, Zhiwen; Yang, Wenhao; Gao, Zhiqiang; Jia, Peng

    2017-04-24

    Amyloid-β (Aβ) oligomers have been accepted as major neurotoxic agents in the therapy of Alzheimer's disease (AD). It has been shown that the activity of nicotinamide adenine dinucleotide (NAD+) is related with the decline of Aβ toxicity in AD. Nicotinamide mononucleotide (NMN), the important precursor of NAD+, is produced during the reaction of nicotinamide phosphoribosyl transferase (Nampt). This study aimed to figure out the potential therapeutic effects of NMN and its underlying mechanisms in APPswe/PS1dE9 (AD-Tg) mice. We found that NMN gave rise to a substantial improvement in behavioral measures of cognitive impairments compared to control AD-Tg mice. In addition, NMN treatment significantly decreased β-amyloid production, amyloid plaque burden, synaptic loss, and inflammatory responses in transgenic animals. Mechanistically, NMN effectively controlled JNK activation. Furthermore, NMN potently progressed nonamyloidogenic amyloid precursor protein (APP) and suppressed amyloidogenic APP by mediating the expression of APP cleavage secretase in AD-Tg mice. Based on our findings, it was suggested that NMN substantially decreases multiple AD-associated pathological characteristically at least partially by the inhibition of JNK activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Early postnatal testosterone predicts sex-related differences in early expressive vocabulary.

    Science.gov (United States)

    Kung, Karson T F; Browne, Wendy V; Constantinescu, Mihaela; Noorderhaven, Rebecca M; Hines, Melissa

    2016-06-01

    During the first few years of life, girls typically have a larger expressive vocabulary than boys. This sex difference is important since a small vocabulary may predict subsequent language difficulties, which are more prevalent in boys than girls. The masculinizing effects of early androgen exposure on neurobehavioral development are well-documented in nonhuman mammals. The present study conducted the first test of whether early postnatal testosterone concentrations influence sex differences in expressive vocabulary in toddlers. It was found that testosterone measured in saliva samples collected at 1-3 months of age, i.e., during the period called mini-puberty, negatively predicted parent-report expressive vocabulary size at 18-30 months of age in boys and in girls. Testosterone concentrations during mini-puberty also accounted for additional variance in expressive vocabulary after other predictors such as sex, child's age at vocabulary assessment, and paternal education, were taken into account. Furthermore, testosterone concentrations during mini-puberty mediated the sex difference in expressive vocabulary. These results suggest that testosterone during the early postnatal period contributes to early language development and neurobehavioral sexual differentiation in humans. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The JNK inhibitor XG-102 protects against TNBS-induced colitis.

    Directory of Open Access Journals (Sweden)

    Kirstin Reinecke

    Full Text Available The c-Jun N-terminal kinase (JNK-inhibiting peptide D-JNKI-1, syn. XG-102 was tested for its therapeutic potential in acute inflammatory bowel disease (IBD in mice. Rectal instillation of the chemical irritant trinitrobenzene sulfonic acid (TNBS provoked a dramatic acute inflammation in the colon of 7-9 weeks old mice. Coincident subcutaneous application of 100 µg/kg XG-102 significantly reduced the loss of body weight, rectal bleeding and diarrhoea. After 72 h, the end of the study, the colon was removed and immuno-histochemically analysed. XG-102 significantly reduced (i pathological changes such as ulceration or crypt deformation, (ii immune cell pathology such as infiltration and presence of CD3- and CD68-positive cells, (iii the production of tumor necrosis factor (TNF-α in colon tissue cultures from TNBS-treated mice, (iv expression of Bim, Bax, FasL, p53, and activation of caspase 3, (v complexation of JNK2 and Bim, and (vi expression and activation of the JNK substrate and transcription factor c-Jun. A single application of subcutaneous XG-102 was at least as effective or even better depending on the outcome parameter as the daily oral application of sulfasalazine used for treatment of IBD.The successful and substantial reduction of the severe, TNBS-evoked intestinal damages and clinical symptoms render the JNK-inhibiting peptide XG-102 a powerful therapeutic principle of IBD.

  11. Nfix expression critically modulates early B lymphopoiesis and myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Caitríona O'Connor

    Full Text Available The commitment of stem and progenitor cells toward specific hematopoietic lineages is tightly controlled by a number of transcription factors that regulate differentiation programs via the expression of lineage restricting genes. Nuclear factor one (NFI transcription factors are important in regulating hematopoiesis and here we report an important physiological role of NFIX in B- and myeloid lineage commitment and differentiation. We demonstrate that NFIX acts as a regulator of lineage specification in the haematopoietic system and the expression of Nfix was transcriptionally downregulated as B cells commit and differentiate, whilst maintained in myeloid progenitor cells. Ectopic Nfix expression in vivo blocked early B cell development stage, coincident with the stage of its downregulation. Furthermore, loss of Nfix resulted in the perturbation of myeloid and lymphoid cell differentiation, and a skewing of gene expression involved in lineage fate determination. Nfix was able to promote myeloid differentiation of total bone marrow cells under B cell specific culture conditions but not when expressed in the hematopoietic stem cell (HSPC, consistent with its role in HSPC survival. The lineage choice determined by Nfix correlated with transcriptional changes in a number of genes, such as E2A, C/EBP, and Id genes. These data highlight a novel and critical role for NFIX transcription factor in hematopoiesis and in lineage specification.

  12. Early signatures of regime shifts in gene expression dynamics

    Science.gov (United States)

    Pal, Mainak; Pal, Amit Kumar; Ghosh, Sayantari; Bose, Indrani

    2013-06-01

    Recently, a large number of studies have been carried out on the early signatures of sudden regime shifts in systems as diverse as ecosystems, financial markets, population biology and complex diseases. The signatures of regime shifts in gene expression dynamics are less systematically investigated. In this paper, we consider sudden regime shifts in the gene expression dynamics described by a fold-bifurcation model involving bistability and hysteresis. We consider two alternative models, models 1 and 2, of competence development in the bacterial population B. subtilis and determine some early signatures of the regime shifts between competence and noncompetence. We use both deterministic and stochastic formalisms for the purpose of our study. The early signatures studied include the critical slowing down as a transition point is approached, rising variance and the lag-1 autocorrelation function, skewness and a ratio of two mean first passage times. Some of the signatures could provide the experimental basis for distinguishing between bistability and excitability as the correct mechanism for the development of competence.

  13. Indoxyl sulfate promotes vascular smooth muscle cell calcification via the JNK/Pit-1 pathway.

    Science.gov (United States)

    Wu, Yiru; Han, Xue; Wang, Liyan; Diao, Zongli; Liu, Wenhu

    2016-11-01

    We determined the effect of indoxyl sulfate (IS) on Pit-1 expression and the role of Pit-1 in IS-induced osteoblastic differentiation and calcification of vascular smooth muscle cells (VSMCs). To assess osteoblastic differentiation and Pit-1 expression, VSMCs were incubated with various concentrations of IS for different durations. Phosphonoformic acid (PFA), a competitive inhibitor of Pit-1, was used to verify the role of Pit-1. Western blot analysis and quantitative real-time polymerase chain reaction (PCR) were performed to assess Pit-1 protein and mRNA levels, respectively. To evaluate calcification, calcium content was measured. After IS treatment, we observed osteoblastic differentiation and calcification of VSMCs and up-regulation of Pit-1 expression. Moreover, the effect of IS on osteoblastic differentiation and Pit-1 expression was partly dose- and time-dependent. PFA abrogated the IS-induced osteoblastic differentiation and calcification of VSMCs to a certain extent. The c-Jun N-terminal kinase (JNK) pathway was activated after treatment with IS, whereas inhibition of the JNK pathway partially attenuated the effect of IS on both the stimulation of Pit-1 expression and calcium deposition. Our study is the first to demonstrate that IS promotes Pit-1 expression in part by activation of the JNK pathway that is involved in the mechanism of IS-induced osteoblastic differentiation and matrix mineralization.

  14. Expression of Sox family genes in early lamprey development.

    Science.gov (United States)

    Uy, Benjamin R; Simoes-Costa, Marcos; Sauka-Spengler, Tatjana; Bronner, Marianne E

    2012-01-01

    Members of the Sox (Sry-related high mobility group box) family of transcription factors play a variety of roles during development of both vertebrates and invertebrates. A marked expansion in gene number occurred during the emergence of vertebrates, apparently via gene duplication events that are thought to have facilitated new functions. By screening a macroarrayed library as well as the lamprey genome, we have isolated genes of the Sox B, D, E and F subfamilies in the basal jawless vertebrate, lamprey. The expression patterns of all identified Sox genes were examined from gastrulation through early organogenesis (embryonic day 4-14), with particular emphasis on the neural crest, a vertebrate innovation. Coupled with phylogenetic analysis of these Sox genes, the results provide insight into gene duplication and di-vergence in paralog deployment occurring during early vertebrate evolution.

  15. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingxiang, E-mail: yu.mingxiang@zs-hospital.sh.cn [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Xianying [Department of Endocrinology and Metabolism, Hainan Provincial Nong Ken Hospital, Hainan (China); Lv, Chaoyang [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Yi, Xilu [Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Shanghai (China); Zhang, Yao; Xue, Mengjuan; He, Shunmei [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Zhu, Guoying [Institute of Radiation Medicine, Fudan University, Shanghai (China); Wang, Hongfu, E-mail: hfwang@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai (China)

    2014-05-02

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.

  16. JNK and NADPH Oxidase Involved in Fluoride-Induced Oxidative Stress in BV-2 Microglia Cells

    Directory of Open Access Journals (Sweden)

    Ling Yan

    2013-01-01

    Full Text Available Excessive fluoride may cause central nervous system (CNS dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS, and NADPH oxidase (NOX is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells.

  17. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling

    Science.gov (United States)

    Vin, Harina; Ojeda, Sandra S; Ching, Grace; Leung, Marco L; Chitsazzadeh, Vida; Dwyer, David W; Adelmann, Charles H; Restrepo, Monica; Richards, Kristen N; Stewart, Larissa R; Du, Lili; Ferguson, Scarlett B; Chakravarti, Deepavali; Ehrenreiter, Karin; Baccarini, Manuela; Ruggieri, Rosamaria; Curry, Jonathan L; Kim, Kevin B; Ciurea, Ana M; Duvic, Madeleine; Prieto, Victor G; Ullrich, Stephen E; Dalby, Kevin N; Flores, Elsa R; Tsai, Kenneth Y

    2013-01-01

    Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001 PMID:24192036

  18. Gene expression changes and early events in cotton fibre development.

    Science.gov (United States)

    Lee, Jinsuk J; Woodward, Andrew W; Chen, Z Jeffrey

    2007-12-01

    Cotton is the dominant source of natural textile fibre and a significant oil crop. Cotton fibres, produced by certain species in the genus Gossypium, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. Cotton fibre development is delineated into four distinct and overlapping developmental stages: fibre initiation, elongation, secondary wall biosynthesis and maturation. Recent advances in gene expression studies are beginning to provide new insights into a better understanding of early events in cotton fibre development. Fibre cell development is a complex process involving many pathways, including various signal transduction and transcriptional regulation components. Several analyses using expressed sequence tags and microarray have identified transcripts that preferentially accumulate during fibre development. These studies, as well as complementation and overexpression experiments using cotton genes in arabidopsis and tobacco, indicate some similar molecular events between trichome development from the leaf epidermis and fibre development from the ovule epidermis. Specifically, MYB transcription factors regulate leaf trichome development in arabidopsis and may regulate seed trichome development in cotton. In addition, transcript profiling and ovule culture experiments both indicate that several phytohormones and other signalling pathways mediate cotton fibre development. Auxin and gibberellins promote early stages of fibre initiation; ethylene- and brassinosteroid-related genes are up-regulated during the fibre elongation phase; and genes associated with calmodulin and calmodulin-binding proteins are up-regulated in fibre initials. Additional genomic data, mutant and functional analyses, and genome mapping studies promise to reveal the critical factors mediating cotton fibre cell development.

  19. Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye.

    Science.gov (United States)

    Tare, Meghana; Sarkar, Ankita; Bedi, Shimpi; Kango-Singh, Madhuri; Singh, Amit

    2016-12-29

    In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell

  20. JNK and p38 mitogen-activated protein kinase pathways contribute to porcine circovirus type 2 infection.

    Science.gov (United States)

    Wei, Li; Zhu, Zhongwu; Wang, Jing; Liu, Jue

    2009-06-01

    Infection with a wide variety of viruses often perturbs host cell signaling pathways including the Jun NH(2)-terminal kinase/stress-activated kinase (JNK/SAPK) and the p38 mitogen-activated protein kinase (p38/MAPK), which are important components of cellular signal transduction pathways. The present study demonstrated for the first time that porcine circovirus type 2 (PCV2), which is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome, can activate JNK1/2 and p38 MAPK pathways in PCV2-infected PK15 cells. However, PCV2 at an early stage of infection, as well as UV-irradiated PCV2, failed to activate these two MAPK families, which demonstrated that PCV2 replication was necessary for their activation. We further found that PCV2 activated the phosphorylation of JNK1/2 and p38 MAPK downstream targets c-Jun and ATF-2 with virus replication in the cultured cells. The roles of these kinases in PCV2 infection were further evaluated using specific inhibitors: the JNK inhibitor 1 for JNK1/2 and SB202190 for p38. Inhibition of JNK1/2 and p38 kinases by these specific inhibitors did result in significant reduction of PCV2 viral mRNA transcription and protein synthesis, viral progeny release, and blockage of PCV2-induced apoptotic caspase-3 activation in the infected cells. Taken together, these data suggest that JNK/SAPK and p38 MAPK pathways play important roles in the PCV2 replication and contribute to virus-mediated changes in host cells.

  1. miR200c attenuates P-gp-mediated MDR and metastasis by targeting JNK2/c-Jun signaling pathway in colorectal cancer.

    Science.gov (United States)

    Sui, Hua; Cai, Guo-Xiang; Pan, Shu-Fang; Deng, Wan-Li; Wang, Yu-Wei; Chen, Zhe-Sheng; Cai, San-Jun; Zhu, Hui-Rong; Li, Qi

    2014-12-01

    MicroRNA-200c (miR200c) recently emerged as an important regulator of tumorigenicity and cancer metastasis; however, its role in regulating multidrug resistance (MDR) remains unknown. In the current study, we found that the expression levels of miR200c in recurrent and metastatic colorectal cancers were significantly lower, whereas the JNK2 expression was higher compared with primary tumors. We showed that in MDR colorectal cancer cells, miR200c targeted the 3' untranslated region of the JNK2 gene. Overexpression of miR200c attenuated the levels of p-JNK, p-c-Jun, P-gp, and MMP-2/-9, the downstream factors of the JNK signaling pathway, resulting in increased sensitivity to chemotherapeutic drugs, which was accompanied by heightened apoptosis and decreased cell invasion and migration. Moreover, in an orthotopic MDR colorectal cancer mouse model, we demonstrated that overexpression of miR200c effectively inhibited the tumor growth and metastasis. At last, in the tumor samples from patients with locally advanced colorectal cancer with routine postsurgical chemotherapy, we observed an inverse correlation between the levels of mRNA expression of miR200c and JNK2, ABCB1, and MMP-9, thus predicting patient therapeutic outcomes. In summary, we found that miR200c negatively regulated the expression of JNK2 gene and increased the sensitivity of MDR colorectal cancer cells to chemotherapeutic drugs, via inhibiting the JNK2/p-JNK/p-c-Jun/ABCB1 signaling. Restoration of miR200c expression in MDR colorectal cancer may serve as a promising therapeutic approach in MDR-induced metastasis. ©2014 American Association for Cancer Research.

  2. Gα12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Bo; Cui, Jinquan, E-mail: jinquancuijqc@163.com; Wang, Wuliang; Deng, Kehong

    2016-05-13

    Several reports have indicated a role for the members of the G12 family of heterotrimeric G proteins (Gα12 and Gα13) in oncogenesis and tumor cell growth. The aims of the present study were to evaluate the role of G12 signaling in cervical cancer. We demonstrated that expression of the G12 proteins was highly upregulated in cervical cancer cells. Additionally, expression of the activated forms of Gα12/Gα13 but not expression of activated Gαq induced cell invasion through the activation of the RhoA family of G proteins, but had no effect on cell proliferation in the cervical cancer cells. Inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) blocked thrombin-stimulated cell invasion, but did not inhibit cell proliferation in cervical cells, whereas the inhibition of Gαq (RGS2) had no effect. Furthermore, G12 signaling was able to activate Rho proteins, and this stimulation was inhibited by p115-RGS, and Gα12-induced invasion was blocked by an inhibitor of RhoA/B/C (C3 toxin). Pharmacological inhibition of JNK remarkably decreased G12-induced JNK activation. Both a JNK inhibitor (SP600125) and a ROCK inhibitor (Y27632) reduced G12-induced JNK and c-Jun activation, and markedly inhibited G12-induced cellular invasion. Collectively, these findings demonstrate that stimulation of G12 proteins is capable of promoting invasion through RhoA/ROCK-JNK activation. -- Highlights: •Gα12/Gα13 is upregulated in cervical cancer cell lines. •Gα12/Gα13 is not involved in cervical cancer cell proliferation. •Gα12/Gα13 promotes cervical cancer cell invasion. •The role of Rho G proteins in G12-promoted cervical cancer cell invasion. •G12 promotes cell invasion through activation of the ROCK-JNK signaling axis.

  3. Investigating the protective effect of lithium against high glucose-induced neurotoxicity in PC12 cells: involvements of ROS, JNK and P38 MAPKs, and apoptotic mitochondria pathway.

    Science.gov (United States)

    Aminzadeh, A; Dehpour, A R; Safa, M; Mirzamohammadi, S; Sharifi, A M

    2014-11-01

    Hyperglycemia that occurs under the diabetic condition is a major cause of diabetic complications such as diabetic neuropathy, one of the most common diabetes-related complications. It is well known that hyperglycemia could result in generation of reactive oxygen species (ROS). Over production of ROS recommended as an important mediator for apoptotic signaling pathway as well as a key early event in the development of diabetic neuropathy. Recently, many studies have indicated that lithium has robust neuroprotective effect in relation to several neurodegenerative diseases. The present study aimed to examine effects of lithium on high glucose (HG)-induced neurotoxicity and to determine some of the underlying molecular mechanisms involved in this response in PC12 cells as a neuronal culture model for diabetic neuropathy. PC12 cells were pretreated with different concentrations of lithium for 7 days, exposed to HG for 24 h. Cell viability was measured by MTT assay. ROS and lipid peroxidation levels as well as superoxide dismutase activity were measured. In order to examine the underlying molecular mechanisms, the expressions of Bax, Bcl-2, Caspase-3, total and phosphorylated JNK and P38 MAPK were also analyzed by Western blotting. The present results indicated that pretreatment with 1 mM lithium has protected PC12 cells against HG-induced apoptotic cell death. It could reduce ROS generation, Bax/Bcl-2 ratio, Caspase-3 activation, and JNK and P38 MAPK phosphorylation. It may be concluded that in HG condition, lithium pretreatment could prevent mitochondrial apoptosis as well as JNK and P38 MAPK pathway in PC12 cells.

  4. MAPK p38 and JNK have opposing activities on TRAIL-induced apoptosis activation in NSCLC H460 cells that involves RIP1 and caspase-8 and is mediated by Mcl-1.

    Science.gov (United States)

    Azijli, Kaamar; Yuvaraj, Saravanan; van Roosmalen, Ingrid; Flach, Koen; Giovannetti, Elisa; Peters, Godefridus J; de Jong, Steven; Kruyt, Frank A E

    2013-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce both caspase-dependent apoptosis and kinase activation in tumor cells. Here, we examined the consequences and mechanisms of TRAIL-induced MAPKs p38 and JNK in non-small cell lung cancer (NSCLC) cells. In apoptosis sensitive H460 cells, these kinases were phosphorylated, but not in resistant A549 cells. Time course experiments in H460 cells showed that induction of p38 phosphorylation preceded that of JNK. To explore the function of these kinases in apoptosis activation by TRAIL, chemical inhibitors or siRNAs were employed to impair JNK or p38 functioning. JNK activation counteracted TRAIL-induced apoptosis whereas activation of p38 stimulated apoptosis. Notably, the serine/threonine kinase RIP1 was cleaved following TRAIL treatment, concomitant with detectable JNK phosphorylation. Further examination of the role of RIP1 by short hairpin (sh)RNA-dependent knockdown or inhibition by necrostatin-1 showed that p38 can be phosphorylated in both RIP1-dependent and -independent manner, whereas JNK phosphorylation occurred independent of RIP1. On the other hand JNK appeared to suppress RIP1 cleavage via an unknown mechanism. In addition, only the activation of JNK by TRAIL was caspase-8-dependent. Finally, we identified Mcl-1, a known substrate for p38 and JNK, as a downstream modulator of JNK or p38 activity. Collectively, our data suggest in a subset of NSCLC cells a model in which TRAIL-induced activation of p38 and JNK have counteracting effects on Mcl-1 expression leading to pro- or anti-apoptotic effects, respectively. Strategies aiming to stimulate p38 and inhibit JNK may have benefit for TRAIL-based therapies in NSCLC.

  5. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Manujendra N Saha

    Full Text Available The low frequency of p53 alterations e.g., mutations/deletions (∼10% in multiple myeloma (MM makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP analysis showed that activated c-Jun binds to the activator protein-1 (AP-1 binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with

  6. WISP-2 in human gastric cancer and its potential metastatic suppressor role in gastric cancer cells mediated by JNK and PLC-γ pathways.

    Science.gov (United States)

    Ji, Jiafu; Jia, Shuqin; Jia, Yongning; Ji, Ke; Hargest, Rachel; Jiang, Wen G

    2015-09-15

    It has recently been shown that WISP proteins (Wnt-inducted secreted proteins), a group of intra- and extra-cellular regulatory proteins, have been implicated in the initiation and progression of a variety of tumour types including colorectal and breast cancer. However, the role of WISP proteins in gastric cancer (GC) cells and their clinical implications have not yet been elucidated. The expression of WISP molecules in a cohort of GC patients was analysed using real-time quantitative PCR and immunohistochemistry. The expression of a panel of recognised epithelial-mesenchymal transition (EMT) markers was quantified using Q-PCR in paired tumour and normal tissues. WISP-2 knockdown (kd) sublines using ribozyme transgenes were created in the GC cell lines AGS and HGC27. Subsequently, several biological functions, including cell growth, adhesion, migration and invasion, were studied. Potential pathways for the interaction of EMT, extracellular matrix and MMP were evaluated. Overexpression of WISP-2 was detected in GC and significantly correlated with early tumour node-metastasis staging, differentiation status and positively correlated with overall survival and disease-free survival of the patients. WISP-2 expression was inversely correlated with that of Twist and Slug in paired samples. Kd of WISP-2 expression promoted the proliferation, migration and invasion of GC cells. WISP-2 suppressed GC cell metastasis through reversing EMT and suppressing the expression and activity of MMP9 and MMP2 via JNK and ERK. Cell motility analysis indicated that WISP-2 kd contributed to GC cells' motility and can be attenuated by PLC-γ and JNK small inhibitors. Increased expression of WISP-2 in GC is positively correlated with favourable clinical features and the survival of patients with GC and is a negative regulator of growth, migration and invasion in GC cells. These findings suggest that WISP-2 is a potential tumour suppressor in GC.

  7. Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Koteswara Rao, G; Bag, Indira; Bhadra, Utpal; Pal-Bhadra, Manika

    2016-03-01

    Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof (RNAi) induced apoptosis in the eye discs. mof (RNAi) induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1 clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof (RNAi) induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof (1) mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof (RNAi) proceeds through a caspase-dependent and JNK mediated pathway.

  8. The JNK-dependent CaMK pathway restrains the reversion of committed cells during osteoclast differentiation.

    Science.gov (United States)

    Chang, Eun-Ju; Ha, Jeongim; Huang, Hao; Kim, Hyung Joon; Woo, Jung Hoon; Lee, Youngkyun; Lee, Zang Hee; Kim, Ju Han; Kim, Hong-Hee

    2008-08-01

    Osteoclastogenesis involves the commitment of macrophage-lineage precursors to tartrate-resistant acid phosphatase-positive (TRAP+) mononuclear pre-osteoclasts (pOCs) and subsequent fusion of pOCs to form multinuclear mature osteoclasts. Despite many studies on osteoclast differentiation, little is known about the signaling mechanisms that specifically mediate the osteoclastic commitment. In this study, we found that inhibition of JNK at the pOC stage provoked reversion of TRAP(+) cells to TRAP(-) cells. The conversion to TRAP(-) cells occurred with concomitant return to the state with higher expression of macrophage antigens, and greater activity of phagocytosis and dendritic-differentiation potential. JNK inhibition at the pOC stage reduced NFATc1 and CaMK levels, and addition of active NFATc1 partially rescued the effect of JNK inhibition. In addition, the level of NFATc1 was decreased by knockdown of CaMK by RNAi and by catalytic inhibition of CaMK, which both caused the reversion of pOCs to macrophages. These data suggest that JNK activity is specifically required for maintaining the committed status during osteoclastogenesis and that the CaMK-NFATc1 pathway is the key element in that specific role of JNK.

  9. Activation of JNK triggers release of Brd4 from mitotic chromosomes and mediates protection from drug-induced mitotic stress.

    Science.gov (United States)

    Nishiyama, Akira; Dey, Anup; Tamura, Tomohiko; Ko, Minoru; Ozato, Keiko

    2012-01-01

    Some anti-cancer drugs, including those that alter microtubule dynamics target mitotic cells and induce apoptosis in some cell types. However, such drugs elicit protective responses in other cell types allowing cells to escape from drug-induced mitotic inhibition. Cells with a faulty protective mechanism undergo defective mitosis, leading to genome instability. Brd4 is a double bromodomain protein that remains on chromosomes during mitosis. However, Brd4 is released from mitotic chromosomes when cells are exposed to anti-mitotic drugs including nocodazole. Neither the mechanisms, nor the biological significance of drug-induced Brd4 release has been fully understood. We found that deletion of the internal C-terminal region abolished nocodazole induced Brd4 release from mouse P19 cells. Furthermore, cells expressing truncated Brd4, unable to dissociate from chromosomes were blocked from mitotic progression and failed to complete cell division. We also found that pharmacological and peptide inhibitors of the c-jun-N-terminal kinases (JNK) pathway, but not inhibitors of other MAP kinases, prevented release of Brd4 from chromosomes. The JNK inhibitor that blocked Brd4 release also blocked mitotic progression. Further supporting the role of JNK in Brd4 release, JNK2-/- embryonic fibroblasts were defective in Brd4 release and sustained greater inhibition of cell growth after nocodazole treatment. In sum, activation of JNK pathway triggers release of Brd4 from chromosomes upon nocodazole treatment, which mediates a protective response designed to minimize drug-induced mitotic stress.

  10. Activation of JNK triggers release of Brd4 from mitotic chromosomes and mediates protection from drug-induced mitotic stress.

    Directory of Open Access Journals (Sweden)

    Akira Nishiyama

    Full Text Available Some anti-cancer drugs, including those that alter microtubule dynamics target mitotic cells and induce apoptosis in some cell types. However, such drugs elicit protective responses in other cell types allowing cells to escape from drug-induced mitotic inhibition. Cells with a faulty protective mechanism undergo defective mitosis, leading to genome instability. Brd4 is a double bromodomain protein that remains on chromosomes during mitosis. However, Brd4 is released from mitotic chromosomes when cells are exposed to anti-mitotic drugs including nocodazole. Neither the mechanisms, nor the biological significance of drug-induced Brd4 release has been fully understood. We found that deletion of the internal C-terminal region abolished nocodazole induced Brd4 release from mouse P19 cells. Furthermore, cells expressing truncated Brd4, unable to dissociate from chromosomes were blocked from mitotic progression and failed to complete cell division. We also found that pharmacological and peptide inhibitors of the c-jun-N-terminal kinases (JNK pathway, but not inhibitors of other MAP kinases, prevented release of Brd4 from chromosomes. The JNK inhibitor that blocked Brd4 release also blocked mitotic progression. Further supporting the role of JNK in Brd4 release, JNK2-/- embryonic fibroblasts were defective in Brd4 release and sustained greater inhibition of cell growth after nocodazole treatment. In sum, activation of JNK pathway triggers release of Brd4 from chromosomes upon nocodazole treatment, which mediates a protective response designed to minimize drug-induced mitotic stress.

  11. Activation of JNK Triggers Release of Brd4 from Mitotic Chromosomes and Mediates Protection from Drug-Induced Mitotic Stress

    Science.gov (United States)

    Nishiyama, Akira; Dey, Anup; Tamura, Tomohiko; Ko, Minoru; Ozato, Keiko

    2012-01-01

    Some anti-cancer drugs, including those that alter microtubule dynamics target mitotic cells and induce apoptosis in some cell types. However, such drugs elicit protective responses in other cell types allowing cells to escape from drug-induced mitotic inhibition. Cells with a faulty protective mechanism undergo defective mitosis, leading to genome instability. Brd4 is a double bromodomain protein that remains on chromosomes during mitosis. However, Brd4 is released from mitotic chromosomes when cells are exposed to anti-mitotic drugs including nocodazole. Neither the mechanisms, nor the biological significance of drug-induced Brd4 release has been fully understood. We found that deletion of the internal C-terminal region abolished nocodazole induced Brd4 release from mouse P19 cells. Furthermore, cells expressing truncated Brd4, unable to dissociate from chromosomes were blocked from mitotic progression and failed to complete cell division. We also found that pharmacological and peptide inhibitors of the c-jun-N-terminal kinases (JNK) pathway, but not inhibitors of other MAP kinases, prevented release of Brd4 from chromosomes. The JNK inhibitor that blocked Brd4 release also blocked mitotic progression. Further supporting the role of JNK in Brd4 release, JNK2–/– embryonic fibroblasts were defective in Brd4 release and sustained greater inhibition of cell growth after nocodazole treatment. In sum, activation of JNK pathway triggers release of Brd4 from chromosomes upon nocodazole treatment, which mediates a protective response designed to minimize drug-induced mitotic stress. PMID:22567088

  12. The Effect of Minimally Invasive Hematoma Aspiration on the JNK Signal Transduction Pathway after Experimental Intracerebral Hemorrhage in Rats

    Directory of Open Access Journals (Sweden)

    Haitao Pei

    2016-05-01

    Full Text Available Objective: To explore the effect of minimally invasive hematoma aspiration (MIHA on the c-Jun NH2-terminal kinase (JNK signal transduction pathway after intracerebral hemorrhage (ICH. Methods: In this experiment, 300 adult male Wistar rats were randomly and averagely divided into sham-operated group, ICH group and MIHA group. In each group, 60 rats were used in the detection of indexes in this experiment, while the other 40 rats were used to replace rats which reached the exclusion criteria (accidental death or operation failure. In ICH group and MIHA group, ICH was induced by injection of 70 µL of autologous arterial blood into rat brain, while only the rats in MIHA group were treated by MIHA 6 h after ICH. Rats in sham-operated group were injected nothing into brains, and they were not treated either, like rats in ICH group. In each group, six rats were randomly selected to observe their Bederson’s scales persistently (6, 24, 48, 72, 96, 120 h after ICH. According to the time they were sacrificed, the remaining rats in each group were divided into 3 subgroups (24, 72, 120 h. The change of brain water content (BWC was measured by the wet weight to dry weight ratio method. The morphology of neurons in cortex was observed by the hematoxylin–eosin (HE staining. The expressions of phospho-c-Jun NH2-terminal kinase (pJNK and JNK in peri-hematomal brain tissue were determined by the immunohistochemistry (IHC and Western blotting (WB. Results: At all time points, compared with the ICH groups, the expression of pJNK decreased obviously in MIHA groups (p < 0.05, while their Bederson’s scales and BWC declined, and neuron injury in the cortex was relieved. The expression level of JNK was not altered at different groups. The data obtained by IHC and WB indicated a high-level of consistency, which provided a certain dependability of the test results. Conclusion: The JNK signal transduction pathway could be activated after intracerebral hemorrhage

  13. Carbonic anhydrase II regulates differentiation of ameloblasts via intracellular pH-dependent JNK signaling pathway.

    Science.gov (United States)

    Wang, Xiaogu; Suzawa, Tetsuo; Ohtsuka, Hirotada; Zhao, Baohong; Miyamoto, Yoichi; Miyauchi, Tomohiko; Nishimura, Riko; Inoue, Tomio; Nakamura, Masanori; Baba, Kazuyoshi; Kamijo, Ryutaro

    2010-11-01

    Differentiation of ameloblasts from undifferentiated epithelial cells is controlled by diverse growth factors, as well as interactions between epithelium and mesenchyme. However, there is a considerable lack of knowledge regarding the precise mechanisms that control ameloblast differentiation and enamel biomineralization. We found that the expression level of carbonic anhydrase II (CAII) is strongly up-regulated in parallel with differentiation of enamel epithelium tissues, while the enzyme activity of CA was also increased along with differentiation in ameloblast primary cultures. The expression level of amelogenin, a marker of secretory-stage ameloblasts, was enhanced by ethoxzolamide (EZA), a CA inhibitor, as well as CAII antisense (CAIIAS), whereas the expression of enamel matrix serine proteinase-1 (EMSP-1), a marker for maturation-stage ameloblasts, was suppressed by both. These agents also promoted ameloblast proliferation. In addition, inhibition of ameloblast differentiation by EZA and CAIIAS was confirmed using tooth germ organ cultures. Furthermore, EZA and CAIIAS elevated intracellular pH in ameloblasts, while experimental decreases in intracellular pH abolished the effect of CAIIAS on ameloblasts and triggered the activation of c-Jun N-terminal kinase (JNK). SP600125, a JNK inhibitor, abrogated the response of ameloblasts to an experimental decrease in intracellular pH, while the inhibition of JNK also impaired ameloblast differentiation. These results suggest a novel role for CAII during amelogenesis, that is, controlling the differentiation of ameloblasts. Regulation of intracellular pH, followed by activation of the JNK signaling pathway, may be responsible for the effects of CAII on ameloblasts. © 2010 Wiley-Liss, Inc.

  14. Resveratrol promotes recovery of immune function of immunosuppressive mice by activating JNK/NF-κB pathway in splenic lymphocytes.

    Science.gov (United States)

    Lai, Xin; Cao, Mei; Song, Xu; Jia, Renyong; Zou, Yuanfeng; Li, Lixia; Liang, Xiaoxia; He, Changliang; Yin, Lizi; Yue, Guizhou; Ye, Gang; Yin, Zhongqiong

    2017-06-01

    Resveratrol, a natural compound found in over 70 plants, is known to possess immunoregulatory effects and anti-inflammatory activity. It has been shown that resveratrol has regulatory effects on different signaling pathways in different diseases. However, few reports have evaluated the effects of resveratrol on reinforcing immunity recovery via activating nuclear factor-κB (NF-κB) pathway and Jun N-terminal kinases (JNK) pathway. The present study aimed to assess immune-enhancing activity and underlying mechanism of resveratrol in immunosuppressive mice. Previously, we reported that resveratrol could promote mouse spleen lymphocyte functions to recover the immune system effectively. In the present study, we show that resveratrol could upregulate the expressions of NF-κB, IκB kinase, JNK, and c-jun in splenic lymphocytes of immunosuppressive mice. Taken together, our results indicate that resveratrol could promote recovery of immunologic function in immunosuppressive mice by activating JNK/NF-κB pathway.

  15. Foxo3a induces motoneuron death through the Fas pathway in cooperation with JNK

    Directory of Open Access Journals (Sweden)

    Pettmann Brigitte

    2004-11-01

    Full Text Available Abstract Background Programmed cell death of motoneurons in the developing spinal cord is thought to be regulated through the availability of target-derived neurotrophic factors. When deprived of trophic support, embryonic spinal motoneurons in vitro over-express FasL, a ligand activating a Fas-mediated death pathway. How trophic factors regulate the expression of FasL is presently unclear, but two regulators of FasL, FOXO3a (FKHRL1 and JNK have been described to play a role in other cell types. Thus, their potential function in motoneurons was investigated in this study. Results We show here that as a result of removal of neurotrophic factors and the consequent reduction in signalling through the PI3K/Akt pathway, Foxo3a translocates from the cytoplasm to the nucleus where it triggers cell death. Death is reduced in Fas and FasL mutant motoneurons and in the presence of JNK inhibitors indicating that a significant part of it requires activation of the Fas/FasL pathway through JNK. Conclusions Therefore, in motoneurons as in other cell types, FOXO transcriptional regulators provide an important link between other signalling pathways and the cell death machinery.

  16. JNK1 Controls Dendritic Field Size in L2/3 and L5 of the Motor Cortex, Constrains Soma Size and Influences Fine Motor Coordination

    Directory of Open Access Journals (Sweden)

    Emilia eKomulainen

    2014-09-01

    Full Text Available Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1, the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622 and T1625 (Uniprot P15146 corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622 and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.

  17. MarvelD3 couples tight junctions to the MEKK1–JNK pathway to regulate cell behavior and survival

    Science.gov (United States)

    Steed, Emily; Elbediwy, Ahmed; Vacca, Barbara; Dupasquier, Sébastien; Hemkemeyer, Sandra A.; Suddason, Tesha; Costa, Ana C.; Beaudry, Jean-Bernard; Zihni, Ceniz; Gallagher, Ewen; Pierreux, Christophe E.

    2014-01-01

    MarvelD3 is a transmembrane component of tight junctions, but there is little evidence for a direct involvement in the junctional permeability barrier. Tight junctions also regulate signaling mechanisms that guide cell proliferation; however, the transmembrane components that link the junction to such signaling pathways are not well understood. In this paper, we show that MarvelD3 is a dynamic junctional regulator of the MEKK1–c-Jun NH2-terminal kinase (JNK) pathway. Loss of MarvelD3 expression in differentiating Caco-2 cells resulted in increased cell migration and proliferation, whereas reexpression in a metastatic tumor cell line inhibited migration, proliferation, and in vivo tumor formation. Expression levels of MarvelD3 inversely correlated with JNK activity, as MarvelD3 recruited MEKK1 to junctions, leading to down-regulation of JNK phosphorylation and inhibition of JNK-regulated transcriptional mechanisms. Interplay between MarvelD3 internalization and JNK activation tuned activation of MEKK1 during osmotic stress, leading to junction dissociation and cell death in MarvelD3-depleted cells. MarvelD3 thus couples tight junctions to the MEKK1–JNK pathway to regulate cell behavior and survival. PMID:24567356

  18. Luteolin suppresses UVB-induced photoageing by targeting JNK1 and p90 RSK2.

    Science.gov (United States)

    Lim, Sung H; Jung, Sung K; Byun, Sanguine; Lee, Eun J; Hwang, Jung A; Seo, Sang G; Kim, Yeong A; Yu, Jae G; Lee, Ki W; Lee, Hyong J

    2013-05-01

    Multiple lines of evidence suggest that natural compounds can prevent skin ageing induced by ultraviolet light. Luteolin, a bioactive compound found in chilli, onion, broccoli, celery and carrot, has been reported to exhibit anti-photoageing effects in vitro. However, the molecular targets and mechanisms of luteolin are still poorly understood. In this study, we sought to investigate the effects of luteolin on UVB-induced photoageing and the molecular mechanisms involved, using HaCaT human keratinocytes and SKH-1 hairless mice. Luteolin was found to inhibit UVB-induced MMP-1 expression in HaCaT cells, as well as UVB-induced activation of AP-1, a well-known transcription factor targeting the MMP-1 promoter region, as well as c-Fos and c-Jun, which comprise the AP-1 complex. In contrast, Western blot data showed that UVB-induced phosphorylation of JNK, ERK and p90RSK was not inhibited by luteolin. In vitro kinase assay data revealed that luteolin significantly suppressed JNK1 and p90RSK activity, but not that of JNK2 and ERK2. Pull-down assays showed that luteolin binds JNK1 in an ATP-competitive manner and p90RSK2 in an ATP-independent manner. Luteolin also inhibited UVB-induced wrinkle formation and MMP-13 expression, a rodent interstitial collagenase in mouse skin, in vivo. Taken together, our observations suggest that luteolin exhibits anti-photoageing effects in vitro and in vivo and may have potential as a treatment for the prevention of skin ageing. © 2013 The Authors. Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  19. DUSP4 deficiency caused by promoter hypermethylation drives JNK signaling and tumor cell survival in diffuse large B cell lymphoma

    Science.gov (United States)

    Schmid, Corina A.; Robinson, Mark D.; Scheifinger, Nicole A.; Müller, Sebastian; Cogliatti, Sergio; Tzankov, Alexandar

    2015-01-01

    The epigenetic dysregulation of tumor suppressor genes is an important driver of human carcinogenesis. We have combined genome-wide DNA methylation analyses and gene expression profiling after pharmacological DNA demethylation with functional screening to identify novel tumor suppressors in diffuse large B cell lymphoma (DLBCL). We find that a CpG island in the promoter of the dual-specificity phosphatase DUSP4 is aberrantly methylated in nodal and extranodal DLBCL, irrespective of ABC or GCB subtype, resulting in loss of DUSP4 expression in 75% of >200 examined cases. The DUSP4 genomic locus is further deleted in up to 13% of aggressive B cell lymphomas, and the lack of DUSP4 is a negative prognostic factor in three independent cohorts of DLBCL patients. Ectopic expression of wild-type DUSP4, but not of a phosphatase-deficient mutant, dephosphorylates c-JUN N-terminal kinase (JNK) and induces apoptosis in DLBCL cells. Pharmacological or dominant-negative JNK inhibition restricts DLBCL survival in vitro and in vivo and synergizes strongly with the Bruton’s tyrosine kinase inhibitor ibrutinib. Our results indicate that DLBCL cells depend on JNK signaling for survival. This finding provides a mechanistic basis for the clinical development of JNK inhibitors in DLBCL, ideally in synthetic lethal combinations with inhibitors of chronic active B cell receptor signaling. PMID:25847947

  20. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Teng, E-mail: tengyu33@yahoo.com [Department of Dermatology, Shandong Ji-ning No. 1 People’s Hospital, Shandong Province 272011 (China); Ji, Jiang [Department of Dermatology, The Second Hospital Affiliated of Soochow University, SuZhou, Jiangsu Province 215000 (China); Guo, Yong-li [Department of Oncology, Shandong Ji-ning No. 1 People’s Hospital, Shandong Province 272011 (China)

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.

  1. Helichrysetin Induces DNA Damage that Triggers JNK-Mediated Apoptosis in Ca Ski Cells.

    Science.gov (United States)

    Fong, Ho Yen; Abd Malek, Sri Nurestri; Yee, Hui Shin; Karsani, Saiful Anuar

    2017-01-01

    Cervical cancer has become one of the most common cancers in women and currently available treatment options for cervical cancer are very limited. Naturally occurring chalcones and its derivatives have been studied extensively as a potential anticancer agent in different types of cancer and helichrysetin is naturally occurring chalcone that possess potent antiproliferative activity toward human cancer cells. Inhibitory activity of helichrysetin was evaluated at different concentrations. Ability of helichrysetin to induce apoptosis and its relation with c-Jun N-terminal kinase (JNK)-mediated mechanism of apoptosis was assessed using flow cytometry and Western blotting. Helichrysetin inhibited Ca Ski cells at half maximal inhibitory concentration 30.62 ± 0.38 μM. This compound has the ability to induce DNA damage, mitochondrial membrane disruption, and loss of cell membrane integrity. We have shown that apoptosis was induced through the activation of JNK-mediated apoptosis by DNA damage in the cells then triggering p53-downstream apoptotic pathway with increased expression of pro-apoptotic proteins, Bax and caspase 3, and suppression of Bcl-2 anti-apoptotic protein. DNA damage in the cells also caused phosphorylation of protein ataxia-telangiectasia mutated, an activator of DNA damage response. We conclude that helichrysetin can inhibit Ca Ski cells through DNA damage-induced JNK-mediated apoptotic pathway highlighting the potential of this compound as anticancer agent for cervical cancer. Helichrysetin induced DNA damage in Ca Ski cellsDNA damage caused JNK-mediated phosphorylation of p53 resulting in p53-mediated apoptosisHelichrysetin is a potential DNA damage inducing agent through JNK activation to kill human cervical carcinoma cells. Abbreviations used: ATM: Ataxia-telangiectasia mutated, DAPI: 4',6-diamidino-2-phenylindole, DMSO: Dimethyl sulfoxide, FITC: Fluorescein isothiocyanate, IC 50 : Half maximal inhibitory concentration, JC1-5,5',6,6'-Tetrachloro: 1

  2. Overweight worsens apoptosis, neuroinflammation and blood-brain barrier damage after hypoxic ischemia in neonatal brain through JNK hyperactivation

    Directory of Open Access Journals (Sweden)

    Wu Hsin-Chieh

    2011-04-01

    Full Text Available Abstract Background Apoptosis, neuroinflammation and blood-brain barrier (BBB damage affect the susceptibility of the developing brain to hypoxic-ischemic (HI insults. c-Jun N-terminal kinase (JNK is an important mediator of insulin resistance in obesity. We hypothesized that neonatal overweight aggravates HI brain damage through JNK hyperactivation-mediated upregulation of neuronal apoptosis, neuroinflammation and BBB leakage in rat pups. Methods Overweight (OF pups were established by reducing the litter size to 6, and control (NF pups by keeping the litter size at 12 from postnatal (P day 1 before HI on P7. Immunohistochemistry and immunoblotting were used to determine the TUNEL-(+ cells and BBB damage, cleaved caspase-3 and poly (ADP-ribose polymerase (PARP, and phospho-JNK and phospho-BimEL levels. Immunofluorescence was performed to determine the cellular distribution of phospho-JNK. Results Compared with NF pups, OF pups had a significantly heavier body-weight and greater fat deposition on P7. Compared with the NF-HI group, the OF-HI group showed significant increases of TUNEL-(+ cells, cleaved levels of caspase-3 and PARP, and ED1-(+ activated microglia and BBB damage in the cortex 24 hours post-HI. Immunofluorescence of the OF-HI pups showed that activated-caspase 3 expression was found mainly in NeuN-(+ neurons and RECA1-(+ vascular endothelial cells 24 hours post-HI. The OF-HI group also had prolonged escape latency in the Morris water maze test and greater brain-volume loss compared with the NF-HI group when assessed at adulthood. Phospho-JNK and phospho-BimEL levels were higher in OF-HI pups than in NF-HI pups immediately post-HI. JNK activation in OF-HI pups was mainly expressed in neurons, microglia and vascular endothelial cells. Inhibiting JNK activity by AS601245 caused more attenuation of cleaved caspase-3 and PARP, a greater reduction of microglial activation and BBB damage post-HI, and significantly reduced brain damage in

  3. The Effect of Bee Venom on COX-2, P38, ERK and JNK in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Jae-Young Sim

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide(LPS, sodium nitroprusside(SNP, hydrogen peroxide(H2O2-induced expressions of cyclooxygenase-2(COX-2, p38, jun N-terminal Kinase(JNK and extra-signal response kinase(ERK in RAW 264.7 cells, a murine macrophage cell line. Methods : The expressions of COX-2, p38, JNK and ERK were determined by western blotting with corresponding antibodies.\\ Results : 1. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly H2O2-induced expression of COX-2 compared with control, respectively. 2. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS, SNP and H2O2-induced expression of p38 compared with control, respectively. 3. The 1 and 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of JNK compared with control, respectively. All of bee venom inhibited insignificantly LPS and H2O2-induced expression of JNK compared with control, respectively. 4. The 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of ERK, the 0.5 ㎍/㎖ of bee venom increased significantly H2O2-induced expression of ERK compared with control. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly LPS-induced expression of ERK compared with control, respectively.

  4. JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling

    Science.gov (United States)

    Almuedo-Castillo, María; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-01-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054

  5. JNK controls the onset of mitosis in planarian stem cells and triggers apoptotic cell death required for regeneration and remodeling.

    Directory of Open Access Journals (Sweden)

    María Almuedo-Castillo

    2014-06-01

    Full Text Available Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.

  6. Inhibition of Jun N-Terminal Kinase (JNK) Improves Erectile Function by Alleviation of Cavernosal Apoptosis in a Rat Model of Cavernous Nerve Injury.

    Science.gov (United States)

    Park, Juhyun; Chai, Ji Sun; Kim, Soo Woong; Paick, Jae-Seung; Cho, Min Chul

    2017-12-01

    To determine whether JNK inhibition could alleviate erectile dysfunction (ED) through suppressing cavernosal apoptosis in a rat model of carvernosal nerve crush injury (CNCI), thereby providing potential therapeutic strategy for alleviating post-radical prostatectomy (RP) ED. Fifty-six 11-week-old male Sprague-Dawley rats were categorized equally into the following four groups: 1) sham surgery (S), 2) CNCI (I), 3) CNCI treated with low-dose JNK inhibitor (L), and 4) CNCI treated with high-dose JNK inhibitor (H). The L and H groups received daily intraperitoneal injection of JNK inhibitors (1.0 mg/kg for L group and 10.0 mg/kg for H group) for 2-weeks starting from the following day after surgery. Erectile response, western blot and immunohistochemistry were assessed. At 2 weeks after surgery, intracavernous pressure (ICP)/mean arterial pressure (MAP) and area under the curve (AUC)/MAP in group I were significantly decreased compared to those in group S. Erectile responses in group H were significantly improved compared to those in group I. Group I showed decreased SM content, increased apoptosis, increased apoptotic or SM cells positive for phosphorylated c-Jun, increased c-Jun phosphorylation, and decreased Bcl-2/Bax ratio compared to group S. Group H showed significant improvements in histological alterations and dysregulation of JNK-driven pathway. Our data suggest that JNK inhibition can improve erectile function by alleviating cavernosal apoptosis through restoring JNK-related pathway towards normal. Thus, an early therapeutic strategy targeting JNK pathway might be able to alleviate cavernosal SM apoptosis and post-RP ED caused by CN injury. Copyright © 2017. Published by Elsevier Inc.

  7. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming, E-mail: zengshenming@gmail.com

    2016-04-22

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  8. [Effect of JNK signal transduction pathway in intense noise-induced apoptosis of vestibular hair cells in guinea pigs].

    Science.gov (United States)

    Wei, Ming; Wang, Wei-tao; Zhang, Tao; Tu, Ling; Liang, Ying-hong; Liu, Jia; Zhang, Jun-hua; Gong, Yan-jie

    2012-10-01

    To investigate the mechanism of intense noise-induced apoptosis of vestibular hair cells in guinea pigs and the effect of phosphorylated c-Jun N-terminal kinase (JNK) signal transduction pathway in intense noise-induced apoptosis of vestibular hair cells. Thirty-two guinea pigs were randomly and equally divided into 1, 5, and 15 d experimental groups and control group. The guinea pigs in the experimental groups were exposed to 4 kHz narrow-band noise at 120 dB SPL for 4 h and then subjected to measurement of auditory brainstem response at 1, 5, or 15 d after noise exposure. In each group, four guinea pigs were used to prepare paraffin sections of vestibular hair cells, and the rest for extraction of total protein from vestibular hair cells. The apoptosis of vestibular hair cells was detected by terminal deoxynucleotidyl transferase (TdT)-mediated d-UTP nick-end labeling (TUNEL). The expression levels of p-JNK and pc-Jun were measured by immunohistochemistry and Western blot. TUNEL-positive cells were found in the vestibular hair cells in the experimental groups, most in the 1 d experimental group and least in the 15 d experimental group, but no positive cells were found in the control group. The immunohistochemical results showed that p-JNK and pc-Jun were detected in the cell nuclei in the experimental groups, but no p-JNK- and pc-Jun-positive cells were found in the control group. The Western blot showed that p-JNK and pc-Jun were increased and activated quickly at 1d after noise exposure, reached the peak levels at 5 d after noise exposure, and were then decreased gradually, but they were still at relatively high levels at 15 d after noise exposure. Intense noise can cause injury to vestibular hair cells by inducing cell apoptosis, and p-JNK marks the activation of JNK signal transduction pathway, suggesting that JNK signal transduction pathway plays an important role in intense noise-induced apoptosis of vestibular hair cells in guinea pigs.

  9. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy

    Directory of Open Access Journals (Sweden)

    Eva Külshammer

    2015-10-01

    Full Text Available Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12 and loss of the tumor suppressor Scribble (scrib1. We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK. Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1 upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8. While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our

  10. Efavirenz and 8-hydroxyefavirenz induce cell death via a JNK- and BimEL-dependent mechanism in primary human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, Namandje N., E-mail: nbumpus1@jhmi.edu

    2011-12-15

    Chronic use of efavirenz (EFV) has been linked to incidences of hepatotoxicity in patients receiving EFV to treat HIV-1. While recent studies have demonstrated that EFV stimulates hepatic cell death a role for the metabolites of efavirenz in this process has yet to be examined. In the present study, incubation of primary human hepatocytes with synthetic 8-hydroxyEFV (8-OHEFV), which is the primary metabolite of EFV, resulted in cell death, caspase-3 activation and reactive oxygen species formation. The metabolite exerted these effects at earlier time points and using lower concentrations than were required for the parent compound. In addition, pharmacological inhibition of cytochrome P450-dependent metabolism of EFV using 1-aminobenzotriazole markedly decreased reactive oxygen species formation and cell death. Treatment of primary human hepatocytes with EFV and 8-OHEFV also stimulated phosphorylation of c-Jun N-terminal kinase (JNK) as well as phosphorylation of the JNK substrate c-Jun. Further, the mRNA and protein expression of an isoform of Bim (Bcl-2 interacting mediator of cell death) denoted as BimEL, which is proapoptotic and has been shown to be modulated by JNK, was increased. Inhibition of JNK using SP600125 prevented the EFV- and 8-OHEFV-mediated cell death. Silencing of Bim using siRNA transfected into hepatocytes also prevented cell death resulting from 8-OHEFV-treatment. These data suggest that the oxidative metabolite 8-OHEFV is a more potent inducer of hepatic cell death than the parent compound EFV. Further, activation of the JNK signaling pathway and BimEL mRNA expression appear to be required for EFV- and 8-OHEFV-mediated hepatocyte death. -- Highlights: Black-Right-Pointing-Pointer 8-Hydroxyefavirenz is a more potent stimulator of cell death than efavirenz. Black-Right-Pointing-Pointer Efavirenz and 8-hydroxyefavirenz increase JNK activity and BimEL mRNA expression. Black-Right-Pointing-Pointer JNK and Bim are required for efavirenz- and 8

  11. Secreted phospholipase A2 of Clonorchis sinensis activates hepatic stellate cells through a pathway involving JNK signalling.

    Science.gov (United States)

    Wu, Yinjuan; Li, Ye; Shang, Mei; Jian, Yu; Wang, Caiqin; Bardeesi, Adham Sameer A; Li, Zhaolei; Chen, Tingjin; Zhao, Lu; Zhou, Lina; He, Ai; Huang, Yan; Lv, Zhiyue; Yu, Xinbing; Li, Xuerong

    2017-03-16

    Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory products (CsESPs). Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. The JNK signalling pathway is involved in hepatic stellate cells (HSCs) activation. Blocking JNK activity with SP600125 inhibits HSCs activation. In a previous study, the protein CssPLA2 was expressed in insoluble inclusion bodies. Therefore, it's necessary to express CssPLA2 in water-soluble form and determine whether the enzymatic activity of CssPLA2 or cell signalling pathways is involved in liver fibrosis caused by clonorchiasis. Balb/C mice were given an abdominal injection of MBP-CssPLA2. Liver sections with HE and Masson staining were observed to detect accumulation of collagen. Western blot of mouse liver was done to detect the activation of JNK signalling pathway. In vitro, HSCs were incubated with MBP-CssPLA2 to detect the activation of HSCs as well as the activation of JNK signalling pathway. The mutant of MBP-CssPLA2 without enzymatic activity was constructed and was also incubated with HSCs to check whether activation of the HSCs was related to the enzymatic activity of MBP-CssPLA2. The recombinant protein MBP-CssPLA2 was expressed soluble and of good enzymatic activity. A mutant of CssPLA2, without enzymatic activity, was also constructed. In vivo liver sections of Balb/C mice that were given an abdominal injection of 50 μg/ml MBP-CssPLA2 showed an obvious accumulation of collagen and a clear band of P-JNK1 could be seen by western blot of the liver tissue. In vitro, MBP-CssPLA2, as well as the mutant, was incubated with HSCs and it was proved that activation of HSCs was related to activation of the JNK signalling pathway instead of the enzymatic activity of MBP-CssPLA2. Activation of HSCs by CssPLA2 is related to the activation of the JNK signalling pathway instead of the enzymatic activity of CssPLA2. This finding

  12. DUSP19, a downstream effector of leptin, inhibits chondrocyte apoptosis via dephosphorylating JNK during osteoarthritis pathogenesis.

