WorldWideScience

Sample records for early endosomal compartment

  1. Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hirokazu Tanaka

    2013-05-01

    Full Text Available PIN-FORMED (PIN proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosomal components ARF GEF BEN1 and newly identified Sec1/Munc18 family protein BEN2 are involved in distinct steps of early endosomal trafficking. BEN1 and BEN2 are collectively required for polar PIN localization, for their dynamic repolarization, and consequently for auxin activity gradient formation and auxin-related developmental processes including embryonic patterning, organogenesis, and vasculature venation patterning. These results show that early endosomal trafficking is crucial for cell polarity and auxin-dependent regulation of plant architecture.

  2. IL4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent

    International Nuclear Information System (INIS)

    Wainszelbaum, Marisa J.; Proctor, Brandon M.; Pontow, Suzanne E.; Stahl, Philip D.; Barbieri, M. Alejandro

    2006-01-01

    The endosomal compartment and the plasma membrane form a complex partnership that controls signal transduction and trafficking of different molecules. The specificity and functionality of the early endocytic pathway are regulated by a growing number of Rab GTPases, particularly Rab5. In this study, we demonstrate that IL4 (a Th-2 cytokine) and prostaglandin E 2 (PGE 2 ) synergistically induce Rab5 and several Rab effector proteins, including Rin1 and EEA1, and promote the formation of an enlarged early endocytic (EEE) compartment. Endosome enlargement is linked to a substantial induction of the mannose receptor (MR), a well-characterized macrophage endocytic receptor. Both MR levels and MR-mediated endocytosis are enhanced approximately 7-fold. Fluid-phase endocytosis is also elevated in treated cells. Light microscopy and fractionation studies reveal that MR colocalizes predominantly with Rab5a and partially with Rab11, an endosomal recycling pathway marker. Using retroviral expression of Rab5a:S34N, a dominant negative mutant, and siRNA Rab5a silencing, we demonstrate that Rab5a is essential for the large endosome phenotype and for localization of MR in these structures. We speculate that the EEE is maintained by activated Rab5, and that the EEE phenotype is part of some macrophage developmental program such as cell fusion, a characteristic of IL4-stimulated cells

  3. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi

    Science.gov (United States)

    McKenzie, Jenna E.; Raisley, Brent; Zhou, Xin; Naslavsky, Naava; Taguchi, Tomohiko; Caplan, Steve; Sheff, David

    2012-01-01

    Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and ER. To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes, recycling endosomes, late endosomes and lysosomes. All cargos pass through early endosomes, but may take different routes to the Golgi. Retromer dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-Mannose-6-Phosphate Receptor, which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CD8-Mannose-6-Phosphate Receptor was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the early endosomes, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB. PMID:22540229

  4. ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments.

    Science.gov (United States)

    Wu, Yu; Pons, Valérie; Goudet, Amélie; Panigai, Laetitia; Fischer, Annette; Herweg, Jo-Ana; Kali, Sabrina; Davey, Robert A; Laporte, Jérôme; Bouclier, Céline; Yousfi, Rahima; Aubenque, Céline; Merer, Goulven; Gobbo, Emilie; Lopez, Roman; Gillet, Cynthia; Cojean, Sandrine; Popoff, Michel R; Clayette, Pascal; Le Grand, Roger; Boulogne, Claire; Tordo, Noël; Lemichez, Emmanuel; Loiseau, Philippe M; Rudel, Thomas; Sauvaire, Didier; Cintrat, Jean-Christophe; Gillet, Daniel; Barbier, Julien

    2017-11-14

    Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identified the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efficiently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases.

  5. Promyelocytic leukemia bodies tether to early endosomes during mitosis.

    Science.gov (United States)

    Palibrk, Vuk; Lång, Emma; Lång, Anna; Schink, Kay Oliver; Rowe, Alexander D; Bøe, Stig Ove

    2014-01-01

    During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.

  6. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-03-18

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.

  7. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    2016-03-01

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2 and LBPA (lysobisphosphatidic acid, which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1 and coatomer subunit β (β-COP were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality.

  8. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  9. A Role for EHD4 in the Regulation of Early Endosomal Transport

    Science.gov (United States)

    Sharma, Mahak; Naslavsky, Naava; Caplan, Steve

    2009-01-01

    All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway. PMID:18331452

  10. TLR2 ligands induce NF-κB activation from endosomal compartments of human monocytes.

    Directory of Open Access Journals (Sweden)

    Karim J Brandt

    Full Text Available Localization of Toll-like receptors (TLR in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.

  11. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment

    Directory of Open Access Journals (Sweden)

    Shravan Babu Girada

    2017-10-01

    Conclusions: The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex.

  12. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation.

    Science.gov (United States)

    Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul

    2018-03-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes

  13. The p25 Subunit of the Dynactin Complex is Required for Dynein-Early Endosome Interaction

    Science.gov (United States)

    2011-01-01

    early endosome movement. In filamentous hyphae , dynein powers the minus end–directed movement of early endosomes (Steinberg and Schuster 2011...observed in time-lapse sequences (Video 1; Abenza et al., 2009). In still images, early endosomes were seen to distribute along the hyphae (Fig. 2 A...nuclear distribution along elongated hyphae and also for the microtubule minus end–directed movement of early endosomes away from the tip (Morris

  14. Small Molecules for Early Endosome-Specific Patch Clamping.

    Science.gov (United States)

    Chen, Cheng-Chang; Butz, Elisabeth S; Chao, Yu-Kai; Grishchuk, Yulia; Becker, Lars; Heller, Stefan; Slaugenhaupt, Susan A; Biel, Martin; Wahl-Schott, Christian; Grimm, Christian

    2017-07-20

    To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Acid-sensing ion channel (ASIC) 4 predominantly localizes to an early endosome-related organelle upon heterologous expression.

    Science.gov (United States)

    Schwartz, Verena; Friedrich, Katharina; Polleichtner, Georg; Gründer, Stefan

    2015-12-15

    Acid-sensing ion channels (ASICs) are voltage-independent proton-gated amiloride sensitive sodium channels, belonging to the DEG/ENaC gene family. Six different ASICs have been identified (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, ASIC4) that are activated by a drop in extracellular pH, either as homo- or heteromers. An exception is ASIC4, which is not activated by protons as a homomer and which does not contribute to functional heteromeric ASICs. Insensitivity of ASIC4 to protons and its comparatively low sequence identity to other ASICs (45%) raises the question whether ASIC4 may have different functions than other ASICs. In this study, we therefore investigated the subcellular localization of ASIC4 in heterologous cell lines, which revealed a surprising accumulation of the channel in early endosome-related vacuoles. Moreover, we identified an unique amino-terminal motif as important for forward-trafficking from the ER/Golgi to the early endosome-related compartment. Collectively, our results show that heterologously expressed ASIC4 predominantly resides in an intracellular endosomal compartment.

  16. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    Science.gov (United States)

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  17. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    2016-10-01

    Full Text Available Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs. The VRCs built by Tomato bushy stunt virus (TBSV are enriched with phosphatidylethanolamine (PE through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5-positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment.

  18. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae

    International Nuclear Information System (INIS)

    Tatsumi, Akinori; Shoji, Jun-ya; Kikuma, Takashi; Arioka, Manabu; Kitamoto, Katsuhiko

    2007-01-01

    Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in the wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function

  19. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment.

    Science.gov (United States)

    Girada, Shravan Babu; Kuna, Ramya S; Bele, Shilpak; Zhu, Zhimeng; Chakravarthi, N R; DiMarchi, Richard D; Mitra, Prasenjit

    2017-10-01

    Upon activation, G protein coupled receptors (GPCRs) associate with heterotrimeric G proteins at the plasma membrane to initiate second messenger signaling. Subsequently, the activated receptor experiences desensitization, internalization, and recycling back to the plasma membrane, or it undergoes lysosomal degradation. Recent reports highlight specific cases of persistent cyclic AMP generation by internalized GPCRs, although the functional significance and mechanistic details remain to be defined. Cyclic AMP generation from internalized Glucagon-Like Peptide-1 Receptor (GLP-1R) has previously been reported from our laboratory. This study aimed at deciphering the molecular mechanism by which internalized GLP-R supports sustained cyclic AMP generation upon receptor activation in pancreatic beta cells. We studied the time course of cyclic AMP generation following GLP-1R activation with particular emphasis on defining the location where cyclic AMP is generated. Detection involved a novel GLP-1 conjugate coupled with immunofluorescence using specific endosomal markers. Finally, we employed co-immunoprecipitation as well as immunofluorescence to assess the protein-protein interactions that regulate GLP-1R mediated cyclic AMP generation at endosomes. Our data reveal that prolonged association of G protein α subunit Gαs with activated GLP-1R contributed to sustained cyclic AMP generation at Rab 5 endosomal compartment. The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  20. Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in rab11-positive endosomes

    Czech Academy of Sciences Publication Activity Database

    Liebl, D.; Difato, F.; Horníková, L.; Mannová, P.; Štokrová, Jitka; Forstová, J.

    2006-01-01

    Roč. 80, č. 9 (2006), s. 4610-4622 ISSN 0022-538X R&D Projects: GA ČR(CZ) GA204/03/0593; GA MŠk(CZ) LC545 Institutional research plan: CEZ:AV0Z50520514 Keywords : Polyomavirus internalization and trafficking * Early endosomes * Dependence of infection on endosomal pH Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.341, year: 2006

  1. PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading.

    Science.gov (United States)

    Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J

    2001-09-18

    It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.

  2. COMPARTMENTS

    DEFF Research Database (Denmark)

    Binder, Janos X; Pletscher-Frankild, Sune; Tsafou, Kalliopi

    2014-01-01

    of the localization of a protein, it is thus necessary to consult multiple databases and prediction tools. To address this, we present the COMPARTMENTS resource, which integrates all sources listed above as well as the results of automatic text mining. The resource is automatically kept up to date with source...

  3. Altered neurological function in mice immunized with early endosome antigen 1

    Directory of Open Access Journals (Sweden)

    Fritzler Marvin J

    2004-01-01

    Full Text Available Abstract Background Autoantibodies directed against the 160 kDa endosome protein early endosome antigen 1 (EEA1 are seen in patients with neurological diseases. To determine if antibodies to EEA1 have a neuropathological effect, mice from three major histocompatability haplotype backgrounds (H2q, H2b and H2d were immunized with EEA1 (amino acids 82–1411 that was previously shown to contain the target EEA1 epitopes. The mice were then subjected to five neuro-behavioural tests: grid walking, forelimb strength, open field, reaching and rotarod. Results The immunized SWR/J mice with sustained anti-EEA1 antibodies had significantly reduced forelimb strength than the control non-immune mice of the same strain, and BALB/CJ immune mice demonstrated significantly more forelimb errors on the grid walk test than the control group. Conclusions Antibodies to recombinant EEA1 in mice may mediate neurological deficits that are consistent with clinical features of some humans that spontaneously develop anti-EEA1 autoantibodies.

  4. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494

    Science.gov (United States)

    Verma, Jitender Kumar; Rastogi, Ruchir

    2017-01-01

    Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment. PMID:28650977

  5. On the entry of an emerging arbovirus into host cells: Mayaro virus takes the highway to the cytoplasm through fusion with early endosomes and caveolae-derived vesicles

    Directory of Open Access Journals (Sweden)

    Carlos A.M. Carvalho

    2017-04-01

    Full Text Available Mayaro virus (MAYV is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell.

  6. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    Science.gov (United States)

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  7. Peroxisomes, lipid droplets, and endoplasmic reticulum "hitchhike" on motile early endosomes.

    Science.gov (United States)

    Guimaraes, Sofia C; Schuster, Martin; Bielska, Ewa; Dagdas, Gulay; Kilaru, Sreedhar; Meadows, Ben R A; Schrader, Michael; Steinberg, Gero

    2015-12-07

    Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3- and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell. © 2015 Guimaraes et al.

  8. Membrane Tethering Complexes in the Endosomal System

    OpenAIRE

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is...

  9. Peroxiredoxin-controlled G-CSF signalling at the endoplasmic reticulum-early endosome interface

    NARCIS (Netherlands)

    K.K. Palande (Karishma); O. Roovers (Onno); J. Gits (Judith); C. Verwijmeren (Carola); Y. Iuchi (Yoshihito); J. Fujii (Junichi); B. Neel; R. Karisch (Robert); J. Tavernier; I.P. Touw (Ivo)

    2011-01-01

    textabstractReactive oxygen species (ROS) regulate growth factor receptor signalling at least in part by inhibiting oxidation-sensitive phosphatases. An emerging concept is that ROS act locally to affect signal transduction in different subcellular compartments and that ROS levels are regulated by

  10. The structure and function of presynaptic endosomes

    Energy Technology Data Exchange (ETDEWEB)

    Jähne, Sebastian, E-mail: sebastian.jaehne1@stud.uni-goettingen.de [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); International Max Planck Research School for Neurosciences, 37077 Göttingen (Germany); Rizzoli, Silvio O. [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); Helm, Martin S., E-mail: martin.helm@med.uni-goettingen.de [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); International Max Planck Research School for Molecular Biology, 37077 Göttingen (Germany)

    2015-07-15

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in the sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.

  11. The structure and function of presynaptic endosomes

    International Nuclear Information System (INIS)

    Jähne, Sebastian; Rizzoli, Silvio O.; Helm, Martin S.

    2015-01-01

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in the sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures

  12. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar CellsSummary

    Directory of Open Access Journals (Sweden)

    Scott W. Messenger

    2015-11-01

    Full Text Available Background & Aims: Pancreatic acinar cells have an expanded apical endosomal system, the physiologic and pathophysiologic significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate [PI(3,5P2] is an essential phospholipid generated by phosphatidylinositol 3-phosphate 5-kinase (PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI3P. PI(3,5P2 is necessary for maturation of early endosomes (EE to late endosomes (LE. Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Methods: Inhibition of EE to LE trafficking was achieved using pharmacologic inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1, and trypsinogen activation in response to supramaximal cholecystokinin (CCK-8, bile acids, and cigarette toxin was determined. Results: PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to supramaximal CCK-8, tobacco toxin, and bile salts in both rodent and human acini. Conclusions: These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular

  13. Rabies virus co-localizes with early (Rab5) and late (Rab7) endosomal proteins in neuronal and SH-SY5Y cells.

    Science.gov (United States)

    Ahmad, Waqas; Li, Yingying; Guo, Yidi; Wang, Xinyu; Duan, Ming; Guan, Zhenhong; Liu, Zengshan; Zhang, Maolin

    2017-06-01

    Rabies virus (RABV) is a highly neurotropic virus that follows clathrin-mediated endocytosis and pH-dependent pathway for trafficking and invasion into endothelial cells. Early (Rab5, EEA1) and late (Rab7, LAMP1) endosomal proteins play critical roles in endosomal sorting, maturity and targeting various molecular cargoes, but their precise functions in the early stage of RABV neuronal infection remain elusive. In this study, the relationship between enigmatic entry of RABV with these endosomal proteins into neuronal and SH-SY5Y cells was investigated. Immunofluorescence, TCID 50 titers, electron microscopy and western blotting were carried out to determine the molecular interaction of the nucleoprotein (N) of RABV with early or late endosomal proteins in these cell lines. The expression of N was also determined by down-regulating Rab5 and Rab7 in both cell lines through RNA interference. The results were indicative that N proficiently colocalized with Rab5/EEA1 and Rab7/LAMP1 in both cell lines at 24 and 48 h post-infection, while N titers significantly decreased in early infection of RABV. Down-regulation of Rab5 and Rab7 did not inhibit N expression, but it prevented productive infection via blocking the normal trafficking of RABV in a low pH environment. Ultrathin sections of cells studied by electron microscope also verified the close association of RABV with Rab5 and Rab7 in neurons. From the data it was concluded that primary entry of RABV strongly correlates with the kinetics of Rab-proteins present on early and late vesicles, which provides helpful clues to explain the early events of RABV in nerve cells.

  14. Endocytosis and Endosomal Trafficking in Plants.

    Science.gov (United States)

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  15. Proteolytic processing of epidermal growth factor within endosomes

    International Nuclear Information System (INIS)

    Gorman, R.M.; Savage, C.R. Jr.; Poretz, R.D.; Schaudies, R.P.

    1986-01-01

    The authors have reported previously that EGF enters 3 biochemically distinct non-lysosomal intracellular compartments prior to detection within lysosomes. Earlier studies have demonstrated that EGF is processes by sequential removal of 1, 4 and 1 aminoacyl residues at the C-terminus. The final form, which lacks the 6 residues, accumulates in secondary lysosomes. After subcellular fractionation of fibroblasts exposed to 125 I-EGF, ligand is detected with 3 non-lysosomal endocytic compartments and is fully processed prior to entrance into secondary lysosome. Following internalization, EGF enters an early endosomal compartment (E 1 ). The composition of the ligand (60%, -1 form; 40%, native form) represents an enhancement of the -1 form relative to that on the plasma membrane following the 90 min, 0 0 binding period. The proportion of different EGF forms in E 1 remains constant through the 2 min pulse and chase periods up to 30 min. However, in the ultimate endosomal compartment, E 4 , the proportion of the -6 form increases from 25% at 15 min to greater than 75% in 30 min, with a concomitant decrease of the -1 and -5 forms. Secondary lysosomes contain an EGF composition similar to that found in E 4 at 30 min. Accordingly, it appears that EGF is processed to the -6 form following passage through E 1 and during its tenure in E 4

  16. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  17. Early etiology of Alzheimer's disease: tipping the balance toward autophagy or endosomal dysfunction?

    Science.gov (United States)

    Peric, Aleksandar; Annaert, Wim

    2015-03-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. This brain neuropathology is characterized by a progressive synaptic dysfunction and neuronal loss, which lead to decline in memory and other cognitive functions. Histopathologically, AD manifests via synaptic abnormalities, neuronal degeneration as well as the deposition of extracellular amyloid plaques and intraneuronal neurofibrillary tangles. While the exact pathogenic contribution of these two AD hallmarks and their abundant constituents [aggregation-prone amyloid β (Aβ) peptide species and hyperphosphorylated tau protein, respectively] remain debated, a growing body of evidence suggests that their development may be paralleled or even preceded by the alterations/dysfunctions in the endolysosomal and the autophagic system. In AD-affected neurons, abnormalities in these cellular pathways are readily observed already at early stages of disease development, and even though many studies agree that defective lysosomal degradation may relate to or even underlie some of these deficits, specific upstream molecular defects are still deliberated. In this review we summarize various pathogenic events that may lead to these cellular abnormalities, in light of our current understanding of molecular mechanisms that govern AD progression. In addition, we also highlight the increasing evidence supporting mutual functional dependence of the endolysosomal trafficking and autophagy, in particular focusing on those molecules and processes which may be of significance to AD.

  18. Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking.

    Directory of Open Access Journals (Sweden)

    Komla Sobo

    Full Text Available BACKGROUND: Pathological accumulation of cholesterol in late endosomes is observed in lysosomal storage diseases such as Niemann-Pick type C. We here analyzed the effects of cholesterol accumulation in NPC cells, or as phenocopied by the drug U18666A, on late endosomes membrane organization and dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Cholesterol accumulation did not lead to an increase in the raft to non-raft membrane ratio as anticipated. Strikingly, we observed a 2-3 fold increase in the size of the compartment. Most importantly, properties and dynamics of late endosomal intralumenal vesicles were altered as revealed by reduced late endosomal vacuolation induced by the mutant pore-forming toxin ASSP, reduced intoxication by the anthrax lethal toxin and inhibition of infection by the Vesicular Stomatitis Virus. CONCLUSIONS/SIGNIFICANCE: These results suggest that back fusion of intralumenal vesicles with the limiting membrane of late endosomes is dramatically perturbed upon cholesterol accumulation.

  19. Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network.

    Science.gov (United States)

    Raub, T J; Koroly, M J; Roberts, R M

    1990-04-01

    By using fluorescence and electron microscopy, the endocytic pathway encountered by cell surface components after they had bound wheat germ agglutinin (WGA) was visualized. The majority of these components are thought to consist of sialylated glycoproteins (HMWAG) that represent a subpopulation of the total cell surface proteins but most of the externally disposed plasma membrane proteins of the cell. Examination of semi-thin sections by medium- and high-voltage electron microscopy revealed the three-dimensional organization of vesicular and tubular endosomes. Binding of either fluorescein isothiocyanate-, horseradish peroxidase-, or ferritin-conjugated WGA to cells at 4 degrees C showed that the HMWAG were distributed uniformly over the cell surface. Warming of surface-labeled cells to 37 degrees C resulted in the endocytosis of WGA into peripheral endosomes via invagination of regions of both coated and uncoated membrane. The peripheral endosome appeared as isolated complexes comprising a vesicular element (300-400 nm diam.) surrounded by and continuous with tubular cisternae (45-60 nm diam.), which did not interconnect the endosomes. After 30 min or more label also became localized in a network of anastomosing tubules (45-60 nm diam.) that were located in the centrosomal region of the cell. Endocytosed WGA-HMWAG complexes did not become associated with cisternae of the Golgi apparatus, although tubular and vesicular endosomes were noted in the vicinity of the trans-Golgi region. The accumulation of WGA-HMWAG in the endosomes within the centrosomal region was inhibited when cells were incubated at 18 degrees C. None of these compartments contained acid phosphatase activity, a result that is consistent with other data that the HMWAG do not pass through lysosomes initially. The kinetics of labeling were consistent with the interpretation that recycling of most of the WGA binding surface glycoproteins occurred rapidly from early peripheral endosomes followed by the

  20. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1

    Science.gov (United States)

    Renigunta, Vijay; Fischer, Thomas; Zuzarte, Marylou; Kling, Stefan; Zou, Xinle; Siebert, Kai; Limberg, Maren M.; Rinné, Susanne; Decher, Niels; Schlichthörl, Günter; Daut, Jürgen

    2014-01-01

    The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion. PMID:24743596

  1. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2017-04-01

    The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Heterotrimeric G protein subunits are located on rat liver endosomes

    Directory of Open Access Journals (Sweden)

    Van Dyke Rebecca W

    2004-01-01

    Full Text Available Abstract Background Rat liver endosomes contain activated insulin receptors and downstream signal transduction molecules. We undertook these studies to determine whether endosomes also contain heterotrimeric G proteins that may be involved in signal transduction from G protein-coupled receptors. Results By Western blotting Gsα, Giα1,2, Giα3 and Gβ were enriched in both canalicular (CM and basolateral (BLM membranes but also readily detectable on three types of purified rat liver endosomes in the order recycling receptor compartment (RRC > compartment for uncoupling of receptor and ligand (CURL > multivesicular bodies (MVB >> purified secondary lysosomes. Western blotting with antibodies to Na, K-ATPase and to other proteins associated with plasma membranes and intracellular organelles indicated this was not due to contamination of endosome preparations by CM or BLM. Adenylate cyclase (AC was also identified on purified CM, BLM, RRC, CURL and MVB. Percoll gradient fractionation of liver postnuclear supernatants demonstrated co-occurrence of endosomes and heterotrimeric G protein subunits in fractions with little plasma membrane markers. By confocal microscopy, punctate staining for Gsα, Giα3 and Gβ corresponded to punctate areas of endocytosed Texas red-dextran in hepatocytes from control and cholera toxin-treated livers. Conclusion We conclude that heterotrimeric G protein subunits as well as AC likely traffic into hepatocytes on endosome membranes, possibly generating downstream signals spatially separate from signalling generated at the plasma membrane, analogous to the role(s of internalized insulin receptors.

  3. Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes.

    Directory of Open Access Journals (Sweden)

    Evgeny A Zemskov

    2011-04-01

    Full Text Available Although endosomal compartments have been suggested to play a role in unconventional protein secretion, there is scarce experimental evidence for such involvement. Here we report that recycling endosomes are essential for externalization of cytoplasmic secretory protein tissue transglutaminase (tTG. The de novo synthesized cytoplasmic tTG does not follow the classical ER/Golgi-dependent secretion pathway, but is targeted to perinuclear recycling endosomes, and is delivered inside these vesicles prior to externalization. On its route to the cell surface tTG interacts with internalized β1 integrins inside the recycling endosomes and is secreted as a complex with recycled β1 integrins. Inactivation of recycling endosomes, blocking endosome fusion with the plasma membrane, or downregulation of Rab11 GTPase that controls outbound trafficking of perinuclear recycling endosomes, all abrogate tTG secretion. The initial recruitment of cytoplasmic tTG to recycling endosomes and subsequent externalization depend on its binding to phosphoinositides on endosomal membranes. These findings begin to unravel the unconventional mechanism of tTG secretion which utilizes the long loop of endosomal recycling pathway and indicate involvement of endosomal trafficking in non-classical protein secretion.

  4. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity

    NARCIS (Netherlands)

    van der Kant, Rik; Jonker, Caspar T. H.; Wijdeven, Ruud H.; Bakker, Jeroen; Janssen, Lennert; Klumperman, Judith; Neefjes, Jacques

    2015-01-01

    Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail

  5. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad F Saeed

    2010-09-01

    Full Text Available Zaire ebolavirus (ZEBOV, a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new

  6. Proliferative compensation of residual radiation damage in the compartment of hematopoietic early progenitor cells of the mouse

    International Nuclear Information System (INIS)

    Huebner, G.E.; Wangenheim, K.H. von; Feinendegen, L.E.

    1984-01-01

    The rate of cell entry from the compartment of hematopoietic early progenitor cells into differentiation was determined in sublethally irradiated mice. By use of the criterion of repopulating ability, transplantation of 5-( 125 I) iodo-2'-deoxyuridine labeled bone marrow cells into fatally irradiated syngeneic recipients allows to measure the relative number of early progenitor cells lodging in the spleen and the turnover of these cells in the donors. Following 450 rad the relative number of transplantable early progenitor cells in S-phase recovers to normal within 2 weeks and stabilizes after 5 weeks. At this time, the labeled progenitors turn over with a half-time of 1.4-2.2 days; the respective times for unirradiated mice are 1.5-1.8 days. This, quantitative and qualitative residual radiation damage that is known to exist in the compartment of CFU-S, is disguised within 2-5 weeks after irradiation by proliferative compensation in the entirety of early hemopoietic precursor cells which are here defined by their capacity of selfrenewal and delivery of differentiated cells and of seeding to spleens of lethally irradiated recipients. (orig.)

  7. The subapical compartment : a traffic center in membrane polarity development

    NARCIS (Netherlands)

    Hoekstra, D; Tyteca, D; van IJzendoorn, SCD

    2004-01-01

    Spatially separated apical and basolateral plasma membrane domains that have distinct functions and molecular compositions are a characteristic feature of epithelial cell polarity. The subapical compartment (SAC), also known as the common endosome (CE), where endocytic pathways from both surfaces

  8. Molecular assemblies and membrane domains in multivesicular endosome dynamics

    International Nuclear Information System (INIS)

    Falguieres, Thomas; Luyet, Pierre-Philippe; Gruenberg, Jean

    2009-01-01

    Along the degradation pathway, endosomes exhibit a characteristic multivesicular organization, resulting from the budding of vesicles into the endosomal lumen. After endocytosis and transport to early endosomes, activated signaling receptors are incorporated into these intralumenal vesicles through the action of the ESCRT machinery, a process that contributes to terminate signaling. Then, the vesicles and their protein cargo are further transported towards lysosomes for degradation. Evidence also shows that intralumenal vesicles can undergo 'back-fusion' with the late endosome limiting membrane, a route exploited by some pathogens and presumably followed by proteins and lipids that need to be recycled from within the endosomal lumen. This process depends on the late endosomal lipid lysobisphosphatidic acid and its putative effector Alix/AIP1, and is presumably coupled to the invagination of the endosomal limiting membrane at the molecular level via ESCRT proteins. In this review, we discuss the intra-endosomal transport routes in mammalian cells, and in particular the different mechanisms involved in membrane invagination, vesicle formation and fusion in a space inaccessible to proteins known to control intracellular membrane traffic.

  9. Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity.

    Science.gov (United States)

    van Montfoort, Nadine; Camps, Marcel G; Khan, Selina; Filippov, Dmitri V; Weterings, Jimmy J; Griffith, Janice M; Geuze, Hans J; van Hall, Thorbald; Verbeek, J Sjef; Melief, Cornelis J; Ossendorp, Ferry

    2009-04-21

    Dendritic cells (DCs) are crucial for priming of naive CD8(+) T lymphocytes to exogenous antigens, so-called "cross-priming." We report that exogenous protein antigen can be conserved for several days in mature DCs, coinciding with strong cytotoxic T lymphocyte cross-priming potency in vivo. After MHC class I peptide elution, protein antigen-derived peptide presentation is efficiently restored, indicating the presence of an intracellular antigen depot. We characterized this depot as a lysosome-like organelle, distinct from MHC class II compartments and recently described early endosomal compartments that allow acute antigen presentation in MHC class I. The storage compartments we report here facilitate continuous supply of MHC class I ligands. This mechanism ensures sustained cross-presentation by DCs, despite the short-lived expression of MHC class I-peptide complexes at the cell surface.

  10. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lehigh

    2017-04-01

    Full Text Available Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes.

  11. Charcot-Marie-Tooth disease-linked protein SIMPLE functions with the ESCRT machinery in endosomal trafficking

    OpenAIRE

    Lee, Samuel M.; Chin, Lih-Shen; Li, Lian

    2012-01-01

    Mutations in small integral membrane protein of lysosome/late endosome (SIMPLE) cause autosomal dominant, Charcot-Marie-Tooth disease (CMT) type 1C. The cellular function of SIMPLE is unknown and the pathogenic mechanism of SIMPLE mutations remains elusive. Here, we report that SIMPLE interacted and colocalized with endosomal sorting complex required for transport (ESCRT) components STAM1, Hrs, and TSG101 on early endosomes and functioned with the ESCRT machinery in the control of endosome-to...

  12. Conformational biosensors reveal GPCR signalling from endosomes

    DEFF Research Database (Denmark)

    Irannejad, R; Tomshine, Jin C; Tomshine, Jon R

    2013-01-01

    A long-held tenet of molecular pharmacology is that canonical signal transduction mediated by G-protein-coupled receptor (GPCR) coupling to heterotrimeric G proteins is confined to the plasma membrane. Evidence supporting this traditional view is based on analytical methods that provide limited...... or no subcellular resolution. It has been subsequently proposed that signalling by internalized GPCRs is restricted to G-protein-independent mechanisms such as scaffolding by arrestins, or GPCR activation elicits a discrete form of persistent G protein signalling, or that internalized GPCRs can indeed contribute...... in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application. These findings provide direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membrane...

  13. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin

    Science.gov (United States)

    Chia, Pei Zhi Cheryl; Gasnereau, Isabelle; Lieu, Zi Zhao; Gleeson, Paul A.

    2011-01-01

    The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin–TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail. PMID:21693586

  14. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster.

    Science.gov (United States)

    Sriram, V; Krishnan, K S; Mayor, Satyajit

    2003-05-12

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.

  15. Patellofemoral compartment

    International Nuclear Information System (INIS)

    Brown, T.; Quinn, S.F.; Erickson, S.J.; Cox, I.

    1990-01-01

    This paper evaluates the normal and abnormal patellofemoral compartment with axial MR imaging. Anatomic cryotome sections of the patellofemoral compartment were correlated with the corresponding MR images for identification of ligamentous structures and cartilaginous surfaces. Two hundred fifty-four patients who underwent both arthroscopy and axial MR imaging of the patellofemoral compartment underwent axial MR examinations, which included gradient-echo (TR 23, TE 14, flip angle 30 degrees), T1- weighted (TR 400, TE 20), and proton and T2-weighted (2,500/20/80) sequences. The results from the cryotome-MR correlation show that axial MR images of the patellofemoral compartment accurately depict the major ligamentous and cartilaginous components. The MR arthroscopic correlation showed that all pulse sequences were unreliable in depicting the more superficial changes of chondromalacia and the evaluation on synovial plica

  16. Compartment syndromes

    Science.gov (United States)

    Mubarak, S. J.; Pedowitz, R. A.; Hargens, A. R.

    1989-01-01

    The compartment syndrome is defined as a condition in which high pressure within a closed fascial space (muscle compartment) reduces capillary blood perfusion below the level necessary for tissue viability'. This condition occurs in acute and chronic (exertional) forms, and may be secondary to a variety of causes. The end-result of an extended period of elevated intramuscular pressure may be the development of irreversible tissue injury and Volkmann's contracture. The goal of treatment of the compartment syndrome is the reduction of intracompartmental pressure thus facilitating reperfusion of ischaemic tissue and this goal may be achieved by decompressive fasciotomy. Controversy exists regarding the critical pressure-time thresholds for surgical decompression and the optimal diagnostic methods of measuring intracompartmental pressures. This paper will update and review some current knowledge regarding the pathophysiology, aetiology, diagnosis, and treatment of the acute compartment syndrome.