    Science.gov (United States)

    Wang, Yang; Xu, Zhengli; Wang, Jialin; Xu, Shuogui

    2016-03-01

    Increased mitogen-activated protein kinase (MAPK) activity has been found in human osteoarthritis (OA). Dual specificity protein phosphatase 19 (DUSP19), a member of mitogen-activated protein kinase (MAPK) phosphatases (MKPs), controls the activity of various MAPKs. This study was aimed to explore the function of DUSP19 during OA pathogenesis. Here, OA and healthy control data were downloaded from the NCBI Gene Expression Omnibus database (GSE57218). Forty-five patients with OA and 25 healthy donors were enrolled in this study. A rat OA model was induced by anterior cruciate ligament transection. Primary cultured chondrocytes were treated with leptin (10 ng mL(-1)). Cell survival, cell apoptosis and reactive oxygen species (ROS) were identified by CCK-8 and flow cytometry, respectively. In the cartilage of OA patients, DUSP19 was expressed in a lower level than in the cartilage of healthy control. The DUSP19 level was negatively correlated with leptin, which was confirmed by experiments in the rat OA model. Moreover, cell apoptosis and JNK activation in the rat cartilage were increased with the increasing of leptin levels and the decreasing of DUSP19 mRNA levels. In primary culture chondrocytes, exogenous leptin suppressed DUSP19 expression. The ectopic expression of DUSP19 significantly ameliorated leptin-induced apoptosis in damaged chondrocytes, accompanied by the reduced production of ROS. Moreover, the activity of JNK stimulated by leptin was suppressed by DUSP19 overexpression. The present study indicated that DUSP19, a downstream of leptin, inhibited apoptosis of chondrocytes through dephosphorylating JNK.

  13. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways.

    Directory of Open Access Journals (Sweden)

    Long Shi

    Full Text Available Advanced Glycation End Products (AGEs has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA induced Human telomerase-immortalized corneal epithelial cells (HUCLs apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE. AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.

  14. Attentional avoidance of fearful facial expressions following early life stress is associated with impaired social functioning.

    Science.gov (United States)

    Humphreys, Kathryn L; Kircanski, Katharina; Colich, Natalie L; Gotlib, Ian H

    2016-10-01

    Early life stress is associated with poorer social functioning. Attentional biases in response to threat-related cues, linked to both early experience and psychopathology, may explain this association. To date, however, no study has examined attentional biases to fearful facial expressions as a function of early life stress or examined these biases as a potential mediator of the relation between early life stress and social problems. In a sample of 154 children (ages 9-13 years) we examined the associations among interpersonal early life stressors (i.e., birth through age 6 years), attentional biases to emotional facial expressions using a dot-probe task, and social functioning on the Child Behavior Checklist. High levels of early life stress were associated with both greater levels of social problems and an attentional bias away from fearful facial expressions, even after accounting for stressors occurring in later childhood. No biases were found for happy or sad facial expressions as a function of early life stress. Finally, attentional biases to fearful faces mediated the association between early life stress and social problems. Attentional avoidance of fearful facial expressions, evidenced by a bias away from these stimuli, may be a developmental response to early adversity and link the experience of early life stress to poorer social functioning. © 2016 Association for Child and Adolescent Mental Health.

  15. Gene Expression Profiles Differentiate Between Sterile SIRS and Early Sepsis

    Science.gov (United States)

    Johnson, Steven B.; Lissauer, Matthew; Bochicchio, Grant V.; Moore, Richard; Cross, Alan S.; Scalea, Thomas M.

    2007-01-01

    Introduction: The systemic inflammatory response syndrome (SIRS) occurs frequently in critically ill patients and presents similar clinical appearances despite diverse infectious and noninfectious etiologies. Despite similar phenotypic expression, these diverse SIRS etiologies may induce divergent genotypic expressions. We hypothesized that gene expression differences are present between sepsis and uninfected SIRS prior to the clinical appearance of sepsis. Methods: Critically ill uninfected SIRS patients were followed longitudinally for the development of sepsis. All patients had whole blood collected daily for gene expression analysis by Affymetrix Hg_U133 2.0 Plus microarrays. SIRS patients developing sepsis were compared with those remaining uninfected for differences in gene expression at study entry and daily for 3 days prior to conversion to sepsis. Acceptance criteria for differentially expressed genes required: >1.2 median fold change between groups and significance on univariate and multivariate analysis. Differentially expressed genes were annotated to pathways using DAVID 2.0/EASE analysis. Results: A total of 12,782 (23.4%) gene probes were differentially expressed on univariate analysis 0 to 48 hours before clinical sepsis. 626 (1.1%) probes met acceptance criteria, corresponding to 459 unique genes, 65 (14.2%) down and 395 (85.8%) up expressed. These genes annotated to 10 pathways that functionally categorized to 4 themes involving innate immunity, cytokine receptors, T cell differentiation, and protein synthesis regulation. Conclusions: Sepsis has a unique gene expression profile that is different from uninfected inflammation and becomes apparent prior to expression of the clinical sepsis phenotype. PMID:17414611

  16. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Qiaoyun Zhou

    Full Text Available OBJECTIVE: Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism. METHODS: MTT assay was employed to measure the viability of A549 cells treated with different concentrations of melatonin. The effect of melatonin on the migration of A549 cells was analyzed by wound healing assay. Occludin location was observed by immunofluorescence. The expression of occludin, osteopontin (OPN, myosin light chain kinase (MLCK and phosphorylation of myosin light chain (MLC, JNK were detected by western blots. RESULTS: After A549 cells were treated with melatonin, the viability and migration of the cells were inhibited significantly. The relative migration rate of A549 cells treated with melatonin was only about 20% at 24 h. The expression level of OPN, MLCK and phosphorylation of MLC of A549 cells were reduced, while the expression of occludin was conversely elevated, and occludin located on the cell surface was obviously increased. The phosphorylation status of JNK in A549 cells was also reduced when cells were treated by melatonin. CONCLUSIONS: Melatonin significantly inhibits the migration of A549 cells, and this may be associated with the down-regulation of the expression of OPN, MLCK, phosphorylation of MLC, and up-regulation of the expression of occludin involving JNK/MAPK pathway.

  17. Quinuclidinone derivative 6 induced apoptosis in human breast cancer cells via sphingomyelinase and JNK signaling.

    Science.gov (United States)

    Malki, Ahmed; El Ashry, El Sayed

    2012-10-01

    Novel quinuclidinone derivatives have been previously reported by our laboratory. In this study, we investigated the impact of two novel quinuclidinone derivatives 4 and 6 on apoptotic signaling in breast cancer cells (MCF-7) and their normal counterparts (MCF-12a). Our data revealed that derivatives 4 and 6 reduced proliferation and induced apoptosis in breast cancer cells. However, derivative 6 was less cytotoxic to normal breast epithelial cells than breast cancer cells; therefore, we focused on derivative 6 for further investigation. Flow cytometric analysis showed that quinuclidinone derivative 6 reduced the percentage of MCF-7 cells in G(2)/M which is confirmed by increased expression levels of cyclin B, while it arrests MCF12a in G1 phase judging from increased p21. Quinuclidinone derivative 6 increased expression levels of p53 and Bax at both protein and mRNA levels and reduced expression level of Mdm2, Bcl2, Akt and Bcl-XL It also increased mitochondrial apoptotic pathways by activating release of cytochrome c which is consistent with activation of caspase-9 as confirmed by caspase-9 inhibitor LEHD-CHO. Finally, it increased sphingomyelinase signaling and ceramide formation as well as its downstream targets ERK1/2, p38, and JNK. Inhibition of ERK1/2 with PD98059 exerted little effect on the derivative 6-induced apoptosis and p38 inhibition with SB203580 slightly lessened apoptosis, whereas inhibition of JNK with SP600125 markedly suppressed derivative 6-induced apoptosis. These results indicate that derivative-6 induced the activation of sphingomyelinase signaling and that JNK played a pivotal role in induction of apoptosis in human breast cancer cells. In vivo studies and molecular docking experiments are now in progress for further anticancer investigations.

  18. MAPK/JNK1 activation protects cells against cadmium-induced autophagic cell death via differential regulation of catalase and heme oxygenase-1 in oral cancer cells.

    Science.gov (United States)

    So, Keum-Young; Kim, Sang-Hun; Jung, Ki-Tae; Lee, Hyun-Young; Oh, Seon-Hee

    2017-10-01

    Antioxidant enzymes are related to oral diseases. We investigated the roles of heme oxygenase-1 (HO-1) and catalase in cadmium (Cd)-induced oxidative stress and the underlying molecular mechanism in oral cancer cells. Exposing YD8 cells to Cd reduced the expression levels of catalase and superoxide dismutase 1/2 and induced the expression of HO-1 as well as autophagy and apoptosis, which were reversed by N-acetyl-l-cysteine (NAC). Cd-exposed YD10B cells exhibited milder effects than YD8 cells, indicating that Cd sensitivity is associated with antioxidant enzymes and autophagy. Autophagy inhibition via pharmacologic and genetic modulations enhanced Cd-induced HO-1 expression, caspase-3 cleavage, and the production of reactive oxygen species (ROS). Ho-1 knockdown increased autophagy and apoptosis. Hemin treatment partially suppressed Cd-induced ROS production and apoptosis, but enhanced autophagy and CHOP expression, indicating that autophagy induction is associated with cellular stress. Catalase inhibition by pharmacological and genetic modulations increased Cd-induced ROS production, autophagy, and apoptosis, but suppressed HO-1, indicating that catalase is required for HO-1 induction. p38 inhibition upregulated Cd-induced phospho-JNK and catalase, but suppressed HO-1, autophagy, apoptosis. JNK suppression exhibited contrary results, enhancing the expression of phospho-p38. Co-suppression of p38 and JNK1 failed to upregulate catalase and procaspase-3, which were upregulated by JNK1 overexpression. Overall, the balance between the responses of p38 and JNK activation to Cd appears to have an important role in maintaining cellular homeostasis via the regulation of antioxidant enzymes and autophagy induction. In addition, the upregulation of catalase by JNK1 activation can play a critical role in cell protection against Cd-induced oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Differential neutrophil gene expression in early bovine pregnancy

    Directory of Open Access Journals (Sweden)

    Kizaki Keiichiro

    2013-02-01

    Full Text Available Abstract Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT-stimulated gene expression in peripheral blood leukocytes (PBL, was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination, 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15, myxovirus-resistance (MX 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1, were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte

  20. Differential neutrophil gene expression in early bovine pregnancy.

    Science.gov (United States)

    Kizaki, Keiichiro; Shichijo-Kizaki, Ayumi; Furusawa, Tadashi; Takahashi, Toru; Hosoe, Misa; Hashizume, Kazuyoshi

    2013-02-05

    In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT)-stimulated gene expression in peripheral blood leukocytes (PBL), was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. PBL were collected on days 0 (just before artificial insemination), 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q) PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15), myxovirus-resistance (MX) 1 and 2, and 2'-5'-oligoadenylate synthetase (OAS1), were then analyzed in each fraction through day 28 of gestation using qPCR. Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte fractions obtained with flow cytometry and with density

  1. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Su [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Park, Ji-Yun [Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Kang, Hyo-Jin [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Hyung-Jin [Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Jun, E-mail: omslee@wku.ac.kr [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of)

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  2. Stromal cell markers are differentially expressed in the synovial tissue of patients with early arthritis.

    Science.gov (United States)

    Choi, Ivy Y; Karpus, Olga N; Turner, Jason D; Hardie, Debbie; Marshall, Jennifer L; de Hair, Maria J H; Maijer, Karen I; Tak, Paul P; Raza, Karim; Hamann, Jörg; Buckley, Christopher D; Gerlag, Danielle M; Filer, Andrew

    2017-01-01

    Previous studies have shown increased expression of stromal markers in synovial tissue (ST) of patients with established rheumatoid arthritis (RA). Here, ST expression of stromal markers in early arthritis in relationship to diagnosis and prognostic outcome was studied. ST from 56 patients included in two different early arthritis cohorts and 7 non-inflammatory controls was analysed using immunofluorescence to detect stromal markers CD55, CD248, fibroblast activation protein (FAP) and podoplanin. Diagnostic classification (gout, psoriatic arthritis, unclassified arthritis (UA), parvovirus associated arthritis, reactive arthritis and RA), disease outcome (resolving vs persistent) and clinical variables were determined at baseline and after follow-up, and related to the expression of stromal markers. We observed expression of all stromal markers in ST of early arthritis patients, independent of diagnosis or prognostic outcome. Synovial expression of FAP was significantly higher in patients developing early RA compared to other diagnostic groups and non-inflammatory controls. In RA FAP protein was expressed in both lining and sublining layers. Podoplanin expression was higher in all early inflammatory arthritis patients than controls, but did not differentiate diagnostic outcomes. Stromal marker expression was not associated with prognostic outcomes of disease persistence or resolution. There was no association with clinical or sonographic variables. Stromal cell markers CD55, CD248, FAP and podoplanin are expressed in ST in the earliest stage of arthritis. Baseline expression of FAP is higher in early synovitis patients who fulfil classification criteria for RA over time. These results suggest that significant fibroblast activation occurs in RA in the early window of disease.

  3. Stromal cell markers are differentially expressed in the synovial tissue of patients with early arthritis.

    Directory of Open Access Journals (Sweden)

    Ivy Y Choi

    Full Text Available Previous studies have shown increased expression of stromal markers in synovial tissue (ST of patients with established rheumatoid arthritis (RA. Here, ST expression of stromal markers in early arthritis in relationship to diagnosis and prognostic outcome was studied.ST from 56 patients included in two different early arthritis cohorts and 7 non-inflammatory controls was analysed using immunofluorescence to detect stromal markers CD55, CD248, fibroblast activation protein (FAP and podoplanin. Diagnostic classification (gout, psoriatic arthritis, unclassified arthritis (UA, parvovirus associated arthritis, reactive arthritis and RA, disease outcome (resolving vs persistent and clinical variables were determined at baseline and after follow-up, and related to the expression of stromal markers.We observed expression of all stromal markers in ST of early arthritis patients, independent of diagnosis or prognostic outcome. Synovial expression of FAP was significantly higher in patients developing early RA compared to other diagnostic groups and non-inflammatory controls. In RA FAP protein was expressed in both lining and sublining layers. Podoplanin expression was higher in all early inflammatory arthritis patients than controls, but did not differentiate diagnostic outcomes. Stromal marker expression was not associated with prognostic outcomes of disease persistence or resolution. There was no association with clinical or sonographic variables.Stromal cell markers CD55, CD248, FAP and podoplanin are expressed in ST in the earliest stage of arthritis. Baseline expression of FAP is higher in early synovitis patients who fulfil classification criteria for RA over time. These results suggest that significant fibroblast activation occurs in RA in the early window of disease.

  4. A diphenyldiselenide derivative induces autophagy via JNK in HTB-54 lung cancer cells.

    Science.gov (United States)

    Díaz, Marta; González, Roncesvalles; Plano, Daniel; Palop, Juan Antonio; Sanmartín, Carmen; Encío, Ignacio

    2018-01-01

    Symmetric aromatic diselenides are potential anticancer agents with strong cytotoxic activity. In this study, the in vitro anticancer activities of a novel series of diarylseleno derivatives from the diphenyldiselenide (DPDS) scaffold were evaluated. Most of the compounds exhibited high efficacy for inducing cytotoxicity against different human cancer cell lines. DPDS 2, the compound with the lowest mean GI50 value, induced both caspase-dependent apoptosis and arrest at the G0 /G1 phase in acute lymphoblastic leucemia CCRF-CEM cells. Consistent with this, PARP cleavage; enhanced caspase-2, -3, -8 and -9 activity; reduced CDK4 expression and increased levels of p53 were detected in these cells upon DPDS 2 treatment. Mutated p53 expressed in CCRF-CEM cells retains its transactivating activity. Therefore, increased levels of p21CIP1 and BAX proteins were also detected. On the other hand, DPDS 6, the compound with the highest selectivity index for cancer cells, resulted in G2 /M cell cycle arrest and caspase-independent cell death in p53 deficient HTB-54 lung cancer cells. Autophagy inhibitors 3-methyladenine, wortmannin and chloroquine inhibited DPDS 6-induced cell death. Consistent with autophagy, increased LC3-II and decreased SQSTM1/p62 levels were detected in HTB-54 cells in response to DPDS 6. Induction of JNK phosphorylation and a reduction in phospho-p38 MAPK were also detected. Moreover, the JNK inhibitor SP600125-protected HTB-54 cells from DPDS 6-induced cell death indicating that JNK activation is involved in DPDS 6-induced autophagy. These results highlight the anticancer effects of these derivatives and warrant future studies examining their clinical potential. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Plant gene expression in early stages of Rhizobium - legume symbiosis

    NARCIS (Netherlands)

    Gloudemans, T.

    1988-01-01

    Upon infection of the root of a leguminous plant with bacteria of the genus Rhizobium or Bradyrhizobium root nodules are formed in which symbiotic dinitrogen fixation occurs. In the host plant a set of genes is only expressed during the formation of

  6. Differential constitutive expression of interferon genes in early mouse embryos.

    Science.gov (United States)

    Riego, E; Pérez, A; Martínez, R; Castro, F O; Lleonart, R; de la Fuente, J

    1995-06-01

    Recent evidence suggests that several processes during mammalian embryogenesis may be regulated by IFNs or IFN-like molecules. With the use of MAPPing, the simultaneous presence of transcripts homologous to IFN-alpha, IFN-beta, IRF-1, and IRF-2 was examined in mouse embryos and in embryonal carcinoma (EC) P19 cells, which are equivalent to epiblast cells of the early postimplantation blastocysts. Transcripts for IFN-alpha, but not for IFN-beta, were detected as maternal transcripts in the ovulated oocyte and persisted over early embryogenesis. IRF-1 transcripts appeared only after the first cell cleavage in the two-cell stage embryo. IRF-2 transcripts were analyzed only in EC P19 cells and were found in both undifferentiated (D-) and differentiated (D+) cells. The IFN-alpha transcripts present in (D-) P19 cells were cloned and the partial cDNA sequences determined. Mu IFN-alpha A and a new Mu IFN-alpha species (Mu IFN-alpha 12) were isolated from (D-) P19 cells. The presence of constitutive IFN-alpha transcripts in early mouse embryos suggests a role for these molecules during embryogenesis.

  7. JNK at the crossroad of obesity, insulin resistance, and cell stress response

    Directory of Open Access Journals (Sweden)

    Giovanni Solinas

    2017-02-01

    Major conclusion: Whereas current evidence indicates that JNK1/2 inhibition may improve insulin sensitivity in obesity, the role of JNK in the progression from insulin resistance to diabetes, and its complications is largely unresolved. A better understanding of the role of JNK in the stress response to obesity and type-2 diabetes, and the development of isoform-specific inhibitors with specific tissue distribution will be necessary to exploit JNK as possible drug target for the treatment of type-2 diabetes.

  8. Dynamic expression patterns of differential proteins during early invasion of hepatocellular carcinoma.

    Science.gov (United States)

    Chen, Rong-Xin; Song, Hai-Yan; Dong, Yin-Ying; Hu, Chao; Zheng, Qiong-Dan; Xue, Tong-Chun; Liu, Xiao-Hui; Zhang, Yang; Chen, Jie; Ren, Zheng-Gang; Liu, Yin-Kun; Cui, Jie-Feng

    2014-01-01

    Tumor cell invasion into the surrounding matrix has been well documented as an early event of metastasis occurrence. However, the dynamic expression patterns of proteins during early invasion of hepatocellular carcinoma (HCC) are largely unknown. Using a three-dimensional HCC invasion culture model established previously, we investigated the dynamic expression patterns of identified proteins during early invasion of HCC. Highly metastatic MHCC97H cells and a liver tissue fragment were long-term co-cultured in a rotating wall vessel (RWV) bioreactor to simulate different pathological states of HCC invasion. The established spherical co-cultures were collected on days 0, 5, 10, and 15 for dynamic expression pattern analysis. Significantly different proteins among spheroids at different time points were screened and identified using quantitative proteomics of iTRAQ labeling coupled with LC-MS/MS. Dynamic expression patterns of differential proteins were further categorized by K-means clustering. The expression modes of several differentially expressed proteins were confirmed by Western blot and qRT-PCR. Time course analysis of invasion/metastasis gene expressions (MMP2, MMP7, MMP9, CD44, SPP1, CXCR4, CXCL12, and CDH1) showed remarkable, dynamic alterations during the invasion process of HCC. A total of 1,028 proteins were identified in spherical co-cultures collected at different time points by quantitative proteomics. Among these proteins, 529 common differential proteins related to HCC invasion were clustered into 25 types of expression patterns. Some proteins displayed significant dynamic alterations during the early invasion process of HCC, such as upregulation at the early invasion stage and downregulation at the late invasion stage (e.g., MAPRE1, PHB2, cathepsin D, etc.) or continuous upregulation during the entire invasion process (e.g., vitronectin, Met, clusterin, ICAM1, GSN, etc.). Dynamic expression patterns of candidate proteins during the early invasion

  9. A Breast Tissue Protein Expression Profile Contributing to Early Parity-Induced Protection Against Breast Cancer

    Directory of Open Access Journals (Sweden)

    Christina Marie Gutierrez

    2015-11-01

    Full Text Available Background/Aims: Early parity reduces breast cancer risk, whereas, late parity and nulliparity increase breast cancer risk. Despite substantial efforts to understand the protective effects of early parity, the precise molecular circuitry responsible for these changes is not yet fully defined. Methods: Here, we have conducted the first study assessing protein expression profiles in normal breast tissue of healthy early parous, late parous, and nulliparous women. Breast tissue biopsies were obtained from 132 healthy parous and nulliparous volunteers. These samples were subjected to global protein expression profiling and immunohistochemistry. GeneSpring and MetaCore bioinformatics analysis software were used to identify protein expression profiles associated with early parity (low risk versus late/nulliparity (high risk. Results: Early parity reduces expression of key proteins involved in mitogenic signaling pathways in breast tissue through down regulation of EGFR1/3, ESR1, AKT1, ATF, Fos, and SRC. Early parity is also characterized by greater genomic stability and reduced tissue inflammation based on differential expression of aurora kinases, p53, RAD52, BRCA1, MAPKAPK-2, ATF-1, ICAM1, and NF-kappaB compared to late and nulli parity. Conclusions: Early parity reduces basal cell proliferation in breast tissue, which translates to enhanced genomic stability, reduced cellular stress/inflammation, and thus reduced breast cancer risk.

  10. Identification, cloning, and expression analysis of three putative Lymantria dispar nuclear polyhedrosis virus immediate early genes

    Science.gov (United States)

    James M. Slavicek; Nancy Hayes-Plazolles

    1991-01-01

    Viral immediate early gene products are usually regulatory proteins that control expression of other viral genes at the transcriptional level or are proteins that are part of the viral DNA replication complex. The identification and functional characterization of the immediate early gene products of Lymantria dispar nuclear polyhedrosis virus (LdNPV...

  11. Distinct Roles for JNK and IKK Activation in Agouti-Related Peptide Neurons in the Development of Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Eva Tsaousidou

    2014-11-01

    Full Text Available Activation of c-Jun N-terminal kinase 1 (JNK1- and inhibitor of nuclear factor kappa-B kinase 2 (IKK2-dependent signaling plays a crucial role in the development of obesity-associated insulin and leptin resistance not only in peripheral tissues but also in the CNS. Here, we demonstrate that constitutive JNK activation in agouti-related peptide (AgRP-expressing neurons of the hypothalamus is sufficient to induce weight gain and adiposity in mice as a consequence of hyperphagia. JNK activation increases spontaneous action potential firing of AgRP cells and causes both neuronal and systemic leptin resistance. Similarly, activation of IKK2 signaling in AgRP neurons also increases firing of these cells but fails to cause obesity and leptin resistance. In contrast to JNK activation, IKK2 activation blunts insulin signaling in AgRP neurons and impairs systemic glucose homeostasis. Collectively, these experiments reveal both overlapping and nonredundant effects of JNK- and IKK-dependent signaling in AgRP neurons, which cooperate in the manifestation of the metabolic syndrome.

  12. Early-onset gastric cancers have a different molecular expression profile than conventional gastric cancers

    NARCIS (Netherlands)

    Milne, Anya N. A.; Carvalho, Ralph; Morsink, Folkert M.; Musler, Alex R.; de Leng, Wendy W. J.; Ristimäki, Ari; Offerhaus, G. Johan A.

    2006-01-01

    Many studies examine the molecular genetics of gastric cancer, but few look at young patients in particular and there is no comparison of molecular expression between early-onset gastric cancer ( Expression of cycloxygenase-2 (COX-2) is elevated

  13. Growth inhibition of Tax-activated human Jurkat leukemia T cells by all-trans retinoic acid requires JNK-1 inhibition.

    Science.gov (United States)

    Parra, Eduardo; Gutiérrez, Luis

    2013-01-01

    Retinoids, including vitamin A (retinol) and its analogues, are critical for a variety of biological functions. In this study, we report that all-trans retinoic acid (ATRA) decreases Jun N-terminal kinase 1 (JNK-1) activity, antagonizing the effect of the Tax protein in Jurkat leukemia T cells transiently transfected for expressing the Tax protein. The Tax protein is one of the products of the human T-cell leukemia virus type 1 (HTLV-1) which is the etiologic agent of adult T-cell leukemia (ATL), an aggressive neoplasia of CD4+ T cells. The decrease in JNK-1 activity was followed by a marked decrease in the expression of interleukin (IL)-2 and a weak increase in interferon (IFN)-γ in Jurkat cells treated with ATRA in a dose-dependent manner, suggesting a correlation between the expression of JNK-1 and the activity of the Tax protein. However, the expression levels of IL-4 and IL-10 were enhanced in cells transfected with Tax, compared with the levels in untransfected cells, but the expression levels were not affected following ATRA treatment. In transfection studies using a luciferase reporter construct expressing the IL-2 promoter or a tandem repeat of AP-1 or NF-κB, the inhibitory effect of ATRA on the IL-2 promoter and AP-1 construct was confirmed at the transcriptional level. However, the inhibitory effect in the NF-κB reporter construct was only marginal. In addition, our data demonstrated that JNK-1 is constitutively activated in Jurkat leukemia T cells expressing the Tax protein, suggesting that JNK-1 is required for Tax-induced proliferation of Jurkat leukemia cells.

  14. FOS-1 functions as a transcriptional activator downstream of the C. elegans JNK homolog KGB-1.

    Science.gov (United States)

    Zhang, Zhe; Liu, Limeng; Twumasi-Boateng, Kwame; Block, Dena H S; Shapira, Michael

    2017-01-01

    JNK proteins are conserved stress-activated MAP kinases. In C. elegans, the JNK-homolog KGB-1 plays essential roles in protection from heavy metals and protein folding stress. However, the contributions of KGB-1 are age-dependent, providing protection in larvae, but reducing stress resistance and shortening lifespan in adults. Attenuation of DAF-16 was linked to the detrimental contributions of KGB-1 in adults, but its involvement in KGB-1-dependent protection in larvae remains unclear. To characterize age-dependent contributions of KGB-1, we used microarray analysis to measure gene expression following KGB-1 activation either in developing larvae or in adults, achieved by knocking down its negative phosphatase regulator vhp-1. This revealed a robust KGB-1 regulon, most of which consisting of genes induced following KGB-1 activation regardless of age; a smaller number of genes was regulated in an age-dependent manner. We found that the bZIP transcription factor FOS-1 was essential for age-invariant KGB-1-dependent gene induction, but not for age-dependent expression. The latter was more affected by DAF-16, which was further found to be required for KGB-1-dependent cadmium resistance in larvae. Our results identify FOS-1 as a transcriptional activator mediating age-invariant contributions of KGB-1, including a regulatory loop of KGB-1 signaling, but also stress the importance of DAF-16 as a mediator of age-dependent contributions. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Analysis of a spatial gene expression database for sea anemone Nematostella vectensis during early development.

    Science.gov (United States)

    Botman, Daniel; Jansson, Fredrik; Röttinger, Eric; Martindale, Mark Q; de Jong, Johann; Kaandorp, Jaap A

    2015-09-24

    The spatial distribution of many genes has been visualized during the embryonic development in the starlet sea anemone Nematostella vectensis in the last decade. In situ hybridization images are available in the Kahi Kai gene expression database, and a method has been developed to quantify spatial gene expression patterns of N. vectensis. In this paper, gene expression quantification is performed on a wide range of gene expression patterns from this database and descriptions of observed expression domains are stored in a separate database for further analysis. Spatial gene expression from suitable in situ hybridization images has been quantified with the GenExp program. A correlation analysis has been performed on the resulting numerical gene expression profiles for each stage. Based on the correlated clusters of spatial gene expression and detailed descriptions of gene expression domains, various mechanisms for developmental gene expression are proposed. In the blastula and gastrula stages of development in N. vectensis, its continuous sheet of cells is partitioned into correlating gene expression domains. During progressing development, these regions likely correspond to different fates. A statistical analysis shows that genes generally remain expressed during the planula stages in those major regions that they occupy at the end of gastrulation. Observed shifts in gene expression domain boundaries suggest that elongation in the planula stage mainly occurs in the vegetal ring under the influence of the gene Rx. The secondary body axis in N. vectensis is proposed to be determined at the mid blastula transition. Early gene expression domains in N. vectensis appear to maintain a positional order along the primary body axis. Early determination in N. vectensis occurs in two stages: expression in broad circles and rings in the blastula is consolidated during gastrulation, and more complex expression patterns appear in the planula within these broad regions

  16. Xenopus p63 expression in early ectoderm and neurectoderm.

    Science.gov (United States)

    Lu, P; Barad, M; Vize, P D

    2001-04-01

    The tumor-suppressor protein p53 belongs to a small gene family that includes p63 and p73. While p53 and p73 regulate cell cycle progression and apoptosis, the major role of p63 appears to be in promoting ectodermal proliferation and differentiation. In this report we describe the cloning of a Xenopus orthologue of mammalian p63 that is extraordinarily conserved in sequence. The major sites of expression of Xenopus p63 mRNA are the epidermis and some neural crest and crest derivatives such as the branchial arches and tail fin. Expression is also observed in the neural plate and in the stomodeal-hypophyseal anlage. Antibodies against p63 detect a nuclear protein that is distributed in a manner similar to that of Xp63 mRNA. Both mRNA and protein are conspicuously absent from regions of the epidermal sensorial layer that are induced to form a number of (but not all) ectodermal placodes and Xp63 protein levels are particularly dynamic in the epidermis of the eye as the lens forms.

  17. Neural Differentiation of Human Adipose Tissue-Derived Stem Cells Involves Activation of the Wnt5a/JNK Signalling

    Directory of Open Access Journals (Sweden)

    Sujeong Jang

    2015-01-01

    Full Text Available Stem cells are a powerful resource for cell-based transplantation therapies, but understanding of stem cell differentiation at the molecular level is not clear yet. We hypothesized that the Wnt pathway controls stem cell maintenance and neural differentiation. We have characterized the transcriptional expression of Wnt during the neural differentiation of hADSCs. After neural induction, the expressions of Wnt2, Wnt4, and Wnt11 were decreased, but the expression of Wnt5a was increased compared with primary hADSCs in RT-PCR analysis. In addition, the expression levels of most Fzds and LRP5/6 ligand were decreased, but not Fzd3 and Fzd5. Furthermore, Dvl1 and RYK expression levels were downregulated in NI-hADSCs. There were no changes in the expression of ß-catenin and GSK3ß. Interestingly, Wnt5a expression was highly increased in NI-hADSCs by real time RT-PCR analysis and western blot. Wnt5a level was upregulated after neural differentiation and Wnt3, Dvl2, and Naked1 levels were downregulated. Finally, we found that the JNK expression was increased after neural induction and ERK level was decreased. Thus, this study shows for the first time how a single Wnt5a ligand can activate the neural differentiation pathway through the activation of Wnt5a/JNK pathway by binding Fzd3 and Fzd5 and directing Axin/GSK-3ß in hADSCs.

  18. Correlation between low FAT1 expression and early affected muscle in facioscapulohumeral muscular dystrophy.

    Science.gov (United States)

    Mariot, Virginie; Roche, Stephane; Hourdé, Christophe; Portilho, Debora; Sacconi, Sabrina; Puppo, Francesca; Duguez, Stephanie; Rameau, Philippe; Caruso, Nathalie; Delezoide, Anne-Lise; Desnuelle, Claude; Bessières, Bettina; Collardeau, Sophie; Feasson, Leonard; Maisonobe, Thierry; Magdinier, Frederique; Helmbacher, Françoise; Butler-Browne, Gillian; Mouly, Vincent; Dumonceaux, Julie

    2015-09-01

    Facioscapulohumeral muscular dystrophy (FSHD) is linked to either contraction of D4Z4 repeats on chromosome 4 or to mutations in the SMCHD1 gene, both of which result in the aberrant expression of the transcription factor DUX4. However, it is still difficult to correlate these genotypes with the phenotypes observed in patients. Because we have recently shown that mice with disrupted Fat1 functions exhibit FSHD-like phenotypes, we have investigated the expression of the human FAT1 gene in FSHD. We first analyzed FAT1 expression in FSHD adult muscles and determined whether FAT1 expression was driven by DUX4. We next determined FAT1 expression levels in 64 muscles isolated from 16 control fetuses. These data were further complemented with analysis of Fat1 expression in developing mouse embryos. We demonstrated that FAT1 expression is independent of DUX4. Moreover, we observed that (1) in control fetal human biopsies or in developing mouse embryos, FAT1 is expressed at lower levels in muscles that are affected at early stages of FSHD progression than in muscles that are affected later or are nonaffected; and (2) in adult muscle biopsies, FAT1 expression is lower in FSHD muscles compared to control muscles. We propose a revised model for FSHD in which FAT1 levels might play a role in determining which muscles will exhibit early and late disease onset, whereas DUX4 may worsen the muscle phenotype. © 2015 American Neurological Association.

  19. Immunohistochemical analysis of collagen expression in human corpora lutea during the menstrual cycle and early pregnancy.

    Science.gov (United States)

    Iwahashi, Masaaki; Muragaki, Yasuteru; Ooshima, Akira; Umesaki, Naohiko

    2006-04-01

    To investigate the characteristic structure and function of human corpora lutea (CL), various types of collagen expression were determined in the CL tissues during the menstrual cycle and early pregnancy. In vitro experiment. Department of obstetrics and gynecology at a medical university. Regulatory cycling women and pregnant women with ovarian tumor and ectopic pregnancy who underwent adnexectomy. Immunohistochemistry for human type I, III, and IV collagen with specific monoclonal antibodies was used for analysis. Expression of type I, III, and IV collagen. Immunohistochemical staining for type I and III collagen revealed intense staining of the CL stroma during early pregnancy, as compared with those in the menstrual cycle. Moreover, pericellular intense immunostaining for type IV collagen was observed around the luteal cells, especially luteal granulosa cells, of early pregnancy. These results suggest that alterations in distribution of collagen might play an important role in determining the physiology and structure of the CL during the menstrual cycle and early pregnancy.

  20. The δ-cyclin expression at early stages of embryogenesis of Brassica rapa L. under clinorotation

    Science.gov (United States)

    Artemenko, O. A.; Popova, A. F.

    We present some results of comparison studying of Brassica embryo development and the δ-cyclin genes expression under slow horizontal clinorotation and in the laboratory control. Some backlog of the δ1-cyclin genes expression at early stages of embryogenesis under clinorotation was revealed in comparison with the laboratory control. The similar level of the δ3-cyclin expression at all stages of embryo formation (from one to nine days) in both variants is shown. Some delays in the rate of Brassica rapa embryo development under clinorotation in comparison with the laboratory control can be a result of decrease of a level and some backlog of the δ1-cyclin expression at early stages of embryogenesis.

  1. Dynamic expression patterns of differential proteins during early invasion of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Rong-Xin Chen

    Full Text Available Tumor cell invasion into the surrounding matrix has been well documented as an early event of metastasis occurrence. However, the dynamic expression patterns of proteins during early invasion of hepatocellular carcinoma (HCC are largely unknown. Using a three-dimensional HCC invasion culture model established previously, we investigated the dynamic expression patterns of identified proteins during early invasion of HCC.Highly metastatic MHCC97H cells and a liver tissue fragment were long-term co-cultured in a rotating wall vessel (RWV bioreactor to simulate different pathological states of HCC invasion. The established spherical co-cultures were collected on days 0, 5, 10, and 15 for dynamic expression pattern analysis. Significantly different proteins among spheroids at different time points were screened and identified using quantitative proteomics of iTRAQ labeling coupled with LC-MS/MS. Dynamic expression patterns of differential proteins were further categorized by K-means clustering. The expression modes of several differentially expressed proteins were confirmed by Western blot and qRT-PCR.Time course analysis of invasion/metastasis gene expressions (MMP2, MMP7, MMP9, CD44, SPP1, CXCR4, CXCL12, and CDH1 showed remarkable, dynamic alterations during the invasion process of HCC. A total of 1,028 proteins were identified in spherical co-cultures collected at different time points by quantitative proteomics. Among these proteins, 529 common differential proteins related to HCC invasion were clustered into 25 types of expression patterns. Some proteins displayed significant dynamic alterations during the early invasion process of HCC, such as upregulation at the early invasion stage and downregulation at the late invasion stage (e.g., MAPRE1, PHB2, cathepsin D, etc. or continuous upregulation during the entire invasion process (e.g., vitronectin, Met, clusterin, ICAM1, GSN, etc..Dynamic expression patterns of candidate proteins during the

  2. Differential expression of CaMK-II genes during early zebrafish embryogenesis.

    Science.gov (United States)

    Rothschild, Sarah C; Lister, James A; Tombes, Robert M

    2007-01-01

    CaMK-II is a highly conserved Ca(2+)/calmodulin-dependent protein kinase expressed throughout the lifespan of all vertebrates. During early development, CaMK-II regulates cell cycle progression and "non-canonical" Wnt-dependent convergent extension. In the zebrafish, Danio rerio, CaMK-II activity rises within 2 hr after fertilization. At the time of somite formation, zygotic expression from six genes (camk2a1, camk2b1, camk2g1, camk2g2, camk2d1, camk2d2) results in a second phase of increased activity. Zebrafish CaMK-II genes are 92-95% identical to their human counterparts in the non-variable regions. During the first three days of development, alternative splicing yields at least 20 splice variants, many of which are unique. Whole-mount in situ hybridization reveals that camk2g1 comprises the majority of maternal expression. All six genes are expressed strongly in ventral regions at the 18-somite stage. Later, camk2a1 is expressed in anterior somites, heart, and then forebrain. Camk2b1 is expressed in somites, mid- and forebrain, gut, retina, and pectoral fins. Camk2g1 appears strongly along the midline and then in brain, gut, and pectoral fins. Camk2g2 is expressed early in the midbrain and trunk and exhibits the earliest retinal expression. Camk2d1 is elevated early at somite boundaries, then epidermal tissue, while camk2d2 is expressed in discrete anterior locations, steadily increasing along either side of the dorsal midline and then throughout the brain, including the retina. These findings reveal a complex pattern of CaMK-II gene expression consistent with pleiotropic roles during development.

  3. Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development

    Science.gov (United States)

    Sun, Liangliang; Bertke, Michelle M.; Champion, Matthew M.; Zhu, Guijie; Huber, Paul W.; Dovichi, Norman J.

    2014-03-01

    While there is a rich literature on transcription dynamics during the development of many organisms, protein data is limited. We used iTRAQ isotopic labeling and mass spectrometry to generate the largest developmental proteomic dataset for any animal. Expression dynamics of nearly 4,000 proteins of Xenopus laevis was generated from fertilized egg to neurula embryo. Expression clusters into groups. The cluster profiles accurately reflect the major events that mark changes in gene expression patterns during early Xenopus development. We observed decline in the expression of ten DNA replication factors after the midblastula transition (MBT), including a marked decline of the licensing factor XCdc6. Ectopic expression of XCdc6 leads to apoptosis; temporal changes in this protein are critical for proper development. Measurement of expression in single embryos provided no evidence for significant protein heterogeneity between embryos at the same stage of development.

  4. Developmental Associations between Conduct Problems and Expressive Language in Early Childhood: A Population-Based Study

    OpenAIRE

    Girard, Lisa-Christine‎; Pingault, Jean-Baptiste; Doyle, Orla; Falissard, Bruno; Tremblay, Richard Ernest

    2016-01-01

    Conduct problems have been associated with poor language development, however the direction of this association in early childhood remains unclear. This study examined the longitudinal directional associations between conduct problems and expressive language ability. Children enrolled in the UK Millennium Cohort Study (N = 14, 004; 50.3 % boys) were assessed at 3 and 5 years of age. Parent reports of conduct problems and standardised assessments of expressive language were analyzed using cros...

  5. Expression profiling identifies genes expressed early during lint fibre initiation in cotton.

    Science.gov (United States)

    Wu, Yingru; Machado, Adriane C; White, Rosemary G; Llewellyn, Danny J; Dennis, Elizabeth S

    2006-01-01

    Cotton fibres are a subset of single epidermal cells that elongate from the seed coat to produce the long cellulose strands or lint used for spinning into yarn. To identify genes that might regulate lint fibre initiation, expression profiles of 0 days post-anthesis (dpa) whole ovules from six reduced fibre or fibreless mutants were compared with wild-type linted cotton using cDNA microarrays. Numerous clones were differentially expressed, but when only those genes that are normally expressed in the ovule outer integument (where fibres develop) were considered, just 13 different cDNA clones were down-regulated in some or all of the mutants. These included: a Myb transcription factor (GhMyb25) similar to the Antirrhinum Myb AmMIXTA, a putative homeodomain protein (related to Arabidopsis ATML1), a cyclin D gene, some previously identified fibre-expressed structural and metabolic genes, such as lipid transfer protein, alpha-expansin and sucrose synthase, as well as some unknown genes. Laser capture microdissection and reverse transcription-PCR were used to show that both the GhMyb25 and the homeodomain gene were predominantly ovule specific and were up-regulated on the day of anthesis in fibre initials relative to adjacent non-fibre ovule epidermal cells. Their spatial and temporal expression pattern therefore coincided with the time and location of fibre initiation. Constitutive overexpression of GhMyb25 in transgenic tobacco resulted in an increase in branched long-stalked leaf trichomes. The involvement of cell cycle genes prompted DNA content measurements that indicated that fibre initials, like leaf trichomes, undergo DNA endoreduplication. Cotton fibre initiation therefore has some parallels with leaf trichome development, although the detailed molecular mechanisms are clearly different.

  6. Allicin Alleviates Inflammation of Trinitrobenzenesulfonic Acid-Induced Rats and Suppresses P38 and JNK Pathways in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Chen Li

    2015-01-01

    Full Text Available Background. Allicin has anti-inflammatory, antioxidative and proapoptotic properties. Aims. To evaluate the effects and investigate the mechanism of allicin on trinitrobenzenesulfonic acid-induced colitis, specifically with mesalazine or sulfasalazine. Methods. 80 rats were divided equally into 8 groups: control; trinitrobenzenesulfonic acid; allicin prevention; allicin; mesalazine; sulfasalazine; allicin + sulfasalazine, and mesalazine + allicin. Systemic and colonic inflammation parameters were analysed. In addition, protein and culture medium of Caco-2 cells treated with various concentrations of IL-1β or allicin were collected for investigation of IL-8, NF-κB p65 P38, ERK, and JNK. One-way ANOVA and Kruskal-Wallis H test were used for parametric and nonparametric tests, respectively. Results. Allicin reduced the body weight loss of trinitrobenzenesulfonic acid-induced rats, histological score, serum TNF-α and IL-1β levels, and colon IL-1β mRNA level and induced serum IL-4 level, particularly in combination with mesalazine. In addition, 1 ng/mL IL-1β stimulated the P38, ERK, and JNK pathways, whereas pretreatment with allicin depressed this phenomenon, except for the ERK pathway. Conclusions. The inflammation induced by trinitrobenzenesulfonic acid is mitigated significantly by allicin treatment, particularly combined with mesalazine. Allicin inhibits the P38 and JNK pathways and the expression of NF-κB which explained the potential anti-inflammatory mechanisms of allicin.

  7. Allicin alleviates inflammation of trinitrobenzenesulfonic acid-induced rats and suppresses P38 and JNK pathways in Caco-2 cells.

    Science.gov (United States)

    Li, Chen; Lun, Weijian; Zhao, Xinmei; Lei, Shan; Guo, Yandong; Ma, Jiayi; Zhi, Fachao

    2015-01-01

    Background. Allicin has anti-inflammatory, antioxidative and proapoptotic properties. Aims. To evaluate the effects and investigate the mechanism of allicin on trinitrobenzenesulfonic acid-induced colitis, specifically with mesalazine or sulfasalazine. Methods. 80 rats were divided equally into 8 groups: control; trinitrobenzenesulfonic acid; allicin prevention; allicin; mesalazine; sulfasalazine; allicin + sulfasalazine, and mesalazine + allicin. Systemic and colonic inflammation parameters were analysed. In addition, protein and culture medium of Caco-2 cells treated with various concentrations of IL-1β or allicin were collected for investigation of IL-8, NF-κB p65 P38, ERK, and JNK. One-way ANOVA and Kruskal-Wallis H test were used for parametric and nonparametric tests, respectively. Results. Allicin reduced the body weight loss of trinitrobenzenesulfonic acid-induced rats, histological score, serum TNF-α and IL-1β levels, and colon IL-1β mRNA level and induced serum IL-4 level, particularly in combination with mesalazine. In addition, 1 ng/mL IL-1β stimulated the P38, ERK, and JNK pathways, whereas pretreatment with allicin depressed this phenomenon, except for the ERK pathway. Conclusions. The inflammation induced by trinitrobenzenesulfonic acid is mitigated significantly by allicin treatment, particularly combined with mesalazine. Allicin inhibits the P38 and JNK pathways and the expression of NF-κB which explained the potential anti-inflammatory mechanisms of allicin.

  8. Long-term academic stress enhances early processing of facial expressions.

    Science.gov (United States)

    Zhang, Liang; Qin, Shaozheng; Yao, Zhuxi; Zhang, Kan; Wu, Jianhui

    2016-11-01

    Exposure to long-term stress can lead to a variety of emotional and behavioral problems. Although widely investigated, the neural basis of how long-term stress impacts emotional processing in humans remains largely elusive. Using event-related brain potentials (ERPs), we investigated the effects of long-term stress on the neural dynamics of emotionally facial expression processing. Thirty-nine male college students undergoing preparation for a major examination and twenty-one matched controls performed a gender discrimination task for faces displaying angry, happy, and neutral expressions. The results of the Perceived Stress Scale showed that participants in the stress group perceived higher levels of long-term stress relative to the control group. ERP analyses revealed differential effects of long-term stress on two early stages of facial expression processing: 1) long-term stress generally augmented posterior P1 amplitudes to facial stimuli irrespective of expression valence, suggesting that stress can increase sensitization to visual inputs in general, and 2) long-term stress selectively augmented fronto-central P2 amplitudes for angry but not for neutral or positive facial expressions, suggesting that stress may lead to increased attentional prioritization to processing negative emotional stimuli. Together, our findings suggest that long-term stress has profound impacts on the early stages of facial expression processing, with an increase at the very early stage of general information inputs and a subsequent attentional bias toward processing emotionally negative stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling.

    Directory of Open Access Journals (Sweden)

    Christelle Marchal

    Full Text Available The genome of the human immunodeficiency virus type 1 (HIV-1 encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu, in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1. Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  10. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling.

    Science.gov (United States)

    Marchal, Christelle; Vinatier, Gérald; Sanial, Matthieu; Plessis, Anne; Pret, Anne-Marie; Limbourg-Bouchon, Bernadette; Théodore, Laurent; Netter, Sophie

    2012-01-01

    The genome of the human immunodeficiency virus type 1 (HIV-1) encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu), in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs) which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1). Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK) pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  11. The HIV-1 Vpu Protein Induces Apoptosis in Drosophila via Activation of JNK Signaling

    Science.gov (United States)

    Marchal, Christelle; Vinatier, Gérald; Sanial, Matthieu; Plessis, Anne; Pret, Anne-Marie; Limbourg-Bouchon, Bernadette; Théodore, Laurent; Netter, Sophie

    2012-01-01

    The genome of the human immunodeficiency virus type 1 (HIV-1) encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu), in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin–proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated. We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs) which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1). Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK) pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway. PMID:22479597

  12. Nuclear and cellular expression data from the whole 16-cell stage Arabidopsis thaliana embryo and a cell type-specific expression atlas of the early Arabidopsis embryo

    NARCIS (Netherlands)

    Palovaara, J.P.J.

    2017-01-01

    SuperSeries contain expression data from the nuclei of cell types involved in patterning events, with focus on root apical stem cell formation, at 16-cell stage, early globular stage and late globular stage in the early Arabidopsis embryo (atlas). Expression data comparing nuclear and cellular RNA

  13. Oxidative stress-induced JNK1/2 activation triggers proapoptotic signaling and apoptosis that leads to diabetic embryopathy.

    Science.gov (United States)

    Li, Xuezheng; Weng, Hongbo; Xu, Cheng; Reece, E Albert; Yang, Peixin

    2012-08-01

    Oxidative stress and apoptosis are implicated in the pathogenesis of diabetic embryopathy. The proapoptotic c-Jun NH(2)-terminal kinases (JNK)1/2 activation is associated with diabetic embryopathy. We sought to determine whether 1) hyperglycemia-induced oxidative stress is responsible for the activation of JNK1/2 signaling, 2) JNK1 contributes to the teratogenicity of hyperglycemia, and 3) both JNK1 and JNK2 activation cause activation of downstream transcription factors, caspase activation, and apoptosis, resulting in neural tube defects (NTDs). Wild-type (WT) embryos from nondiabetic WT dams and WT, superoxide dismutase (SOD)1-overexpressing, jnk1(+/-), jnk1(-/-), and jnk2(-/-) embryos exposed to maternal hyperglycemia were used to assess JNK1/2 activation, NTDs, activation of transcription factors downstream of JNK1/2, caspase cascade, and apoptosis. SOD1 overexpression abolished diabetes-induced activation of JNK1/2 and their downstream effectors: phosphorylation of c-Jun, activating transcription factor 2, and E twenty-six-like transcription factor 1 and dephosphorylation of forkhead box class O3a. jnk1(-/-) embryos had significantly lower incidences of NTDs than those of WT or jnk1(+/-) embryos. Either jnk1 or jnk2 gene deletion blocked diabetes-induced activation of JNK1/2 signaling, caspases 3 and 8, and apoptosis in Sox1(+) neural progenitors of the developing neural tube. Our results show that JNK1 and JNK2 are equally involved in diabetic embryopathy and that the oxidative stress-JNK1/2-caspase pathway mediates the proapoptotic signals and the teratogenicity of maternal diabetes.

  14. Familiarity and Emotional Expression Influence an Early Stage of Face Processing: An Electrophysiological Study

    Science.gov (United States)

    Caharel, Stephanie; Courtay, Nolwenn; Bernard, Christian; Lalonde, Robert; Rebai, Mohamed

    2005-01-01

    Recent data indicate that the familiarity and the emotional expression of faces occur at an early stage of information processing. The goal of the present study was to determine whether these two aspects interact at the structural encoding stage as reflected by the N170 component of event-related potentials in tasks requiring the subjects either…

  15. Early Expressive Vocabulary Skills: A Multi-Method Approach to Measurement

    Science.gov (United States)

    Gatt, Daniela; Grech, Helen; Dodd, Barbara

    2014-01-01

    Investigations of early vocabulary production often employ a single method to measure children's word use. This study examined expressive vocabulary development in children aged 1;0-2;6 years through a combination of picture naming, caregiver report and language sampling. The participants were predominantly exposed to Maltese at home, with…

  16. A spectrum of genes expressed during early stages of rice panicle ...

    Indian Academy of Sciences (India)

    To unravel gene expression patterns during rice inflorescence development, particularly at early stages of panicle and floral organ specification, we have characterized random cloned cDNAs from developmental-stage-specific libraries. cDNA libraries were constructed from rice panicles at the stage of branching and flower ...

  17. The 3' region of Human Papillomavirus type 16 early mRNAs decrease expression

    DEFF Research Database (Denmark)

    Vinther, J.; Rosenstierne, M.W.; Kristiansen, Karen

    2005-01-01

    Background: High risk human papillomavirus (HR-HPV) infects mucosal surfaces and HR-HPV infection is required for development of cervical cancer. Accordingly, enforced expression of the early HR-HPV proteins can induce immortalisation of human cells. In most cervical cancers and cervical cancer...

  18. Early Lexical Expression in Typically Developing Maltese Children: Implications for the Identification of Language Delay

    Science.gov (United States)

    Gatt, Daniela; Grech, Helen; Dodd, Barbara

    2013-01-01

    Limited word production may be the first indicator of impaired language development. The unavailability of normative data and standardized assessments for young Maltese children hinders the identification of early language delays. This study aimed to document Maltese children's expressive vocabulary growth and accompanying range of variation, to…

  19. Genome-wide analysis of gene expression during early Arabidopsis flower development.

    Directory of Open Access Journals (Sweden)

    Frank Wellmer

    2006-07-01

    Full Text Available Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene regulatory networks underlying development. Here, we describe the global gene expression dynamics during early flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with differential expression at distinct stages of flower development. We found that the onset of flower formation is characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance of gene activation during the differentiation of floral organs. Among the genes we identified as differentially expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The expression profiles of these related genes were often highly correlated, indicating similar temporal expression patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant manner, these results suggest a high degree of functional redundancy during early flower development, but also that its extent may vary in a stage-specific manner.

  20. Genome-wide analysis of gene expression during early Arabidopsis flower development.

    Science.gov (United States)

    Wellmer, Frank; Alves-Ferreira, Márcio; Dubois, Annick; Riechmann, José Luis; Meyerowitz, Elliot M

    2006-07-01

    Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene regulatory networks underlying development. Here, we describe the global gene expression dynamics during early flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with differential expression at distinct stages of flower development. We found that the onset of flower formation is characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance of gene activation during the differentiation of floral organs. Among the genes we identified as differentially expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The expression profiles of these related genes were often highly correlated, indicating similar temporal expression patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant manner, these results suggest a high degree of functional redundancy during early flower development, but also that its extent may vary in a stage-specific manner.

  1. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heidi Marjonen

    Full Text Available The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v ethanol for the first 8 days of gestation (GD 0.5-8.5. Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60: we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in

  2. Gene expression in the mouse brain following early pregnancy exposure to ethanol.

    Science.gov (United States)

    Zhang, Christine R; Chong, Suyinn

    2016-12-01

    Exposure to alcohol during early embryonic or fetal development has been linked with a variety of adverse outcomes, the most common of which are structural and functional abnormalities of the central nervous system [1]. Behavioural and cognitive deficits reported in individuals exposed to alcohol in utero include intellectual impairment, learning and memory difficulties, diminished executive functioning, attention problems, poor motor function and hyperactivity [2]. The economic and social costs of these outcomes are substantial and profound [3], [4]. Improvement of neurobehavioural outcomes following prenatal alcohol exposure requires greater understanding of the mechanisms of alcohol-induced damage to the brain. Here we use a mouse model of relatively moderate ethanol exposure early in pregnancy and profile gene expression in the hippocampus and caudate putamen of adult male offspring. The effects of offspring sex and age on ethanol-sensitive hippocampal gene expression were also examined. All array data are available at the Gene Expression Omnibus (GEO) repository under accession number GSE87736.