  17. An Inside Job: How Endosomal Na+/H+ Exchangers Link to Autism and Neurological Disease

    Directory of Open Access Journals (Sweden)

    Kalyan C. Kondapalli

    2014-06-01

    Full Text Available Autism imposes a major impediment to childhood development and a huge emotional and financial burden on society. In recent years, there has been rapidly accumulating genetic evidence that links the eNHE, a subset of Na+/H+ exchangers that localize to intracellular vesicles, to a variety of neurological conditions including autism, attention deficit hyperactivity disorder, intellectual disability and epilepsy. By providing a leak pathway for protons pumped by the V-ATPase, eNHE determine luminal pH and regulate cation (Na+, K+ content in early and recycling endosomal compartments. Loss-of-function mutations in eNHE cause hyperacidification of endosomal lumen, as a result of imbalance in pump and leak pathways. Two isoforms, NHE6 and NHE9 are highly expressed in brain, including hippocampus and cortex. Here, we summarize evidence for the importance of luminal cation content and pH on processing, delivery and fate of cargo and on the surface expression and function of membrane receptors and neurotransmitter transporters, drawing upon insights from model organisms and mammalian cells. These studies lead to cellular models of eNHE activity in pre- and post-synaptic neurons and astrocytes, where they could impact synapse development and plasticity. The study of eNHE has provided new insight on the mechanism of autism and other debilitating neurological disorders and opened up new possibilities for therapeutic intervention.

  18. Internal structure of magnetic endosomes

    Science.gov (United States)

    Rivière, C.; Wilhelm, C.; Cousin, F.; Dupuis, V.; Gazeau, F.; Perzynski, R.

    2007-01-01

    The internal structure of biological vesicles filled with magnetic nanoparticles is investigated using the following complementary analyses: electronic transmission microscopy, dynamic probing by magneto-optical birefringence and structural probing by Small Angle Neutron Scattering (SANS). These magnetic vesicles are magnetic endosomes obtained via a non-specific interaction between cells and anionic magnetic iron oxide nanoparticles. Thanks to a magnetic purification process, they are probed at two different stages of their formation within HeLa cells: (i) adsorption of nanoparticles onto the cellular membrane and (ii) their subsequent internalisation within endosomes. Differences in the microenvironment of the magnetic nanoparticles at those two different stages are highlighted here. The dynamics of magnetic nanoparticles adsorbed onto cellular membranes and confined within endosomes is respectively 3 and 5 orders of magnitude slower than for isolated magnetic nanoparticles in aqueous media. Interestingly, SANS experiments show that magnetic endosomes have an internal structure close to decorated vesicles, with magnetic nanoparticles locally decorating the endosome membrane, inside their inner-sphere. These results, important for future biomedical applications, suggest that multiple fusions of decorated vesicles are the biological processes underlying the endocytosis of that kind of nanometric materials.

  19. Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus

    International Nuclear Information System (INIS)

    Mesa, Rosana; Magadan, Javier; Barbieri, Alejandro; Lopez, Cecilia; Stahl, Philip D.; Mayorga, Luis S.

    2005-01-01

    The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN)

  20. The endosomal recycling of FgSnc1 by FgSnx41-FgSnx4 heterodimer is essential for polarized growth and pathogenicity in Fusarium graminearum.

    Science.gov (United States)

    Zheng, Wenhui; Lin, Yahong; Fang, Wenqin; Zhao, Xu; Lou, Yi; Wang, Guanghui; Zheng, Huawei; Liang, Qifu; Abubakar, Yakubu Saddeeq; Olsson, Stefan; Zhou, Jie; Wang, Zonghua

    2018-04-20

    Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  1. The ESCRT regulator Did2 maintains the balance between long-distance endosomal transport and endocytic trafficking.

    Directory of Open Access Journals (Sweden)

    Carl Haag

    2017-04-01

    Full Text Available In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis. Loss of Did2 results in defective vacuolar targeting, less processive long-distance transport and abnormal shuttling of early endosomes. Importantly, the late endosomal protein Rab7 and vacuolar protease Prc1 exhibit increased shuttling on these aberrant endosomes suggesting defects in endosomal maturation and identity. Consistently, molecular motors fail to attach efficiently explaining the disturbed processive movement. Furthermore, the endosomal mRNP linker protein Upa1 is hardly present on endosomes resulting in defects in long-distance mRNA transport. In conclusion, the ESCRT regulator Did2 coordinates precise maturation of endosomes and thus provides the correct membrane identity for efficient endosomal long-distance transport.

  2. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)

    International Nuclear Information System (INIS)

    Duke, Elizabeth M.H.; Razi, Minoo; Weston, Anne; Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Tooze, Sharon A.; Collinson, Lucy M.

    2014-01-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. - Highlights: • We image whole, unstained mammalian cells using cryo-soft X-ray tomography. • Endosomes are identified using a gold marker for the transferrin receptor. • A new workflow for correlative cryo-fluorescence and cryo-SXT is used to locate early autophagosomes. • Interactions between endosomes, endoplasmic reticulum and forming autophagosomes are mapped in 3D. • Multiple omegasomes are shown to form at ‘hotspots’ on the endoplasmic reticulum

  3. Effect of diphtheria toxin T-domain on endosomal pH

    Directory of Open Access Journals (Sweden)

    A. J. Labyntsev

    2015-08-01

    Full Text Available A key step in the mode of cytotoxic action of diphtheria toxin (DT is the transfer of its catalytic domain (Cd from endosomes into the cytosol. The main activity in this process is performed by the transport domain (Td, but the molecular mechanism of its action remains unknown. We have previously shown that Td can have some influence on the endosomal transport of DT. The aim of this work was to study the effect of diphtheria toxin on the toxin compartmentalization in the intracellular transporting pathway and endosomal pH. We used recombinant fragments of DT, which differed only by the presence of Td in their structure, fused with fluorescent proteins. It was shown that the toxin fragment with Td moved slower by the pathway early-late endosomes-lysosomes, and had a slightly different pattern of colocalization with endosomal markers than DT fragment without Td. In addition, endosomes containing DT fragments with Td had a constant pH of about 6.5 from the 10th to 50th minute of observation, for the same time endosomes containing DT fragments without Td demons­trated a decrease in pH from 6.3 to 5.5. These results indicate that Td inhibits acidification of endosomal medium. One of possible explanations for this may be the effect of the ion channel formed by the T-domain on the process of the endosomal acidification. This property of Td may not only inhibit maturation of endosomes but also inhibit activation of endosomal pH-dependent proteases, and this promotes successful transport of Cd into the cell cytosol.

  4. Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.

    Science.gov (United States)

    Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence

    2018-03-15

    Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of

  5. Study of biological compartments

    International Nuclear Information System (INIS)

    Rocha, A.F.G. da

    1976-01-01

    The several types of biological compartments are studied such as monocompartmental system, one-compartment balanced system irreversible fluxes, two closed compartment system, three compartment systems, catenary systems and mammilary systems [pt

  6. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    Science.gov (United States)

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  7. The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Ravikrishna Ramanujam

    Full Text Available In Magnaporthe oryzae, the causal ascomycete of the devastating rice blast disease, the conidial germ tube tip must sense and respond to a wide array of requisite cues from the host in order to switch from polarized to isotropic growth, ultimately forming the dome-shaped infection cell known as the appressorium. Although the role for G-protein mediated Cyclic AMP signaling in appressorium formation was first identified almost two decades ago, little is known about the spatio-temporal dynamics of the cascade and how the signal is transmitted through the intracellular network during cell growth and morphogenesis. In this study, we demonstrate that the late endosomal compartments, comprising of a PI3P-rich (Phosphatidylinositol 3-phosphate highly dynamic tubulo-vesicular network, scaffold active MagA/GαS, Rgs1 (a GAP for MagA, Adenylate cyclase and Pth11 (a non-canonical GPCR in the likely absence of AKAP-like anchors during early pathogenic development in M. oryzae. Loss of HOPS component Vps39 and consequently the late endosomal function caused a disruption of adenylate cyclase localization, cAMP signaling and appressorium formation. Remarkably, exogenous cAMP rescued the appressorium formation defects associated with VPS39 deletion in M. oryzae. We propose that sequestration of key G-protein signaling components on dynamic late endosomes and/or endolysosomes, provides an effective molecular means to compartmentalize and control the spatio-temporal activation and rapid downregulation (likely via vacuolar degradation of cAMP signaling amidst changing cellular geometry during pathogenic development in M. oryzae.

  8. Stochastic acidification, activation of hemagglutinin and escape of influenza viruses from an endosome

    Science.gov (United States)

    Lagache, Thibault; Sieben, Christian; Meyer, Tim; Herrmann, Andreas; Holcman, David

    2017-06-01

    Influenza viruses enter the cell inside an endosome. During the endosomal journey, acidification triggers a conformational change of the virus spike protein hemagglutinin (HA) that results in escape of the viral genome from the endosome into the cytoplasm. It is still unclear how the interplay between acidification and HA conformation changes affects the kinetics of the viral endosomal escape. We develop here a stochastic model to estimate the change of conformation of HAs inside the endosome nanodomain. Using a Markov process, we model the arrival of protons to HA binding sites and compute the kinetics of their accumulation. We compute the Mean First Passage Time (MFPT) of the number of HA bound sites to a threshold, which is used to estimate the HA activation rate for a given pH concentration. The present analysis reveals that HA proton binding sites possess a high chemical barrier, ensuring a stability of the spike protein at sub-acidic pH. We predict that activating more than 3 adjacent HAs is necessary to trigger endosomal fusion and this configuration prevents premature release of viruses from early endosomes

  9. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production

    Science.gov (United States)

    Toh, Wei Hong; Chia, Pei Zhi Cheryl; Hossain, Mohammed Iqbal; Gleeson, Paul A.

    2018-01-01

    The diversion of the membrane-bound β-site amyloid precursor protein–(APP) cleaving enzyme (BACE1) from the endolysosomal pathway to recycling endosomes represents an important transport step in the regulation of amyloid beta (Aβ) production. However, the mechanisms that regulate endosome sorting of BACE1 are poorly understood. Here we assessed the transport of BACE1 from early to recycling endosomes and have identified essential roles for the sorting nexin 4 (SNX4)-mediated, signal-independent pathway and for a novel signal-mediated pathway. The signal-mediated pathway is regulated by the phosphorylation of the DXXLL-motif sequence DISLL in the cytoplasmic tail of BACE1. The phosphomimetic S498D BACE1 mutant was trafficked to recycling endosomes at a faster rate compared with wild-type BACE1 or the nonphosphorylatable S498A mutant. The rapid transit of BACE1 S498D from early endosomes was coupled with reduced levels of amyloid precursor protein processing and Aβ production, compared with the S498A mutant. We show that the adaptor, GGA1, and retromer are essential to mediate rapid trafficking of phosphorylated BACE1 to recycling endosomes. In addition, the BACE1 DISLL motif is phosphorylated and regulates endosomal trafficking, in primary neurons. Therefore, post-translational phosphorylation of DISLL enhances the exit of BACE1 from early endosomes, a pathway mediated by GGA1 and retromer, which is important in regulating Aβ production. PMID:29142073

  10. pH dependence of the interaction between immunogenic peptides and MHC class II molecules. Evidence for an acidic intracellular compartment being the organelle of interaction

    DEFF Research Database (Denmark)

    Mouritsen, S; Buus, Anette Stryhn; Petersen, B L

    1992-01-01

    and most notably in the endosome-lysosome compartment in which Ag processing is thought to occur. Thus, Ag processing and interaction with MHC class II molecules can potentially happen in the very same compartment. This yet undefined acidic compartment would have to contain proteolytic enzymes and MHC...

  11. Multivariate profiling of neurodegeneration-associated changes in a subcellular compartment of neurons via image processing

    Directory of Open Access Journals (Sweden)

    Kumarasamy Saravana K

    2008-11-01

    Full Text Available Abstract Background Dysfunction in the endolysosome, a late endosomal to lysosomal degradative intracellular compartment, is an early hallmark of some neurodegenerative diseases, in particular Alzheimer's disease. However, the subtle morphological changes in compartments of affected neurons are difficult to quantify quickly and reliably, making this phenotype inaccessible as either an early diagnostic marker, or as a read-out for drug screening. Methods We present a method for automatic detection of fluorescently labeled endolysosomes in degenerative neurons in situ. The Drosophila blue cheese (bchs mutant was taken as a genetic neurodegenerative model for direct in situ visualization and quantification of endolysosomal compartments in affected neurons. Endolysosomal compartments were first detected automatically from 2-D image sections using a combination of point-wise multi-scale correlation and normalized correlation operations. This detection algorithm performed well at recognizing fluorescent endolysosomes, unlike conventional convolution methods, which are confounded by variable intensity levels and background noise. Morphological feature differences between endolysosomes from wild type vs. degenerative neurons were then quantified by multivariate profiling and support vector machine (SVM classification based on compartment density, size and contrast distribution. Finally, we ranked these distributions according to their profiling accuracy, based on the backward elimination method. Results This analysis revealed a statistically significant difference between the neurodegenerative phenotype and the wild type up to a 99.9% confidence interval. Differences between the wild type and phenotypes resulting from overexpression of the Bchs protein are detectable by contrast variations, whereas both size and contrast variations distinguish the wild type from either of the loss of function alleles bchs1 or bchs58. In contrast, the density measurement

  12. A fluorescence resonance energy transfer-based approach for investigating late endosome-lysosome retrograde fusion events.

    Science.gov (United States)

    Kaufmann, A M; Goldman, S D B; Krise, J P

    2009-03-01

    Traditionally, lysosomes have been considered to be a terminal endocytic compartment. Recent studies suggest that lysosomes are quite dynamic, being able to fuse with other late endocytic compartments as well as with the plasma membrane. Here we describe a quantitative fluorescence energy transfer (FRET)-based method for assessing rates of retrograde fusion between terminal lysosomes and late endosomes in living cells. Late endosomes were specifically labeled with 800-nm latex beads that were conjugated with streptavidin and Alexa Fluor 555 (FRET donor). Terminal lysosomes were specifically labeled with 10,000-MW dextran polymers conjugated with biotin and Alexa Fluor 647 (FRET acceptor). Following late endosome-lysosome fusion, the strong binding affinity between streptavidin and biotin brought the donor and acceptor fluorophore molecules into close proximity, thereby facilitating the appearance of a FRET emission signal. Because apparent size restrictions in the endocytic pathway do not permit endocytosed latex beads from reaching terminal lysosomes in an anterograde fashion, the appearance of the FRET signal is consistent with retrograde transport of lysosomal cargo back to late endosomes. We assessed the efficiency of this transport step in fibroblasts affected by different lysosome storage disorders-Niemann-Pick type C, mucolipidosis type IV, and Sandhoff's disease, all of which have a similar lysosomal lipid accumulation phenotype. We report here, for the first time, that these disorders can be distinguished by their rate of transfer of lysosome cargos to late endosomes, and we discuss the implications of these findings for developing new therapeutic strategies.

  13. The Processed Amino-Terminal Fragment of Human TLR7 Acts as a Chaperone To Direct Human TLR7 into Endosomes

    Science.gov (United States)

    Shepherd, Dawn; Booth, Sarah; Waithe, Dominic; Reis e Sousa, Caetano

    2015-01-01

    TLR7 mediates innate immune responses to viral RNA in endocytic compartments. Mouse and human (h)TLR7 undergo proteolytic cleavage, resulting in the generation of a C-terminal fragment that accumulates in endosomes and associates with the signaling adaptor MyD88 upon receptor triggering by TLR7 agonists. Although mouse TLR7 is cleaved in endosomes by acidic proteases, hTLR7 processing can occur at neutral pH throughout the secretory pathway through the activity of furin-like proprotein convertases. However, the mechanisms by which cleaved hTLR7 reaches the endosomal compartment remain unclear. In this study, we demonstrate that, after hTLR7 proteolytic processing, the liberated amino (N)-terminal fragment remains bound to the C terminus through disulfide bonds and provides key trafficking information that ensures correct delivery of the complex to endosomal compartments. In the absence of the N-terminal fragment, the C-terminal fragment is redirected to the cell surface, where it is functionally inactive. Our data reveal a novel role for the N terminus of hTLR7 as a molecular chaperone that provides processed hTLR7 with the correct targeting instructions to reach the endosomal compartment, hence ensuring its biological activity and preventing inadvertent cell surface responses to self-RNA. PMID:25917086

  14. Pannexin2 oligomers localize into endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Daniela eBoassa

    2015-02-01

    Full Text Available Pannexin2 (Panx2 is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS have been documented. Whereas Pannexin1 (Panx1 is fairly ubiquitous and Pannexin3 (Panx3 is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa and HEK293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the

  15. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.

    Directory of Open Access Journals (Sweden)

    Sofie Ignoul

    Full Text Available BACKGROUND: The mammalian CLC protein family comprises nine members (ClC-1 to -7 and ClC-Ka, -Kb that function either as plasma membrane chloride channels or as intracellular chloride/proton antiporters, and that sustain a broad spectrum of cellular processes, such as membrane excitability, transepithelial transport, endocytosis and lysosomal degradation. In this study we focus on human ClC-6, which is structurally most related to the late endosomal/lysomal ClC-7. PRINCIPAL FINDINGS: Using a polyclonal affinity-purified antibody directed against a unique epitope in the ClC-6 COOH-terminal tail, we show that human ClC-6, when transfected in COS-1 cells, is N-glycosylated in a region that is evolutionary poorly conserved between mammalian CLC proteins and that is located between the predicted helices K and M. Three asparagine residues (N410, N422 and N432 have been defined by mutagenesis as acceptor sites for N-glycosylation, but only two of the three sites seem to be simultaneously N-glycosylated. In a differentiated human neuroblastoma cell line (SH-SY5Y, endogenous ClC-6 colocalizes with LAMP-1, a late endosomal/lysosomal marker, but not with early/recycling endosomal markers such as EEA-1 and transferrin receptor. In contrast, when transiently expressed in COS-1 or HeLa cells, human ClC-6 mainly overlaps with markers for early/recycling endosomes (transferrin receptor, EEA-1, Rab5, Rab4 and not with late endosomal/lysosomal markers (LAMP-1, Rab7. Analogously, overexpression of human ClC-6 in SH-SY5Y cells also leads to an early/recycling endosomal localization of the exogenously expressed ClC-6 protein. Finally, in transiently transfected COS-1 cells, ClC-6 copurifies with detergent-resistant membrane fractions, suggesting its partitioning in lipid rafts. Mutating a juxtamembrane string of basic amino acids (amino acids 71-75: KKGRR disturbs the association with detergent-resistant membrane fractions and also affects the segregation of ClC-6

  16. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes

    Science.gov (United States)

    Liu, Ou; Grant, Barth D.

    2015-01-01

    The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. PMID:26393361

  17. Forearm Compartment Syndrome: Evaluation and Management.

    Science.gov (United States)

    Kistler, Justin M; Ilyas, Asif M; Thoder, Joseph J

    2018-02-01

    Compartment syndrome of the forearm is uncommon but can have devastating consequences. Compartment syndrome is a result of osseofascial swelling leading to decreased tissue perfusion and tissue necrosis. There are numerous causes of forearm compartment syndrome and high clinical suspicion must be maintained to avoid permanent disability. The most widely recognized symptoms include pain out of proportion and pain with passive stretch of the wrist and digits. Early diagnosis and decompressive fasciotomy are essential in the treatment of forearm compartment syndrome. Closure of fasciotomy wounds can often be accomplished by primary closure but many patients require additional forms of soft tissue coverage procedures. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Yersinia pestis Targets the Host Endosome Recycling Pathway during the Biogenesis of the Yersinia-Containing Vacuole To Avoid Killing by Macrophages

    Science.gov (United States)

    Connor, Michael G.; Pulsifer, Amanda R.; Ceresa, Brian K.

    2018-01-01

    ABSTRACT Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. PMID:29463656

  19. Recycling Endosomes and Viral Infection.

    Science.gov (United States)

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-03-08

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral-host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.

  20. Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds

    Directory of Open Access Journals (Sweden)

    Helena Borland

    2017-01-01

    Full Text Available A mechanistic link between neuron-to-neuron transmission of secreted amyloid and propagation of protein malconformation cytopathology and disease has recently been uncovered in animal models. An enormous interest in the unconventional secretion of amyloids from neurons has followed. Amphisomes and late endosomes are the penultimate maturation products of the autophagosomal and endosomal pathways, respectively, and normally fuse with lysosomes for degradation. However, under conditions of perturbed membrane trafficking and/or lysosomal deficiency, prelysosomal compartments may instead fuse with the plasma membrane to release any contained amyloid. After a brief introduction to the endosomal and autophagosomal pathways, we discuss the evidence for autophagosomal secretion (exophagy of amyloids, with a comparative emphasis on Aβ1–42 and α-synuclein, as luminal and cytosolic amyloids, respectively. The ESCRT-mediated import of cytosolic amyloid into late endosomal exosomes, a known vehicle of transmission of macromolecules between cells, is also reviewed. Finally, mechanisms of lysosomal dysfunction, deficiency, and exocytosis are exemplified in the context of genetically identified risk factors, mainly for Parkinson’s disease. Exocytosis of prelysosomal or lysosomal organelles is a last resort for clearance of cytotoxic material and alleviates cytopathy. However, they also represent a vehicle for the concentration, posttranslational modification, and secretion of amyloid seeds.

  1. Porphyromonas gingivalis Outer Membrane Vesicles Enter Human Epithelial Cells via an Endocytic Pathway and Are Sorted to Lysosomal Compartments

    Science.gov (United States)

    Furuta, Nobumichi; Tsuda, Kayoko; Omori, Hiroko; Yoshimori, Tamotsu; Yoshimura, Fuminobu; Amano, Atsuo

    2009-01-01

    Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis. PMID:19651865

  2. ACUTE COMPARTMENT SYNDROME

    African Journals Online (AJOL)

    muscle destruction, muscle fibrosis, contractures and permanent disability and at worst case scenario of amputation (3,4). As reported by Frink et al (3) on their study on acute compartment syndrome it can occur even when there is no fracture. Also general surgeons have reported acute compartment syndrome.

  3. Neurotrophin signaling endosomes; biogenesis, regulation, and functions

    Science.gov (United States)

    Yamashita, Naoya; Kuruvilla, Rejji

    2016-01-01

    In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126

  4. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    Directory of Open Access Journals (Sweden)

    Miranda Arnold

    2016-09-01

    Full Text Available AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3 and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1. Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD and schizophrenia (SZ; yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines, and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse orthologue of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function.

  5. Abdominal Compartment Syndrome

    Directory of Open Access Journals (Sweden)

    Pınar Zeyneloğlu

    2015-04-01

    Full Text Available Intraabdominal hypertension and Abdominal compartment syndrome are causes of morbidity and mortality in critical care patients. Timely diagnosis and treatment may improve organ functions. Intra-abdominal pressure monitoring is vital during evaluation of the patients and in the management algorithms. The incidence, definition and risk factors, clinical presentation, diagnosis and management of intraabdominal hypertension and Abdominal compartment syndrome were reviewed here.

  6. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane.

    Science.gov (United States)

    Boassa, Daniela; Nguyen, Phuong; Hu, Junru; Ellisman, Mark H; Sosinsky, Gina E

    2014-01-01

    Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.

  7. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments.

    Science.gov (United States)

    Maltese, William A; Overmeyer, Jean H

    2014-06-01

    Apoptosis is the most widely recognized form of physiological programmed cell death. During the past three decades, various nonapoptotic forms of cell death have gained increasing attention, largely because of their potential importance in pathological processes, toxicology, and cancer therapy. A recent addition to the panoply of cell death phenotypes is methuosis. The neologism is derived from the Greek methuo (to drink to intoxication) because the hallmark of this form of cell death is displacement of the cytoplasm by large fluid-filled vacuoles derived from macropinosomes. The demise of the cell resembles many forms of necrosis, insofar as there is a loss of metabolic capacity and plasma membrane integrity, without the cell shrinkage and nuclear fragmentation associated with apoptosis. Methuosis was initially defined in glioblastoma cells after ectopic expression of activated Ras, but recent reports have described small molecules that can induce the features of methuosis in a broad spectrum of cancer cells, including those that are resistant to conventional apoptosis-inducing drugs. This review summarizes the available information about the distinguishing morphological characteristics and underlying mechanisms of methuosis. We compare and contrast methuosis with other cytopathological conditions in which accumulation of clear cytoplasmic vacuoles is a prominent feature. Finally, we highlight key questions that need to be answered to determine whether methuosis truly represents a unique form of regulated cell death. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Methuosis: Nonapoptotic Cell Death Associated with Vacuolization of Macropinosome and Endosome Compartments

    OpenAIRE

    Maltese, William A.; Overmeyer, Jean H.

    2014-01-01

    Apoptosis is the most widely recognized form of physiological programmed cell death. During the past three decades, various nonapoptotic forms of cell death have gained increasing attention, largely because of their potential importance in pathological processes, toxicology, and cancer therapy. A recent addition to the panoply of cell death phenotypes is methuosis. The neologism is derived from the Greek methuo (to drink to intoxication) because the hallmark of this form of cell death is disp...

  9. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8(+) T cells.

    Science.gov (United States)

    Zehner, Matthias; Marschall, Andrea L; Bos, Erik; Schloetel, Jan-Gero; Kreer, Christoph; Fehrenschild, Dagmar; Limmer, Andreas; Ossendorp, Ferry; Lang, Thorsten; Koster, Abraham J; Dübel, Stefan; Burgdorf, Sven

    2015-05-19

    The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection.

    Directory of Open Access Journals (Sweden)

    Andreea Popa

    2015-02-01

    Full Text Available Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.

  11. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array

    NARCIS (Netherlands)

    Schuster, M.; Kilaru, S.; Fink, G.; Collemare, J.A.R.; Roger, Y.; Steinberg, G.

    2011-01-01

    The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to

  12. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    NARCIS (Netherlands)

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; De Sluis, Bart van; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex

  13. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    Directory of Open Access Journals (Sweden)

    Marta Esteves da Silva

    2015-11-01

    Full Text Available Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C or myosin (MyosinV/VI motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.

  14. Adiponectin release and insulin receptor targeting share trans-Golgi-dependent endosomal trafficking routes

    Directory of Open Access Journals (Sweden)

    Maria Rödiger

    2018-02-01

    Full Text Available Objective: Intracellular vesicle trafficking maintains cellular structures and functions. The assembly of cargo-laden vesicles at the trans-Golgi network is initiated by the ARF family of small GTPases. Here, we demonstrate the role of the trans-Golgi localized monomeric GTPase ARFRP1 in endosomal-mediated vesicle trafficking of mature adipocytes. Methods: Control (Arfrp1flox/flox and inducible fat-specific Arfrp1 knockout (Arfrp1iAT−/− mice were metabolically characterized. In vitro experiments on mature 3T3-L1 cells and primary mouse adipocytes were conducted to validate the impact of ARFRP1 on localization of adiponectin and the insulin receptor. Finally, secretion and transferrin-based uptake and recycling assays were performed with HeLa and HeLa M-C1 cells. Results: We identified the ARFRP1-based sorting machinery to be involved in vesicle trafficking relying on the endosomal compartment for cell surface delivery. Secretion of adiponectin from fat depots was selectively reduced in Arfrp1iAT−/− mice, and Arfrp1-depleted 3T3-L1 adipocytes revealed an accumulation of adiponectin in Rab11-positive endosomes. Plasma adiponectin deficiency of Arfrp1iAT−/− mice resulted in deteriorated hepatic insulin sensitivity, increased gluconeogenesis and elevated fasting blood glucose levels. Additionally, the insulin receptor, undergoing endocytic recycling after ligand binding, was less abundant at the plasma membrane of adipocytes lacking Arfrp1. This had detrimental effects on adipose insulin signaling, followed by insufficient suppression of basal lipolytic activity and impaired adipose tissue expansion. Conclusions: Our findings suggest that adiponectin secretion and insulin receptor surface targeting utilize the same post-Golgi trafficking pathways that are essential for an appropriate systemic insulin sensitivity and glucose homeostasis. Keywords: Adiponectin, ARFRP1, Exocytosis, Insulin receptor, trans-Golgi

  15. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes*

    Science.gov (United States)

    Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2016-01-01

    NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. PMID:26987901

  16. Compartment syndrome without pain!

    LENUS (Irish Health Repository)

    O'Sullivan, M J

    2012-02-03

    We report the case of a young male patient who underwent intra-medullary nailing for a closed, displaced mid-shaft fracture of tibia and fibula. He was commenced on patient controlled analgesia post-operatively. A diagnosis of compartment syndrome in the patient\\'s leg was delayed because he did not exhibit a pain response. This ultimately resulted in a below-knee amputation of the patient\\'s leg. We caution against the use of patient controlled analgesia in any traumatised limb distal to the hip or the shoulder.

  17. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin

    Science.gov (United States)

    Lesteberg, Kelsey E.; Orange, Jordan S.; Makedonas, George

    2018-01-01

    Background Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein we aimed to determine how new perforin transits to the synapse if not via lytic granules. Results We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. Conclusions The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response. PMID:28822075

  18. Modeling of compartment fire

    International Nuclear Information System (INIS)

    Sathiah, P.; Siccama, A.; Visser, D.; Komen, E.

    2011-01-01

    Fire accident in a containment is a serious threat to nuclear reactors. Fire can cause substantial loss to life and property. The risk posed by fire can also exceed the risk from internal events within a nuclear reactor. Numerous research efforts have been performed to understand and analyze the phenomenon of fire in nuclear reactor and its consequences. Modeling of fire is an important subject in the field of fire safety engineering. Two approaches which are commonly used in fire modeling are zonal modeling and field modeling. The objective of this work is to compare zonal and field modeling approach against a pool fired experiment performed in a well-confined compartment. Numerical simulations were performed against experiments, which were conducted within PRISME program under the framework of OECD. In these experiments, effects of ventilation flow rate on heat release rate in a confined and mechanically ventilated compartment is investigated. Time dependent changes in gas temperature and oxygen mass fraction were measured. The trends obtained by numerical simulation performed using zonal model and field model compares well with experiments. Further validation is needed before this code can be used for fire safety analyses. (author)

  19. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  1. Herpes simplex virus replication compartments can form by coalescence of smaller compartments

    International Nuclear Information System (INIS)

    Taylor, Travis J; McNamee, Elizabeth E.; Day, Cheryl; Knipe, David M.

    2003-01-01

    Herpes simplex virus (HSV) uses intranuclear compartmentalization to concentrate the viral and cellular factors required for the progression of the viral life cycle. Processes as varied as viral DNA replication, late gene expression, and capsid assembly take place within discrete structures within the nucleus called replication compartments. Replication compartments are hypothesized to mature from a few distinct structures, called prereplicative sites, that form adjacent to cellular nuclear matrix-associated ND10 sites. During productive infection, the HSV single-stranded DNA-binding protein ICP8 localizes to replication compartments. To further the understanding of replication compartment maturation, we have constructed and characterized a recombinant HSV-1 strain that expresses an ICP8 molecule with green fluorescent protein (GFP) fused to its C terminus. In transfected Vero cells that were infected with HSV, the ICP8-GFP protein localized to prereplicative sites in the presence of the viral DNA synthesis inhibitor phosphonoacetic acid (PAA) or to replication compartments in the absence of PAA. A recombinant HSV-1 strain expressing the ICP8-GFP virus replicated in Vero cells, but the yield was increased by 150-fold in an ICP8-complementing cell line. Using the ICP8-GFP protein as a marker for replication compartments, we show here that these structures start as punctate structures early in infection and grow into large, globular structures that eventually fill the nucleus. Large replication compartments were formed by small structures that either moved through the nucleus to merge with adjacent compartments or remained relatively stationary within the nucleus and grew by accretion and fused with neighboring structures

  2. Kidney compartment model

    International Nuclear Information System (INIS)

    Gullberg, G.T.

    1976-09-01

    A multiparameter kidney compartment model which quantitates the amount of iodohippurate concentration as a function of time in the blood, tissue, kidneys and bladder is developed from a system of differential equations which represent first order kinetics. The kinetic data are obtained using a gamma camera and an HP5407 computer system which allows one to delineate areas of interest for the blood and tissue, kidneys, and bladder thus separating the data into four data sets. The estimated tubular transit times have a high ratio of the signal to the variance whereas the estimates of the amount of iodohippurate in the blood, tissue and kidneys have a low ratio of the signal to the variance. Application of this model to patient data requires better statistics than available with conventional 131 I-hippurate doses; thus a true test of the efficacy awaits availability of 123 I-hippurate

  3. Compartment-Specific Biosensors Reveal a Complementary Subcellular Distribution of Bioactive Furin and PC7

    Directory of Open Access Journals (Sweden)

    Pierpaolo Ginefra

    2018-02-01

    Full Text Available Furin trafficking, and that of related proprotein convertases (PCs, may regulate which substrates are accessible for endoproteolysis, but tools to directly test this hypothesis have been lacking. Here, we develop targeted biosensors that indicate Furin activity in endosomes is 10-fold less inhibited by decanoyl-RVKR-chloromethylketone and enriched >3-fold in endosomes compared to the trans-Golgi network (TGN. Endogenous PC7, which resists this inhibitor, was active in distinct vesicles. Only overexpressed PC7 activity reached the cell surface, endosomes, and the TGN. A PLC motif in the cytosolic tail of PC7 was dispensable for endosomal activity, but it was specifically required for TGN recycling and to rescue proActivin-A cleavage in Furin-depleted B16F1 melanoma cells. In sharp contrast, PC7 complemented Furin in cleaving Notch1 independently of PLC-mediated TGN access. Our study provides a proof in principle that compartment-specific biosensors can be used to gain insight into the regulation of PC trafficking and to map the tropism of PC-specific inhibitors.

  4. Arf6-Dependent Intracellular Trafficking of Pasteurella multocida Toxin and pH-Dependent Translocation from Late Endosomes

    Directory of Open Access Journals (Sweden)

    Tracy P. M. Chong

    2011-03-01

    Full Text Available The potent mitogenic toxin from Pasteurella multocida (PMT is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH4Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn and cholera toxin (CT, the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity.

  5. Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways.

    Science.gov (United States)

    Mallet, W G; Maxfield, F R

    1999-07-26

    Furin and TGN38 are menbrane proteins that cycle between the plasma membrane and the trans-Golgi network (TGN), each maintaining a predominant distribution in the TGN. We have used chimeric proteins with an extracellular Tac domain and the cytoplasmic domain of TGN38 or furin to study the trafficking of these proteins in endosomes. Previously, we demonstrated that the postendocytic trafficking of Tac-TGN38 to the TGN is via the endocytic recycling pathway (Ghosh, R.N.,W.G. Mallet,T.T. Soe,T.E.McGraw, and F.R. Maxfield.1998.J. Cell Biol.142:923-936). Here we show that internalized Tac-furin is delivered to the TGN through late endosomes, bypassing the endocytic recycling compartment. The transport of Tac-furin from late endosomes to the TGN appears to proceed via an efficient, single-pass mechanism. Delivery of Tac-furin but not Tac-TGN38 to the TGN is blocked by nocodazole, and the two pathways are also differentially affected by wortmannin. These studies demonstrate the existence of two independentpathways for endosomal transport of proteins to the TGN from the plasma membrane.

  6. Cholesterol transfer at endosomal-organelle membrane contact sites.

    Science.gov (United States)

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  7. The PDZ protein GIPC regulates trafficking of the LPA1 receptor from APPL signaling endosomes and attenuates the cell's response to LPA.

    Directory of Open Access Journals (Sweden)

    Tal Varsano

    Full Text Available Lysophosphatidic acid (LPA mediates diverse cellular responses through the activation of at least six LPA receptors--LPA(1-6, but the interacting proteins and signaling pathways that mediate the specificity of these receptors are largely unknown. We noticed that LPA(1 contains a PDZ binding motif (SVV identical to that present in two other proteins that interact with the PDZ protein GIPC. GIPC is involved in endocytic trafficking of several receptors including TrkA, VEGFR2, lutropin and dopamine D2 receptors. Here we show that GIPC binds directly to the PDZ binding motif of LPA(1 but not that of other LPA receptors. LPA(1 colocalizes and coimmunoprecipitates with GIPC and its binding partner APPL, an activator of Akt signaling found on APPL signaling endosomes. GIPC depletion by siRNA disturbed trafficking of LPA(1 to EEA1 early endosomes and promoted LPA(1 mediated Akt signaling, cell proliferation, and cell motility. We propose that GIPC binds LPA(1 and promotes its trafficking from APPL-containing signaling endosomes to EEA1 early endosomes and thus attenuates LPA-mediated Akt signaling from APPL endosomes.

  8. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells

    Directory of Open Access Journals (Sweden)

    Guillaume van Niel

    2015-10-01

    Full Text Available Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.

  9. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  10. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-01-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier. PMID:26123532

  11. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery.

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-30

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds' escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds' cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  12. Shoc2 is targeted to late endosomes and required for Erk1/2 activation in EGF-stimulated cells.

    Directory of Open Access Journals (Sweden)

    Emilia Galperin

    Full Text Available Shoc2 is the putative scaffold protein that interacts with RAS and RAF, and positively regulates signaling to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2. To elucidate the mechanism by which Shoc2 regulates ERK1/2 activation by the epidermal growth factor (EGF receptor (EGFR, we studied subcellular localization of Shoc2. Upon EGFR activation, endogenous Shoc2 and red fluorescent protein tagged Shoc2 were translocated from the cytosol to a subset of late endosomes containing Rab7. The endosomal recruitment of Shoc2 was blocked by overexpression of a GDP-bound H-RAS (N17S mutant and RNAi knockdown of clathrin, suggesting the requirement of RAS activity and clathrin-dependent endocytosis. RNAi depletion of Shoc2 strongly inhibited activation of ERK1/2 by low, physiological EGF concentrations, which was rescued by expression of wild-type recombinant Shoc2. In contrast, the Shoc2 (S2G mutant, that is myristoylated and found in patients with the Noonan-like syndrome, did not rescue ERK1/2 activation in Shoc2-depleted cells. Shoc2 (S2G was not located in late endosomes but was present on the plasma membrane and early endosomes. These data suggest that targeting of Shoc2 to late endosomes may facilitate EGFR-induced ERK activation under physiological conditions of cell stimulation by EGF, and therefore, may be involved in the spatiotemporal regulation of signaling through the RAS-RAF module.

  13. Solo/Trio8, a membrane-associated short isoform of Trio, modulates endosome dynamics and neurite elongation.

    Science.gov (United States)

    Sun, Ying-Jie; Nishikawa, Kaori; Yuda, Hideki; Wang, Yu-Lai; Osaka, Hitoshi; Fukazawa, Nobuna; Naito, Akira; Kudo, Yoshihisa; Wada, Keiji; Aoki, Shunsuke

    2006-09-01

    With DNA microarrays, we identified a gene, termed Solo, that is downregulated in the cerebellum of Purkinje cell degeneration mutant mice. Solo is a mouse homologue of rat Trio8-one of multiple Trio isoforms recently identified in rat brain. Solo/Trio8 contains N-terminal sec14-like and spectrin-like repeat domains followed by a single guanine nucleotide exchange factor 1 (GEF1) domain, but it lacks the C-terminal GEF2, immunoglobulin-like, and kinase domains that are typical of Trio. Solo/Trio8 is predominantly expressed in Purkinje neurons of the mouse brain, and expression begins following birth and increases during Purkinje neuron maturation. We identified a novel C-terminal membrane-anchoring domain in Solo/Trio8 that is required for enhanced green fluorescent protein-Solo/Trio8 localization to early endosomes (positive for both early-endosome antigen 1 [EEA1] and Rab5) in COS-7 cells and primary cultured neurons. Solo/Trio8 overexpression in COS-7 cells augmented the EEA1-positive early-endosome pool, and this effect was abolished via mutation and inactivation of the GEF domain or deletion of the C-terminal membrane-anchoring domain. Moreover, primary cultured neurons transfected with Solo/Trio8 showed increased neurite elongation that was dependent on these domains. These results suggest that Solo/Trio8 acts as an early-endosome-specific upstream activator of Rho family GTPases for neurite elongation of developing Purkinje neurons.

  14. Actin polymerization in the endosomal pathway, but not on the Coxiella-containing vacuole, is essential for pathogen growth.

    Directory of Open Access Journals (Sweden)

    Heather E Miller

    2018-04-01

    endosomal system is required for CCV generation. These findings delineate which of the many actin related events that shape the endosomal compartment are important for CCV formation.

  15. Arabinogalactan glycosyltransferases target to a unique subcellular compartment that may function in unconventional secretion in plants

    DEFF Research Database (Denmark)

    Poulsen, Christian Peter; Dilokpimol, Adiphol; Mouille, Grégory

    2014-01-01

    -glycosylation enzymes rarely colocalized (3-18%), implicating a role of the small compartments in a part of arabinogalactan (O-glycan) biosynthesis rather than N-glycan processing. The dual localization of AtGALT31A was also observed for fluorescently tagged AtGALT31A stably expressed in an Arabidopsis atgalt31a mutant...... colocalized with neither SYP61 (syntaxin of plants 61), a marker for trans-Golgi network (TGN), nor FM4-64-stained endosomes. However, 41% colocalized with EXO70E2 (Arabidopsis thaliana exocyst protein Exo70 homolog 2), a marker for exocyst-positive organelles, and least affected by Brefeldin A and Wortmannin....... Taken together, AtGALT31A localized to small compartments that are distinct from the Golgi apparatus, the SYP61-localized TGN, FM4-64-stained endosomes and Wortmannin-vacuolated prevacuolar compartments, but may be part of an unconventional protein secretory pathway represented by EXO70E2 in plants....

  16. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    Science.gov (United States)

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  17. Double-compartment wrist arthrography

    International Nuclear Information System (INIS)

    Quinn, S.F.; Pittman, C.; Belsole, R.; Greene, T.L.; Rayhack, J.; Clark, R.A.; King, P.S.

    1987-01-01

    Seventy patients with clinical wrist problems were studied with double-compartment wrist arthrography. Midcarpal and radiocarpal compartment arthrograms were obtained in all patients. Digital subtraction technique was used to subtract out contrast from the first compartmental injection. Digital technique also allowed a dynamic record of each injection, which helped determine sites of intercompartmental communication. Postarthrography exercises recorded on videotape were performed after each injection. There were 34 normal studies. Abnormalities in the other 36 patients included: scapholunate communication (n = 9), lunatotriquetral communication (n = 6), communication with tendon sheaths (n = 4), communication with distal radioulnar compartment (n = 14), abnormal synovium process (n = 9), and communication through the radial or ulnar collateral ligament (n = 3). Double-compartment wrist arthrography may provide additional information for complex problems of the wrist

  18. Structural Basis for Endosomal Targeting by the Bro1 Domain

    Science.gov (United States)

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M.; Odorizzi, Greg; Hurley, James H.

    2010-01-01

    Summary Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs. PMID:15935782

  19. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis (Florida)

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  20. Enteral Feeding in Abdominal Compartment Syndrome

    Directory of Open Access Journals (Sweden)

    Ye. V Grigoryev

    2009-01-01

    Full Text Available Objective: to substantiate the choice of a gastrointestinal tract (GIT function support regimen as a mode for correction of the abdominal compartment syndrome (ACS. Subjects and methods. Forty-three patients with different causes of inadequate GIT function of various origin and ACS (disseminated peritonitis (45%, pancreatitis (24%, and severe concomitant injury (31% were examined. Group 1 (control received complete parenteral nutritional feeding (n=23; APACHE II scores, 21±4; calculated probability of fatal outcome, 33.5%. In Group II (study, complete parenteral feeding in the first 24 hours after stabilization was supplemented with GIT function support with Pepsisorb (Nutricia in doses of 500, 1000, and 1500 ml on days 1, 2, and 3, respectively (n=20; APACHE II scores, 20±6; calculated probability of fatal outcome, 37.1%. During early enteral nutritional support, the SOFA score was significantly less than that in Group 1 on days 2—3; the oxygenation index significantly increased on day 3; the value of intra-abdominal hypertension decreased to the control values. The positive effect of the GIT function support regimen on regression of the multiple organ dysfunction syndrome (MODS was confirmed by the lowered levels of biological markers (von Willebrand factor (WF and endothelin-1 as markers of endothelial damage of MODS. Correlation analysis showed a direct correlation between the markers of endothelial damage and the SOFA scores (r=0.34; p=0.05 for WF and r=0.49;p=0.03 for endothelin. Conclusion. The GIT function support regimen via early enteral alimentation with Peptisorb, which was initiated in the first 24 hours after admission, is able to level off the manifestations of the early stages of the abdominal compartment syndrome, with the acceptable values of oxygen balance and water-electrolyte and osmotic homeostasis being achieved. Key words: abdominal compartment syndrome, nutritional support, biological markers, oxygenation index

  1. Dual-Compartment Inflatable Suitlock

    Science.gov (United States)

    Kennedy, Kriss J.; Guirgis, Peggy L.; Boyle, Robert M.

    2013-01-01

    There is a need for an improvement over current NASA Extravehicular Activity (EVA) technology. The technology must allow the capacity for quicker, more efficient egress/ingress, allow for shirtsleeve suit maintenance, be compact in transport, and be applicable to environments ranging from planetary surface (partial-g) to orbital or deep space zero-g environments. The technology must also be resistant to dust and other foreign contaminants that may be present on or around a planetary surface. The technology should be portable, and be capable of docking with a variety of habitats, ports, stations, vehicles, and other pressurized modules. The Dual-Compartment Inflatable Suitlock (DCIS) consists of three hard inline bulkheads, separating two cylindrical membrane-walled compartments. The Inner Bulkhead can be fitted with a variety of hatch types, docking flanges, and mating hardware, such as the Common Berthing Mechanism (CBM), for the purpose of mating with vehicles, habitats, and other pressurized modules. The Inner Bulkhead and Center Bulkhead function as the end walls of the Inner Compartment, which during operations, would stay pressurized, either matching the pressure of the habitat or acting as a lower-pressure transitional volume. The Inner Compartment contains donning/doffing fixtures and inner suit-port hatches. The Center Bulkhead has two integrated suit-ports along with a maintenance hatch. The Center Bulkhead and Outer Bulkhead function as the end walls of the Outer Compartment, which stays at vacuum during normal operations. This allows the crewmember to quickly don a suit, and egress the suitlock without waiting for the Outer Compartment to depressurize. The Outer Compartment can be pressurized infrequently for both nominal and off-nominal suit maintenance tasks, allowing shirtsleeve inspections and maintenance/repair of the environmental suits. The Outer Bulkhead has a pressure-assisted hatch door that stays open and stowed during EVA operations, but can

  2. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    Science.gov (United States)

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  3. Arf6, Rab11 and transferrin receptor define distinct populations of recycling endosomes.

    Science.gov (United States)

    Kobayashi, Hotaka; Fukuda, Mitsunori

    2013-09-01

    Recycling endosomes are key platforms for endocytic recycling that return internalized molecules back to the plasma membrane. To determine how recycling endosomes perform their functions, searching for proteins and lipids that specifically localized at recycling endosomes has often been performed by colocalization analyses between candidate molecules and conventional recycling endosome markers. However, it remains unclear whether all the conventional markers have identical localizations. Here we report finding that three well-known recycling endosome markers, i.e., Arf6, Rab11 and transferrin receptor (TfR), have different intracellular localizations in PC12 cells. The results of immunofluorescence analyses showed that the signals of endogenous Arf6, Rab11 and TfR in nerve growth factor-stimulated PC12 cells generally differed, although there was some overlapping. Our findings provide new information about recycling endosome markers, and they highlight the heterogeneity of recycling endosomes.

  4. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes

    Science.gov (United States)

    Caviston, Juliane P.; Zajac, Allison L.; Tokito, Mariko; Holzbaur, Erika L.F.

    2011-01-01

    Huntingtin (Htt) is a membrane-associated scaffolding protein that interacts with microtubule motors as well as actin-associated adaptor molecules. We examined a role for Htt in the dynein-mediated intracellular trafficking of endosomes and lysosomes. In HeLa cells depleted of either Htt or dynein, early, recycling, and late endosomes (LE)/lysosomes all become dispersed. Despite altered organelle localization, kinetic assays indicate only minor defects in intracellular trafficking. Expression of full-length Htt is required to restore organelle localization in Htt-depleted cells, supporting a role for Htt as a scaffold that promotes functional interactions along its length. In dynein-depleted cells, LE/lysosomes accumulate in tight patches near the cortex, apparently enmeshed by cortactin-positive actin filaments; Latrunculin B-treatment disperses these patches. Peripheral LE/lysosomes in dynein-depleted cells no longer colocalize with microtubules. Htt may be required for this off-loading, as the loss of microtubule association is not seen in Htt-depleted cells or in cells depleted of both dynein and Htt. Inhibition of kinesin-1 relocalizes peripheral LE/lysosomes induced by Htt depletion but not by dynein depletion, consistent with their detachment from microtubules upon dynein knockdown. Together, these data support a model of Htt as a facilitator of dynein-mediated trafficking that may regulate the cytoskeletal association of dynamic organelles. PMID:21169558

  5. Smart DNA vectors based on cyclodextrin polymers: compaction and endosomal release.

    Science.gov (United States)

    Wintgens, Véronique; Leborgne, Christian; Baconnais, Sonia; Burckbuchler, Virginie; Le Cam, Eric; Scherman, Daniel; Kichler, Antoine; Amiel, Catherine

    2012-02-01

    Neutral β-cyclodextrin polymers (polyβCD) associated with cationic adamantyl derivatives (Ada) can be used to deliver plasmid DNA into cells. In absence of an endosomolytic agent, transfection efficiency remains low because most complexes are trapped in the endosomal compartment. We asked whether addition of an imidazole-modified Ada can increase efficiency of polyβCD/cationic Ada-based delivery system. We synthesized two adamantyl derivatives: Ada5, which has a spacer arm between the Ada moiety and a bi-cationic polar head group, and Ada6, which presents an imidazole group. Strength of association between polyβCD and Ada derivatives was evaluated by fluorimetric titration. Gel mobility shift assay, zeta potential, and dark field transmission electron microscopy experiments demonstrated the system allowed for efficient DNA compaction. In vitro transfection experiments performed on HepG2 and HEK293 cells revealed the quaternary system polyβCD/Ada5/Ada6/DNA has efficiency comparable to cationic lipid DOTAP. We successfully designed fine-tuned DNA vectors based on cyclodextrin polymers combined with two new adamantyl derivatives, leading to significant transfection associated with low toxicity.

  6. Vascular endothelial growth factor A-stimulated signaling from endosomes in primary endothelial cells.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Odell, Adam F; Latham, Antony M; Wheatcroft, Stephen B; Harrison, Michael A; Tomlinson, Darren C; Ponnambalam, Sreenivasan

    2014-01-01

    The vascular endothelial growth factor A (VEGF-A) is a multifunctional cytokine that stimulates blood vessel sprouting, vascular repair, and regeneration. VEGF-A binds to VEGF receptor tyrosine kinases (VEGFRs) and stimulates intracellular signaling leading to changes in vascular physiology. An important aspect of this phenomenon is the spatiotemporal coordination of VEGFR trafficking and intracellular signaling to ensure that VEGFR residence in different organelles is linked to downstream cellular outputs. Here, we describe a series of assays to evaluate the effects of VEGF-A-stimulated intracellular signaling from intracellular compartments such as the endosome-lysosome system. These assays include the initial isolation and characterization of primary human endothelial cells, performing reverse genetics for analyzing protein function; methods used to study receptor trafficking, signaling, and proteolysis; and assays used to measure changes in cell migration, proliferation, and tubulogenesis. Each of these assays has been exemplified with studies performed in our laboratories. In conclusion, we describe necessary techniques for studying the role of VEGF-A in endothelial cell function. © 2014 Elsevier Inc. All rights reserved.

  7. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Directory of Open Access Journals (Sweden)

    Kevin Mellert

    Full Text Available Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  8. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Science.gov (United States)

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  9. Protein complexes and cholesterol in the control of late endosomal dynamicsCholesterol and multi-protein complexes in the control of late endosomal dynamics

    NARCIS (Netherlands)

    Kant, Rik Henricus Nicolaas van der

    2013-01-01

    Late endosomal transport is disrupted in several diseases such as Niemann-Pick type C, ARC syndrome and Alzheimer’s disease. This thesis describes the regulation of late endosomal dynamics by cholesterol and multi-protein complexes. We find that cholesterol acts as a cellular tomtom that steers the

  10. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  11. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation

    NARCIS (Netherlands)

    Nair-Gupta, Priyanka; Baccarini, Alessia; Tung, Navpreet; Seyffer, Fabian; Florey, Oliver; Huang, Yunjie; Banerjee, Meenakshi; Overholtzer, Michael; Roche, Paul A.; Tampé, Robert; Brown, Brian D.; Amsen, Derk; Whiteheart, Sidney W.; Blander, J. Magarian

    2014-01-01

    Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly

  12. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.

    Science.gov (United States)

    Nixon, Ralph A

    2017-07-01

    Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. © FASEB.

  13. The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi

    Directory of Open Access Journals (Sweden)

    Cláudia Rosa-Ferreira

    2015-03-01

    Full Text Available The small G proteins of the Arf family play critical roles in membrane trafficking and cytoskeleton organization. However, the function of some members of the family remains poorly understood including Arl5 which is widely conserved in eukaryotes. Humans have two closely related Arl5 paralogues (Arl5a and Arl5b, and both Arl5a and Arl5b localize to the trans-Golgi with Arl5b being involved in retrograde traffic from endosomes to the Golgi apparatus. To investigate the function of Arl5, we have used Drosophila melanogaster as a model system. We find that the single Arl5 orthologue in Drosophila also localizes to the trans-Golgi, but flies lacking the Arl5 gene are viable and fertile. By using both liposome and column based affinity chromatography methods we find that Arl5 interacts with the Golgi-associated retrograde protein (GARP complex that acts in the tethering of vesicles moving from endosomes to the trans-Golgi network (TGN. In Drosophila tissues the GARP complex is partially displaced from the Golgi when Arl5 is absent, and the late endosomal compartment is enlarged. In addition, in HeLa cells GARP also becomes cytosolic upon depletion of Arl5b. These phenotypes are consistent with a role in endosome-to-Golgi traffic, but are less severe than loss of GARP itself. Thus it appears that Arl5 is one of the factors that directs the recruitment of the GARP complex to the trans-Golgi, and this function is conserved in both flies and humans.

  14. Well-leg compartment syndrome after gynecological laparoscopic surgery

    DEFF Research Database (Denmark)

    Boesgaard-Kjer, Diana H; Boesgaard-Kjer, Daniel; Kjer, Jens Jørgen

    2013-01-01

    Well-leg compartment syndrome in the lower extremities after surgery in the lithotomy position is a rare but severe complication requiring early diagnosis and intervention. Several circumstances predispose to this condition as a consequence of increased intra-compartmental pressure, such as posit...

  15. "Compartment"-syndrom på underben, atypisk traumemekanisme

    DEFF Research Database (Denmark)

    Larsen, Michael H; Nielsen, Henrik Toft; Wester, Jens Ulrik

    2003-01-01

    Acute compartment syndrome (CS) is a limb threatening condition which warrants emergency treatment. We describe a case of a 37-year-old man with acute CS developed without major trauma. Early diagnosis and prompt treatment by decompressive fasciotomy is of vital importance in order to preserve limb...

  16. Compartment syndrome and popliteal vascular injury complicating unicompartmental knee arthroplasty

    NARCIS (Netherlands)

    Kort, Nanne Pieter; Van Raay, Jos J. J. A. M.; van Horn, Jim R.

    Popliteal vascular injury and the compartment syndrome of the leg are rare but important complications of knee arthroplasties. Early diagnosis and treatment are of paramount importance in preventing the devastating complications of these conditions. To our knowledge, these complications have not

  17. Imaging of iliopsoas compartment disease

    International Nuclear Information System (INIS)

    Rocher, L.; Saint Maurice, J.P.; Le Quen, O.; Bazille, A.; Miquel, A.; Frouge, C.; Blery, M.

    1997-01-01

    Infection, neoplastic involvement, and hemorrhage, are the most frequent pathologies that involve the ilio-psoas compartment. The extension from contiguous pathological structures and particularly digestive and urological organs, are often the origin of abscess formation or malignant tumours. The radiological findings including ultrasonography, CT, and magnetic resonance imaging, show a low specificity, which improves if the clinical history is known. The final diagnosis is confirmed by puncture or biopsy. (author)

  18. Numerical treatment of compartment models

    International Nuclear Information System (INIS)

    Einarsson, B.

    1984-11-01

    This report describes and interactive program RADIO (Radioactive Decay Information Online) for studying the radioactive decay process, with applications to many ecological problems, but not necessarily involving radioactive processes. Starting with the compartment coefficients and initial values of the various compartments the problem is solved as a system of linear ordinary differential equations. The method of solution is the direct use of matrix exponentials or the backward differences method. A program INVERS is also available for the solution of the inverse problem, that is parameter estimation in a system of linear ordinary differential equations when the solution is available pointwise. The output can be printed on a line printer either from a result file or from the plot file, which of course also can be used to produce graphic output. The plot file is processed by the plotting program VISION or by the auxiliary printing program RADAR. Another file can be used for a later restart from the point of time where the previous computation was aborted or from an arbitrary point of time if the relevant starting information is available. This is useful in order to avoid the manual input of a compartment matrix if it is similar to one used before. When the program RADIO is run the user answers to the question asked by the program. The programs are written in Fortran 77 for the Digital Equipment VAX 11 with graphical presentation on a Tektronix 4010, and are available from the author. (Author)

  19. Opposing motor activities of dynein and kinesin determine retention and transport of MHC class II-containing compartments

    NARCIS (Netherlands)

    Wubbolts, R.; Fernandez-Borja, M.; Jordens, I.; Reits, E.; Dusseljee, S.; Echeverri, C.; Vallee, R. B.; Neefjes, J.

    1999-01-01

    MHC class II molecules exert their function at the cell surface by presenting to T cells antigenic fragments that are generated in the endosomal pathway. The class II molecules are targetted to early lysosomal structures, termed MIIC, where they interact with antigenic fragments and are subsequently

  20. Forearm Compartment Syndrome Caused by Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Ufuk Sayar

    2014-01-01

    Full Text Available Compartment syndrome is commonly seen following lower extremity ischemia. However, upper extremities’ compartment syndrome, especially after any vascular surgical procedures, is infrequent. Herein we report a case of an acute forearm compartment syndrome that was developed after delayed brachial artery embolectomy.

  1. Acute compartment syndrome after medial gastrocnemius tear.

    Science.gov (United States)

    Sit, Yan Kit; Lui, Tun Hing

    2015-02-01

    Acute compartment syndrome after medial gastrocnemius tear is very rare. It can involve the superficial posterior compartment alone or progress to involve all the 4 compartments of the lower legs. Those patients with high pain tolerance and minor trauma can lead to delayed presentation. Immediate fasciotomy is the treatment of choice. Therapeutic Level IV, Case Study. © 2014 The Author(s).

  2. 14 CFR 25.787 - Stowage compartments.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.787 Stowage compartments. (a) Each compartment for the stowage of cargo, baggage, carry-on articles, and... to compartments located below, or forward, of all occupants in the airplane. If the airplane has a...

  3. Cellular vacuoles induced by Mycoplasma pneumoniae CARDS toxin originate from Rab9-associated compartments.

    Directory of Open Access Journals (Sweden)

    Coreen Johnson

    Full Text Available Recently, we identified an ADP-ribosylating and vacuolating cytotoxin in Mycoplasma pneumoniae designated Community Acquired Respiratory Distress Syndrome (CARDS toxin. In this study we show that vacuoles induced by recombinant CARDS (rCARDS toxin are acidic and derive from the endocytic pathway as determined by the uptake of neutral red and the fluid-phase marker, Lucifer yellow, respectively. Also, we demonstrate that the formation of rCARDS toxin-associated cytoplasmic vacuoles is inhibited by the vacuolar ATPase inhibitor, bafilomycin A1, and the ionophore, monensin. To examine the ontogeny of these vacuoles, we analyzed the distribution of endosomal and lysosomal membrane markers during vacuole formation and observed the enrichment of the late endosomal GTPase, Rab9, around rCARDS toxin-induced vacuoles. Immunogold-labeled Rab9 and overexpression of green fluorescent-tagged Rab9 further confirmed vacuolar association. The late endosomal- and lysosomal-associated membrane proteins, LAMP1 and LAMP2, also localized to the vacuolar membranes, while the late endosomal protein, Rab7, and early endosomal markers, Rab5 and EEA1, were excluded. HeLa cells expressing dominant-negative (DN Rab9 exhibited markedly reduced vacuole formation in the presence of rCARDS toxin, in contrast to cells expressing DN-Rab7, highlighting the importance of Rab9 function in rCARDS toxin-induced vacuolation. Our findings reveal the unique Rab9-association with rCARDS toxin-induced vacuoles and its possible relationship to the characteristic histopathology that accompanies M. pneumoniae infection.

  4. Measurement of compartment elasticity using pressure related ultrasound: a method to identify patients with potential compartment syndrome.

    Science.gov (United States)

    Sellei, R M; Hingmann, S J; Kobbe, P; Weber, C; Grice, J E; Zimmerman, F; Jeromin, S; Gansslen, A; Hildebrand, F; Pape, H C

    2015-01-01

    compartmental elasticity by ultrasound enhancement, this application may improve detection of early signs of potential compartment syndrome. Key words: compartment syndrome, intra-compartmental pressure, non-invasive diagnostic, elasticity measurement, elastography.

  5. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda.

    Science.gov (United States)

    Yoon, June-Sun; Gurusamy, Dhandapani; Palli, Subba Reddy

    2017-11-01

    RNA interference (RNAi) efficiency varies among insects studied. The barriers for successful RNAi include the presence of double-stranded ribonucleases (dsRNase) in the lumen and hemolymph that could potentially digest double-stranded RNA (dsRNA) and the variability in the transport of dsRNA into and within the cells. We recently showed that the dsRNAs are transported into lepidopteran cells, but they are not processed into small interference RNAs (siRNAs) because they are trapped in acidic bodies. In the current study, we focused on the identification of acidic bodies in which dsRNAs accumulate in Sf9 cells. Time-lapse imaging studies showed that dsRNAs enter Sf9 cells and accumulate in acidic bodies within 20 min after their addition to the medium. CypHer-5E-labeled dsRNA also accumulated in the midgut and fat body dissected from Spodoptera frugiperda larvae with similar patterns observed in Sf9 cells. Pharmacological inhibitor assays showed that the dsRNAs use clathrin mediated endocytosis pathway for transport into the cells. We investigated the potential dsRNA accumulation sites employing LysoTracker and double labeling experiments using the constructs to express a fusion of green fluorescence protein with early or late endosomal marker proteins and CypHer-5E-labeled dsRNA. Interestingly, CypHer-5E-labeled dsRNA accumulated predominantly in early and late endosomes. These data suggest that entrapment of internalized dsRNA in endosomes is one of the major factors contributing to inefficient RNAi response in lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Serotonin Transporter Undergoes Constitutive Internalization and Is Primarily Sorted to Late Endosomes and Lysosomal Degradation*

    Science.gov (United States)

    Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob; Gether, Ulrik; Jørgensen, Trine Nygaard

    2014-01-01

    The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of the surface resident SERT, two functional epitope-tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope was generated by introducing an HA (hemagglutinin) tag in the extracellular loop 2 of SERT (HA-SERT). By using TacSERT and HA-SERT in antibody-based internalization assays, we show that SERT undergoes constitutive internalization in a dynamin-dependent manner. Confocal images of constitutively internalized SERT demonstrated that SERT primarily co-localized with the late endosomal/lysosomal marker Rab7, whereas little co-localization was observed with the Rab11, a marker of the “long loop” recycling pathway. This sorting pattern was distinct from that of a prototypical recycling membrane protein, the β2-adrenergic receptor. Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analog JHC1-64 and by reversible and pulse-chase biotinylation assays showing evidence for lysosomal degradation of the internalized transporter. Finally, we found that SERT internalized in response to stimulation with 12-myristate 13-acetate co-localized primarily with Rab7- and LysoTracker-positive compartments. We conclude that SERT is constitutively internalized and that the internalized transporter is sorted mainly to degradation. PMID:24973209

  7. An Essential Role of Hrs/Vps27 in Endosomal Cholesterol Trafficking

    Directory of Open Access Journals (Sweden)

    Ximing Du

    2012-01-01

    Full Text Available The endosomal sorting complex required for transport (ESCRT plays a crucial role in the degradation of ubiquitinated endosomal membrane proteins. Here, we report that Hrs, a key protein of the ESCRT-0 complex, is required for the transport of low-density lipoprotein-derived cholesterol from endosomes to the endoplasmic reticulum. This function of Hrs in cholesterol transport is distinct from its previously defined role in lysosomal sorting and downregulation of membrane receptors via the ESCRT pathway. In line with this, knocking down other ESCRT proteins does not cause prominent endosomal cholesterol accumulation. Importantly, the localization and biochemical properties of key cholesterol-sorting proteins, NPC1 and NPC2, appear to be unchanged upon Hrs knockdown. Our data identify Hrs as a regulator of endosomal cholesterol trafficking and provide additional insights into the budding of intralumenal vesicles.

  8. PTP1B targets the endosomal sorting machinery

    DEFF Research Database (Denmark)

    Stuible, Matthew; Abella, Jasmine V; Feldhammer, Matthew

    2010-01-01

    Dephosphorylation and endocytic down-regulation are distinct processes that together control the signaling output of a variety of receptor tyrosine kinases (RTKs). PTP1B can directly dephosphorylate several RTKs, but it can also promote activation of downstream pathways through largely unknown...... mechanisms. These positive signaling functions likely contribute to the tumor-promoting effect of PTP1B in mouse cancer models. Here, we have identified STAM2, an endosomal protein involved in sorting activated RTKs for lysosomal degradation, as a substrate of PTP1B. PTP1B interacts with STAM2 at defined...... phosphotyrosine sites, and knockdown of PTP1B expression augments STAM2 phosphorylation. Intriguingly, manipulating the expression and phosphorylation state of STAM2 did not have a general effect on epidermal growth factor (EGF)-induced EGF receptor trafficking, degradation, or signaling. Instead, phosphorylated...

  9. Acute compartment syndrome caused by uncontrolled hypothyroidism.

    Science.gov (United States)

    Modi, Anar; Amin, Hari; Salzman, Matthew; Morgan, Farah

    2017-06-01

    Acute compartment syndrome is increased tissue pressure exceeding perfusion pressure in a closed compartment resulting in nerve and muscle ischemia. Common precipitating causes are crush injuries, burns, substance abuse, osseous or vascular limb trauma. This is a case of 42year old female with history of hypothyroidism who presented to emergency room with acute onset of severe pain and swelling in right lower extremity. Physical examination was concerning for acute compartment syndrome of right leg which was confirmed by demonstration of elevated compartmental pressures. No precipitating causes were readily identified. Further laboratory testing revealed uncontrolled hypothyroidism. Management included emergent fasciotomy and initiating thyroid hormone replacement. This case represents a rare association between acute compartment syndrome and uncontrolled hypothyroidism. We also discuss the pathogenesis of compartment syndrome in hypothyroid patients and emphasize the importance of evaluating for less common causes, particularly in setting of non-traumatic compartment syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Transcytosis of immunoglobulin A in the mouse enterocyte occurs through glycolipid raft- and rab17-containing compartments

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Niels-Christiansen, L L; Immerdal, Lissi

    1999-01-01

    BACKGROUND & AIMS: Glycolipid "rafts" have been shown to play a role in apical membrane trafficking in the enterocyte. The present study characterized the membrane compartments of the enterocyte involved in transepithelial transport of small intestinal immunoglobulin A (IgA). Methods: Immunogold...... electron microscopy and radioactive labeling of mouse small intestinal explants were performed. RESULTS: IgA and the polymeric immunoglobulin receptor/secretory component were present in a raft compartment. Raft association occurred posttranslationally within 30 minutes, preceding secretion...... and were also frequently seen associated with the same vesicular profiles of glycolipid rafts. Colocalization of IgA and rab17, a small guanosine triphosphatase involved in transcytosis, was seen mainly along the basolateral plasma membrane and over basolateral endosomes and vesicles, but also...