  3. Altered PDE10A expression detectable early before symptomatic onset in Huntington's disease.

    Science.gov (United States)

    Niccolini, Flavia; Haider, Salman; Reis Marques, Tiago; Muhlert, Nils; Tziortzi, Andri C; Searle, Graham E; Natesan, Sridhar; Piccini, Paola; Kapur, Shitij; Rabiner, Eugenii A; Gunn, Roger N; Tabrizi, Sarah J; Politis, Marios

    2015-10-01

    There is an urgent need for early biomarkers and novel disease-modifying therapies in Huntington's disease. Huntington's disease pathology involves the toxic effect of mutant huntingtin primarily in striatal medium spiny neurons, which highly express phosphodiesterase 10A (PDE10A). PDE10A hydrolyses cAMP/cGMP signalling cascades, thus having a key role in the regulation of striatal output, and in promoting neuronal survival. PDE10A could be a key therapeutic target in Huntington's disease. Here, we used combined positron emission tomography (PET) and multimodal magnetic resonance imaging to assess PDE10A expression in vivo in a unique cohort of 12 early premanifest Huntington's disease gene carriers with a mean estimated 90% probability of 25 years before the predicted onset of clinical symptoms. We show bidirectional changes in PDE10A expression in premanifest Huntington's disease gene carriers, which are associated with the probability of symptomatic onset. PDE10A expression in early premanifest Huntington's disease was decreased in striatum and pallidum and increased in motor thalamic nuclei, compared to a group of matched healthy controls. Connectivity-based analysis revealed prominent PDE10A decreases confined in the sensorimotor-striatum and in striatonigral and striatopallidal projecting segments. The ratio between higher PDE10A expression in motor thalamic nuclei and lower PDE10A expression in striatopallidal projecting striatum was the strongest correlate with higher probability of symptomatic conversion in early premanifest Huntington's disease gene carriers. Our findings demonstrate in vivo, a novel and earliest pathophysiological mechanism underlying Huntington's disease with direct implications for the development of new pharmacological treatments, which can promote neuronal survival and improve outcome in Huntington's disease gene carriers. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights

  4. Antitumor activity of a novel oncrasin analogue is mediated by JNK activation and STAT3 inhibition.

    Directory of Open Access Journals (Sweden)

    Wei Guo

    Full Text Available To optimize the antitumor activity of oncrasin-1, a small molecule identified through synthetic lethality screening on isogenic K-Ras mutant tumor cells, we developed several analogues and determined their antitumor activities. Here we investigated in vitro and in vivo antitumor activity of NSC-743380 (1-[(3-chlorophenyl methyl]-1H-indole-3-methanol, oncrasin-72, one of most potent analogues of oncrasin-1.In vitro antitumor activity was determined in NCI-60 cancer cell line panel using cell viability assay. In vivo antitumor activity was determined in parallel with NSC-741909 (oncrasin-60 in xenograft tumors established in nude mice from A498, a human renal cancer cell line. Changes in gene expression levels and signaling pathway activities upon treatment with NSC-743380 were analyzed in breast and renal cancer cells by Western blot analysis. Apoptosis was demonstrated by Western blot analysis and flow cytometric analysis. NSC-743380 is highly active against a subset of cancer cell lines derived from human lung, colon, ovary, kidney, and breast cancers. The 50% growth-inhibitory concentration (GI(50 for eight of the most sensitive cell lines was ≤ 10 nM. In vivo study showed that NSC-743380 has a better safety profile and greater antitumor activity than NSC-741909. Treatment with NSC-743380 caused complete regression of A498 xenograft tumors in nude mice at the tested doses ranging from 67 mg/kg to 150 mg/kg. Mechanistic characterization revealed that NSC-743380 suppressed the phosphorylation of C-terminal domain of RNA polymerase II, induced JNK activation, inhibited JAK2/STAT3 phosphorylation and suppressed cyclin D1 expression in sensitive human cancer cells. Blocking JNK activation or overexpression of constitutively active STAT3 partially blocked NSC-743380-induced antitumor activity.NSC-743380 induces antitumor activity through modulation of functions in multiple cancer related pathways and could be a potential anticancer agent for some

  5. Decreased hyaluronidase 1 expression is associated with early disease recurrence in human endometrial cancer.

    Science.gov (United States)

    Nykopp, Timo K; Pasonen-Seppänen, Sanna; Tammi, Markku I; Tammi, Raija H; Kosma, Veli-Matti; Anttila, Maarit; Sironen, Reijo

    2015-04-01

    Hyaluronidases (HYAL1 and HYAL2) are key enzymes in the degradation of hyaluronan, and their expression has been altered in various cancer types. We previously showed that hyaluronan accumulation in endometrial carcinomas was correlated with decreased mRNA expression of the HYAL genes. In this study, we analyzed HYAL1 and HYAL2 protein expressions in normal and precancerous endometrial tissues and in endometrial carcinomas. We also investigated whether the protein levels were associated with clinicopathological factors, invasion, and disease recurrence. A total of 343 tissue specimens from normal, atrophic, hypertrophic, and neoplastic endometria were analyzed immunohistochemically for HYAL1 and HYAL2 expressions. The results were correlated with clinicopathological factors, the expression of the epithelial-mesenchymal transition marker, E-cadherin, and disease recurrence. Reduced HYAL1 expression was associated with the progression of endometrial carcinomas towards higher grades and also with large tumor sizes, lymph node metastasis, and lymphovascular invasion. Reduced expression of both HYAL1 and HYAL2 was associated with deep myometrial invasion. HYAL2 expression was primarily constant in neoplastic tissues, but its expression was altered in different phases of the endometrial cycle. In addition, a reduction in HYAL1 expression was associated with the depletion of E-cadherin. In a multivariate analysis, reduced HYAL1 expression was an independent prognostic factor for early disease recurrence (HR 5.13, 95% CI: 1.131-23.270, p=0.034). This study showed that reduced HYAL1 expression was associated with endometrial carcinoma aggressiveness, which further supported the role of hyaluronan degradation in cancer progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development.

    Directory of Open Access Journals (Sweden)

    Lisa Shaw

    Full Text Available Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.

  7. Novel gene expression domains reveal early patterning of the Xenopus endoderm.

    Science.gov (United States)

    Costa, Ricardo M B; Mason, Julia; Lee, Monica; Amaya, Enrique; Zorn, Aaron M

    2003-08-01

    The endoderm gives rise the respiratory and digestive tract epithelia as well as associated organs such as the liver, lungs and pancreas. Investigations examining the molecular basis of embryonic endodermal patterning and organogenesis have been hampered by the lack of regionally expressed molecular markers in the early endoderm. By differentially screening an arrayed cDNA library, combined with an in situ hybridization screen we identified 13 new genes regionally expressed in the early tailbud endoderm of the Xenopus embryo. The putative proteins encoded by these cDNAs include a cell surface transporter, secreted proteins, a protease, a protease inhibitor, an RNA-binding protein, a phosphatase inhibitor and several enzymes. We find that the expression of these genes falls into one of three re-occurring domains in the tailbud embryo; (1). a ventral midgut, (2). posterior to the midgut and (3). in the dorsal endoderm beneath the notochord. Several of these genes are also regionally expressed at gastrula and neurula stages and appear to mark territories that were previously only predicted by the endoderm fate map. This indicates that there is significant positional identity in the early endoderm long before stages 28-32 when regional specification of the endoderm is thought to occur. These new genes provide valuable tools for studying endodermal patterning and organogenesis in Xenopus.

  8. Regulation of Expression in the Uterine Endometrium during Early Pregnancy in Pigs

    Directory of Open Access Journals (Sweden)

    Yohan Choi

    2012-01-01

    Full Text Available Calcium ions play an important role in the establishment and maintenance of pregnancy, but molecular and cellular regulatory mechanisms of calcium ion action in the uterine endometrium are not fully understood in pigs. Previously, we have shown that calcium regulatory molecules, transient receptor potential vanilloid type 5 (TRPV6 and calbindin-D9k (S100G, are expressed in the uterine endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-specific manner, and that estrogen of conceptus origin increases endometrial TRPV6 expression. However, regulation of S100G expression in the uterine endometrium and conceptus expression of S100G has been not determined during early pregnancy. Thus, we investigated regulation of S100G expression by estrogen and interleukin-1β (IL1B in the uterine endometrium and conceptus expression of S100G during early pregnancy in pigs. We obtained uterine endometrial tissues from day (D 12 of the estrous cycle and treated with combinations of steroid hormones, estradiol-17β (E2 and progesterone (P4, and increasing doses of IL1B. Real-time RT-PCR analysis showed that E2 and IL1B increased S100G mRNA levels in the uterine endometrium, and conceptuses expressed S100G mRNA during early pregnancy, as determined by RT-PCR analysis. To determine if endometrial expression of S100G mRNA during the implantation period was affected by the somatic cell nuclear transfer (SCNT procedure, we compared S100G mRNA levels in the uterine endometrium from gilts with SCNT-derived conceptuses with those from gilts with conceptuses derived from natural mating on D12 of pregnancy. Real-time RT-PCR analysis showed that levels of S100G mRNA in the uterine endometrium from gilts carrying SCNT-derived conceptuses was significantly lower than those from gilts carrying conceptuses derived from natural mating. These results showed that S100G expression in the uterine endometrium was regulated by estrogen and IL1B of

  9. cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance

    OpenAIRE

    Sabio, Guadalupe; Davis, Roger J

    2010-01-01

    The cJun NH2-terminal kinase isoform JNK1 is implicated in the mechanism of obesity-induced insulin resistance. Feeding a high fat diet causes activation of the JNK1 signaling pathway, insulin resistance, and obesity in mice. Germ-line ablation of Jnk1 prevents both diet-induced obesity and insulin resistance. Genetic analysis indicates that the effects of JNK1 on insulin resistance can be separated from effects of JNK1 on obesity. Emerging research indicates that JNK1 plays multiple roles in...

  10. Expression of the homeobox genes OTX2 and OTX1 in the early developing human brain

    DEFF Research Database (Denmark)

    Larsen, Karen B; Lutterodt, Melissa C; Møllgård, Kjeld

    2010-01-01

    protein was found in the subcommissural organ, pineal gland, and cerebellum. The early expression of OTX2 and OTX1 in proliferative cell layers of the human fetal brain supports the concept that these homeobox genes are important in neuronal cell development and differentiation: OTX1 primarily......In rodents, the Otx2 gene is expressed in the diencephalon, mesencephalon, and cerebellum and is crucial for the development of these brain regions. Together with Otx1, Otx2 is known to cooperate with other genes to develop the caudal forebrain and, further, Otx1 is also involved in differentiation...... of young neurons of the deeper cortical layers. We have studied the spatial and temporal expression of the two homeobox genes OTX2 and OTX1 in human fetal brains from 7 to 14 weeks postconception by in situ hybridization and immunohistochemistry. OTX2 was expressed in the diencephalon, mesencephalon...

  11. Identification of genes differentially expressed in dorsal and ventral chick midbrain during early development.

    Science.gov (United States)

    Chittka, A; Volff, Jn; Wizenmann, A

    2009-04-27

    During the development of the central nervous system (CNS), patterning processes along the dorsoventral (DV) axis of the neural tube generate different neuronal subtypes. As development progresses these neurons are arranged into functional units with varying cytoarchitecture, such as laminae or nuclei for efficient relaying of information. Early in development ventral and dorsal regions are similar in size and structure. Different proliferation rates and cell migration patterns are likely to result in the formation of laminae or nuclei, eventually. However, the underlying molecular mechanisms that establish these different structural arrangements are not well understood.We undertook a differential display polymerase chain reaction (DD-PCR) screen to identify genes with distinct expression patterns between dorsal and ventral regions of the chick midbrain in order to identify genes which regulate the sculpturing of such divergent neuronal organisation. We focused on the DV axis of the early chick midbrain since mesencephalic alar plate and basal plate develop into laminae and nuclei, respectively. We identified 53 differentially expressed bands in our initial screen. Twenty-six of these could be assigned to specific genes and we could unambiguously show the differential expression of five of the isolated cDNAs in vivo by in situ mRNA expression analysis. Additionally, we verified differential levels of expression of a selected number of genes by using reverse transcriptase (RT) PCR method with gene-specific primers.One of these genes, QR1, has been previously cloned and we present here a detailed study of its early developmental time course and pattern of expression providing some insights into its possible function. Our phylogenetic analysis of QR1 shows that it is the chick orthologue of Sparc-like 1/Hevin/Mast9 gene in mice, rats, dogs and humans, a protein involved in cell adhesion. This study reveals some possible networks, which might be involved in directing

  12. miRNA and target gene expression in menstrual endometria and early pregnancy decidua.

    Science.gov (United States)

    Lv, Yang; Gao, Shujun; Zhang, Yuanyuan; Wang, Liyan; Chen, Xiujuan; Wang, Yu

    2016-02-01

    The role of miRNAs in modulating gene expression in decidualization remains to be determined. We performed a comparative study to identify miRNAs and their potential mRNA targets with different expression levels between endometrium and decidua. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to measure the expression of the miR-146b-5p, miR-181b-5p, miR-424, miR-532, miR-199a-3p, miR-423, miR-22-3p, let-7i-5p, and miR-1 and the predicted target genes IGF2R, LEPR, SGK1, MMP2, MMP10, LIF, IL6, and STAT3 in menstrual endometria and early pregnancy decidua. miR-146b-5p, miR-181b-5p, miR-424, miR-532, and miR-199a-3p were significantly downregulated in early pregnancy decidua, while miR-423, miR-22-3p, let-7i-5p, and miR-1 were significantly upregulated. In addition, the decidua had significantly lower levels of expression of LIF, IL6, MMP2, MMP10, and IGF2R and higher levels of expression of SGK1, LEPR, PROK1, and STAT3 than the menstrual endometria group. Our results provide new insights into the expression of miRNAs that regulate genes involved in decidualization and the maintenance of early pregnancy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Early expression of surfactant proteins D in Fusarium solani infected rat cornea.

    Science.gov (United States)

    Che, Cheng-Ye; Li, Xiao-Jing; Jia, Wen-Yan; Li, Na; Xu, Qiang; Lin, Jing; Wang, Qing; Jiang, Nan; Hu, Li-Ting; Zhao, Gui-Qiu

    2012-01-01

    To investigate the early expression of surfactant proteins D(SP-D) in Fusarium solani infected rat cornea. Wistar rats were divided into group A, B and C randomly. The right eyes were chosen as the experiment one. Group A was control group. Group B was not inoculated with Fusarium solani. Group C was taken as fusarium solani keratitis model. Five rats in group B and C were executed randomly at 6, 12, 24, 48 and 96 hours respectively after the experimental model being established. The expression of SP-D was assessed through immunohistochemistry and reverse transcription polymerase chain reaction(RT-PCR). RT-PCR detected that the SP-D mRNA expression was low in the corneal of normal rats and group B. The expression of fungal infected cornea increased gradually and reached the peak at 24 hours in group C. The synchronous expression of group B and C were in significant difference (Pfusarium solani infected cornea. SP-D may play a role in the early innate immunity response of the corneal resistance to Fusarium solani infection.

  14. Early mesodermal expression of Hox genes in the polychaete Alitta virens (Annelida, Lophotrochozoa).

    Science.gov (United States)

    Kulakova, Milana A; Bakalenko, Nadezhda I; Novikova, Elena L

    2017-01-01

    Hox genes are the key regulators of axial regionalization of bilaterian animals. However, their main function is fulfilled differently in the development of animals from different evolutionary branches. Early patterning of the developing embryos by Hox gene expression in the representatives of protostomes (arthropods, mollusks) starts in the ectodermal cells. On the contrary, the instructive role of the mesoderm in the axial patterning was demonstrated for vertebrates. This makes it difficult to understand if during the axial regionalization of ancestral bilaterians Hox genes first expressed in the developing mesoderm or the ectoderm. To resolve this question, it is necessary to expand the number of models for investigation of the early axial patterning. Here, we show that three Hox genes of the polychaete Alitta virens (formerly Nereis virens, Annelida, Lophotrochozoa)-Hox2, Hox4, and Lox5-are expressed in the mesodermal anlagen of the three future larval chaetigerous segments in spatially colinear manner before the initiation of Hox expression in the larval ectoderm. This is the first evidence of sequential Hox gene expression in the mesoderm of protostomes to date.

  15. SSX2-4 expression in early-stage non-small cell lung cancer

    DEFF Research Database (Denmark)

    Greve, K B V; Pøhl, M; Olsen, K E

    2014-01-01

    The expression of cancer/testis antigens SSX2, SSX3, and SSX4 in non-small cell lung cancers (NSCLC) was examined, since they are considered promising targets for cancer immunotherapy due to their immunogenicity and testis-restricted normal tissue expression. We characterized three SSX antibodies...... was only detected in 5 of 143 early-stage NSCLCs, which is rare compared to other cancer/testis antigens (e.g. MAGE-A and GAGE). However, further studies are needed to determine whether SSX can be used as a prognostic or predictive biomarker in NSCLC....

  16. Distinct GAGE and MAGE-A expression during early human development indicate specific roles in lineage differentiation

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Harkness, Linda; Kassem, Moustapha

    2008-01-01

    BACKGROUND: Expression of cancer/testis-associated proteins (CTAs) has traditionally been considered to be restricted to germ cells in normal tissues and to different types of malignancies. We have evaluated the potential role of CTAs in early human development. METHODS: Using immunohistochemistry...... and RT-PCR, we investigated the expression of CTAs in differentiated human embryonic stem cells (hESC) and in late embryos and early fetuses. RESULTS: We found that melanoma antigen A (MAGE-A) family members were expressed during differentiation of hESC to embryoid bodies and in teratomas, and overlapped...... with expression of the neuroectodermal markers beta-tubulin 3, Pax6 and nestin. A widespread expression of MAGE-A was also observed in neurons of the early developing central nervous system and peripheral nerves. G antigen (GAGE) expression was present in the early ectoderm of embryos, including cells...

  17. Depression in Childhood and Early Adolescence: Parental Expressed Emotion and Family Functioning

    OpenAIRE

    Tompson, MC; O Connor, EE; Kemp, GN; Langer, DA; Asarnow, JR

    2015-01-01

    Across development depression is associated with impairments in interpersonal and family functioning. In turn, these impairments may predict a more negative depression course and outcome. This study examined family functioning and parental Expressed Emotion (EE) among depressed youth during middle childhood and early adolescence and their relationship to demographic and clinical factors. Data were drawn from pretreatment evaluations of 132 depressed youth ages 7–14 and their families enrolled...

  18. Longitudinal Relations Among Language Skills, Anger Expression, and Regulatory Strategies in Early Childhood

    OpenAIRE

    Roben, Caroline K.P.; Cole, Pamela M.; Armstrong, Laura Marie

    2012-01-01

    Researchers have suggested that as children’s language skill develops in early childhood, it comes to help children regulate their emotions (Cole, Armstrong, & Pemberton, 2010; Kopp, 1989), but the pathways by which this occurs have not been studied empirically. In a longitudinal study of 120 children from 18 to 48 months of age, associations among child language skill, observed anger expression, and regulatory strategies during a delay task were examined. Toddlers with better language skill,...

  19. Early Stress Evokes Age-Dependent Biphasic Changes in Hippocampal Neurogenesis, Bdnf Expression, and Cognition

    Science.gov (United States)

    Suri, Deepika; Veenit, Vandana; Sarkar, Ambalika; Thiagarajan, Devi; Kumar, Arvind; Nestler, Eric J.; Galande, Sanjeev; Vaidya, Vidita A.

    2014-01-01

    Background Adult-onset stressors exert opposing effects on hippocampal neurogenesis and cognition, with enhancement observed following mild stress and dysfunction following severe chronic stress. While early life stress evokes persistent changes in anxiety, it is unknown whether early stress differentially regulates hippocampal neurogenesis, trophic factor expression, and cognition across the life span. Methods Hippocampal-dependent cognitive behavior, neurogenesis, and epigenetic regulation of brain-derived neurotrophic factor (Bdnf) expression was examined at distinct time points across the life span in rats subjected to the early stress of maternal separation (ES) and control groups. We also examined the influence of chronic antidepressant treatment on the neurogenic, neurotrophic, and cognitive changes in middle-aged ES animals. Results Animals subjected to early stress of maternal separation examined during postnatal life and young adulthood exhibited enhanced hippocampal neurogenesis, decreased repressive histone methylation at the Bdnf IV promoter along with enhanced Bdnf levels, and improved performance on the stress-associated Morris water maze. Strikingly, opposing changes in hippocampal neurogenesis and epigenetic regulation of Bdnf IV expression, concomitant with impairments on hippocampal-dependent cognitive tasks, were observed in middle-aged ES animals. Chronic antidepressant treatment with amitriptyline attenuated the maladaptive neurogenic, epigenetic, transcriptional, and cognitive effects in middle-aged ES animals. Conclusions Our study provides novel insights into the short- and long-term consequences of ES, demonstrating both biphasic and unique, age-dependent changes at the molecular, epigenetic, neurogenic, and behavioral levels. These results indicate that early stress may transiently endow animals with a potential adaptive advantage in stressful environments but across a life span is associated with long-term deleterious effects. PMID

  20. Early expression of hypocretin/orexin in the chick embryo brain.

    Directory of Open Access Journals (Sweden)

    Kyle E Godden

    Full Text Available Hypocretin/Orexin (H/O neuropeptides are released by a discrete group of neurons in the vertebrate hypothalamus which play a pivotal role in the maintenance of waking behavior and brain state control. Previous studies have indicated that the H/O neuronal development differs between mammals and fish; H/O peptide-expressing cells are detectable during the earliest stages of brain morphogenesis in fish, but only towards the end of brain morphogenesis (by ∼ 85% of embryonic development in rats. The developmental emergence of H/O neurons has never been previously described in birds. With the goal of determining whether the chick developmental pattern was more similar to that of mammals or of fish, we investigated the emergence of H/O-expressing cells in the brain of chick embryos of different ages using immunohistochemistry. Post-natal chick brains were included in order to compare the spatial distribution of H/O cells with that of other vertebrates. We found that H/O-expressing cells appear to originate from two separate places in the region of the diencephalic proliferative zone. These developing cells express the H/O neuropeptide at a comparatively early age relative to rodents (already visible at 14% of the way through fetal development, thus bearing a closer resemblance to fish. The H/O-expressing cell population proliferates to a large number of cells by a relatively early embryonic age. As previously suggested, the distribution of H/O neurons is intermediate between that of mammalian and non-mammalian vertebrates. This work suggests that, in addition to its roles in developed brains, the H/O peptide may play an important role in the early embryonic development of non-mammalian vertebrates.

  1. Taking out the JNK: A window of opportunity to improve cancer therapy.

    Science.gov (United States)

    Ferrao, Petranel T

    2016-05-01

    c-JUN-N-terminal kinase (JNK) signaling is a stress-induced response that enables survival of normal cells and is also utilized by cancer cells to evade therapy. Combining JNK inhibitors with standard therapies provides a potential strategy for overcoming drug resistance. Use of the optimal combination dosing and scheduling may substantially improve outcomes for cancer patients.

  2. IL-33 attenuates anoxia/reoxygenation-induced cardiomyocyte apoptosis by inhibition of PKCβ/JNK pathway.

    Directory of Open Access Journals (Sweden)

    Tao Rui

    Full Text Available Interleukin-33 (IL-33 is a new member of the IL-1 cytokine family. The objectives of present study are to assess whether IL-33 can protect cardiomyocytes from anoxia/reoxygenation (A/R-induced injury and the mechanism involved in the protection.Cardiomyocytes derived from either wild type or JNK1(-/- mice were challenged with an A/R with or without IL-33. Myocyte apoptosis was assessed by measuring caspase 3 activity, fragmented DNA and TUNEL staining. In addition, cardiomyocyte oxidative stress was assessed by measuring DHR123 oxidation; PKCβII and JNK phosphorylation were assessed with Western blot.Challenge of cardiomyocytes with an A/R resulted in cardiomyocyte oxidative stress, PKCβII and JNK phosphorylation, and myocyte apoptosis. Treatment of the cardiomyocytes with IL-33 attenuated the A/R-induced myocyte oxidative stress, prevented PKCβII and JNK phosphorylation and attenuated the A/R-induced myocyte apoptosis. The protective effect of the IL-33 did not show in cardiac myocytes with siRNA specific to PKCβII or myocytes deficient in JNK1. Inhibition of PKCβII prevented the A/R-induced JNK phosphorylation, but inhibition of JNK1 showed no effect on A/R-induced PKCβII phosphorylation.Our results indicate that IL-33 prevents the A/R-induced myocyte apoptosis through inhibition of PKCβ/JNK pathway.

  3. Role of the PKCβII/JNK signaling pathway in acute glucose fluctuation-induced apoptosis of rat vascular endothelial cells.

    Science.gov (United States)

    Wu, Na; Shen, Haitao; Wang, Yanjun; He, Bing; Zhang, Yongyan; Bai, Yu; Du, Runyu; Du, Qiang; Han, Ping

    2017-08-01

    The purpose of this study was to investigate the mechanism of vascular endothelial cell apoptosis induced by acute blood glucose fluctuation. Thirty rats were assigned to three groups: normal saline (SAL group), constant high glucose (CHG group) and acute blood glucose fluctuation (AFG) group. Other forty rats were assigned to SAL group, AFG group, LY group (PKCβ inhibitor LY333531 was injected intragastrically to the rats who were under acute blood glucose fluctuation) and SP group (JNK inhibitor SP600125 was injected intraperitoneally to the rats who were under acute blood glucose fluctuation). Oxidative stress and inflammatory cytokines were detected. TUNEL was performed to detect apoptosis. Pro-caspase-3, caspase-3 p17, JNK, PKC-βII and insulin signaling-related protein expression were tested by Western blotting. After administration of LY333531, AFG-induced membrane translocation of PKCβII protein was inhibited, but SP600125 failed to affect AFG-induced PKCβII membrane translocation. After administration of LY333531, the AFG-induced increase in JNK activity was significantly compromised. LY333531 inhibited AFG-induced oxidative stress. However, SP600125 only slightly inhibited AFG-induced oxidative stress reaction (P > 0.05). Both LY333531 and SP600125 can reverse AFG-induced endothelial cell apoptosis increase, inflammatory cytokines levels rise and insulin signaling impairment. It is necessary to actively control blood glucose and avoid significant glucose fluctuation. PKCβII/JNK may serve as a target, and inhibitors of PKCβII/JNK may be used to help prevent cardiovascular diseases in patients with poor glucose control or significant glucose fluctuation.

  4. ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes

    Science.gov (United States)

    Wang, Jieting; Deng, Xiaobei; Zhang, Fang; Chen, Deliang; Ding, Wenjun

    2014-03-01

    It has been documented in in vitro studies that zinc oxide nanoparticles (ZnO NPs) are capable of inducing oxidative stress, which plays a crucial role in ZnO NP-mediated apoptosis. However, the underlying molecular mechanism of apoptosis in neurocytes induced by ZnO NP exposure was not fully elucidated. In this study, we investigated the potential mechanisms of apoptosis provoked by ZnO NPs in cultured primary astrocytes by exploring the molecular signaling pathways triggered after ZnO NP exposure. ZnO NP exposure was found to reduce cell viability in MTT assays, increase lactate dehydrogenase (LDH) release, stimulate intracellular reactive oxygen species (ROS) generation, and elicit caspase-3 activation in a dose- and time-dependent manner. Apoptosis occurred after ZnO NP exposure as evidenced by nuclear condensation and poly(ADP-ribose) polymerase-1 (PARP) cleavage. A decrease in mitochondrial membrane potential (MMP) with a concomitant increase in the expression of Bax/Bcl-2 ratio suggested that the mitochondria also mediated the pathway involved in ZnO NP-induced apoptosis. In addition, exposure of the cultured cells to ZnO NPs led to phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK), and p38 mitogen-activated protein kinase (p38 MAPK). Moreover, JNK inhibitor (SP600125) significantly reduced ZnO NP-induced cleaved PARP and cleaved caspase-3 expression, but not ERK inhibitor (U0126) or p38 MAPK inhibitor (SB203580), indicating that JNK signaling pathway is involved in ZnO NP-induced apoptosis in primary astrocytes.

  5. Developmental Associations Between Conduct Problems and Expressive Language in Early Childhood: A Population-Based Study.

    Science.gov (United States)

    Girard, Lisa-Christine; Pingault, Jean-Baptiste; Doyle, Orla; Falissard, Bruno; Tremblay, Richard E

    2016-08-01

    Conduct problems have been associated with poor language development, however the direction of this association in early childhood remains unclear. This study examined the longitudinal directional associations between conduct problems and expressive language ability. Children enrolled in the UK Millennium Cohort Study (N = 14, 004; 50.3 % boys) were assessed at 3 and 5 years of age. Parent reports of conduct problems and standardised assessments of expressive language were analyzed using cross-lagged modeling. Conduct problems at 3 years was associated with poorer expressive language at 5 years and poorer expressive language at 3 years was associated with increased conduct problems by 5 years. The results support reciprocal associations, rather than a specific unidirectional path, which is commonly found with samples of older children. The emergence of problems in either domain can thus negatively impact upon the other over time, albeit the effects were modest. Studies examining the effects of intervention targeting conduct problems and language acquisition prior to school entry may be warranted in testing the efficacy of prevention programmes related to conduct problems and poor language ability early in childhood.

  6. Expression of IFNAR1 and IFNAR2 in cattle placenta during early pregnancy.

    Science.gov (United States)

    Wang, W; Liu, R; Liang, X; Zhao, Q; Qu, P; Yao, K; Jiang, M; Luo, Y; Zhang, W; Qing, S

    2017-12-01

    Interferon-tau (IFNT), a type I interferon, is an antiluteolytic factor secreted by trophoderm during pregnancy. IFNT transmitted signals or stimulated the expression of some factors to build maternal recognition and keep pregnancy by binding its receptors, IFNT receptor 1(IFNAR1) and IFNT receptor 2 (IFNAR2). Up to now, the expression model and roles of IFNAR1 and IFNAR2 in placenta have not been investigated in cattle. In this study, the localization and expression of IFNAR1 and IFNAR2 in the cattle placenta at days 18-50 of pregnancy were detected by histological examination, immunofluorescence staining and real-time qPCR. The results showed that IFNAR1 mainly distributed in chorioallantoic membrane, endometrial epithelium, cotyledon and caruncle during the early pregnancy of cattle with change in time- and position-dependent. IFNAR1 and IFNAR2 mRNA expression were mainly detected in chorioallantoic membrane and cotyledon, and markedly increased along with pregnancy process. Moreover, the mRNA expression level of IFNAR1 in chorioallantoic membrane and cotyledon was higher than that of IFNAR2. IFNAR mRNA was also expressed in caruncle tissues, which experienced a tendency of decrease from days 21 to 36, followed by increase after days 36. These results provide morphological basis and quantitative data for investigating the roles of IFNAR1 and IFNAR2 on development of cattle placenta and pregnancy maintenance. © 2017 Blackwell Verlag GmbH.

  7. Coordination of gaze, facial expressions and vocalizations of early infant communication with mother and father.

    Science.gov (United States)

    Colonnesi, Cristina; Zijlstra, Bonne J H; van der Zande, Annesophie; Bögels, Susan M

    2012-06-01

    Gaze direction, expressive behaviors and vocalizations are infants' first form of emotional communication. The present study examined the emotional configurations of these three behaviors during face-to-face situations and the effect of infants' and parents' gender. We observed 34 boys and 32 girls (mean age of 18 weeks) during the normal face-to-face interaction with their mother and with their father. Three main behaviors and their temporal co-occurrence were observed: gaze direction at the partner as an indication of infants' attention, positive and negative facial expressions as emotional communication, and vocalizations as first forms of utterances. Pairwise, infants' production of vocalizations, positive facial expressions and gaze were strongly coordinated with each. In addition, the majority of vocalizations produced during positive facial expressions coincided with gaze at the parent. Results on the effect of gender showed that infants (both boys and girls) produced coordinated patterns of positive facial expressions and gaze more often during the interaction with the mother as compared to the interaction with the father. Results contribute to the research on infants' early expression of emotions and gender differences. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. JNK inhibition sensitizes tumor cells to radiation-induced premature senescence via Bcl-2/ROS/DDR signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Seon; Lee, Je Jung [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    Premature senescence is considered as a cellular defense mechanism to prevent tumorigenesis. Although recent evidences demonstrate that c-Jun N-terminal kinase (JNK) is involved in the senescence process, the target and exact mechanism of JNK signaling in the regulation of cell proliferation has yet to be defined. In this study, we investigated the role of JNK in premature senescence and demonstrated JNK inhibition sensitized tumor cells to radiation-induced premature senescence.

  9. Inhibition of JNK Sensitizes Hypoxic Colon Cancer Cells to DNA Damaging Agents

    Science.gov (United States)

    Vasilevskaya, Irina A.; Selvakumaran, Muthu; Hierro, Lucia Cabal; Goldstein, Sara R.; Winkler, Jeffrey D.; O'Dwyer, Peter J.

    2015-01-01

    Purpose We showed previously that in HT29 colon cancer cells, modulation of hypoxia-induced stress signaling affects oxaliplatin cytotoxicity. To further study the significance of hypoxia-induced signaling through JNK, we set out to investigate how modulation of kinase activities influences cellular responses of hypoxic colon cancer cells to cytotoxic drugs. Experimental design In a panel of cell lines we investigated effects of pharmacological and molecular inhibition of JNK on sensitivity to oxaliplatin, SN-38 and 5-FU. Combination studies for the drugs and JNK inhibitor CC-401 were carried out in vitro and in vivo. Results Hypoxia-induced JNK activation was associated with resistance to oxaliplatin. CC-401 in combination with chemotherapy demonstrates synergism in colon cancer cell lines, though synergy is not always hypoxia-specific. A more detailed analysis focused on HT29 and SW620 (responsive), and HCT116 (non-responsive) lines. In HT29 and SW620 cells CC-401 treatment results in greater DNA damage in the sensitive cells. In vivo, potentiation of bevacizumab, oxaliplatin, and the combination by JNK inhibition was confirmed in HT29-derived mouse xenografts, where tumor growth delay was greater in the presence of CC-401. Finally, stable introduction of a dominant negative JNK1, but not JNK2, construct into HT29 cells rendered them more sensitive to oxaliplatin under hypoxia, suggesting differing input of JNK isoforms in cellular responses to chemotherapy. Conclusions These findings demonstrate that signaling through JNK is a determinant of response to therapy in colon cancer models, and support the testing of JNK inhibition to sensitize colon tumors in the clinic. PMID:26023085

  10. Gene expression profiles deciphering leaf senescence variation between early- and late-senescence cotton lines.

    Directory of Open Access Journals (Sweden)

    Xiangqiang Kong

    Full Text Available Leaf senescence varies greatly among genotypes of cotton (Gossypium hirsutium L, possibly due to the different expression of senescence-related genes. To determine genes involved in leaf senescence, we performed genome-wide transcriptional profiling of the main-stem leaves of an early- (K1 and a late-senescence (K2 cotton line at 110 day after planting (DAP using the Solexa technology. The profiling analysis indicated that 1132 genes were up-regulated and 455 genes down-regulated in K1 compared with K2 at 110 DAP. The Solexa data were highly consistent with, and thus were validated by those from real-time quantitative PCR (RT-PCR. Most of the genes related to photosynthesis, anabolism of carbohydrates and other biomolecules were down-regulated, but those for catabolism of proteins, nucleic acids, lipids and nutrient recycling were mostly up-regulated in K1 compared with K2. Fifty-one differently expressed hormone-related genes were identified, of which 5 ethylene, 3 brassinosteroid (BR, 5 JA, 18 auxin, 8 GA and 1 ABA related genes were up-regulated in K1 compared with K2, indicating that these hormone-related genes might play crucial roles in early senescence of K1 leaves. Many differently expressed transcription factor (TF genes were identified and 11 NAC and 8 WRKY TF genes were up-regulated in K1 compared with K2, suggesting that TF genes, especially NAC and WRKY genes were involved in early senescence of K1 leaves. Genotypic variation in leaf senescence was attributed to differently expressed genes, particularly hormone-related and TF genes.

  11. Effects of early postnatal environment on hypothalamic gene expression in OLETF rats.

    Directory of Open Access Journals (Sweden)

    Yonwook J Kim

    Full Text Available Previous reports have shown that the early postnatal environment has the ability to modify the obesity phenotype of Otsuka Long-Evans Tokushima Fatty (OLETF rats. To determine whether this early postnatal environment affects hypothalamic signaling systems involved in energy balance, OLETF pups and lean Long-Evans Tokushima Otsuka (LETO pups were cross-fostered to same or opposite strain Dams (designated as LdLp: LETO pups with LETO dams; LdOp: OLETF pups with LETO dams; OdLp: LETO pups with OLETF dams; and OdOp: OLETF pups with OLETF dams. Hypothalamic gene expression was examined at postnatal day 23 (PND 23 and PND 90 as OdOp rats started to gain more body weight at PND 23 and developed obesity at PND 90 relative to lean control LdLp rats. On PND 23, neuropeptide Y (Npy gene expression was significantly increased in the dorsomedial hypothalamus (DMH in both LdOp and OdOp pups compared to LdLp pups. Maternal environment did not affect DMH Npy expression in LETO weanlings. On PND 90, maternal environment during the cross-fostering period had a major effect on DMH Npy expression. Levels were significantly increased in both OdOp and OdLp rats relative to those in LdOp rats and LdLp controls. Reduced expression of Npy in the DMH of LdOp rats was consistent with their reduction of body weight compared to OdOp rats. In contrast to DMH Npy, gene expression for Npy and proopiomelanocortin in the arcuate nucleus appeared to appropriately respond to alterations in body weight and plasma leptin levels. Levels of oxytocin gene expression in the paraventricular nucleus were lower in offspring raised by LETO dams apparently responding to the higher DMH NPY levels. Together, our results demonstrate effects of both genotype and early postnatal environment on obesity of OLETF rats and further suggest an important role of DMH NPY in the development of obesity of OLETF rats.

  12. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis.

    Science.gov (United States)

    Xiong, Fen; Du, Xinhua; Hu, Jianyan; Li, Tingting; Du, Shanshan; Wu, Qiang

    2014-07-01

    MicroRNAs (miRNAs) - as negative regulators of target genes - are associated with various human diseases, but their precise role(s) in diabetic retinopathy (DR) remains to be elucidated. The aim of this study was to elucidate the involvement of miRNAs in early DR using in silico analysis to explore their gene expression patterns. We used the streptozotocin (STZ)-induced diabetic rat to investigate the roles of miRNAs in early DR. Retinal miRNA expression profiles from diabetic versus healthy control rats were examined by miRNA array analysis. Based on several bioinformatic systems, specifically, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified signatures of the potential pathological processes, gene functions, and signaling pathways that are influenced by dysregulated miRNAs. We used quantitative real-time polymerase chain reaction (qRT-PCR) to validate six (i.e. those with significant changes in expression levels) of the 17 miRNAs that were detected in the miRNA array. We also describe the significant role of the miRNA-gene network, which is based on the interactions between miRNAs and target genes. GO analysis of the 17 miRNAs detected in the miRNA array analysis revealed the most prevalent miRNAs to be those related to biological processes, olfactory bulb development and axonogenesis. These miRNAs also exert significant influence on additional pathways, including the mitogen-activated protein and calcium signaling pathways. Six of the seventeen miRNAs were chosen for qRT-PCR validation. With the exception of a slight difference in miRNA-350, our results are in close agreement with the differential expressions detected by array analysis. This study, which describes miRNA expression during the early developmental phases of DR, revealed extensive miRNA interactions. Based on both their target genes and signaling pathways, we suggest that miRNAs perform critical regulatory functions during the early stages of DR

  13. Effects of task demands on the early neural processing of fearful and happy facial expressions.

    Science.gov (United States)

    Itier, Roxane J; Neath-Tavares, Karly N

    2017-05-15

    Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200 to 350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150 to 350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Elevated nuclear CCND1 expression confers an unfavorable prognosis for early stage lung adenocarcinoma patients

    Science.gov (United States)

    Xu, Ping; Zhao, Mengyang; Liu, Zhen; Liu, Yiyi; Chen, Yiyu; Luo, Rongcheng; Fang, Weiyi

    2015-01-01

    Purposes: To examine the expression pattern of CCND1 and analyze the correlation of its nuclear expression with clinicopathologic features and prognosis in lung adenocarcinoma. Methods: CCND1 mRNA and protein levels in lung adenocarcinoma tissues were examined. The relationship between nuclear CCND1 protein expression and clinical features including survival prognosis was analyzed. Results: CCND1 mRNA levels were markedly increased in lung adenocarcinoma (P=0.0019). Western blot analysis confirmed increased nuclear CCND1 protein expression in lung adenocarcinoma specimens. Immunohistochemistry analysis confirmed that CCND1 protein was predominantly nuclear localized in lung adenocarcinoma cells and significantly elevated relative to normal lung tissues (Plung adenocarcinoma patients by strata analysis. Finally, nuclear CCND1 expression tended to be an independent prognostic indicator (P=0.087) for lung adenocarcinoma patient survival. Conclusion: Increased nuclear CCND1 is a potential unfavorable prognostic factor for lung adenocarcinoma patients, especially those with clinical early stage (stage I+II). PMID:26884860

  15. [Effects of gibberellins on early development and IGF-1 expression in female rats].

    Science.gov (United States)

    Guan, Lan; Zhang, Zhe; Zhong, Caigao; Liu, Xinmin; Wang, An; Zeng, Ming

    2012-05-01

    To explore the effects of plant growth regulator gibberellin on early development and IGF-1 expression in female rats. Forty weaned female SD rats were randomly divided into four groups and fed with basic diet. Gibberellin was administered intragastrically at the levels of 0, 2.0, 100.0 and 200.0 mg/kg respectively for 15 days. Body weight and body length were measured weekly and the time of vaginal opening was observed every day. Liver, uterus and ovary were dissected after exposure for 15 days. Total RNA of liver was extracted and the expression of IGF-1 and IGFBP-1 mRNA was detected by RT-PCR. Compared with the control group, no significant differences of body weight, body length, vaginal opening time, as well as the organ coefficients of liver, uterus and ovary were observed in gibberellin-treated groups. There was no significant change on the expressions of IGF-1 and IGFBP-1 in the liver of gibberellin-treated groups, although the expression of IGFBP-1 was more than IGF-1 in a few samples. Organ coefficient of liver in high dose group was significantly lower than that in the control group (P Gibberellin does not cause abnormal change on growth and development as well as the expression of IGF-1 and IGFBP-1 in liver of female SD rats, but at the level of 200.0 mg/kg gibberellin may induce damages in liver.

  16. Expression of antimicrobial peptides and interleukin-8 during early stages of inflammation: An experimental gingivitis study.

    Science.gov (United States)

    Dommisch, H; Staufenbiel, I; Schulze, K; Stiesch, M; Winkel, A; Fimmers, R; Dommisch, J; Jepsen, S; Miosge, N; Adam, K; Eberhard, J

    2015-12-01

    In the oral cavity, the epithelial surface is constantly exposed to a number of different microorganisms that are organized in a well-structured biofilm. The aim of this study was to monitor gingival expression of antimicrobial peptides (AMPs) and interleukin-8 (IL-8) in an early gingivitis model. Experimental gingivitis was allowed to develop in healthy volunteers (n = 17). Bleeding on probing (BOP%) and gingival crevicular fluid volume (GCF) were assessed at baseline and day 1, 3, 5, 7 and 14. Expression of AMPs (human beta-defensin-2, hBD-2; CC-chemokine ligand 20, CCL20; psoriasin, pso/S100A7) and IL-8 was analyzed by immunohistochemistry in gingival biopsies. In addition, hBD-2 and IL-8 protein expression was monitored in GCF using the ELISA technology. Experimental gingivitis gradually developed with an increase in BOP scores and GCF volume over time. In GCF, elevated concentrations of hBD-2 and IL-8 were monitored at day 1, 5 and 7 (p ≤ 0.0002). Immunohistochemical analysis of gingival sections demonstrated increased staining for hBD-2 at day 3, whereas the CCL20, pso/S100A7, and IL-8 expression was increased at later time points (p gingival inflammation. Differential temporal expression for AMPs may ensure a constant antimicrobial activity against changes in the bacterial composition of the growing dental biofilm. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Expression of phosphatidylcholine biosynthetic enzymes during early embryogenesis in the amphibian Bufo arenarum.

    Science.gov (United States)

    Fernández-Bussy, Rodrigo; Mouguelar, Valeria; Banchio, Claudia; Coux, Gabriela

    2015-04-01

    In the principal route of phosphatidylcholine (PC) synthesis the regulatory steps are catalysed by CTP:phosphocholine cytidylyltransferase (CCT) and choline kinase (CK). Knock-out mice in Pcyt1a (CCT gene) and Chka1 (CK gene) resulted in preimplantation embryonic lethality, demonstrating the essential role of this pathway. However, there is still a lack of detailed CCT and CK expression analysis during development. The aim of the current work was to study the expression during early development of both enzymes in the external-fertilization vertebrate Bufo arenarum. Reverse transcription polymerase chain reaction (RT-PCR) and western blot confirmed their presence in unfertilized eggs. Analysis performed in total extracts from staged embryos showed constant protein levels of both enzymes until the 32-cell stage: then they decreased, reaching a minimum in the gastrula before starting to recover. CTP:phosphocholine cytidylyltransferase is an amphitropic enzyme that inter-converts between cytosolic inactive and membrane-bound active forms. Immunoblot analysis demonstrated that the cytosolic:total CCT protein ratio does not change throughout embryogenesis, suggesting a progressive decline of CCT activity in early development. However, PC (and phosphatidylethanolamine) content per egg/embryo remained constant throughout the stages analysed. In conclusion, the current data for B. arenarum suggest that net synthesis of PC mediated by CCT and CK is not required in early development and that supplies for membrane biosynthesis are fulfilled by lipids already present in the egg/embryo reservoirs.

  18. Gene expression in the mouse brain following early pregnancy exposure to ethanol

    Directory of Open Access Journals (Sweden)

    Christine R. Zhang

    2016-12-01

    Full Text Available Exposure to alcohol during early embryonic or fetal development has been linked with a variety of adverse outcomes, the most common of which are structural and functional abnormalities of the central nervous system [1]. Behavioural and cognitive deficits reported in individuals exposed to alcohol in utero include intellectual impairment, learning and memory difficulties, diminished executive functioning, attention problems, poor motor function and hyperactivity [2]. The economic and social costs of these outcomes are substantial and profound [3,4]. Improvement of neurobehavioural outcomes following prenatal alcohol exposure requires greater understanding of the mechanisms of alcohol-induced damage to the brain. Here we use a mouse model of relatively moderate ethanol exposure early in pregnancy and profile gene expression in the hippocampus and caudate putamen of adult male offspring. The effects of offspring sex and age on ethanol-sensitive hippocampal gene expression were also examined. All array data are available at the Gene Expression Omnibus (GEO repository under accession number GSE87736.

  19. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer.

    Science.gov (United States)

    Heegaard, Niels H H; Schetter, Aaron J; Welsh, Judith A; Yoneda, Mitsuhiro; Bowman, Elise D; Harris, Curtis C

    2012-03-15

    Circulating micro-RNA (miR) profiles have been proposed as promising diagnostic and prognostic biomarkers for cancer, including lung cancer. We have developed methods to accurately and reproducibly measure micro-RNA levels in serum and plasma. Here, we study paired serum and plasma samples from 220 patients with early stage nonsmall cell lung cancer (NSCLC) and 220 matched controls. We use qRT-PCR to measure the circulating levels of 30 different miRs that have previously been reported to be differently expressed in lung cancer tissue. Duplicate RNA extractions were performed for 10% of all samples, and micro-RNA measurements were highly correlated among those duplicates. This demonstrates high reproducibility of our assay. The expressions of miR-146b, miR-221, let-7a, miR-155, miR-17-5p, miR-27a and miR-106a were significantly reduced in the serum of NSCLC cases, while miR-29c was significantly increased. No significant differences were observed in plasma of patients compared with controls. Overall, expression levels in serum did not correlate well with levels in plasma. In secondary analyses, reduced plasma expression of let-7b was modestly associated with worse cancer-specific mortality in all patients, and reduced serum expression of miR-223 was modestly associated with cancer-specific mortality in stage IA/B patients. MiR profiles also showed considerable differences comparing African American and European Americans. In summary, we found significant differences in miR expression when comparing cases and controls and find evidence that expression of let-7b is associated with prognosis in NSCLC. Copyright © 2011 UICC.

  20. Lycium barbarum (wolfberry reduces secondary degeneration and oxidative stress, and inhibits JNK pathway in retina after partial optic nerve transection.

    Directory of Open Access Journals (Sweden)

    Hongying Li

    Full Text Available Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP are neuroprotective for retinal ganglion cells (RGCs in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1. This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina.

  1. Brain Network Involved in the Recognition of Facial Expressions of Emotion in the Early Blind

    Directory of Open Access Journals (Sweden)

    Ryo Kitada

    2011-10-01

    Full Text Available Previous studies suggest that the brain network responsible for the recognition of facial expressions of emotion (FEEs begins to emerge early in life. However, it has been unclear whether visual experience of faces is necessary for the development of this network. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI experiments to test the hypothesis that the brain network underlying the recognition of FEEs is not dependent on visual experience of faces. Early-blind, late-blind and sighted subjects participated in the psychophysical experiment. Regardless of group, subjects haptically identified basic FEEs at above-chance levels, without any feedback training. In the subsequent fMRI experiment, the early-blind and sighted subjects haptically identified facemasks portraying three different FEEs and casts of three different shoe types. The sighted subjects also completed a visual task that compared the same stimuli. Within the brain regions activated by the visually-identified FEEs (relative to shoes, haptic identification of FEEs (relative to shoes by the early-blind and sighted individuals activated the posterior middle temporal gyrus adjacent to the superior temporal sulcus, the inferior frontal gyrus, and the fusiform gyrus. Collectively, these results suggest that the brain network responsible for FEE recognition can develop without any visual experience of faces.

  2. Hyperoside Downregulates the Receptor for Advanced Glycation End Products (RAGE and Promotes Proliferation in ECV304 Cells via the c-Jun N-Terminal Kinases (JNK Pathway Following Stimulation by Advanced Glycation End-Products In Vitro

    Directory of Open Access Journals (Sweden)

    Zhengyu Zhang

    2013-11-01

    Full Text Available Hyperoside is a major active constituent in many medicinal plants which are traditionally used in Chinese medicines for their neuroprotective, anti-inflammatory and antioxidative effects. The molecular mechanisms underlying these effects are unknown. In this study, quiescent ECV304 cells were treated in vitro with advanced glycation end products (AGEs in the presence or absence of hyperoside. The results demonstrated that AGEs induced c-Jun N-terminal kinases (JNK activation and apoptosis in ECV304 cells. Hyperoside inhibited these effects and promoted ECV304 cell proliferation. Furthermore, hyperoside significantly inhibited RAGE expression in AGE-stimulated ECV304 cells, whereas knockdown of RAGE inhibited AGE-induced JNK activation. These results suggested that AGEs may promote JNK activation, leading to viability inhibition of ECV304 cells via the RAGE signaling pathway. These effects could be inhibited by hyperoside. Our findings suggest a novel role for hyperoside in the treatment and prevention of diabetes.

  3. Complement Activation and STAT4 Expression Are Associated with Early Inflammation in Diabetic Wounds.

    Science.gov (United States)

    Cunnion, Kenji M; Krishna, Neel K; Pallera, Haree K; Pineros-Fernandez, Angela; Rivera, Magdielis Gregory; Hair, Pamela S; Lassiter, Brittany P; Huyck, Ryan; Clements, Mary A; Hood, Antoinette F; Rodeheaver, George T; Cottler, Patrick S; Nadler, Jerry L; Dobrian, Anca D

    2017-01-01

    Diabetic non-healing wounds are a major clinical problem. The mechanisms leading to poor wound healing in diabetes are multifactorial but unresolved inflammation may be a major contributing factor. The complement system (CS) is the most potent inflammatory cascade in humans and contributes to poor wound healing in animal models. Signal transducer and activator of transcription 4 (STAT4) is a transcription factor expressed in immune and adipose cells and contributes to upregulation of some inflammatory chemokines and cytokines. Persistent CS and STAT4 expression in diabetic wounds may thus contribute to chronic inflammation and delayed healing. The purpose of this study was to characterize CS and STAT4 in early diabetic wounds using db/db mice as a diabetic skin wound model. The CS was found to be activated early in the diabetic wounds as demonstrated by increased anaphylatoxin C5a in wound fluid and C3-fragment deposition by immunostaining. These changes were associated with a 76% increase in nucleated cells in the wounds of db/db mice vs. The novel classical CS inhibitor, Peptide Inhibitor of Complement C1 (PIC1) reduced inflammation when added directly or saturated in an acellular skin scaffold, as reflected by reduced CS components and leukocyte infiltration. A significant increase in expression of STAT4 and the downstream macrophage chemokine CCL2 and its receptor CCR2 were also found in the early wounds of db/db mice compared to non-diabetic controls. These studies provide evidence for two new promising targets to reduce unresolved inflammation and to improve healing of diabetic skin wounds.

  4. JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death.

    Science.gov (United States)

    Win, S; Than, T A; Fernandez-Checa, J C; Kaplowitz, N

    2014-01-09

    Our aim was to better understand the mechanism and importance of sustained c-Jun N-terminal kinase (JNK) activation in endoplasmic reticulum (ER) stress and effects of ER stress on mitochondria by determining the role of mitochondrial JNK binding protein, Sab. Tunicamycin or brefeldin A induced a rapid and marked decline in basal mitochondrial respiration and reserve-capacity followed by delayed mitochondrial-mediated apoptosis. Knockdown of mitochondrial Sab prevented ER stress-induced sustained JNK activation, impaired respiration, and apoptosis, but did not alter the magnitude or time course of activation of ER stress pathways. P-JNK plus adenosine 5'-triphosphate (ATP) added to isolated liver mitochondria promoted superoxide production, which was amplified by addition of calcium and inhibited by a blocking peptide corresponding to the JNK binding site on Sab (KIM1). This peptide also blocked tunicamycin-induced inhibition of cellular respiration. In conclusion, ER stress triggers an interaction of JNK with mitochondrial Sab, which leads to impaired respiration and increased mitochondrial reactive oxygen species, sustaining JNK activation culminating in apoptosis.

  5. Evolutionary Techniques for Image Processing a Large Dataset of Early Drosophila Gene Expression

    Directory of Open Access Journals (Sweden)

    Holloway David M

    2003-01-01

    Full Text Available Understanding how genetic networks act in embryonic development requires a detailed and statistically significant dataset integrating diverse observational results. The fruit fly (Drosophila melanogaster is used as a model organism for studying developmental genetics. In recent years, several laboratories have systematically gathered confocal microscopy images of patterns of activity (expression for genes governing early Drosophila development. Due to both the high variability between fruit fly embryos and diverse sources of observational errors, some new nontrivial procedures for processing and integrating the raw observations are required. Here we describe processing techniques based on genetic algorithms and discuss their efficacy in decreasing observational errors and illuminating the natural variability in gene expression patterns. The specific developmental problem studied is anteroposterior specification of the body plan.

  6. Early Exercise Affects Mitochondrial Transcription Factors Expression after Cerebral Ischemia in Rats

    Directory of Open Access Journals (Sweden)

    Yongshan Hu

    2012-02-01

    Full Text Available Increasing evidence shows that exercise training is neuroprotective after stroke, but the underlying mechanisms are unknown. To clarify this critical issue, the current study investigated the effects of early treadmill exercise on the expression of mitochondrial biogenesis factors. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion followed by reperfusion. Expression of two genes critical for transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1 and nuclear respiratory factor-1 (NRF-1, were examined by RT-PCR after five days of exercise starting at 24 h after ischemia. Mitochondrial protein cytochrome C oxidase subunit IV (COX IV was detected by Western blot. Neurological status and cerebral infarct volume were evaluated as indices of brain damage. Treadmill training increased levels of PGC-1 and NRF-1 mRNA, indicating that exercise promotes rehabilitation after ischemia via regulation of mitochondrial biogenesis.

  7. cAMP-dependent proteolysis of GATA-6 is linked to JNK-signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, Hironori [Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Shiwagun, Iwate 028-3694 (Japan); Maeda, Masatomo, E-mail: mmaeda@iwate-med.ac.jp [Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Shiwagun, Iwate 028-3694 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A JNK inhibitor SP600125 inhibited cAMP-dependent proteolysis of GATA-6. Black-Right-Pointing-Pointer Effect of a JNK activator anisomycin on the proteolysis was examined. Black-Right-Pointing-Pointer Anisomycin stimulated the export of nuclear GATA-6 into the cytoplasm. Black-Right-Pointing-Pointer JNK activated the CRM1 mediated nuclear export of GATA-6. Black-Right-Pointing-Pointer JNK further stimulated slowly the degradation of GATA-6 by cytoplasmic proteasomes. -- Abstract: A JNK inhibitor SP600125 inhibited cAMP-dependent proteolysis of GATA-6 by proteasomes around its IC50. We further examined the effects of SP600125 on the degradation of GATA-6 in detail, since an activator of JNK (anisomycin) is available. Interestingly, anisomycin immediately stimulated the export of nuclear GATA-6 into the cytoplasm, and then the cytoplasmic content of GATA-6 decreased slowly through degradation by proteasomes. Such an effect of anisomycin was inhibited by SP600125, indicating that the observed phenomenon might be linked to the JNK signaling pathway. The inhibitory effect of SP600125 could not be ascribed to the inhibition of PKA, since phosphorylation of CREB occurred in the presence of dbcAMP and SP600125. The nuclear export of GATA-6 was inhibited by leptomycin B, suggesting that CRM1-mediated export could be activated by anisomycin. Furthermore, it seems likely that the JNK activated by anisomycin may stimulate not only the nuclear export of GATA-6 through CRM1 but also the degradation of GATA-6 by cytoplasmic proteasomes. In contrast, A-kinase might activate only the latter process through JNK.

  8. Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline

    Science.gov (United States)

    Gourmaud, Sarah; Paquet, Claire; Dumurgier, Julien; Pace, Clarisse; Bouras, Constantin; Gray, Françoise; Laplanche, Jean-Louis; Meurs, Eliane F.; Mouton-Liger, François; Hugon, Jacques

    2015-01-01

    Background Alzheimer disease is characterized by cognitive decline, senile plaques of β-amyloid (Aβ) peptides, neurofibrillary tangles composed of hyperphosphorylated τ proteins and neuronal loss. Aβ and τ are useful markers in the cerebrospinal fluid (CSF). C-Jun N-terminal kinases (JNKs) are serine-threonine protein kinases activated by phosphorylation and involved in neuronal death. Methods In this study, Western blots, enzyme-linked immunosorbent assay and histological approaches were used to assess the concentrations of Aβ, τ and JNK isoforms in postmortem brain tissue samples (10 Alzheimer disease and 10 control) and in CSF samples from 30 living patients with Alzheimer disease and 27 controls with neurologic disease excluding Alzheimer disease. Patients with Alzheimer disease were followed for 1–3 years and assessed using Mini–Mental State Examination scores. Results The biochemical and morphological results showed a significant increase of JNK3 and phosphorylated JNK levels in patients with Alzheimer disease, and JNK3 levels correlated with Aβ42 levels. Confocal microscopy revealed that JNK3 was associated with Aβ in senile plaques. The JNK3 levels in the CSF were significantly elevated in patients with Alzheimer disease and correlated statistically with the rate of cognitive decline in a mixed linear model. Limitations The study involved different samples grouped into 3 small cohorts. Evaluation of JNK3 in CSF was possible only with immunoblot analysis. Conclusion We found that JNK3 levels are increased in brain tissue and CSF from patients with Alzheimer disease. The finding that increased JNK3 levels in CSF could reflect the rate of cognitive decline is new and merits further investigation. PMID:25455349

  9. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients

    Science.gov (United States)

    Singh, Prashant K.; Preus, Leah; Hu, Qiang; Yan, Li; Long, Mark D.; Morrison, Carl D.; Nesline, Mary; Johnson, Candace S.; Koochekpour, Shahriar; Kohli, Manish; Liu, Song; Trump, Donald L.