  11. ER network homeostasis is critical for plant endosome streaming and endocytosis

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Lai, YaShiuan; Slabaugh, Erin; Mannino, Nicole; Buono, Rafael A; Otegui, Marisa S; Brandizzi, Federica

    2015-01-01

    Eukaryotic cells internalize cargo at the plasma membrane via endocytosis, a vital process that is accomplished through a complex network of endosomal organelles. In mammalian cells, the ER is in close association with endosomes and regulates their fission. Nonetheless, the physiological role of such interaction on endocytosis is yet unexplored. Here, we probed the existence of ER–endosome association in plant cells and assayed its physiological role in endocytosis. Through live-cell imaging and electron microscopy studies, we established that endosomes are extensively associated with the plant ER, supporting conservation of interaction between heterotypic organelles in evolutionarily distant kingdoms. Furthermore, by analyzing ER–endosome dynamics in genetic backgrounds with defects in ER structure and movement, we also established that the ER network integrity is necessary for homeostasis of the distribution and streaming of various endosome populations as well as for efficient endocytosis. These results support a novel model that endocytosis homeostasis depends on a spatiotemporal control of the endosome dynamics dictated by the ER membrane network. PMID:27462431

  12. Design and application of optical nanosensors for pH imaging in cell compartments

    DEFF Research Database (Denmark)

    Benjaminsen, Rikke Vicki; Almdal, Kristoffer

    the last two decades. However, even though these sensor systems have proven themselves as superior to conventional methods, there are still questions about the use of these sensors that need to be addressed, especially regarding sensor design and calibration. We have developed a new triple-labelled p......Measurements of pH in acidic cellular compartments of mammalian cells is important for our understanding of cell metabolism, and organelle acidification is an essential event in living cells especially in the endosomal-lysosomal pathway where pH is critical for cellular sorting of internalized...... material. Intracellular pH can be measured by the use of fluorescence ratio imaging microscopy (FRIM), however, available methods for pH measurements in living cells are not optimal. Nanoparticle based optical sensor technology for quantification of metabolites in living cells has been developed over...

  13. Leishmania hijacking of the macrophage intracellular compartments.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa; Loiseau, Philippe M

    2016-02-01

    Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.

  14. Recruitment of Cbl-b to B cell antigen receptor couples antigen recognition to Toll-like receptor 9 activation in late endosomes.

    Directory of Open Access Journals (Sweden)

    Margaret Veselits

    Full Text Available Casitas B-lineage lymphoma-b (Cbl-b is a ubiquitin ligase (E3 that modulates signaling by tagging molecules for degradation. It is a complex protein with multiple domains and binding partners that are not involved in ubiquitinating substrates. Herein, we demonstrate that Cbl-b, but not c-Cbl, is recruited to the clustered B cell antigen receptor (BCR and that Cbl-b is required for entry of endocytosed BCRs into late endosomes. The E3 activity of Cbl-b is not necessary for BCR endocytic trafficking. Rather, the ubiquitin associated (UBA domain is required. Furthermore, the Cbl-b UBA domain is sufficient to confer the receptor trafficking functions of Cbl-b on c-Cbl. Cbl-b is also required for entry of the Toll-like receptor 9 (TLR9 into late endosomes and for the in vitro activation of TLR9 by BCR-captured ligands. These data indicate that Cbl-b acts as a scaffolding molecule to coordinate the delivery of the BCR and TLR9 into subcellular compartments required for productively delivering BCR-captured ligands to TLR9.

  15. Clinical aspects of lower leg compartment syndrome

    NARCIS (Netherlands)

    Brand, Johan Gerard Henric van den

    2004-01-01

    A compartment syndrome is a condition in which increased pressure within a limited space compromises the circulation and function of tissues within that space. Although pathofysiology is roughly similar in chronic exertional and acute compartment syndrome of the lower leg, the clinical

  16. Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity

    NARCIS (Netherlands)

    Golachowska, Magdalena R.; Hoekstra, Dick; van IJzendoorn, Sven C. D.

    2010-01-01

    Recycling endosomes have taken central stage in the intracellular sorting and polarized trafficking of apical and basolateral plasma membrane components. Molecular players in the underlying mechanisms are now emerging, including small GTPases, class V myosins and adaptor proteins. In particular,

  17. An ER-Associated Pathway Defines Endosomal Architecture for Controlled Cargo Transport

    NARCIS (Netherlands)

    Jongsma, Marlieke L. M.; Berlin, Ilana; Wijdeven, Ruud H. M.; Janssen, Lennert; Janssen, George M. C.; Garstka, Malgorzata A.; Janssen, Hans; Mensink, Mark; van Veelen, Peter A.; Spaapen, Robbert M.; Neefjes, Jacques

    2016-01-01

    Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent.

  18. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism.

    Science.gov (United States)

    Hamdi, Amel; Roshan, Tariq M; Kahawita, Tanya M; Mason, Anne B; Sheftel, Alex D; Ponka, Prem

    2016-12-01

    In erythroid cells, more than 90% of transferrin-derived iron enters mitochondria where ferrochelatase inserts Fe 2+ into protoporphyrin IX. However, the path of iron from endosomes to mitochondrial ferrochelatase remains elusive. The prevailing opinion is that, after its export from endosomes, the redox-active metal spreads into the cytosol and mysteriously finds its way into mitochondria through passive diffusion. In contrast, this study supports the hypothesis that the highly efficient transport of iron toward ferrochelatase in erythroid cells requires a direct interaction between transferrin-endosomes and mitochondria (the "kiss-and-run" hypothesis). Using a novel method (flow sub-cytometry), we analyze lysates of reticulocytes after labeling these organelles with different fluorophores. We have identified a double-labeled population definitively representing endosomes interacting with mitochondria, as demonstrated by confocal microscopy. Moreover, we conclude that this endosome-mitochondrion association is reversible, since a "chase" with unlabeled holotransferrin causes a time-dependent decrease in the size of the double-labeled population. Importantly, the dissociation of endosomes from mitochondria does not occur in the absence of holotransferrin. Additionally, mutated recombinant holotransferrin, that cannot release iron, significantly decreases the uptake of 59 Fe by reticulocytes and diminishes 59 Fe incorporation into heme. This suggests that endosomes, which are unable to provide iron to mitochondria, cause a "traffic jam" leading to decreased endocytosis of holotransferrin. Altogether, our results suggest that a molecular mechanism exists to coordinate the iron status of endosomal transferrin with its trafficking. Besides its contribution to the field of iron metabolism, this study provides evidence for a new intracellular trafficking pathway of organelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster

    OpenAIRE

    Sriram, V.; Krishnan, K.S.; Mayor, Satyajit

    2003-01-01

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defec...

  20. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Science.gov (United States)

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  1. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    Science.gov (United States)

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-04-12

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  2. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport

    Science.gov (United States)

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-01-01

    The importance of endosome-to–trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. PMID:26157166

  3. PIKfyve mediates the motility of late endosomes and lysosomes in neuronal dendrites.

    Science.gov (United States)

    Tsuruta, Fuminori; Dolmetsch, Ricardo E

    2015-09-25

    The endosome/lysosome system in the nervous system is critically important for a variety of neuronal functions such as neurite outgrowth, retrograde transport, and synaptic plasticity. In neurons, the endosome/lysosome system is crucial for the activity-dependent internalization of membrane proteins and contributes to the regulation of lipid level on the plasma membrane. Although homeostasis of membrane dynamics plays important roles in the properties of central nervous systems, it has not been elucidated how endosome/lysosome system is regulated. Here, we report that phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) mediates the motility of late endosomes and lysosomes in neuronal dendrites. Endosomes and lysosomes are highly motile in resting neurons, however knockdown of PIKfyve led to a significant reduction in late endosomes and lysosomes motility. We also found that vesicle acidification is crucial for their motility and PIKfyve is associated with this process indirectly. These data suggest that PIKfyve mediates vesicle motility through the regulation of vesicle integrity in neurons. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Abdominal compartment syndrome with acute reperfusion syndrome

    International Nuclear Information System (INIS)

    Maleeva, A.

    2017-01-01

    Abdominal compartment syndrome was recognized clinically in the 19th century when Marey and Burt observed its association with declines in respiratory function. Abdominal compartment syndrome is first used as a medical terminology from Fietsman in a case of ruptured abdominal aortic aneurysm. A condition caused by abnormally increased pressure within the abdomen. Causes of abdominal compartment syndrome include trauma, surgery, or infection. Common symptoms: abdominal distension, fast heart rate, insufficient urine production, or low blood pressure Medical procedure: nasogastric intubation Surgery: laparotomy Specialists: radiologist, primary care provider (PCP), surgeon, and emergency medicine doctor [6, 10]. Keywords: Stomach. Gastroparesis . Diabetes Mellitus [bg

  5. [Orbital compartment syndrome. The most frequent cause of blindness following facial trauma].

    Science.gov (United States)

    Klenk, Gusztáv; Katona, József; Kenderfi, Gábor; Lestyán, János; Gombos, Katalin; Hirschberg, Andor

    2017-09-01

    Although orbital compartment syndrome is a rare condition, it is still the most common cause of blindness following simple or complicated facial fractures. Its pathomechanism is similar to the compartment syndrome in the limb. Little extra fluid (blood, oedema, brain, foreign body) in a non-space yielding space results with increasingly higher pressures within a short period of time. Unless urgent surgical intervention is performed the blocked circulation of the central retinal artery will result irreversible ophthalmic nerve damage and blindness. Aim, material and method: A retrospective analysis of ten years, 2007-2017, in our hospital among those patients referred to us with facial-head trauma combined with blindness. 571 patients had fractures involving the orbit. 23 patients become blind from different reasons. The most common cause was orbital compartment syndrome in 17 patients; all had retrobulbar haematomas as well. 6 patients with retrobulbar haematoma did not develop compartment syndrome. Compartment syndrome was found among patient with extensive and minimal fractures such as with large and minimal haematomas. Early lateral canthotomy and decompression saved 7 patients from blindness. We can not predict and do not know why some patients develop orbital compartment syndrome. Compartment syndrome seems independent from fracture mechanism, comminution, dislocation, amount of orbital bleeding. All patients are in potential risk with midface fractures. We have a high suspicion that orbital compartment syndrome has been somehow missed out in the recommended textbooks of our medical universities and in the postgraduate trainings. Thus compartment syndrome is not recognized. Teaching, training and early surgical decompression is the only solution to save the blind eye. Orv Hetil. 2017; 158(36): 1410-1420.

  6. Abdominal Compartment Syndrome in Surgical Patients

    African Journals Online (AJOL)

    abdominal hypertension and abdominal compartment syndrome, affect ... timely surgical intervention is crucial. Key words: .... On the second postoperative day, he was noted to be restless ... Although surgery is very effective in managing ACS.

  7. Compartment syndrome in a labrador retriever

    International Nuclear Information System (INIS)

    Williams, J.; Bailey, M.Q.; Schertel, E.R.; Valentine, A.

    1994-01-01

    Compartment syndrome is an elevation of interstitial pressure in a closed osseofascial compartment that results in microvascular compromise. This report documents a clinical syndrome in the crus of a fourteen-month-old intact male Labrador Retriever which was consistent with trauma-induced compartment syndrome. A six month history of recurring trauma or complications resulted in the need for referral. Survey radiography and ultrasonography aided in the diagnosis, but the definitive answer was provided by femoral angiography. The patient was successfully treated and was discharged with normal limb function. One year later, there were no complications observed. Compartment syndrome is not uncommon in humans, and is routinely considered in certain blunt and most penetrating traumas. However, few reports of this complication in animals are found

  8. Multi-compartment microscopic diffusion imaging

    OpenAIRE

    Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.

    2016-01-01

    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microsco...

  9. Perforated peptic ulcer associated with abdominal compartment syndrome.

    Science.gov (United States)

    Lynn, Jiun-Jen; Weng, Yi-Ming; Weng, Chia-Sui

    2008-11-01

    Abdominal compartment syndrome (ACS) is defined as an increased intra-abdominal pressure with adverse physiologic consequences. Abdominal compartment syndrome caused by perforated peptic ulcer is rare owing to early diagnosis and management. Delayed recognition of perforated peptic ulcer with pneumoperitoneum, bowel distension, and decreased abdominal wall compliance can make up a vicious circle and lead to ACS. We report a case of perforated peptic ulcer associated with ACS. A 74-year-old man with old stroke and dementia history was found to have distended abdomen, edema of bilateral legs, and cyanosis. Laboratory tests revealed deterioration of liver and kidney function. Abdominal compartment syndrome was suspected, and image study was arranged to find the cause. The study showed pneumoperitoneum, contrast stasis in heart with decreased caliber of vessels below the abdominal aortic level, and diffuse lymphedema at the abdominal walls. Emergent laparotomy was performed. Perforated peptic ulcer was noted and the gastrorrhaphy was done. The symptoms, and liver and kidney function improved right after emergent operation.

  10. Compartment syndrome after total knee arthroplasty: regarding a clinical case

    Directory of Open Access Journals (Sweden)

    Ana Alexandra da Costa Pinheiro

    2015-08-01

    Full Text Available ABSTRACT Although compartment syndrome is a rare complication of total knee arthroplasty, it is one of the most devastating complications. It is defined as a situation of increased pressure within a closed osteofascial space that impairs the circulation and the functioning of the tissues inside this space, thereby leading to ischemia and tissue dysfunction. Here, a clinical case of a patient who was followed up in orthopedic outpatient consultations due to right gonarthrosis is presented. The patient had a history of arthroscopic meniscectomy and presented knee flexion of 10° before the operation, which consisted of total arthroplasty of the right knee. The operation seemed to be free from intercurrences, but the patient evolved with compartment syndrome of the ipsilateral leg after the operation. Since compartment syndrome is a true surgical emergency, early recognition and treatment of this condition through fasciotomy is crucial in order to avoid amputation, limb dysfunction, kidney failure and death. However, it may be difficult to make the diagnosis and cases may not be recognized if the cause of compartment syndrome is unusual or if the patient is under epidural analgesia and/or peripheral nerve block, which thus camouflages the main warning sign, i.e. disproportional pain. In addition, edema of the limb that underwent the intervention is common after total knee arthroplasty operations. This study presents a review of the literature and signals that the possible rarity of cases is probably due to failure to recognize this condition in a timely manner and to placing these patients in other diagnostic groups that are less likely, such as neuropraxia caused by using a tourniquet or peripheral nerve injury.

  11. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Directory of Open Access Journals (Sweden)

    Ewoud Bernardus Compeer

    2012-03-01

    Full Text Available The cross-presentation of endocytosed antigen as peptide/class I MHC complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells (APC capable of antigen cross-presentation, description of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC, there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlight DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, recycling and maturation including the sorting of membrane proteins, dynamic remodeling of endosomal structures and cell-surface directed endosomal trafficking. We will conclude with description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  12. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  13. Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes.

    Science.gov (United States)

    Tornieri, Karine; Zlatic, Stephanie A; Mullin, Ariana P; Werner, Erica; Harrison, Robert; L'hernault, Steven W; Faundez, Victor

    2013-12-20

    Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome-lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion.

  14. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  15. Acute gluteal compartment syndrome: superior gluteal artery rupture following a low energy injury.

    Science.gov (United States)

    Smith, Aubrey; Chitre, Vivek; Deo, Hersh

    2012-12-17

    Acute compartment syndrome affecting the gluteal region is rare when compared to the same condition in the forearm or calf. When it does occur, it is usually due to prolonged immobilisation in those with altered consciousness. Gluteal compartment syndrome resulting from injury to the superior gluteal artery is extremely rare and to our knowledge has been described only twice--both after high-energy road traffic accidents (RTA). Other cases have described profound hypotension with superior gluteal artery injury after an RTA and falling off a horse, without acute gluteal compartment syndrome. We present a case of gluteal compartment syndrome due to rupture of the superior gluteal artery following a relatively minor fall. The patient required an emergency fasciotomy, which was performed within 4 h of the injury. This case highlights the importance of early diagnosis and treatment of this rare condition.

  16. Iliopsoas compartment lesions: a radiologic evaluation

    International Nuclear Information System (INIS)

    Leao, Alberto Ribeiro de Souza; Amaral, Raquel Portugal Guimaraes; Abud, Thiago Giansante; Demarchi, Guilherme Tadeu Sauaia; Freire Filho, Edison de Oliveira; Novack, Paulo Rogerio; Campos, Flavio do Amaral; Shigueoka, David Carlos; Fernandes, Artur da Rocha Correa; Szejnfeld, Jacob; D'Ippolito, Giuseppe

    2007-01-01

    The iliopsoas compartment, a posterior boundary of the retroperitoneum, is comprised of the psoas major, psoas minor and iliac muscles. The symptoms picture in patients presenting with pathological involvement of this compartment may show a wide range of nonspecific clinical presentations that may lead to delayed diagnosis. However, in the search of an etiological diagnosis, it is already known that inflammation, tumors, and hemorrhages account for almost all the lesions affecting the iliopsoas compartment. By means of a retrospective analysis of radiological studies in patients with iliopsoas compartment lesions whose diagnosis was confirmed by anatomopathological evaluation or clinical follow-up, we have reviewed its anatomy as well as the main forms of involvement, with the purpose of identifying radiological signs that may help to narrow down the potential differential diagnoses. As each lesion is approached we will discuss the main radiological findings such as presence of gas in pyogenic abscesses, bone destruction and other bone changes of vertebral bodies in lesions secondary to tuberculosis, involvement of fascial planes in cases of neoplasms, and differences in signal density and intensity of hematomas secondary to hemoglobin degradation, among others. So, we have tried to present cases depicting the most frequent lesions involving the iliopsoas compartment, with emphasis on those signs that can lead us to a more specific etiological diagnosis. (author)

  17. Iliopsoas compartment lesions: a radiologic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Leao, Alberto Ribeiro de Souza; Amaral, Raquel Portugal Guimaraes; Abud, Thiago Giansante; Demarchi, Guilherme Tadeu Sauaia; Freire Filho, Edison de Oliveira; Novack, Paulo Rogerio; Campos, Flavio do Amaral; Shigueoka, David Carlos; Fernandes, Artur da Rocha Correa; Szejnfeld, Jacob; D' Ippolito, Giuseppe [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil). Dept. de Diagnostico por Imagem]. E-mail: ar.leao@uol.com.br; Santos, Jose Eduardo Mourao [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil)

    2007-07-15

    The iliopsoas compartment, a posterior boundary of the retroperitoneum, is comprised of the psoas major, psoas minor and iliac muscles. The symptoms picture in patients presenting with pathological involvement of this compartment may show a wide range of nonspecific clinical presentations that may lead to delayed diagnosis. However, in the search of an etiological diagnosis, it is already known that inflammation, tumors, and hemorrhages account for almost all the lesions affecting the iliopsoas compartment. By means of a retrospective analysis of radiological studies in patients with iliopsoas compartment lesions whose diagnosis was confirmed by anatomopathological evaluation or clinical follow-up, we have reviewed its anatomy as well as the main forms of involvement, with the purpose of identifying radiological signs that may help to narrow down the potential differential diagnoses. As each lesion is approached we will discuss the main radiological findings such as presence of gas in pyogenic abscesses, bone destruction and other bone changes of vertebral bodies in lesions secondary to tuberculosis, involvement of fascial planes in cases of neoplasms, and differences in signal density and intensity of hematomas secondary to hemoglobin degradation, among others. So, we have tried to present cases depicting the most frequent lesions involving the iliopsoas compartment, with emphasis on those signs that can lead us to a more specific etiological diagnosis. (author)

  18. Post-dialysis urea concentration: comparison between one- compartment model and two-compartment model

    International Nuclear Information System (INIS)

    Tamrin, N S Ahmad; Ibrahim, N

    2014-01-01

    The reduction of the urea concentration in blood can be numerically projected by using one-compartment model and two-compartment model with no variation in body fluid. This study aims to compare the simulated values of post-dialysis urea concentration for both models with the clinical data obtained from the hospital. The clinical assessment of adequacy of a treatment is based on the value of Kt/V. Further, direct calculation using clinical data and one-compartment model are presented in the form of ratio. It is found that the ratios of postdialysis urea concentration simulated using two-compartment model are higher compared to the ratios of post-dialysis urea concentration using one-compartment model. In addition, most values of post-dialysis urea concentration simulated using two-compartment model are much closer to the clinical data compared to values simulated using one-compartment model. Kt/V values calculated directly using clinical data are found to be higher than Kt/V values derived from one-compartment model

  19. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape

    KAUST Repository

    Alamoudi, Kholod; Martins, Patricia; Croissant, Jonas G.; Patil, Sachin; Omar, Haneen; Khashab, Niveen M.

    2017-01-01

    Improving the delivery of siRNA into cancer cells via bubble liposomes. Designing a thermoresponsive pegylated liposome through the introduction of ammonium bicarbonate salt into liposomes so as to control their endosomal escape for gene therapy.A sub-200 nm nanovector was fully characterized and examined for cellular uptake, cytotoxicity, endosomal escape and gene silencing.The siRNA-liposomes were internalized into cancer cells within 5 min and then released siRNAs in the cytosol prior to lysosomal degradation upon external temperature elevation. This was confirmed by confocal bioimaging and gene silencing reaching up to 90% and further demonstrated by the protein inhibition of both target genes.The thermoresponsiveness of ammonium bicarbonate containing liposomes enabled the rapid endosomal escape of the particles and resulted in an efficient gene silencing.

  20. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape

    KAUST Repository

    Alamoudi, Kholod

    2017-05-19

    Improving the delivery of siRNA into cancer cells via bubble liposomes. Designing a thermoresponsive pegylated liposome through the introduction of ammonium bicarbonate salt into liposomes so as to control their endosomal escape for gene therapy.A sub-200 nm nanovector was fully characterized and examined for cellular uptake, cytotoxicity, endosomal escape and gene silencing.The siRNA-liposomes were internalized into cancer cells within 5 min and then released siRNAs in the cytosol prior to lysosomal degradation upon external temperature elevation. This was confirmed by confocal bioimaging and gene silencing reaching up to 90% and further demonstrated by the protein inhibition of both target genes.The thermoresponsiveness of ammonium bicarbonate containing liposomes enabled the rapid endosomal escape of the particles and resulted in an efficient gene silencing.

  1. Cation trapping by cellular acidic compartments: Beyond the concept of lysosomotropic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, François, E-mail: francois.marceau@crchul.ulaval.ca [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Bawolak, Marie-Thérèse [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Lodge, Robert [Centre de recherche en infectiologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Bouthillier, Johanne; Gagné-Henley, Angélique [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Gaudreault, René C. [Unité des Biotechnologies et de Bioingénierie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1L 3L5 (Canada); Morissette, Guillaume [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada)

    2012-02-15

    “Lysosomotropic” cationic drugs are known to concentrate in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping); they draw water by an osmotic mechanism, leading to a vacuolar response. Several aspects of this phenomenon were recently reexamined. (1) The proton pump vacuolar (V)-ATPase is the driving force of cationic drug uptake and ensuing vacuolization. In quantitative transport experiments, V-ATPase inhibitors, such as bafilomycin A1, greatly reduced the uptake of cationic drugs and released them in preloaded cells. (2) Pigmented or fluorescent amines are effectively present in a concentrated form in the large vacuoles. (3) Consistent with V-ATPase expression in trans-Golgi, lysosomes and endosomes, a fraction of the vacuoles is consistently labeled with trans-Golgi markers and protein secretion and endocytosis are often inhibited in vacuolar cells. (4) Macroautophagic signaling (accumulation of lipidated and membrane-bound LC3 II) and labeling of the large vacuoles by the autophagy effector LC3 were consistently observed in cells, precisely at incubation periods and amine concentrations that cause vacuolization. Vacuoles also exhibit late endosome/lysosome markers, because they may originate from such organelles or because macroautophagosomes fuse with lysosomes. Autophagosome persistence is likely due to the lack of resolution of autophagy, rather than to nutritional deprivation. (5) Increased lipophilicity decreases the threshold concentration for the vacuolar and autophagic cytopathology, because simple diffusion into cells is limiting. (6) A still unexplained mitotic arrest is consistently observed in cells loaded with amines. An extended recognition of relevant clinical situations is proposed for local or systemic drug administration.

  2. Cation trapping by cellular acidic compartments: Beyond the concept of lysosomotropic drugs

    International Nuclear Information System (INIS)

    Marceau, François; Bawolak, Marie-Thérèse; Lodge, Robert; Bouthillier, Johanne; Gagné-Henley, Angélique; Gaudreault, René C.; Morissette, Guillaume

    2012-01-01

    “Lysosomotropic” cationic drugs are known to concentrate in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping); they draw water by an osmotic mechanism, leading to a vacuolar response. Several aspects of this phenomenon were recently reexamined. (1) The proton pump vacuolar (V)-ATPase is the driving force of cationic drug uptake and ensuing vacuolization. In quantitative transport experiments, V-ATPase inhibitors, such as bafilomycin A1, greatly reduced the uptake of cationic drugs and released them in preloaded cells. (2) Pigmented or fluorescent amines are effectively present in a concentrated form in the large vacuoles. (3) Consistent with V-ATPase expression in trans-Golgi, lysosomes and endosomes, a fraction of the vacuoles is consistently labeled with trans-Golgi markers and protein secretion and endocytosis are often inhibited in vacuolar cells. (4) Macroautophagic signaling (accumulation of lipidated and membrane-bound LC3 II) and labeling of the large vacuoles by the autophagy effector LC3 were consistently observed in cells, precisely at incubation periods and amine concentrations that cause vacuolization. Vacuoles also exhibit late endosome/lysosome markers, because they may originate from such organelles or because macroautophagosomes fuse with lysosomes. Autophagosome persistence is likely due to the lack of resolution of autophagy, rather than to nutritional deprivation. (5) Increased lipophilicity decreases the threshold concentration for the vacuolar and autophagic cytopathology, because simple diffusion into cells is limiting. (6) A still unexplained mitotic arrest is consistently observed in cells loaded with amines. An extended recognition of relevant clinical situations is proposed for local or systemic drug administration.

  3. [The perichromatin compartment of the cell nucleus].

    Science.gov (United States)

    Bogoliubov, D S

    2014-01-01

    In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions.

  4. Effects of combustible stacking in large compartments

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2013-01-01

    This paper focuses on the modelling of fire in case of various distributions of combustible materials in a large compartment. Large compartments often represent a challenge for structural fire safety, because of lack of prescriptive rules to follow and difficulties of taking into account the effect...... of non uniform distribution of the combustible materials and fire propagation. These aspects are discussed in this paper with reference to an industrial steel building, taken as case study. Fires triggered by the burning of wooden pallets stored in the premises have been investigated with respect...

  5. G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes.

    Science.gov (United States)

    Tsvetanova, Nikoleta G; Irannejad, Roshanak; von Zastrow, Mark

    2015-03-13

    Some G protein-coupled receptors (GPCRs), in addition to activating heterotrimeric G proteins in the plasma membrane, appear to elicit a "second wave" of G protein activation after ligand-induced internalization. We briefly summarize evidence supporting this view and then discuss what is presently known about the functional significance of GPCR-G protein activation in endosomes. Endosomal activation can shape the cellular response temporally by prolonging its overall duration, and may shape the response spatially by moving the location of intracellular second messenger production relative to effectors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Equine arteritis virus is delivered to an acidic compartment of host cells via clathrin-dependent endocytosis

    International Nuclear Information System (INIS)

    Nitschke, Matthias; Korte, Thomas; Tielesch, Claudia; Ter-Avetisyan, Gohar; Tuennemann, Gisela; Cardoso, M. Cristina; Veit, Michael; Herrmann, Andreas

    2008-01-01

    Equine arteritis virus (EAV) is an enveloped, positive-stranded RNA virus belonging to the family Arteriviridae. Infection by EAV requires the release of the viral genome by fusion with the respective target membrane of the host cell. We have investigated the entry pathway of EAV into Baby Hamster Kindey cells (BHK). Infection of cells assessed by the plaque reduction assay was strongly inhibited by substances which interfere with clathrin-dependent endocytosis and by lysosomotropic compounds. Furthermore, infection of BHK cells was suppressed when clathrin-dependent endocytosis was inhibited by expression of antisense RNA of the clathrin-heavy chain before infection. These results strongly suggest that EAV is taken up via clathrin-dependent endocytosis and is delivered to acidic endosomal compartments

  7. Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes

    NARCIS (Netherlands)

    C.C. Hoogenraad (Casper); I. Popa (Ioana); K. Futai (Kensuke); E. Sanchez-Martinez (Emma); P. Wulf (Phebe); T. van Vlijmen (Thijs); B.R. Dortland (Bjorn); V. Oorschot (Viola); R. Govers (Robert); M. Monti (Maria); A.J.R. Heck (Albert); M. Sheng (Morgan); J. Klumperman (Judith); H. Rehmann (Holger); D. Jaarsma (Dick); L.C. Kapitein (Lukas); P. van der Sluijs

    2010-01-01

    textabstractThe endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1

  8. Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation

    Directory of Open Access Journals (Sweden)

    Chao-Yang Lai

    2017-01-01

    Full Text Available Psoriasis is a chronic inflammatory autoimmune disease that can be initiated by excessive activation of endosomal toll-like receptors (TLRs, particularly TLR7, TLR8, and TLR9. Therefore, inhibitors of endosomal TLR activation are being investigated for their ability to treat this disease. The currently approved biological drugs adalimumab, etanercept, infliximab, ustekinumab, ixekizumab, and secukizumab are antibodies against effector cytokines that participate in the initiation and development of psoriasis. Several immune modulatory oligonucleotides and small molecular weight compounds, including IMO-3100, IMO-8400, and CPG-52364, that block the interaction between endosomal TLRs and their ligands are under clinical investigation for their effectiveness in the treatment of psoriasis. In addition, several chemical compounds, including AS-2444697, PF-05387252, PF-05388169, PF-06650833, ML120B, and PHA-408, can inhibit TLR signaling. Although these compounds have demonstrated anti-inflammatory activity in animal models, their therapeutic potential for the treatment of psoriasis has not yet been tested. Recent studies demonstrated that natural compounds derived from plants, fungi, and bacteria, including mustard seed, Antrodia cinnamomea extract, curcumin, resveratrol, thiostrepton, azithromycin, and andrographolide, inhibited psoriasis-like inflammation induced by the TLR7 agonist imiquimod in animal models. These natural modulators employ different mechanisms to inhibit endosomal TLR activation and are administered via different routes. Therefore, they represent candidate psoriasis drugs and might lead to the development of new treatment options.

  9. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules

    DEFF Research Database (Denmark)

    van Weering, Jan R.T.; Sessions, Richard B.; Traer, Colin J.

    2012-01-01

    that dimerization is achieved in part through neutralization of charged residues in the hydrophobic BAR-dimerization interface. Membrane remodelling also requires functional amphipathic helices, predicted to be present in all SNX-BARs, and the formation of high order SNX-BAR oligomers through selective 'tip...... and organizes the tubular endosomal network....

  10. Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons.

    Science.gov (United States)

    Cai, Qian; Lu, Li; Tian, Jin-Hua; Zhu, Yi-Bing; Qiao, Haifa; Sheng, Zu-Hang

    2010-10-06

    Neuron maintenance and survival require late endocytic transport from distal processes to the soma where lysosomes are predominantly localized. Here, we report a role for Snapin in attaching dynein to late endosomes through its intermediate chain (DIC). snapin(-/-) neurons exhibit aberrant accumulation of immature lysosomes, clustering and impaired retrograde transport of late endosomes along processes, reduced lysosomal proteolysis due to impaired delivery of internalized proteins and hydrolase precursors from late endosomes to lysosomes, and impaired clearance of autolysosomes, combined with reduced neuron viability and neurodegeneration. The phenotypes are rescued by expressing the snapin transgene, but not the DIC-binding-defective Snapin-L99K mutant. Snapin overexpression in wild-type neurons enhances late endocytic transport and lysosomal function, whereas expressing the mutant defective in Snapin-DIC coupling shows a dominant-negative effect. Altogether, our study highlights new mechanistic insights into how Snapin-DIC coordinates retrograde transport and late endosomal-lysosomal trafficking critical for autophagy-lysosomal function, and thus neuronal homeostasis. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Endosomal gene expression: a new indicator for prostate cancer patient prognosis?

    LENUS (Irish Health Repository)

    Johnson, Ian R D

    2015-11-10

    Prostate cancer continues to be a major cause of morbidity and mortality in men, but a method for accurate prognosis in these patients is yet to be developed. The recent discovery of altered endosomal biogenesis in prostate cancer has identified a fundamental change in the cell biology of this cancer, which holds great promise for the identification of novel biomarkers that can predict disease outcomes. Here we have identified significantly altered expression of endosomal genes in prostate cancer compared to non-malignant tissue in mRNA microarrays and confirmed these findings by qRT-PCR on fresh-frozen tissue. Importantly, we identified endosomal gene expression patterns that were predictive of patient outcomes. Two endosomal tri-gene signatures were identified from a previously published microarray cohort and had a significant capacity to stratify patient outcomes. The expression of APPL1, RAB5A, EEA1, PDCD6IP, NOX4 and SORT1 were altered in malignant patient tissue, when compared to indolent and normal prostate tissue. These findings support the initiation of a case-control study using larger cohorts of prostate tissue, with documented patient outcomes, to determine if different combinations of these new biomarkers can accurately predict disease status and clinical progression in prostate cancer patients.

  12. Integrin-linked kinase and ELMO2 modulate recycling endosomes in keratinocytes.

    Science.gov (United States)

    Ho, Ernest; Ivanova, Iordanka A; Dagnino, Lina

    2016-12-01

    The formation of tight cell-cell junctions is essential in the epidermis for its barrier properties. In this tissue, keratinocytes follow a differentiation program tightly associated with their movement from the innermost basal to the outer suprabasal layers, and with changes in their cell-cell adhesion profile. Intercellular adhesion in keratinocytes is mediated through cell-cell contacts, including E-cadherin-based adherens junctions. Although the mechanisms that mediate E-cadherin delivery to the plasma membrane have been widely studied in simple epithelia, this process is less well understood in the stratified epidermis. In this study, we have investigated the role of Engulfment and Cell Motility 2 (ELMO2) and integrin-linked kinase (ILK) in the positioning of E-cadherin-containing recycling endosomes during establishment of cell-cell contacts in differentiating keratinocytes. We now show that induction of keratinocyte differentiation by Ca 2+ is accompanied by localization of ELMO2 and ILK to Rab4- and Rab11a-containing recycling endosomes. The positioning of long-loop Rab11a-positive endosomes at areas adjacent to cell-cell contacts is disrupted in ELMO2- or ILK-deficient keratinocytes, and is associated with impaired localization of E-cadherin to cell borders. Our studies show a previously unrecognized role for ELMO2 and ILK in modulation of endosomal positioning, which may play key roles in epidermal sheet maintenance and permeability barrier function. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Leg 201Tl-SPECT in chronic exertional compartment syndrome

    International Nuclear Information System (INIS)

    Elkadri, N.; Slim, I.; Blondet, C.; Choquet, Ph.; Constantinesco, A.; Lecocq, J.

    2004-01-01

    Leg 201 Tl-SPECT in chronic exertional compartment syndrome Background: The chronic exertional compartment syndrome is one of the most frequent origins regarding leg pain due to sport training. The diagnosis can be established by invasive compartment pressure measurement. The aim of this study is to evaluate the role that could have 201 Tl-SPECT for patients with suspicion of compartment syndrome. Patients and methods: 51 leg 201 Tl-SPECT exams were performed (exercise - and rest without reinjection) in 49 patients; 28 had compartment syndrome confirmed by pressure measurement. About 100 MBq of 201 Tl were injected during exercise, when pain appeared or at least after 25 minutes exercise. We studied mean percentages of level uptake for each compartment, referred to the maximal uptake of both legs. Results: 47 compartments were concerned by compartment syndrome and 361 compartments were not. Scintigraphic patterns in compartments are reversible ischaemia (45%), uptake stability (36%) or reverse redistribution (19%); these patterns are not linked to compartment syndrome. However, there is a significant difference of rest 201 Tl level uptake between compartments with and without compartment syndrome and a significant correlation between muscular pressure measurement and rest level uptake. Conclusion: 201 Tl-SPECT shows that only ischaemia does not explain compartment syndrome. Moreover, it allows to predict pressure variation during exercise but it does not offer any interest in order to select patients for muscular invasive pressure measurement. (author)

  14. The V-ATPase a2-subunit as a putative endosomal pH-sensor.

    Science.gov (United States)

    Marshansky, V

    2007-11-01

    V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.

  15. Multi-compartment Aerosol Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony

    2017-06-01

    A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.

  16. A modern definition of mediastinal compartments.

    Science.gov (United States)

    Carter, Brett W; Tomiyama, Noriyuki; Bhora, Faiz Y; Rosado de Christenson, Melissa L; Nakajima, Jun; Boiselle, Phillip M; Detterbeck, Frank C; Marom, Edith M

    2014-09-01

    Division of the mediastinum into compartments is used to help narrow the differential diagnosis of newly detected mediastinal masses, to assist in planning biopsy and surgical procedures, and to facilitate communication among clinicians of multiple disciplines. Several traditional mediastinal division schemes exist based upon arbitrary landmarks on the lateral chest radiograph. We describe a modern, computed tomography-based mediastinal division scheme, which has been accepted by the International Thymic Malignancy Interest Group as a new standard. This clinical classification defines a prevascular (anterior), a visceral (middle), and a paravertebral (posterior) compartment, with anatomic boundaries defined clearly by computed tomography. It is our intention that this definition be used in the reporting of clinical cases and the design of prospective clinical trials.

  17. Hermetic compartments leak-tightness enhancement

    International Nuclear Information System (INIS)

    Murani, J.

    2000-01-01

    In connection with the enhancement of the nuclear safety of the Jaslovske Bohunice V-1 NPP actions for the increase of the leak tightness are performed. The reconstruction has been done in the following directions: hermetic compartments leak tightness enhancement; air lock installation; installation of air lock in SP 4 vent system; integrated leakage rate test to hermetic compartments with leak detection. After 'major' leaks on the hermetic boundary components had been eliminated, since 1994 works on a higher qualitative level began. The essence of the works consists in the detection and identification of leaks in the structural component of the hermetic boundary during the planned refueling outages. The results of the Small Reconstruction and gradual enhancement of leak tightness are presented

  18. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Masato, E-mail: okadam@biken.osaka-u.ac.jp [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. Black-Right-Pointing-Pointer We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. Black-Right-Pointing-Pointer The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. Black-Right-Pointing-Pointer Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. Black-Right-Pointing-Pointer The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.

  19. Monoterpene biosynthesis potential of plant subcellular compartments.

    Science.gov (United States)

    Dong, Lemeng; Jongedijk, Esmer; Bouwmeester, Harro; Van Der Krol, Alexander

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Perfluoroalkyl acid distribution in various plant compartments ...

    Science.gov (United States)

    Crop uptake of perfluoroalkyl acids (PFAAs) from biosolids-amended soil has been identified as a potential pathway for PFAA entry into the terrestrial food chain. This study compared the uptake of PFAAs in greenhouse-grown radish (Raphanus sativus), celery (Apium graveolens var.dulce), tomato (Lycopersicon lycopersicum), and sugar snap pea (Pisum sativum var. macrocarpon) from an industrially impacted biosolids-amended soil, a municipal biosolids­ amended soil, and a control soil. Individual concentrations of PFAAs, on a dry weight basis, in mature, edible portions of crops grown in soil amended with PFAA industrially impacted biosolids were highest for perfluorooctanoate (PFOA; 67 ng/g) in radish root, perfluorobutanoate (PFBA;232 ng/g) in celery shoot, and PFBA (150 ng/g) in pea fruit. Comparatively, PFAA concentrations in edible compartments of crops grown in the municipal biosolids-amended soil and in the control soil were less than 25 ng/g. Bioaccumulation factors (BAFs) were calculated for the root, shoot, and fruit compartments (as applicable) of all crops grown in the industrially impacted soil. BAFs were highest for PFBA in the shoots of all crops, as well as in the fruit compartment of pea. Root­ soil concentration factors (RCFs) for tomato and pea were independent of PFAA chain length, while radish and celery RCFs showed a slight decrease with increasing chain length. Shoot-soil concentration factors (SCFs) for all crops showed a decrease with incre

  1. Salus: Kernel Support for Secure Process Compartments

    Directory of Open Access Journals (Sweden)

    Raoul Strackx

    2015-01-01

    Full Text Available Consumer devices are increasingly being used to perform security and privacy critical tasks. The software used to perform these tasks is often vulnerable to attacks, due to bugs in the application itself or in included software libraries. Recent work proposes the isolation of security-sensitive parts of applications into protected modules, each of which can be accessed only through a predefined public interface. But most parts of an application can be considered security-sensitive at some level, and an attacker who is able to gain inapplication level access may be able to abuse services from protected modules. We propose Salus, a Linux kernel modification that provides a novel approach for partitioning processes into isolated compartments sharing the same address space. Salus significantly reduces the impact of insecure interfaces and vulnerable compartments by enabling compartments (1 to restrict the system calls they are allowed to perform, (2 to authenticate their callers and callees and (3 to enforce that they can only be accessed via unforgeable references. We describe the design of Salus, report on a prototype implementation and evaluate it in terms of security and performance. We show that Salus provides a significant security improvement with a low performance overhead, without relying on any non-standard hardware support.

  2. Compartment elasticity measured by pressure-related ultrasound to determine patients "at risk" for compartment syndrome: an experimental in vitro study.

    Science.gov (United States)

    Sellei, Richard Martin; Hingmann, Simon Johannes; Kobbe, Philipp; Weber, Christian; Grice, John Edward; Zimmerman, Frauke; Jeromin, Sabine; Hildebrand, Frank; Pape, Hans-Christoph

    2015-01-01

    enhancement, this application may improve detection of early signs of potential compartment syndrome.

  3. Evaluation of acute compartment syndrome of extremities in ...

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    compartment syndrome in children; Acute compartment syndrome and fasciotomy. INTRODUCTIONᴪ .... these patients were manipulated under general anaesthesia ... of these children. The clinical diagnosis of increased ICP is not easy.

  4. Compartment syndrome can also be seen in the forearm

    DEFF Research Database (Denmark)

    Asmar, Ali; Broholm, Rikke; Bülow, Jens

    2014-01-01

    Chronic compartment syndrome is a challenge for the clinician and symptomatic similar to neuropathies, tenosynovitis, stress fractures and referred pain from lumbar cervicalis. Thus, chronic compartment syndrome of the upper extremities is probably an underdiagnosed condition. In patients...

  5. 14 CFR 23.853 - Passenger and crew compartment interiors.

    Science.gov (United States)

    2010-01-01

    ... Photographic Film PH1.25 (available from the American National Standards Institute, 1430 Broadway, New York, N... stowage compartments and compartments for stowing small items such as magazines and maps) must be self...

  6. Rhabdomyolysis and compartment syndrome in a bodybuilder undergoing minimally invasive cardiac surgery

    Directory of Open Access Journals (Sweden)

    Sebastian John Baxter

    2017-01-01

    Full Text Available Rhabdomyolysis is the result of skeletal muscle tissue injury and is characterized by elevated creatine kinase levels, muscle pain, and myoglobinuria. It is caused by crush injuries, hyperthermia, drugs, toxins, and abnormal metabolic states. This is often difficult to diagnose perioperatively and can result in renal failure and compartment syndrome if not promptly treated. We report a rare case of inadvertent rhabdomyolysis and compartment syndrome in a bodybuilder undergoing minimally invasive cardiac surgery. The presentation, differential diagnoses, and management are discussed. Hyperkalemia may be the first presenting sign. Early recognition and management are essential to prevent life-threatening complications.

  7. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel fuel tanks. 169.627... SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel tanks. Unless they are adequately ventilated, enclosed compartments or spaces containing diesel fuel tanks and...

  8. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function.

    Directory of Open Access Journals (Sweden)

    Arturo Diaz

    2015-03-01

    Full Text Available Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV RNA replication occurs on perinuclear endoplasmic reticulum (ER membranes in ~70 nm vesicular invaginations (spherules. BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance.

  9. A Time- and Compartment-Specific Activation of Lung Macrophages in Hypoxic Pulmonary Hypertension.

    Science.gov (United States)

    Pugliese, Steven C; Kumar, Sushil; Janssen, William J; Graham, Brian B; Frid, Maria G; Riddle, Suzette R; El Kasmi, Karim C; Stenmark, Kurt R

    2017-06-15

    Studies in various animal models suggest an important role for pulmonary macrophages in the pathogenesis of pulmonary hypertension (PH). Yet, the molecular mechanisms characterizing the functional macrophage phenotype relative to time and pulmonary localization and compartmentalization remain largely unknown. In this study, we used a hypoxic murine model of PH in combination with FACS to quantify and isolate lung macrophages from two compartments over time and characterize their programing via RNA sequencing approaches. In response to hypoxia, we found an early increase in macrophage number that was restricted to the interstitial/perivascular compartment, without recruitment of macrophages to the alveolar compartment or changes in the number of resident alveolar macrophages. Principal component analysis demonstrated significant differences in overall gene expression between alveolar and interstitial macrophages (IMs) at baseline and after 4 and 14 d hypoxic exposure. Alveolar macrophages at both day 4 and 14 and IMs at day 4 shared a conserved hypoxia program characterized by mitochondrial dysfunction, proinflammatory gene activation, and mTORC1 signaling, whereas IMs at day 14 demonstrated a unique anti-inflammatory/proreparative programming state. We conclude that the pathogenesis of vascular remodeling in hypoxic PH involves an early compartment-independent activation of lung macrophages toward a conserved hypoxia program, with the development of compartment-specific programs later in the course of the disease. Thus, harnessing time- and compartment-specific differences in lung macrophage polarization needs to be considered in the therapeutic targeting of macrophages in hypoxic PH and potentially other inflammatory lung diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes.

    Science.gov (United States)

    Takano, Tetsuya; Urushibara, Tomoki; Yoshioka, Nozomu; Saito, Taro; Fukuda, Mitsunori; Tomomura, Mineko; Hisanaga, Shin-Ichi

    2014-06-01

    Neurons extend two types of neurites-axons and dendrites-that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth. © 2014 Takano et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Endosomal protein sorting and autophagy genes contribute to the regulation of yeast life span.

    Science.gov (United States)

    Longo, Valter D; Nislow, Corey; Fabrizio, Paola

    2010-11-01

    Accumulating evidence from various organisms points to a role for autophagy in the regulation of life span. By performing a genome-wide screen to identify novel life span determinants in Saccharomyces cerevisiae, we have obtained further insights into the autophagy-related and -unrelated degradation processes that may be important for preventing cellular senescence. The generation of multivesicular bodies and their fusion with the vacuole in the endosomal pathway emerged as novel cell functions involved in yeast chronological survival and longevity extension.

  12. Endosome-based protein trafficking and Ca2+ homeostasis in the heart

    Directory of Open Access Journals (Sweden)

    Jerry eCurran

    2015-02-01

    Full Text Available The ability to dynamically regulate, traffic, retain, and recycle proteins within the cell membrane is fundamental to life and central to the normal function of the heart and cardiovascular system. In the heart, these systems are essential for the regulation of cardiac calcium, both at the level of the plasma membrane, but also at local domains of the endoplasmic reticulum, sarcoplasmic reticulum, mitochondria, nucleus, and nuclear envelope. One intracellular pathway often overlooked in relation to cardiovascular calcium regulation and signaling is the endosome-based trafficking pathway. Highlighting its importance, this system and its molecular components are evolutionarily conserved across all metazoans. However, remarkably little is known of how endosome-based protein trafficking and recycling functions within mammalian cells systems, especially in the heart. The vast majority of what is known has been derived from heterologous cell systems. However, recently, more appropriate cell and animal models been developed that have allowed researchers to begin to understand how this system functions within the intact physiological environment. All excitable cells, including cardiomyocytes, depend on the proper expression and organization of multiple ion channels, pumps, exchangers, and transporters within the plasma membrane. As the endosomal system acts to regulate the expression and localization of membrane proteins, understanding the in vivo function of this system in the heart is important. This review will focus on endosome-based protein trafficking in the heart in both health and disease. Special emphasis will be given to the role played by the family of endocytic regulatory proteins, C-terminal Eps15 homology domain -containing proteins (EHDs, as recent data demonstrates that this family of proteins is essential for the proper trafficking and localization and of key proteins involved in excitation-contraction coupling.

  13. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease

    DEFF Research Database (Denmark)

    Kovács, Gábor G; Gelpi, Ellen; Ströbel, Thomas

    2007-01-01

    The endosomal-lysosomal system (ELS) has been suggested to play a role in the pathogenesis of prion diseases. The purpose of this study was to examine how experimental observations can be translated to human neuropathology and whether alterations of the ELS relate to neuropathologic changes...... correlate with regional pathology. Overloading of this system might impair the function of lysosomal enzymes and thus may mimic some features of lysosomal storage disorders. Udgivelsesdato: 2007-Jul...

  14. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.

    Science.gov (United States)

    Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi

    2016-02-01

    Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Multi-compartment linear noise approximation

    International Nuclear Information System (INIS)

    Challenger, Joseph D; McKane, Alan J; Pahle, Jürgen

    2012-01-01

    The ability to quantify the stochastic fluctuations present in biochemical and other systems is becoming increasing important. Analytical descriptions of these fluctuations are attractive, as stochastic simulations are computationally expensive. Building on previous work, a linear noise approximation is developed for biochemical models with many compartments, for example cells. The procedure is then implemented in the software package COPASI. This technique is illustrated with two simple examples and is then applied to a more realistic biochemical model. Expressions for the noise, given in the form of covariance matrices, are presented. (paper)

  16. [Intraabdominal hypertension and abdominal compartment syndrome

    DEFF Research Database (Denmark)

    Sonne, M.; Hilligsø, Jens Georg

    2008-01-01

    Intraabdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are rare conditions with high mortality. IAH is an intraabdominal pressure (IAP) above 12 mmHg and ACS an IAP above 20 mmHg with evidence of organ dysfunction. IAP is measured indirectly via the bladder or stomach. Various...... medical and surgical conditions increase the intraabdominal volume. When the content exceeds the compliance of the abdominal wall, the IAP rises. Increased IAP affects the functioning of the brain, lungs, circulation, kidneys, and bowel. The treatment of ACS is a reduction of IAP Udgivelsesdato: 2008/2/11...

  17. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    International Nuclear Information System (INIS)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose; Okada, Masato

    2012-01-01

    Highlights: ► p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. ► We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. ► The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. ► Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. ► The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome–lysosome fusion, which is required for processing of various macromolecules.

  18. Molecular determinants of the interaction between Doa1 and Hse1 involved in endosomal sorting.

    Science.gov (United States)

    Han, Seungsu; Shin, Donghyuk; Choi, Hoon; Lee, Sangho

    2014-03-28

    Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. dOCRL maintains immune cell quiescence by regulating endosomal traffic.

    Directory of Open Access Journals (Sweden)

    Steven J Del Signore

    2017-10-01

    Full Text Available Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome.

  20. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval.

    Directory of Open Access Journals (Sweden)

    Jennifer Hirst

    2018-01-01

    Full Text Available The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR, GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5-associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders.

  1. Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries

    Directory of Open Access Journals (Sweden)

    Meritxell Reverter

    2014-05-01

    Full Text Available Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN. Here, using Chinese hamster ovary (CHO Niemann-Pick type C1 (NPC1 mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6 accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs. This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.

  2. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    Directory of Open Access Journals (Sweden)

    Hendrik Fuchs

    2016-07-01

    Full Text Available The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  3. Methods of analysis of the membrane trafficking pathway from recycling endosomes to lysosomes.

    Science.gov (United States)

    Matsui, Takahide; Fukuda, Mitsunori

    2014-01-01

    The transferrin receptor (TfR) is responsible for iron uptake through its trafficking between the plasma membrane and recycling endosomes, and as a result it has become a well-known marker for recycling endosomes. Although the molecular basis of the TfR recycling pathway has been thoroughly investigated, the TfR degradation mechanism has been poorly understood. Exposure of cultured cells to two drugs, the protein synthesis inhibitor cycloheximide and the V-ATPase inhibitor bafilomycin A1, recently showed that TfR is not only recycled back to the plasma membrane after endocytosis but is constitutively transported to lysosomes for degradation. The results of genome-wide screening of mouse Rab small GTPases (common regulators of membrane trafficking in all eukaryotes) have indicated that Rab12 regulates TfR trafficking to lysosomes independently of the known membrane trafficking pathways, for example, the conventional endocytic pathway and recycling pathway. This chapter summarizes the methods that the authors used to analyze the membrane trafficking pathway from recycling endosomes to lysosomes that is specifically regulated by Rab12. © 2014 Elsevier Inc. All rights reserved.

  4. Integration of two RAB5 groups during endosomal transport in plants

    Science.gov (United States)

    Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko

    2018-01-01

    RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929

  5. Rheumatoid myositis leading to acute lower extremity compartment syndrome: a case-based review.

    Science.gov (United States)

    Jo, Daniel; Pompa, Tiffany; Khalil, Ambreen; Kong, Frank; Wetz, Robert; Goldstein, Mark

    2015-10-01

    Muscle pain and weakness in a rheumatoid arthritis (RA) patient has a broad differential, and myositis should be considered early in the disease course as serious limb and life-threatening sequelae may occur. A 55-year-old woman with a past medical history of methotrexate-controlled RA presented with right leg pain for 4 days. The patient suffered sensory loss in the right foot and decreased strength in the toes. Lab tests revealed elevated creatine kinase, ESR, and anti-rheumatoid factor antibody titers. CT scan revealed myositis of posterior compartment muscles. Progressive edema, pain, and neuromuscular deficits persisted despite steroid and antibiotic therapy, so the patient was taken for urgent fasciotomy for acute compartment syndrome. The muscle biopsy showed diffuse mononuclear cell infiltration as well as perivascular and perineural involvement consistent with rheumatoid myositis (RM). The patient did well post-op on a prednisone taper. This case underlines the systemic nature of RA and exemplifies the severity of inflammation that may lead to grave consequences such as compartment syndrome. The histopathology is diagnostic when there is evidence of mononuclear cell infiltration; however, this is not entirely specific. Early, aggressive therapy with immunosuppressives is warranted in such patients. RM has not, to our knowledge, been recorded to cause acute compartment syndrome. Clinicians should be aware of this uncommon manifestation of RA keeping the various presentations of rheumatoid disease in mind when faced with these patients.

  6. Modeling malware propagation using a carrier compartment

    Science.gov (United States)

    Hernández Guillén, J. D.; Martín del Rey, A.

    2018-03-01

    The great majority of mathematical models proposed to simulate malware spreading are based on systems of ordinary differential equations. These are compartmental models where the devices are classified according to some types: susceptible, exposed, infectious, recovered, etc. As far as we know, there is not any model considering the special class of carrier devices. This type is constituted by the devices whose operative systems is not targeted by the malware (for example, iOS devices for Android malware). In this work a novel mathematical model considering this new compartment is considered. Its qualitative study is presented and a detailed analysis of the efficient control measures is shown by studying the basic reproductive number.

  7. The upper hand on compartment syndrome.

    LENUS (Irish Health Repository)

    Dolan, Roisin T

    2012-11-01

    Metacarpal fractures are common injuries, accounting for approximately 30% to 40% of all hand fractures and with a lifetime incidence of 2.5%. Traditionally regarded as an innocuous injury, metacarpal fractures tend to be associated with successful outcomes after closed reduction and immobilization. Hand compartment syndrome (HCS) is a rare clinical entity with potential devastating consequences in terms of loss of function and quality-of-life outcomes. We discuss the case of a 44-year-old woman presenting with multiple closed metacarpal fractures as a result of low-energy trauma, complicated by acute HCS. We review the presentation, clinical assessment, and optimal surgical management of acute HCS with reference to international literature.

  8. Lysosomal and endosomal heterogeneity in the liver: A comparison of the intracellular pathways of endocytosis in rat liver cells

    International Nuclear Information System (INIS)

    Kindberg, G.M.; Tolleshaug, H.; Gjoen, T.; Berg, T.

    1991-01-01

    Air-filled albumin microspheres, asialoorosomucoid and formaldehyde-treated serum albumin are selectively taken up by endocytosis in rat liver Kupffer cells, parenchymal cells and endothelial cells, respectively. Intracellular transport and degradation of endocytosed material were studied by subcellular fractionation in sucrose and Nycodenz gradients after intravenous injection of the ligand. By using ligands labeled with 125I-tyramine-cellobiose, the subcellular distribution of labeled degradation products can be studied because they are trapped at the site of formation. The results show that the kinetics of intracellular transport are different in hepatic parenchymal, endothelial and Kupffer cells. In endothelial cells, the ligand is associated with two types of endosomes during the first minutes after internalization and then is transferred rapidly to the lysosomes. In parenchymal cells, 125I-tyramine-cellobiose-asialoorosomucoid was located in a relatively slowly sedimenting vesicle during the first minute after internalization and subsequently in denser endosomes. Degradation of 125I-tyramine-cellobiose-asialoorosomucoid in parenchymal cells started later than that of 125I-tyramine-cellobiose-formaldehyde-treated serum albumin in endothelial cells. Furthermore, the ligand seemed to be transferred relatively slowly from endosomes to lysosomes, and most of the undegraded ligand was in the endosomes. The rate-limiting step of proteolysis in parenchymal cells is probably the transport from endosomes to lysosomes. In Kupffer cells, most 125I-tyramine-cellobiose-microspheres are found as undegraded material in very dense endosomes up to 3 hr after injection. After 20 hr, most of the ligand is degraded in lysosomes distributed at a lower density than the endosomes in Nycodenz and sucrose gradients

  9. An experimental study on crib fires in a closed compartment

    Directory of Open Access Journals (Sweden)

    Dhurandher Bhisham Kumar

    2017-01-01

    Full Text Available An experimental investigation on burning behavior of fire in closed compartments is presented. Fire experiments were performed in a closed compartment of interior dimensions 4 × 4 × 4 m (length × width × height with ply board cribs as fire source. The parameters including the gas temperature, mass loss rate, heat flux, flame temperature, and compartment pressure were measured during the experiments. Experimental results indicated that the providing sudden ventilation to the closed compartment had great influence on the behavior of fire. The mass loss rate of the burning crib increased by 150% due to sudden ventilation which results in the increase in heat release rate by 198 kW. From the perspective of total heat flux, compartment pressure, and gas temperatures closed compartment with sudden ventilation were more hazardous.

  10. High risk of rhabdomyolysis and acute kidney injury after traumatic limb compartment syndrome.

    Science.gov (United States)

    Tsai, Wei-Hsuan; Huang, Shih-Tsai; Liu, Wen-Chung; Chen, Lee-Wei; Yang, Kuo-Chung; Hsu, Kuei-Chang; Lin, Cheng-Ta; Ho, Yen-Yi

    2015-05-01

    Rhabdomyolysis often occurs after traumatic compartment syndrome, and high morbidity and mortality have been reported with the acute kidney injury that develops subsequently. We focused on the risk factors for rhabdomyolysis and acute kidney injury in patients with traumatic compartment syndrome. We also analyzed the relation between renal function and rhabdomyolysis in these patients. A retrospective chart review was conducted from January 2006 to March 2012. Inpatients with traumatic compartment syndrome were included. We evaluated patients' demographics, history of illicit drugs use or alcohol consumption, mechanism of injury, symptoms, serum creatine kinase levels, and kidney function. A total of 52 patients with a mean age of 40.9 years were included; 23 patients had rhabdomyolysis (44.2%), of which 9 patients developed acute kidney injury (39.1%). Significant predictive factors for rhabdomyolysis were history of illicit drugs or alcohol use (P=0.039; odds ratio, 5.91) and ischemic injury (P=0.005). We found a moderate correlation between serum creatine kinase levels and serum creatinine levels (R=0.57; PRhabdomyolysis was a predisposing factor for acute kidney injury (P=0.011; odds ratio, 8.68). Four patients with rhabdomyolysis required a short period of renal replacement therapy. A high percentage of patients with traumatic compartment syndrome developed rhabdomyolysis (44.2%). Patients with rhabdomyolysis had a higher possibility of developing acute kidney injury (39.1%), and rhabdomyolysis was correlated to renal function. Early diagnosis, frequent monitoring, and aggressive treatment are suggested once compartment syndrome is suspected. The overall prognosis is good with early diagnosis and proper treatment.

  11. A human cadaver fascial compartment pressure measurement model.

    Science.gov (United States)

    Messina, Frank C; Cooper, Dylan; Huffman, Gretchen; Bartkus, Edward; Wilbur, Lee

    2013-10-01

    Fresh human cadavers provide an effective model for procedural training. Currently, there are no realistic models to teach fascial compartment pressure measurement. We created a human cadaver fascial compartment pressure measurement model and studied its feasibility with a pre-post design. Three faculty members, following instructions from a common procedure textbook, used a standard handheld intra-compartment pressure monitor (Stryker(®), Kalamazoo, MI) to measure baseline pressures ("unembalmed") in the anterior, lateral, deep posterior, and superficial posterior compartments of the lower legs of a fresh human cadaver. The right femoral artery was then identified by superficial dissection, cannulated distally towards the lower leg, and connected to a standard embalming machine. After a 5-min infusion, the same three faculty members re-measured pressures ("embalmed") of the same compartments on the cannulated right leg. Unembalmed and embalmed readings for each compartment, and baseline readings for each leg, were compared using a two-sided paired t-test. The mean baseline compartment pressures did not differ between the right and left legs. Using the embalming machine, compartment pressure readings increased significantly over baseline for three of four fascial compartments; all in mm Hg (±SD): anterior from 40 (±9) to 143 (±44) (p = 0.08); lateral from 22 (±2.5) to 160 (±4.3) (p cadaver using a standard embalming machine. Set-up is minimal and the model can be incorporated into teaching curricula. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Wide-range high-resolution transmission electron microscopy reveals morphological and distributional changes of endomembrane compartments during log to stationary transition of growth phase in tobacco BY-2 cells.

    Science.gov (United States)

    Toyooka, Kiminori; Sato, Mayuko; Kutsuna, Natsumaro; Higaki, Takumi; Sawaki, Fumie; Wakazaki, Mayumi; Goto, Yumi; Hasezawa, Seiichiro; Nagata, Noriko; Matsuoka, Ken

    2014-09-01

    Rapid growth of plant cells by cell division and expansion requires an endomembrane trafficking system. The endomembrane compartments, such as the Golgi stacks, endosome and vesicles, are important in the synthesis and trafficking of cell wall materials during cell elongation. However, changes in the morphology, distribution and number of these compartments during the different stages of cell proliferation and differentiation have not yet been clarified. In this study, we examined these changes at the ultrastructural level in tobacco Bright yellow 2 (BY-2) cells during the log and stationary phases of growth. We analyzed images of the BY-2 cells prepared by the high-pressure freezing/freeze substitution technique with the aid of an auto-acquisition transmission electron microscope system. We quantified the distribution of secretory and endosomal compartments in longitudinal sections of whole cells by using wide-range gigapixel-class images obtained by merging thousands of transmission electron micrographs. During the log phase, all Golgi stacks were composed of several thick cisternae. Approximately 20 vesicle clusters (VCs), including the trans-Golgi network and secretory vesicle cluster, were observed throughout the cell. In the stationary-phase cells, Golgi stacks were thin with small cisternae, and only a few VCs were observed. Nearly the same number of multivesicular body and small high-density vesicles were observed in both the stationary and log phases. Results from electron microscopy and live fluorescence imaging indicate that the morphology and distribution of secretory-related compartments dramatically change when cells transition from log to stationary phases of growth. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.; Betts, Laurie; Sondek, John E.; Dohlman, Henrik G.; (UNC)

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesize that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.

  14. Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds

    DEFF Research Database (Denmark)

    Borland, Helena; Vilhardt, Frederik

    2017-01-01

    . The ESCRT-mediated import of cytosolic amyloid into late endosomal exosomes, a known vehicle of transmission of macromolecules between cells, is also reviewed. Finally, mechanisms of lysosomal dysfunction, deficiency, and exocytosis are exemplified in the context of genetically identified risk factors......, mainly for Parkinson's disease. Exocytosis of prelysosomal or lysosomal organelles is a last resort for clearance of cytotoxic material and alleviates cytopathy. However, they also represent a vehicle for the concentration, posttranslational modification, and secretion of amyloid seeds....

  15. Abdominal Compartment Syndrome Secondary to Chronic Constipation

    Directory of Open Access Journals (Sweden)

    Helene Flageole

    2011-01-01

    Full Text Available Abdominal compartment syndrome (ACS is defined as an elevated intraabdominal pressure with evidence of organ dysfunction. The majority of published reports of ACS are in neonates with abdominal wall defects and in adults following trauma or burns, but it is poorly described in children. We describe the unusual presentation of an 11-year-old boy with a long history of chronic constipation who developed acute ACS requiring resuscitative measures and emergent disimpaction. He presented with a 2-week history of increasing abdominal pain, nausea, diminished appetite and longstanding encopresis. On exam, he was emaciated with a massively distended abdomen with a palpable fecaloma. Abdominal XR confirmed these findings. Within 24 hours of presentation, he became tachycardic and oliguric with orthostatic hypotension. Following two enemas, he acutely deteriorated with severe hypotension, marked tachycardia, acute respiratory distress, and a declining mental status. Endotracheal intubation, fluid boluses, and vasopressors were commenced, followed by emergent surgical fecal disimpaction. This resulted in rapid improvement in vital signs. He has been thoroughly investigated and no other condition apart from functional constipation has been identified. Although ACS secondary to constipation is extremely unusual, this case illustrates the need to actively treat constipation and what can happen if it is not.

  16. Measuring Compartment Size and Gas Solubility in Marine Mammals

    Science.gov (United States)

    2015-09-30

    bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Measuring Compartment Size and Gas Solubility in Marine...is to develop methods to estimate marine mamal tissue compartment sizes, and tissue gas solubility. We aim to improve the data available for the

  17. [Progress of midfacial fat compartments and related clinical applications].