    2014-01-01

    We aimed to identify microRNA (miRNA) expression patterns in the serum of prostate cancer (CaP) patients that predict the risk of early treatment failure following radical prostatectomy (RP). Microarray and Q-RT-PCR analyses identified 43 miRNAs as differentiating disease stages within 14 prostate cell lines and reflectedpublically available patient data. 34 of these miRNA were detectable in the serum of CaP patients. Association with time to biochemical progression was examined in a cohort of CaP patients following RP. A greater than two-fold increase in hazard of biochemical progression associated with altered expression of miR-103, miR-125b and miR-222 (p <.0008) in the serum of CaP patients. Prediction models based on penalized regression analyses showed that the levels of the miRNAs and PSA together were better at detecting false positives than models without miRNAs, for similar level of sensitivity. Analyses of publically available data revealed significant and reciprocal relationships between changes in CpG methylation and miRNA expression patterns suggesting a role for CpG methylation to regulate miRNA. Exploratory validation supported roles for miR-222 and miR-125b to predict progression risk in CaP. The current study established that expression patterns of serum-detectable miRNAs taken at the time of RP are prognostic for men who are at risk of experiencing subsequent early biochemical progression. These non-invasive approaches could be used to augment treatment decisions. PMID:24583788

  10. Gene Expression Profiling of Acute Lymphoblastic Leukemia in Children with Very Early Relapse.

    Science.gov (United States)

    Núñez-Enríquez, Juan Carlos; Bárcenas-López, Diego Alberto; Hidalgo-Miranda, Alfredo; Jiménez-Hernández, Elva; Bekker-Méndez, Vilma Carolina; Flores-Lujano, Janet; Solis-Labastida, Karina Anastacia; Martínez-Morales, Gabriela Bibiana; Sánchez-Muñoz, Fausto; Espinoza-Hernández, Laura Eugenia; Velázquez-Aviña, Martha Margarita; Merino-Pasaye, Laura Elizabeth; García Velázquez, Alejandra Jimena; Pérez-Saldívar, María Luisa; Mojica-Espinoza, Raúl; Ramírez-Bello, Julián; Jiménez-Morales, Silvia; Mejía-Aranguré, Juan Manuel

    2016-11-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer worldwide. Mexican patients have high mortality rates, low frequency of good prognosis biomarkers (i.e., ETV6-RUNX1) and a high proportion is classified at the time of diagnosis with a high risk to relapse according to clinical features. In addition, very early relapses are more frequently observed than in other populations. The aim of the study was to identify new potential biomarkers associated with very early relapse in Mexican ALL children through transcriptome analysis. Microarray gene expression profiling on bone marrow samples of 54 pediatric ALL patients, collected at time of diagnosis and/or at relapse, was performed. Eleven patients presented relapse within the first 18 months after diagnosis. Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) was used to perform gene expression analysis. Annotation and functional enrichment analyses were carried out using Gene Ontology, KEGG pathway analysis and Ingenuity Pathway Analysis tools. BLVRB, ZCCHC7, PAX5, EBF1, TMOD1 and BLNK were differentially expressed (fold-change >2.0 and p value <0.01) between relapsed and non-relapsed patients. Functional analysis of abnormally expressed genes revealed their important role in cellular processes related to the development of hematological diseases, cancer, cell death and survival and in cell-to-cell signaling interaction. Our data support previous findings showing the relevance of PAX5, EBF1 and ZCCHC7 as potential biomarkers to identify a subgroup of ALL children in high risk to relapse. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  11. Early Gene Expression in Wounded Human Keratinocytes Revealed by DNA Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Pascal Barbry

    2006-04-01

    Full Text Available Wound healing involves several steps: spreading of the cells, migration and proliferation. We have profiled gene expression during the early events of wound healing in normal human keratinocytes with a home-made DNA microarray containing about 1000 relevant human probes. An original wounding machine was used, that allows the wounding of up to 40% of the surface of a confluent monolayer of cultured cells grown on a Petri dish (compared with 5% with a classical ‘scratch’ method. The two aims of the present study were: (a to validate a limited number of genes by comparing the expression levels obtained with this technique with those found in the literature; (b to combine the use of the wounding machine with DNA microarray analysis for large-scale detection of the molecular events triggered during the early stages of the wound-healing process. The time-courses of RNA expression observed at 0.5, 1.5, 3, 6 and 15 h after wounding for genes such as c-Fos, c-Jun, Egr1, the plasminogen activator PLAU (uPA and the signal transducer and transcription activator STAT3, were consistent with previously published data. This suggests that our methodologies are able to perform quantitative measurement of gene expression. Transcripts encoding two zinc finger proteins, ZFP36 and ZNF161, and the tumour necrosis factor α-induced protein TNFAIP3, were also overexpressed after wounding. The role of the p38 mitogen-activated protein kinase (p38MAPK in wound healing was shown after the inhibition of p38 by SB203580, but our results also suggest the existence of surrogate activating pathways.

  12. Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish.

    Directory of Open Access Journals (Sweden)

    Cristina Santoriello

    2010-12-01

    Full Text Available Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed.Using the combinatorial Gal4-UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2-4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1-3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period.This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens.

  13. Fluoride alters type I collagen expression in the early stages of odontogenesis.

    Science.gov (United States)

    Maciejewska, I; Spodnik, J H; Domaradzka-Pytel, B; Sidor-Kaczmarek, J; Bereznowski, Z

    2006-11-01

    Fluoride alters the expression and post-translational modifications of extracellular matrix proteins in dentin. The aim of our study was to determine the effects of fluoride on type I collagen expression during the early stages of tooth germ development in rats. Pregnant dams were divided into three groups and fed a standard diet. From the fifth day of pregnancy the three groups received tap water with, respectively, trace amounts of fluoride (C), a low fluoride concentration (FL) or and a high fluoride concentration (FH). Changes in type I collagen expression and distribution were evaluated. The expression of type I collagen was restricted to the extracellular spaces of cells of mesenchymal origin. In the youngest animals the most intense immunoreactivity for type I collagen was detected in predentin of the FL group. Although the intensity of immunostaining increased in proportion to the age of the animals, the largest increase in the groups investigated was detected in the FL group. We concluded that a low concentration of fluoride can act as a stimulator of type I collagen deposition in the extracellular matrix of dentin, while high concentrations of fluoride have an opposite effect, acting as an inhibitor of type I collagen formation in dentin.

  14. Regulation of X-linked gene expression during early mouse development by Rlim

    Science.gov (United States)

    Wang, Feng; Shin, JongDae; Shea, Jeremy M; Yu, Jun; Bošković, Ana; Byron, Meg; Zhu, Xiaochun; Shalek, Alex K; Regev, Aviv; Lawrence, Jeanne B; Torres, Eduardo M; Zhu, Lihua J; Rando, Oliver J; Bach, Ingolf

    2016-01-01

    Mammalian X-linked gene expression is highly regulated as female cells contain two and male one X chromosome (X). To adjust the X gene dosage between genders, female mouse preimplantation embryos undergo an imprinted form of X chromosome inactivation (iXCI) that requires both Rlim (also known as Rnf12) and the long non-coding RNA Xist. Moreover, it is thought that gene expression from the single active X is upregulated to correct for bi-allelic autosomal (A) gene expression. We have combined mouse genetics with RNA-seq on single mouse embryos to investigate functions of Rlim on the temporal regulation of iXCI and Xist. Our results reveal crucial roles of Rlim for the maintenance of high Xist RNA levels, Xist clouds and X-silencing in female embryos at blastocyst stages, while initial Xist expression appears Rlim-independent. We find further that X/A upregulation is initiated in early male and female preimplantation embryos. DOI: http://dx.doi.org/10.7554/eLife.19127.001 PMID:27642011

  15. Novel Implant Coating Agent Promotes Gene Expression of Osteogenic Markers in Rats during Early Osseointegration

    Directory of Open Access Journals (Sweden)

    Kostas Bougas

    2012-01-01

    Full Text Available The aim of this study was to evaluate the early bone response around laminin-1-coated titanium implants. Forty-five rats distributed in three equally sized groups were provided with one control (turned and one test (laminin-1-coated implant and were sacrificed after 3, 7, and 21 days. Real-time reverse-transcriptase polymerase chain reaction was performed for osteoblast markers (alkaline phosphatase, runt-related transcription factor 2, osteocalcin, type I collagen, and bone morphogenic protein 2, osteoclast markers (cathepsin K and tartrate-resistant acid phosphatase, inflammation markers (tumor necrosis factor α, interleukin 1β and interleukin 10, and integrin β1. Bone implant contact (BIC and bone area (BA were assessed and compared to the gene expression. After 3 days, the expression of bone markers was higher for the control group. After 7 days, the expression of integrin β1 and osteogenic markers was enhanced for the test group, while cathepsin K and inflammation markers were down-regulated. No significant differences in BIC or BA were detected between test and control at any time point. As a conclusion, implant coating with laminin-1 altered gene expression in the bone-implant interface. However, traditional evaluation methods, as histomorphometry, were not adequately sensitive to detect such changes due to the short follow-up time.

  16. The anti-apoptotic and cardioprotective effects of salvianolic acid a on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway.

    Directory of Open Access Journals (Sweden)

    Tongda Xu

    Full Text Available The purpose of this study was to observe the effects of salvianolic acid A (SAA pretreatment on the myocardium during ischemia/reperfusion (I/R and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI. Wistar rats were divided into the following six groups: control group (CON, I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R, PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R. The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR, left ventricular systolic pressure (LVSP, left ventricular end-diastolic pressure (LVEDP, maximum rate of ventricular pressure rise and fall (±dp/dtmax, myocardial infarction areas (MIA, lactate dehydrogenase (LDH, and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4

  17. Norepinephrine inhibits mesenchymal stem cell chemotaxis migration by increasing stromal cell-derived factor-1 secretion by vascular endothelial cells via NE/abrd3/JNK pathway.

    Science.gov (United States)

    Wu, Baolei; Wang, Lei; Yang, Xi; Mao, Ming; Ye, Chen; Liu, Peng; Yang, Zihui; Yang, Xinjie; Lei, Delin; Zhang, Chenping

    2016-12-10

    Mesenchymal stem cells (MSCs), which are physiologically maintained in vascular endothelial cell (VEC)-based niches, play a critical role in tissue regeneration. Our previous studies demonstrated that sympathetic denervation could promote MSC mobilization, thereby enhancing bone formation in distraction osteogenesis (DO), a self-tissue engineering for craniofacial and orthopeadic surgeries. However, the mechanisms on how sympathetic neurotransmitter norepinephrine (NE) regulates MSC migration are not well understood. Here we showed that deprivation of NE by transection of cervical sympathetic trunk (TCST) inhibited stromal cell-derived factor-1 (SDF-1) expression in the perivascular regions in rat mandibular DO. In vitro studies showed that NE treatment markedly upregulated p-JNK and therefore stimulated higher SDF-1 expression in VECs than control groups, and siRNA knockdown of the abrd3 gene abolished the NE-induced p-JNK activation. On the other hand, osteoblasts differentiated from MSCs showed an increase in SDF-1 secretion with lack of NE. Importantly, NE-treated VECs inhibited the MSC chemotaxis migration along the SDF-1 concentration gradient as demonstrated in a novel 3-chamber Transwell assay. Collectively, our study suggested that NE may increase the SDF-1 secretion by VECs via NE/abrd3/JNK pathway, thereby inhibiting the MSC chemotaxis migration from perivascular regions toward bone trabecular frontlines along the SDF-1 concentration gradient in bone regeneration. Copyright © 2016. Published by Elsevier Inc.

  18. LS8 cell apoptosis induced by NaF through p-ERK and p-JNK - a mechanism study of dental fluorosis.

    Science.gov (United States)

    Zhao, Lin; Li, Juedan; Su, Jiali; Snead, Malcolm L; Ruan, Jianping

    2016-10-01

    To investigate the possible biological mechanism of dental fluorosis at a molecular level. Cultured LS8 were incubated with serum-free medium containing selected concentrations of NaF (0 ∼ 2 mM) for either 24 or 48 h. Subcellular microanatomy was characterized using TEM; meanwhile, selected biomolecules were analysed using various biochemistry techniques. Transient transfection was used to modulate a molecular pathway for apoptosis. Apoptosis of LS8 was induced by NaF treatment that showed both time and concentration dependency. The activity of caspase-3, -8, -9 was found to be increased with NaF in a dose-dependent manner. Western blot revealed that the protein expression of p-ERK and p-JNK were decreased, while the expression of p-P38 was increased. Inhibition of the p-ERK and p-JNK pathways resulted in a similar decrease for caspase-3. During NaF-induced apoptosis of LS8, p-ERK and p-JNK were closely associated with induction of apoptosis, which might be a mechanism of dental fluorosis.

  19. Gene Expression Associated with Early and Late Chronotypes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Mirko ePegoraro

    2015-05-01

    Full Text Available The circadian clock provides the temporal framework for rhythmic behavioural and metabolic functions. In the modern era of industrialization, work and social pressures, the clock function is often jeopardized, resulting in adverse and chronic effects on health. Understanding circadian clock function, particularly individual variation in diurnal phase preference (chronotype, and the molecular mechanisms underlying such chronotypes may lead to interventions that could abrogate clock dysfunction and improve human (and animal health and welfare. Our preliminary studies suggested that fruitflies, like humans, can be classified as early rising ‘larks’ or late rising ‘owls’, providing a convenient model system for these types of studies. We have identified strains of flies showing increased preference for morning emergence (Early or E from the pupal case, or more pronounced preference for evening emergence (Late or L. We have sampled pupae the day before eclosion (4th day after pupariation at 4 h intervals in the E and L strains, and examined differences in gene expression by RNAseq. We have identified differentially expressed transcripts between the E and L strains which provide candidate genes for studies of Drosophila chronotypes and their human orthologues.

  20. Antitumor effects of the flavone chalcone: inhibition of invasion and migration through the FAK/JNK signaling pathway in human gastric adenocarcinoma AGS cells.

    Science.gov (United States)

    Lin, Su-Hsuan; Shih, Yuan-Wei

    2014-06-01

    Chalcones (benzylideneacetophenone) are cancer-preventive food components found in a human diet rich in fruits and vegetables. In this study, we first report the chemopreventive effect of chalcone in human gastric adenocarcinoma cell lines: AGS. The results showed that chalcone could inhibit the abilities of the adhesion, invasion, and migration by cell-matrix adhesion assay, Boyden chamber invasion/migration assay, and wound-healing assay. Molecular data showed that the effect of chalcone in AGS cells might be mediated via sustained inactivation of the phosphorylation of focal adhesion kinase (FAK) and c-Jun N-terminal kinase 1 and 2 (JNK1/2) signal involved in the downregulation of the expressions of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Next, chalcone-treated AGS cells showed tremendous decrease in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, treating FAK small interfering RNA (FAK siRNA) and specific inhibitor for JNK (SP600125) to AGS cells could reduce the phosphorylation of JNK1/2 and the activity of MMP-2 and MMP-9. Our results revealed that chalcone significantly inhibited the metastatic ability of AGS cells by reducing MMP-2 and MMP-9 expressions concomitantly with a marked reduction on cell invasion and migration through suppressing and JNK signaling pathways. We suggest that chalcone may offer the application in clinical medicine.

  1. Melatonin Induces Cell Apoptosis in AGS Cells Through the Activation of JNK and P38 MAPK and the Suppression of Nuclear Factor-Kappa B: a Novel Therapeutic Implication for Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Weimin Li

    2015-12-01

    Full Text Available Background/Aims: Melatonin, synthesized by the pineal gland and released into the blood, appears to have antitumour properties; however, the mechanisms of its anti-cancer effects are largely unknown, especially in stomach cancer. Here, we explore the antitumour activity of melatonin in a gastric cancer cell line (AGS and analyse its molecular mechanisms. Methods: AGS cells were treated with melatonin, and cell viability was assessed using a CCK-8 assay. Flow cytometry was performed to evaluate apoptosis, and protein expression was examined by Western blotting. Results: Melatonin significantly inhibited cell viability, clone formation, and cell migration and invasion and induced apoptosis in AGS cells. Moreover, MAPK pathways (p38, JNK and ERK were activated by melatonin treatment, which also significantly increased caspase-3 cleavage and Bax protein expression and decreased Bcl-2 protein expression in a time-dependent manner. Our results demonstrate that p38 and JNK inhibitors (SB203580 and SP600125, respectively prevented melatonin-induced apoptosis; thus, the propensity of p38 MAPK and JNK to promote apoptosis could be at least partly due to the inhibition of NF-κB p65 activation by p38 and JNK. Finally, melatonin was able to strengthen cisplatin-mediated antitumour effects in human gastric carcinoma cells by up-regulating the expression of Bax, down-regulating the expression of Bcl-2 and activating the caspase-dependent apoptotic pathway. Conclusion: Melatonin induced apoptosis in AGS cells by activating the caspase-dependent apoptotic pathway and by inhibiting the nuclear translocation of NF-κB p65, two processes that are regulated by p38 and JNK. Furthermore, melatonin significantly enhanced the anti-tumour effects of cisplatin, with low systemic toxicity. These new findings suggest that melatonin may act as a potent anti-tumour agent and may have great potential as an adjuvant therapy in the future.

  2. Expression of the Immediate-Early Gene-Encoded Protein Egr-1 ("zif268") during in Vitro Classical Conditioning

    Science.gov (United States)

    Mokin, Maxim; Keifer, Joyce

    2005-01-01

    Expression of the immediate-early genes (IEGs) has been shown to be induced by activity-dependent synaptic plasticity or behavioral training and is thought to play an important role in long-term memory. In the present study, we examined the induction and expression of the IEG-encoded protein Egr-1 during an in vitro neural correlate of eyeblink…

  3. [The early expressive vocabulary size in simultaneous bilingual growing-up infants - a diagnostic relevant criterion?].

    Science.gov (United States)

    Kiese-Himmel, C; Sellner, L; Bockmann, A-K

    2013-08-01

    Bilingual young children's early expressive vocabulary size and its composition (as one domain of the language development) should be examined to find out whether children with a risk for delayed language development may be identified in this way. 30 bilingual kindergarten infants from Berlin (with simultaneous language acquisition; second language German) and 30 monolingual German infants from the greater areas of Stuttgart and Heidelberg were pair matched (mean chronological age 22.5 [SD 3.1] months; min 16; max 26). The German expressive vocabulary checklist Elternfragebogen zur Wort-schatzentwicklung im frühen Kindesalter (ELAN; Bockmann & Kiese-Himmel, 2006) was filled out by all parents. In addition, parents of bilingual infants completed the adaption of the German vocabulary checklist Sprachbeurteilung durch Eltern (SBE-2-KT; v. Suchodoletz & Sachse, 2008) for the second mother tongue. The monolinguals' word sum in the ELAN (145.7; SD 75.8) differed significantly (p=0.001) from the bilinguals' word sum (78.3; SD 78.9 words). In contrast, bilinguals did not significantly differ in their overall expressive vocabulary size (ELAN+SBE-2-KT: 101.2; SD 77.0 words) from their monolingual counterparts (ELAN). Because bilinguals had a similar sized overall early vocabulary (both languages) like monolingual German-learning infants, the diagnostic criterion to identify late talkers with 24 months of age (less than 50 German words and no word combinations) should not be applied to bilingually infants with simultaneously double language acquisition. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Inflammatory Gene Expression in Whole Peripheral Blood at Early Stages of Sporadic Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Pol Andrés-Benito

    2017-10-01

    Full Text Available ObjectiveCharacterization of altered expression of selected transcripts linked to inflammation in the peripheral blood of sporadic amyotrophic lateral sclerosis (sALS patients at early stage of disease to increase knowledge about peripheral inflammatory response in sALS.MethodsRNA expression levels of 45 genes were assessed by RT-qPCR in 22 sALS cases in parallel with 13 age-matched controls. Clinical and serum parameters were assessed at the same time.ResultsUpregulation of genes coding for factors involved in leukocyte extravasation (ITGB2, INPP5D, SELL, and ICAM1 and extracellular matrix remodeling (MMP9 and TIMP2, as well as downregulation of certain chemokines (CCL5 and CXC5R, anti-inflammatory cytokines (IL10, TGFB2, and IL10RA, pro-inflammatory cytokines (IL-6, and T-cell regulators (CD2 and TRBC1 was found in sALS cases independently of gender, clinical symptoms at onset (spinal, respiratory, or bulbar, progression, peripheral leukocyte number, and integrity of RNA. MMP9 levels positively correlated with age, whereas CCR5, CCL5, and TRBC1 negatively correlated with age in sALS but not in controls. Relatively higher TNFA expression levels correlate with higher creatinine kinase protein levels in plasma.ConclusionPresent findings show early inflammatory responses characterized by upregulation of factors enabling extravasation of leukocytes and extracellular matrix remodeling in blood in sALS cases, in addition to increased TNFA levels paralleling skeletal muscle damage.

  5. Piperlongumine Inhibits Migration of Glioblastoma Cells via Activation of ROS-Dependent p38 and JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Qian Rong Liu

    2014-01-01

    Full Text Available Piperlongumine (PL is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG cells but not normal astrocytes in the scratch-wound culture model. PL did not alter EdU+-cells and cdc2, cdc25c, or cyclin D1 expression in our model. PL increased ROS (measured by DCFH-DA, reduced glutathione, activated p38 and JNK, increased IκBα, and suppressed NFκB in LN229 cells after scratching. All the biological effects of PL in scratched LN229 cells were completely abolished by the antioxidant N-acetyl-L-cysteine (NAC. Pharmacological administration of specific p38 (SB203580 or JNK (SP600125 inhibitors significantly reduced the inhibitory effects of PL on LN229 cell migration and NFκB activity in scratch-wound and/or transwell models. PL prevented the deformation of migrated LN229 cells while NAC, SB203580, or SP600125 reversed PL-induced morphological changes of migrated cells. These results suggest potential therapeutic effects of PL in the treatment and prevention of highly malignant tumors such as glioblastoma multiforme (GBM in the brain by suppressing tumor invasion and metastasis.

  6. Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids

    Directory of Open Access Journals (Sweden)

    Tetu Bernard

    2008-02-01

    Full Text Available Abstract Background Chemotherapy (CT resistance in ovarian cancer (OC is broad and encompasses diverse unrelated drugs, suggesting more than one mechanism of resistance. To better understand the molecular mechanisms controlling the immediate response of OC cells to CT exposure, we have performed gene expression profiling in spheroid cultures derived from six OC cell lines (OVCAR3, SKOV3, TOV-112, TOV-21, OV-90 and TOV-155, following treatment with 10,0 μM cisplatin, 2,5 μM paclitaxel or 5,0 μM topotecan for 72 hours. Results Exposure of OC spheroids to these CT drugs resulted in differential expression of genes associated with cell growth and proliferation, cellular assembly and organization, cell death, cell cycle control and cell signaling. Genes, functionally involved in DNA repair, DNA replication and cell cycle arrest were mostly overexpressed, while genes implicated in metabolism (especially lipid metabolism, signal transduction, immune and inflammatory response, transport, transcription regulation and protein biosynthesis, were commonly suppressed following all treatments. Cisplatin and topotecan treatments triggered similar alterations in gene and pathway expression patterns, while paclitaxel action was mainly associated with induction of genes and pathways linked to cellular assembly and organization (including numerous tubulin genes, cell death and protein synthesis. The microarray data were further confirmed by pathway and network analyses. Conclusion Most alterations in gene expression were directly related to mechanisms of the cytotoxics actions in OC spheroids. However, the induction of genes linked to mechanisms of DNA replication and repair in cisplatin- and topotecan-treated OC spheroids could be associated with immediate adaptive response to treatment. Similarly, overexpression of different tubulin genes upon exposure to paclitaxel could represent an early compensatory effect to this drug action. Finally, multicellular

  7. Early Trichinella spiralis and Trichinella nativa infections induce similar gene expression profiles in rat jejunal mucosa.

    Science.gov (United States)

    Airas, Niina; Näreaho, Anu; Lindén, Jere; Valo, Erkka; Hautaniemi, Sampsa; Jokelainen, Pikka; Sukura, Antti

    2013-10-01

    Trichinella spiralis causes a significantly higher parasite burden in rat muscle than Trichinella nativa. To assess whether the difference in infectivity is due to the early intestinal response, we analyzed gene expression changes in the rat jejunum during Trichinella infection with a whole-genome microarray. The rats were euthanized on day five of infection, and their jejunal mucosa was sampled for microarray analysis. In addition, intestinal histology and hematology were examined. Against our expectations, the gene expression changes were similar in both T.nativa- and T. spiralis-infected groups. The two groups were hence pooled, and in the combined Trichinella-infected group, 551 genes were overexpressed and 427 underexpressed when compared to controls (false discovery rate ≤ 0.001 and fold change at least 2 in either direction). Pathway analysis identified seven pathways significantly associated with Trichinella infection (p Trichinella infection caused complex gene expression changes that indicate a host response to tissue damage in the mucosa of the jejunum, but the changes were not notably dependent on the studied species of Trichinella. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Biofilm-Forming Staphylococcus epidermidis Expressing Vancomycin Resistance Early after Adhesion to a Metal Surface

    Directory of Open Access Journals (Sweden)

    Toshiyuki Sakimura

    2015-01-01

    Full Text Available We investigated biofilm formation and time of vancomycin (VCM resistance expression after adhesion to a metal surface in Staphylococcus epidermidis. Biofilm-forming Staphylococcus epidermidis with a VCM MIC of 1 μg/mL was used. The bacteria were made to adhere to a stainless steel washer and treated with VCM at different times and concentrations. VCM was administered 0, 2, 4, and 8 hours after adhesion. The amount of biofilm formed was evaluated based on the biofilm coverage rates (BCRs before and after VCM administration, bacterial viability in biofilm was visually observed using the fluorescence staining method, and the viable bacterial count in biofilm was measured. The VCM concentration required to decrease BCR significantly compared with that of VCM-untreated bacteria was 4 μg/mL, even in the 0 hr group. In the 4 and 8 hr groups, VCM could not inhibit biofilm growth even at 1,024 μg/mL. In the 8 hr group, viable bacteria remained in biofilm at a count of 104 CFU even at a high VCM concentration (1,024 μg/mL. It was suggested that biofilm-forming Staphylococcus epidermidis expresses resistance to VCM early after adhesion to a metal surface. Resistance increased over time after adhesion as the biofilm formed, and strong resistance was expressed 4–8 hours after adhesion.

  9. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway

    Energy Technology Data Exchange (ETDEWEB)

    He, Siyi; Liu, Peng; Jian, Zhao; Li, Jingwei; Zhu, Yun; Feng, Zezhou; Xiao, Yingbin, E-mail: xiaoyb@vip.sina.com

    2013-11-29

    Highlights: •First time to find miR-138 is up-regulated in hypoxic cardiomyocytes. •First time to find miR-138 targets MLK3 and regulates JNK/c-jun pathway. •Rare myocardial biopsy of patients with CHD were collected. •Both silence and overexpression of miR-138 were implemented. •Various methods were used to detect cell function. -- Abstract: Cardiomyocytes experience a series of complex endogenous regulatory mechanisms against apoptosis induced by chronic hypoxia. MicroRNAs are a class of endogenous small non-coding RNAs that regulate cellular pathophysiological processes. Recently, microRNA-138 (miR-138) has been found related to hypoxia, and beneficial for cell proliferation. Therefore, we intend to study the role of miR-138 in hypoxic cardiomyocytes and the main mechanism. Myocardial samples of patients with congenital heart disease (CHD) were collected to test miR-138 expression. Agomir or antagomir of miR-138 was transfected into H9C2 cells to investigate its effect on cell apoptosis. Higher miR-138 expression was observed in patients with cyanotic CHD, and its expression gradually increased with prolonged hypoxia time in H9C2 cells. Using MTT and LDH assays, cell growth was significantly greater in the agomir group than in the negative control (NC) group, while antagomir decreased cell survival. Dual luciferase reporter gene and Western-blot results confirmed MLK3 was a direct target of miR-138. It was found that miR-138 attenuated hypoxia-induced apoptosis using TUNEL, Hoechst staining and Annexin V-PE/7-AAD flow cytometry analysis. We further detected expression of apoptosis-related proteins. In the agomir group, the level of pro-apoptotic proteins such as cleaved-caspase-3, cleaved-PARP and Bad significantly reduced, while Bcl-2 and Bcl-2/Bax ratio increased. Opposite changes were observed in the antagomir group. Downstream targets of MLK3, JNK and c-jun, were also suppressed by miR-138. Our study demonstrates that up-regulation of miR-138 plays

  10. Acute ethanol intoxication suppresses pentraxin 3 expression in a mouse sepsis model involving cecal ligation and puncture.

    Science.gov (United States)

    Kasuda, Shogo; Kudo, Risa; Yuui, Katsuya; Sakurai, Yoshihiko; Hatake, Katsuhiko

    2017-11-01

    Acute ethanol intoxication impairs immunological reactions and increases the risk of sepsis; however, the underlying mechanism remains unclear. Pentraxin (PTX) 3 is a humoral pattern recognition receptor whose levels rapidly increase in response to inflammation. PTX3 production is triggered by tumor necrosis factor (TNF)-α and is mediated by c-Jun N-terminal kinase (JNK). As PTX3 exerts protective effects against sepsis as well as acute lung injury, we investigated whether acute ethanol exposure exacerbates sepsis by altering PTX3 expression. Sepsis was induced in C57/BL6 mice by cecal ligation and puncture (CLP) after ethanol/saline administration. Survival rates were significantly lower in ethanol-treated than in saline-treated mice. Increased vascular permeability and attenuation of PTX3 expression were observed in the lungs of ethanol-treated mice 4 h after CLP. Concomitant with a delayed increase of plasma TNF-α in ethanol-treated mice, plasma PTX3 was also suppressed in the early phase of sepsis. Although TNF-α level in ethanol-treated mice exceeded that in saline-treated mice 16 h after CLP, PTX3 levels were still suppressed in the former group. JNK phosphorylation in lung tissue was suppressed in both groups 4 and 16 h after CLP. Furthermore, JNK phosphorylation in ethanol-treated human umbilical vein endothelial cells was suppressed even in the presence of exogenous TNF-α, resulting in inhibition of PTX3 mRNA and protein expression. Our results suggest that ethanol suppresses de novo PTX3 synthesis via two mechanisms - i.e., suppression of TNF-α production and inhibition of JNK phosphorylation. PTX3 suppression may therefore contribute to exacerbation of sepsis in acute ethanol intoxication. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Tenascin-C and fibronectin expression divide early stage tongue cancer into low- and high-risk groups.

    Science.gov (United States)

    Sundquist, Elias; Kauppila, Joonas H; Veijola, Johanna; Mroueh, Rayan; Lehenkari, Petri; Laitinen, Saara; Risteli, Juha; Soini, Ylermi; Kosma, Veli-Matti; Sawazaki-Calone, Iris; Macedo, Carolina Carneiro Soares; Bloigu, Risto; Coletta, Ricardo D; Salo, Tuula

    2017-02-28

    Oral tongue squamous cell carcinoma (OTSCC) metastasises early, especially to regional lymph nodes. There is an ongoing debate on which early stage (T1-T2N0) patients should be treated with elective neck dissection. We need prognosticators for early stage tongue cancer. Mice immunisation with human mesenchymal stromal cells resulted in production of antibodies against tenascin-C (TNC) and fibronectin (FN), which were used to stain 178 (98 early stage), oral tongue squamous cell carcinoma samples. Tenascin-C and FN expression in the stroma (negative, moderate or abundant) and tumour cells (negative or positive) were assessed. Similar staining was obtained using corresponding commercial antibodies. Expression of TNC and FN in the stroma, but not in the tumour cells, proved to be excellent prognosticators both in all stages and in early stage cases. Among early stages, when stromal TNC was negative, the 5-year survival rate was 88%. Correspondingly, when FN was negative, no cancer deaths were observed. Five-year survival rates for abundant expression of TNC and FN were 43% and 25%, respectively. Stromal TNC and, especially, FN expressions differentiate patients into low- and high-risk groups. Surgery alone of early stage primary tumours might be adequate when stromal FN is negative. Aggressive treatments should be considered when both TNC and FN are abundant.

  12. Tightly Regulated Expression of Autographa californica Multicapsid Nucleopolyhedrovirus Immediate Early Genes Emerges from Their Interactions and Possible Collective Behaviors

    Science.gov (United States)

    Taka, Hitomi; Asano, Shin-ichiro; Matsuura, Yoshiharu; Bando, Hisanori

    2015-01-01

    To infect their hosts, DNA viruses must successfully initiate the expression of viral genes that control subsequent viral gene expression and manipulate the host environment. Viral genes that are immediately expressed upon infection play critical roles in the early infection process. In this study, we investigated the expression and regulation of five canonical regulatory immediate-early (IE) genes of Autographa californica multicapsid nucleopolyhedrovirus: ie0, ie1, ie2, me53, and pe38. A systematic transient gene-expression analysis revealed that these IE genes are generally transactivators, suggesting the existence of a highly interactive regulatory network. A genetic analysis using gene knockout viruses demonstrated that the expression of these IE genes was tolerant to the single deletions of activator IE genes in the early stage of infection. A network graph analysis on the regulatory relationships observed in the transient expression analysis suggested that the robustness of IE gene expression is due to the organization of the IE gene regulatory network and how each IE gene is activated. However, some regulatory relationships detected by the genetic analysis were contradictory to those observed in the transient expression analysis, especially for IE0-mediated regulation. Statistical modeling, combined with genetic analysis using knockout alleles for ie0 and ie1, showed that the repressor function of ie0 was due to the interaction between ie0 and ie1, not ie0 itself. Taken together, these systematic approaches provided insight into the topology and nature of the IE gene regulatory network. PMID:25816136

  13. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut

    OpenAIRE

    Biteau, Benoît; Hochmuth, Christine E.; Jasper, Heinrich

    2008-01-01

    Metazoans employ cytoprotective and regenerative strategies to maintain tissue homeostasis. Understanding the coordination of these strategies is critical to develop accurate models for aging and associated diseases. Here we show that cytoprotective Jun-N-terminal Kinase (JNK) signaling influences regeneration in the Drosophila gut by directing proliferation of intestinal stem cells (ISCs). Interestingly, this function of JNK contributes to the loss of tissue homeostasis in old and stressed i...

  14. Resveratrol Ameliorates Palmitate-Induced Inflammation in Skeletal Muscle Cells by Attenuating Oxidative Stress and JNK/NF-κB Pathway in a SIRT1-Independent Mechanism.

    Science.gov (United States)

    Sadeghi, Asie; Seyyed Ebrahimi, Shadi Sadat; Golestani, Abolfazl; Meshkani, Reza

    2017-09-01

    Resveratrol has been shown to exert anti-inflammatory and anti-oxidant effects in a variety of cell types, however, its role in prevention of inflammatory responses mediated by palmitate in skeletal muscle cells remains unexplored. In the present study, we investigated the effects of resveratrol on palmitate-induced inflammation and elucidated the underlying mechanisms in skeletal muscle cells. The results showed that palmitate significantly enhanced TNF-α and IL-6 mRNA expression and protein secretion from C2C12 cells at 12, 24, and 36 h treatments. Increased expression of cytokines was accompanied by an enhanced phosphorylation of JNK, P38, ERK1/2, and IKKα/IKKβ. In addition, JNK and P38 inhibitors could significantly attenuate palmitate-induced mRNA expression of TNF-α and IL-6, respectively, whereas NF-κB inhibitor reduced the expression of both cytokines in palmitate-treated cells. Resveratrol pretreatment significantly prevented palmitate-induced TNF-α and IL-6 mRNA expression and protein secretion in C2C12 cells. Importantly, pre-treatment of the cells with resveratrol completely abrogated the phosphorylation of ERK1/2, JNK, and IKKα/IKKβ in palmitate treated cells. The protection from palmitate-induced inflammation by resveratrol was accompanied by a decrease in the generation of reactive oxygen species (ROS). N-acetyl cysteine (NAC), a known scavenger of ROS, could protect palmitate-induced expression of TNF-α and IL-6. Furthermore, inhibition of SIRT1 by shRNA or sirtinol demonstrated that the anti-inflammatory effect of resveratrol in muscle cells is mediated through a SIRT1-independent mechanism. Taken together, these findings suggest that resveratrol may represent a promising therapy for prevention of inflammation in skeletal muscle cells. J. Cell. Biochem. 118: 2654-2663, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Microarray gene expression during early healing of GBR-treated calvarial critical size defects.

    Science.gov (United States)

    Al-Kattan, R; Retzepi, M; Calciolari, E; Donos, N

    2017-10-01

    To investigate the gene expression and molecular pathways implicated in the regulation of the osseous healing process following guided bone regeneration (GBR). Six 6-month-old Wistar male rats were used. Standardized 5-mm critical size defects were created in the parietal bones of each animal and treated with an extracranial and intracranial ePTFE membrane, according to the GBR principle. Three animals were randomly sacrificed after 7 and 15 days of healing. Total RNA was extracted from each sample and prepared for gene expression analysis. RNA quality and quantity were assessed, followed by hybridization of the cRNA to Affymetrix GeneChip Rat Genome 230 2.0 Arrays. The Affymetrix data were processed, and first-order analysis, quality control and statistical analysis were performed. Biological interpretation was performed via pathway and Gene Ontology (GO) analysis. Between the 7- and 15-day samples, 538 genes were differently regulated. At day 7, inflammatory and immune responses were clearly upregulated. In addition, GO terms related to angiogenesis and cell cycle regulation were overexpressed. At day 15, a more complex cellular activity and cell metabolism were evident. The bone formation processes were significantly overexpressed, with several genes encoding growth factors, enzyme activity, and extracellular matrix formation found as upregulated. Remarkably, a negative regulation of Wnt signalling pathway was observed at 15 days. The gene expression profile of the cells participating in osseous formation varied depending on the healing stage. A number of candidate genes that seem differentially expressed during early stages of intramembranous bone regeneration was suggested. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Androgen Receptor Expression in Early Triple-Negative Breast Cancer: Clinical Significance and Prognostic Associations

    Energy Technology Data Exchange (ETDEWEB)

    Pistelli, Mirco, E-mail: mirco.pistelli@alice.it; Caramanti, Miriam [Clinica di Oncologia Medica, AO Ospedali Riuniti-Ancona, Università Politecnica delle Marche, Ancona 60020 (Italy); Biscotti, Tommasina; Santinelli, Alfredo [Anatomia Patologica, AO Ospedali Riuniti-Ancona, Università Politecnica delle Marche, Ancona 60020 (Italy); Pagliacci, Alessandra; De Lisa, Mariagrazia; Ballatore, Zelmira; Ridolfi, Francesca; Maccaroni, Elena; Bracci, Raffaella; Berardi, Rossana; Battelli, Nicola; Cascinu, Stefano [Clinica di Oncologia Medica, AO Ospedali Riuniti-Ancona, Università Politecnica delle Marche, Ancona 60020 (Italy)

    2014-06-27

    Background: Triple-negative breast cancers (TNBC) are characterized by aggressive tumour biology resulting in a poor prognosis. Androgen receptor (AR) is one of newly emerging biomarker in TNBC. In recent years, ARs have been demonstrated to play an important role in the genesis and in the development of breast cancer, although their prognostic role is still debated. In the present study, we explored the correlation of AR expression with clinical, pathological and molecular features and its impact on prognosis in early TNBC. Patients and Methods: ARs were considered positive in case of tumors with >10% nuclear-stained. Survival distribution was estimated by the Kaplan Meier method. The univariate and multivariate analyses were performed. The difference among variables were calculated by chi-square test. Results: 81 TNBC patients diagnosed between January 2006 and December 2011 were included in the analysis. Slides were stained immunohistochemically for estrogen and progesterone receptors, HER-2, Ki-67, ALDH1, e-cadherin and AR. Of the 81 TNBC samples, 18.8% showed positive immunostaining for AR, 23.5% and 44.4% of patients were negative for e-cadherin and ALDH1, respectively. Positive AR immunostaining was inversely correlated with a higher Ki-67 (p < 0.0001) and a lympho-vascular invasion (p = 0.01), but no other variables. Univariate survival analysis revealed that AR expression was not associated with disease-free survival (p = 0.72) or overall survival (p = 0.93). Conclusions: The expression of AR is associated with some biological features of TNBC, such as Ki-67 and lympho-vascular invasion; nevertheless the prognostic significance of AR was not documented in our analysis. However, since ARs are expressed in a significant number of TNBC, prospective studies in order to determine the biological mechanisms and their potential role as novel treatment target.

  17. Androgen Receptor Expression in Early Triple-Negative Breast Cancer: Clinical Significance and Prognostic Associations

    Directory of Open Access Journals (Sweden)

    Mirco Pistelli

    2014-06-01

    Full Text Available Background: Triple-negative breast cancers (TNBC are characterized by aggressive tumour biology resulting in a poor prognosis. Androgen receptor (AR is one of newly emerging biomarker in TNBC. In recent years, ARs have been demonstrated to play an important role in the genesis and in the development of breast cancer, although their prognostic role is still debated. In the present study, we explored the correlation of AR expression with clinical, pathological and molecular features and its impact on prognosis in early TNBC. Patients and Methods: ARs were considered positive in case of tumors with >10% nuclear-stained. Survival distribution was estimated by the Kaplan Meier method. The univariate and multivariate analyses were performed. The difference among variables were calculated by chi-square test. Results: 81 TNBC patients diagnosed between January 2006 and December 2011 were included in the analysis. Slides were stained immunohistochemically for estrogen and progesterone receptors, HER-2, Ki-67, ALDH1, e-cadherin and AR. Of the 81 TNBC samples, 18.8% showed positive immunostaining for AR, 23.5% and 44.4% of patients were negative for e-cadherin and ALDH1, respectively. Positive AR immunostaining was inversely correlated with a higher Ki-67 (p < 0.0001 and a lympho-vascular invasion (p = 0.01, but no other variables. Univariate survival analysis revealed that AR expression was not associated with disease-free survival (p = 0.72 or overall survival (p = 0.93. Conclusions: The expression of AR is associated with some biological features of TNBC, such as Ki-67 and lympho-vascular invasion; nevertheless the prognostic significance of AR was not documented in our analysis. However, since ARs are expressed in a significant number of TNBC, prospective studies in order to determine the biological mechanisms and their potential role as novel treatment target.

  18. PARP1-mediated necrosis is dependent on parallel JNK and Ca2+/calpain pathways

    Science.gov (United States)

    Douglas, Diana L.; Baines, Christopher P.

    2014-01-01

    ABSTRACT Poly(ADP-ribose) polymerase-1 (PARP1) is a nuclear enzyme that can trigger caspase-independent necrosis. Two main mechanisms for this have been proposed: one involving RIP1 and JNK kinases and mitochondrial permeability transition (MPT), the other involving calpain-mediated activation of Bax and mitochondrial release of apoptosis-inducing factor (AIF). However, whether these two mechanisms represent distinct pathways for PARP1-induced necrosis, or whether they are simply different components of the same pathway has yet to be tested. Mouse embryonic fibroblasts (MEFs) were treated with either N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) or β-Lapachone, resulting in PARP1-dependent necrosis. This was associated with increases in calpain activity, JNK activation and AIF translocation. JNK inhibition significantly reduced MNNG- and β-Lapachone-induced JNK activation, AIF translocation, and necrosis, but not calpain activation. In contrast, inhibition of calpain either by Ca2+ chelation or knockdown attenuated necrosis, but did not affect JNK activation or AIF translocation. To our surprise, genetic and/or pharmacological inhibition of RIP1, AIF, Bax and the MPT pore failed to abrogate MNNG- and β-Lapachone-induced necrosis. In conclusion, although JNK and calpain both contribute to PARP1-induced necrosis, they do so via parallel mechanisms. PMID:25052090

  19. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Feng [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Yu, Hong-Wei [Department of Cardiology, Jinzhou Central Hospital, Jinzhou 121001 (China); Sun, Li-Li [Department of Ophthalmology, The Third Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); You, Lu; Tao, Gui-Zhou [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Qu, Bao-Ze, E-mail: qubaoze1971@hotmail.com [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China)

    2015-12-25

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involved in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased Egr-1

  20. The Etl-1 gene encodes a nuclear protein differentially expressed during early mouse development.

    Science.gov (United States)

    Schoor, M; Schuster-Gossler, K; Gossler, A

    1993-07-01

    Recently, we isolated a novel mouse gene, Etl-1 (Enhancer-trap-locus-1), whose deduced amino acid sequence shows in its C-terminal portion striking homology to the brahma protein (BRM), a transcriptional regulator of homeotic genes in Drosophila, and to SNF2/SWI2, a transcriptional regulator of various genes in Saccharomyces cerevisiae. Here we report the generation of antibodies against the Etl-1 gene product (ETL-1) and describe the subcellular localization as well as the expression and distribution of the ETL-1 protein during mouse pre- and early post-implantation development. ETL-1 is a nuclear protein and is expressed in a biphasic manner during early embryogenesis. Moderate levels of ETL-1 were detected in unfertilized and fertilized eggs but in the latter the protein was not concentrated in the pronuclei and seemed evenly distributed throughout the cytoplasm. In two-cell embryos nuclear ETL-1 protein accumulated transiently and levels decreased during subsequent cleavage development. After the morula stage, ETL-1 levels increased again; in blastocysts high levels of ETL-1 were present in inner cell mass cells whereas trophectoderm cells contained little or no ETL-1. During subsequent development essentially all cell types except parietal endoderm and trophoblast cells contained high levels of ETL-1. Our results imply that nuclear ETL-1 is dispensable for the progression to the two cell stage, and suggest that during cleavage ETL-1 might be needed at the onset of embryonic transcription. In blastocysts ETL-1 function might be specifically required in cells of the inner cell mass and later in most cells of the embryo proper and extraembryonic ectoderm lineage.

  1. Metformin protects the brain against ischemia/reperfusion injury through PI3K/Akt1/JNK3 signaling pathways in rats.

    Science.gov (United States)

    Ge, Xu-Hua; Zhu, Guo-Ji; Geng, De-Qin; Zhang, Han-Zhi; He, Juan-Mei; Guo, Ai-Zhen; Ma, Lin-Lin; Yu, De-Hua

    2017-03-01

    Although Metformin, a first-line antidiabetic drug, can ameliorate ischemia/reperfusion (I/R) induced brain damage, but how metformin benefits injured hippocampus and the mechanisms are still largely unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of metformin against ischemic brain damage induced by cerebral I/R and to explore whether the Akt-mediated down-regulation of the phosphorylation of JNK3 signaling pathway contributed to the protection provided by metformin. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The open field tasks and Morris water maze were used to assess the effect of metformin on anxiety-like behavioral and cognitive impairment after I/R. Cresyl Violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of Akt1, JNK3, c-Jun and the expression of cleaved caspase-3. Through ischemia/reperfusion (I/R) rat model, we found that metformin could attenuate the deficits of hippocampal related behaviors and inhibit cell apoptosis. The western blot data showed that metformin could promote the activation of Akt1 and reduce the phosphorylation of JNK3 and c-Jun as well as elevation of cleaved caspase-3 in I/R brains. PI3K inhibitor reversed all the protective effects, further indicating that metformin protect hippocampus from ischemic damage through PI3K/Akt1/JNK3/c-Jun signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2014-01-01

    Full Text Available Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α. Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK, Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  3. Immune Regulator MCPIP1 Modulates TET Expression during Early Neocortical Development

    Directory of Open Access Journals (Sweden)

    Huihui Jiang

    2016-09-01

    Full Text Available MCPIP1 is a recently identified immune regulator that plays critical roles in preventing immune disorders, and is also present in the brain. Currently an unresolved question remains as to how MCPIP1 performs its non-immune functions in normal brain development. Here, we report that MCPIP1 is abundant in neural progenitor cells (NPCs and newborn neurons during the early stages of neurogenesis. The suppression of MCPIP1 expression impairs normal neuronal differentiation, cell-cycle exit, and concomitant NPC proliferation. MCPIP1 is important for maintenance of the NPC pool. Notably, we demonstrate that MCPIP1 reduces TET (TET1/TET2/TET3 levels and then decreases 5-hydroxymethylcytosine levels. Furthermore, the MCPIP1 interaction with TETs is involved in neurogenesis and in establishing the proper number of NPCs in vivo. Collectively, our findings not only demonstrate that MCPIP1 plays an important role in early cortical neurogenesis but also reveal an unexpected link between neocortical development, immune regulators, and epigenetic modification.

  4. NR2F6 Expression Correlates with Pelvic Lymph Node Metastasis and Poor Prognosis in Early-Stage Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Chunhao Niu

    2016-10-01

    Full Text Available Background: There is an abnormal expression of nuclear receptor subfamily 2 group F member 6 (NR2F6 in human cancers such as breast cancer, colon cancer, and acute myelogenous leukemia. However, its clinical significance in cervical cancer has not been established. We explored NR2F6 expression and its clinicopathological significance in early-stage cervical cancer. Methods: NR2F6 expression in cervical cancer cell lines and cervical cancer tissues was determined by Western blotting, real-time PCR, and immunochemistry (IHC. NR2F6 expression in 189 human early-stage cervical cancer tissue samples was evaluated using IHC. The relevance between NR2F6 expression and early-stage cervical cancer prognosis and clinicopathological features was determined. Results: There was marked NR2F6 mRNA and protein overexpression in the cervical cancer cells and clinical tissues compared with an immortalized squamous cell line and adjacent noncancerous cervical tissues, respectively. In the 189 cervical cancer samples, NR2F6 expression was positively related to International Federation of Gynecology and Obstetrics (FIGO stage (p = 0.006, squamous cell carcinoma antigen (p = 0.006, vital status (p < 0.001, tumor recurrence (p = 0.001, chemotherapy (p = 0.039, and lymph node metastasis (p < 0.001. Overall and disease-free survival was shorter in patients with early-stage cervical cancer and higher NR2F6 levels than in patients with lower levels of NR2F6. Univariate and multivariate analysis determined that NR2F6 was an independent prognostic factor of survival in early-stage cervical cancer. Conclusions: Taken together, our findings suggest that high NR2F6 expression predicts pelvic lymph node metastasis, tumor recurrence and poor prognosis in early-stage cervical cancer. NR2F6 might be a novel prognostic biomarker and potential therapeutic target of cervical cancer.

  5. PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development

    Directory of Open Access Journals (Sweden)

    Damjanovski Sashko

    2011-04-01

    Full Text Available Abstract Background Peroxisomes are organelles whose roles in fatty acid metabolism and reactive oxygen species elimination have contributed much attention in understanding their origin and biogenesis. Many studies have shown that de novo peroxisome biogenesis is an important regulatory process, while yeast studies suggest that total peroxisome numbers are in part regulated by proteins such as Pex11, which can facilitate the division of existing peroxisomes. Although de novo biogenesis and divisions are likely important mechanisms, the regulation of peroxisome numbers during embryonic development is poorly understood. Peroxisome number and function are particularly crucial in oviparous animals such as frogs where large embryonic yolk and fatty acid stores must be quickly metabolized, and resulting reactive oxygen species eliminated. Here we elucidate the role of Pex11β in regulating peroxisomal gene expression and number in Xenopus laevis embryogenesis. Results Microinjecting haemagglutinin (HA tagged Pex11β in early embryos resulted in increased RNA levels for peroxisome related genes PMP70 and catalase at developmental stages 10 and 20, versus uninjected embryos. Catalase and PMP70 proteins were found in punctate structures at stage 20 in control embryos, whereas the injection of ectopic HA-Pex11β induced their earlier localization in punctate structures at stage 10. Furthermore, the peroxisomal marker GFP-SKL, which was found localized as peroxisome-like structures at stage 20, was similarly found at stage 10 when co-microinjected with HA-Pex11β. Conclusions Overexpressed Pex11β altered peroxisomal gene levels and induced the early formation of peroxisomes-like structures during development, both of which demonstrate that Pex11β may be a key regulator of peroxisome number in early Xenopus embryos.

  6. Tomoregulin-1 prevents cardiac hypertrophy after pressure overload in mice by inhibiting TAK1-JNK pathways

    Directory of Open Access Journals (Sweden)

    Dan Bao

    2015-08-01

    Full Text Available Cardiac hypertrophy is associated with many forms of heart disease, and identifying important modifier genes involved in the pathogenesis of cardiac hypertrophy could lead to the development of new therapeutic strategies. Tomoregulin-1 is a growth factor that is primarily involved in embryonic development and adult central nervous system (CNS function, and it is expressed abnormally in a variety of CNS pathologies. Tomoregulin-1 is also expressed in the myocardium. However, the effects of tomoregulin-1 on the heart, particularly on cardiac hypertrophy, remains unknown. The aim of the study is to examine whether and by what mechanism tomoregulin-1 regulates the development of cardiac hypertrophy induced by pressure overload. In this study, we found that tomoregulin-1 was significantly upregulated in two cardiac hypertrophy models: cTnTR92Q transgenic mice and thoracic aorta constriction (TAC-induced cardiac hypertrophy mice. The transgenic overexpression of tomoregulin-1 increased the survival rate, improved the cardiac geometry and functional parameters of echocardiography, and decreased the degree of cardiac hypertrophy of the TAC mice, whereas knockdown of tomoregulin-1 expression resulted in an opposite phenotype and exacerbated phenotypes of cardiac hypertrophy induced by TAC. A possible mechanism by which tomoregulin-1 regulates the development of cardiac hypertrophy in TAC-induced cardiac hypertrophy is through inhibiting TGFβ non-canonical (TAK1-JNK pathways in the myocardium. Tomoregulin-1 plays a protective role in the modulation of adverse cardiac remodeling from pressure overload in mice. Tomoregulin-1 could be a therapeutic target to control the development of cardiac hypertrophy.

  7. Expression of Potential Regulatory Genes in Abdominal Adipose Tissue of Broiler Chickens during Early Development

    Directory of Open Access Journals (Sweden)

    Ann Bohannon-Stewart

    2014-01-01

    Full Text Available The identities of genes that underlie population variation in adipose tissue development in farm animals are poorly understood. Previous studies in our laboratory have suggested that increased fat tissue involves the expression modulation of an array of genes in broiler chickens. Of special interest are eight genes, FGFR3, EPHB2, IGFBP2, GREM1, TNC, COL3A1, ACBD7, and SCD. To understand their expression regulation and response to dietary manipulation, we investigated their mRNA levels after dietary manipulation during early development. Chickens were fed either a recommended standard or a high caloric diet from hatch to eight weeks of age (WOA. The high caloric diet markedly affected bodyweight of the broiler birds. mRNA levels of the eight genes in the abdominal adipose tissue were assayed at 2, 4, 6, and 8 WOA using RT-qPCR. Results indicate that (1 FGFR3 mRNA level was affected significantly by diet, age, and diet:age interaction; (2 COL3A mRNA level was repressed by high caloric diet; (3 mRNA levels of EPHB2, ACBD7, and SCD were affected by age; (4 mRNA level of TNC was modulated by age:diet interaction; (5 changes in GREM1 and IGFBP2 mRNA levels were not statistically different.

  8. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development

    Science.gov (United States)

    Ma, Jun; Liu, Fang; Wang, Qinglian; Wang, Kunbo; Jones, Don C.; Zhang, Baohong

    2016-01-01

    TCP proteins are plant-specific transcription factors implicated to perform a variety of physiological functions during plant growth and development. In the current study, we performed for the first time the comprehensive analysis of TCP gene family in a diploid cotton species, Gossypium arboreum, including phylogenetic analysis, chromosome location, gene duplication status, gene structure and conserved motif analysis, as well as expression profiles in fiber at different developmental stages. Our results showed that G. arboreum contains 36 TCP genes, distributing across all of the thirteen chromosomes. GaTCPs within the same subclade of the phylogenetic tree shared similar exon/intron organization and motif composition. In addition, both segmental duplication and whole-genome duplication contributed significantly to the expansion of GaTCPs. Many these TCP transcription factor genes are specifically expressed in cotton fiber during different developmental stages, including cotton fiber initiation and early development. This suggests that TCP genes may play important roles in cotton fiber development. PMID:26857372

  9. Dynamic expression of calretinin in embryonic and early fetal human cortex

    Directory of Open Access Journals (Sweden)

    Miriam eGonzalez-Gomez

    2014-06-01

    Full Text Available Calretinin (CR is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS 17 to 23, calbindin (CB and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem. By contrast, CR is confined to the subventricular zone (SVZ of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem, from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the monolayer of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the pioneer cortical plate appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW. At CS 21-23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial steps

  10. Chameau HAT and DRpd3 HDAC function as antagonistic cofactors of JNK/AP-1-dependent transcription during Drosophila metamorphosis.

    Science.gov (United States)

    Miotto, Benoit; Sagnier, Thierry; Berenger, Hélène; Bohmann, Dirk; Pradel, Jacques; Graba, Yacine

    2006-01-01

    Gene regulation by AP-1 transcription factors in response to Jun N-terminal kinase (JNK) signaling controls essential cellular processes during development and in pathological situations. Here, we report genetic and molecular evidence that the histone acetyltransferase (HAT) Chameau and the histone deacetylase DRpd3 act as antagonistic cofactors of DJun and DFos to modulate JNK-dependent transcription during thorax metamorphosis and JNK-induced apoptosis in Drosophila. We demonstrate in cultured cells that DFos phosphorylation mediated by JNK signaling plays a central role in coordinating the dynamics of Chameau and DRpd3 recruitment and function at AP-1-responsive promoters. Activating the pathway stimulates the HAT function of Chameau, promoting histone H4 acetylation and target gene transcription. Conversely, in response to JNK signaling inactivation, DRpd3 is recruited and suppresses histone acetylation and transcription. This study establishes a direct link among JNK signaling, DFos phosphorylation, chromatin modification, and AP-1-dependent transcription and its importance in a developing organism.