    Science.gov (United States)

    Wen, Lihong; Wang, Jinhuang; Li, Yang; Liu, Dalie

    2018-02-01

    To review the research progress of midfacial fat compartments, and to thoroughly understand its current state of the anatomy and the aging morphologic characters of midfacial fat compartments, as well as the current status of clinical applications. The recent literature concerning the midfacial fat compartments and related clinical applications were extensively reviewed and analyzed. Midfacial fat layer has been considered as a fusion and a continuous layer, experiencing a global atrophy when aging. As more anatomical researches have done, recent studies have shown that midfacial fat layer is broadly divided into superficial and deep layers, which are both divided into different fat compartments by fascia, ligaments, or muscles. Midfacial fat compartments tend to atrophy with age, specifically in the deep fat compartments while hypertrophy in the superficial fat compartments. Clinical applications show that fat volumetric restoration with deep medial cheek fat and Ristow's space can restore the appearance of midface effectively. In recent years, the researches of midfacial fat compartments have achieved obvious progress, which will provide new ideas and basis for fat volumetric restoration. Corresponding treatments are selected based on different sites and different layers with different aging changes, reshaping a more youthful midface.

  18. Multi-compartment Fire Modeling for Switchgear Room using CFAST

    International Nuclear Information System (INIS)

    Han, Kiyoon; Kang, Dae Il; Lim, Ho Gon

    2015-01-01

    In this study, multi-compartment fire modeling for fire propagation scenario from SWGR A to SWGR B is performed using CFAST. New fire PSA method (NUREG/CR-6850) requires that the severity factor is to be calculated by fire modeling. If fire modeling is not performed, the severity factor should be estimated as one conservatively. Also, the possibility of the damages of components and cables located at adjacent compartments should be considered. Detailed fire modeling of multi-compartment fires refers to the evaluation of fire-generated conditions in one compartment that spread to adjacent ones. In general, the severity factor for multi-compartment fire scenario is smaller than that of single compartment scenario. Preliminary quantification of Hanul Unit 3 fire PSA was performed without fire modeling. As a result of quantification, multi-compartment scenario, fire propagation scenario from switchgear room (SWGR) A to SWGR B, is one of significant contributor to the CDF. In this study, fire modeling of multi-compartment was performed by Consolidated Fire Growth and Smoke Transport (CFAST) to identify the possibility of fire propagation. As a result of fire simulation, it is identified that fire propagation has little influences

  19. Multi-compartment Fire Modeling for Switchgear Room using CFAST

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kiyoon; Kang, Dae Il; Lim, Ho Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, multi-compartment fire modeling for fire propagation scenario from SWGR A to SWGR B is performed using CFAST. New fire PSA method (NUREG/CR-6850) requires that the severity factor is to be calculated by fire modeling. If fire modeling is not performed, the severity factor should be estimated as one conservatively. Also, the possibility of the damages of components and cables located at adjacent compartments should be considered. Detailed fire modeling of multi-compartment fires refers to the evaluation of fire-generated conditions in one compartment that spread to adjacent ones. In general, the severity factor for multi-compartment fire scenario is smaller than that of single compartment scenario. Preliminary quantification of Hanul Unit 3 fire PSA was performed without fire modeling. As a result of quantification, multi-compartment scenario, fire propagation scenario from switchgear room (SWGR) A to SWGR B, is one of significant contributor to the CDF. In this study, fire modeling of multi-compartment was performed by Consolidated Fire Growth and Smoke Transport (CFAST) to identify the possibility of fire propagation. As a result of fire simulation, it is identified that fire propagation has little influences.

  20. Compartment in vertical flow reactor for ferruginous mine water

    Science.gov (United States)

    Hur, Won; Cheong, Young-Wook; Yim, Gil-Jae; Ji, Sang-Woo; Hong, Ji-Hye

    2014-05-01

    Mine effluents contain varying concentrations of ferrous ion along with other metal ions. Fe(II) that quickly oxidizes to form precipitates in the presence of oxygen under net alkaline or neutral conditions. Thus, passive treatment methods are designed for the mine water to reside in an open containment area so as to allow simultaneous oxidation and precipitation of Fe(II), such as in a lagoon or an oxidation pond. A vertical flow reactor (VFR) was also suggested to remediate ferruginous mine drainage passing down through an accreting bed of ochre. However, VFR has a limited operation time until the system begins to overflow. It was also demonstrated that two-compartment VFR has a longer operation time than single compartment VFR of same size. In this study, a mathematical model was developed as a part of efforts to explore the operation of VFR, showing dynamic changes in head differences, ochre depth and Fe(II)/Fe(III) concentration in the effluent flow. The analysis shows that Fe(II) oxidation and ochre formation should be balanced with permeability of ochre bed to maximize VFR operation time and minimize residual Fe(II) in the effluent. The model demonstrates that two compartment VFR can have a longer operation time than a single-compartment VFR and that an optimum compartment ratio exists that maximize VFR operation time. Accelerated Fe(II) oxidation significantly affects the optimum ratio of compartment area and reduced residual Fe(II) in the effluent. VFR operation time can be significantly prolonged by increasing the rate of ochre formation not by accelerated Fe(II) oxidation. Taken together, ochre forms largely in the first compartment while overflowed mine water with reduced iron contents is efficiently filtered in the second compartment. These results provide us a better understanding of VFR operation and optimum design criteria for maximum operation time in a two-compartment VFR. Rapid ochre accretion in the first compartment maintains constant hydraulic

  1. Wrist arthrography: The value of the three compartment injection technique

    Energy Technology Data Exchange (ETDEWEB)

    Levinsohn, E.M.; Coren, A.B.; Palmer, A.K.; Zinberg, E.

    1987-10-01

    Arthrography of the wrist was performed on 50 consecutive patients with obscure post-traumatic wrist pain by injecting contrast separately into the radiocarpal joint, midcarpal compartment, and distal radioulnar joint. When distal radioulnar joint and midcarpal compartment injections were added to the standard radiocarpal injection, many significant unsuspected abnormalities were identified. Of the 25 triangular fibrocartilage complex abnormalities identified, six (24%) were found only with the distal radioulnar joint injection. Of the 29 abnormal communications between the midcarpal compartment and the radiocarpal joint, ten (35%) were found only with the midcarpal injection. Similarly, five of 29 (17%) of the abnormal radiocarpal-midcarpal communications would have been missed if a midcarpal injection alone had been performed. These findings indicate that separate injections into the radiocarpal joint, midcarpal compartment, and distal radioulnar joint are needed to identify a large number of abnormalities not seen with injections into one compartment alone.

  2. Computation of thermal comfort inside a passenger car compartment

    International Nuclear Information System (INIS)

    Mezrhab, A.; Bouzidi, M.

    2006-01-01

    This paper describes a numerical model to study the behaviour of thermal comfort inside the passenger car compartment according to climatic conditions and materials that compose the vehicle. The specifically developed numerical model is based on the nodal method and the finite difference method. Its specificities are: (i) the transient mode, (ii) the taking into account of the combined convection, conduction and radiation heat transfer, (iii) the coupling of two spectral bands (short-wave and long-wave radiation) and two solar fluxes (beam and diffuse). The compartment is subdivided in several solid nodes (materials constituting the compartment) and fluid nodes (volumes of air inside the compartment). The establishment of the heat balance for each node gives the evolution of its temperature. Effects of solar radiation, types of glazing, car colour and radiative properties of materials constituting the compartment are investigated

  3. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape.

    Science.gov (United States)

    Salomone, Fabrizio; Cardarelli, Francesco; Di Luca, Mariagrazia; Boccardi, Claudia; Nifosì, Riccardo; Bardi, Giuseppe; Di Bari, Lorenzo; Serresi, Michela; Beltram, Fabio

    2012-11-10

    Efficient endocytosis into a wide range of target cells and low toxicity make the arginine-rich Tat peptide (Tat(11): YGRKKRRQRRR, residues 47-57 of HIV-1 Tat protein) an excellent transporter for delivery purposes. Unfortunately, molecules taken up by endocytosis undergo endosomal entrapment and possible metabolic degradation. Escape from the endosome is therefore actively researched. In this context, antimicrobial peptides (AMPs) provide viable templates for the design of new membrane-disruptive motifs. In particular the Cecropin-A and Melittin hybrids (CMs) are among the smallest and most effective peptides with membrane-perturbing abilities. Here we present a novel chimeric peptide in which the Tat(11) motif is fused to the CM(18) hybrid (KWKLFKKIGAVLKVLTTG, residues 1-7 of Cecropin-A and 2-12 of Melittin). When administered to cells, CM(18)-Tat(11) combines the two desired functionalities: efficient uptake and destabilization of endocytotic-vesicle membranes. We show that this chimeric peptide effectively increases cargo-molecule cytoplasm availability and allows the subsequent intracellular localization of diverse membrane-impermeable molecules (i.e. Tat(11)-EGFP fusion protein, calcein, dextrans, and plasmidic DNA) with no detectable cytotoxicity. The present results open the way to the rational engineering of "modular" cell-penetrating peptides (CPPs) that combine (i) efficient translocation from the extracellular milieu into vesicles and (ii) efficient release of molecules from vesicles into the cytoplasm. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The Annexin A1 Receptor FPR2 Regulates the Endosomal Export of Influenza Virus

    Directory of Open Access Journals (Sweden)

    Fryad Rahman

    2018-05-01

    Full Text Available The Formyl Peptide Receptor 2 (FPR2 is a novel promising target for the treatment of influenza. During viral infection, FPR2 is activated by annexinA1, which is present in the envelope of influenza viruses; this activation promotes virus replication. Here, we investigated whether blockage of FPR2 would affect the genome trafficking of influenza virus. We found that, upon infection and cell treatment with the specific FPR2 antagonist WRW4 or the anti-FPR2 monoclonal antibody, FN-1D6-AI, influenza viruses were blocked into endosomes. This effect was independent on the strain and was observed for H1N1 and H3N2 viruses. In addition, blocking FPR2signaling in alveolar lung A549 epithelial cells with the monoclonal anti-FPR2 antibody significantly inhibited virus replication. Altogether, these results show that FPR2signaling interferes with the endosomal trafficking of influenza viruses and provides, for the first time, the proof of concept that monoclonal antibodies directed against FPR2 inhibit virus replication. Antibodies-based therapeutics have emerged as attractive reagents in infectious diseases. Thus, this study suggests that the use of anti-FPR2 antibodies against influenza hold great promise for the future.

  5. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1.

    Science.gov (United States)

    Wang, Han; Shi, Yi; Song, Jian; Qi, Jianxun; Lu, Guangwen; Yan, Jinghua; Gao, George F

    2016-01-14

    Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Mobility of tethering factor EEA1 on endosomes is decreased upon stimulation of EGF receptor endocytosis in HeLa cells

    International Nuclear Information System (INIS)

    Kosheverova, Vera V.; Kamentseva, Rimma S.; Gonchar, Ilya V.; Kharchenko, Marianna V.; Kornilova, Elena S.

    2016-01-01

    Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time of slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering. - Highlights: • EEA1 mobility was compared in serum-starved and EGF-stimulated interphase HeLa cells. • FRAP analysis revealed fast and slow components of EEA1 recovery in both cases. • Stimulation of EGFR endocytosis did not affect fast EEA1 turnover. • EGF stimulation significantly increased half-time of slowly exchanged EEA1 fraction.

  7. Mobility of tethering factor EEA1 on endosomes is decreased upon stimulation of EGF receptor endocytosis in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kosheverova, Vera V., E-mail: kosheverova_vera@incras.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kamentseva, Rimma S., E-mail: rkamentseva@yandex.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034 (Russian Federation); Gonchar, Ilya V., E-mail: ample@mail.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kharchenko, Marianna V., E-mail: mariannakharchenko@gmail.com [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); Kornilova, Elena S., E-mail: lenkor@mail.cytspb.rssi.ru [Institute of Cytology of RAS, 4, Tikhoretsky Ave, St. Petersburg, 194064 (Russian Federation); St. Petersburg State University, 7-9, Universitetskaya nab, St. Petersburg, 199034 (Russian Federation); Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya, St.Petersburg, 195251 (Russian Federation)

    2016-04-22

    Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time of slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering. - Highlights: • EEA1 mobility was compared in serum-starved and EGF-stimulated interphase HeLa cells. • FRAP analysis revealed fast and slow components of EEA1 recovery in both cases. • Stimulation of EGFR endocytosis did not affect fast EEA1 turnover. • EGF stimulation significantly increased half-time of slowly exchanged EEA1 fraction.

  8. International Space Station USOS Waste and Hygiene Compartment Development

    Science.gov (United States)

    Link, Dwight E., Jr.; Broyan, James Lee, Jr.; Gelmis, Karen; Philistine, Cynthia; Balistreri, Steven

    2007-01-01

    The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. Additional hardware is planned for the United States Operational Segment (USOS) to support expansion of the crew to six person capability. The additional hardware will be integrated in an ISS standard equipment rack structure that was planned to be installed in the Node 3 element; however, the ISS Program Office recently directed implementation of the rack, or Waste and Hygiene Compartment (WHC), into the U.S. Laboratory element to provide early operational capability. In this configuration, preserved urine from the WHC waste collection system can be processed by the Urine Processor Assembly (UPA) in either the U.S. Lab or Node 3 to recover water for crew consumption or oxygen production. The human waste collection hardware is derived from the Service Module system and is provided by RSC-Energia. This paper describes the concepts, design, and integration of the WHC waste collection hardware into the USOS including integration with U.S. Lab and Node 3 systems.

  9. The NKG2D ligand ULBP2 is specifically regulated through an invariant chain-dependent endosomal pathway

    DEFF Research Database (Denmark)

    Uhlenbrock, Franziska Katharina; Hagemann-Jensen, Michael Henrik; Kehlet, Stephanie

    2014-01-01

    by affecting endosomal/lysosomal integrity and protein kinase C activity. The invariant chain was further essential for endosomal transport of ULBP2. This novel pathway was identified through screening experiments by which methylselenic acid was found to possess notable NKG2D ligand regulatory properties....... The protein kinase C inhibitor methylselenic acid induced MICA/B surface expression but dominantly blocked ULBP2 surface transport. Remarkably, by targeting this novel pathway we could specifically block the production of soluble ULBP2 from different, primary melanomas. Our findings strongly suggest...

  10. Functional outcome of tibial fracture with acute compartment syndrome and correlation to deep posterior compartment pressure.

    Science.gov (United States)

    Goyal, Saumitra; Naik, Monappa A; Tripathy, Sujit Kumar; Rao, Sharath K

    2017-05-18

    To measure single baseline deep posterior compartment pressure in tibial fracture complicated by acute compartment syndrome (ACS) and to correlate it with functional outcome. Thirty-two tibial fractures with ACS were evaluated clinically and the deep posterior compartment pressure was measured. Urgent fasciotomy was needed in 30 patients. Definite surgical fixation was performed either primarily or once fasciotomy wound was healthy. The patients were followed up at 3 mo, 6 mo and one year. At one year, the functional outcome [lower extremity functional scale (LEFS)] and complications were assessed. Three limbs were amputated. In remaining 29 patients, the average times for clinical and radiological union were 25.2 ± 10.9 wk (10 to 54 wk) and 23.8 ± 9.2 wk (12 to 52 wk) respectively. Nine patients had delayed union and 2 had nonunion who needed bone grafting to augment healing. Most common complaint at follow up was ankle stiffness (76%) that caused difficulty in walking, running and squatting. Of 21 patients who had paralysis at diagnosis, 13 (62%) did not recover and additional five patients developed paralysis at follow-up. On LEFS evaluation, there were 14 patients (48.3%) with severe disability, 10 patients (34.5%) with moderate disability and 5 patients (17.2%) with minimal disability. The mean pressures in patients with minimal disability, moderate disability and severe disability were 37.8, 48.4 and 58.79 mmHg respectively ( P fractures causes severe functional disability in majority of patients. These patients are prone for delayed union and nonunion; however, long term disability is mainly because of severe soft tissue contracture. Intra-compartmental pressure (ICP) correlates with functional disability; patients with relatively high ICP are prone for poor functional outcome.

  11. Trace elements distribution in environmental compartments

    International Nuclear Information System (INIS)

    Queiroz, Juliana C. de; Peres, Sueli da Silva; Godoy, Maria Luiza D.P.

    2017-01-01

    Trace elements term defines the presence of low concentrations metals at environment. Some of them are considered biologically essential, as Co, Cu and Mn. Others can cause detriment to environment and human health, as Pb, Cd, Hg, As, Ti and U. A large number of them have radioactive isotopes, implying the evaluation of risks for human health should be done considering the precepts of environmental radiological protection. The ecosystem pollution with trace elements generates changes at the geochemistry cycle of these elements and in environmental quality. Soils have single characteristics when compared with another components of biosphere (air, water and biota), cause they introduce themselves not only as a drain towards contaminants, but also as natural buffer that control the transport of chemical elements and other substances for atmosphere, hydrosphere and biota. The main purpose of environmental monitoring program is to evaluate the levels of contaminants in the various compartments of the environment: natural or anthropogenic, and to assess the contribution of a potential contaminant source on the environment. Elemental Composition for the collected samples was determined by inductively coupled plasma mass spectroscopy. The main objective of this work was to evaluate the map baseline of concentration of interest trace elements in environmental samples of water, sediment and soil from Environmental Monitoring Program of Instituto de Radioprotecao e Dosimetria (IRD). The samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS) at IRD. >From the knowledge of trace elements concentrations, could be evaluated the environmental quality parameters at the studied ecosystems. The data allowed evaluating some relevant aspects of the study of trace elements in soil and aquatic systems, with emphasis at the distribution, concentration and identification of main anthropic sources of contamination at environment. (author)

  12. Trace elements distribution in environmental compartments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Juliana C. de; Peres, Sueli da Silva; Godoy, Maria Luiza D.P., E-mail: suelip@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    Trace elements term defines the presence of low concentrations metals at environment. Some of them are considered biologically essential, as Co, Cu and Mn. Others can cause detriment to environment and human health, as Pb, Cd, Hg, As, Ti and U. A large number of them have radioactive isotopes, implying the evaluation of risks for human health should be done considering the precepts of environmental radiological protection. The ecosystem pollution with trace elements generates changes at the geochemistry cycle of these elements and in environmental quality. Soils have single characteristics when compared with another components of biosphere (air, water and biota), cause they introduce themselves not only as a drain towards contaminants, but also as natural buffer that control the transport of chemical elements and other substances for atmosphere, hydrosphere and biota. The main purpose of environmental monitoring program is to evaluate the levels of contaminants in the various compartments of the environment: natural or anthropogenic, and to assess the contribution of a potential contaminant source on the environment. Elemental Composition for the collected samples was determined by inductively coupled plasma mass spectroscopy. The main objective of this work was to evaluate the map baseline of concentration of interest trace elements in environmental samples of water, sediment and soil from Environmental Monitoring Program of Instituto de Radioprotecao e Dosimetria (IRD). The samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS) at IRD. >From the knowledge of trace elements concentrations, could be evaluated the environmental quality parameters at the studied ecosystems. The data allowed evaluating some relevant aspects of the study of trace elements in soil and aquatic systems, with emphasis at the distribution, concentration and identification of main anthropic sources of contamination at environment. (author)

  13. Compartmented pyruvate in perfused working heart

    International Nuclear Information System (INIS)

    Buenger, R.

    1985-01-01

    Pyruvate compartmentation and lactate dehydrogenase (LDH) were studied in isolated perfused working guinea pig hearts. The mean intracellular pyruvate (Pyr) contents increased with perfusate Pyr (0-2 mM) but varied only slightly with glucose (0-10 mM) and additional insulin (0.04-5 U/l), respectively. With 5-10 mM glucose plus 5 U/l insulin, but not with Pyr or lactate (Lac) as substrates, a near equilibrium between the LDH and the glycerol-3-phosphate dehydrogenase seemed to exist. Evidence for an inhibitory effect of Pyr on the activity of the LDH system of the perfused hearts was not obtained. With [U- 14 C]glucose as sole substrate, the specific activity of coronary venous Lac was near half that of precursor glucose. 14 CO 2 production was thus in quantitative agreement with rates of pyruvate oxidation that were determined as glucose uptake minus (Pyr + Lac) release. In contrast, with 0.2 mM [1- 14 C]Pyr plus 5 mM glucose, the ratio of 14 CO 2 production to specific activity of Lac overestimated Pyr oxidation judged from myocardial substrate balances and O 2 uptake, respectively; here, at least three pools of [ 14 C]HCO-3 and [ 14 C]lac, respectively, were kinetically demonstrable during washout of trace amounts of 14 C-labeled Pyr. Evidently, the specific activity of Lac was equivalent to that of mitochondrial oxidized Pyr provided [ 14 C]glucose was the sole or major precursor of cellular pyruvate. However, exogenously applied [1- 14 C]Pyr of high specific activity seemed to induce intracellular formation of both a highly and lowly labeled Pyr; the latter Pyr compartment did not seem in ready equilibrium with the cell physiologically prevailing highly labeled Pyr pool

  14. The N-terminal domains of Vps3 and Vps8 are critical for localization and function of the CORVET tethering complex on endosomes.

    Directory of Open Access Journals (Sweden)

    Nadine Epp

    Full Text Available Endosomal biogenesis depends on multiple fusion and fission events. For fusion, the heterohexameric CORVET complex as an effector of the endosomal Rab5/Vps21 GTPase has a central function in the initial tethering event. Here, we show that the CORVET-specific Vps3 and Vps8 subunits, which interact with Rab5/Vps21, require their N-terminal domains for localization and function. Surprisingly, CORVET may lack either one of the two N-terminal domains, but not both, to promote protein sorting via the endosome. The dually truncated complex mislocalizes to the cytosol and is impaired in endocytic protein sorting, but not in assembly. Furthermore, the endosomal localization can be rescued by overexpression of Vps21 or one of the truncated CORVET subunits, even though CORVET assembly is not impaired by loss of the N-terminal domains or in strains lacking all endosomal Rab5s and Ypt7. We thus conclude that CORVET requires only its C-terminal domains for assembly and has beyond its putative β-propeller domains additional binding sites for endosomes, which could be important to bind Vps21 and other endosome-specific factors for efficient endosome tethering.

  15. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT Machinery via Ubiquitination To Facilitate Viral Envelopment

    Directory of Open Access Journals (Sweden)

    Rina Barouch-Bentov

    2016-11-01

    Full Text Available Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate, an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses.

  16. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.

    Science.gov (United States)

    Merriam, Laura A; Baran, Caitlin N; Girard, Beatrice M; Hardwick, Jean C; May, Victor; Parsons, Rodney L

    2013-03-06

    After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surface for cellular responses including growth, differentiation, and survival. Pituitary adenylate cyclase activating polypeptide (PACAP; Adcyap1) is a potent neurotransmitter/neurotrophic peptide and mediates its diverse cellular functions in part through internalization of its cognate G-protein-coupled PAC1 receptor (PAC1R; Adcyap1r1). In the present study, we examined whether PAC1R endocytosis participates in the regulation of neuronal excitability. Although PACAP increased excitability in 90% of guinea pig cardiac neurons, pretreatment with Pitstop 2 or dynasore to inhibit clathrin and dynamin I/II, respectively, suppressed the PACAP effect. Subsequent addition of inhibitor after the PACAP-induced increase in excitability developed gradually attenuated excitability with no changes in action potential properties. Likewise, the PACAP-induced increase in excitability was markedly decreased at ambient temperature. Receptor trafficking studies with GFP-PAC1 cell lines demonstrated the efficacy of Pitstop 2, dynasore, and low temperatures at suppressing PAC1R endocytosis. In contrast, brefeldin A pretreatments to disrupt Golgi vesicle trafficking did not blunt the PACAP effect, and PACAP/PAC1R signaling still increased neuronal cAMP production even with endocytic blockade. Our results demonstrate that PACAP/PAC1R complex endocytosis is a key step for the PACAP modulation of cardiac neuron excitability.

  17. Hydrogen Peroxide Probes Directed to Different Cellular Compartments

    Science.gov (United States)

    Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738

  18. Hydrogen peroxide probes directed to different cellular compartments.

    Directory of Open Access Journals (Sweden)

    Mikalai Malinouski

    2011-01-01

    Full Text Available Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells.Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events.We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells.

  19. Lower limb compartment syndrome following laparoscopic colorectal surgery: a review.

    Science.gov (United States)

    Rao, M M; Jayne, D

    2011-05-01

      In spite of recent advances in technology and technique, laparoscopic colorectal surgery is associated with increased operating times when compared with open surgery. This increases the risk of acute lower limb compartment syndrome. The aim of this review was to gain a better understanding of postoperative lower limb compartment syndrome following laparoscopic colorectal surgery and to suggest strategies to avoid its occurrence. A MEDLINE search was performed using the keywords 'compartment syndrome', 'laparoscopic surgery' and 'Lloyd-Davies position' between 1970 and 2008. All relevant articles were retrieved and reviewed. A total of 54 articles were retrieved. Of the 30 articles in English, five were reviews, six were original articles and 19 were case reports, of which only one was following laparoscopic colorectal surgery. The remaining 24 were non-English articles. Of these, two were reviews and 22 were case reports, of which only one was following laparoscopic colorectal surgery. The incidence of acute compartment syndrome following laparoscopic colorectal surgery is unknown. The following are believed to be risk factors for acute lower limb compartment syndrome: the Lloyd-Davies operating position with exaggerated Trendelenburg tilt, prolonged operative times and improper patient positioning. Simple strategies are suggested to reduce its occurrence. Simple preventative measures have been identified which may help to reduce the incidence of acute lower limb compartment syndrome. However, if suspected, timely surgical intervention with four-compartment fasciotomy remains the standard of care. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.

  20. Stochastic Turing Patterns: Analysis of Compartment-Based Approaches

    KAUST Repository

    Cao, Yang; Erban, Radek

    2014-01-01

    © 2014, Society for Mathematical Biology. Turing patterns can be observed in reaction-diffusion systems where chemical species have different diffusion constants. In recent years, several studies investigated the effects of noise on Turing patterns and showed that the parameter regimes, for which stochastic Turing patterns are observed, can be larger than the parameter regimes predicted by deterministic models, which are written in terms of partial differential equations (PDEs) for species concentrations. A common stochastic reaction-diffusion approach is written in terms of compartment-based (lattice-based) models, where the domain of interest is divided into artificial compartments and the number of molecules in each compartment is simulated. In this paper, the dependence of stochastic Turing patterns on the compartment size is investigated. It has previously been shown (for relatively simpler systems) that a modeler should not choose compartment sizes which are too small or too large, and that the optimal compartment size depends on the diffusion constant. Taking these results into account, we propose and study a compartment-based model of Turing patterns where each chemical species is described using a different set of compartments. It is shown that the parameter regions where spatial patterns form are different from the regions obtained by classical deterministic PDE-based models, but they are also different from the results obtained for the stochastic reaction-diffusion models which use a single set of compartments for all chemical species. In particular, it is argued that some previously reported results on the effect of noise on Turing patterns in biological systems need to be reinterpreted.

  1. Characteristics of patients with chronic exertional compartment syndrome.

    Science.gov (United States)

    Davis, Daniel E; Raikin, Steven; Garras, David N; Vitanzo, Peter; Labrador, Hallie; Espandar, Ramin

    2013-10-01

    Chronic exertional compartment syndrome (CECS) is a condition that causes reversible ischemia and lower extremity pain during exercise. To date there are few large studies examining the characteristics of patients with CECS. This study aimed to present these characteristics by examining the largest published series of patients with a confirmed diagnosis of the disorder. An IRB-approved, retrospective review was undertaken of patients with a suspected diagnosis of CECS undergoing pre- and postexercise compartment pressure testing between 2000 and 2012. Patients were evaluated for gender, age, duration of symptoms, pain level, specific compartments involved, compartment pressure measurements, and participation and type of athletics. Two-hundred twenty-six patients (393 legs) underwent compartment pressure testing. A diagnosis of CECS was made in 153 (67.7%) patients and 250 (63.6%) legs with elevated compartment measurements; average age of the patients was 24 years (range, 13-69 years). Female patients accounted for 92 (60.1%) of those with elevated pressures. Anterior and lateral compartment pressures were elevated most frequently, with 200 (42.5%) and 167 (35.5%) compartments, respectively. One hundred forty-one (92.2%) patients reported participation in sports, with running being the most common individual sport and soccer being the most common team sport. Duration of pain prior to diagnosis averaged 28 months. Although there is ample literature pertaining to the diagnostic criteria and treatment algorithm of the condition, few papers have described the type of patient most likely to develop CECS. This is the largest study to date to evaluate the type of patient likely to present with chronic exertional compartment syndrome. Level III, retrospective review.

  2. Stochastic Turing Patterns: Analysis of Compartment-Based Approaches

    KAUST Repository

    Cao, Yang

    2014-11-25

    © 2014, Society for Mathematical Biology. Turing patterns can be observed in reaction-diffusion systems where chemical species have different diffusion constants. In recent years, several studies investigated the effects of noise on Turing patterns and showed that the parameter regimes, for which stochastic Turing patterns are observed, can be larger than the parameter regimes predicted by deterministic models, which are written in terms of partial differential equations (PDEs) for species concentrations. A common stochastic reaction-diffusion approach is written in terms of compartment-based (lattice-based) models, where the domain of interest is divided into artificial compartments and the number of molecules in each compartment is simulated. In this paper, the dependence of stochastic Turing patterns on the compartment size is investigated. It has previously been shown (for relatively simpler systems) that a modeler should not choose compartment sizes which are too small or too large, and that the optimal compartment size depends on the diffusion constant. Taking these results into account, we propose and study a compartment-based model of Turing patterns where each chemical species is described using a different set of compartments. It is shown that the parameter regions where spatial patterns form are different from the regions obtained by classical deterministic PDE-based models, but they are also different from the results obtained for the stochastic reaction-diffusion models which use a single set of compartments for all chemical species. In particular, it is argued that some previously reported results on the effect of noise on Turing patterns in biological systems need to be reinterpreted.

  3. Characterization of PEBBLEs as a Tool for Real-Time Measurement of Dictyostelium discoideum Endosomal pH

    Directory of Open Access Journals (Sweden)

    Everett Moding

    2009-01-01

    Full Text Available The measurement of intracellular ion concentration change is important for understanding the cellular mechanisms for communication. Recently developed nanosensors, (Photonic Explorers for Biomedical use with Biologically Localized Embedding PEBBLEs, have a number of advantages for measuring ions in cells over established methods using microelectrodes, unbound fluorescent dyes, or NMR. PEBBLE sensors have been shown to work in principle for measuring dynamic ion changes, but few in vivo applications have been demonstrated. We modified the protocol for the fabrication of pH sensing PEBBLEs and developed a protocol for the utilization of these sensors for the monitoring of dynamic pH changes in the endosomes of slime mold Dictyostelium discoideum (D. discoideum. Oregon Green 514-CdSe Quantum Dot PEBBLEs were used to measure real-time pH inside D. discoideum endosomes during cAMP stimulation. Endosomal pH was shown to decrease during cAMP signaling, demonstrating a movement of protons into the endosomes of D. discoideum amoebae.

  4. Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins

    NARCIS (Netherlands)

    Peden, A.A.; Oorschot, V.; Hesser, B.A.; Austin, C.D.; Scheller, R.H.; Klumperman, J.

    2004-01-01

    The adaptor protein (AP) 3 adaptor complex has been implicated in the transport of lysosomal membrane proteins, but its precise site of action has remained controversial. Here, we show by immuno-electron microscopy that AP-3 is associated with budding profiles evolving from a tubular endosomal

  5. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL

    NARCIS (Netherlands)

    Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; Van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart

    2016-01-01

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal

  6. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL

    NARCIS (Netherlands)

    Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal

  7. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction.

    Science.gov (United States)

    Liao, Edward H; Gray, Lindsay; Tsurudome, Kazuya; El-Mounzer, Wassim; Elazzouzi, Fatima; Baim, Christopher; Farzin, Sarah; Calderon, Mario R; Kauwe, Grant; Haghighi, A Pejmun

    2018-01-01

    Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons.

  8. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  9. Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant.

    Science.gov (United States)

    Cunningham, Margaret R; Nisar, Shaista P; Cooke, Alexandra E; Emery, Elizabeth D; Mundell, Stuart J

    2013-05-01

    P2Y12 receptor internalization and recycling play an essential role in ADP-induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild-type (WT) P2Y12 recycling and investigated P2Y12 -P341A receptor traffic. Treatment with ADP resulted in delayed Rab5-dependent internalization of P341A when compared with WT P2Y12 . While WT P2Y12 rapidly recycled back to the membrane via Rab4 and Rab11 recycling pathways, limited P341A recycling was observed, which relied upon Rab11 activity. Although minimal receptor degradation was evident, P341A was localized in Rab7-positive endosomes with considerable agonist-dependent accumulation in the trans-Golgi network (TGN). Rab7 activity is known to facilitate recruitment of retromer complex proteins to endosomes to transport cargo to the TGN. Here, we identified that P341A colocalized with Vps26; depletion of which blocked limited recycling and promoted receptor degradation. This study has identified key points of divergence in the endocytic traffic of P341A versus WT-P2Y12 . Given that these pathways are retained in human platelets, this research helps define the molecular mechanisms regulating P2Y12 receptor traffic and explain the compromised receptor function in the platelets of the P2Y12 -P341A-expressing patient. © 2013 John Wiley & Sons A/S.

  10. 14 CFR 25.365 - Pressurized compartment loads.

    Science.gov (United States)

    2010-01-01

    ... flight, and stress concentrations and fatigue effects must be accounted for. (c) If landings may be made... small compartment. The size Ho must be computed by the following formula: Ho=PAs where, Ho=Maximum...

  11. Turbofan Engine Core Compartment Vent Aerodynamic Configuration Development Methodology

    Science.gov (United States)

    Hebert, Leonard J.

    2006-01-01

    This paper presents an overview of the design methodology used in the development of the aerodynamic configuration of the nacelle core compartment vent for a typical Boeing commercial airplane together with design challenges for future design efforts. Core compartment vents exhaust engine subsystem flows from the space contained between the engine case and the nacelle of an airplane propulsion system. These subsystem flows typically consist of precooler, oil cooler, turbine case cooling, compartment cooling and nacelle leakage air. The design of core compartment vents is challenging due to stringent design requirements, mass flow sensitivity of the system to small changes in vent exit pressure ratio, and the need to maximize overall exhaust system performance at cruise conditions.

  12. Environmental fate and transport analysis with compartment modeling

    National Research Council Canada - National Science Library

    Little, Keith W

    2012-01-01

    .... Discussing various modeling issues in a single volume, this text provides an introduction to a specific numerical modeling technique called the compartment approach and offers a practical user's guide to the GEM...

  13. Chronic exertional compartment syndrome in the forearm of a rower

    African Journals Online (AJOL)

    ICP) measurement (Fig. 1). Testing of the flexor compart- ments revealed a raised resting pressure of 16 ... the following values suggestive of CECS in the lower limb: A pre- ... toxin decreases muscle mass and therefore causes a reduction of.

  14. Microbial investigations of deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, V.; Sergeant, C.; Vesvres, M.H.; Joulian, C.; Coulon, S.; Le Marrec, C.; Garrido, F.

    2010-01-01

    Document available in extended abstract form only. Deep sedimentary rocks are now considered to contain a significant part of the total bacterial population, but are microbiologically unexplored. The drilling down to the base of the Triassic (1980 meters deep) in the geological formations of the eastern Paris Basin performed by ANDRA (EST433) in 2008 provides us a good opportunity to explore the deep biosphere. We conditioned and sub-sampled on the coring site, in as aseptic conditions as possible, the nine cores: two in the Callovo-Oxfordian clay, two in the Dogger, five in the Triassic compartments. In addition to storage at atmospheric pressure, a portion of the five Triassic samples was placed in a 190 bars pressurized bars chamber to investigate the influence of the conservation pressure factor on the found microflora. In parallel, in order to evaluate a potential bacterial contamination of the core by the drilling fluids, samples of mud just before each sample drilling were taken and analysed. The microbial exploration we started can be divided in two parts: - A cultural approach in different culture media for six metabolic groups to try to find microbial cells still viable. This type of experiment is difficult because of the small proportion of cultivable species, especially in these extreme environmental samples. - A molecular approach by direct extraction of genomic DNA from the geological samples to explore a larger biodiversity. Here, the limits are the difficulties to extract DNA from these low biomass containing rocks. The five Triassic samples were partly crushed in powder and inoculated in the six culture media with four NaCl concentrations, because this type of rock is known as saline or hyper-saline, and incubated at three temperatures: 30 deg. C, 55 deg. C under agitation and 70 deg. C. First results will be presented. The direct extraction of DNA needs a complete method optimisation to adapt existent procedures (using commercial kit and classical

  15. Topology Optimization of Spacecraft Transfer Compartment

    Directory of Open Access Journals (Sweden)

    A. A. Borovikov

    2016-01-01

    Full Text Available IntroductionThe subject of this research is topology optimization of the adapter of a spacecraft transfer compartment. The finite element topology optimization [1] is widely used for simple structure elements [6, 7]. It is argued that using this method in conjunction with additive technology (3D - printing it is possible to create construction designs with the best weight characteristics. However, the paper shows that when applying this method to a complex construction design the optimization results are highly sensitive to optimization algorithm parameters. The goal of this research is to study parameters of the topology optimization algorithm and the influence of their variations on results.1.      Problem formulation   A commercial software Altair HyperWorks/OptiStruct (student’s license performed numerical calculations. The paper presents a detailed description of the finite element model.The main features of the proposed model are as follows:-          Simplicity with non-complicated geometry;-          Building a finite element model in terms of computing time minimization;-          Using the lumped mass elements to simulate the impacts of the conjugates on the adapter;-          A limit of material strength, decreased by an order of magnitude, to eliminate stress concentrators;-          The gravitational load applied corresponds to the loads for the Angara-A5 launcher [8]. 2.      Method of solutionA brief description of the SIMP-method realized in the Altair HyperWorks/OptiStruct software is given.3.      ResultsPerformed numerical calculations, and shown the influence of variations of algorithm parameters (DISCRETE, MATINIT, MINDIM, MAXDIM on construction design as well as the parameters SINGLE and SPLIT used to reveal restrictions on manufacturing.Shown that, depending on variations of parameters, an adapter construction strives to «truss» or «shell» type. Described

  16. Intracellular pH (pHin) and cytosolic calcium ([Ca2+]cyt) regulation via ATPases: studies in cell populations, single cells, and subcellular compartments

    Science.gov (United States)

    Rojas, Jose D.; Sanka, Shankar C.; Gyorke, Sandor; Wesson, Donald E.; Minta, Akwasi; Martinez-Zaguilan, Raul

    1999-07-01

    Changes in pHin and (Ca2+)cyt are important in the signal transduction mechanisms leading to many physiological responses including cell growth, motility, secretion/exocytosis, etc. The concentrations of these ions are regulated via primary and secondary ion transporting mechanisms. In diabetes, specific pH and Ca2+ regulatory mechanism might be altered. To study these ions, we employ fluorescence spectroscopy, and cell imagin spectroscopy/confocal microscopy. pH and Ca2+ indicators are loaded in the cytosol with acetoxymethyl ester forms of dyes, and in endosomal/lysosomal (E/L) compartments by overnight incubation of cells with dextran- conjugated ion fluorescent probes. We focus on specific pH and Ca2+ regulatory systems: plasmalemmal vacuolar- type H+-ATPases (pm V-ATPases) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCA). As experimental models, we employ vascular smooth muscle (VSM) and microvascular endothelial cells. We have chosen these cells because they are important in blood flow regulation and in angiogenesis. These processes are altered in diabetes. In many cell types, ion transport processes are dependent on metabolism of glucose for maximal activity. Our main findings are: (a) glycolysis coupling the activity of SERCA is required for cytosolic Ca2+ homeostasis in both VSM and microvascular endothelial cells; (b) E/L compartments are important for pH and Ca2+ regulation via H+-ATPases and SERCA, respectively; and (c) pm-V- ATPases are important for pHin regulation in microvascular endothelial cells.

  17. The role of each compartment in a two-compartment vertical flow reactor for ferruginous mine water treatment.

    Science.gov (United States)

    Yim, G J; Cheong, Y W; Hong, J H; Hur, W

    2014-10-01

    A vertical flow reactor (VFR) has been suggested for remediation of ferruginous mine drainage that passes down through an accreting bed of ochre. However, a VFR has a limited operation time until the system begins to overflow. In this study, a mathematical model was developed as a part of the effort to explore the operation of a VFR, showing dynamic changes in the head differences, ochre depths, and Fe(II)/Fe(III) concentrations in the effluent flow. The analysis showed that VFR operation time extended from 148.5 days to 163 days in an equally divided and to 168.4 days in asymmetrically (0.72:0.28) divided two-compartment VFR, suggesting that an optimum compartment ratio exists that maximizes the VFR operation time. A constant head filtration in the first compartment maximized filtration efficiency and thus prolonged VFR longevity in the two-compartment VFR. Fe(II) oxidation and ochre formation should be balanced with the permeability of the ochre bed to maximize the VFR operation time and minimize the residual Fe(II) in the effluent. Accelerated Fe(II) oxidation affected the optimum ratio of the compartment area and reduced the residual Fe(II) in the effluent. The VFR operation time can be prolonged significantly from 764 days to 3620 days by increasing the rate of ochre formation, much more than by accelerating the Fe(II) oxidation. During the prolonged VFR operation, ochre formed largely in the first compartment, while overflowing mine water with reduced iron content was effectively filtered in the second compartment. These results not only provide a better understanding of VFR operation but also suggest the direction of evolution of two-compartment VFR toward a compact and highly efficient facility integrated with an aerated cascade and with automatic coagulant feeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Lateral sellar compartment O.T. (cavernous sinus): history, anatomy, terminology.

    Science.gov (United States)

    Parkinson, D

    1998-08-01

    Claudios Galen (119-199 a.d.) dissected lower animals with parasellar carotid retia bathed in venous blood and transposed his findings to human anatomy. Andreas Vesalius (1514-1564) corrected most of Galen's errors but apparently never looked into this small, extradural compartment, nor, apparently, did Winslow (Exposition Anatomique de la Structure du Corps Humain. London: N. Prevast, 1734), who christened it the "cavernous sinus," (CS) presumably thinking that it would resemble the corpora cavernosa of the penis. Multiple surgical explorations, gross dissections, microscopic views, and vascular casts from early fetuses to an 81 year old have been examined and reviewed. The CS is not a dural sinus nor is it cavernous. The compartment is extradural, and the venous structures contained within consist of a greatly variable plexus of extremely thin-walled veins. The name, CS, is a barrier to the understanding of the structure and function of this extradural anatomical jewel box, which contains fat, myelinated and nonmyelinated nerves, arteries, and a plexus of veins. It is proposed that this name be changed, because it is inaccurate and misleading. The replacement should leave no doubt about its meaning. The lateral sellar compartment is descriptive and accurate. The veins within are a parasellar plexus.

  19. The formation and transformation of hormones in maternal, placental and fetal compartments: biological implications.

    Science.gov (United States)

    Pasqualini, Jorge R; Chetrite, Gérard S

    2016-07-01

    The fetal endocrine system constitutes the earliest system developing in fetal life and operates during all the steps of gestation. Its regulation is in part dependent on the secretion of placental and/or maternal precursors emanating across the feto-maternal interface. Human fetal and placental compartments possess all the enzymatic systems necessary to produce steroid hormones. However, their activities are different and complementary: the fetus is very active in converting acetate into cholesterol, in transforming pregnanes to androstanes, various hydroxylases, sulfotransferases, while all these transformations are absent or very limited in the placenta. This compartment can transform cholesterol to C21-steroids, convert 5-ene to 4-ene steroids, and has a high capacity to aromatize C19 precursors and to hydrolyze sulfates. Steroid hormone receptors are present at an early stage of gestation and are functional for important physiological activities. The production rate of some steroids greatly increases with fetal evolution (e.g. estriol increases 500-1000 times in relation to non-pregnant women). Other hormones, such as glucocorticoids, in particular the stress hormone cortisol, adipokines (e.g. leptin, adiponectin), insulin-like growth factors, are also a key factor for regulating reproduction, metabolism, appetite and may be significant in programming the fetus and its growth. We can hypothesize that the fetal and placental factors controlling hormonal levels in the fetal compartment can be of capital importance in the normal development of extra-uterine life.

  20. Two barcodes encoded by the type-1 PDZ and by phospho-Ser312 regulate retromer/WASH-mediated sorting of the ß1-adrenergic receptor from endosomes to the plasma membrane.

    Science.gov (United States)

    Nooh, Mohammed M; Bahouth, Suleiman W

    2017-01-01

    Recycling of the majority of agonist-internalized GPCR is dependent on a type I-PDZ "barcode" in their C-tail. The recycling of wild-type (WT) ß 1 -AR is also dependent on its default "type-1 PDZ barcode", but trafficking of the ß 1 -AR is inhibited when PKA or its substrate serine at position 312 (Ser 312 ) are inactivated. We tested the hypothesis that phospho-Ser 312 provided a second barcode for ß 1 -AR sorting from endosomes to the plasma membrane by determining the role of retromer/WASH complexes in ß 1 -AR trafficking. Recycling of WT ß 1 -AR or WT ß 2 -AR was dependent on targeting the retromer to endosomal membranes via SNX3 and rab7a, and on complexing the retromer to the WASH pentamer via the C-tail of FAM21 (FAM21 C ). These maneuvers however, did not inhibit the recycling of a phospho-Ser 312 ß 1 -AR mimic ((S312D) ß 1 -AR). Knockdown of the trans-acting PDZ protein sorting nexin27 (SNX27) inhibited the recycling of WT ß 1 -AR and WT ß 2 -AR, but had no effect on (S312D) ß 1 -AR∆PDZ or on phosphorylation of WT ß 1 -AR by PKA at Ser 312 . However, depletion of FKBP15, a FAM21 C -binding endosomal protein, selectively inhibited WT ß 1 -AR but not ß 2 -AR recycling, suggesting divergence might exist in GPCR trafficking roadmaps. These results indicate that two barcodes are involved in sorting WT ß 1 -AR out of early endosomes. The first and antecedent "barcode" was the "type-1 PDZ", followed by a second reversible "phospho-Ser 312 " verification "barcode". This organization allows tight regulation of ß 1 -AR density to signaling intensity in conditions associated with aberrant ß 1 -AR signaling such as in hypertension and heart failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A comparative investigation of 18F kinetics in receptors: a compartment model analysis

    International Nuclear Information System (INIS)

    Tiwari, Anjani K.; Swatantra; Kaushik, A.; Mishra, A.K.

    2010-01-01

    Full text: Some authors reported that 18 F kinetics might be useful for evaluation of neuro receptors. We hypothesized that 18 F kinetics may show some information about neuronal damage, and each rate constant might have statistically significant correlation with WO function. The purpose of this study was to investigate 99m Tc MIBI kinetics through a compartment model analysis. Each rate constant from compartment analysis was compared with WO, T1/2, and (H/M) ratio in early and delayed phase. Different animal model were studied. After an injection the dynamic planar imaging was performed on a dual-headed digital gamma camera system for 30 minutes. An ROI was drawn manually to assess the global kinetics of 18 F. By using the time-activity curve (TAC) of ROI as a response tissue function and the TAC of Aorta as an input function, we analysed 18 F pharmacokinetics through a 2-compartment model. We defined k1 as influx rate constant, k2 as out flux rate constant and k3 as specific uptake rate constant. And we calculated k1/k2 as distribution volume (Vd), k1k3/k2 as specific uptake (SU), and k1k3/(k2+k3) as clearance. For non-competitive affinity studies of PET two modelling parameters distribution volume (DV) and Bmax / Kd are also calculated. Results: Statistically significant correlations were seen between k2 and T1/2 (P 18 F at the injection had relation to the uptake of it at 30 minutes and 2 hours after the injection. Furthermore, some indexes had statistically significant correlation with DV and Bmax. These compartment model approaches may be useful to estimate the other related studies

  2. Exercise-induced acute compartment syndrome in a young man, occurring after a short race.

    Science.gov (United States)

    Basnet, Bibhusan; Matar, Mousa; Vaitilingham, Siddharthan; Chalise, Shyam; Irooegbu, Nkem; Bang, Jane

    2016-04-01

    We describe a case of exercise-induced acute compartment syndrome (ACS) in a 23-year-old man who presented to his primary care physician 48 hours after he attempted to run a 5K race. He noticed searing pain in his left leg after the first half mile but had no other symptoms. He was referred to the emergency department and diagnosed with ACS, and a fasciotomy was done. A presentation of limb pain that is out of proportion to a known or suspected injury should prompt consideration of ACS. Early recognition and surgical management are essential to achieving the best possible outcome.

  3. Interdisciplinary study of reservoir compartments and heterogeneity. Quarterly technical progress report, July 1995--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, C.W. Van; Thompson, R.S.

    1995-10-27

    This United States Department of Energy (DOE) research project was established to document the integrated team approach for solving reservoir engineering problems. A field study integrating the disciplines of geology, geophysics, and petroleum engineering will be the mechanism for documenting the integrated approach. This is an area of keen interest to the oil and gas industry. The goal will be to provide tools and approaches that can be used to detect reservoir compartments, reach a better reserve estimate, and improve profits early in the life of a field.

  4. Abdominal intra-compartment syndrome - a non-hydraulic model of abdominal compartment syndrome due to post-hepatectomy hemorrhage in a man with a localized frozen abdomen due to extensive adhesions: a case report.

    Science.gov (United States)

    Bressan, Alexsander K; Kirkpatrick, Andrew W; Ball, Chad G

    2016-09-15

    Postoperative hemorrhage is a significant cause of morbidity and mortality following liver resection. It typically presents early within the postoperative period, and conservative management is possible in the majority of cases. We present a case of late post-hepatectomy hemorrhage associated with overt abdominal compartment syndrome resulting from a localized functional compartment within the abdomen. A 68-year-old white man was readmitted with sudden onset of upper abdominal pain, vomiting, and hemodynamic instability 8 days after an uneventful hepatic resection for metachronous colon cancer metastasis. A frozen abdomen with adhesions due to complicated previous abdominal surgeries was encountered at the first intervention, but the surgery itself and initial recovery were otherwise unremarkable. Prompt response to fluid resuscitation at admission was followed by a computed tomography of his abdomen that revealed active arterial hemorrhage in the liver resection site and hemoperitoneum (estimated volume abdominal compartment syndrome. Surgical exploration confirmed a small volume of ascites and blood clots (1.2 L) under significant pressure in his supramesocolic region, restricted by his frozen lower abdomen, which we evacuated. Dramatic improvement in his ventilatory pressure was immediate. His abdomen was left open and a negative pressure device was placed for temporary abdominal closure. The fascia was formally closed after 48 hours. He was discharged home at postoperative day 6. Intra-abdominal pressure and radiologic findings of intra-abdominal hemorrhage should be carefully interpreted in patients with extensive intra-abdominal adhesions. A high index of suspicion and detailed understanding of abdominal compartment mechanics are paramount for the timely diagnosis of abdominal compartment syndrome in these patients. Clinicians should be aware that abnormal anatomy (such as adhesions) coupled with localized pathophysiology (such as hemorrhage) can create a so

  5. Membrane order in the plasma membrane and endocytic recycling compartment.

    Science.gov (United States)

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  6. Increased pressure within the abdominal compartment: intra-abdominal hypertension and the abdominal compartment syndrome.

    Science.gov (United States)

    Roberts, Derek J; Ball, Chad G; Kirkpatrick, Andrew W

    2016-04-01

    This article reviews recent developments related to intra-abdominal hypertension (IAH)/abdominal compartment syndrome (ACS) and clinical practice guidelines published in 2013. IAH/ACS often develops because of the acute intestinal distress syndrome. Although the incidence of postinjury ACS is decreasing, IAH remains common and associated with significant morbidity and mortality among critically ill/injured patients. Many risk factors for IAH include those findings suggested to be indications for use of damage control surgery in trauma patients. Medical management strategies for IAH/ACS include sedation/analgesia, neuromuscular blocking and prokinetic agents, enteral decompression tubes, interventions that decrease fluid balance, and percutaneous catheter drainage. IAH/ACS may be prevented in patients undergoing laparotomy by leaving the abdomen open where appropriate. If ACS cannot be prevented with medical or surgical management strategies or treated with percutaneous catheter drainage, guidelines recommend urgent decompressive laparotomy. Use of negative pressure peritoneal therapy for temporary closure of the open abdomen may improve the systemic inflammatory response and patient-important outcomes. In the last 15 years, investigators have better clarified the pathogenesis, epidemiology, diagnosis, and appropriate prevention of IAH/ACS. Subsequent study should be aimed at understanding which treatments effectively lower intra-abdominal pressure and whether these treatments ultimately affect patient-important outcomes.

  7. Exercise Induced Rhabdomyolysis with Compartment Syndrome and Renal Failure

    Directory of Open Access Journals (Sweden)

    Mary Colleen Bhalla

    2014-01-01

    Full Text Available Exertional rhabdomyolysis is sequela that is occasionally seen after strenuous exercise. The progression to compartment syndrome or renal failure is a rare complication that requires prompt recognition and treatment to prevent morbidity (Giannoglou et al. 2007. We present a case of a 22-year-old college football player who presented to the emergency department (ED after a typical leg workout as part of his weight conditioning. He was found to have rhabdomyolysis with evidence of renal insufficiency. His condition progressed to bilateral compartment syndrome and renal failure requiring dialysis. After bilateral fasciotomies were performed he had resolution of his compartment syndrome. He continued to be dialysis dependent and had no return of his renal function at discharge 12 days after admission.

  8. Augmented internalisation of ferroportin to late endosomes impairs iron uptake by enterocyte-like IEC-6 cells.

    Science.gov (United States)

    Oates, Phillip S; Thomas, Carla

    2005-08-01

    Absorption of iron occurs by duodenal enterocytes, involving uptake by the divalent metal transporter-1 (DMT1) and release by ferroportin. Ferroportin responds to the hepatocyte-produced 25-amino-acid-peptide hepcidin-25 by undergoing internalisation to late endosomes that impair iron release. Ferroportin is also expressed on the apical membrane of polarised Caco-2 cells, rat intestinal cells and in IEC-6 cells (an intestinal epithelial cell line). A blocking antibody to ferroportin also impairs the uptake, but not the release, of iron. In this study IEC-6 cells were used to study the mechanism of impairment or recovery from impairment produced by the blocking antibody and the fate of DMT1 and ferroportin. Uptake of 1 muM Fe(II) was studied by adding the antibody from time 0 and after adding or removing the antibody once a steady state had been reached. Surface binding, maximum iron transport rate V(max) and transporter affinity (K(m)) were measured after impairment of iron uptake. Ferroportin and DMT1 distribution were assessed by immunofluorescence microscopy. Antibody-mediated impairment, or recovery from impairment, of Fe(II) uptake occurred within minutes. Impairment was lost when the antibody was combined with the immunizing peptide. DMT1 and ferroportin undergo internalisation to late endosomes and, in the presence of the antibody, augmented internalisation of DMT1 and ferroportin caused swelling of late endosomes. Surface binding of Fe(II) and iron transport V(max) were reduced by 50%, indicating that the antibody removed membrane-bound DMT1. The ferroportin antibody induced rapid turnover of membrane ferroportin and DMT1 and its internalisation to late endosomes, resulting in impaired Fe(II) uptake.

  9. Extracellular anti-angiogenic proteins augment an endosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUVECs.

    Science.gov (United States)

    Chen, Mo; Qiu, Tao; Wu, Jiajie; Yang, Yang; Wright, Graham D; Wu, Min; Ge, Ruowen

    2018-03-09

    Classic endocytosis destinations include the recycling endosome returning to the plasma membrane or the late endosome (LE) merging with lysosomes for cargo degradation. However, the anti-angiogenic proteins angiostatin and isthmin, are endocytosed and trafficked to mitochondria (Mito) to execute apoptosis of endothelial cells. How these extracellular proteins reach mitochondria remains a mystery. Through confocal and super-resolution fluorescent microscopy, we demonstrate that angiostatin and isthmin are trafficked to mitochondria through the interaction between LE and Mito. Using purified organelles, the LE-Mito interaction is confirmed through in vitro lipid-fusion assay, as well as single vesicle total internal reflection fluorescent microscopy. LE-Mito interaction enables the transfer of not only lipids but also proteins from LE to Mito. Angiostatin and isthmin augment this endosomal protein trafficking pathway and make use of it to reach mitochondria to execute apoptosis. Cell fractionation and biochemical analysis identified that the cytosolic scaffold protein Na+/H+ exchanger regulatory factor 1 (NHERF1) associated with LE and the t-SNARE protein synaptosome-associated protein 25 kDa (SNAP25) associated with Mito form an interaction complex to facilitate LE-Mito interaction. Proximity ligation assay coupled with fluorescent microscopy showed that both NHERF1 and SNAP25 are located at the contacting face between LE and Mito. RNAi knockdown of either NHERF1 or SNAP25 suppressed not only the mitochondrial trafficking of angiostatin and isthmin but also their anti-angiogenic and pro-apoptotic functions. Hence, this study reveals a previously unrealized endosomal protein trafficking pathway from LE to Mito that allows extracellular proteins to reach mitochondria and execute apoptosis.

  10. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

    DEFF Research Database (Denmark)

    Yarani, Reza; Shiraishi, Takehiko; Nielsen, Peter E.

    2018-01-01

    Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginin...... indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore....

  11. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Science.gov (United States)

    Jurgeit, Andreas; McDowell, Robert; Moese, Stefan; Meldrum, Eric; Schwendener, Reto; Greber, Urs F

    2012-01-01

    Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV) and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+)-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  12. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Directory of Open Access Journals (Sweden)

    Andreas Jurgeit

    Full Text Available Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  13. Apical transport of influenza A virus ribonucleoprotein requires Rab11-positive recycling endosome.

    Directory of Open Access Journals (Sweden)

    Fumitaka Momose

    Full Text Available Influenza A virus RNA genome exists as eight-segmented ribonucleoprotein complexes containing viral RNA polymerase and nucleoprotein (vRNPs. Packaging of vRNPs and virus budding take place at the apical plasma membrane (APM. However, little is known about the molecular mechanisms of apical transport of newly synthesized vRNP. Transfection of fluorescent-labeled antibody and subsequent live cell imaging revealed that punctate vRNP signals moved along microtubules rapidly but intermittently in both directions, suggestive of vesicle trafficking. Using a series of Rab family protein, we demonstrated that progeny vRNP localized to recycling endosome (RE in an active/GTP-bound Rab11-dependent manner. The vRNP interacted with Rab11 through viral RNA polymerase. The localization of vRNP to RE and subsequent accumulation to the APM were impaired by overexpression of Rab binding domains (RBD of Rab11 family interacting proteins (Rab11-FIPs. Similarly, no APM accumulation was observed by overexpression of class II Rab11-FIP mutants lacking RBD. These results suggest that the progeny vRNP makes use of Rab11-dependent RE machinery for APM trafficking.

  14. Endosomal sorting complexes required for ESCRTing cells toward death during neurogenesis, neurodevelopment and neurodegeneration.

    Science.gov (United States)

    Kaul, Zenia; Chakrabarti, Oishee

    2018-03-25

    The endosomal sorting complexes required for transport (ESCRT) proteins help in the recognition, sorting and degradation of ubiquitinated cargoes from the cell surface, long-lived proteins or aggregates, and aged organelles present in the cytosol. These proteins take part in the endo-lysosomal system of degradation. The ESCRT proteins also play an integral role in cytokinesis, viral budding and mRNA transport. Many neurodegenerative diseases are caused by toxic accumulation of cargo in the cell, which causes stress and ultimately leads to neuronal death. This accumulation of cargo occurs because of defects in the endo-lysosomal degradative pathway-loss of function of ESCRTs has been implicated in this mechanism. ESCRTs also take part in many survival processes, lack of which can culminate in neuronal cell death. While the role played by the ESCRT proteins in maintaining healthy neurons is known, their role in neurodegenerative diseases is still poorly understood. In this review, we highlight the importance of ESCRTs in maintaining healthy neurons and then suggest how perturbations in many of the survival mechanisms governed by these proteins could eventually lead to cell death; quite often these correlations are not so obviously laid out. Extensive neuronal death eventually culminates in neurodegeneration. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Lucas, Leanne J.; Chen, Xiaoke K.; Smith, Aaron J.; Korbelik, Mladen; Zeng, Haishan; Lee, Patrick W. K.; Hewitt, Kevin Cecil

    2015-01-01

    The purpose of this study was to explore the use of surface-enhanced Raman spectroscopy (SERS) to image the distribution of epidermal growth factor receptor (EGFR) in cells. To accomplish this task, 30-nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per mL) were incubated with cells (106 per mL) of the A431 human epidermoid carcinoma and normal human bronchial epithelial cell lines. Using the 632.8-nm excitation line of a He-Ne laser, Raman spectroscopy measurements were performed using a point mapping scheme. Normal cells show little to no enhancement. SERS signals were observed inside the cytoplasm of A431 cells with an overall enhancement of 4 to 7 orders of magnitude. Raman intensity maps of the 1450 and 1583 cm-1 peaks correlate well with the expected distribution of EGFR and AuNPs, aggregated following uptake by endosomes and lysosomes. Spectral features from tyrosine and tryptophan residues dominate the SERS signals.

  16. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content

    Science.gov (United States)

    Mundy, Dorothy I.; Li, Wei Ping; Luby-Phelps, Katherine; Anderson, Richard G. W.

    2012-01-01

    Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking. PMID:22238363

  17. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery via Ubiquitination To Facilitate Viral Envelopment.

    Science.gov (United States)

    Barouch-Bentov, Rina; Neveu, Gregory; Xiao, Fei; Beer, Melanie; Bekerman, Elena; Schor, Stanford; Campbell, Joseph; Boonyaratanakornkit, Jim; Lindenbach, Brett; Lu, Albert; Jacob, Yves; Einav, Shirit

    2016-11-01

    Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. Viruses commonly bud at the plasma membrane by recruiting the host ESCRT machinery via conserved motifs termed late domains. The mechanism by which some viruses, such as HCV, bud intracellularly is, however, poorly characterized. Moreover, whether

  18. Modeling the signaling endosome hypothesis: Why a drive to the nucleus is better than a (random walk

    Directory of Open Access Journals (Sweden)

    Howe Charles L

    2005-10-01

    Full Text Available Abstract Background Information transfer from the plasma membrane to the nucleus is a universal cell biological property. Such information is generally encoded in the form of post-translationally modified protein messengers. Textbook signaling models typically depend upon the diffusion of molecular signals from the site of initiation at the plasma membrane to the site of effector function within the nucleus. However, such models fail to consider several critical constraints placed upon diffusion by the cellular milieu, including the likelihood of signal termination by dephosphorylation. In contrast, signaling associated with retrogradely transported membrane-bounded organelles such as endosomes provides a dephosphorylation-resistant mechanism for the vectorial transmission of molecular signals. We explore the relative efficiencies of signal diffusion versus retrograde transport of signaling endosomes. Results Using large-scale Monte Carlo simulations of diffusing STAT-3 molecules coupled with probabilistic modeling of dephosphorylation kinetics we found that predicted theoretical measures of STAT-3 diffusion likely overestimate the effective range of this signal. Compared to the inherently nucleus-directed movement of retrogradely transported signaling endosomes, diffusion of STAT-3 becomes less efficient at information transfer in spatial domains greater than 200 nanometers from the plasma membrane. Conclusion Our model suggests that cells might utilize two distinct information transmission paradigms: 1 fast local signaling via diffusion over spatial domains on the order of less than 200 nanometers; 2 long-distance signaling via information packets associated with the cytoskeletal transport apparatus. Our model supports previous observations suggesting that the signaling endosome hypothesis is a subset of a more general hypothesis that the most efficient mechanism for intracellular signaling-at-a-distance involves the association of signaling

  19. Decoupling internalization, acidification and phagosomal-endosomal/lysosomal fusion during phagocytosis of InlA coated beads in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Craig D Blanchette

    Full Text Available BACKGROUND: Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK and Caco-2 epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA, a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. CONCLUSIONS/SIGNIFICANCE: Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23-32 min, 3-4 min and 74-120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply

  20. Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli.

    Science.gov (United States)

    Bender, Brian J; Coen, Donald M; Strang, Blair L

    2014-10-01

    Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular

  1. Compartment specific importance of glutathione during abiotic and biotic stress

    Directory of Open Access Journals (Sweden)

    Bernd eZechmann

    2014-10-01

    Full Text Available The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species, redox signaling, the modulation of defense gene expression and important for the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state of plants through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, Tobacco Mosaic Virus. The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g. glutathione synthesis takes place in chloroplasts and the cytosol. Thus this review will reveal the compartment specific importance of glutathione during abiotic and biotic stress conditions.

  2. Talofibular compartment of the ankle joint after recent ankle sprain

    International Nuclear Information System (INIS)

    Lindstrand, A.; Mortensson, W.; Norman, O.

    1978-01-01

    The validity of predicting the condition of the anterior talofibular ligament from the shape of the lateral compartment of the ankle joint was investigated in patients with recent ankle sprain. The diagnostic value of the method was found to be restricted. (Auth.)

  3. Volume of the effect compartment in simulations of neuromuscular block

    NARCIS (Netherlands)

    Nigrovic, Vladimir; Proost, Johannes H.; Amann, Anton; Bhatt, Shashi B.

    2005-01-01

    Background: The study examines the role of the volume of the effect compartment in simulations of neuromuscular block (NMB) produced by nondepolarizing muscle relaxants. Methods: The molar amount of the postsynaptic receptors at the motor end plates in muscle was assumed constant; the apparent

  4. A wolf in wolf's clothing the abdominal compartment syndrome

    African Journals Online (AJOL)

    abdomen. These findings are consistent with the diagnosis of intra-abdominal compartment syndrome. In 1 case trauma was remote from the abdomen .... although they tend to develop most often in those who have undergone major vascular operations or suffered abdominal trauma. The effects of the pressure on the bowel ...

  5. Surgical treatment for ~brain compartment syndrome' in children ...

    African Journals Online (AJOL)

    Objectives. Traumatic brain injury accounts for a high percentage of deaths in children. Raised intracranial pressure (ICP) due to brain swelling within the closed compartment of the skull leads to death or severe neurological disability if not effectively treated. We report our experience with 12 children who presented with ...

  6. Intraabdominal Compartment Syndrome Complicating Transurethral Resection of Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Sachin Narain

    2012-01-01

    Full Text Available Abdominal compartment syndrome can result from many different causes. We present a case where this dangerous syndrome occurred in the operating room during a transurethral resection of a bladder tumor. It was initially recognized by an elevation in the peak inspiratory pressure. We report the typical physiologic changes that occur with this syndrome and its treatment options.