  11. Proteomic analysis on the alteration of protein expression in the placental villous tissue of early pregnancy loss.

    Science.gov (United States)

    Liu, Ai-Xia; Jin, Fan; Zhang, Wu-Wen; Zhou, Tian-Hua; Zhou, Cai-Yun; Yao, Wei-Miao; Qian, Yu-Li; Huang, He-Feng

    2006-09-01

    Early pregnancy loss is the most common complication of human reproduction. Given the complexities of early development, it is likely that many mechanisms are involved. Knowledge of differences in protein expression in parallel profiling is essential to understand the comprehensive pathophysiological mechanism underlying early pregnancy loss. To identify proteins with different expression profiles related to early pregnancy loss, we applied a proteomic approach and performed two-dimensional gel electrophoresis (2-DE) on six placental villous tissues from patients with early pregnancy loss and six from normal pregnant women, followed by comparison of the silver-stained 2-DE profiles. It was found that 13 proteins were downregulated and 5 proteins were upregulated significantly (P ionization time-of-flight mass spectrometry. Anomalies of these proteins, including three principal antioxidant enzymes (copper/zinc-superoxide dismutase, peroxiredoxin 3, and thioredoxin-like 1 protein), S100 calcium binding protein, galectin-1, chorionic somatomammotropin hormone 1, transthyretin, fas inhibitory molecule, eukaryotic translation elongation factor, RNA-binding protein, ubiquitin-conjugating enzyme E2N, and proteasome beta-subunit, indicate widespread failure in cell regulations and processes such as antioxidative defense, differentiation, cell proliferation, metabolism, apoptosis, transcription, and proteolysis in early pregnancy loss. This study has identified several proteins that are associated with placentation and early development, shedding a new insight into the proteins that may be potentially involved in the pathophysiological mechanisms underlying early pregnancy loss.

  12. Autophagy blockade sensitizes the anticancer activity of CA-4 via JNK-Bcl-2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangling; Luo, Peihua; Wang, Jincheng; Dai, Jiabin; Yang, Xiaochun; Wu, Honghai; Yang, Bo, E-mail: yang924@zju.edu.cn; He, Qiaojun, E-mail: qiaojunhe@zju.edu.cn

    2014-01-15

    Combretastatin A-4 (CA-4) has already entered clinical trials of solid tumors over ten years. However, the limited anticancer activity and dose-dependent toxicity restrict its clinical application. Here, we offered convincing evidence that CA-4 induced autophagy in various cancer cells, which was demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Interestingly, CA-4-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5 and Beclin 1). The enhanced anticancer activity of CA-4 and 3-MA was further confirmed in the SGC-7901 xenograft tumor model. These findings suggested that CA-4-elicited autophagic response played a protective role that impeded the eventual cell death while autophagy inhibition was expected to improve chemotherapeutic efficacy of CA-4. Meanwhile, CA-4 treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor or JNK siRNA inhibited autophagy but promoted CA-4-induced apoptosis, indicating a key requirement of JNK-Bcl-2 pathway in the activation of autophagy by CA-4. We also identified that pretreatment of Bcl-2 inhibitor (ABT-737) could significantly enhance anticancer activity of CA-4 due to inhibition of autophagy. Taken together, our data suggested that the JNK-Bcl-2 pathway was considered as the critical regulator of CA-4-induced protective autophagy and a potential drug target for chemotherapeutic combination. - Highlights: • Autophagy inhibition could be a potential for combretastatin A-4 antitumor efficacy. • The JNK-Bcl-2 pathway plays a critical role in CA-4-induced autophagy. • ABT-737 enhances CA-4 anticancer activity due to inhibition of autophagy.

  13. Ubiquitous expression of selenoprotein N transcripts in chicken tissues and early developmental expression pattern in skeletal muscles.

    Science.gov (United States)

    Zhang, Jiuli; Li, Jinlong; Zhang, Ziwei; Sun, Bo; Wang, Rihua; Jiang, Zhihui; Li, Shu; Xu, Shiwen

    2012-05-01

    Previous results revealed a ubiquitous expression pattern of selenoprotein N (SelN, SEPN1) in humans, zebrafish, and mouse, suggesting that it plays a potential role during the embryogenesis of these species. However, no information is known about the tissue distribution of SelN and mRNA expression analysis in the muscle tissues during development in birds. We analyzed the mRNA expression of SelN in 26 different tissues of 90-day-old chickens and the expression of SelN in the muscle tissues of 12-day-old chicken embryos and 15-month-old adult chickens by quantitative real-time PCR. The results showed that SelN transcripts were expressed widely in the chicken tissues. Moreover, the expression of SelN mRNA in skeletal muscles was present at a high level in whole embryos and at a lower level in postnatal stages. However, the expression of SelN mRNA in cardiac muscle showed a different expression pattern compared with skeletal muscles. Our data indicate that the expression of the SelN gene in chicken is ubiquitous, suggesting a role of SelN in the development of chick embryo skeletal muscles.

  14. Exposure to Early Life Stress Results in Epigenetic Changes in Neurotrophic Factor Gene Expression in a Parkinsonian Rat Model

    Directory of Open Access Journals (Sweden)

    Thabisile Mpofana

    2016-01-01

    Full Text Available Early life adversity increases the risk of mental disorders later in life. Chronic early life stress may alter neurotrophic factor gene expression including those for brain derived neurotrophic factor (BDNF and glial cell derived neurotrophic factor (GDNF that are important in neuronal growth, survival, and maintenance. Maternal separation was used in this study to model early life stress. Following unilateral injection of a mild dose of 6-hydroxydopamine (6-OHDA, we measured corticosterone (CORT in the blood and striatum of stressed and nonstressed rats; we also measured DNA methylation and BDNF and GDNF gene expression in the striatum using real time PCR. In the presence of stress, we found that there was increased corticosterone concentration in both blood and striatal tissue. Further to this, we found higher DNA methylation and decreased neurotrophic factor gene expression. 6-OHDA lesion increased neurotrophic factor gene expression in both stressed and nonstressed rats but this increase was higher in the nonstressed rats. Our results suggest that exposure to early postnatal stress increases corticosterone concentration which leads to increased DNA methylation. This effect results in decreased BDNF and GDNF gene expression in the striatum leading to decreased protection against subsequent insults later in life.

  15. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    Directory of Open Access Journals (Sweden)

    Lucie Kosinová

    Full Text Available The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3 in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information

  16. Nonthermal plasma induces apoptosis in ATC cells: involvement of JNK and p38 MAPK-dependent ROS.

    Science.gov (United States)

    Lee, Sei Young; Kang, Sung Un; Kim, Kang Il; Kang, Sam; Shin, Yoo Seob; Chang, Jae Won; Yang, Sang Sik; Lee, Keunho; Lee, Jong-Soo; Moon, Eunpyo; Kim, Chul-Ho

    2014-11-01

    To determine the effects of nonthermal plasma (NTP) induced by helium (He) alone or He plus oxygen (O₂) on the generation of reactive oxygen species (ROS) and cell death in anaplastic thyroid cancer cells. NTP was generated in He alone or He plus O₂ blowing through a nozzle by applying a high alternating current voltage to the discharge electrodes. Optical emission spectroscopy was used to identify various excited plasma species. The apoptotic effect of NTP on the anaplastic thyroid cancer cell lines, such as HTH83, U-HTH 7, and SW1763, was verified with annexin V/propidium staining and TUNEL assay. ROS formation after NTP treatment was identified with fluorescence-activated cell sorting with DCFDA staining. The mitogen-activated protein kinase pathways and caspase cascade were investigated to evaluate the molecular mechanism involved and cellular targets of plasma. NTP induced significant apoptosis in all three cancer cell lines. The plasma using He and O₂ generated more O₂-related species, and increased apoptosis and intracellular ROS formation compared with the plasma using He alone. NTP treatment of SW1763 increased the expression of phosphor-JNK, phosphor-p38, and caspase-3, but not phosphor-ERK. Apoptosis of SW1763 as well as expressions of elevated phosphor-JNK, phosphor-p38, and caspase-3 induced by NTP were effectively inhibited by intracellular ROS scavengers. NTP using He plus O₂ induced significant apoptosis in anaplastic cancer cell lines through intracellular ROS formation. This may represent a new promising treatment modality for this highly lethal disease.

  17. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway.

    Science.gov (United States)

    Zhou, Jun; Xu, Gang; Bai, Zhaoshuai; Li, Kaicheng; Yan, Junyan; Li, Fen; Ma, Shuai; Xu, Huibi; Huang, Kaixun

    2015-12-15

    Recent evidence suggests a potential pro-diabetic effect of selenite treatment in type 2 diabetics; however, the underlying mechanisms remain elusive. Here we investigated the effects and the underlying mechanisms of selenite treatment in a nongenetic mouse model of type 2 diabetes. High-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice were orally gavaged with selenite at 0.5 or 2.0mg/kg body weight/day or vehicle for 4 weeks. High-dose selenite treatment significantly elevated fasting plasma insulin levels and insulin resistance index, in parallel with impaired glucose tolerance, insulin tolerance and pyruvate tolerance. High-dose selenite treatment also attenuated hepatic IRS1/Akt/FoxO1 signaling and pyruvate kinase gene expressions, but elevated the gene expressions of phosphoenolpyruvate carboxyl kinase (PEPCK), glucose 6-phosphatase (G6Pase), peroxisomal proliferator-activated receptor-γ coactivator 1α (PGC-1α) and selenoprotein P (SelP) in the liver. Furthermore, high-dose selenite treatment caused significant increases in MDA contents, protein carbonyl contents, and a decrease in GSH/GSSG ratio in the liver, concurrent with enhanced ASK1/MKK4/JNK signaling. Taken together, these findings suggest that high-dose selenite treatment exacerbates hepatic insulin resistance in mouse model of type 2 diabetes, at least in part through oxidative stress-mediated JNK pathway, providing new mechanistic insights into the pro-diabetic effect of selenite in type 2 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Ricanek P

    2015-01-01

    Full Text Available Petr Ricanek,1,2 Lisa K Lunde,3 Stephan A Frye,1 Mari Støen,1 Ståle Nygård,4 Jens P Morth,5,6 Andreas Rydning,2 Morten H Vatn,7,8 Mahmood Amiry-Moghaddam,3 Tone Tønjum,1,9 1Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, 2Department of Gastroenterology, Akershus University Hospital, Lørenskog and Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, 3Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, 4Bioinformatics Core Facility, Institute for Medical Informatics, Oslo University Hospital and University of Oslo, 5Centre for Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 6Institute for Experimental Research, Oslo University Hospital (Ullevaal, Oslo, 7EpiGen Institute, Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, 8Section of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, 9Department of Microbiology, University of Oslo, Oslo, Norway Objectives: The aim of this study was to investigate the relationship between aquaporin (AQP water channel expression and the pathological features of early untreated inflammatory bowel disease (IBD in humans. Methods: Patients suspected to have IBD on the basis of predefined symptoms, including abdominal pain, diarrhea, and/or blood in stool for more than 10 days, were examined at the local hospital. Colonoscopy with biopsies was performed and blood samples were taken. Patients who did not meet the diagnostic criteria for IBD and who displayed no evidence of infection or other pathology in the gut were included as symptomatic non-IBD controls. AQP1, 3, 4, 5, 7, 8, and 9 messenger RNA (mRNA levels were quantified in biopsies from the distal ileum and colon by quantitative real-time polymerase chain reaction. Protein expression of selected AQPs was assessed by confocal microscopy. Through multiple alignments of the deduced amino acid sequences, the putative three

  19. Ligation of major histocompatibility complex class I antigens (MHC-I) prevents apoptosis induced by Fas or SAPK/JNK activation in T-lymphoma cells

    DEFF Research Database (Denmark)

    Lamberth, K; Claesson, M H

    2001-01-01

    Early apoptosis in Jurkat T-lymphoma cells was induced by agonistic anti-Fas Ab or by anisomycin which activates the stress kinases SAPK/JNK. Apoptosis was inhibited by ligation of major histocompatibility complex class I antigens (MHC-I). MHC-I ligation induced upregulation of the anti......-apoptotic Bcl-2 protein and stabilized the mitochondrial membrane potential (Deltapsim). MHC-I ligation also prevented downregulation of Bcl-2 and destabilization of Deltapsim induced by anti-Fas Ab treatment or anisomycin exposure. Studies on three different Jurkat cell mutants deficient for src p56(lck), ZAP...

  20. Early responses of silkworm midgut to microsporidium infection--A Digital Gene Expression analysis.

    Science.gov (United States)

    Yue, Ya-Jie; Tang, Xu-Dong; Xu, Li; Yan, Wei; Li, Qian-Long; Xiao, Sheng-Yan; Fu, Xu-Liang; Wang, Wei; Li, Nan; Shen, Zhong-Yuan

    2015-01-01

    Host-pathogen interactions are complex processes, which have been studied extensively in recent years. In insects, the midgut is a vital organ of digestion and nutrient absorption, and also serves as the first physiological and immune barrier against invading pathogenic microorganisms. Our focus is on Nosema bombycis, which is a pathogen of silkworm pebrine and causes great economic losses to the silk industry. A complete understanding of the host response to infection by N. bombycis and the interaction between them is necessary to prevent this disease. Silkworm midgut infected with N. bombycis is a good model to investigate the early host responses to microsporidia infection and the interaction between the silkworm and the microsporidium. Using Digital Gene Expression analysis, we investigated the midgut transcriptome profile of P50 silkworm larvae orally inoculated with N. bombycis. At 6, 12, 18, 24, 48, 72, and 96 h post-infection (hpi), 247, 95, 168, 450, 89, 80, and 773 DEGs were identified, respectively. KEGG pathway analysis showed the influence of N. bombycis infection on many biological processes including folate biosynthesis, spliceosome, nicotinate and nicotinamide metabolism, protein export, protein processing in endoplasmic reticulum, lysosome, biosynthesis of amino acids, ribosome, and RNA degradation. In addition, a number of differentially expressed genes involved in the immune response were identified. Overall, the results of this study provide an understanding of the strategy used by silkworm as a defense against the invasion by N. bombycis. Similar interactions between hosts and pathogens infection may exist in other species. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. SP600125 Induces Src and Type I IGF Receptor Phosphorylation Independent of JNK

    Directory of Open Access Journals (Sweden)

    Qingbin Kong

    2014-09-01

    Full Text Available c-Jun N-terminal kinases (JNK are members of the mitogen-activated protein kinase (MAPK family that have important roles in signal transduction. The small molecule SP600125 is widely used in biochemical studies as a JNK inhibitor. However, recent studies indicate that SP600125 may also act independent of JNK. Here, we report that SP600125 can induce Src, type I insulin-like growth factor receptor (IGF-IR, Akt and Erk1/2 phosphorylation. Notably, these effects are independent of its inhibition of JNK. Inhibition of Src abrogates the stimulation of IGF-IR, Akt and Erk1/2 phosphorylation. IGF-IR knockdown blunts the induction of both Akt and Erk1/2 phosphorylation by SP600125. Moreover, combination of SP600125 and the Src inhibitor saracatinib synergistically inhibits cell proliferation. We conclude that SP600125 can activate Src-IGF-IR-Akt/Erk1/2 signaling pathways independent of JNK.

  2. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress.

    Science.gov (United States)

    Kant, Shashi; Standen, Claire L; Morel, Caroline; Jung, Dae Young; Kim, Jason K; Swat, Wojciech; Flavell, Richard A; Davis, Roger J

    2017-09-19

    Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH 2 -terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Galectin-3 is expressed in the myocardium very early post-myocardial infarction.

    Science.gov (United States)

    Hashmi, Satwat; Al-Salam, Suhail

    2015-01-01

    Galectin-3 (GAL-3) plays a regulatory role in several diverse biological processes and disease states. It is associated with heart failure and increased risk of death in a number of studies. We aim to study the direct effects of ischemia on GAL-3 levels in the heart very early in the course of events following myocardial infarction (MI). Male C57B6/J mice were used for permanently ligating the left anterior descending artery of the heart to create ischemia/infarction in the anterior wall of left ventricle (LV). Heart samples were processed for immunohistochemical and immunofluorescent labeling, enzyme-linked immunosorbent assay, and quantitative reverse transcriptase polymerase chain reaction to identify GAL-3 levels in the heart during the first 24 h following MI. GAL-3 mRNA was significantly increased at 60min (P=.032), 4 h (P=.012), and 24 h (P=.00) post-MI groups in the infarcted LV as compared to sham. Thirty minutes post-MI GAL-3 mRNA is higher than the sham and almost reaching statistical significance (P=.056). GAL-3 protein was significantly increased in the LV at 30 min (P=.021), 60 min (P=.029), 4 h (P=.015), and 24 h (P=.01) post-MI compared to corresponding sham-operated mice. Plasma GAL-3 levels are also significantly raised at 24-h post-MI. GAL-3 is colocalized with cardiomyocytes and endothelial cells in the ischemic area of the LV. GAL-3 is also colocalized with hypoxia-inducible factor-1 alpha (HIF-1α). We show for the first time that GAL-3 is increased at both transcriptional and translational levels in the LV in early ischemic period, which can possibly be a part of the prosurvival gene expression profile transcribed by HIF-1α. This is significant because it can help in understanding the mechanism of very early response of the myocardium following acute infarction and help devise ways to save the viable tissue before permanent damage sets in. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. SK-N-MC cell death occurs by distinct molecular mechanisms in response to hydrogen peroxide and superoxide anions: involvements of JAK2-STAT3, JNK, and p38 MAP kinases pathways.

    Science.gov (United States)

    Moslehi, Maryam; Yazdanparast, Razieh

    2013-07-01

    Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer's disease.

  5. C-Jun N-terminal kinase (JNK mediates Wnt5a-induced cell motility dependent or independent of RhoA pathway in human dental papilla cells.

    Directory of Open Access Journals (Sweden)

    Chenglin Wang

    Full Text Available Wnt5a plays an essential role in tissue development by regulating cell migration, though the molecular mechanisms are still not fully understood. Our study investigated the pathways involved in Wnt5a-dependent cell motility during the formation of dentin and pulp. Over-expression of Wnt5a promoted cell adhesion and formation of focal adhesion complexes (FACs in human dental papilla cells (hDPCs, while inhibiting cell migration. Instead of activating the canonical Wnt signal pathway in hDPCs, Wnt5a stimulation induced activation of the JNK signal in a RhoA-dependent or independent manner. Inhibiting JNK abrogated Wnt5a-induced FACs formation but not cytoskeletal rearrangement. Both dominant negative RhoA (RhoA T19N and constitutively active RhoA mutants (RhoA Q63L blocked the Wnt5a-dependent changes in hDPCs adhesion, migration and cytoskeletal rearrangement here too, with the exception of the formation of FACs. Taken together, our study suggested that RhoA and JNK signaling have roles in mediating Wnt5a-dependent adhesion and migration in hDPCs, and the Wnt5a/JNK pathway acts both dependently and independently of the RhoA pathway.

  6. C-Jun N-Terminal Kinase (JNK) Mediates Wnt5a-Induced Cell Motility Dependent or Independent of RhoA Pathway in Human Dental Papilla Cells

    Science.gov (United States)

    Wang, Chenglin; Zhao, Yuan; Su, Yingying; Li, Ruimin; Lin, Yunfeng; Zhou, Xuedong; Ye, Ling

    2013-01-01

    Wnt5a plays an essential role in tissue development by regulating cell migration, though the molecular mechanisms are still not fully understood. Our study investigated the pathways involved in Wnt5a-dependent cell motility during the formation of dentin and pulp. Over-expression of Wnt5a promoted cell adhesion and formation of focal adhesion complexes (FACs) in human dental papilla cells (hDPCs), while inhibiting cell migration. Instead of activating the canonical Wnt signal pathway in hDPCs, Wnt5a stimulation induced activation of the JNK signal in a RhoA-dependent or independent manner. Inhibiting JNK abrogated Wnt5a-induced FACs formation but not cytoskeletal rearrangement. Both dominant negative RhoA (RhoA T19N) and constitutively active RhoA mutants (RhoA Q63L) blocked the Wnt5a-dependent changes in hDPCs adhesion, migration and cytoskeletal rearrangement here too, with the exception of the formation of FACs. Taken together, our study suggested that RhoA and JNK signaling have roles in mediating Wnt5a-dependent adhesion and migration in hDPCs, and the Wnt5a/JNK pathway acts both dependently and independently of the RhoA pathway. PMID:23844260

  7. Spatio-Temporal Gene Expression Profiling during In Vivo Early Ovarian Folliculogenesis: Integrated Transcriptomic Study and Molecular Signature of Early Follicular Growth.

    Directory of Open Access Journals (Sweden)

    Agnes Bonnet

    Full Text Available The successful achievement of early ovarian folliculogenesis is important for fertility and reproductive life span. This complex biological process requires the appropriate expression of numerous genes at each developmental stage, in each follicular compartment. Relatively little is known at present about the molecular mechanisms that drive this process, and most gene expression studies have been performed in rodents and without considering the different follicular compartments.We used RNA-seq technology to explore the sheep transcriptome during early ovarian follicular development in the two main compartments: oocytes and granulosa cells. We documented the differential expression of 3,015 genes during this phase and described the gene expression dynamic specific to these compartments. We showed that important steps occurred during primary/secondary transition in sheep. We also described the in vivo molecular course of a number of pathways. In oocytes, these pathways documented the chronology of the acquisition of meiotic competence, migration and cellular organization, while in granulosa cells they concerned adhesion, the formation of cytoplasmic projections and steroid synthesis. This study proposes the involvement in this process of several members of the integrin and BMP families. The expression of genes such as Kruppel-like factor 9 (KLF9 and BMP binding endothelial regulator (BMPER was highlighted for the first time during early follicular development, and their proteins were also predicted to be involved in gene regulation. Finally, we selected a data set of 24 biomarkers that enabled the discrimination of early follicular stages and thus offer a molecular signature of early follicular growth. This set of biomarkers includes known genes such as SPO11 meiotic protein covalently bound to DSB (SPO11, bone morphogenetic protein 15 (BMP15 and WEE1 homolog 2 (S. pombe(WEE2 which play critical roles in follicular development but other biomarkers

  8. Iodine-131 treatment of thyroid cancer cells leads to suppression of cell proliferation followed by induction of cell apoptosis and cell cycle arrest by regulation of B-cell translocation gene 2-mediated JNK/NF-κB pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.M.; Pang, A.X., E-mail: zhaoliming515@126.com [Department of Nuclear Medicine, Linyi People' s Hospital, Linyi (China); Department of Urology, Linyi People' s Hospital, Linyi (China)

    2017-10-01

    Iodine-131 ({sup 131}I) is widely used for the treatment of thyroid-related diseases. This study aimed to investigate the expression of p53 and BTG2 genes following {sup 131}I therapy in thyroid cancer cell line SW579 and the possible underlying mechanism. SW579 human thyroid squamous carcinoma cells were cultured and treated with {sup 131}I. They were then assessed for {sup 131}I uptake, cell viability, apoptosis, cell cycle arrest, p53 expression, and BTG2 gene expression. SW579 cells were transfected with BTG2 siRNA, p53 siRNA and siNC and were then examined for the same aforementioned parameters. When treated with a JNK inhibitor of SP600125 and {sup 131}I or with a NF-kB inhibitor of BMS-345541 and {sup 131}I, non-transfected SW579 cells were assessed in JNK/NFkB pathways. It was observed that {sup 131}I significantly inhibited cell proliferation, promoted cell apoptosis and cell cycle arrest. Both BTG2 and p53 expression were enhanced in a dose-dependent manner. An increase in cell viability by up-regulation in Bcl2 gene, a decrease in apoptosis by enhanced CDK2 gene expression and a decrease in cell cycle arrest at G{sub 0}/G{sub 1} phase were also observed in SW579 cell lines transfected with silenced BTG2 gene. When treated with SP600125 and {sup 131}I, the non transfected SW579 cell lines significantly inhibited JNK pathway, NF-kB pathway and the expression of BTG2. However, when treated with BMS-345541 and {sup 131}I, only the NF-kB pathway was suppressed. {sup 131}I suppressed cell proliferation, induced cell apoptosis, and promoted cell cycle arrest of thyroid cancer cells by up-regulating B-cell translocation gene 2-mediated activation of JNK/NF--κB pathways. (author)

  9. Ginsenoside-Rd exhibits anti-inflammatory activities through elevation of antioxidant enzyme activities and inhibition of JNK and ERK activation in vivo.

    Science.gov (United States)

    Zhang, Yun-Xin; Wang, Li; Xiao, Er-Long; Li, Si-Jia; Chen, Jia-Jia; Gao, Bei; Min, Guang-Ning; Wang, Zhi-Ping; Wu, Yong-Jie

    2013-12-01

    Our previous study has reported that ginsenoside-Rd significantly inhibited the production of pro-inflammatory cytokines and mediators in carrageenan (Carr)-induced rat paw edema, which might be due to its blocking of the nuclear factor-κB (NF-κB) signaling pathway. The aim of the present study was to clarify the more detailed mechanisms of anti-inflammatory activity of ginsenoside-Rd in Carr-induced rat paw edema model. Rats were pretreated with dexamethasone or ginsenoside-Rd 1 h before the Carr injection. Six hours after Carr injection, the malondialdehyde (MDA) level and myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities in inflamed paw tissues were determined. The levels of nitric oxide (NO) and prostaglandin E2 (PGE2) in serum were measured. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and NF-κB were detected by western blot. In addition, the extent of phosphorylation of extracellular signal-regulated protein kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK) was analyzed by western blot. The results showed that ginsenoside-Rd significantly attenuated MPO activity and MDA level, increased the activities of SOD, GPx and CAT, lowered the levels of NO and PGE2, down-regulated the expressions of iNOS, COX-2 and NF-κB, and suppressed the phosphorylation of ERK and JNK. Taken together, the possible mechanisms of anti-inflammatory activity of ginsenoside-Rd were: it could reduce the inflammatory cell infiltration into inflammatory sites, inhibit the tissue lipid peroxidation, increase the antioxidant enzyme activities, and suppress the proinflammatory enzyme expressions through the downregulation of NF-κB activation via suppression of ERK and JNK phosphorylation.

  10. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jun, E-mail: hustzhj@hust.edu.cn; Xu, Gang; Ma, Shuai; Li, Fen; Yuan, Miao; Xu, Huibi; Huang, Kaixun

    2015-11-27

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressions of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. - Highlights: • Catalpol ameliorates high-fat diet (HFD)-induced insulin resistance in mice. • Catalpol reduces adipose tissue macrophage infiltration in HFD-fed mice. • Catalpol regulates M1 and M2 inflammatory gene expression in obese adipose tissue. • Catalpol suppresses the JNK and NF-κB signaling pathways in obese adipose tissue.

  11. Visualization of odor-induced neuronal activity by immediate early gene expression

    Directory of Open Access Journals (Sweden)

    Bepari Asim K

    2012-11-01

    Full Text Available Abstract Background Sensitive detection of sensory-evoked neuronal activation is a key to mechanistic understanding of brain functions. Since immediate early genes (IEGs are readily induced in the brain by environmental changes, tracing IEG expression provides a convenient tool to identify brain activity. In this study we used in situ hybridization to detect odor-evoked induction of ten IEGs in the mouse olfactory system. We then analyzed IEG induction in the cyclic nucleotide-gated channel subunit A2 (Cnga2-null mice to visualize residual neuronal activity following odorant exposure since CNGA2 is a key component of the olfactory signal transduction pathway in the main olfactory system. Results We observed rapid induction of as many as ten IEGs in the mouse olfactory bulb (OB after olfactory stimulation by a non-biological odorant amyl acetate. A robust increase in expression of several IEGs like c-fos and Egr1 was evident in the glomerular layer, the mitral/tufted cell layer and the granule cell layer. Additionally, the neuronal IEG Npas4 showed steep induction from a very low basal expression level predominantly in the granule cell layer. In Cnga2-null mice, which are usually anosmic and sexually unresponsive, glomerular activation was insignificant in response to either ambient odorants or female stimuli. However, a subtle induction of c-fos took place in the OB of a few Cnga2-mutants which exhibited sexual arousal. Interestingly, very strong glomerular activation was observed in the OB of Cnga2-null male mice after stimulation with either the neutral odor amyl acetate or the predator odor 2, 3, 5-trimethyl-3-thiazoline (TMT. Conclusions This study shows for the first time that in vivo olfactory stimulation can robustly induce the neuronal IEG Npas4 in the mouse OB and confirms the odor-evoked induction of a number of IEGs. As shown in previous studies, our results indicate that a CNGA2-independent signaling pathway(s may activate the

  12. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, Francisco [Service of Radiation Therapy, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Gutiérrez, Antonio, E-mail: antoniom.gutierrez@ssib.es [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Rodriguez, Jose [MD Anderson Cancer Center, Madrid (Spain); Ramos, Rafael [Service of Pathology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Garcia, Juan Fernando [Spanish National Cancer Research Centre, Madrid (Spain); Martinez-Serra, Jordi [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Casasus, Marta; Nicolau, Cristina [Service of Radiation Therapy, Policlinica Miramar, Palma de Mallorca (Spain); Bento, Leyre; Herraez, Ines [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Lopez-Perezagua, Paloma [Service of Radiology, IDISPA, Palma de Mallorca (Spain); Daumal, Jaime [Service of Nuclear Medicine, IDISPA, Palma de Mallorca (Spain); Besalduch, Joan [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain)

    2015-05-01

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2{sup +} patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2{sup −} patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2{sup +} and COX-2{sup −} patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT.

  13. A paradigm linking herpesvirus immediate-early gene expression apoptosis and myalgic encephalomyelitis chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    A Martin Lerner

    2011-02-01

    Full Text Available A Martin Lerner1, Safedin Beqaj21Department of Medicine, William Beaumont Hospital, Royal Oak, MI, USA; 2DCL Medical Laboratories, Indianapolis, IN, USAAbstract: There is no accepted science to relate herpesviruses (Epstein–Barr virus [EBV], human cytomegalovirus [HCMV], and human herpesvirus 6 [HHV6] as causes of myalgic encephalomyelitis (ME/chronic fatigue syndrome (CFS. ME/CFS patients have elevated serum immunoglobulin (IgG serum antibody titers to EBV, HCMV, and HHV6, but there is no herpesvirus DNA-emia, herpesvirus antigenemia, or uniformly elevated IgM serum antibody titers to the complete virions. We propose that herpesvirus EBV, HCMV, and HHV6 immediate-early gene expression in ME/CFS patients leads to host cell dysregulation and host cell apoptosis without lytic herpesvirus replication. Specific antiviral nucleosides, which alleviate ME/CFS, namely valacyclovir for EBV ME/CFS and valganciclovir for HCMV/HHV6 ME/CFS, inhibit herpesvirus DNA polymerases and/or thymidine kinase functions, thus inhibiting lytic virus replication. New host cell recruitment thus ceases. In the absence of new herpesvirus, nonpermissive herpesvirus replication stops, and ME/CFS recovery ensues.Keywords: ME/CFS, Epstein–Barr virus (EBV, human cytomegalovirus (HCMV, HHV6, abortive replication

  14. BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions.

    Science.gov (United States)

    Fard, Maryam K; van der Meer, Franziska; Sánchez, Paula; Cantuti-Castelvetri, Ludovico; Mandad, Sunit; Jäkel, Sarah; Fornasiero, Eugenio F; Schmitt, Sebastian; Ehrlich, Marc; Starost, Laura; Kuhlmann, Tanja; Sergiou, Christina; Schultz, Verena; Wrzos, Claudia; Brück, Wolfgang; Urlaub, Henning; Dimou, Leda; Stadelmann, Christine; Simons, Mikael

    2017-12-06

    Investigations into brain function and disease depend on the precise classification of neural cell types. Cells of the oligodendrocyte lineage differ greatly in their morphology, but accurate identification has thus far only been possible for oligodendrocyte progenitor cells and mature oligodendrocytes in humans. We find that breast carcinoma amplified sequence 1 (BCAS1) expression identifies an oligodendroglial subpopulation in the mouse and human brain. These cells are newly formed, myelinating oligodendrocytes that segregate from oligodendrocyte progenitor cells and mature oligodendrocytes and mark regions of active myelin formation in development and in the adult. We find that BCAS1 + oligodendrocytes are restricted to the fetal and early postnatal human white matter but remain in the cortical gray matter until old age. BCAS1 + oligodendrocytes are reformed after experimental demyelination and found in a proportion of chronic white matter lesions of patients with multiple sclerosis (MS) even in a subset of patients with advanced disease. Our work identifies a means to map ongoing myelin formation in health and disease and presents a potential cellular target for remyelination therapies in MS. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma

    Science.gov (United States)

    Salaün, Mathieu; Peng, Jing; Hensley, Harvey H.; Roder, Navid; Flieder, Douglas B.; Houlle-Crépin, Solène; Abramovici-Roels, Olivia; Sabourin, Jean-Christophe; Thiberville, Luc; Clapper, Margie L.

    2015-01-01

    Introduction Several matrix metalloproteinases (MMPs) are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging. Objective To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma. Methods K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT) and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors. Results In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27), but in none of the non-invasive (0/4) (p=0.001). Conclusion MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer. PMID:26193700

  16. Early changes in costameric and mitochondrial protein expression with unloading are muscle specific.

    Science.gov (United States)

    Flück, Martin; Li, Ruowei; Valdivieso, Paola; Linnehan, Richard M; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.

  17. Expression of Nocardia brasiliensis superoxide dismutase during the early infection of murine peritoneal macrophages.

    Science.gov (United States)

    Revol, Agnès; Espinoza-Ruiz, Marisol; Medina-Villanueva, Igor; Salinas-Carmona, Mario Cesar

    2006-12-01

    Nocardia brasiliensis is the main agent of actinomycetoma in Mexico, but little is known about its virulence and molecular pathogenic pathways. These facultative intracellular bacteria are able to survive and divide within the host phagocytic cells, in part by neutralizing the reactive oxygen intermediates. Superoxide dismutase (SOD) participates in the intracellular survival of several bacterial species and, in particular, constitutes one of Nocardia asteroides virulence factors. To clarify SOD participation in the N. brasiliensis early infective process, we report its isolation and the consequent comparison of its transcript level. A 630 bp polymerase chain reaction fragment that included most of the coding sequence of N. brasiliensis sodA was cloned. A competitive assay was developed, allowing comparison of bacterial sod expression in exponential culture and 1 h after infecting peritoneal macrophages from BALB/c mice. At that time, there were viable bacteria in the macrophages. The intracellular bacteria presented a clear decrease in their sod transcript amount, although their 16S rRNA (used as an internal control) and hsp levels were maintained or slightly increased, respectively. These results indicate that sodA transcription is not maintained within the SOS bacterial response induced by phagosomal conditions. Further kinetics will be necessary to precisely define sod transcriptional regulation during N. brasiliensis intra-macrophage growth.

  18. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Directory of Open Access Journals (Sweden)

    Martin Flück

    2014-01-01

    Full Text Available We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL and soleus (SOL muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS and subjected to fibre typing and measures for costameric (FAK and FRNK, mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1, and MHCI protein and RNA content. Mean cross-sectional area (MCSA of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05≤P<0.10. FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P=0.029. SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012. Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.

  19. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Science.gov (United States)

    Li, Ruowei; Linnehan, Richard M.; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (−23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading. PMID:25313365

  20. Plant expression systems for early stage discovery and development of lead therapeutic antibodies.

    Science.gov (United States)

    Virdi, Vikram; Juarez, Paloma; Depicker, Ann

    2015-12-23

    Antibodies for human clinical applications are predominantly produced in mammalian expression systems, with Chinese hamster ovary (CHO) cells being the gold standard. CHO cells are ideal for the manufacturing of the IgG class of antibodies, but not for the production of complex antibodies like secretory IgAs (SIgAs) and IgMs, which remain unavailable for clinical use. In contrast, plant seeds and leaves hold the promise to produce SIgAs, IgMs and similar complex antibody formats to scalable amounts. Using transient transformation of Nicotiana benthamiana leaves, complex antibody formats can be produced up to milligram amounts in less than a month. Based on these merits, we propose a model for early-phase exploration and designing of innovative antibody formats for therapeutic application. Further in this essay, we elaborate how the model was followed during the selection of novel antibodies for seed-based production. This exploratory model led to the engineering of novel light-chain devoid porcinized-llama antibodies (VHH-Fc) of the IgG (VHH-IgG) and IgA (VHH-IgA) isotypes and also tetravalent dimeric and SIgAs. The proposed strategy may lead to plant-based rapid engineering of innovative antibodies more apt and efficacious for therapy, and in the coarse also add to the understanding of their mode of action.

  1. Validating a test to assess early childhood learners’ ability to perceive, express and appreciate emotions

    Directory of Open Access Journals (Sweden)

    Jose Miguel Mestre Navas

    2011-10-01

    Full Text Available Emotional Education, regardless of the school level, has an important mission in the goal of any educational project: socialising younger generations. However, it is also important to assess implemented programs by means of a valid, reliable measure of the progression of children’s’ cognitive and emotional development. Using a sample of 138 early childhood learners (aged from 3 to 6 this paper tested an instrument for assessing the ability to perceive, appreciate and express emotions (as defined by Mayer & Salovey’s model, 1997; 2007. Also, external criteria were developed by teachers on several issues related to children’s social and personal adaptation (school rules, achievement, impulsiveness, social acceptance of peers and hostility. Findings suggest that children from 3 to 6 years who obtain best scores in the perception and assessment of basic emotions are considered by their teachers to better adjust to school rules, to better control impulses, to achieve better academic performance and to be less problematic. It is also important to note that the study is at its initial stages and presents some limitations, as certain important variables such as personality and verbal ability are not controlled. Nevertheless, it should be pointed out that children showed great enthusiasm in taking the test.

  2. Stable immediate early gene expression patterns in medial prefrontal cortex and striatum after long-term cocaine self-administration

    NARCIS (Netherlands)

    Gao, Ping; Limpens, Jules H W; Spijker, Sabine; Vanderschuren, Louk J M J; Voorn, Pieter

    The transition from casual to compulsive drug use is thought to occur as a consequence of repeated drug taking leading to neuroadaptive changes in brain circuitry involved in emotion and cognition. At the basis of such neuroadaptations lie changes in the expression of immediate early genes (IEGs)

  3. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    KAUST Repository

    Diaz-Rua, Ruben

    2016-11-23

    Background: Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC) is a promising tool to identify subjects at risk of developing diet-related diseases.

  4. Morphology and Quantitative Monitoring of Gene Expression Patterns during Floral Induction and Early Flower Development in Dendrocalamus latiflorus

    OpenAIRE

    Wang, Xiaoyan; Zhang, Xuemei; Zhao, Lei; Guo, Zhenhua

    2014-01-01

    The mechanism of floral transition in bamboo remains unclear. Dendrocalamus latiflorus (Bambusease, Bambusoideae, Poaceae) is an economically and ecologically important clumping bamboo in tropical and subtropical areas. We evaluated morphological characteristics and gene expression profiling to study floral induction and early flower development in D. latiflorus. The detailed morphological studies on vegetative buds and floral organography were completed using paraffin sectioning and scanning...

  5. Impaired Facial Expression Recognition in Children with Temporal Lobe Epilepsy: Impact of Early Seizure Onset on Fear Recognition

    Science.gov (United States)

    Golouboff, Nathalie; Fiori, Nicole; Delalande, Olivier; Fohlen, Martine; Dellatolas, Georges; Jambaque, Isabelle

    2008-01-01

    The amygdala has been implicated in the recognition of facial emotions, especially fearful expressions, in adults with early-onset right temporal lobe epilepsy (TLE). The present study investigates the recognition of facial emotions in children and adolescents, 8-16 years old, with epilepsy. Twenty-nine subjects had TLE (13 right, 16 left) and…

  6. Deficits in Facial Expression Recognition in Male Adolescents with Early-Onset or Adolescence-Onset Conduct Disorder

    Science.gov (United States)

    Fairchild, Graeme; Van Goozen, Stephanie H. M.; Calder, Andrew J.; Stollery, Sarah J.; Goodyer, Ian M.

    2009-01-01

    Background: We examined whether conduct disorder (CD) is associated with deficits in facial expression recognition and, if so, whether these deficits are specific to the early-onset form of CD, which emerges in childhood. The findings could potentially inform the developmental taxonomic theory of antisocial behaviour, which suggests that…

  7. MicroRNA-181a Regulates Apoptosis and Autophagy Process in Parkinson's Disease by Inhibiting p38 Mitogen-Activated Protein Kinase (MAPK)/c-Jun N-Terminal Kinases (JNK) Signaling Pathways.

    Science.gov (United States)

    Liu, Ying; Song, Yanfeng; Zhu, Xiaotun

    2017-04-02

    BACKGROUND microRNA (miR)-181a has been reported to be downregulated in Parkinson's disease (PD), but the regulatory mechanism of miR-181a on neuron apoptosis and autophagy is still poorly understood. We aimed to investigate the neuroprotective effects of miR-181a on PD in vitro. MATERIAL AND METHODS Human SK-N-SH neuroblastoma cells were incubated with different concentrations of 1-methyl-4-phenylpyridinium ion (MPP+) to induce the PD model. The expression of miR-181a was then analyzed. After transfection with miR-181a mimic or scramble following MPP+ treatment, the expression of autophagy protein markers (LC3II, LC3I, and Beclin 1) and p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinases (JNK) signaling proteins (p-p38, p38, p-JNK, and JNK) and cell apoptosis were detected. Furthermore, the cells were transfected with miR-181a inhibitor and cultured in the presence or absence of p38 inhibitor SB203582 or JNK inhibitor SP600125, and the cell apoptosis was tested again. RESULTS The expression of miR-181a was gradually decreased with the increase of MPP+ concentration (P<0.05, P<0.01, or P<0.001). Overexpression of miR-181a significantly decreased the LC3II/LC3I ratio, Beclin 1 expression, cell apoptosis, and the expression of p-p38 and p-JNK compared to the MPP+ + miR-181a scramble group (all P<0.05). In addition, we observed that SB203582 or SP600125 showed no effects on cell apoptosis, but the effects of miR-181a inhibitor on cell apoptosis were reversed by administration of SB203582 or SP600125 compared to the scramble group (P<0.05). CONCLUSIONS Our results suggest that miR-181a regulates apoptosis and autophagy in PD by inhibiting the p38 MAPK/JNK pathway.

  8. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways.

    Directory of Open Access Journals (Sweden)

    Linshan Shang

    2010-04-01

    Full Text Available Advanced glycation end-products (AGEs have been implicated in diverse pathological settings including diabetes, inflammation and acute ischemia/reperfusion injury in the heart. AGEs interact with the receptor for AGEs (RAGE and transduce signals through activation of MAPKs and proapoptotic pathways. In the current study, adult cardiomyocytes were studied in an in vitro ischemia/reperfusion (I/R injury model to delineate the molecular mechanisms underlying RAGE-mediated injury due to hypoxia/reoxygenation (H/R.Cardiomyocytes isolated from adult wild-type (WT, homozygous RAGE-null (RKO, and WT mice treated with soluble RAGE (sRAGE were subjected to hypoxia for 30 minutes alone or followed by reoxygenation for 1 hour. In specific experiments, RAGE ligand carboxymethyllysine (CML-AGE (termed "CML" in this manuscript was evaluated in vitro. LDH, a marker of cellular injury, was assayed in the supernatant in the presence or absence of signaling inhibitor-treated cardiomyocytes. Cardiomyocyte levels of heterogeneous AGEs were measured using ELISA. A pronounced increase in RAGE expression along with AGEs was observed in H/R vs. normoxia in WT cardiomyocytes. WT cardiomyocytes after H/R displayed increased LDH release compared to RKO or sRAGE-treated cardiomyocytes. Our results revealed significant increases in phospho-JNK in WT cardiomyocytes after H/R. In contrast, neither RKO nor sRAGE-treated cardiomyocytes exhibited increased phosphorylation of JNK after H/R stress. The impact of RAGE deletion on GSK-3beta phosphorylation in the cardiomyocytes subjected to H/R revealed significantly higher levels of phospho-GSK-3beta/total GSK-3beta in RKO, as well as in sRAGE-treated cardiomyocytes versus WT cardiomyocytes after H/R. Further investigation established a key role for Akt, which functions upstream of GSK-3beta, in modulating H/R injury in adult cardiomyocytes.These data illustrate key roles for RAGE-ligand interaction in the pathogenesis of

  9. Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways.

    Science.gov (United States)

    Jang, Yeon Jeong; Koo, Hyun Jung; Sohn, Eun-Hwa; Kang, Se Chan; Rhee, Dong-Kwon; Pyo, Suhkneung

    2015-07-01

    Obesity is characterized by hypertrophy and/or by the differentiation or adipogenesis of pre-existing adipocytes. In this study, we investigated the inhibitory effects of theobromine, a type of alkaloid in cocoa, on adipocyte differentiation of 3T3-L1 preadipocytes and its mechanisms of action. Theobromine inhibited the accumulation of lipid droplets, the expression of PPARγ and C/EBPα, and the mRNA expression of aP2 and leptin. The inhibition of adipogenic differentiation by theobromine occurred primarily in the early stages of differentiation. In addition, theobromine arrested the cell cycle at the G0/G1 phase and regulated the expressions of CDK2, p27, and p21. Theobromine treatment increased AMPK phosphorylation and knockdown of AMPKα1/α2 prevented the ability of theobromine to inhibit PPARγ expression in the differentiating 3T3-L1 cells. Theobromine reduced the phosphorylation of ERK and JNK. Moreover, the secretion and the mRNA level of TNF-α and IL-6 were inhibited by theobromine treatment. These data suggest that theobromine inhibits adipocyte differentiation during the early stages of adipogenesis by regulating the expression of PPARγ and C/EBPα through the AMPK and ERK/JNK signaling pathways in 3T3-L1 preadipocytes.

  10. Genes associated with early development, apoptosis and cell cycle regulation define a gene expression profile of adenoid cystic carcinoma.

    Science.gov (United States)

    Patel, Ketan J; Pambuccian, Stefan E; Ondrey, Frank G; Adams, George L; Gaffney, Patrick M

    2006-11-01

    Adenoid cystic carcinoma (ACC) is an uncommon salivary gland malignancy characterized by indolent yet relentless growth that exhibits inherent resistance to systemic chemotherapy, surgical salvage and conventional radiotherapy. We used microarray analysis to characterize gene expression changes associated with ACC. Eight ACC patient specimens were compared with normal parotid gland tissue and the ACC3 cell line. Differentially expressed genes were identified (512 total) using supervised analysis methods and functional categories assigned using OntoExpress. Genes associated with morphogenesis, neurogenesis, proliferation and apoptosis characterized ACC tumors. Genes associated with saliva production and immune response characterized normal parotid tissues while the ACC3 cell line expressed genes primarily associated with proliferation, chromosome maintenance and the cell cycle. These results demonstrate that ACC tumors express genes associated with early developmental processes including morphogenesis and neurogenesis implicating oncogenic events that result in dedifferentiation of normal salivary glands.

  11. Forgetting in C. elegans is accelerated by neuronal communication via the TIR-1/JNK-1 pathway.

    Science.gov (United States)

    Inoue, Akitoshi; Sawatari, Etsuko; Hisamoto, Naoki; Kitazono, Tomohiro; Teramoto, Takayuki; Fujiwara, Manabi; Matsumoto, Kunihiro; Ishihara, Takeshi

    2013-03-28

    The control of memory retention is important for proper responses to constantly changing environments, but the regulatory mechanisms underlying forgetting have not been fully elucidated. Our genetic analyses in C. elegans revealed that mutants of the TIR-1/JNK-1 pathway exhibited prolonged retention of olfactory adaptation and salt chemotaxis learning. In olfactory adaptation, conditioning induces attenuation of odor-evoked Ca(2+) responses in olfactory neurons, and this attenuation is prolonged in the TIR-1/JNK-1-pathway mutant animals. We also found that a pair of neurons in which the pathway functions is required for the acceleration of forgetting, but not for sensation or adaptation, in wild-type animals. In addition, the neurosecretion from these cells is important for the acceleration of forgetting. Therefore, we propose that these neurons accelerate forgetting through the TIR-1/JNK-1 pathway by sending signals that directly or indirectly stimulate forgetting. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. TRAF6 is required for the GM-CSF-induced JNK, p38 and Akt activation.

    Science.gov (United States)

    Wang, Yiwu; Zhou, Chenchen; Huo, Jiang; Ni, Yanli; Zhang, Pengfei; Lu, Cheng; Jing, Bin; Xiao, Fengjun; Chen, Wenxia; Li, Wei; Zhang, Peng; Zhang, Luo

    2015-06-01

    JNK, p38 and Akt signalings have been shown to be activated by granulocyte-macrophage colony-stimulating factor (GM-CSF) and are pivotal for GM-CSF-mediated survival, proliferation and differentiation of macrophages and their progenitors. However, the detailed mechanism of how these signalings is activated by GM-CSF is not fully elucidated. We report here that E3 ligase TRAF6 is required for the GM-CSF-induced activation of JNK, p38 and Akt. GM-CSF triggers autoubiquitination of TRAF6 and TRAF6 knocked down results in impaired activation of JNK and p38 signaling. TRAF6 is also required for GM-CSF-induced ubiquitination and activation of Akt. These findings reveal novel roles of TRAF6 in GM-CSF signaling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Human herpesvirus 6 major immediate early promoter has strong activity in T cells and is useful for heterologous gene expression

    Directory of Open Access Journals (Sweden)

    Yamanishi Koichi

    2011-01-01

    Full Text Available Abstract Background Human herpesvirus-6 (HHV-6 is a beta-herpesvirus. HHV-6 infects and replicates in T cells. The HHV-6-encoded major immediate early gene (MIE is expressed at the immediate-early infection phase. Human cytomegalovirus major immediate early promoter (CMV MIEp is commercially available for the expression of various heterologous genes. Here we identified the HHV-6 MIE promoter (MIEp and compared its activity with that of CMV MIEp in various cell lines. Methods The HHV-6 MIEp and some HHV-6 MIEp variants were amplified by PCR from HHV-6B strain HST. These fragments and CMV MIEp were subcloned into the pGL-3 luciferase reporter plasmid and subjected to luciferase reporter assay. In addition, to investigate whether the HHV-6 MIEp could be used as the promoter for expression of foreign genes in a recombinant varicella-zoster virus, we inserted HHV-6 MIEp-DsRed expression casette into the varicella-zoster virus genome. Results HHV-6 MIEp showed strong activity in T cells compared with CMV MIEp, and the presence of intron 1 of the MIE gene increased its activity. The NF-κB-binding site, which lies within the R3 repeat, was critical for this activity. Moreover, the HHV-6 MIEp drove heterologous gene expression in recombinant varicella-zoster virus-infected cells. Conclusions These data suggest that HHV-6 MIEp functions more strongly than CMV MIEp in various T-cell lines.

  14. Conserved RXLR Effector Genes of Phytophthora infestans Expressed at the Early Stage of Potato Infection Are Suppressive to Host Defense

    Directory of Open Access Journals (Sweden)

    Junliang Yin

    2017-12-01

    Full Text Available Late blight has been the most devastating potato disease worldwide. The causal agent, Phytophthora infestans, is notorious for its capability to rapidly overcome host resistance. Changes in the expression pattern and the encoded protein sequences of effector genes in the pathogen are responsible for the loss of host resistance. Among numerous effector genes, the class of RXLR effector genes is well-known in mediating host genotype-specific resistance. We therefore performed deep sequencing of five genetically diverse P. infestans strains using in planta materials infected with zoospores (12 h post inoculation and focused on the identification of RXLR effector genes that are conserved in coding sequences, are highly expressed in early stages of plant infection, and have defense suppression activities. In all, 245 RXLR effector genes were expressed in five transcriptomes, with 108 being co-expressed in all five strains, 47 of them comparatively highly expressed. Taking sequence polymorphism into consideration, 18 candidate core RXLR effectors that were conserved in sequence and with higher in planta expression levels were selected for further study. Agrobacterium tumefaciens-mediated transient expression of the selected effector genes in Nicotiana benthamiana and potato demonstrated their potential virulence function, as shown by suppression of PAMP-triggered immunity (PTI or/and effector-triggered immunity (ETI. The identified collection of core RXLR effectors will be useful in the search for potential durable late blight resistance genes. Analysis of 10 known Avr RXLR genes revealed that the resistance genes R2, Rpi-blb2, Rpi-vnt1, Rpi-Smira1, and Rpi-Smira2 may be effective in potato cultivars. Analysis of 8 SFI (Suppressor of early Flg22-induced Immune response RXLR effector genes showed that SFI2, SFI3, and SFI4 were highly expressed in all examined strains, suggesting their potentially important function in early stages of pathogen infection.

  15. An analytical expression for early electromagnetic signals generated by impulsive line-currents in conductive Earth crust, with numerical examples

    Directory of Open Access Journals (Sweden)

    Ken'ichi Yamazaki

    2016-05-01

    Full Text Available Changes in the electromagnetic (EM field after an earthquake rupture but before the arrival of seismic waves (“early EM signals” have sometimes been reported. Quantitative evaluations are necessary to clarify whether the observed phenomena are accounted for by known theories and to assess whether the phenomenon can be applied to earthquake early warning. Therefore, analytical expressions for the magnetic field generated by an impulsive line-current are derived for a conductive half-space model, and for a two-layer model; the somewhat simpler situation of a conductive whole-space is also considered. By analyzing the expressions obtained for the generated EM field, some expected features of the early EM signals are discussed. First, I verify that an early EM signal arrives before the seismic waves unless conductivity is relatively high. Second, I show that early EM signals are well approximated by the whole-space model when the source is near the ground surface, but not when it is at depth. Third, I show that the expected amplitudes of early EM signals are within the detection limits of commonly used EM sensors, provided that ground conductivity is not very high and that the source current is sufficiently intense. However, this does not mean that the EM signals are easily distinguishable, because detector sensitivity does not account for additive noise or false positive detections.

  16. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle

    Science.gov (United States)

    Hilder, Thomas L.; Tou, Janet C L.; Grindeland, Richard E.; Wade, Charles E.; Graves, Lee M.

    2003-01-01

    c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.

  17. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    2015-03-01

    1 AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER... Lateral   Sclerosis ”   Final  Report:  Project  Period  Sept  2012-­‐Dec  2014     Personnel  List:     Feng,  Yangbo

  18. Sesamol decreases melanin biosynthesis in melanocyte cells and zebrafish: Possible involvement of MITF via the intracellular cAMP and p38/JNK signalling pathways.

    Science.gov (United States)

    Baek, Seung-hwa; Lee, Sang-Han

    2015-10-01

    The development of antimelanogenic agents is important for the prevention of serious aesthetic problems such as melasma, freckles, age spots and chloasma. The aim of this study was to investigate the antimelanogenic effect of sesamol, an active lignan isolated from Sesamum indicum, in melan-a cells. Sesamol strongly inhibited melanin biosynthesis and the activity of intracellular tyrosinase by decreasing cyclic adenosine monophosphate (cAMP) accumulation. Sesamol significantly decreased the expression of melanogenesis-related genes, such as tyrosinase, tyrosinase-related protein-1,2 (TRP-1,2), microphthalmia-associated transcription factor (MITF) and melanocortin 1 receptor (MC1R). In addition, sesamol also induces phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK). Moreover, sesamol dose-dependently decreased zebrafish pigment formation, tyrosinase activity and expression of melanogenesis-related genes. These findings indicate that sesamol inhibited melanin biosynthesis by down-regulating tyrosinase activity and melanin production via regulation of gene expression of melanogenesis-related proteins through modulation of MITF activity, which promoted phosphorylation of p38 and JNK in melan-a cells. Together, these results suggest that sesamol strongly inhibits melanin biosynthesis, and therefore, sesamol represents a new skin-whitening agent for use in cosmetics. © 2015 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  19. Global gene expression shift during the transition from early neural development to late neuronal differentiation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Rafael Cantera

    Full Text Available Regulation of transcription is one of the mechanisms involved in animal development, directing changes in patterning and cell fate specification. Large temporal data series, based on microarrays across the life cycle of the fly Drosophila melanogaster, revealed the existence of groups of genes which expression increases or decreases temporally correlated during the life cycle. These groups of genes are enriched in different biological functions. Here, instead of searching for temporal coincidence in gene expression using the entire genome expression data, we searched for temporal coincidence in gene expression only within predefined catalogues of functionally related genes and investigated whether a catalogue's expression profile can be used to generate larger catalogues, enriched in genes necessary for the same function. We analyzed the expression profiles from genes already associated with early neurodevelopment and late neurodifferentiation, at embryonic stages 16 and 17 of Drosophila life cycle. We hypothesized that during this interval we would find global downregulation of genes important for early neuronal development together with global upregulation of genes necessary for the final differentiation of neurons. Our results were consistent with this hypothesis. We then investigated if the expression profile of gene catalogues representing particular processes of neural development matched the temporal sequence along which these processes occur. The profiles of genes involved in patterning, neurogenesis, axogenesis or synaptic transmission matched the prediction, with largest transcript values at the time when the corresponding biological process takes place in the embryo. Furthermore, we obtained catalogues enriched in genes involved in temporally matching functions by performing a genome-wide systematic search for genes with their highest expression levels at the corresponding embryonic intervals. These findings imply the use of gene

  20. Immunomodulatory effect of water extract of cinnamon on anti-CD3-induced cytokine responses and p38, JNK, ERK1/2, and STAT4 activation.

    Science.gov (United States)

    Lee, Beom-Joon; Kim, Youn-Jung; Cho, Dong-Hyung; Sohn, Nak-Won; Kang, Hee

    2011-12-01

    Cinnamon bark is a very popular herb used in traditional medicine to treat various disorders such as chronic gastric symptoms, arthritis, and the common cold. The immunomodulatory effect of water extract of cinnamon bark (CWE) on cytokine secretion and involvement of intracellular signaling molecules in activated T cells have been examined. Mice were orally administered CWE for 7 days. Serum was obtained 90 min after intravenous injection of anti-CD3 antibody (Ab). Splenocytes were cultured with anti-CD3 Ab and CWE for cytokine expression, cell cycle, apoptotic/necrotic changes, and viability. IκBα, p38, JNK, ERK1/2, STAT4, and STAT6 were analyzed using western blotting. Administration of CWE decreased systemic levels of IFN-γ, but not the levels of IL-4 or IL-2. In vitro, CWE inhibited anti-CD3 Ab-stimulated IFN-γ and IL-4 at the mRNA and secreted protein levels. Despite its inhibition of IL-2 transcript, CWE enhanced IL-2 secretion. CWE treatment caused a reduction in the sub-G1 phase, accompanied by an increased ratio of apoptotic cells to necrotic cells. The increased IL-2 secretion by CWE was not mediated by its direct effect on CD4 T cells. CWE inhibited the activation of p38, JNK, ERK1/2, and STAT4, but not IκBα degradation or STAT6. These observations provided evidence that CWE was able to down-regulate IFN-γ expression in activated T cells without altering IL-2 production, involving inhibition of p38, JNK, ERK1/2, and STAT4. Our results contribute to a better understanding of the immunomodulatory action of cinnamon bark for the application of inflammatory disorders.

  1. TGF-β1 is Involved in Vitamin D-Induced Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Regulating the ERK/JNK Pathway

    Directory of Open Access Journals (Sweden)

    Xiaorui Jiang

    2017-08-01

    Full Text Available Background/Aims: Osteoarthritis (OA is characterized by degradation of cartilage, sole cell type of which is chondrocytes. Bone marrow-derived mesenchymal stem cells (BMSCs possess multipotency and can be directionally differentiated into chondrocytes under stimulation. This study was aimed to explore the possible roles of vitamin D and transforming growth factor-β1 (TGF-β1 in the chondrogenic differentiation of BMSCs. Methods: BMSCs were isolated from femurs and tibias of rats and characterized by flow cytometry. After stimulation with vitamin D, BMSC proliferation and migration were measured by Cell Counting Kit-8 (CCK-8 and Transwell assays, respectively. Chondrogenic differentiation was estimated through expression levels of specific markers by qRT-PCR and Western blot analysis. After stable transfection, the effects of aberrantly expressed TGF-β1 on vitamin D-induced alterations, including BMSC viability, migration and chondrogenic differentiation, were all evaluated utilizing CCK-8 assay, Transwell assay, qRT-PCR and Western blot analysis. Finally, the phosphorylation levels of key kinases in the extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK pathways were determined by Western blot analysis. Results: Vitamin D remarkably promoted BMSC viability, migration and chondrogenic differentiation. These alterations of BMSCs induced by vitamin D were reinforced by TGF-β1 overexpression while were reversed by TGF-β1 silencing. Additionally, the phosphorylation levels of ERK, JNK and c-Jun were enhanced by TGF-β1 overexpression but were reduced by TGF-β1 knockdown. Conclusion: Vitamin D promoted BMSC proliferation, migration and chondrogenic differentiation. TGF-β1 might be implicated in the vitamin D-induced alterations of BMSCs through regulating ERK/JNK pathway.

  2. Ligation of CD47 induces G1 arrest in EBV-transformed B cells through ROS generation, p38 MAPK/JNK activation, and Tap73 upregulation.

    Science.gov (United States)

    Park, Ga Bin; Bang, Si Ra; Lee, Hyun-Kyung; Kim, Daejin; Kim, Seonghan; Kim, Jin Kyoung; Kim, Yeong Seok; Hur, Dae Young

    2014-01-01

    CD47 is expressed in normal activated cells as well as in several tumors. It also has been implicated as having antiangiogenic and antimetastatic properties, but its roles in Epstein-Barr virus (EBV)-transformed B cells are still not fully understood. Herein, we report that EBV infection induced CD47 surface expression on B cells, and CD47 ligation with anti-CD47 mAb (B6H12) reduced cell proliferation and induced G1 arrest. CD47-induced G1 arrest was mediated through increased cyclin-dependent kinase inhibitors (CDKi) and a simultaneously decreased CDK/cyclins, and p38 MAPK/JNK activation preceded binding of CDKi-CDK. Moreover, reactive oxygen species (ROS) generation and upregulation of both TAp73 and ER stress sensor proteins were detected after CD47 ligation, and p38 inhibitor SB203580 and JNK inhibitor SP600125 blocked upregulation of TAp73 and cell cycle arrest. We investigated whether ROS generation is the initial event of CD47-mediated G1 arrest because ROS scavenger NAC effectively abrogated the majority of CD47-mediated responses but SB203580 and SP600125 did not block ROS production. Taken together, we concluded that CD47 ligation on EBV-transformed B cells led to G1 arrest by ROS generation and, subsequently, there was p38 MAPK/JNK pathway activation, ER stress triggering, and TAp73 upregulation. Our findings provide data supporting CD47 as a feasible target for EBV-associated tumor therapy.

  3. Sodium Ferulate Protects against Angiotensin II-Induced Cardiac Hypertrophy in Mice by Regulating the MAPK/ERK and JNK Pathways

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2017-01-01

    Full Text Available Background and Objective. It has been reported that sodium ferulate (SF has hematopoietic function against anemia and immune regulation, inflammatory reaction inhibition, inhibition of tumor cell proliferation, cardiovascular and cerebrovascular protection, and other functions. Thus, this study aimed to investigate the effects of SF on angiotensin II- (AngII- induced cardiac hypertrophy in mice through the MAPK/ERK and JNK signaling pathways. Methods. Seventy-two male C57BL/6J mice were selected and divided into 6 groups: control group, PBS group, model group (AngII, model + low-dose SF group (AngII + 10 mg/kg SF, model + high-dose SF group (AngII + 40 mg/kg SF, and model + high-dose SF + agonist group (AngII + 40 mg/kg SCU + 10 mg/kg TBHQ. After 7 d/14 d/28 days of treatments, the changes of blood pressure and heart rates of mice were compared. The morphology of myocardial tissue and the apoptosis rate of myocardial cells were observed. The mRNA and protein expressions of atrial natriuretic peptide (ANP, transforming growth factor-β (TGF-β, collagen III (Col III, and MAPK/ERK and JNK pathway-related proteins were detected after 28 days of treatments. Results. SF improved the mice’s cardiac abnormality and decreased the apoptosis rate of myocardial cells in a time- and dose-dependent manner (all P<0.05. MAPK/ERK pathway activator inhibited the protective effect of SF in myocardial tissue of mice (P<0.05. SF could inhibit the expression of p-ERK, p-p38MAPK, and p-JNK and regulate the expressions of ANP, TGF-β, and Col III (all P<0.05. Conclusion. Our findings provide evidence that SF could protect against AngII-induced cardiac hypertrophy in mice by downregulating the MAPK/ERK and JNK pathways.

  4. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2009-01-03

    Previous studies have shown that the functional development of auditory system is substantially influenced by the structure of environmental acoustic inputs in early life. In our present study, we investigated the effects of early auditory enrichment with music on rat auditory discrimination learning. We found that early auditory enrichment with music from postnatal day (PND) 14 enhanced learning ability in auditory signal-detection task and in sound duration-discrimination task. In parallel, a significant increase was noted in NMDA receptor subunit NR2B protein expression in the auditory cortex. Furthermore, we found that auditory enrichment with music starting from PND 28 or 56 did not influence NR2B expression in the auditory cortex. No difference was found in the NR2B expression in the inferior colliculus (IC) between music-exposed and normal rats, regardless of when the auditory enrichment with music was initiated. Our findings suggest that early auditory enrichment with music influences NMDA-mediated neural plasticity, which results in enhanced auditory discrimination learning.

  5. Progression of Gene Expression Changes following a Mechanical Injury to Articular Cartilage as a Model of Early Stage Osteoarthritis

    Science.gov (United States)

    McCulloch, R. S.; Ashwell, M. S.; Maltecca, C.; O'Nan, A. T.; Mente, P. L.

    2014-01-01

    An impact injury model of early stage osteoarthritis (OA) progression was developed using a mechanical insult to an articular cartilage surface to evaluate differential gene expression changes over time and treatment. Porcine patellae with intact cartilage surfaces were randomized to one of three treatments: nonimpacted control, axial impaction (2000 N), or a shear impaction (500 N axial, with tangential displacement to induce shear forces). After impact, the patellae were returned to culture for 0, 3, 7, or 14 days. At the appropriate time point, RNA was extracted from full-thickness cartilage slices at the impact site. Quantitative real-time PCR was used to evaluate differential gene expression for 18 OA related genes from four categories: cartilage matrix, degradative enzymes and inhibitors, inflammatory response and signaling, and cell apoptosis. The shear impacted specimens were compared to the axial impacted specimens and showed that shear specimens more highly expressed type I collagen (Col1a1) at the early time points. In addition, there was generally elevated expression of degradative enzymes, inflammatory response genes, and apoptosis markers at the early time points. These changes suggest that the more physiologically relevant shear loading may initially be more damaging to the cartilage and induces more repair efforts after loading. PMID:25478225

  6. Assessment of cathepsin mRNA expression and enzymatic activity during early embryonic development in the yellowtail kingfish Seriola lalandi.

    Science.gov (United States)

    Palomino, Jaime; Herrera, Giannina; Torres-Fuentes, Jorge; Dettleff, Phillip; Patel, Alok; Martínez, Víctor

    2017-05-01

    In pelagic species such as Seriola lalandi, survival of both the eggs and embryos depends on yolk processing during oocyte maturation and embryo development. The main enzymes involved in these processes are the cathepsins, which are essential for the hydration process, acquiring buoyancy and nutrition of the embryo before hatching. This study aimed to investigate the mRNA expression profiles of cathepsins B, D and L (catb, catd and catl) and the activity of these enzymes during early development in S. lalandi. We included previtellogenic oocytes (PO). All three enzymes were highly expressed in PO, but the expression was reduced throughout development. Between PO and recently spawned eggs (E1) the transcript to catb and catd decreased, unlike catl. Cathepsin B activity, showed stable levels between PO until blastula stage (E4). High activities levels of cathepsins D and L were observed in E1 in comparison with later developmental stages. Cathepsin L activity remained constant until E1, consistent with observations in other pelagic spawners, where its participation in a second protolithic cleavage of the yolk proteins, has been proposed for this enzyme. Their profiles of both mRNA expression and enzymatic activity indicate the importance of these enzymes during early development and suggest different roles in egg yolk processing for the hydration process and nutrition in early embryos in this species. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Decreased Expression of the Early Mitotic Gene, CHFR, Contributes to the Acquisition of Breast Cancer Phenotypes

    National Research Council Canada - National Science Library

    Privette, Lisa M

    2008-01-01

    .... As previously reported, nearly 40% of breast cancer show decreased CHFR expression compared to normal cells and tissues and the loss of CHFR expression by RNAi in cell culture models leads to the acquisition of several tumorigenic phenotypes...

  8. Cholinergic intrapancreatic neurons induce Ca²+ signaling and early-response gene expression in pancreatic acinar cells.

    Science.gov (United States)

    Turner, D J; cowles, R A; Segura, B J; Romanchuk, G; Barnhart, D C; Mulholland, M W

    2000-01-01

    Pancreatic exocrine function has been demonstrated to be under neuronal regulation. The pathways responsible for this effect, and the long-term consequences of such interactions, are incompletely described. The effects of neuronal depolarization on pancreatic acinar cells were studied to determine whether calcium signaling and c-fos expression were activated. In pancreatic lobules, which contain both neurons and acinar cells, agonists that selectively stimulated neurons increased intracellular calcium in acinar cells. Depolarization also led to the expression of c-fos protein in 24% +/- 4% of the acinar cells. In AR42J pancreatic acinar cells, cholinergic stimulation demonstrated an average increase of 398 +/- 19 nmol/L in intracellular calcium levels, and induced c-fos expression that was time and dose dependent. The data indicate that intrapancreatic neurons induce Ca²+ signaling and early-response gene expression in pancreatic acinar cells.

  9. Early gastric cancer frequently has high expression of KK-LC-1, a cancer-testis antigen.

    Science.gov (United States)

    Futawatari, Nobue; Fukuyama, Takashi; Yamamura, Rui; Shida, Akiko; Takahashi, Yoshihito; Nishi, Yatsushi; Ichiki, Yoshinobu; Kobayashi, Noritada; Yamazaki, Hitoshi; Watanabe, Masahiko

    2017-12-14

    To assess cancer-testis antigens (CTAs) expression in gastric cancer patients and examined their associations with clinicopathological factors. Eighty-three gastric cancer patients were evaluated in this study. Gastric cancer specimens were evaluated for the gene expression of CTAs, Kitakyushu lung cancer antigen-1 (KK-LC-1), melanoma antigen (MAGE)-A1, MAGE-A3 and New York esophageal cancer-1 (NY-ESO-1), by reverse transcription PCR. Clinicopathological background information, such as gender, age, tumor size, macroscopic type, tumor histology, depth of invasion, lymph node metastasis, lymphatic invasion, venous invasion, and pathological stage, was obtained. Statistical comparisons between the expression of each CTA and each clinicopathological background were performed using the χ2 test. The expression rates of KK-LC-1, MAGE-A1, MAGE-A3, and NY-ESO-1 were 79.5%, 32.5%, 39.8%, and 15.7%, respectively. In early stage gastric cancer specimens, the expression of KK-LC-1 was 79.4%, which is comparable to the 79.6% observed in advanced stage specimens. The expression of KK-LC-1 was not significantly associated with clinicopathological factors, while there were considerable differences in the expression rates of MAGE-A1 and MAGE-A3 with vs without lymphatic invasion (MAGE-A1, 39.3% vs 13.6%, P = 0.034; MAGE-A3, 47.5% vs 18.2%, P = 0.022) and/or vascular invasion (MAGE-A1, 41.5% vs 16.7%, P = 0.028; MAGE-A3, 49.1% vs 23.3%, P = 0.035) and, particularly, MAGE-A3, in patients with early vs advanced stage (36.5% vs 49.0%, P = 0.044), respectively. Patients expressing MAGE-A3 and NY-ESO-1 were older than those not expressing MAGE-A3 and NY-ESO-1 (MAGE-A3, 73.7 ± 7.1 vs 67.4 ± 12.3, P = 0.009; NY-ESO-1, 75.5 ± 7.2 vs 68.8 ± 11.2, P = 0.042). The KK-LC-1 expression rate was high even in patients with stage I cancer, suggesting that KK-LC-1 is a useful biomarker for early diagnosis of gastric cancer.

  10. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield.

    Science.gov (United States)

    Tata, Sandeep Kumar; Jung, Jihye; Kim, Yoon-Ha; Choi, Jun Young; Jung, Ji-Yul; Lee, In-Jung; Shin, Jeong Sheop; Ryu, Stephen Beungtae

    2016-01-01

    Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast-targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS-transgenic lines (control) or wild-type plants. The gibberellin levels in HaGGPS-transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS-transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS-expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy. © 2015 Korea Research Institute of Bioscience & Biotechnology. Plant Biotechnology Journal published by John Wiley & Sons Ltd and Society for Experimental Biology, Association of Applied Biologists.

  11. Tobacco smoke control of mucin production in lung cells requires oxygen radicals AP-1 and JNK.

    Science.gov (United States)

    Gensch, Erin; Gallup, Marianne; Sucher, Anatol; Li, Daizong; Gebremichael, Assefa; Lemjabbar, Hassan; Mengistab, Aklilu; Dasari, Vijay; Hotchkiss, Jon; Harkema, Jack; Basbaum, Carol

    2004-09-10

    In smokers' lungs, excessive mucus clogs small airways, impairing respiration and promoting recurrent infection. A breakthrough in understanding this pathology was the realization that smoke could directly stimulate mucin synthesis in lung epithelial cells and that this phenomenon was dependent on the cell surface receptor for epidermal growth factor, EGFR. Distal steps in the smoke-triggered pathway have not yet been determined. We report here that the predominant airway mucin (MUC5AC) undergoes transcriptional up-regulation in response to tobacco smoke; this is mediated by an AP-1-containing response element, which binds JunD and Fra-2. These transcription factors require phosphorylation by upstream kinases JNK and ERK, respectively. Whereas ERK activation results from the upstream activation of EGFR, JNK activation is chiefly EGFR-independent. Our experiments demonstrated that smoke activates JNK via a Src-dependent, EGFR-independent signaling cascade initiated by smoke-induced reactive oxygen species. Taken together with our earlier results, these data indicate that the induction of mucin by smoke is the combined effect of mutually independent, reactive oxygen species activation of both EGFR and JNK.

  12. From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance.

    Science.gov (United States)

    Karin, Michael; Gallagher, Ewen

    2005-01-01

    The c-Jun N-terminal kinases (JNKs) were originally identified by their ability to phosphorylate c-Jun in response to UV-irradiation, but now are recognized as critical regulators of various aspects of mammalian physiology, including: cell proliferation, cell survival, cell death, DNA repair and metabolism. JNK-mediated phosphorylation enhances the ability of c-Jun, a component of the AP-1 transcription factor, to activate transcription, in response to a plethora of extracellular stimuli. The JNK activation leads to induction of AP-1-dependent target genes involved in cell proliferation, cell death, inflammation, and DNA repair. The JNKs, which are encoded by three different Jnk loci, are now known to be regulated by many other stimuli, from pro-inflammatory cytokines to obesity, in addition to UV-irradiation. Targeted disruption of the Jnk loci in mice has proved to be a critical tool in better understanding their physiological functions. Such studies revealed that the JNKs play important roles in numerous cellular processes, including: programmed cell death, T cell differentiation, negative regulation of insulin signaling, control of fat deposition, and epithelial sheet migration. Importantly, the JNKs have become prime targets for drug development in several important clinical areas, including: inflammation, diabetes, and cancer.

  13. CXCL10 Decreases GP73 Expression in Hepatoma Cells at the Early Stage of Hepatitis C Virus (HCV Infection

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2013-12-01

    Full Text Available Golgi protein 73 (GP73, which is up-regulated in hepatocellular carcinoma (HCC, has recently been identified as a novel serum marker for HCC diagnosis. Several reports also noted the increased levels of GP73 expression in chronic liver disease in patients with acute hepatitis of various etiologies, chronic Hepatitis C virus (HCV infection and alcoholic liver disease. The molecular mechanisms of GP73 expression in HCV related liver disease still need to be determined. In this study, we aimed to evaluate the effect of HCV infection on GP73 expression. GP73 was highly expressed in Huh7, Hep3B, 293T and HUVEC cells, and was low-expressed in HepG2 cells. HCV infection led to down-regulation of GP73 in Huh7 and HepG2/CD81 cells at the early stage of infection. CXCL10 decreased GP73 expression in Huh7 and HepG2 cells. Up-regulation of GP73 was noted in hepatocytes with cytopathic effect at advanced stage of HCV infection, and further research is needed to determine the unknown factors affecting GP73 expression. In conclusion, our study provided additional evidence for the roles of GP73 in liver disease.

  14. Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways.

    Science.gov (United States)

    Lu, Tien-Hui; Tseng, To-Jung; Su, Chin-Chuan; Tang, Feng-Cheng; Yen, Cheng-Chieh; Liu, Yu-Yun; Yang, Ching-Yao; Wu, Chin-Ching; Chen, Kuo-Liang; Hung, Dong-Zong; Chen, Ya-Wen

    2014-01-03

    Arsenic (As), a well-known high toxic metal, is an important environmental and industrial contaminant, and it induces oxidative stress, which causes many adverse health effects and diseases in humans, particularly in inorganic As (iAs) more harmful than organic As. Recently, epidemiological studies have suggested a possible relationship between iAs exposure and neurodegenerative disease development. However, the toxicological effects and underlying mechanisms of iAs-induced neuronal cell injuries are mostly unknown. The present study demonstrated that iAs significantly decreased cell viability and induced apoptosis in Neuro-2a cells. iAs also increased oxidative stress damage (production of malondialdehyde (MDA) and ROS, and reduction of Nrf2 and thioredoxin protein expression) and induced several features of mitochondria-dependent apoptotic signals, including: mitochondrial dysfunction, the activations of PARP and caspase cascades, and the increase in caspase-3 activity. Pretreatment with the antioxidant N-acetylcysteine (NAC) effectively reversed these iAs-induced responses. iAs also increased the phosphorylation of JNK and ERK1/2, but did not that p38-MAPK, in treated Neuro-2a cells. NAC and the specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) abrogated iAs-induced cell cytotoxicity, caspase-3/-7 activity, and JNK and ERK1/2 activation. Additionally, exposure of Neuro-2a cells to iAs triggered endoplasmic reticulum (ER) stress identified through several key molecules (GRP 78, CHOP, XBP-1, and caspase-12), which was prevented by NAC. Transfection with GRP 78- and CHOP-specific si-RNA dramatically suppressed GRP 78 and CHOP expression, respectively, and attenuated the activations of caspase-12, -7, and -3 in iAs-exposed cells. Therefore, these results indicate that iAs induces ROS causing neuronal cell death via both JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-triggered apoptosis pathways. Copyright © 2013 Elsevier Ireland Ltd. All

  15. Low ABCB1 gene expression is an early event in colorectal carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Vibeke Andersen

    Full Text Available The ABCB1/MDR1 gene product ABCB1/P-glycoprotein is implicated in the development of colorectal cancer (CRC. NFKB1 encodes transcription factors regulating expression of a number of genes including ABCB1. We have previously found association between the ABCB1 C-rs3789243-T polymorphism and CRC risk and interactions between the ABCB1 C-rs3789243-T and C3435T polymorphisms and meat intake in relation to CRC risk (Andersen, BMC Cancer, 2009, 9, 407. ABCB1 and NFKB1 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 101 adenoma cases (12 with severe dysplasia, 89 with mild-moderate dysplasia and from 18 healthy individuals, together with gene polymorphisms in ABCB1 and NFKB1. ABCB1 mRNA levels were highest in the healthy individuals and significantly lower in mild/moderate and severe dysplasia tissue (P<0.05 for both, morphologically normal tissues close to the tumour (P<0.05, morphologically normal tissue at a distance from the tumour (P<0.05 and CRC tissue (P<0.001. Furthermore, ABCB1 mRNA levels were lower in adenomas and carcinomas compared to morphologically normal tissue from the same individuals (P<0.01. The ABCB1 C-rs3789243-T and NFKB1 -94ins/del homozygous variant genotypes were associated with low ABCB1 mRNA levels in morphologically normal sigmoid tissue from adenoma cases (P<0.05 for both. NFKB1 mRNA levels were lower in both tumour and normal tissue from cancer patients (P<0.001 as compared to healthy individuals but we were unable to show association between NFKB1 -94ins/del genotype and NFKB1 mRNA levels. This study suggests that low ABCB1 mRNA levels are an early event in CRC development and that the two polymorphisms affect ABCB1 mRNA levels whereas low NFKB1 mRNA levels occur later in carcinogenesis. Low ABCB1 protein levels may promote colorectal carcinogenesis through increasing intracellular exposure to carcinogenic ABCB1 substrates.

  16. A robust prognostic gene expression signature for early stage lung adenocarcinoma

    DEFF Research Database (Denmark)

    Krzystanek, Marcin; Moldvay, Judit; Szüts, David

    2016-01-01

    Stage I lung adenocarcinoma is usually not treated with adjuvant chemotherapy; however, around half of these patients do not survive 5 years. Therefore, a reliable prognostic biomarker for early stage patients would be critical to identify those most likely to benefit from early additional treatm...

  17. Patterns and Correlates of Expressed Emotion, Perceived Criticism, and Rearing Style in First Admitted Early-Onset Schizophrenia Spectrum Disorders

    OpenAIRE

    von Polier, Georg G.; Meng, Heiner; Lambert, Martin; Strauss, Monika; Zarotti, Gianni; Karle, Michael; Dubois, Reinmar; Stark, Fritz-Michael; Neidhart, Sibylle; Zollinger, Ruedi; Bürgin, Dieter; Felder, Wilhelm; Resch, Franz; Koch, Eginhard; Schulte-Markwort, Michael

    2014-01-01

    The aim of this study was to assess patterns and correlates of family variables in 31 adolescents treated for their first episode of a schizophrenia spectrum disorder (early-onset schizophrenia [EOS]). Expressed emotion, perceived criticism, and rearing style were assessed. Potential correlates were patient psychopathology, premorbid adjustment, illness duration, quality of life (QoL), sociodemographic variables, patient and caregiver "illness concept," and caregiver personality traits and su...

  18. Early Events in the Fusarium verticillioides-Maize Interaction Characterized by Using a Green Fluorescent Protein-Expressing Transgenic Isolate

    OpenAIRE

    Oren, Liat; Ezrati, Smadar; Cohen, David; Sharon, Amir

    2003-01-01

    The infection of maize by Fusarium verticillioides can result in highly variable disease symptoms ranging from asymptomatic plants to severe rotting and wilting. We produced F. verticillioides green fluorescent protein-expressing transgenic isolates and used them to characterize early events in the F. verticillioides-maize interaction that may affect later symptom appearance. Plants grown in F. verticillioides-infested soil were smaller and chlorotic. The fungus colonized all of the undergrou...

  19. Early and Delayed Antiretroviral Therapy Results in Comparable Reductions in CD8+T Cell Exhaustion Marker Expression.

    Science.gov (United States)

    Rutishauser, Rachel Lena; Hartogensis, Wendy; Deguit, Christian Deo; Krone, Melissa; Hoh, Rebecca; Hecht, Frederick M; Pilcher, Christopher D; Bacchetti, Peter; Deeks, Steven G; Hunt, Peter W; McCune, Joseph M

    2017-07-01

    In untreated HIV infection, CD8 + T cell exhaustion (i.e., decreased proliferative and effector capacity) is associated with high levels of expression of coinhibitory receptors, including PD-1, T cell immunoreceptor with Ig and ITIM domains (TIGIT), CD160, and 2B4. This is evident for both HIV-specific and non-HIV-specific CD8 + T cells. Antiretroviral therapy (ART) initiated during chronic infection decreases but may not completely normalize the expression of such "exhaustion markers." Compared to initiation of ART later in the course of disease, initiation soon after infection reduces some parameters of chronic inflammation and adaptive immune dysfunction. However, it is not known if Early ART (e.g., initiated within the first 6 months after HIV infection) versus Delayed ART (e.g., initiated during chronic infection) preferentially reduces expression of exhaustion markers. We evaluated exhaustion marker expression on subsets of circulating effector and memory CD8 + T cells at longitudinal pre- and post-ART (2 and 5 years on ART) time points from n = 19 (Early ART) and n = 23 (Delayed ART) individuals. Before ART, TIGIT and CD160 were expressed on a statistically significantly higher proportion of effector and transitional memory cells from individuals in the Delayed ART group: the timing of ART initiation, however, did not consistently affect the expression of the exhaustion markers once viral suppression was achieved. Understanding which factors do and do not regulate aspects of CD8 + T cell exhaustion, including the expression of exhaustion markers, is critical to inform the rational design of CD8 + T cell-based therapies to treat HIV, for which CD8 + T cell exhaustion remains an important barrier to efficacy.

  20. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Akshay Bhinge

    2017-04-01

    Full Text Available Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS, it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential.

  1. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma

    Science.gov (United States)

    Yang, Hongyan; Xie, Yan; Yang, Dongyu; Ren, Decheng

    2017-01-01

    Reactive oxygen species (ROS) play important roles in follicular development and survival. Granulosa cell death is associated with increased ROS, but the mechanism of granulosa cell death induced by ROS is not clear. In order to define the molecular link between ROS and granulosa cell death, COV434, human granulosa tumor cells, were treated with H2O2. Compared to control cells, H2O2 induced granulosa cell death in a dose- and time-dependent manner. H2O2 induced an increase in Bax, Bak and Puma, and a decrease in anti-apoptotic molecules such as Bcl-2, Bcl-xL and Mcl-1. Both knockdown of Puma and overexpression of Bcl-xL could inhibit H2O2-induced granulosa cell death. These results suggest that suppression of Puma and overexpression of anti-apoptotic Bcl-2 family members could improve granulosa cell survival. To explore the mechanisms responsible for these findings, ROS in granulosa cells treatment with H2O2 were measured. The results showed that ROS was increased in a H2O2 dose- and time-dependent manner at the earlier time point. In addition, H2O2 induced an increase in Nrf2 and phosphorylation of JNK and p53. SP600125, an inhibitor of JNK, inhibits H2O2-induced phosphorylation of JNK and p53, and granulosa cell death. Antioxidant N-acetylcysteine (NAC) dose-dependently prevents H2O2-induced granulosa cell death. Furthermore, NAC also prevents phosphorylation of JNK and p53 induced by H2O2. Taken together, these data suggest that H2O2 regulates cell death in granulosa cells via the ROS-JNK-p53 pathway. These findings provide an improved understanding of the mechanisms underlying granulosa cell apoptosis, which could potentially be useful for future clinical applications. PMID:28445976

  2. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis

    Science.gov (United States)

    Wan, Lei; Tan, Hsueh-Li; Thomas-Ahner, Jennifer M.; Pearl, Dennis K.; Erdman, John W.; Moran, Nancy E.; Clinton, Steven K.

    2014-01-01

    Consumption of tomato products containing the carotenoid lycopene is associated with a reduced risk of prostate cancer. To identify gene expression patterns associated with early testosterone-driven prostate carcinogenesis, which are impacted by dietary tomato and lycopene, wild type (WT) and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed control or tomato- or lycopene-containing diets from 4-10 wk-of-age. Eight-week-old mice underwent sham surgery, castration, or castration followed by testosterone-repletion (2.5 mg/kg/d initiated 1 wk after castration). Ten-wk-old intact TRAMP mice exhibit early multifocal prostatic intraepithelial neoplasia (PIN). Of the 200 prostate cancer-related genes measured by quantitative NanoString®, 189 are detectable, 164 significantly differ by genotype, 179 by testosterone status, and 30 by diet type (Plycopene feeding (Srd5a1) and by tomato-feeding (Srd5a2, Pxn, and Srebf1). Additionally, tomato-feeding significantly reduced expression of genes associated with stem cell features, Aldh1a and Ly6a, while lycopene-feeding significantly reduced expression of neuroendocrine differentiation-related genes, Ngfr and Syp. Collectively, these studies demonstrate a profile of testosterone-regulated genes associated with early stages of prostate carcinogenesis that are potential mechanistic targets of dietary tomato components. Future studies on androgen signaling/metabolism, stem cell features, and neuroendocrine differentiation pathways may elucidate the mechanisms by which dietary tomato and lycopene impact prostate cancer risk. PMID:25315431

  3. A novel naturally occurring tandem promoter in modified vaccinia virus ankara drives very early gene expression and potent immune responses.

    Directory of Open Access Journals (Sweden)

    Sonia T Wennier

    Full Text Available Modified vaccinia virus Ankara (MVA has been shown to be suitable for the generation of experimental vaccines against cancer and infectious diseases, eliciting strong humoral and cellular immune responses. In viral vectored vaccines, strong recombinant antigen expression and timing of expression influence the quantity and quality of the immune response. Screening of synthetic and native poxvirus promoters for strong protein expression in vitro and potent immune responses in vivo led to the identification of the MVA13.5L promoter, a unique and novel naturally occurring tandem promoter in MVA composed of two 44 nucleotide long repeated motifs, each containing an early promoter element. The MVA13.5L gene is highly conserved across orthopoxviruses, yet its function is unknown. The unique structure of its promoter is not found for any other gene in the MVA genome and is also conserved in other orthopoxviruses. Comparison of the MVA13.5L promoter activity with synthetic poxviral promoters revealed that the MVA13.5L promoter produced higher levels of protein early during infection in HeLa cells and particularly in MDBK cells, a cell line in which MVA replication stops at an early stage before the expression of late genes. Finally, a recombinant antigen expressed under the control of this novel promoter induced high antibody titers and increased CD8 T cell responses in homologous prime-boost immunization compared to commonly used promoters. In particular, the recombinant antigen specific CD8 T cell responses dominated over the immunodominant B8R vector-specific responses after three vaccinations and even more during the memory phase. These results have identified the native MVA13.5L promoter as a new potent promoter for use in MVA vectored preventive and therapeutic vaccines.

  4. Unemotional traits predict early processing deficit for fearful expressions in young violent offenders: an investigation using continuous flash suppression.

    Science.gov (United States)

    Jusyte, A; Mayer, S V; Künzel, E; Hautzinger, M; Schönenberg, M

    2015-01-01

    Research evidence suggests that cognitive and neural mechanisms involved in social information processing may underlie the key aspects associated with the emergence of aggression and psychopathy. Despite extensive research in this field, it is unclear whether this deficit relates to general attentional problems or affects early stages of information processing. Therefore, the aim was to explore the link between aggression, psychopathic traits, and the early processing deficits in young antisocial violent offenders (YAVOs) and healthy controls (CTLs). Participants were presented with rapidly changing Mondrian-like images in one eye, while a neutral or emotional (happy, angry, fearful, disgusted, surprised, sad) face was slowly introduced to the other eye. Participants indicated the location in which the face had appeared on the screen, reflecting the time when they became aware of the stimulus. The relative processing advantage was obtained by subtracting mean reaction times for emotional from neutral faces. The results indicated that individuals with higher levels of unemotional traits tended to exhibit an extensive early processing disadvantage for fearful facial expressions; this relationship was only evident in the YAVO as opposed to the CTL sample. These findings indicate that an emotion processing deficit in antisocial individuals is present even at the most basic levels of processing and closely related to certain psychopathic traits. Furthermore, this early processing deficit appears to be highly specific to fearful expressions, which is consistent with predictions made by influential models of psychopathy. The clinical significance and potential implications of the results are discussed.

  5. Monocyte gene expression signature of patients with early onset coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Suthesh Sivapalaratnam

    Full Text Available The burden of cardiovascular disease (CVD cannot be fully addressed by therapy targeting known pathophysiological pathways. Even with stringent control of all risk factors CVD events are only diminished by half. A number of additional pathways probably play a role in the development of CVD and might serve as novel therapeutic targets. Genome wide expression studies represent a powerful tool to identify such novel pathways. We compared the expression profiles in monocytes from twenty two young male patients with premature familial CAD with those from controls matched for age, sex and smoking status, without a family history of CVD. Since all patients were on statins and aspirin treatment, potentially affecting the expression of genes in monocytes, twelve controls were subsequently treated with simvastatin and aspirin for 6 and 2 weeks, respectively. By whole genome expression arrays six genes were identified to have differential expression in the monocytes of patients versus controls; ABCA1, ABCG1 and RGS1 were downregulated in patients, whereas ADRB2, FOLR3 and GSTM1 were upregulated. Differential expression of all genes, apart from GSTM1, was confirmed by qPCR. Aspirin and statins altered gene expression of ABCG1 and ADBR2. All finding were validated in a second group of twenty four patients and controls. Differential expression of ABCA1, RSG1 and ADBR2 was replicated. In conclusion, we identified these 3 genes to be expressed differently in CAD cases which might play a role in the pathogenesis of atherosclerotic vascular disease.

  6. Nestin and cluster of differentiation 146 expression in breast cancer: Predicting early recurrence by targeting metastasis?

    Science.gov (United States)

    Tampaki, Ekaterini Christina; Tampakis, Athanasios; Nonni, Afroditi; Kontzoglou, Konstantinos; Patsouris, Efstratios; Kouraklis, Gregory

    2017-03-01

    The purpose of this study was to investigate the relationship between the expression of stem-cell markers nestin and cluster of differentiation 146 with clinicopathological characteristics in breast cancer and to determine whether a prognostic impact of nestin and CD146 expression exists regarding occurrence of disease relapse in breast cancer. A total of 141 patients who were histologically diagnosed with breast cancer and underwent radical operations from November 2006 to October 2013 in Laiko General Hospital, National and Kapodistrian University of Athens, were enrolled in the study. CD146 and nestin protein expression were evaluated using immunohistochemistry. Nestin expression was observed in 18.4% (26/141) of the cases, while CD146 expression was observed in 35.5% (50/141) of the cases. Nestin expression is significantly higher in younger patients with breast cancer. Nestin and CD146 expression were not correlated with the tumor size and the presence of lymph node metastasis. On the contrary, a significantly higher expression of nestin and CD146 was observed with triple-negative cancers (p metastasis, 30 months after the primary treatment. CD146 but not nestin, however, predicted independently (p = 0.047) disease recurrence. Nestin and CD146 are expressed in breast cancer cells with highly aggressive potency. They might contribute to disease relapse in breast cancer by activating the epithelial-mesenchymal transition pathway and assist tumor neovascularization.

  7. Rosmarinic acid protects rat hippocampal neurons from cerebral ischemia/reperfusion injury via the Akt/JNK3/caspase-3 signaling pathway.

    Science.gov (United States)

    Zhang, Min; Yan, Hui; Li, Sumei; Yang, Jun

    2017-02-15

    Cerebral ischemia/reperfusion injury can result in neuronal death, which further results in brain damage and can even lead to death. Although recent studies showed that rosmarinic acid (RA) exerts neuroprotective effects and attenuates ischemia-induced brain injury and neuronal cell death, little is known about the precise mechanisms that occur during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to examine the underlying mechanism of the neuroprotective effects of RA against ischemic brain injury induced by cerebral I/R. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. We randomly divided rats into five groups: sham, I/R, I/R+RA, I/R+Vehicle and I/R+RA+LY. Open-field, closed-field and Morris water maze tests were carried our separately to examine the anxiety and cognitive behavior of each group. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. The levels of p-Akt, p-JNK3 and cleaved caspase-3 in the hippocampus were also examined by Western blotting. Our results showed that administration of RA protected locomotive ability, relieved anxiety behavior and protected cognitive ability in cerebral I/R-injured rats. Additionally, RA significantly protected neurons in the hippocampal CA1 region against cerebral I/R-induced damage. Furthermore, RA increased the phosphorylation of Akt1, downregulated the phosphorylation of JNK3 and reduced the expression of cleaved caspase-3. Finally, the Akt inhibitor LY294002 reversed all the protective effects of RA, indicating that RA protects neurons in the hippocampal CA1 region from ischemic damage through the Akt/JNK3/caspase-3 signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Zhang

    Full Text Available BACKGROUND: Fucoidan extract (FE, an enzymatically digested compound with a low molecular weight, is extracted from brown seaweed. As a natural compound with various actions, FE is attractive, especially in Asian countries, for improving the therapeutic efficacy and safety of cancer treatment. The present study was carried out to investigate the anti-tumor properties of FE in human carcinoma cells and further examine the underlying mechanisms of its activities. METHODOLOGY/PRINCIPAL FINDING: FE inhibits the growth of MCF-7, MDA-MB-231, HeLa, and HT1080 cells. FE-mediated apoptosis in MCF-7 cancer cells is accompanied by DNA fragmentation, nuclear condensation, and phosphatidylserine exposure. FE induces mitochondrial membrane permeabilization (MMP through loss of mitochondrial membrane potential (ΔΨm and regulation of the expression of Bcl-2 family members. Release of apoptosis-inducing factor (AIF and cytochrome c precedes MMP. AIF release causes DNA fragmentation, the final stage of apoptosis, via a caspase-independent mitochondrial pathway. Additionally, FE was found to induce phosphorylation of c-Jun N-terminal kinase (JNK, p38, and extracellular signal-regulated kinase (ERK 1/2, and apoptosis was found to be attenuated by inhibition of JNK. Furthermore, FE-mediated apoptosis was found to involve the generation of reactive oxygen species (ROS, which are responsible for the decrease of ΔΨm and phosphorylation of JNK, p38, and ERK1/2 kinases. CONCLUSIONS/SIGNIFICANCE: These data suggest that FE activates a caspase-independent apoptotic pathway in MCF-7 cancer cells through activation of ROS-mediated MAP kinases and regulation of the Bcl-2 family protein-mediated mitochondrial pathway. They also provide evidence that FE deserves further investigation as a natural anticancer and cancer preventive agent.

  9. Apoptosis Induction of Human Prostate Carcinoma DU145 Cells by Diallyl Disulfide via Modulation of JNK and PI3K/AKT Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Young Hyun Yoo

    2012-11-01

    Full Text Available Diallyl disulfide (DADS, a sulfur compound derived from garlic, has various biological properties, such as anticancer, antiangiogenic and anti-inflammatory effects. However, the mechanisms of action underlying the compound's anticancer activity have not been fully elucidated. In this study, the apoptotic effects of DADS were investigated in DU145 human prostate carcinoma cells. Our results showed that DADS markedly inhibited the growth of the DU145 cells by induction of apoptosis. Apoptosis was accompanied by modulation of Bcl-2 and inhibitor of apoptosis protein (IAP family proteins, depolarization of the mitochondrial membrane potential (MMP, ΔΨm and proteolytic activation of caspases. We also found that the expression of death-receptor 4 (DR4 and Fas ligand (FasL proteins was increased and that the level of intact Bid proteins was down-regulated by DADS. Moreover, treatment with DADS induced phosphorylation of mitogen-activated protein kinases (MAPKs, including extracellular-signal regulating kinase (ERK, p38 MAPK and c-Jun N-terminal kinase (JNK. A specific JNK inhibitor, SP600125, significantly blocked DADS-induced-apoptosis, whereas inhibitors of the ERK (PD98059 and p38 MAPK (SB203580 had no effect. The induction of apoptosis was also accompanied by inactivation of phosphatidylinositol 3-kinase (PI3K/Akt and the PI3K inhibitor LY29004 significantly increased DADS-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of DADS is mediated through the activation of JNK and the inhibition of the PI3K/Akt signaling pathway in DU145 cells.

  10. bFGF regulates PI3-kinase-Rac1-JNK pathway and promotes fibroblast migration in wound healing.

    Directory of Open Access Journals (Sweden)

    Shigeyuki Kanazawa

    Full Text Available Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration.

  11. Tissue-Specific Expression of DNA Methyltransferases Involved in Early-Life Nutritional Stress of Chicken, Gallus gallus

    Directory of Open Access Journals (Sweden)

    Seong W. Kang

    2017-12-01

    Full Text Available DNA methylation was reported as a possible stress-adaptation mechanism involved in the transcriptional regulation of stress responsive genes. Limited data are available on effects of psychological stress and early-life nutritional stress on DNA methylation regulators [DNMTs: DNA (cytosine-5-methyltransferase 1 (DNMT1, DNMT1 associated protein (DMAP1, DNMT 3 alpha (DNMT3A and beta (DNMT3B] in avian species. The objectives of this study were to: (1 investigate changes in expression of DNMT1, DMAP1, DNMT3A, and DNMT3B following acute (AS or chronic immobilization stress (CS; (2 test immediate effect of early-life nutritional stress [food deprivation (FD for 12 h (12hFD or 36 h (36hFD at the post-hatching period] on expression of DNA methylation regulators and glucocorticoid receptor (GR, and the long-term effect of early-life nutritional stress at 6 weeks of age. Expression of DNMTs and plasma corticosterone (CORT concentration decreased by CS compared to AS (p < 0.05, indicating differential roles of DNA methylation regulators in the stress response. Plasma CORT at 12hFD and 36hFD birds increased compared to control birds (12hF and 36hF, but there were no significant differences in plasma CORT of 12hFD and 36hFD birds at 6 weeks of age compared to 6 week controls. DNMT1, DMAP1, and DNMT3B expression in the anterior pituitary increased by 12hFD, but decreased at 36hFD compared to their controls (P < 0.05. In liver, DNMT1, DNMT3A, and DNMT3B expression decreased by 12hFD, however, no significant changes occurred at 36hFD. Expression of DMAP1, DNMT3A, and DNMT3B in anterior pituitary and DMAP1 and DNMT3A expression in liver at 6 weeks of age were higher in 36hFD stressed birds compared to controls as well as 12hFD stressed birds. Hepatic GR expression decreased by 12hFD and increased by 36hFD (p < 0.05. Expression patterns of GR in the liver of FD stress-induced birds persisted until 6 weeks of age, suggesting the possible lifelong involvement of

  12. Loss of tumour-specific ATM protein expression is an independent prognostic factor in early resected NSCLC.

    Science.gov (United States)

    Petersen, Lars F; Klimowicz, Alexander C; Otsuka, Shannon; Elegbede, Anifat A; Petrillo, Stephanie K; Williamson, Tyler; Williamson, Chris T; Konno, Mie; Lees-Miller, Susan P; Hao, Desiree; Morris, Don; Magliocco, Anthony M; Bebb, D Gwyn

    2017-06-13

    Ataxia-telangiectasia mutated (ATM) is critical in maintaining genomic integrity. In response to DNA double-strand breaks, ATM phosphorylates downstream proteins involved in cell-cycle checkpoint arrest, DNA repair, and apoptosis. Here we investigate the frequency, and influence of ATM deficiency on outcome, in early-resected non-small cell lung cancer (NSCLC). Tissue microarrays, containing 165 formalin-fixed, paraffin-embedded resected NSCLC tumours from patients diagnosed at the Tom Baker Cancer Centre, Calgary, Canada, between 2003 and 2006, were analyzed for ATM expression using quantitative fluorescence immunohistochemistry. Both malignant cell-specific ATM expression and the ratio of ATM expression within malignant tumour cells compared to that in the surrounding tumour stroma, defined as the ATM expression index (ATM-EI), were measured and correlated with clinical outcome. ATM loss was identified in 21.8% of patients, and was unaffected by clinical pathological variables. Patients with low ATM-EI tumours had worse survival outcomes compared to those with high ATM-EI (p ATM-deficient patients may derive greater benefit from guideline-recommended adjuvant chemotherapy following surgical resection. Taken together, these results indicate that ATM loss seems to be an early event in NSCLC carcinogenesis and is an independent prognostic factor associated with worse survival in stage II/III patients.

  13. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    Directory of Open Access Journals (Sweden)

    Rubén Díaz-Rúa

    2016-11-01

    Full Text Available Background: Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC is a promising tool to identify subjects at risk of developing diet-related diseases. Objective: We analysed PBMC expression of key energy homeostasis-related genes in a time-course analysis in order to find out early markers of metabolic alterations due to sustained intake of high-fat (HF and high-protein (HP diets. Design: We administered HF and HP diets (4 months to adult Wistar rats in isocaloric conditions to a control diet, mainly to avoid overweight associated with the intake of hyperlipidic diets and, thus, to be able to characterise markers of metabolically obese normal-weight (MONW syndrome. PBMC samples were collected at different time points of dietary treatment and expression of relevant energy homeostatic genes analysed by real-time reverse transcription-polymerase chain reaction. Serum parameters related with metabolic syndrome, as well as fat deposition in liver, were also analysed. Results: The most outstanding results were those obtained for the expression of the lipolytic gene carnitine palmitoyltransferase 1a (Cpt1a. Cpt1a expression in PBMC increased after only 1 month of exposure to both unbalanced diets, and this increased expression was maintained thereafter. Interestingly, in the case of the HF diet, Cpt1a expression was altered even in the absence of increased body weight but correlated with alterations such as higher insulin resistance, alteration of serum lipid profile and, particularly, increased fat deposition in liver, a feature characteristic of metabolic syndrome, which was even observed in animals fed with HP diet. Conclusions: We propose Cpt1a gene expression analysis in PBMC as an early biomarker of metabolic alterations associated with MONW phenotype due to the intake of isocaloric HF diets, as

  14. Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage (Brassica oleracea L.)

    Science.gov (United States)

    Park, Hyun Ji; Jung, Won Yong; Lee, Sang Sook; Song, Jun Ho; Kwon, Suk-Yoon; Kim, HyeRan; Kim, ChulWook; Ahn, Jun Cheul; Cho, Hye Sun

    2013-01-01

    Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL), “HO”, and a heat-sensitive cabbage line (HSCL), “JK”, by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR) to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13) were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS). Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress. PMID:23736694

  15. Different effects of ERβ and TROP2 expression in Chinese patients with early-stage colon cancer.

    Science.gov (United States)

    Fang, Yu-Jing; Wang, Guo-Qiang; Lu, Zhen-Hai; Zhang, Lin; Li, Ji-Bin; Wu, Xiao-Jun; Ding, Pei-Rong; Ou, Qing-Jian; Zhang, Mei-Fang; Jiang, Wu; Pan, Zhi-Zhong; Wan, De-Sen

    2012-12-01

    Estrogen receptor beta (ERβ) and TROP2 expressed in colon carcinoma and might play an important role there. We explored the relationship of ERβ and TROP2 expression with the prognosis of early-stage colon cancer. ERβ and TROP2 levels were assessed by immunohistochemistry in normal mucosa and tumoral tissues from 220 Chinese patients with T(3)N(0)M(0) (stage IIa) and T(4)N(0)M(0) (stage IIb) colon cancer in the Cancer Center, Sun Yat-sen University, who underwent curative surgical resection between 1995 and 2003. The Cox proportional hazards regression model was applied to analyze the overall survival (OS) data, and the ROC curve, Kaplan-Meier estimate, log rank test, and Jackknife method were used to show the effect of ERβ and TROP2 expression at different stages of cancer. The 5-year survival rates were not significantly different between the patients with stage IIa and stage IIb colon cancer (83 vs. 80 %, respectively). The high expression of ERβ was related to decreasing OS in stage IIa and stage IIb colon cancer, while the high expression of TROP2 was related to decreasing OS in stage IIb colon cancer. The expression of ERβ and TROP2 has tumor-suppressive and tumor-promoting effect in stage IIa and stage IIb colon cancer, respectively.

  16. Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage (Brassica oleracea L.

    Directory of Open Access Journals (Sweden)

    Jun Cheul Ahn

    2013-06-01

    Full Text Available Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL, “HO”, and a heat-sensitive cabbage line (HSCL, “JK”, by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13 were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS. Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress.

  17. Asparaginyl endopeptidase improves the resistance of microtubule-targeting drugs in gastric cancer through IQGAP1 modulating the EGFR/JNK/ERK signaling pathway

    Directory of Open Access Journals (Sweden)

    Cui Y

    2017-02-01

    Full Text Available Yuehong Cui,1,* Qian Li,1,* Hong Li,1 Yan Wang,1 Hongshan Wang,2 Weidong Chen,2 Shangmin Zhang,3 Jian Cao,3 Tianshu Liu1 1Medical Oncology Department, 2General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 3Pathology Department, Yale School of Medicine, New Haven, CT, USA *These authors contributed equally to this work Purpose: In recent years, understanding of the role of asparaginyl endopeptidase (AEP in tumorigenesis has steadily increased. In this study, we investigated whether AEP expression correlates with sensitivity to chemotherapeutic drugs in gastric cancer and explored the mechanism.Patients and methods: AEP expression in the serum of patients’ peripheral blood was measured by enzyme-linked immunosorbent assay. Patient survival time was evaluated using univariate and multivariate analyses. Mass spectrometry and co-immunoprecipitation assays were utilized to discover proteins that interact with AEP. Gastric cancer cell lines were established, in which AEP was overexpressed or knocked out using lentiviral CRISPR. The proliferative abilities of these cell lines in response to chemotherapy agents were evaluated using the Cell Counting Kit-8 method. Gene expression changes in these lines were assessed by real-time polymerase chain reaction and Western blot.Results: Patients with low expression of AEP were significantly more likely to have a good prognosis and experience complete response or partial response after treatment with docetaxel/S-1 regimen. Mass spectrum analysis showed that several proteins in the focal adhesion and mitogen-activated protein kinase signaling pathways interacted with AEP. IQGAP1 was confirmed to be one of the proteins interacting with AEP, and its protein level increased when AEP was knocked out. AEP knockout decreased resistance to microtubule inhibitors, including paclitaxel, docetaxel, and T-DM1. The expression levels of MDR1, p-EGFR, p-JNK, p-ERK, and p

  18. Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity.

    Science.gov (United States)

    Win, Sanda; Than, Tin Aung; Le, Bao Han Allison; García-Ruiz, Carmen; Fernandez-Checa, Jose C; Kaplowitz, Neil

    2015-06-01

    Sustained c-Jun N-terminal kinase (JNK) activation by saturated fatty acids plays a role in lipotoxicity and the pathogenesis of non-alcoholic steatohepatitis (NASH). We have reported that the interaction of JNK with mitochondrial Sab leads to inhibition of respiration, increased reactive oxygen species (ROS), cell death and hepatotoxicity. We tested whether this pathway underlies palmitic acid (PA)-induced lipotoxicity in hepatocytes. Primary mouse hepatocytes (PMH) from adeno-shlacZ or adeno-shSab treated mice and HuH7 cells were used. In PMH, PA dose-dependently up to 1mM stimulated oxygen consumption rate (OCR) due to mitochondrial β-oxidation. At ⩾1.5mM, PA gradually reduced OCR, followed by cell death. Inhibition of JNK, caspases or treatment with antioxidant butylated hydroxyanisole (BHA) protected PMH against cell death. Sab knockdown or a membrane permeable Sab blocking peptide prevented PA-induced mitochondrial impairment, but inhibited only the late phase of both JNK activation (beyond 4h) and cell death. In PMH, PA increased p-PERK and its downstream target CHOP, but failed to activate the IRE-1α arm of the UPR. However, Sab silencing did not affect PA-induced PERK activation. Conversely, specific inhibition of PERK prevented JNK activation and cell death, indicating a major role upstream of JNK activation. The effect of p-JNK on mitochondria plays a key role in PA-mediated lipotoxicity. The interplay of p-JNK with mitochondrial Sab leads to impaired respiration, ROS production, sustained JNK activation, and apoptosis. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. Early upregulation of myocardial CXCR4 expression is critical for dimethyloxalylglycine-induced cardiac improvement in acute myocardial infarction.

    Science.gov (United States)

    Mayorga, Mari; Kiedrowski, Matthew; Shamhart, Patricia; Forudi, Farhad; Weber, Kristal; Chilian, William M; Penn, Marc S; Dong, Feng

    2016-01-01

    The stromal cell-derived factor-1 (SDF-1):CXCR4 is important in myocardial repair. In this study we tested the hypothesis that early upregulation of cardiomyocyte CXCR4 (CM-CXCR4) at a time of high myocardial SDF-1 expression could be a strategy to engage the SDF-1:CXCR4 axis and improve cardiac repair. The effects of the hypoxia inducible factor (HIF) hydroxylase inhibitor dimethyloxalylglycine (DMOG) on CXCR4 expression was tested on H9c2 cells. In mice a myocardial infarction (MI) was produced in CM-CXCR4 null and wild-type controls. Mice were randomized to receive injection of DMOG (DMOG group) or saline (Saline group) into the border zone after MI. Protein and mRNA expression of CM-CXCR4 were quantified. Echocardiography was used to assess cardiac function. During hypoxia, DMOG treatment increased CXCR4 expression of H9c2 cells by 29 and 42% at 15 and 24 h, respectively. In vivo DMOG treatment increased CM-CXCR4 expression at 15 h post-MI in control mice but not in CM-CXCR4 null mice. DMOG resulted in increased ejection fraction in control mice but not in CM-CXCR4 null mice 21 days after MI. Consistent with greater cardiomyocyte survival with DMOG treatment, we observed a significant increase in cardiac myosin-positive area within the infarct zone after DMOG treatment in control mice, but no increase in CM-CXCR4 null mice. Inhibition of cardiomyocyte death in MI through the stabilization of HIF-1α requires downstream CM-CXCR4 expression. These data suggest that engagement of the SDF-1:CXCR4 axis through the early upregulation of CM-CXCR4 is a strategy for improving cardiac repair after MI. Copyright © 2016 the American Physiological Society.

  20. Early pregnancy-related changes in toll-like receptors expression in ovine trophoblasts and peripheral blood leukocytes.

    Science.gov (United States)

    Kaya, Mehmet Salih; Kose, Mehmet; Guzeloglu, Aydin; Kıyma, Zekeriya; Atli, Mehmet Osman

    2017-04-15

    In the present study, we aimed to 1) demonstrate the presence of all 10 toll-like receptors (TLRs) in ovine trophoblasts, and 2) investigate the expression profiles of TLR1-10 mRNAs in peripheral blood leukocytes (PBLs) in ewes during early pregnancy. For those purposes, ovine trophoblasts (n = 6) were collected from pregnant ewes on day 13. PBLs were collected from non-pregnant (n = 6) and pregnant ewes (n = 17) on days of mating (d) 0 and 18. TLR mRNAs in ovine trophoblasts were visualized by free-floating in situ hybridization (ISH). To assess the expression profiles of TLR1-10 in PBLs, total RNA was isolated and transcribed to cDNA. TLR1-10 mRNA levels were determined by real-time PCR in triplicate. The Relative Expression Software Tool (REST 2009) was used for statistical analysis. We detected mRNAs for TLR2, TLR4, TLR5, TLR6, TLR7, TLR8, and TLR10 but not for TLR1, TLR3, and TLR9 in trophoblasts. TLR2, TLR5, TLR6, TLR7, TLR8, and TLR10 mRNAs were expressed by all trophoblasts, whereas TLR4 mRNA and protein in trophoblasts were more limited. In PBLs, TLR expression did not differ between day 0 and day 18 in non-pregnant ewes; however, ewes in early pregnancy exhibited significantly upregulated expression of TLR2 (2.3-fold), TLR4 (3.1-fold), TLR6 (1.7-fold), and TLR8 (2.2-fold) on day 18 compared with day 0. In contrast, TLR10 was downregulated (2-fold) on day 18 by pregnancy. Similar results were also obtained for TLR2, TLR4, TLR6, TLR8 and TLR10 from the comparison between day 18 non -pregnant and day 18 pregnant groups. According to these results, the presence of TLRs in early ovine trophoblasts suggests that these cells play an immunological role at the maternal-fetal interface. The results also suggest that tight regulation of some components of TLRs in PBLs due to embryo- and/or pregnancy-related factors is necessary for successful establishment of early pregnancy in ewes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Early life stress affects mortality rate more than social behavior, gene expression or oxidative damage in honey bee workers.

    Science.gov (United States)

    Rueppell, Olav; Yousefi, Babak; Collazo, Juan; Smith, Daniel

    2017-04-01

    Early life stressors can affect aging and life expectancy in positive or negative ways. Individuals can adjust their behavior and molecular physiology based on early life experiences but relatively few studies have connected such mechanisms to demographic patterns in social organisms. Sociality buffers individuals from environmental influences and it is unclear how much early life stress affects later life history. Workers of the honey bee (Apis mellifera L.) were exposed to two stressors, Varroa parasitism and Paraquat exposure, early in life. Consequences were measured at the molecular, behavioral, and demographic level. While treatments did not significantly affect levels of oxidative damage, expression of select genes, and titers of the common deformed wing virus, most of these measures were affected by age. Some of the age effects, such as declining levels of deformed wing virus and oxidative damage, were opposite to our predictions but may be explained by demographic selection. Further analyses suggested some influences of worker behavior on mortality and indicated weak treatment effects on behavior. The latter effects were inconsistent among the two experiments. However, mortality rate was consistently reduced by Varroa mite stress during development. Thus, mortality was more responsive to early life stress than our other response variables. The lack of treatment effects on these measures may be due to the social organization of honey bees that buffers the individual from the impact of stressful developmental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. CLC and IFNAR1 are differentially expressed and a global immunity score is distinct between early- and late-onset colorectal cancer.

    Science.gov (United States)

    Ågesen, T H; Berg, M; Clancy, T; Thiis-Evensen, E; Cekaite, L; Lind, G E; Nesland, J M; Bakka, A; Mala, T; Hauss, H J; Fetveit, T; Vatn, M H; Hovig, E; Nesbakken, A; Lothe, R A; Skotheim, R I

    2011-12-01

    Colorectal cancer (CRC) incidence increases with age, and early onset of the disease is an indication of genetic predisposition, estimated to cause up to 30% of all cases. To identify genes associated with early-onset CRC, we investigated gene expression levels within a series of young patients with CRCs who are not known to carry any hereditary syndromes (n=24; mean 43 years at diagnosis), and compared this with a series of CRCs from patients diagnosed at an older age (n=17; mean 79 years). Two individual genes were found to be differentially expressed between the two groups, with statistical significance; CLC was higher and IFNAR1 was less expressed in early-onset CRCs. Furthermore, genes located at chromosome band 19q13 were found to be enriched significantly among the genes with higher expression in the early-onset samples, including CLC. An elevated immune content within the early-onset group was observed from the differentially expressed genes. By application of outlier statistics, H3F3A was identified as a top candidate gene for a subset of the early-onset CRCs. In conclusion, CLC and IFNAR1 were identified to be overall differentially expressed between early- and late-onset CRC, and are important in the development of early-onset CRC.

  3. Methimazole therapy in Graves' disease influences the abnormal expression of CD69 (early activation antigen) on T cells.

    Science.gov (United States)

    Corrales, J J; López, A; Ciudad, J; Mories, M T; Miralles, J M; Orfao, A

    1997-12-01

    At present, the in vivo response of T, B and natural killer (NK) cells to antithyroid drug therapy remains largely unknown. In the present study, we have prospectively analyzed the in vivo effects of methimazole treatment on a large number of circulating T and NK cell subsets, some of them expressing cell surface activation antigens involved in the very early phase of the immune response, in a group of 17 hyperthyroid, untreated patients with Graves' disease (GD). As one of the first events during T cell activation is the expression of interleukin (IL) receptors, we also studied the binding of IL-2 and IL-6 to T cells. Patients with Graves' disease were sequentially studied at diagnosis/before treatment (day 0) and 7, 14, 30, 90 and 180 days after methimazole therapy. The results were compared with both a group of 19 age- and sex-matched control volunteers and a group of 20 untreated/euthyroid patients with Graves' disease in long-term remission. The combination of flow cytometry and three-color immunofluorescence revealed a clear (P effect of the drug. Expression of the low-affinity receptor for IL-2 (CD25)--another early T cell activation marker--was not altered in Graves' disease, but the binding of IL-2 and IL-6 to T cells exhibited a progressive and parallel increase during the first 30 days of therapy, decreasing thereafter. Our results show that methimazole therapy downregulates the abnormally high expression of the CD69 early activation antigen on T cells, being less effective on inducing changes in other T cell activation markers and in NK cells.

  4. Effect of early pregnancy on the expression of progesterone receptor and progesterone-induced blocking factor in ovine lymph node.

    Science.gov (United States)

    Yang, Ling; Zang, Shengqin; Bai, Ying; Yao, Xiaolei; Zhang, Leying

    2017-04-15

    Lymph nodes are the sites where the immune reaction or suppression takes place. Progesterone (P4) exerts an essential effect of the immunomodulation on the maternal uterus during early pregnancy in ruminants. At present study, the inguinal lymph nodes were obtained at day 16 of non-pregnancy, days 13, 16 and 25 of pregnancy (n = 3 for each group) in ewes, and RT-PCR assay, western blot and immunohistochemistry analysis were used to analyze to the effect of early pregnancy on the expression of P4 receptor (PGR) and progesterone-induced blocking factor (PIBF) in the lymph nodes. Our results showed that the PGR and PIBF mRNA were up-regulated in the lymph nodes in pregnant ewes, and the PGR isoform (60 kDa) and the PIBF variant (75 kDa) were expressed constantly in the lymph nodes. However, there was no expression of the PGR isoform (40 kDa) and the PIBF variant (48 kDa) at day 16 of the estrous cycle. The immunohistochemistry results confirmed that the PGR and PIBF proteins were limited to the subcapsular sinus and trabeculae in the cortex, medullary sinuses, and were localized in the cytoplasm of the specific cells. This paper reports for the first time that early pregnancy exerts its effect on the specific cells in the lymph nodes through P4, which results in the up-regulated expression of the PGR mRNA and 40 kDa isoform, the PIBF mRNA and 48 kDa variant, and is involved in the immunoregulation of the lymph nodes through a cytosolic pathway in ewes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Gene expression changes as markers of early lapatinib response in a panel of breast cancer cell lines

    LENUS (Irish Health Repository)

    O’Neill, Fiona

    2012-06-18

    expressed in response to lapatinib at the 12 hour time point examined. The expression of these 5 genes correlated directly with lapatinib sensitivity. We propose that the gene expression profile may represent both an early measure of the likelihood of sensitivity and the level of response to lapatinib and may therefore have application in early response detection.

  6. Hit-to-lead optimization and kinase selectivity of imidazo[1,2-a]quinoxalin-4-amine derived JNK1 inhibitors.

    Science.gov (United States)

    Li, Bei; Cociorva, Oana M; Nomanbhoy, Tyzoon; Weissig, Helge; Li, Qiang; Nakamura, Kai; Liyanage, Marek; Zhang, Melissa C; Shih, Ann Y; Aban, Arwin; Hu, Yi; Cajica, Julia; Pham, Lan; Kozarich, John W; Shreder, Kevin R

    2013-09-15

    As the result of a rhJNK1 HTS, the imidazo[1,2-a]quinoxaline 1 was identified as a 1.6 μM rhJNK1 inhibitor. Optimization of this compound lead to AX13587 (rhJNK1 IC50=160 nM) which was co-crystallized with JNK1 to identify key molecular interactions. Kinase profiling against 125+ kinases revealed AX13587 was an inhibitor of JNK, MAST3, and MAST4 whereas its methylene homolog AX14373 (native JNK1 IC50=47 nM) was a highly specific JNK inhibitor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Notcovich, Cintia [Laboratorio de Patologia y Farmacologia Molecular, Instituto de Biologia y Medicina Experimental (Argentina); Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (Argentina); Diez, Federico [Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (Argentina); Tubio, Maria Rosario [Laboratorio de Patologia y Farmacologia Molecular, Instituto de Biologia y Medicina Experimental (Argentina); Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (Argentina); Baldi, Alberto [Laboratorio de Patologia y Farmacologia Molecular, Instituto de Biologia y Medicina Experimental (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); Kazanietz, Marcelo G. [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Davio, Carlos [Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); Shayo, Carina, E-mail: cshayo@dna.uba.ar [Laboratorio de Patologia y Farmacologia Molecular, Instituto de Biologia y Medicina Experimental (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)

    2010-02-01

    It is well established that histamine modulates cell proliferation through the activation of the histamine H1 receptor (H1R), a G protein-coupled receptor (GPCR) that is known to couple to phospholipase C (PLC) activation via Gq. In the present study, we aimed to determine whether H1R activation modulates Rho GTPases, well-known effectors of Gq/G{sub 11}-coupled receptors, and whether such modulation influences cell proliferation. Experiments were carried out in CHO cells stably expressing H1R (CHO-H1R). By using pull-down assays, we found that both histamine and a selective H1R agonist activated Rac and RhoA in a time- and dose-dependent manner without significant changes in the activation of Cdc42. Histamine response was abolished by the H1R antagonist mepyramine, RGS2 and the PLC inhibitor U73122, suggesting that Rac and RhoA activation is mediated by H1R via Gq coupling to PLC stimulation. Histamine caused a marked activation of serum response factor activity via the H1R, as determined with a serum-responsive element (SRE) luciferase reporter, and this response was inhibited by RhoA inactivation with C3 toxin. Histamine also caused a significant activation of JNK which was inhibited by expression of the Rac-GAP {beta}2-chimaerin. On the other hand, H1R-induced ERK1/2 activation was inhibited by U73122 but not affected by C3 or {beta}2-chimaerin, suggesting that ERK1/2 activation was dependent on PLC and independent of RhoA or Rac. [{sup 3}H]-Thymidine incorporation assays showed that both histamine and the H1R agonist inhibited cell proliferation in a dose-dependent manner and that the effect was independent of RhoA but partially dependent on JNK and Rac. Our results reveal that functional coupling of the H1R to Gq-PLC leads to the activation of RhoA and Rac small GTPases and suggest distinct roles for Rho GTPases in the control of cell proliferation by histamine.

  8. [miR-202 contributes to sensitizing MM cells to drug significantly via activing JNK/SAPK signaling pathway].

    Science.gov (United States)

    Zhang, Y; Shen, X J; Wu, X H; Cong, H; Ni, H B; Ju, S Q; Su, J Y

    2016-11-14

    Objective: To explore the role of miR-202 in multiple myeloma (MM) cells, and study the regulation of miR-202 on drug sensitivity of MM cells. Methods: miR-202 and BAFF mRNA levels were detected by real-time PCR. U266 cells were transfected with miR-202-mimics, miR-202-inhibitor, siBAFF and their negative controls. After above treatments, protein levels of Bcl-2 family and MAPK signaling pathway were detected by Western blot analysis, and the proliferation and apoptosis ability of MM cells were examined by WST-1, Annexin V-FLUOS assay, respectively. Results: The results showed that the expression of miR-202 in CD138+ MM cells (0.304±0.354) and U266 cells (0.052± 0.009) were lower than in normal controls (3.550 ± 1.126) (PBort group (51.23±5.41)% was higher as compared with Bort treatment alone (31.70±4.40)% or miR-202 mimics control combined with Bort group (27.94±4.04)%, (P=0.047, P= 0.028), whereas the apoptosis rate in miR-202 mimics combined with Thal or Dex had no significant difference compared with miR-202 mimics control [(11.66±1.91)% vs (10.63±1.74)%, P=0.700; (16.35± 1.32)% vs (17.43 ± 1.95)%, P=0.400]. The inhibitory rate of cell growth in miR-202 mimics combined with Bort group was higher as compared with Bort treatment alone [(36.93±5.98)% vs (18.18±4.10)%, P= 0.029]. The expressions of p-JNK protein decreased in U266 cells transfected with miR-202 mimics and treated with Bort. Conclusion: miR-202 mimics combined with Bort could inhibit proliferation and induce apoptosis of U266 cells through negative regulating target gene BAFF, which further inhibited the JNK/SAPK signaling pathway.

  9. Hox and ParaHox gene expression in early body plan patterning of polyplacophoran mollusks.

    Science.gov (United States)

    Fritsch, Martin; Wollesen, Tim; Wanninger, Andreas

    2016-03-01

    Molecular developmental studies of various bilaterians have shown that the identity of the anteroposterior body axis is controlled by Hox and ParaHox genes. Detailed Hox and ParaHox gene expression data are available for conchiferan mollusks, such as gastropods (snails and slugs) and cephalopods (squids and octopuses), whereas information on the putative conchiferan sister group, Aculifera, is still scarce (but see Fritsch et al., 2015 on Hox gene expression in the polyplacophoran Acanthochitona crinita). In contrast to gastropods and cephalopods, the Hox genes in polyplacophorans are expressed in an anteroposterior sequence similar to the condition in annelids and other bilaterians. Here, we present the expression patterns of the Hox genes Lox5, Lox4, and Lox2, together with the ParaHox gene caudal (Cdx) in the polyplacophoran A. crinita. To localize Hox and ParaHox gene transcription products, we also investigated the expression patterns of the genes FMRF and Elav, and the development of the nervous system. Similar to the other Hox genes, all three Acr-Lox genes are expressed in an anteroposterior sequence. Transcripts of Acr-Cdx are seemingly present in the forming hindgut at the posterior end. The expression patterns of both the central class Acr-Lox genes and the Acr-Cdx gene are strikingly similar to those in annelids and nemerteans. In Polyplacophora, the expression patterns of the Hox and ParaHox genes seem to be evolutionarily highly conserved, while in conchiferan mollusks these genes are co-opted into novel functions that might have led to evolutionary novelties, at least in gastropods and cephalopods. © 2016 The Authors. J. Exp. Zool. (Mol. Dev. Evol.) published by Wiley Periodicals, Inc.

  10. Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved

    Science.gov (United States)

    van Rhijn, P.; Fang, Y.; Galili, S.; Shaul, O.; Atzmon, N.; Wininger, S.; Eshed, Y.; Lum, M.; Li, Y.; To, V.; Fujishige, N.; Kapulnik, Y.; Hirsch, A. M.

    1997-01-01

    Transcripts for two genes expressed early in alfalfa nodule development (MsENOD40 and MsENOD2) are found in mycorrhizal roots, but not in noncolonized roots or in roots infected with the fungal pathogen Rhizoctonia solani. These same two early nodulin genes are expressed in uninoculated roots upon application of the cytokinin 6-benzylaminopurine. Correlated with the expression of the two early nodulin genes, we found that mycorrhizal roots contain higher levels of trans-zeatin riboside than nonmycorrhizal roots. These data suggest that there may be conservation of signal transduction pathways between the two symbioses—nitrogen-fixing nodules and phosphate-acquiring mycorrhizae. PMID:11038545

  11. Expression of Aire and the early wave of apoptosis in spermatogenesis.

    Science.gov (United States)

    Schaller, Claudia E; Wang, Clifford L; Beck-Engeser, Gabriele; Goss, Lindsie; Scott, Hamish S; Anderson, Mark S; Wabl, Matthias

    2008-02-01

    Expression of the autoimmune regulator (Aire) protein in mice and humans is thought to be restricted to the medullary epithelial and monocyte-dendritic cells of the thymus. There it mediates expression and presentation of a large variety of proteins, including those that are peripheral organ-specific and are not expressed by other thymocytes. In this way, self-reactive T lymphocytes that would attack peripheral cells producing these proteins are confronted with the self-Ags and, as a consequence, are deleted. In this study, we show that Aire mRNA is also expressed in the testis--another tissue with promiscuous gene expression. Aire protein, however, is expressed only sporadically in spermatogonia and spermatocytes. Transcription of genes that are under Aire control in the thymus is unaffected by Aire in the testis. However, in mice with a disrupted Aire gene, the scheduled apoptotic wave of germ cells, which is necessary for normal mature spermatogenesis, is reduced, and sporadic apoptosis in adults is increased. Because Rag-1 deficiency does not abolish the effect, the adaptive immune system is not involved. We suggest that there is a link between the scheduled and sporadic apoptotic processes and propose that scheduled apoptosis provides a counterselection mechanism that keeps the germline stable.

  12. Increased expression of heat shock protein 105 in rat uterus of early pregnancy and its significance in embryo implantation

    Directory of Open Access Journals (Sweden)

    Hu Zhao-Yuan

    2009-03-01

    Full Text Available Abstract Background Heat shock proteins (Hsps are a set of highly conserved proteins, Hsp105, has been suggested to play a role in reproduction. Methods Spatio-temporal expression of Hsp105 in rat uterus during peri-implantation period was examined by immunohistochemistry and Western blot, pseudopregnant uterus was used as control. Injection of antisense oligodeoxynucleotides to Hsp105 into pregnant rat uteri was carried out to look at effect of Hsp105 on embryo implantation. Results Expression of Hsp105 was mainly in the luminal epithelium on day 1 of pregnancy, and reached a peak level on day 5, whereas in stroma cells, adjacent to the implanting embryo, the strongest expression of Hsp105 was observed on day 6. The immunostaining profile in the uterus was consistent with that obtained by Western blot in the early pregnancy. In contrast, no obvious peak level of Hsp105 was observed in the uterus of pseudopregnant rat on day 5 or day 6. Furthermore, injection of antisense oligodeoxynucleotides to Hsp105 into the rat uterine horn on day 3 of pregnancy obviously suppressed the protein expression as expected and reduced number of the implanted embryos as compared with the control. Conclusion Temporal and spatial changes in Hsp105 expression in pregnant rat uterus may play a physiological role in regulating embryo implantation.

  13. microRNAs Expression as Novel Genetic Biomarker for Early Prediction and Continuous Monitoring in Pulmonary Cancer.

    Science.gov (United States)

    Nitu, Razvan; Rogobete, Alexandru Florin; Gundogdu, Fuat; Tanasescu, Sonia; Boruga, Ovidiu; Sas, Adriana; Popovici, Sonia Elena; Hutanu, Delia; Pilut, Ciprian; Sarau, Cristian Andrei; Candea, Adrian Constantin; Stan, Adrian Tudor; Moise, Liviu Marius

    2017-08-01

    One of the main causes of death in the world is lung cancer. According to the World Health Organization, the annual incidence of lung cancer increases significantly. Moreover, lung cancer accounts for one of the highest mortality rates, mainly due to late detection. Numerous studies have been conducted in order to identify new biomarkers for early diagnosis and for monitoring and evaluation of lung cancer stages. An ideal biomarker candidate is represented by the analysis of microRNAs expression. In this paper, we want to summarize microRNAs expressions in lung cancer. We also want to present the expression of microRNAs depending on the evolution of lung cancer. For this study, we analyzed the studies available in scientific databases, such as PubMed and Scopus. The studies were selected using the search keywords "microRNAs expression," "lung cancer," and "genetic biomarkers." The most significant articles were selected for the study, following rigorous analysis. To evaluate and monitor lung cancer, the expression of microRNAs may be used successfully due to increased specificity and selectivity. However, further studies are needed on the assignment and validation of microRNAs for each type of lung cancer, respectively, for each stage of evolution.

  14. TGFβ2 regulates hypothalamic Trh expression through the TGFβ inducible early gene-1 (TIEG1) during fetal development.

    Science.gov (United States)

    Martínez-Armenta, Miriam; Díaz de León-Guerrero, Sol; Catalán, Ana; Alvarez-Arellano, Lourdes; Uribe, Rosa Maria; Subramaniam, Malayannan; Charli, Jean-Louis; Pérez-Martínez, Leonor

    2015-01-15

    The hypothalamus regulates the homeostasis of the organism by controlling hormone secretion from the pituitary. The molecular mechanisms that regulate the differentiation of the hypothalamic thyrotropin-releasing hormone (TRH) phenotype are poorly understood. We have previously shown that Klf10 or TGFβ inducible early gene-1 (TIEG1) is enriched in fetal hypothalamic TRH neurons. Here, we show that expression of TGFβ isoforms (1-3) and both TGFβ receptors (TβRI and II) occurs in the hypothalamus concomitantly with the establishment of TRH neurons during late embryonic development. TGFβ2 induces Trh expression via a TIEG1 dependent mechanism. TIEG1 regulates Trh expression through an evolutionary conserved GC rich sequence on the Trh promoter. Finally, in mice deficient in TIEG1, Trh expression is lower than in wild type animals at embryonic day 17. These results indicate that TGFβ signaling, through the upregulation of TIEG1, plays an important role in the establishment of Trh expression in the embryonic hypothalamus. Copyright © 2014. Published by Elsevier Ireland Ltd.

  15. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg

    Directory of Open Access Journals (Sweden)

    Claudio Sette

    2011-04-01

    Full Text Available Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology.

  16. Inflammation and increased myxovirus resistance protein A expression in thyroid tissue in the early stages of Hashimoto's thyroiditis.

    Science.gov (United States)

    Hammerstad, Sara Salehi; Jahnsen, Frode Lars; Tauriainen, Sisko; Hyöty, Heikki; Paulsen, Trond; Norheim, Ingrid; Dahl-Jørgensen, Knut

    2013-03-01

    The role of viruses as environmental triggers for Hashimoto's thyroiditis (HT) is controversial. Thyroid epithelial cells express a variety of molecules involved in antiviral responses. This study combined histological, immunological, and virological tests to describe changes in tissue from patients with newly diagnosed and untreated HT. To study the early events, patients with positive thyroid peroxidase antibodies (TPO-Ab) and normal thyroid function were also included. This stage was defined as "prethyroiditis." Thyroid tissue was collected from 47 patients with high titers of TPO-Ab and from 24 controls. Seventeen patients had prethyroiditis, 17 had subclinical hypothyroidism, and 13 had overt hypothyroidism. The interferon (IFN)-α/β-inducible myxovirus resistance protein 1 (myxovirus resistance protein A; MxA) was used as a surrogate marker for type I IFN expression. Inflammation, expression of MxA, and the presence of the enteroviralcapsid protein (VP1) were characterized by immunohistochemistry. The presence of enterovirus (EV) RNA was examined by in situ hybridization. The density of CD4+ T cells was increased in all three patient groups, while CD8+ T cells were increased only in patients with overt hypothyroidism. The density of plasma cells increased as the disease progressed. The density of plasmacytoid dendritic cells and the expression of MxA were significantly increased in all patient groups compared with controls (pthyroid gland is a very early event in the pathogenesis of HT. The increased expression of MxA in the inflamed tissue suggests that type I IFN plays a role in disease development. Whether this is virus-dependent needs to be explored in further studies.

  17. Differences in miRNA expression in early stage lung adenocarcinomas that did and did not relapse.

    Directory of Open Access Journals (Sweden)

    Mick D Edmonds

    Full Text Available Relapse of adenocarcinoma, the most common non-small cell lung cancer (NSCLC, is a major clinical challenge to improving survival. To gain insight into the early molecular events that contribute to lung adenocarcinoma relapse, and taking into consideration potential cell type specificity, we used stringent criteria for sample selection. We measured miRNA expression only from flash frozen stage I lung adenocarcinomas, excluding other NSCLC subtypes. We compared miRNA expression in lung adenocarcinomas that relapsed within two years to those that did not relapse within three years after surgical resection prior to adjuvant therapy. The most significant differences in mRNA expression for recurrent tumors compared to non-recurrent tumors were decreases in miR-106b*, -187, -205, -449b, -774* and increases in miR-151-3p, let-7b, miR-215, -520b, and -512-3p. A unique comparison between adjacent normal lung tissue from relapse and non-relapse groups revealed dramatically different miRNA expression, suggesting dysregulation of miRNA in the environment around the tumor. To assess patient-to-patient variability, miRNA levels in the tumors were normalized to levels in matched adjacent normal lung tissue. This analysis revealed a different set of significantly altered miRNA in tumors that recurred compared to tumors that did not. Together our analyses elucidated miRNA not previously linked to lung adenocarcinoma that likely have important roles in its development and progression. Our results also highlight the differences in miRNA expression in normal lung tissue in adenocarcinomas that do and do not recur. Most notably, our data identified those miRNA that distinguish early stage tumors likely to relapse prior to treatment and miRNA that could be further studied for use as biomarkers for prognosis, patient monitoring, and/or treatment decisions.

  18. Expression of porcine epidermal growth factor in Pichia pastoris and its biology activity in early-weaned piglets.

    Science.gov (United States)

    Lee, Der-Nan; Kuo, Tsun-Yung; Chen, Ming-Cheng; Tang, Tsung-Yin; Liu, Fu-Hwa; Weng, Ching-Feng

    2006-01-02

    Early-weaned piglets often have abnormalities in intestinal morphology and function. Epidermal growth factor (EGF) is critical in the development and in the repair of the gastrointestinal tract in pigs. This study investigated the effects of dietary EGF supplementation on growth performance and small intestinal morphology of early-weaned piglets. The functional domain of porcine EGF (pEGF) was cloned after RT-PCR amplification. The recombinant protein was expression by the Pichia pastoris expression system and the construct pPIC9K-pEGF was transformed into host GS115. The secretary recombinant protein in the supernatants was analyzed by SDS-PAGE. The gel indicated that the extra band at 6 kDa in the transformant, which corresponds to the standard hEGF, were both reactive to anti-pEGF antibody by Western blotting. The expression level of pEGF in the culture supernatant was 870 microg/mL. An animal feeding test was conducted to identify the effects of pEGF supplementation on growth performance and the development of digestive tracts of 14-day weaned piglets. The dietary treatment was a corn-soybean meal basal diet either with or without 1.5 mg/kg recombinant pEGF from the transformant fermentative supernatant. Dietary treatments enhanced the daily gain during 0-7 days postweaning (p piglets.

  19. Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction.

    Science.gov (United States)

    Markholt, S; Grøndahl, M L; Ernst, E H; Andersen, C Yding; Ernst, E; Lykke-Hartmann, K

    2012-02-01

    The pool of primordial follicles in humans is laid down during embryonic development and follicles can remain dormant for prolonged intervals, often decades, until individual follicles resume growth. The mechanisms that induce growth and maturation of primordial follicles are poorly understood but follicles once activated either continue growth or undergo atresia. We have isolated pure populations of oocytes from human primordial, intermediate and primary follicles using laser capture micro-dissection microscopy and evaluated the global gene expression profiles by whole-genome microarray analysis. The array data were confirmed by qPCR for selected genes. A total of 6301 unique genes were identified as significantly expressed representing enriched specific functional categories such as 'RNA binding', 'translation initiation' and 'structural molecule activity'. Several genes, some not previously known to be associated with early oocyte development, were identified with exceptionally high expression levels, such as the anti-proliferative transmembrane protein with an epidermal growth factor-like and two follistatin-like domains (TMEFF2), the Rho-GTPase-activating protein oligophrenin 1 (OPHN1) and the mitochondrial-encoded ATPase6 (ATP6). Thus, the present study provides not only a technique to capture and perform transcriptome analysis of the sparse material of human oocytes from the earliest follicle stages but further includes a comprehensive basis for our understanding of the regulatory factors and pathways present during early human folliculogenesis.

  20. Schisandra Lignan Extract Protects against Carbon Tetrachloride-Induced Liver Injury in Mice by Inhibiting Oxidative Stress and Regulating the NF-κB and JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Qingshan Chen

    2017-01-01

    Full Text Available Schisandra chinensis (S. chinensis is a traditional Chinese herbal medicine widely used for the treatment of liver disease, whose main active components are lignans. However, the action mechanisms of the lignans in S. chinensis remain unclear. This study aimed to investigate the protective effect and related molecular mechanism of Schisandra lignan extract (SLE against carbon tetrachloride- (CCl4- induced acute liver injury in mice. Different doses of SLE at 50, 100, and 200 mg/kg were administered daily by gavage for 5 days before CCl4 treatment. The results showed that SLE significantly decreased the activities of serum ALT/AST and reduced liver pathologic changes induced by CCl4. Pretreatment with SLE not only decreased the content of MDA but increased SOD, GSH, and GSH-Px activities in the liver, suggesting that SLE attenuated CCl4-induced oxidative stress. The expression levels of inflammatory cytokines TNF-a, IL-1β, and IL-6 were decreased after oral administration of SLE, probably because lignans inhibited the NF-κB activity. Additionally, SLE also inhibited hepatocyte apoptosis by suppressing JNK activation and regulating Bcl-2/Bax signaling pathways. In conclusion, these results suggested that SLE prevented CCl4-induced liver injury through a combination of antioxidative stress, anti-inflammation, and antihepatocyte apoptosis and alleviated inflammation and apoptosis by regulating the NF-κB, JNK, and Bcl-2/Bax signaling pathways.

  1. EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells.

    Science.gov (United States)

    Shao, Fang-Yuan; Wang, Sheng; Li, Hong-Yu; Chen, Wen-Bo; Wang, Guo-Cai; Ma, Dong-Lei; Wong, Nai Sum; Xiao, Hao; Liu, Qiu-Ying; Zhou, Guang-Xiong; Li, Yao-Lan; Li, Man-Mei; Wang, Yi-Fei; Liu, Zhong

    2016-02-09

    Sesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants and found to have potential anticancer activities. However, the intracellular molecular targets of SLs and the underlying molecular mechanisms have not been well elucidated. In this study, we observed that EM23, a natural SL, exhibited anti-cancer activity in human cervical cancer cell lines by inducing apoptosis as indicated by caspase 3 activation, XIAP downregulation and mitochondrial dysfunction. Mechanistic studies indicated that EM23-induced apoptosis was mediated by reactive oxygen species (ROS) and the knockdown of thioredoxin (Trx) or thioredoxin reductase (TrxR) resulted in a reduction in apoptosis. EM23 attenuated TrxR activity by alkylation of C-terminal redox-active site Sec498 of TrxR and inhibited the expression levels of Trx/TrxR to facilitate ROS accumulation. Furthermore, inhibition of Trx/TrxR system resulted in the dissociation of ASK1 from Trx and the downstream activation of JNK. Pretreatment with ASK1/JNK inhibitors partially rescued cells from EM23-induced apoptosis. Additionally, EM23 inhibited Akt/mTOR pathway and induced autophagy, which was observed to be proapoptotic and mediated by ROS. Together, these results reveal a potential molecular mechanism for the apoptotic induction observed with SL compound EM23, and emphasize its putative role as a therapeutic agent for human cervical cancer.

  2. Tropisetron Protects Against Acetaminophen-Induced Liver Injury via Suppressing Hepatic Oxidative Stress and Modulating the Activation of JNK/ERK MAPK Pathways

    Directory of Open Access Journals (Sweden)

    Fu-Chao Liu

    2016-01-01

    Full Text Available Objectives. To investigate the protective effects of tropisetron on acetaminophen- (APAP- induced liver injury in a mice model. Methods. C57BL/6 male mice were given tropisetron (0.3 to 10 mg/kg 30 minutes before a hepatotoxic dose of acetaminophen (300 mg/kg intraperitoneally. Twenty hours after APAP intoxication, sera alanine aminotransferase (ALT and aspartate aminotransferase (AST levels, hepatic myeloperoxidase (MPO, malondialdehyde (MDA, glutathione (GSH, and superoxide dismutase (SOD activities, and liver histopathological changes were examined. The MAP kinases were also detected by western blotting. Results. Our results showed that tropisetron pretreatment significantly attenuated the acute elevations of the liver enzyme ALT level, hepatic MPO activity, and hepatocytes necrosis in a dose-dependent manner (0.3–10 mg/kg in APAP-induced hepatotoxicity mice. Tropisetron (1 and 3 mg/kg suppressed APAP-induced hepatic lipid peroxidation expression and alleviated GSH and SOD depletion. Administration of tropisetron also attenuated the phosphorylation of c-Jun-NH2-terminal protein kinase (JNK and extracellular signal-regulated kinase (ERK caused by APAP. Conclusion. Our data demonstrated that tropisetron’s hepatoprotective effect was in part correlated with the antioxidant, which were mediated via JNK and ERK pathways on acetaminophen-induced liver injury in mice.

  3. EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells

    Science.gov (United States)

    Chen, Wen-Bo; Wang, Guo-Cai; Ma, Dong-Lei; Wong, Nai Sum; Xiao, Hao; Liu, Qiu-Ying; Zhou, Guang-Xiong; Li, Yao-Lan; Li, Man-Mei; Wang, Yi-Fei; Liu, Zhong

    2016-01-01

    Sesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants and found to have potential anticancer activities. However, the intracellular molecular targets of SLs and the underlying molecular mechanisms have not been well elucidated. In this study, we observed that EM23, a natural SL, exhibited anti-cancer activity in human cervical cancer cell lines by inducing apoptosis as indicated by caspase 3 activation, XIAP downregulation and mitochondrial dysfunction. Mechanistic studies indicated that EM23-induced apoptosis was mediated by reactive oxygen species (ROS) and the knockdown of thioredoxin (Trx) or thioredoxin reductase (TrxR) resulted in a reduction in apoptosis. EM23 attenuated TrxR activity by alkylation of C-terminal redox-active site Sec498 of TrxR and inhibited the expression levels of Trx/TrxR to facilitate ROS accumulation. Furthermore, inhibition of Trx/TrxR system resulted in the dissociation of ASK1 from Trx and the downstream activation of JNK. Pretreatment with ASK1/JNK inhibitors partially rescued cells from EM23-induced apoptosis. Additionally, EM23 inhibited Akt/mTOR pathway and induced autophagy, which was observed to be proapoptotic and mediated by ROS. Together, these results reveal a potential molecular mechanism for the apoptotic induction observed with SL compound EM23, and emphasize its putative role as a therapeutic agent for human cervical cancer. PMID:26758418

  4. Anti-Inflammatory Effects of Cumin Essential Oil by Blocking JNK, ERK, and NF-κB Signaling Pathways in LPS-Stimulated RAW 264.7 Cells.

    Science.gov (United States)

    Wei, Juan; Zhang, Xitong; Bi, Yang; Miao, Ruidong; Zhang, Zhong; Su, Hailan

    2015-01-01

    Cumin seeds (Cuminum cyminum L.) have been commonly used in food flavoring and perfumery. In this study, cumin essential oil (CuEO) extracted from seeds was employed to investigate the anti-inflammatory effects in lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells and the underlying mechanisms. A total of 26 volatile constituents were identified in CuEO by GC-MS, and the most abundant constituent was cuminaldehyde (48.773%). Mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction assay demonstrated that CuEO did not exhibit any cytotoxic effect at the employed concentrations (0.0005-0.01%). Real-time PCR tests showed that CuEO significantly inhibited the mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), interleukin- (IL-) 1, and IL-6. Moreover, western blotting analysis revealed that CuEO blocked LPS-induced transcriptional activation of nuclear factor-kappa B (NF-κB) and inhibited the phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). These results suggested that CuEO exerted anti-inflammatory effects in LPS-stimulated RAW 264.7 cells via inhibition of NF-κB and mitogen-activated protein kinases ERK and JNK signaling; the chemical could be used as a source of anti-inflammatory agents as well as dietary complement for health promotion.

  5. Longitudinal Relations among Language Skills, Anger Expression, and Regulatory Strategies in Early Childhood

    Science.gov (United States)

    Roben, Caroline K. P.; Cole, Pamela M.; Armstrong, Laura Marie

    2013-01-01

    Researchers have suggested that as children's language skill develops in early childhood, it comes to help children regulate their emotions (Cole, Armstrong, & Pemberton, 2010; Kopp, 1989), but the pathways by which this occurs have not been studied empirically. In a longitudinal study of 120 children from 18 to 48 months of age, associations…

  6. Increased expression of RXRα in dementia: an early harbinger for the cholesterol dyshomeostasis?

    Directory of Open Access Journals (Sweden)

    Katsel Pavel

    2010-09-01

    Full Text Available Abstract Background Cholesterol content of cerebral membranes is tightly regulated by elaborate mechanisms that balance the level of cholesterol synthesis, uptake and efflux. Among the conventional regulatory elements, a recent research focus has been nuclear receptors, a superfamily of ligand-activated transcription factors providing an indispensable regulatory framework in controlling cholesterol metabolism pathway genes. The mechanism of transcriptional regulation by nuclear receptors such as LXRs involves formation of heterodimers with RXRs. LXR/RXR functions as a sensor of cellular cholesterol concentration and mediates cholesterol efflux by inducing the transcription of key cholesterol shuffling vehicles namely, ATP-binding cassette transporter A1 (ABCA1 and ApoE. Results In the absence of quantitative data from humans, the relevance of expression of nuclear receptors and their involvement in cerebral cholesterol homeostasis has remained elusive. In this work, new evidence is provided from direct analysis of human postmortem brain gene and protein expression suggesting that RXRα, a key regulator of cholesterol metabolism is differentially expressed in individuals with dementia. Importantly, RXRα expression showed strong association with ABCA1 and ApoE gene expression, particularly in AD vulnerable regions. Conclusions These findings suggest that LXR/RXR-induced upregulation of ABCA1 and ApoE levels may be the molecular determinants of cholesterol dyshomeostasis and of the accompanying dementia observed in AD.

  7. Myocardial alternative RNA splicing and gene expression profiling in early stage hypoplastic left heart syndrome.

    Directory of Open Access Journals (Sweden)

    Marco Ricci

    Full Text Available Hypoplastic Left Heart Syndrome (HLHS is a congenital defect characterized by underdevelopment of the left ventricle and pathological compensation of the right ventricle. If untreated, HLHS is invariably lethal due to the extensive increase in right ventricular workload and eventual failure. Despite the clinical significance, little is known about the molecular pathobiological state of HLHS. Splicing of mRNA transcripts is an important regulatory mechanism of gene expression. Tissue specific alterations of this process have been associated with several cardiac diseases, however, transcriptional signature profiles related to HLHS are unknown. In this study, we performed genome-wide exon array analysis to determine differentially expressed genes and alternatively spliced transcripts in the right ventricle (RV of six neonates with HLHS, compared to the RV and left ventricle (LV from non-diseased control subjects. In HLHS, over 180 genes were differentially expressed and 1800 were differentially spliced, leading to changes in a variety of biological processes involving cell metabolism, cytoskeleton, and cell adherence. Additional hierarchical clustering analysis revealed that differential gene expression and mRNA splicing patterns identified in HLHS are unique compared to non-diseased tissue. Our findings suggest that gene expression and mRNA splicing are broadly dysregulated in the RV myocardium of HLHS neonates. In addition, our analysis identified transcriptome profiles representative of molecular biomarkers of HLHS that could be used in the future for diagnostic and prognostic stratification to improve patient outcome.

  8. High Smac/DIABLO expression is associated with early local recurrence of cervical cancer

    Directory of Open Access Journals (Sweden)

    Maldonado Vilma

    2006-10-01

    Full Text Available Abstract Background In a recent pilot report, we showed that Smac/DIABLO mRNA is expressed de novo in a subset of cervical cancer patients. We have now expanded this study and analyzed Smac/DIABLO expression in the primary lesions in 109 cervical cancer patients. Methods We used immunohistochemistry of formalin-fixed, paraffin-embedded tissue sections to analyze Smac/DIABLO expression in the 109 primary lesions. Seventy-eight samples corresponded to epidermoid cervical cancer and 31 to cervical adenocarcinoma. The median follow up was 46.86 months (range 10–186. Results Smac/DIABLO was expressed in more adenocarcinoma samples than squamous tumours (71% vs 50%; p = 0.037. Among the pathological variables, a positive correlation was found between Smac/DIABLO immunoreactivity and microvascular density, a marker for angiogenesis (p = 0.04. Most importantly, Smac/DIABLO immunoreactivity was associated with a higher rate of local recurrence in squamous cell carcinoma (p = 0.002, log rank test. No association was found between Smac/DIABLO and survival rates. Conclusion Smac/DIABLO expression is a potential marker for local recurrence in cervical squamous cell carcinoma patients.

  9. Transcription Factor EB Expression in Early Breast Cancer Relates to Lysosomal/Autophagosomal Markers and Prognosis.

    Science.gov (United States)

    Giatromanolaki, Alexandra; Sivridis, Efthimios; Kalamida, Dimitra; Koukourakis, Michael I

    2017-06-01

    Disrupting the autophagic balance to trigger autophagic death may open new strategies for cancer therapy. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and may play a role in cancer biology and clinical behavior. The expression of TFEB and the lysosomal cancer cell content (expression of lysosomal associated membrane protein 2a [LAMP2a] and cathepsin D) was studied in a series of 100 T1-stage breast carcinomas. Expression patterns were correlated with autophagy/hypoxia-related proteins, angiogenesis, and clinical outcome. The effect of hypoxic/acidic conditions on TFEB kinetics was studied in the MCF-7 cancer cell line. Overexpression of TFEB in cancer cell cytoplasm and the perinuclear/nuclear area was noted in 23 (23%) of 100 cases. High LAMP2a and cathepsin D expression was noted in 30 (30%) of 100 and 28 (28%) of 100 cases, respectively. TFEB expression was directly linked with LAMP2a (P breast carcinomas, define poor prognosis. Tumor acidity is among the microenvironmental conditions that trigger TFEB overactivity. TFEB is a sound target for the development of lysosomal targeting therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. STATE OF JNK AND P38 MAP-KINASE SYSTEM IN BLOOD monon uclea r le ucocytes DUR ING INFLAMMATION

    Directory of Open Access Journals (Sweden)

    N. Y. Chasovskih

    2009-01-01

    Full Text Available Abstract. Pogrammed cell death of peripheral blood mononuclear leucocytes from patients with acute inflammatory diseases (non-nosocomial pneumonia, acute appendicitis was investigated under ex vivo conditions, upon cultivation of the cells with selective inhibitors of JNK (SP600125 and р38 МАРК (ML3403. In vitro addition of SP600125 and ML3403 under oxidative stress conditions prevents increase of annexinpositive mononuclear cells numbers, thus suggesting JNK and р38 МАР-kinases to be involved into oxidative mechanisms of apoptosis deregulation. A role of JNK in IL-8 production by mononuclear leucocytes was revealed in cases of acute inflammation. Regulatory effect of JNK and p38 MAP-kinases can be mediated through activation of redox-sensitive apoptogenic signal transduction systems, as well as due to changes in cellular cytokine-producing function.

  11. Activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) during hypoxia in cerebral cortical nuclei of guinea pig fetus at term: role of nitric oxide.

    Science.gov (United States)

    Maulik, Dev; Ashraf, Qazi M; Mishra, Om P; Delivoria-Papadopoulos, Maria

    2008-07-04

    Previously we have shown that cerebral tissue hypoxia results in generation of nitric oxide (NO) free radicals as well as increased expression of mitogen-activated protein kinase like extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK). The present study tested the hypothesis that administration of l-nitro-l-arginine methyl ester (L-NAME), a NOS inhibitor, prior to hypoxia prevents the hypoxia-induced activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) and in the cerebral cortex of the term guinea pig fetus. To test this hypothesis normoxic (Nx, n=6), hypoxic (Hx, n=7) and hypoxic pretreated with l-NAME (Hx+L-NAME, n=6) guinea pig fetuses at 60 days gestation were studied to determine the phosphorylated p38, ERK and JNK. Hypoxia was induced by exposing pregnant guinea pigs to FiO2 of 0.07 for 1h. l-NAME (30mg/kg i.p.) was administered to pregnant mothers 60min prior to hypoxia. Cerebral tissue hypoxia was documented biochemically by determining the tissue levels of ATP and phosphocreatine (PCr). Neuronal nuclei were isolated, purified and proteins separated using 12% SDS-PAGE, and then probed with specific phosphorylated ERK, JNK and p38 antibodies. Protein bands were detected by enhanced chemiluminescence, analyzed by imaging densitometry and expressed as absorbance (ODxmm2). The relative level of p-p38 was 51.41+/-9.80 (Nx), 173.67+/-3.63 (Hx), 58.56+/-3.40 (Hx+L-NAME), phypoxia decreased the relative level of phosphorylated p38, ERK and JNK at term gestation. Since a NOS inhibitor prevented the hypoxia-induced phosphorylation of p38, ERK and JNK, we conclude that the hypoxia-induced activation of p38, ERK and JNK in the cerebral cortical nuclei of guinea pig fetus at term is NO-mediated. We speculate that NO-mediated modification of cysteine residue leading to inhibition of MAP kinase phosphatases results in increased activation of p38, ERK and JNK

  12. Dynamic expression analysis of early response genes induced by potato virus Y in PVY-resistant Nicotiana tabacum.

    Science.gov (United States)

    Chen, Shuai; Li, Fengxia; Liu, Dan; Jiang, Caihong; Cui, Lijie; Shen, Lili; Liu, Guanshan; Yang, Aiguo

    2017-02-01

    Dynamic transcriptional changes of the host early responses genes were detected in PVY-resistant tobacco varieties infected with Potato virus Y; PVY resistance is a complex process that needs series of stress responses. Potato virus Y (PVY) causes a severe viral disease in cultivated crops, especially in Solanum plants. To understand the molecular basis of plant responses to the PVY stress, suppression subtractive hybridization (SSH) and microarray approaches were combined to identify the potentially important or novel genes that were involved in early stages (12 h, 1, 2, 3, 5, 8 days) of tobacco response to PVY infection. Dynamic changes of the host plant early responses to PVY infection on a transcriptional level were detected. In total, 167 different expressed ESTs were identified. The majority of genes involved in the metabolic process were found to be down-regulated at 12 h and 1 day, and then up-regulated at least one later period. Genes related to signaling and transcriptions were almost up-regulated at 12 h, 1 or 2 days, while stress response genes were almost up-regulated at a later stage. Genes involved in transcription, transport, cell wall, and several stress responses were found to have changed expression during the PVY infection stage, and numbers of these genes have not been previously reported to be associated with tobacco PVY infection. The diversity expression of these genes indicated that PVY resistance is a complex process that needs a series of stress responses. To resist the PVY infection, the tobacco plant has numerous active and silent responses.

  13. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    Science.gov (United States)

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  14. Expression analysis of CD63 in salivary neutrophils and the increased level of Streptococcus mutans in severe early childhood caries

    Directory of Open Access Journals (Sweden)

    Muhammad Luthfi

    2015-06-01

    Full Text Available Background: Severe early childhood caries (S-ECC and decay exfoliation filling teeth (def-t >6 is a destructive disease that afflicts teeth, including maxillary anterior teeth. In Indonesia, the prevalence of this disease is still high, for instance in Semarang 2007, the rate reached 90.5% in urban areas and 95.9% in rural areas for early childhood caries which is caused by Streptococcus mutans (S. mutans. Neutrophils are effector cells of innate immunity which become the main component of the very first line of defense against microbes. Purpose: This study analyzed the effect caused by the change of CD63 expression on the surface of salivary neutrophils and the increased level of S. mutans in S-ECC. Method: This study employs observational analytic and cross sectional approach by using T test analysis technique for forty cases of early childhood that had been divided into two groups, first group of twenty children positively diagnosed as S-ECC and second group of twenty children negatively diagnosed as the control group. The sample’s result of gargling with 1.5% NaCl was used for neutrophils isolation and analysis function of salivary neutrophils phagocytosis by using flow cytometry test, while the sample of saliva was used to isolate S. mutans and calculate the level of S. mutans. Result: The expression of CD63+ salivary neutrophils in S-ECC was lower (2.32% ± 0.57 than in caries-free (2.67% ± 0.46, while the level of S. mutans showed that the level was not higher than in S-ECC (9.78 ± 2.22x105 CFU/ml compared to in caries-free (5.13 ± 1.86x105 CFU/ml. Conclusion: The low expression of CD63 in salivary neutrophils can lead to the increased level of S. mutans in S-ECC.

  15. Intersecting batteries of differentially expressed genes in the early sea urchin embryo

    OpenAIRE

    Thiebaud, Pierre; Goodstein, Marcia; Calzone, Frank J.; Thézé, Nadine; Roy J. Britten; Davidson, Eric H.

    1990-01-01

    We determined the distribution of cis-regulatory sites, previously identified in the control domain of the CyIIIa gene, in three other genes displaying diverse spatial patterns of expression in the sea urchin embryo. Competitive gel-shift reactions were carried out using probes from the CyIIIa gene, with competitor fragments isolated from the previously defined control domains of the other genes. CyIIIa is expressed only in aboral ectoderm lineages; the other genes studied were Spec1, also ex...

  16. LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Benoit Langlois

    Full Text Available BACKGROUND: The low-density lipoprotein receptor-related protein-1 (LRP-1 is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. METHODOLOGY/PRINCIPAL FINDINGS: Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. CONCLUSIONS: We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion.

  17. Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-κB pathways

    Science.gov (United States)

    2010-01-01

    Background Transforming growth factor-β (TGF-β) and matrix metalloproteinases (MMPs) are the multifunctional factors during diverse physiological and pathological processes including development, wound healing, proliferation, and cancer metastasis. Both TGF-β and MMPs have been shown to play crucial roles in brain pathological changes. Thus, we investigated the molecular mechanisms underlying TGF-β1-induced MMP-9 expression in brain astrocytes. Methods Rat brain astrocytes (RBA-1) were used. MMP-9 expression was analyzed by gelatin zymography and RT-PCR. The involvement of signaling molecules including MAPKs and NF-κB in the responses was investigated using pharmacological inhibitors and dominant negative mutants, determined by western blot and gene promoter assay. The functional activity of MMP-9 was evaluated by cell migration assay. Results Here we report that TGF-β1 induces MMP-9 expression and enzymatic activity via a TGF-β receptor-activated reactive oxygen species (ROS)-dependent signaling pathway. ROS production leads to activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun-N-terminal kinase (JNK) and then activation of the NF-κB transcription factor. Activated NF-κB turns on transcription of the MMP-9 gene. The rat MMP-9 promoter, containing a NF-κB cis-binding site, was identified as a crucial domain linking to TGF-β1 action. Conclusions Collectively, in RBA-1 cells, activation of ERK1/2- and JNK-NF-κB cascades by a ROS-dependent manner is essential for MMP-9 up-regulation/activation and cell migration induced by TGF-β1. These findings indicate a new regulatory pathway of TGF-β1 in regulating expression of MMP-9 in brain astrocytes, which is involved in physiological and pathological tissue remodeling of central nervous system. PMID:21134288

  18. Antimicrobial Peptides Are Expressed during Early Development of Zebrafish (Danio rerio and Are Inducible by Immune Challenge

    Directory of Open Access Journals (Sweden)

    Elisabetta Caccia

    2017-11-01

    Full Text Available Antimicrobial peptides (AMPS are ancestral components in the evolution of immunity from protozoans to metazoans. Their expression can be constitutive or inducible by infectious challenge. Although characterized in detail in their structure and activity, the temporal and spatial expression of AMPS during vertebrate embryogenesis is still poorly understood. In the present study, we identified selected AMPs in zebrafish, and characterized their expression during early development, and upon experimental immune challenge in adult animals, with the goal of establishing this genetically-tractable model system for further AMP studies. By mining available genomic databases, zebrafish AMP sequences homologous to AMPs from other vertebrates were selected for further study. These included parasin I and its enzyme cathepsin D, β-defensin (DB1, liver-expressed antimicrobial peptide 2 (LEAP2, bactericidal permeability-increasing protein (BPI, and chromogranin-A and -B (CgA and CgB. Specific primers were designed for RT-PCR amplification of each AMP gene of interest and amplicons between 242 bp and 504 bp were obtained from RNA extracted from adult zebrafish. Sequencing of the amplicons and alignment of their deduced amino acid sequences with those from AMPs from other vertebrate species confirmed their identity. The temporal expression of AMPs was investigated by RT-PCR analysis in fertilized oocytes, embryos, and adult individuals. Parasin I and chatepsin D transcripts were detectable immediately after fertilization, while the transcripts for CgA and CgB became evident starting at 48 h post fertilization. Mature transcripts of LEAP2 and DB1 were detectable only in the adult zebrafish, while BPI transcripts were detectable starting from the 12th day post fertilization. To explore the possible upregulation of AMP expression by infectious challenge, experiments were carried out in adult zebrafish by intraperitoneal injection of a cocktail of lipopolysaccharide

  19. Sodium fluoride induces apoptosis in odontoblasts via a JNK-dependent mechanism.

    Science.gov (United States)

    Li, Peng; Xue, Yunpeng; Zhang, Wenbin; Teng, Fei; Sun, Yong; Qu, Tiejun; Chen, Xingxing; Cheng, Xiaogang; Song, Bing; Luo, Wenjing; Yu, Qing

    2013-06-07

    Sodium fluoride (NaF) is widely used for the treatment of dental caries and dentin hypersensitivity. However, its pro-apoptotic effect on odontoblasts may lead to harmful side-effects. The purpose of this study was to evaluate the pro-apoptotic effects of NaF in odontoblasts and elucidate the possible underlying molecular mechanisms. NaF generated cytotoxic effects in odontoblast-lineage cell (OLC) in a dose- and time-dependent manner. Exposure of cells to 4mM NaF for 24h induced caspase-3 activation, ultrastructural alterations, and resulted in the translocation of Bax to the mitochondria and the release of cytochrome c from the mitochondrial inter-membrane space into the cytosol, indicating that fluoride-mediated apoptosis is mitochondria-dependent. Fluoride treatment also increased phosphorylation of JNK and ERK, but not p38, and apoptosis induced by fluoride was notably or partly suppressed by treatment with JNK or ERK inhibitors, respectively. Taken together, these findings suggest that NaF induces apoptosis in OLC odontoblasts through a JNK-dependent mitochondrial pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Urm1: an essential regulator of JNK signaling and oxidative stress in Drosophila melanogaster.

    Science.gov (United States)

    Khoshnood, B; Dacklin, I; Grabbe, C

    2016-05-01

    Ubiquitin-related modifier 1 (Urm1) is a ubiquitin-like molecule (UBL) with the dual capacity to act both as a sulphur carrier and posttranslational protein modifier. Here we characterize the Drosophila melanogaster homologues of Urm1 (CG33276) and its E1 activating enzyme Uba4 (CG13090), and show that they function together to induce protein urmylation in vivo. Urm1 conjugation to target proteins in general, and to the evolutionary conserved substrate Peroxiredoxin 5 (Prx5) specifically, is dependent on Uba4. A complete loss of Urm1 is lethal in flies, although a small number of adult zygotic Urm1 (n123) mutant escapers can be recovered. These escapers display a decreased general fitness and shortened lifespan, but in contrast to their S. cerevisiae counterparts, they are resistant to oxidative stress. Providing a molecular explanation, we demonstrate that cytoprotective JNK signaling is increased in Urm1 deficient animals. In agreement, molecular and genetic evidence suggest that elevated activity of the JNK downstream target genes Jafrac1 and gstD1 strongly contributes to the tolerance against oxidative stress displayed by Urm1 (n123) null mutants. In conclusion, Urm1 is a UBL that is involved in the regulation of JNK signaling and the response against oxidative stress in the fruit fly.

  1. Involvement of JNK and Caspase Activation in Hoiamide A-Induced Neurotoxicity in Neocortical Neurons

    Directory of Open Access Journals (Sweden)

    Zhengyu Cao

    2015-02-01

    Full Text Available The frequent occurrence of Moorea producens (formerly Lyngbya majuscula blooms has been associated with adverse effects on human health. Hoiamide A is a structurally unique cyclic depsipeptide isolated from an assemblage of the marine cyanobacteria M. producens and Phormidium gracile. We examined the influence of hoiamide A on neurite outgrowth in neocortical neurons and found that it suppressed neurite outgrowth with an IC50 value of 4.89 nM. Further study demonstrated that hoiamide A stimulated lactic acid dehydrogenase (LDH efflux, nuclear condensation and caspase-3 activity with EC50 values of 3.66, 2.55 and 4.33 nM, respectively. These data indicated that hoiamide A triggered a unique neuronal death profile that involves both necrotic and apoptotic mechanisms. The similar potencies and similar time-response relationships between LDH efflux and caspase-3 activation/nuclear condensation suggested that both necrosis and apoptosis may derive from interaction with a common molecular target. The broad-spectrum caspase inhibitor, Z-VAD-FMK completely inhibited hoiamide A-induced neurotoxicity. Additionally, hoiamide A stimulated JNK phosphorylation, and a JNK inhibitor attenuated hoiamide A-induced neurotoxicity. Collectively, these data demonstrate that hoiamide A-induced neuronal death requires both JNK and caspase signaling pathways. The potent neurotoxicity and unique neuronal cell death profile of hoiamide A represents a novel neurotoxic chemotype from marine cyanobacteria.

  2. A Specific and Covalent JNK-1 Ligand Selected from an Encoded Self-Assembling Chemical Library.

    Science.gov (United States)

    Zimmermann, Gunther; Rieder, Ulrike; Bajic, Davor; Vanetti, Sara; Chaikuad, Apirat; Knapp, Stefan; Scheuermann, Jörg; Mattarella, Martin; Neri, Dario

    2017-06-16

    We describe the construction of a DNA-encoded chemical library comprising 148 135 members, generated through the self-assembly of two sub-libraries, containing 265 and 559 members, respectively. The library was designed to contain building blocks potentially capable of forming covalent interactions with target proteins. Selections performed with JNK1, a kinase containing a conserved cysteine residue close to the ATP binding site, revealed the preferential enrichment of a 2-phenoxynicotinic acid moiety (building block A82) and a 4-(3,4-difluorophenyl)-4-oxobut-2-enoic acid moiety (building block B272). When the two compounds were joined by a short PEG linker, the resulting bidentate binder (A82-L-B272) was able to covalently modify JNK1 in the presence of a large molar excess of glutathione (0.5 mm), used to simulate intracellular reducing conditions. By contrast, derivatives of the individual building blocks were not able to covalently modify JNK1 in the same experimental conditions. The A82-L-B272 ligand was selective over related kinases (BTK and GAK), which also contain targetable cysteine residues in the vicinity of the active site. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal.

    Directory of Open Access Journals (Sweden)

    Benzhi Cai

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases.

  4. Gene expression profiling of porcine skeletal muscle in the early recovery phase following acute physical activity

    DEFF Research Database (Denmark)

    Hansen, Jeanette; Conley, Lene; Hedegaard, Jakob

    2012-01-01

    Acute physical activity elicits changes in gene expression in skeletal muscles to promote metabolic changes and to repair exercise-induced muscle injuries. In the present time-course study, pigs were submitted to an acute bout of treadmill running until near exhaustion to determine the impact...

  5. The Effects of Early Institutionalization on the Discrimination of Facial Expressions of Emotion in Young Children

    Science.gov (United States)

    Jeon, Hana; Moulson, Margaret C.; Fox, Nathan; Zeanah, Charles; Nelson, Charles A., III

    2010-01-01

    The current study examined the effects of institutionalization on the discrimination of facial expressions of emotion in three groups of 42-month-old children. One group consisted of children abandoned at birth who were randomly assigned to Care-as-Usual (institutional care) following a baseline assessment. Another group consisted of children…

  6. Coordination of gaze, facial expressions and vocalizations of early infant communication with mother and father

    NARCIS (Netherlands)

    Colonnesi, C.; Zijlstra, B.J.H.; van der Zande, A.; Bögels, S.M.

    2012-01-01

    Gaze direction, expressive behaviors and vocalizations are infants’ first form of emotional communication. The present study examined the emotional configurations of these three behaviors during face-to-face situations and the effect of infants’ and parents’ gender. We observed 34 boys and 32 girls

  7. Sex-dependent gene expression in early brain development of chicken embryos

    Directory of Open Access Journals (Sweden)

    Stigson Michael

    2006-02-01

    Full Text Available Abstract Background Differentiation of the brain during development leads to sexually dimorphic adult reproductive behavior and other neural sex dimorphisms. Genetic mechanisms independent of steroid hormones produced by the gonads have recently been suggested to partly explain these dimorphisms. Results Using cDNA microarrays and real-time PCR we found gene expression differences between the male and female embryonic brain (or whole head that may be independent of morphological differentiation of the gonads. Genes located on the sex chromosomes (ZZ in males and ZW in females were common among the differentially expressed genes, several of which (WPKCI-8, HINT, MHM non-coding RNA have previously been implicated in avian sex determination. A majority of the identified genes were more highly expressed in males. Three of these genes (CDK7, CCNH and BTF2-P44 encode subunits of the transcription factor IIH complex, indicating a role for this complex in neuronal differentiation. Conclusion In conclusion, this study provides novel insights into sexually dimorphic gene expression in the embryonic chicken brain and its possible involvement in sex differentiation of the nervous system in birds.

  8. Cryptic Transcription and Early Termination in the Control of Gene Expression

    Directory of Open Access Journals (Sweden)

    Jessie Colin

    2011-01-01

    Full Text Available Recent studies on yeast transcriptome have revealed the presence of a large set of RNA polymerase II transcripts mapping to intergenic and antisense regions or overlapping canonical genes. Most of these ncRNAs (ncRNAs are subject to termination by the Nrd1-dependent pathway and rapid degradation by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs. CUTs are often considered as by-products of transcriptional noise, but in an increasing number of cases they play a central role in the control of gene expression. Regulatory mechanisms involving expression of a CUT are diverse and include attenuation, transcriptional interference, and alternative transcription start site choice. This review focuses on the impact of cryptic transcription on gene expression, describes the role of the Nrd1-complex as the main actor in preventing nonfunctional and potentially harmful transcription, and details a few systems where expression of a CUT has an essential regulatory function. We also summarize the most recent studies concerning other types of ncRNAs and their possible role in regulation.

  9. Differential expression of early viral gene BmORF51 in Bombyx mori ...

    African Journals Online (AJOL)

    The recombinant His-tagged Bm51 protein was expressed in E. coli BL21 (DE3) and purified by metal chelating affinity chromatography to produce antibodies against Bm51 protein. The amino acid sequence of recombinant protein was confirmed by mass spectroscopic analysis. The transcription and protein product of ...

  10. Breast Cancer and Early Onset Childhood Obesity: Cell Specific Gene Expression in Mammary Epithelia and Adipocytes

    Science.gov (United States)

    2007-07-01

    where tumor cells (purple) are invading adjacent muscle tissue ( pink ). In the middle panel a benign adenoma, with adjacent fat cells (white), from...NK, Saliba G, Floyd JJ, Anania FA. Leptin induces increased alpha 2(I) collagen gene expression in cultured rat hepatic stellate cells. J Cell Biochem

  11. Disturbed Ca2+ homeostasis increases glutaminyl cyclase expression; connecting two early pathogenic events in Alzheimer's disease in vitro.

    Directory of Open Access Journals (Sweden)

    Line De Kimpe

    Full Text Available A major neuropathological hallmark of Alzheimer's disease (AD is the deposition of aggregated β amyloid (Aβ peptide in the senile plaques. Aβ is a peptide of 38-43 amino acids and its accumulation and aggregation plays a key role early in the disease. A large fraction of β amyloid is N-terminally truncated rendering a glutamine that can subsequently be cyclized into pyroglutamate (pE. This makes the peptide more resistant to proteases, more prone to aggregation and increases its neurotoxicity. The enzyme glutaminyl cyclase (QC catalyzes this conversion of glutamine to pE. In brains of AD patients, the expression of QC is increased in the earliest stages of pathology, which may be an important event in the pathogenesis. In this study we aimed to investigate the regulatory mechanism underlying the upregulation of QC expression in AD. Using differentiated SK-N-SH as a neuronal cell model, we found that neither the presence of Aβ peptides nor the unfolded protein response, two early events in AD, leads to increased QC levels. In contrast, we demonstrated increased QC mRNA levels and enzyme activity in response to another pathogenic factor in AD, perturbed intracellular Ca(2+ homeostasis. The QC promoter contains a putative binding site for the Ca(2+ dependent transcription factors c-fos and c-jun. C-fos and c-jun are induced by the same Ca(2+-related stimuli as QC and their upregulation precedes QC expression. We show that in the human brain QC is predominantly expressed by neurons. Interestingly, the Ca(2+- dependent regulation of both c-fos and QC is not observed in non-neuronal cells. Our results indicate that perturbed Ca(2+ homeostasis results in upregulation of QC selectively in neuronal cells via Ca(2+- dependent transcription factors. This suggests that disruption of Ca(2+ homeostasis may contribute to the formation of the neurotoxic pE Aβ peptides in Alzheimer's disease.

  12. Reduced expression of FOXP3 and regulatory T-cell function in severe forms of early-onset autoimmune enteropathy.

    Science.gov (United States)

    Moes, Nicolette; Rieux-Laucat, Frédéric; Begue, Bernadette; Verdier, Julien; Neven, Bénédicte; Patey, Natacha; Torgerson, Troy T; Picard, Capucine; Stolzenberg, Marie-Claude; Ruemmele, Corinne; Rings, Edmond Hhm; Casanova, Jean-Laurent; Piloquet, Hugues; Biver, Armand; Breton, Anne; Ochs, Hans D; Hermine, Olivier; Fischer, Alain; Goulet, Olivier; Cerf-Bensussan, Nadine; Ruemmele, Frank M

    2010-09-01

    Little is known about the pathophysiology of early onset forms of autoimmune enteropathy (AIE). AIE has been associated with mutations in FOXP3-a transcription factor that controls regulatory T-cell development and function. We analyzed the molecular basis of neonatal or early postnatal AIE using clinical, genetic, and functional immunological studies. Gastroenterological and immunological features were analyzed in 9 boys and 2 girls with AIE that began within the first 5 months of life. FOXP3 and IL2RA were genotyped in peripheral blood monocytes. FOXP3 messenger RNA and protein expression were analyzed using reverse-transcription polymerase chain reaction, flow cytometry, and confocal immunofluorescence of CD4(+) T cells. Regulatory T-cell function (CD4(+)CD25(+)) was assayed in coculture systems. AIE associated with extraintestinal autoimmunity was severe and life-threatening; all patients required total parenteral nutrition. Regulatory T cells from 7 patients had altered function and FOXP3 mutations that resulted in lost or reduced FOXP3 protein expression; 2 infants had reduced regulatory T-cell activity and reduced levels of FOXP3 protein, although we did not detect mutations in FOXP3 coding region, poly-A site, or promoter region (called FOXP3-dependent AIE). Two patients had a normal number of regulatory T cells that expressed normal levels of FOXP3 protein and normal regulatory activity in in vitro coculture assays (called FOXP3-independent AIE). No mutations in IL2RA were found. Most cases of AIE are associated with alterations in regulatory T-cell function; some, but not all, cases have mutations that affect FOXP3 expression levels. Further studies are needed to identify mechanisms of AIE pathogenesis. Copyright © 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Sialoadhesin (CD169 expression in CD14+ cells is upregulated early after HIV-1 infection and increases during disease progression.

    Directory of Open Access Journals (Sweden)

    Antoinette C van der Kuyl

    Full Text Available BACKGROUND: Sialoadhesin (CD169, siglec-1 or Sn is an activation marker seen on macrophages in chronic inflammatory diseases and in tumours, and on subsets of tissue macrophages. CD169 is highly expressed by macrophages present in AIDS-related Kaposi's sarcoma lesions. It is also increased on blood monocytes of HIV-1 infected patients with a high viral load despite antiretroviral treatment. METHODOLOGY/PRINCIPAL FINDINGS: We investigated expression of sialoadhesin in untreated HIV-1 and HHV-8 infected patients, by real-time PCR and FACS analysis to establish its expression in relation to infection and disease progression. Patients analysed were either HIV-1 seroconverters (n = 7, in the chronic phase of HIV-1 infection (n = 21, or in the AIDS stage (n = 58. Controls were HHV-8 infected, but otherwise healthy individuals (n = 20, and uninfected men having sex with men (n = 24. Sialoadhesin mRNA was significantly elevated after HIV-1, but not HHV-8 infection, and a further increase was seen in AIDS patients. Samples obtained around HIV-1 seroconversion indicated that sialoadhesin levels go up early in infection. FACS analysis of PBMCs showed that sialoadhesin protein was expressed at high levels by approximately 90% of CD14(+ and CD14(+CD16(+cells of HIV-1(+ patients with a concomitant 10-fold increase in sialoadhesin protein/cell compared with uninfected controls. CONCLUSIONS/SIGNIFICANCE: We have shown that sialoadhesin is induced to high levels on CD14(+ cells early after HIV-1 infection in vivo. The phenotype of the cells is maintained during disease progression, suggesting that it could serve as a marker for infection and probably contributes to the severe dysregulation of the immune system seen in AIDS.

  14. Gene expression profiling of early hepatic stellate cell activation reveals a role for Igfbp3 in cell migration.

    Directory of Open Access Journals (Sweden)

    Inge Mannaerts

    Full Text Available BACKGROUND: Scarring of the liver is the result of prolonged exposure to exogenous or endogenous stimuli. At the onset of fibrosis, quiescent hepatic stellate cells (HSCs activate and transdifferentiate into matrix producing, myofibroblast-like cells. AIM AND METHODS: To identify key players during early HSC activation, gene expression profiling was performed on primary mouse HSCs cultured for 4, 16 and 64 hours. Since valproic acid (VPA can partly inhibit HSC activation, we included VPA-treated cells in the profiling experiments to facilitate this search. RESULTS: Gene expression profiling confirmed early changes for known genes related to HSC activation such as alpha smooth muscle actin (Acta2, lysyl oxidase (Lox and collagen, type I, alpha 1 (Col1a1. In addition we noticed that, although genes which are related to fibrosis change between 4 and 16 hours in culture, most gene expression changes occur between 16 and 64 hours. Insulin-like growth factor binding protein 3 (Igfbp3 was identified as a gene strongly affected by VPA treatment. During normal HSC activation Igfbp3 is up regulated and this can thus be prevented by VPA treatment in vitro and in vivo. siRNA-mediated silencing of Igfbp3 in primary mouse HSCs induced matrix metalloproteinase (Mmp 9 mRNA expression and strongly reduced cell migration. The reduced cell migration after Igfbp3 knock-down could be overcome by tissue inhibitor of metalloproteinase (TIMP 1 treatment. CONCLUSION: Igfbp3 is a marker for culture-activated HSCs and plays a role in HSC migration. VPA treatment prevents Igfbp3 transcription during activation of HSCs in vitro and in vivo.

  15. Low p16INK4a Expression in Early Passage Human Prostate Basal Epithelial Cells Enables Immortalization by Telomerase Expression Alone.

    Science.gov (United States)

    Graham, Mindy Kim; Principessa, Lorenzo; Antony, Lizamma; Meeker, Alan K; Isaacs, John T

    2017-03-01

    There are two principal senescence barriers that must be overcome to successfully immortalize primary human epithelial cells in culture, stress-induced senescence, and replicative senescence. The p16INK4a /retinoblastoma protein (p16/Rb) pathway mediates stress-induced senescence, and is generally upregulated by primary epithelial cells in response to the artificial conditions from tissue culture. Replicative senescence is associated with telomere loss. Following each round of cell division, telomeres progressively shorten. Once telomeres shorten to a critical length, the DNA damage response pathway is activated, and the tumor suppressor p53 pathway triggers replicative senescence. Exogenous expression of telomerase in normal human epithelial cells extends the replicative capacity of cells, and in some cases, immortalizes cells. However reliable immortalization of epithelial cells usually requires telomerase activity coupled with inactivation of the p16/Rb pathway. A lentiviral vector, pLOX-TERT-iresTK (Addgene #12245), containing a CMV promoter upstream of a bicistronic coding cassette that includes loxP sites flanking the catalytic subunit of human telomerase gene (TERT) and herpes simplex virus type-1 thymidine kinase gene (HSV1-tk) was used to transduce normal prostate basal epithelial cells (PrECs) initiated in cell culture from prostate cancer patients undergoing radical prostatectomies. Transduction of early (i.e., 7) passage PrECs were unsuccessful. Late passage PrECs, which acquired elevated p16, were unable to overcome the senescence barrier. Immortalized PrECs (TERT-PrECs) retained a normal male karyotype and low p16 expression. Additionally, TERT-PrECs were non-tumorigenic when inoculated into intact male immunodeficient NSG mice. The present studies document that early passage human PrECs have sufficiently low p16 to permit immortalization by TERT expression alone. TERT-PrECs developed using this transduction approach provides an appropriate and

  16. Expression stability and selection of optimal reference genes for gene expression normalization in early life stage rainbow trout exposed to cadmium and copper.

    Science.gov (United States)

    Shekh, Kamran; Tang, Song; Niyogi, Som; Hecker, Markus

    2017-09-01

    Gene expression analysis represents a powerful approach to characterize the specific mechanisms by which contaminants interact with organisms. One of the key considerations when conducting gene expression analyses using quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the selection of appropriate reference genes, which is often overlooked. Specifically, to reach meaningful conclusions when using relative quantification approaches, expression levels of reference genes must be highly stable and cannot vary as a function of experimental conditions. However, to date, information on the stability of commonly used reference genes across developmental stages, tissues and after exposure to contaminants such as metals is lacking for many vertebrate species including teleost fish. Therefore, in this study, we assessed the stability of expression of 8 reference gene candidates in the gills and skin of three different early life-stages of rainbow trout after acute exposure (24h) to two metals, cadmium (Cd) and copper (Cu) using qPCR. Candidate housekeeping genes were: beta actin (b-actin), DNA directed RNA polymerase II subunit I (DRP2), elongation factor-1 alpha (EF1a), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PD), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein L8 (RPL8), and 18S ribosomal RNA (18S). Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method were employed to systematically evaluate the expression stability of these candidate genes under control and exposed conditions as well as across three different life-stages. Finally, stability of genes was ranked by taking geometric means of the ranks established by the different methods. Stability of reference genes was ranked in the following order (from lower to higher stability): HPRTstability of reference genes depended on the metal, life-stage and/or organ in question. Thus, attention should be paid

  17. Elevated Expression of KiSS-1 in Placenta of Chinese Women with Early-Onset Preeclampsia

    Science.gov (United States)

    Qiao, Chong; Wang, Chunhui; Zhao, Jiao; Liu, Caixia; Shang, Tao

    2012-01-01

    Preeclampsia (PE) is a heterogeneous syndrome affecting 2% to 8% of all pregnancies and is the world’s leading cause of fetal and maternal morbidity and mortality. In many cases of PE, shallow trophoblast invasion results in inappropriate maternal spiral artery remodeling and impaired placental function. Multiple genes have been implicated in trophoblast invasion, among which are KiSS-1 and GPR54. The gene product of KiSS-1 is metastin, which is a ligand for the receptor GPR54. Both metastin and GPR54 are expressed in the placenta of normal pregnancy and have been implicated in modulating trophoblast invasion through inhibiting migration of trophoblast cells. We have previously reported that the expression level of KiSS-1 was higher in trophoblasts from women with preeclampsia as compared to normal controls. Here, using quantitative RT-PCR, Western blot analysis and immunohistochemistry, we extend our analysis to demonstrate that elevated KiSS-1 expression occurs only in early-onset preeclampsia (ePE) and not late-onset preeclampsia (lPE). However, no difference in the expression levels of GPR54 is observed between ePE, lPE, and normal controls. Further, we show that KiSS-1 expression is also increased in placenta of intrauterine death and birth asphyxia in comparison to normal newborns of ePE and lPE. Our findings suggest that aberrant upregulation of KiSS-1 expression may contribute to the underlying mechanism of ePE as well as birth asphyxia. PMID:23145030

  18. Elevated expression of KiSS-1 in placenta of Chinese women with early-onset preeclampsia.

    Directory of Open Access Journals (Sweden)

    Chong Qiao

    Full Text Available Preeclampsia (PE is a heterogeneous syndrome affecting 2% to 8% of all pregnancies and is the world's leading cause of fetal and maternal morbidity and mortality. In many cases of PE, shallow trophoblast invasion results in inappropriate maternal spiral artery remodeling and impaired placental function. Multiple genes have been implicated in trophoblast invasion, among which are KiSS-1 and GPR54. The gene product of KiSS-1 is metastin, which is a ligand for the receptor GPR54. Both metastin and GPR54 are expressed in the placenta of normal pregnancy and have been implicated in modulating trophoblast invasion through inhibiting migration of trophoblast cells. We have previously reported that the expression level of KiSS-1 was higher in trophoblasts from women with preeclampsia as compared to normal controls. Here, using quantitative RT-PCR, Western blot analysis and immunohistochemistry, we extend our analysis to demonstrate that elevated KiSS-1 expression occurs only in early-onset preeclampsia (ePE and not late-onset preeclampsia (lPE. However, no difference in the expression levels of GPR54 is observed between ePE, lPE, and normal controls. Further, we show that KiSS-1 expression is also increased in placenta of intrauterine death and birth asphyxia in comparison to normal newborns of ePE and lPE. Our findings suggest that aberrant upregulation of KiSS-1 expression may contribute to the underlying mechanism of ePE as well as birth asphyxia.

  19. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Science.gov (United States)

    Altintas, Dogus Murat; Allioli, Nathalie; Decaussin, Myriam; de Bernard, Simon; Ruffion, Alain; Samarut, Jacques; Vlaeminck-Guillem, Virginie

    2013-01-01

    Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa) among androgen-regulated genes (ARG) and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely) give rise to cancer. ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens) using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1). By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91) and DLX1 (0.94). We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could be complementary to known genes overexpressed in PCa and included along

  20. Stable immediate early gene expression patterns in medial prefrontal cortex and striatum after long-term cocaine self-administration.

    Science.gov (United States)

    Gao, Ping; Limpens, Jules H W; Spijker, Sabine; Vanderschuren, Louk J M J; Voorn, Pieter

    2017-03-01

    The transition from casual to compulsive drug use is thought to occur as a consequence of repeated drug taking leading to neuroadaptive changes in brain circuitry involved in emotion and cognition. At the basis of such neuroadaptations lie changes in the expression of immediate early genes (IEGs) implicated in transcriptional regulation, synaptic plasticity and intracellular signalling. However, little is known about how IEG expression patterns change during long-term drug self-administration. The present study, therefore, compares the effects of 10 and 60-day self-administration of cocaine and sucrose on the expression of 17 IEGs in brain regions implicated in addictive behaviour, i.e. dorsal striatum, ventral striatum and medial prefrontal cortex (mPFC). Increased expression after cocaine self-administration was found for 6 IEGs in dorsal and ventral striatum (c-fos, Mkp1, Fosb/ΔFosb, Egr2, Egr4, and Arc) and 10 IEGs in mPFC (same 6 IEGs as in striatum, plus Bdnf, Homer1, Sgk1 and Rgs2). Five of these 10 IEGs (Egr2, Fosb/ΔFosb, Bdnf, Homer1 and Jun) and Trkb in mPFC were responsive to long-term sucrose self-administration. Importantly, no major differences were found between IEG expression patterns after 10 or 60 days of cocaine self-administration, except Fosb/ΔFosb in dorsal striatum and Egr2 in mPFC, whereas the amount of cocaine obtained per session was comparable for short-term and long-term self-administration. These steady changes in IEG expression are, therefore, associated with stable self-administration behaviour rather than the total amount of cocaine consumed. Thus, sustained impulses to IEG regulation during prolonged cocaine self-administration may evoke neuroplastic changes underlying compulsive drug use. © 2015 Society for the Study of Addiction.

  1. Gene expression analysis of early stage endometrial cancersreveals unique transcripts associated with grade and histologybut not depth of invasion

    Directory of Open Access Journals (Sweden)

    John eRisinger

    2013-06-01

    Full Text Available Endometrial cancer is the most common gynecologic malignancy in the United States but it remains poorly understood at the molecular level. This investigation was conducted to specifically assess whether gene expression changes underlie the clinical and pathologic factors traditionally used for determining treatment regimens in women with stage I endometrial cancer. These include the effect of tumor grade, depth of myometrial invasion and histotype. We utilized oligonucleotide microarrays to assess the transcript expression profile in epithelial glandular cells laser microdissected from 79 endometrioid and 12 serous stage I endometrial cancers with a heterogeneous distribution of grade and depth of myometrial invasion, along with 12 normal post-menopausal endometrial samples. Unsupervised multidimensional scaling analyses revealed that serous and endometrioid stage I cancers have similar transcript expression patterns when compared to normal controls where 900 transcripts were identified to be differentially expressed by at least 4-fold (univariate t-test, p <0.001 between the cancers and normal endometrium. This analysis also identified transcript expression differences between serous and endometrioid cancers and tumor grade, but no apparent differences were identified as a function of depth of myometrial invasion. Four genes were validated by quantitative PCR on an independent set of cancer and normal endometrium samples. These findings indicate that unique gene expression profiles are associated with histologic type and grade, but not myometrial invasion among early stage endometrial cancers. These data provide a comprehensive perspective on the molecular alterations associated with stage I endometrial cancer, particularly those subtypes that have the worst prognosis.

  2. The expression of immediate early response gene X-1 in preeclampsia placenta and its pro-apoptotic role in preeclampsia.

    Science.gov (United States)

    Han, Liping; Zhang, Xiaoxue; Geng, Lina; Li, Mengmeng; Zhang, Yi; Wu, Mei X

    2013-05-01

    The stress-inducible immediate early response gene X-1 (IEX-1) regulates cell proliferation and apoptosis in a cell type and stimulus-dependent manner. The aim of this study was to investigate IEX-1 expression in preeclampsia placenta and human umbilical vein endothelial cells (HUVECs) cultured in the serum isolated from preeclampsia patients, to explore its relationship with the pathogenesis of preeclampsia. Thirty preeclampsia patients with 10 cases in the moderate group, 20 cases in the severe group (PE group) and 20 cases of normal pregnant women (control group) were randomly obtained. Reverse transcriptase-polymerase chain reaction and immunohistochemistry showed that IEX-1 expression was significantly higher in preeclampsia patients than in normal pregnant women (p preeclampsia (p preeclampsia group was colored more obviously, and the color was strengthened in correlation with the severity of the disease using immunocytochemial method. Flow cytometry and MTT revealed that the serum isolated from preeclampsia patients appeared to promote IEX-1 expression in cytoplasm of HUVECs, inhibited the proliferation and promoted the apoptosis of HUVECs when compared to the serum of normal pregnant women. Our study demonstrates a correlation of IEX-1 expression levels with the severity of preeclampsia. Given a well-known function of IEX-1 in regulation of apoptosis, IEX-1 may be important in the pathogenesis of preeclampsia by regulating placental villous trophoblast and decidual cell apoptosis as well as participation in endothelial cell injury process.

  3. High intensity interval training favourably affects antioxidant and inflammation mRNA expression in early-stage chronic kidney disease.

    Science.gov (United States)

    Tucker, Patrick S; Briskey, David R; Scanlan, Aaron T; Coombes, Jeff S; Dalbo, Vincent J

    2015-12-01

    Increased levels of oxidative stress and inflammation have been linked to the progression of chronic kidney disease. To reduce oxidative stress and inflammation related to chronic kidney disease, chronic aerobic exercise is often recommended. Data suggests high intensity interval training may be more beneficial than traditional aerobic exercise. However, appraisals of differing modes of exercise, along with explanations of mechanisms responsible for observed effects, are lacking. This study assessed effects of eight weeks of high intensity interval training (85% VO2max), versus low intensity exercise (45-50% VO2max) and sedentary behaviour, in an animal model of early-stage chronic kidney disease. We examined kidney-specific mRNA expression of genes related to endogenous antioxidant enzyme activity (glutathione peroxidase 1; Gpx1, superoxide dismutase 1; Sod1, and catalase; Cat) and inflammation (kidney injury molecule 1; Kim1 and tumour necrosis factor receptor super family 1b; Tnfrsf1b), as well as plasma F2-isoprostanes, a marker of lipid peroxidation. Compared to sedentary behaviour, high intensity interval training resulted in increased mRNA expression of Sod1 (p=0.01) and Cat (pintensity exercise, high intensity interval training resulted in increased mRNA expression of Cat (phigh intensity interval training was superior to sedentary behaviour and low intensity exercise as high intensity interval training beneficially influenced expression of genes related to endogenous antioxidant enzyme activity and inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Streb

    2011-04-01

    Full Text Available Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β in cultured smooth muscle cells (SMC as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.

  5. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.

    Science.gov (United States)

    Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica

    2014-02-10

    In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Constitutive expression of Arabidopsis NPR1 confers enhanced resistance to the early instars of Spodoptera litura in transgenic tobacco.

    Science.gov (United States)

    Meur, Gargi; Budatha, Madhusudhan; Srinivasan, Tantravahi; Rajesh Kumar, Koppolu Raja; Dutta Gupta, Aparna; Kirti, Pulugurtha Bharadwaja

    2008-08-01

    In Arabidopsis, NPR1 (AtNPR1) regulates salicylic acid (SA)-mediated activation of PR genes at the onset of systemic acquired resistance. AtNPR1 also modulates SA-induced suppression of jasmonic acid-responsive gene expression, and npr1 mutants manifest enhanced herbivore resistance. We have raised stable transgenic tobacco lines, expressing AtNPR1 constitutively, which showed elevated expression of PR1 and PR2 genes upon SA treatment. Herbivore bioassays with a generalist polyphagous pest, Spodoptera litura, revealed that the transgenic lines exhibited enhanced resistance compared to the wild-type plants, particularly with respect to younger larval populations. Insect-mediated injury induced several protease inhibitors (PIs), more significantly a 40-kDa serine PI in all the tobacco lines, but the induction was higher in the transgenic plants. We show in this communication that heterologous expression of AtNPR1 provides enhanced resistance to early larval populations of the herbivore, Spodoptera in transgenic tobacco plants.

  7. SuperFly: a comparative database for quantified spatio-temporal gene expression patterns in early dipteran embryos

    Science.gov (United States)

    Cicin-Sain, Damjan; Pulido, Antonio Hermoso; Crombach, Anton; Wotton, Karl R.; Jiménez-Guri, Eva; Taly, Jean-François; Roma, Guglielmo; Jaeger, Johannes

    2015-01-01

    We present SuperFly (http://superfly.crg.eu), a relational database for quantified spatio-temporal expression data of segmentation genes during early development in different species of dipteran insects (flies, midges and mosquitoes). SuperFly has a special focus on emerging non-drosophilid model systems. The database currently includes data of high spatio-temporal resolution for three species: the vinegar fly Drosophila melanogaster, the scuttle fly Megaselia abdita and the moth midge Clogmia albipunctata. At this point, SuperFly covers up to 9 genes and 16 time points per species, with a total of 1823 individual embryos. It provides an intuitive web interface, enabling the user to query and access original embryo images, quantified expression profiles, extracted positions of expression boundaries and integrated datasets, plus metadata and intermediate processing steps. SuperFly is a valuable new resource for the quantitative comparative study of gene expression patterns across dipteran species. Moreover, it provides an interesting test set for systems biologists interested in fitting mathematical gene network models to data. Both of these aspects are essential ingredients for progress toward a more quantitative and mechanistic understanding of developmental evolution. PMID:25404137

  8. PARP1-dependent eviction of the linker histone H1 mediates immediate early gene expression during neuronal activation.

    Science.gov (United States)

    Azad, Gajendra Kumar; Ito, Kenji; Sailaja, Badi Sri; Biran, Alva; Nissim-Rafinia, Malka; Yamada, Yasuhiro; Brown, David T; Takizawa, Takumi; Meshorer, Eran

    2017-12-28

    Neuronal stimulation leads to immediate early gene (IEG) expression through calcium-dependent mechanisms. In recent years, considerable attention has been devoted to the transcriptional responses after neuronal stimulation, but relatively little is known about the changes in chromatin dynamics that follow neuronal activation. Here, we use fluorescence recovery after photobleaching, biochemical fractionations, and chromatin immunoprecipitation to show that KCl-induced depolarization in primary cultured cortical neurons causes a rapid release of the linker histone H1 from chromatin, concomitant with IEG expression. H1 release is repressed by PARP inhibition, PARP1 deletion, a non-PARylatable H1, as well as phosphorylation inhibitions and a nonphosphorylatable H1, leading to hindered IEG expression. Further, H1 is replaced by PARP1 on IEG promoters after neuronal stimulation, and PARP inhibition blocks this reciprocal binding response. Our results demonstrate the relationship between neuronal excitation and chromatin plasticity by identifying the roles of polyadenosine diphosphate ribosylation and phosphorylation of H1 in regulating H1 chromatin eviction and IEG expression in stimulated neurons. © 2018 Azad et al.

  9. Myoepithelial cell-specific expression of stefin A as a suppressor of early breast cancer invasion.

    Science.gov (United States)

    Duivenvoorden, Hendrika M; Rautela, Jai; Edgington-Mitchell, Laura E; Spurling, Alex; Greening, David W; Nowell, Cameron J; Molloy, Timothy J; Robbins, Elizabeth; Brockwell, Natasha K; Lee, Cheok Soon; Chen, Maoshan; Holliday, Anne; Selinger, Cristina I; Hu, Min; Britt, Kara L; Stroud, David A; Bogyo, Matthew; Möller, Andreas; Polyak, Kornelia; Sloane, Bonnie F; O'Toole, Sandra A; Parker, Belinda S

    2017-12-01

    Mammography screening has increased the detection of early pre-invasive breast cancers, termed ductal carcinoma in situ (DCIS), increasing the urgency of identifying molecular regulators of invasion as prognostic markers to predict local relapse. Using the MMTV-PyMT breast cancer model and pharmacological protease inhibitors, we reveal that cysteine cathepsins have important roles in early-stage tumorigenesis. To characterize the cell-specific roles of cathepsins in early invasion, we developed a DCIS-like model, incorporating an immortalized myoepithelial cell line (N1ME) that restrained tumor cell invasion in 3D culture. Using this model, we identified an important myoepithelial-specific function of the cysteine cathepsin inhibitor stefin A in suppressing invasion, whereby targeted stefin A loss in N1ME cells blocked myoepithelial-induced suppression of breast cancer cell invasion. Enhanced invasion observed in 3D cultures with N1ME stefin A-low cells was reliant on cathepsin B activation, as addition of the small molecule inhibitor CA-074 rescued the DCIS-like non-invasive phenotype. Importantly, we confirmed that stefin A was indeed abundant in myoepithelial cells in breast tissue. Use of a 138-patient cohort confirmed that myoepithelial stefin A (cystatin A) is abundant in normal breast ducts and low-grade DCIS but reduced in high-grade DCIS, supporting myoepithelial stefin A as a candidate marker of lower risk of invasive relapse. We have therefore identified myoepithelial cell stefin A as a suppressor of early tumor invasion and a candidate marker to distinguish patients who are at low risk of developing invasive breast cancer, and can therefore be spared further treatment. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. ERK/PP1a/PLB/SERCA2a and JNK pathways are involved in luteolin-mediated protection of rat hearts and cardiomyocytes following ischemia/reperfusion.

    Directory of Open Access Journals (Sweden)

    Xin Wu

    Full Text Available Luteolin has long been used in traditional Chinese medicine for treatment of various diseases. Recent studies have suggested that administration of luteolin yields cardioprotective effects during ischemia/reperfusion (I/R in rats. However, the precise mechanisms of this action remain unclear. The aim of this study is to confirm that luteolin-mediated extracellular signal regulated kinase (ERK1/2 and c-Jun N-terminal kinase (JNK pathways are responsible for their cardioprotective effects during I/R. Wistar rats were divided into the following groups: (i DMSO group (DMSO; (ii I/R group (I/R; (iii luteolin+I/R group (Lut+I/R; (iv ERK1/2 inhibitor PD98059+I/R group (PD+I/R; (v PD98059+luteolin+I/R group (PD+Lut+I/R; and (vi JNK inhibitor SP600125+I/R group (SP+I/R. The following properties were measured: contractile function of isolated heart and cardiomyocytes; infarct size; the release of lactate dehydrogenase (LDH; the percentage of apoptotic cells; the expression levels of Bcl-2 and Bax; and phosphorylation status of ERK1/2, JNK, type 1 protein phosphatase (PP1a, phospholamban (PLB and sarcoplasmic reticulum Ca(2+-ATPase (SERCA2a. Our data showed that pretreatment with luteolin or SP600125 significantly improved the contraction of the isolated heart and cardiomyocytes, reduced infarct size and LDH activity, decreased the rate of apoptosis and increased the Bcl-2/Bax ratio. However, pretreatment with PD98059 alone before I/R had no effect on the above indexes. Further, these consequences of luteolin pretreatment were abrogated by co-administration of PD98059. We also found that pretreatment with PD98059 caused a significant increase in JNK expression, and SP600125 could cause ERK1/2 activation during I/R. In addition, we are the first to demonstrate that luteolin affects PP1a expression, which results in the up-regulation of the PLB, thereby relieving its inhibition of SERCA2a. These results showed that luteolin improves cardiomyocyte contractile

  11. Expression pattern of transglutaminases in the early differentiation stage of erupting rat incisor.

    Science.gov (United States)

    Caccamo, Daniela; Di Mauro, Debora; Condello, Salvatore; Currò, Monica; Cutroneo, Giuseppa; Anastasi, Giuseppe Pio; Ientile, Riccardo; Trimarchi, Fabio

    2009-01-01

    Several studies demonstrated that transglutaminases play a key role in extracellular matrix stabilization needed for cell differentiation. We evaluated transglutaminase expression and activity in the pre-secretory stage of differentiation of the continuously erupting rat incisor. We observed that transglutaminase-mediated incorporation of monodansylcadaverine into protein substrates was specifically located in the apical loop, and along the basement membrane joining mesenchyme and inner dental epithelium in the odontogenic organ. Enzyme activity was associated with mRNAs for transglutaminase 1 and 2. Notably, labelling cells for these isoenzymes were observed in both mesenchymal and epithelial compartments, but not in the basement membrane, in the ameloblast facing pulp anterior region, where ameloblast and odontoblast differentiation begins. These findings demonstrate that transglutaminase 1 and transglutaminase 2 are expressed at a major extent in the pre-secretory stage of regenerating rat incisor, where they probably play complementary roles in cell signalling between mesenchyme and epithelium and extracellular matrix.

  12. The effects of ginsenoside Rb1 on JNK in oxidative injury in cardiomyocytes.

    Science.gov (United States)

    Li, Jing; Shao, Zuo-Hui; Xie, Jing-Tian; Wang, Chong-Zhi; Ramachandran, Srinivasan; Yin, Jun-Jie; Aung, Han; Li, Chang-Qing; Qin, Gina; Vanden Hoek, Terry; Yuan, Chun-Su

    2012-07-01

    Reactive oxygen species (ROS) can induce oxidative injury via iron interactions (i.e. Fenton chemistry and hydroxyl radical formation). Our prior work suggested that American ginseng berry extract and ginsenoside Re were highly cardioprotective against oxidant stress. To extend this study, we evaluated the protective effect of protopanaxadiol-type ginsenoside Rb1 (gRb1) on H(2)O(2)-induced oxidative injury in cardiomyocytes and explored the ROS-mediated intracellular signaling mechanism. Cultured embryonic chick cardiomyocytes (4-5 day) were used. Cell death was assessed by propidium iodide and lactate dehydrogenase release. Pretreatment with gRb1 (0.01, 0.1, or 1 μM) for 2 h and concurrent treatment with H(2)O(2) (0.5 mM) for 2 h resulted in a dose-dependent reduction of cell death, 36.6 ± 2.9% (n = 12, p < 0.05), 30.5 ± 5.1% (n = 12, p < 0.05) and 28.6 ± 3.1% (n = 12, p < 0.01) respectively, compared to H(2)O(2)-exposed cells (48.2 ± 3.3%, n = 12). This cardioprotective effect of gRb1 was associated with attenuated intracellular ROS generation as measured by 6-carboxy-2', 7'-dichlorodihydrofluorescein diacetate, preserved the mitochondrial membrane potential as determined using JC-1. In the ESR study, gRb1 exhibited the scavenging DPPH and hydroxyl radical activities. Furthermore, our data showed the increased JNK phosphorylation (p-JNK) in H(2)O(2)-exposed cells was suppressed by the pretreatment with gRb 1 (1 μM) (p < 0.01). Co-treatment of gRb1 with a specific inhibitor of JNK SP600125 (10 μM) further reduced the p-JNK and enhanced the cell survival after H(2)O(2) exposure. Collectively, our results suggest that gRb1 conferred cardioprotection that was mediated via attenuating ROS and suppressing ROS-induced JNK activation.

  13. Effects of Transcranial Direct Current Stimulation on Expression of Immediate Early Genes (IEG’s)

    Science.gov (United States)

    2015-12-01

    late phase LTP17. Without the expression of zif268 the long term memory consolidation of the individual diminishes, thus demonstrating the role of this...in striatum due to caffeine intake26, and activation in auditory cortex due to auditory cues27. cFos is able to auto- regulate itself, by a negative...working memory performance: combined behavioural and electrophysiological evidence. BMC Neuroscience. (12) 2: 2202- 2212. 2. Martin, D.M., Liu, R

  14. Effect of Early Expressed Human Milk on Insulin-Like Growth Factor 1 and Short-Term Outcomes in Preterm Infants.

    Directory of Open Access Journals (Sweden)

    Francesca Serrao

    Full Text Available Preterm breast milk contains high levels of bioactive components, including insulin-like growth factor 1 (IGF-1, that are reduced by Holder pasteurization. Animal studies have shown that milk-borne IGF-1 is likely absorbed intact in a bioactive form by the intestines. The aim of this study was to assess if early non-pasteurized expressed breast milk nutrition may affect IGF-1 plasma levels in premature infants. We also investigated the possible association between early expressed milk nutrition and short-term outcomes.Fifty-two preterm infants with gestational age < 31 weeks were divided into two groups according to expressed breast milk intake (< or ≥ 50 mL/Kg/day until 32 weeks of postmenstrual age when blood sampling for IGF-1 analysis was performed.In our population, early expressed breast milk does not affect IGF-1 plasma levels (p 0.48. An association was observed between early expressed milk nutrition and a lower incidence of bronchopulmonary dysplasia, sepsis, feeding intolerance, need for parenteral nutrition and length of hospitalization.Contrary to the results in some animal studies, our results did not seem to show that early expressed breast milk can help to maintain postnatal IGF-1 near foetal levels in preterm infants. The observed protective effect of expressed breast milk on short-term outcomes can be the starting point for further study of the effects of non-pasteurized human milk in preterm infants.

  15. Examining continuity of early expressive vocabulary development: the generation R study.

    Science.gov (United States)

    Henrichs, Jens; Rescorla, Leslie; Schenk, Jacqueline J; Schmidt, Henk G; Jaddoe, Vincent W V; Hofman, Albert; Raat, Hein; Verhulst, Frank C; Tiemeier, Henning

    2011-06-01

    The authors investigated continuity and discontinuity of vocabulary skills in a population-based cohort in the Netherlands. Mothers of 3,759 children completed the Dutch version of the MacArthur Short Form Vocabulary Checklist (Zink & Lejaegere, 2003) at 18 months and a Dutch translation of the Language Development Survey (Rescorla, 1989) at 30 months. At both ages, expressive vocabulary delay was defined as vocabulary scores vocabulary development at both ages, 6.2% were "late bloomers," 6.0% had late onset expressive vocabulary delay, and 2.6% had persistent expressive vocabulary delay. Word production and comprehension at 18 months explained 11.5% of the variance in 30-month vocabulary scores, with low birth weight, child age, gender and ethnicity, maternal age and education, and parenting stress explaining an additional 6.2%. Multinomial logistic regression was used to identify biological, demographic, and psychological factors associated with each of the vocabulary delay outcome groups relative to the typically developing group. Although multiple perinatal, demographic, and maternal psychosocial factors significantly predicted vocabulary skills at 30 months, positive predictive value and sensitivity were low. Future studies should address to what extent additional factors, such as brain maturation and genetic influences, can improve the prediction and understanding of continuity and discontinuity of language delay.

  16. Early embryonic gene expression profiling of zebrafish prion protein (Prp2 morphants.

    Directory of Open Access Journals (Sweden)

    Rasoul Nourizadeh-Lillabadi

    Full Text Available BACKGROUND: The Prion protein (PRNP/Prp plays a crucial role in transmissible spongiform encephalopathies (TSEs like Creutzfeldt-Jakob disease (CJD, scrapie and mad cow disease. Notwithstanding the importance in human and animal disease, fundamental aspects of PRNP/Prp function and transmission remains unaccounted for. METHODOLOGY/PRINCIPAL FINDINGS: The zebrafish (Danio rerio genome contains three Prp encoding genes assigned prp1, prp2 and prp3. Currently, the second paralogue is believed to be the most similar to the mammalian PRNP gene in structure and function. Functional studies of the PRNP gene ortholog was addressed by prp2 morpholino (MO knockdown experiments. Investigation of Prp2 depleted embryos revealed high mortality and apoptosis at 24 hours post fertilization (hpf as well as impaired brain and neuronal development. In order to elucidate the underlying mechanisms, a genome-wide transcriptome analysis was carried out in viable 24 hpf morphants. The resulting changes in gene expression profiles revealed 249 differently expressed genes linked to biological processes like cell death, neurogenesis and embryonic development. CONCLUSIONS/SIGNIFICANCE: The current study contributes to the understanding of basic Prp functions and demonstrates that the zebrafish is an excellent model to address the role of Prp in vertebrates. The gene knockdown of prp2 indicates an essential biological function for the zebrafish ortholog with a morphant phenotype that suggests a neurodegenerative action and gene expression effects which are apoptosis related and effects gene networks controlling neurogenesis and embryo development.

  17. Functional interleukin-33 receptors are expressed in early progenitor stages of allergy-related granulocytes.

    Science.gov (United States)

    Tsuzuki, Hirofumi; Arinobu, Yojiro; Miyawaki, Kohta; Takaki, Ayako; Ota, Shun-Ichiro; Ota, Yuri; Mitoma, Hiroki; Akahoshi, Mitsuteru; Mori, Yasuo; Iwasaki, Hiromi; Niiro, Hiroaki; Tsukamoto, Hiroshi; Akashi, Koichi

    2017-01-01

    Interleukin-33 (IL-33) induces T helper type 2 (Th2) cytokine production and eosinophilia independently of acquired immunity, leading to innate immunity-mediated allergic inflammation. Allergy-related innate myeloid cells such as eosinophils, basophils and mast cells express the IL-33 receptor (IL-33R), but it is still unknown how IL-33 regulates allergic inflammation involving these cells and their progenitors. Here, we revealed that the functional IL-33R was expressed on eosinophil progenitors (EoPs), basophil progenitors (BaPs) and mast cell progenitors (MCPs). In the presence of IL-33, these progenitors did not expand, but produced a high amount of Th2 and pro-inflammatory cytokines such as IL-9, IL-13, IL-1β and IL-6. The amount of cytokines produced by these progenitors was greater than that by mature cells. In vivo, IL-33 stimulated the expansion of EoPs, but it was dependent upon the elevated serum IL-5 that is presumably derived from type 2 innate lymphoid cells that express functional IL-33R. These data collectively suggest that EoPs, BaPs and MCPs are not only the sources of allergy-related granulocytes, but can also be sources of allergy-related cytokines in IL-33-induced inflammation. Because such progenitors can differentiate into mature granulocytes at the site of inflammation, they are potential therapeutic targets in IL-33-related allergic diseases. © 2016 John Wiley & Sons Ltd.

  18. Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage.

    Science.gov (United States)

    Breuninger, Magadalene; Requena, Natalia

    2004-08-01

    Arbuscular mycorrhizal symbiosis is induced upon a series of recognition events involving the reorganization of both plant and fungal cellular programs culminating in the formation of appressoria on the epidermal root cells. In this work we monitored for the first time the genetic changes occurring in the fungal partner during early appressorium development. We established an in vitro system of Glomus mosseae and Petroselinum crispum for studying appressorium formation and found that after 120 h first appressoria developed in the root epidermis. We have constructed a fungal subtractive suppressive library enriched in genes up-regulated at this stage. Our aim was to identify early signaling events during plant recognition leading to appressoria formation. The library contains 375 clones with an average size of 500 bp. From these, 200 clones were sequenced and most of them represent gene fragments with no known homologues (63%) and therefore putative new genes specific to the mycorrhiza symbiosis. Reverse-Northern blot and RT-PCR analyses confirmed that ca. 30% of the genes present in the library were up-regulated upon plant induction after 120 h. Among the genes with homologues in other organisms we found several genes common to other plant-microbe interactions including some genes related to Ca2+-dependent signaling. The up-regulation of these genes opens the possibility that Ca2+ plays a role in the early stages of mycorrhiza formation as it has been found in other plant-microbe interactions such as the Rhizobium symbiosis or the Magnaporthe grisea/rice pathogenic interaction.

  19. GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation

    Directory of Open Access Journals (Sweden)

    Kostadinova Radina

    2012-10-01

    Full Text Available Abstract Background After liver injury, the repair process comprises activation and proliferation of hepatic stellate cells (HSCs, which produce extracellular matrix (ECM proteins. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ is highly expressed in these cells, but its function in liver repair remains incompletely understood. This study investigated whether activation of PPARβ/δ with the ligand GW501516 influenced the fibrotic response to injury from chronic carbon tetrachloride (CCl4 treatment in mice. Wild type and PPARβ/δ-null mice were treated with CCl4 alone or CCl4 co-administered with GW501516. To unveil mechanisms underlying the PPARβ/δ-dependent effects, we analyzed the proliferative response of human LX-2 HSCs to GW501516 in the presence or absence of PPARβ/δ. Results We found that GW501516 treatment enhanced the fibrotic response. Compared to the other experimental groups, CCl4/GW501516-treated wild type mice exhibited increased expression of various profibrotic and pro-inflammatory genes, such as those involved in extracellular matrix deposition and macrophage recruitment. Importantly, compared to healthy liver, hepatic fibrotic tissues from alcoholic patients showed increased expression of several PPAR target genes, including phosphoinositide-dependent kinase-1, transforming growth factor beta-1, and monocyte chemoattractant protein-1. GW501516 stimulated HSC proliferation that caused enhanced fibrotic and inflammatory responses, by increasing the phosphorylation of p38 and c-Jun N-terminal kinases through the phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway. Conclusions This study clarified the mechanism underlying GW501516-dependent promotion of hepatic repair by stimulating proliferation of HSCs via the p38 and JNK MAPK pathways.

  20. Local administration of AAV-DJ pseudoserotype expressing COX2 provided early onset of transgene expression and promoted bone fracture healing in mice.

    Science.gov (United States)

    Lakhan, R; Baylink, D J; Lau, K-H W; Tang, X; Sheng, M H-C; Rundle, C H; Qin, X

    2015-09-01

    We have previously obtained compelling proof-of-principle evidence for COX2 gene therapy for fracture repair using integrating retroviral vectors. For this therapy to be suitable for patient uses, a suitable vector with high safety profile must be used. Accordingly, this study sought to evaluate the feasibility of AAV as the vector for this COX2 gene therapy, because AAV raises less safety issues than the retroviral vectors used previously. However, an appropriate AAV serotype is required to provide early increase in and adequate level of COX2 expression that is needed for fracture repair. Herein, we reported that AAV-DJ, an artificial AAV pseudoserotype, is highly effective in delivering COX2 gene to fracture sites in a mouse femoral fracture model. Compared with AAV-2, the use of AAV-DJ led to ~5-fold increase in infectivity in mesenchymal stem cells (MSCs) and provided an earlier and significantly higher level of transgene expression at the fracture site. Injection of this vector at a dose of 7.5 × 10(11) genomic copies led to high COX2 level at the fracture site on day 3 after injections and significantly promoted fracture union at 21 days, as analyzed by radiography and μ-CT. The therapeutic effect appears to involve enhanced osteoblastic differentiation of MSCs and remodeling of callus tissues to laminar bone. This interpretation is supported by the enhanced expression of several key genes participating in the fracture repair process. In conclusion, AAV-DJ is a promising serotype for the AAV-based COX2 gene therapy of fracture repair in humans.

  1. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo

    Science.gov (United States)

    Schulz, Katharine N.; Bondra, Eliana R.; Moshe, Arbel; Villalta, Jacqueline E.; Lieb, Jason D.; Kaplan, Tommy; McKay, Daniel J.; Harrison, Melissa M.

    2015-01-01

    The transition from a specified germ cell to a population of pluripotent cells occurs rapidly following fertilization. During this developmental transition, the zygotic genome is largely transcriptionally quiescent and undergoes significant chromatin remodeling. In Drosophila, the DNA-binding protein Zelda (also known as Vielfaltig) is required for this transition and for transcriptional activation of the zygotic genome. Open chromatin is associated with Zelda-bound loci, as well as more generally with regions of active transcription. Nonetheless, the extent to which Zelda influences chromatin accessibility across the genome is largely unknown. Here we used formaldehyde-assisted isolation of regulatory elements to determine the role of Zelda in regulating regions of open chromatin in the early embryo. We demonstrate that Zelda is essential for hundreds of regions of open chromatin. This Zelda-mediated chromatin accessibility facilitates transcription-factor recruitment and early gene expression. Thus, Zelda possesses some key characteristics of a pioneer factor. Unexpectedly, chromatin at a large subset of Zelda-bound regions remains open even in the absence of Zelda. The GAGA factor-binding motif and embryonic GAGA factor binding are specifically enriched in these regions. We propose that both Zelda and GAGA factor function to specify sites of open chromatin and together facilitate the remodeling of the early embryonic genome. PMID:26335634

  2. The early activation marker CD69 regulates the expression of chemokines and CD4 T cell accumulation in intestine.

    Directory of Open Access Journals (Sweden)

    Katarina Radulovic

    Full Text Available Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4(+ T cells and/or CD4(- cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69(-/- CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69(-/- CD4 T cell accumulation in colonic lamina propria (cLP was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69(-/- mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-II×CD69(-/- CD45RB(high CD4 T cells into RAG(-/- hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis.

  3. Regulation of early signaling and gene expression in the α-particle and bystander response of IMR-90 human fibroblasts

    Directory of Open Access Journals (Sweden)

    Hei Tom K

    2010-07-01

    Full Text Available Abstract Background The existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is well established. To understand early signaling and gene regulation in bystander cells, we used a bio-informatics approach, measuring global gene expression at 30 minutes and signaling pathways between 30 minutes and 4 hours after exposure to α-particles in IMR-90 fibroblasts. Methods We used whole human genome microarrays and real time quantitative PCR to measure and validate gene expression. Microarray analysis was done using BRB-Array Tools; pathway and ontology analyses were done using Ingenuity Pathway Analysis and PANTHER, respectively. We studied signaling in irradiated and bystander cells using immunoblotting and semi-quantitative image analysis. Results Gene ontology suggested signal transduction and transcriptional regulation responding 30 minutes after treatment affected cell structure, motility and adhesion, and interleukin synthesis. We measured time-dependent expression of genes controlled by the NF-κB pathway; matrix metalloproteinases 1 and 3; chemokine ligands 2, 3 and 5 and interleukins 1β, 6 and 33. There was an increased response of this set of genes 30 minutes after treatment and another wave of induction at 4 hours. We investigated AKT-GSK3β signaling and found both AKT and GSK3β are hyper-phosphorylated 30 minutes after irradiation and this effect is maintained through 4 hours. In bystander cells, a similar response was seen with a delay of 30 minutes. We proposed a network model where the observed decrease in phosphorylation of β-catenin protein after GSK3β dependent inactivation can trigger target gene expression at later times after radiation exposure Conclusions These results are the first to show that the radiation induced bystander signal induces a widespread gene expression response at 30 minutes after treatment and these changes are accompanied by modification of

  4. Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes.

    Directory of Open Access Journals (Sweden)

    Stella A G D Salvo

    Full Text Available Embryogenic tissue culture systems are utilized in propagation and genetic engineering of crop plants, but applications are limited by genotype-dependent culture response. To date, few genes necessary for embryogenic callus formation have been identified or characterized. The goal of this research was to enhance our understanding of gene expression during maize embryogenic tissue culture initiation. In this study, we highlight the expression of candidate genes that have been previously regarded in the literature as having important roles in somatic embryogenesis. We utilized RNA based sequencing (RNA-seq to characterize the transcriptome of immature embryo explants of the highly embryogenic and regenerable maize genotype A188 at 0, 24, 36, 48, and 72 hours after placement of explants on tissue culture initiation medium. Genes annotated as functioning in stress response, such as glutathione-S-transferases and germin-like proteins, and genes involved with hormone transport, such as PINFORMED, increased in expression over 8-fold in the study. Maize genes with high sequence similarity to genes previously described in the initiation of embryogenic cultures, such as transcription factors BABY BOOM, LEAFY COTYLEDON, and AGAMOUS, and important receptor-like kinases such as SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASES and CLAVATA, were also expressed in this time course study. By combining results from whole genome transcriptome analysis with an in depth review of key genes that play a role in the onset of embryogenesis, we propose a model of coordinated expression of somatic embryogenesis-related genes, providing an improved understanding of genomic factors involved in the early steps of embryogenic culture initiation in maize and other plant species.

  5. Early growth response 1 and fatty acid synthase expression is altered in tumor adjacent prostate tissue and indicates field cancerization.

    Science.gov (United States)

    Jones, Anna C; Trujillo, Kristina A; Phillips, Genevieve K; Fleet, Trisha M; Murton, Jaclyn K; Severns, Virginia; Shah, Satyan K; Davis, Michael S; Smith, Anthony Y; Griffith, Jeffrey K; Fischer, Edgar G; Bisoffi, Marco

    2012-08-01

    Field cancerization denotes the occurrence of molecular alterations in histologically normal tissues adjacent to tumors. In prostate cancer, identification of field cancerization has several potential clinical applications. However, prostate field cancerization remains ill defined. Our previous work has shown up-regulated mRNA of the transcription factor early growth response 1 (EGR-1) and the lipogenic enzyme fatty acid synthase (FAS) in tissues adjacent to prostate cancer. Immunofluorescence data were analyzed quantitatively by spectral imaging and linear unmixing to determine the protein expression levels of EGR-1 and FAS in human cancerous, histologically normal adjacent, and disease-free prostate tissues. EGR-1 expression was elevated in both structurally intact tumor adjacent (1.6× on average) and in tumor (3.0× on average) tissues compared to disease-free tissues. In addition, the ratio of cytoplasmic versus nuclear EGR-1 expression was elevated in both tumor adjacent and tumor tissues. Similarly, FAS expression was elevated in both tumor adjacent (2.7× on average) and in tumor (2.5× on average) compared to disease-free tissues. EGR-1 and FAS expression is similarly deregulated in tumor and structurally intact adjacent prostate tissues and defines field cancerization. In cases with high suspicion of prostate cancer but negative biopsy, identification of field cancerization could help clinicians target areas for repeat biopsy. Field cancerization at surgical margins on prostatectomy specimen should also be looked at as a predictor of cancer recurrence. EGR-1 and FAS could also serve as molecular targets for chemoprevention. Copyright © 2011 Wiley Periodicals, Inc.

  6. Analysis of GAGE, NY-ESO-1 and SP17 cancer/testis antigen expression in early stage non-small cell lung carcinoma

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Pøhl, Met