  7. The anammoxosome: an intracytoplasmic compartment in anammox bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van; Fuerst, J.A.; Damste, J.S.S.; Kuenen, J.G.; Jetten, M.S.M.; Strous, M.

    2004-01-01

    Anammox bacteria belong to the phylum Planctomycetes and perform anaerobic ammonium oxidation (anammox); they oxidize ammonium with nitrite as the electron acceptor to yield dinitrogen gas. The anammox reaction takes place inside the anammoxosome: an intracytoplasmic compartment bounded by a single

  8. The anammoxosome : An intracytoplasmic compartment in anammox bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Niftrik, L.A. van; Fuerst, J.A.; Kuenen, J.G.; Jetten, M.S.M.; Strous, M.

    2004-01-01

    Anammox bacteria belong to the phylum Planctomycetes and perform anaerobic ammonium oxidation (anammox); they oxidize ammonium with nitrite as the electron acceptor to yield dinitrogen gas. The anammox reaction takes place inside the anammoxosome: an intracytoplasmic compartment bounded by a single

  9. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    Science.gov (United States)

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  10. 14 CFR 121.314 - Cargo and baggage compartments.

    Science.gov (United States)

    2010-01-01

    ...: (a) Each Class C or Class D compartment, as defined in § 25.857 of this Chapter in effect on June 16, 1986 (see Appendix L to this part), that is greater than 200 cubic feet in volume must have ceiling and sidewall liner panels which are constructed of: (1) Glass fiber reinforced resin; (2) Materials which meet...

  11. Ward Round - Late Presentation of Acute Compartment Syndrome in ...

    African Journals Online (AJOL)

    following the course of ibuprofen mentioned. Twelve days after admission he started to complain of increasing pain and tightness in his left thigh. Sensation and motor function. Ward Round - Late Presentation of Acute. Compartment Syndrome in the Thigh. University of Malawi, College of Medicine, Department of Surgery,.

  12. Decoupling Internalization, Acidification and Phagosmal-Endosomal/Iysosomal Phagocytosis of Internalin A coated Beads in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Blanchette, C D; Woo, Y; Thomas, C; Shen, N; Sulchek, T A; Hiddessen, A L

    2008-12-22

    Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established, and in several cases, it was treated as a one-step process. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells, such as epithelial cells. Therefore, in this study, we developed a simple and novel method to decouple and accurately measure particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated internalization. We achieved independent measurements of the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, pH sensitive dyes and endosomal/lysosomal dyes, as follows: the rate of InlA bead internalization was measured via antibody quenching of a pH independent dye (Alexa488) conjugated to InlA-beads, the rate at which phagosomes containing internalized InlA beads became acidified was measured using a pH dependent dye (FITC) conjugated to the beads and the rate of phagosomal-endosomal/lysosomal fusion was measured using a combination of unlabeled InlA-beads and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we also exploited the phagosomal acidification

  13. Following the Dynamics of pH in Endosomes of Live Cells with SERS Nanosensors

    DEFF Research Database (Denmark)

    Kneipp, J.; Kneipp, Harald; Wittig, B.

    2010-01-01

    The surface enhanced Raman scattering (SERS) spectrum of a reporter molecule attached to gold or silver nanostructures, which is pH-sensitive, can deliver information on the local pH in the environment of the nanostructure. Here, we demonstrate the use of a mobile SERS nanosensor made from gold...... nanaoaggregates and 4-mercaptobenzoic acid (pMBA) attached as a reporter for monitoring changes in local pH of the cellular compartments of living NIH/3T3 cells. We show that SERS nanosensors enable the dynamics of local pH in individual live cells to be followed at subendosomal resolution in a timeline...

  14. Acute lumbar paraspinal compartment syndrome: a systematic review.

    Science.gov (United States)

    Alexander, William; Low, Nelson; Pratt, George

    2018-01-08

    While still a rare entity, acute lumbar paraspinal compartment syndrome has an increasing incidence. Similar to other compartment syndromes, acute lumbar paraspinal compartment syndrome is defined by raised pressure within a closed fibro-osseous space, limiting tissue perfusion within that space. The resultant tissue ischaemia presents as acute pain, and if left untreated, it may result in permanent tissue damage. A literature search of 'paraspinal compartment syndrome' revealed 21 articles. The details from a case encountered by the authors are also included. A common data set was extracted, focusing on demographics, aetiology, clinical features, management and outcomes. There are 23 reported cases of acute compartment syndrome. These are typically caused by weight-lifting exercises, but may also result from other exercises, direct trauma or non-spinal surgery. Pain, tenderness and paraspinal paraesthesia are key clinical findings. Serum creatine kinase, magnetic resonance imaging and intracompartment pressure measurement confirm the diagnosis. Half of the reported cases have been managed with surgical fasciotomy, and these patients have all had good outcomes relative to those managed with conservative measures with or without hyperbaric oxygen therapy. These good outcomes were despite significant delays to operative intervention. The diagnostic uncertainty and subsequent delay to fasciotomy result from the rarity of this disease entity, and a high level of suspicion is recommended in the appropriate setting. This is particularly true in light of the current popularity of extreme weight lifting in non-professional athletes. Operative intervention is strongly recommended in all cases based on the available evidence. © 2018 Royal Australasian College of Surgeons.

  15. Lift-and-fill face lift: integrating the fat compartments.

    Science.gov (United States)

    Rohrich, Rod J; Ghavami, Ashkan; Constantine, Fadi C; Unger, Jacob; Mojallal, Ali

    2014-06-01

    Recent discovery of the numerous fat compartments of the face has improved our ability to more precisely restore facial volume while rejuvenating it through differential superficial musculoaponeurotic system treatment. Incorporation of selective fat compartment volume restoration along with superficial musculoaponeurotic system manipulation allows for improved control in recontouring while addressing one of the key problems in facial aging, namely, volume deflation. This theory was evaluated by assessing the contour changes from simultaneous face "lifting" and "filling" through fat compartment-guided facial fat transfer. A review of 100 face-lift patients was performed. All patients had an individualized component face lift with fat grafting to the nasolabial fold, deep malar, and high/lateral malar fat compartment locations. Photographic analysis using a computer program was conducted on oblique facial views preoperatively and postoperatively, to obtain the most projected malar contour point. Two independent observers visually evaluated the malar prominence and nasolabial fold improvements based on standardized photographs. Nasolabial fold improved by at least one grade in 81 percent and by over one grade in 11 percent. Malar prominence average projection increase was 13.47 percent and the average amount of lift was 12.24 percent. The malar prominence score improved by at least one grade in 62 percent of the patients postoperatively, and 9 percent had a greater than one grade improvement. Twenty-eight percent of the patients had a convex malar prominence postoperatively compared with 6 percent preoperatively. Malar prominence improved by at least one grade in 63 percent and by over one grade in 10 percent. The lift-and-fill face lift merges two key concepts in facial rejuvenation: (1) effective tissue manipulation by means of lifting and tightening in differential vectors according to original facial asymmetry and shape; and (2) selective fat compartment filling

  16. Does evaluation of the ligamentous compartment enhance diagnostic utility of sacroiliac joint MRI in axial spondyloarthritis?

    DEFF Research Database (Denmark)

    Weber, Ulrich; Maksymowych, Walter P; Chan, Stanley M

    2015-01-01

    in the ligamentous compartment and their potential diagnostic utility in axial SpA. We therefore aimed to evaluate the ligamentous compartment on sacroiliac joint MRI for lesion distribution and potential incremental value towards diagnosis of SpA over and above the traditional assessment of the cartilaginous...... and ligamentous compartment. The incremental value of evaluating the ligamentous additionally to the cartilaginous compartment alone for diagnosis of SpA was graded qualitatively. We determined the lesion distribution between the two compartments, and the impact of the ligamentous compartment evaluation...... on diagnostic utility. RESULTS: MRI bone marrow lesions solely in the ligamentous compartment in the absence of lesions in the cartilaginous compartment were reported in just 0-2.0/0-4.0 % (BME/fat metaplasia) of all subjects. Additional assessment of the ligamentous compartment was regarded as essential...

  17. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Mate Suzanne E

    2012-09-01

    Full Text Available Abstract Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ. We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs.

  18. Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates

    Directory of Open Access Journals (Sweden)

    Ivica eKostović

    2014-07-01

    Full Text Available The developmental vulnerability of different classes of axonal pathways in preterm white matter is not known. We propose that laminar compartments of the developing cerebral wall serve as spatial framework for axonal growth and evaluate potential of anatomical landmarks for understanding reorganization of the cerebral wall after perinatal lesions. The 3T MRI (in vivo and histological analysis were performed in a series of cases ranging from 22 PCW to 3 years. For the follow-up scans, three groups of children (control, normotypic and preterms with lesions were examined at the term equivalent age and after the first year of life. MRI and histological abnormalities were analyzed in the following compartments: (a periventricular, with periventricular fibre system; (b intermediate, with periventricular crossroads, sagittal strata and centrum semiovale; (c superficial, composed of gyral white matter, subplate and cortical plate. Vulnerability of thalamo-cortical pathways within the crossroads and sagittal strata seems to be characteristic for early preterms, while vulnerability of long association pathways in the centrum semiovale seems to be predominant feature of late preterms. The structural indicator of the lesion of the long association pathways is the loss of delineation between centrum semiovale and subplate remnant, which is possible substrate of the diffuse periventricular leukomalacia. The enhanced difference in MR signal intensity of centrum semiovale and subplate remnant, observed in damaged children after first year, we interpret as structural plasticity of intact short cortico-cortical fibres, which grow postnatally through U-zones and enter the cortex through the subplate remnant. Our findings indicate that radial distribution of MRI signal abnormalities in the cerebral compartments may be related to lesion of different classes of axonal pathways and have prognostic value for predicting the likely outcome of prenatal and perinatal

  19. Air quality inside the passenger compartment of a bus.

    Science.gov (United States)

    Conceição, E Z; Silva, M C; Viegas, D X

    1997-01-01

    The indoor air quality in the passenger compartment of an intercity bus is studied. A system used for the remotion of the contaminants from the compartment, based on an extraction duct, was projected using a simple, unidimensional flow model with capability to predict the air exchange rate as a function of the vehicle velocity. Some tests using tracer gan methods were performed in a real vehicle with the contaminant remotion system mounted, in order to validate the calculation model and evaluate the performances of the system. A good agreement between the predicted and the experimental results was verified and the obtained air exchange rate was quite reasonable when compared with the former situation, without extraction duct.

  20. Bladder distension as a cause of abdominal compartment syndrome

    International Nuclear Information System (INIS)

    Yasir, M.; Hoda, M.Q.

    2018-01-01

    Abdominal compartment syndrome (ACS) is increasingly identified in critically ill patient and its harmful effects are well documented. The disparity among the pressure, volume in abdominal cavity and its contents, results in ACS. The actual incidence of ACS is not known. However, it has been observed predominantly in patients with severe blunt and penetrating abdominal trauma, ruptured abdominal aortic aneurysms, retro- and intra-peritoneal hemorrhage, pneumoperitoneum, neoplasm, pancreatitis, ascites and multiple bone fracture. We present a case of 40-year female who underwent emergency cesarean section and developed abdominal compartment syndrome due to urinary bladder distension secondary to blockade of urinary catheter with blood clots. This is a very unusual cause of ACS. (author)

  1. CoMIC, the hidden dynamics of mitochondrial inner compartments.

    Science.gov (United States)

    Cho, Bongki; Sun, Woong

    2017-12-01

    Mitochondria have evolutionarily, functionally and structurally distinct outer- (OMM) and inner-membranes (IMM). Thus, mitochondrial morphology is controlled by independent but coordinated activity of fission and fusion of the OMM and IMM. Constriction and division of the OMM are mediated by endocytosis-like machineries, which include dynamin-related protein 1 with additional cytosolic vesicle scissoring machineries such as actin filament and Dynamin 2. However, structural alteration of the IMM during mitochondrial division has been poorly understood. Recently, we found that the IMM and the inner compartments undergo transient and reversible constriction prior to the OMM division, which we termed CoMIC, Constriction of Mitochondrial Inner Compartment. In this short review, we further discuss the evolutionary perspective and the regulatory mechanism of CoMIC during mitochondrial division. [BMB Reports 2017; 50(12): 597-598].

  2. Bacterial assemblages differ between compartments within the coral holobiont

    Science.gov (United States)

    Sweet, M. J.; Croquer, A.; Bythell, J. C.

    2011-03-01

    It is widely accepted that corals are associated with a diverse and host species-specific microbiota, but how they are organized within their hosts remains poorly understood. Previous sampling techniques (blasted coral tissues, coral swabs and milked mucus) may preferentially sample from different compartments such as mucus, tissue and skeleton, or amalgamate them, making comparisons and generalizations between studies difficult. This study characterized bacterial communities of corals with minimal mechanical disruption and contamination from water, air and sediments from three compartments: surface mucus layer (SML), coral tissue and coral skeleton. A novel apparatus (the `snot sucker') was used to separate the SML from tissues and skeleton, and these three compartments were compared to swab samples and milked mucus along with adjacent environmental samples (water column and sediments). Bacterial 16S rRNA gene diversity was significantly different between the various coral compartments and environmental samples (PERMANOVA, F = 6.9, df = 8, P = 0.001), the only exceptions being the complete crushed coral samples and the coral skeleton, which were similar, because the skeleton represents a proportionally large volume and supports a relatively rich microflora. Milked mucus differed significantly from the SML collected with the `snot sucker' and was contaminated with zooxanthellae, suggesting that it may originate at least partially from the gastrovascular cavity rather than the tissue surface. A common method of sampling the SML, surface swabs, produced a bacterial community profile distinct from the SML sampled using our novel apparatus and also showed contamination from coral tissues. Our results indicate that microbial communities are spatially structured within the coral holobiont, and methods used to describe these need to be standardized to allow comparisons between studies.

  3. Hydrogen peroxide probes directed to different cellular compartments.

    OpenAIRE

    Mikalai Malinouski; You Zhou; Vsevolod V Belousov; Dolph L Hatfield; Vadim N Gladyshev

    2011-01-01

    Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular ...

  4. Elimination behavior of shelter dogs housed in double compartment kennels.

    Directory of Open Access Journals (Sweden)

    Denae Wagner

    Full Text Available For animals in confinement housing the housing structure has tremendous potential to impact well being. Dogs in animal shelters are often housed in one of two types of confinement housing - single kennels and rooms or double compartment kennels and rooms most often separated by a guillotine door. This study examines the effect of housing on the location of elimination behavior in dogs housed in double compartment kennels were the majority of the dogs were walked daily. One side of the kennel contained the food, water and bed and the other side was empty and available except during cleaning time. Location of urination and defecation was observed daily for 579 dogs housed in indoor double compartment kennels for a total of 4440 days of observation. There were 1856 days (41.9% when no elimination was noted in the kennel. Feces, urine or both were observed in the kennel on 2584 days (58.1%. When elimination occurred in the kennel the probability of fecal elimination on the opposite side of the bed/food/water was 72.5% (95% CI 69.05% to 75.69%. The probability of urination on the opposite side of the bed/food/water was 77.4% (95% CI 74.33% to 80.07%. This study demonstrates the strong preference of dogs to eliminate away from the area where they eat, drink and sleep. Double compartment housing not only allows this - it allows staff the ability to provide safe, efficient, humane daily care and confers the added benefits of reducing risks for disease transmission for the individual dog as well as the population.

  5. SACHET, Dynamic Fission Products Inventory in PWR Multiple Compartment System

    International Nuclear Information System (INIS)

    Kodaira, Hideki

    1990-01-01

    1 - Description of program or function: SACHET evaluates the dynamic fission product inventories in the multiple compartment system of pressurized water reactor (PWR) plants. 2 - Method of solution: SACHET utilizes a matrix of fission product core inventory which is previously calculated by the ORIGEN code. 3 - Restrictions on the complexity of the problem: Liquid wastes such as chemical waste and detergent waste are not included

  6. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion.

    Science.gov (United States)

    Yates, Christian A; Flegg, Mark B

    2015-05-06

    Spatial reaction-diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction-diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as 'compartment-based' or 'on-lattice'. These models are characterized by a discretization of the computational domain into a grid/lattice of 'compartments'. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: 'how are individual particles transported between the vastly different model descriptions?' First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient implementation of

  7. Hypothyroid-induced acute compartment syndrome in all extremities.

    Science.gov (United States)

    Musielak, Matthew C; Chae, Jung Hee

    2016-12-20

    Acute compartment syndrome (ACS) is an uncommon complication of uncontrolled hypothyroidism. If unrecognized, this can lead to ischemia, necrosis and potential limb loss. A 49-year-old female presented with the sudden onset of bilateral lower and upper extremity swelling and pain. The lower extremity anterior compartments were painful and tense. The extensor surface of the upper extremities exhibited swelling and pain. Motor function was intact, however, limited due to pain. Bilateral lower extremity fasciotomies were performed. Postoperative Day 1, upper extremity motor function decreased significantly and paresthesias occurred. She therefore underwent bilateral forearm fasciotomies. The pathogenesis of hypothyroidism-induced compartment syndrome is unclear. Thyroid-stimulating hormone-induced fibroblast activation results in increased glycosaminoglycan deposition. The primary glycosaminoglycan in hypothyroid myxedematous changes is hyaluronic acid, which binds water causing edema. This increases vascular permeability, extravasation of proteins and impaired lymphatic drainage. These contribute to increased intra-compartmental pressure and subsequent ACS. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.

  8. The statolith compartment in Chara rhizoids contains carbohydrate and protein

    Science.gov (United States)

    Wang-Cahill, F.; Kiss, J. Z.

    1995-01-01

    In contrast to higher plants, the alga Chara has rhizoids with single membrane-bound compartments that function as statoliths in gravity perception. Previous work has demonstrated that these statoliths contain barium sulfate crystals. In this study, we show that statoliths in Chara rhizoids react with a Coomassie Brilliant Blue cytochemical stain for proteins. While statoliths did not react with silver methenamine carbohydrate cytochemistry, the monoclonal antibody CCRC-M2, which is against a carbohydrate (sycamore-maple rhamnogalacturonan I), labeled the statolith compartment. These results demonstrate that in addition to barium sulfate, statoliths in Chara rhizoids have an organic matrix that consists of protein and carbohydrate moieties. Since the statoliths were silver methenamine negative, the carbohydrate in this compartment could be a 3-linked polysaccharide. CCRC-M2 also labeled Golgi cisternae, Golgi-associated vesicles, apical vesicles, and cell walls in the rhizoids. The specificity of CCRC-M2 immunolabeling was verified by several control experiments, including the demonstration that labeling was abolished when the antibody was preabsorbed with its antigen. Since in this and a previous study (John Z. Kiss and L. Andrew Staehelin, American Journal of Botany 80: 273-282, 1993) antibodies against higher plant carbohydrates crossreacted with cell walls of Chara in a specific manner, Characean algae may be a useful model system in biochemical and molecular studies of cell walls.

  9. Digital Microscopy Assessment of Angiogenesis in Different Breast Cancer Compartments

    Directory of Open Access Journals (Sweden)

    Anca Haisan

    2013-01-01

    Full Text Available Background/Aim. Tumour angiogenesis defined by microvessel density (MVD is generally accepted as a prognostic factor in breast cancer. However, due to variability of measurement systems and cutoffs, it is questionable to date whether it contributes to predictive outline. Our study aims to grade vascular heterogeneity by comparing clear-cut compartments: tumour associated stroma (TAS, tumour parenchyma, and tumour invasive front. Material and Methods. Computerized vessel area measurement was performed using a tissue cytometry system (TissueFAXS on slides originated from 50 patients with breast cancer. Vessels were marked using immunohistochemistry with CD34. Regions of interest were manually defined for each tumour compartment. Results. Tumour invasive front vascular endothelia area was 2.15 times higher than that in tumour parenchyma and 4.61 times higher than that in TAS (P<0.002. Worth to mention that the lymph node negative subgroup of patients show a slight but constant increase of vessel index in all examined compartments of breast tumour. Conclusion. Whole slide digital examination and region of interest (ROI analysis are a valuable tool in scoring angiogenesis markers and disclosing their prognostic capacity. Our study reveals compartments’ variability of vessel density inside the tumour and highlights the propensity of invasive front to associate an active process of angiogenesis with potential implications in adjuvant therapy.

  10. Role of the Small GTPase Rho3 in Golgi/Endosome trafficking through functional interaction with adaptin in Fission Yeast.

    Directory of Open Access Journals (Sweden)

    Ayako Kita

    Full Text Available BACKGROUND: We had previously identified the mutant allele of apm1(+ that encodes a homolog of the mammalian µ1A subunit of the clathrin-associated adaptor protein-1 (AP-1 complex, and we demonstrated the role of Apm1 in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we isolated rho3(+, which encodes a Rho-family small GTPase, an important regulator of exocystosis, as a multicopy-suppressor of the temperature-sensitive growth of the apm1-1 mutant cells. Overexpression of Rho3 suppressed the Cl(- sensitivity and immunosuppressant sensitivity of the apm1-1 mutant cells. Overexpression of Rho3 also suppressed the fragmentation of vacuoles, and the accumulation of v-SNARE Syb1 in Golgi/endosomes and partially suppressed the defective secretion associated with apm1-deletion cells. Notably, electron microscopic observation of the rho3-deletion cells revealed the accumulation of abnormal Golgi-like structures, vacuole fragmentation, and accumulation of secretory vesicles; these phenotypes were very similar to those of the apm1-deletion cells. Furthermore, the rho3-deletion cells and apm1-deletion cells showed very similar phenotypic characteristics, including the sensitivity to the immunosuppressant FK506, the cell wall-damaging agent micafungin, Cl(-, and valproic acid. Green fluorescent protein (GFP-Rho3 was localized at Golgi/endosomes as well as the plasma membrane and division site. Finally, Rho3 was shown to form a complex with Apm1 as well as with other subunits of the clathrin-associated AP-1 complex in a GTP- and effector domain-dependent manner. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings reveal a novel role of Rho3 in the regulation of Golgi/endosome trafficking and suggest that clathrin-associated adaptor protein-1 and Rho3 co-ordinate in intracellular transport in fission yeast. To the best of our knowledge, this study provides the first evidence

  11. Genetic reconstitution of the human Adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape

    Directory of Open Access Journals (Sweden)

    Gastaldelli Michele

    2009-10-01

    Full Text Available Abstract Human Adenoviruses infect the upper and lower respiratory tracts, the urinary and digestive tracts, lymphoid systems and heart, and give rise to epidemic conjunctivitis. More than 51 human serotypes have been identified to-date, and classified into 6 species A-F. The species C Adenoviruses Ad2 and Ad5 (Ad2/5 cause upper and lower respiratory disease, but how viral structure relates to the selection of particular infectious uptake pathways is not known. An adenovirus mutant, Ad2-ts1 had been isolated upon chemical mutagenesis in the past, and shown to have unprocessed capsid proteins. Ad2-ts1 fails to package the viral protease L3/p23, and Ad2-ts1 virions do not efficiently escape from endosomes. It had been suggested that the C22187T point mutation leading to the substitution of the conserved proline 137 to leucine (P137L in the L3/p23 protease was at least in part responsible for this phenotype. To clarify if the C22187T mutation is necessary and sufficient for the Ad2-ts1 phenotype, we sequenced the genes encoding the structural proteins of Ad2-ts1, and confirmed that the Ad2-ts1 DNA carries the point mutation C22187T. Introduction of C22187T to the wild-type Ad2 genome in a bacterial artificial chromosome (Ad2-BAC gave Ad2-BAC46 virions with the full Ad2-ts1 phenotype. Reversion of Ad2-BAC46 gave wild-type Ad2 particles indicating that P137L is necessary and sufficient for the Ad2-ts1 phenotype. The kinetics of Ad2-ts1 uptake into cells were comparable to Ad2 suggesting similar endocytic uptake mechanisms. Surprisingly, infectious Ad2 or Ad5 but not Ad2-ts1 uptake required CALM (clathrin assembly lymphoid myeloid protein, which controls clathrin-mediated endocytosis and membrane transport between endosomes and the trans-Golgi-network. The data show that no other mutations than P137L in the viral protease are necessary to give rise to particles that are defective in capsid processing and endosomal escape. This provides a basis for

  12. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Salma Khan

    Full Text Available Survivin is expressed in prostate cancer (PCa, and its downregulation sensitizes PCa cells to chemotherapeutic agents in vitro and in vivo. Small membrane-bound vesicles called exosomes, secreted from the endosomal membrane compartment, contain RNA and protein that they readily transport via exosome internalization into recipient cells. Recent progress has shown that tumor-derived exosomes play multiple roles in tumor growth and metastasis and may produce these functions via immune escape, tumor invasion and angiogenesis. Furthermore, exosome analysis may provide novel biomarkers to diagnose or monitor PCa treatment.Exosomes were purified from the plasma and serum from 39 PCa patients, 20 BPH patients, 8 prostate cancer recurrent and 16 healthy controls using ultracentrifugation and their quantities and qualities were quantified and visualized from both the plasma and the purified exosomes using ELISA and Western blotting, respectively.Survivin was significantly increased in the tumor-derived samples, compared to those from BPH and controls with virtually no difference in the quantity of Survivin detected in exosomes collected from newly diagnosed patients exhibiting low (six or high (nine Gleason scores. Exosome Survivin levels were also higher in patients that had relapsed on chemotherapy compared to controls.These studies demonstrate that Survivin exists in plasma exosomes from both normal, BPH and PCa subjects. The relative amounts of exosomal Survivin in PCa plasma was significantly higher than in those with pre-inflammatory BPH and control plasma. This differential expression of exosomal Survivin was seen with both newly diagnosed and advanced PCa subjects with high or low-grade cancers. Analysis of plasma exosomal Survivin levels may offer a convenient tool for diagnosing or monitoring PCa and may, as it is elevated in low as well as high Gleason scored samples, be used for early detection.

  13. 75 FR 6092 - Special Conditions: Model C-27J Airplane; Class E Cargo Compartment Lavatory

    Science.gov (United States)

    2010-02-08

    ... envision that a lavatory would be installed inside a Class E cargo compartment. Lavatories, including the... envision that a lavatory would be installed in a Class E cargo compartment. Therefore, special conditions...

  14. Endocytosis of desmosomal plaques depends on intact actin filaments and leads to a nondegradative compartment

    DEFF Research Database (Denmark)

    Holm, Pernille K.; Hansen, Steen H.; Sandvig, Kirsten

    1993-01-01

    Cellebiologi, human epithelial cell line, growth inhibition, desmosomes, clathrin-independent endocytosis, cytoskeleton, nondegradative compartment......Cellebiologi, human epithelial cell line, growth inhibition, desmosomes, clathrin-independent endocytosis, cytoskeleton, nondegradative compartment...

  15. Numerical Study on Hydrogen Flow Behavior in Two Compartments with Different Connecting Pipes

    Directory of Open Access Journals (Sweden)

    HanChen Liu

    2017-01-01

    Full Text Available Hydrogen accumulation in the containment compartments under severe accidents would result in high concentration, which could lead to hydrogen deflagration or detonation. Therefore, getting detailed hydrogen flow and distribution is a key issue to arrange hydrogen removal equipment in the containment compartments. In this study, hydrogen flow behavior in local compartments has been investigated in two horizontal compartments. The analysis model is built by 3-dimensional CFD code in Cartesian coordinates based on the connection structure of the Advanced Pressurized Water Reactor (PWR compartments. It consists of two cylindrical vessels, representing the Steam Generator compartment (SG and Core Makeup Tank compartment (CMT. With standard k-ε turbulence model, the effects of the connecting pipe size and location on hydrogen concentration distribution are investigated. Results show that increasing the diameter of connection pipe (IP which is located at 800 mm from 150 mm to 300 mm facilitates hydrogen flow between compartments. Decreasing the length of IP which is located at 800 mm from 1000 mm to 500 mm can also facilitate hydrogen flow between compartments. Lower IP is in favor of hydrogen mixing with air in non-source compartment. Higher IP is helpful for hydrogen flow to the non-source term compartment from source term compartment.

  16. 46 CFR 171.017 - One and two compartment standards of flooding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false One and two compartment standards of flooding. 171.017... standards of flooding. (a) One compartment standard of flooding. A vessel is designed to a one compartment standard of flooding if the margin line is not submerged when the total buoyancy between each set of two...

  17. Acute compartment syndrome after muscle rupture in a non-athlete.

    OpenAIRE

    Thennavan, A S; Funk, L; Volans, A P

    1999-01-01

    Acute compartment syndrome after muscle rupture, although rare, is a limb threatening condition, which warrants emergency treatment. The case of acute compartment syndrome secondary to a gastrocnemius muscle tear of the right lower leg, in a non-athlete is reported. To our knowledge, this is the only description of acute compartment syndrome due to muscle rupture in a non-athlete.

  18. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    Science.gov (United States)

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  19. A Multi-Compartment Hybrid Computational Model Predicts Key Roles for Dendritic Cells in Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Simeone Marino

    2016-10-01

    Full Text Available Tuberculosis (TB is a world-wide health problem with approximately 2 billion people infected with Mycobacterium tuberculosis (Mtb, the causative bacterium of TB. The pathologic hallmark of Mtb infection in humans and Non-Human Primates (NHPs is the formation of spherical structures, primarily in lungs, called granulomas. Infection occurs after inhalation of bacteria into lungs, where resident antigen-presenting cells (APCs, take up bacteria and initiate the immune response to Mtb infection. APCs traffic from the site of infection (lung to lung-draining lymph nodes (LNs where they prime T cells to recognize Mtb. These T cells, circulating back through blood, migrate back to lungs to perform their immune effector functions. We have previously developed a hybrid agent-based model (ABM, labeled GranSim describing in silico immune cell, bacterial (Mtb and molecular behaviors during tuberculosis infection and recently linked that model to operate across three physiological compartments: lung (infection site where granulomas form, lung draining lymph node (LN, site of generation of adaptive immunity and blood (a measurable compartment. Granuloma formation and function is captured by a spatio-temporal model (i.e., ABM, while LN and blood compartments represent temporal dynamics of the whole body in response to infection and are captured with ordinary differential equations (ODEs. In order to have a more mechanistic representation of APC trafficking from the lung to the lymph node, and to better capture antigen presentation in a draining LN, this current study incorporates the role of dendritic cells (DCs in a computational fashion into GranSim. Results: The model was calibrated using experimental data from the lungs and blood of NHPs. The addition of DCs allowed us to investigate in greater detail mechanisms of recruitment, trafficking and antigen presentation and their role in tuberculosis infection. Conclusion: The main conclusion of this study is

  20. Recent advances in the management of abdominal compartment syndrome

    International Nuclear Information System (INIS)

    Saleem, T.B.; Ahmed, I.

    2004-01-01

    Abdominal compartment syndrome is a systemic syndrome involving derangement in cardiovascular hemodynamics, respiratory and renal function as a result of sustained increase in intra-abdominal pressure. This results in multi-organ failure requiring prompt action and treatment. Presentation can be acute, chronic and acute on chronic. Initial diagnosis is clinical, confirmed by measurement of urinary bladder pressure. Treatment is abdominal decompression by laparostomy and delayed abdominal closure. Awareness among the surgeons has increased because laparoscopy has resulted in determination of intra-abdominal pressure as a readily measurable quantity. They have been able to appreciate the benefit of abdominal decompression by performing repeated planned laparotomies for trauma. (author)

  1. Pericardial effusion and pericardial compartments after open heart surgery

    International Nuclear Information System (INIS)

    Duvernoy, O.; Larsson, S.G.; Persson, K.; Thuren, J.; Wikstroem, G.; Akademiska Sjukhuset, Uppsala; Akademiska Sjukhuset, Uppsala

    1990-01-01

    Thirty-three patients with pericardial effusion after open heart surgery were investigated with computed tomography (CT). Twelve of the 33 patients also underwent echocardiography prior to pericardiocentesis. The effusions were typed according to the results of the CT investigation. Because of postoperative adhesions, typical patterns of localized pericardial effusions were found in 16 patients. The localized compartments were seen on the right and left side of the heart and around the aorta and the pulmonary artery. CT was therefore shown to be of value for selecting the approach for drainage with catheter pericardiocentesis. (orig.)

  2. Modeling fires in adjacent ship compartments with computational fluid dynamics

    International Nuclear Information System (INIS)

    Wix, S.D.; Cole, J.K.; Koski, J.A.

    1998-01-01

    This paper presents an analysis of the thermal effects on radioactive (RAM) transportation pack ages with a fire in an adjacent compartment. An assumption for this analysis is that the adjacent hold fire is some sort of engine room fire. Computational fluid dynamics (CFD) analysis tools were used to perform the analysis in order to include convective heat transfer effects. The analysis results were compared to experimental data gathered in a series of tests on the United States Coast Guard ship Mayo Lykes located at Mobile, Alabama. (authors)

  3. Containment shells of reactor compartments at foreign NPPs

    International Nuclear Information System (INIS)

    Demidov, A.P.; Savchenko, V.A.

    1989-01-01

    The modern designes of containment shells (CS) of NPP reactor compartments is described. Much attention is paid to the PCS-3 project envisaging CS inclusion in the complex of NPP passive safety system. The PCS-3 system is developed in the USA for NPP with the improved PWR type reactor. The above system permits to cool the core quickly, to reduce steam pressure in CS down to a safe level and to prevent the discharge of radioactive products in the atmosphere in the case of accidents, even very serious, caused by loss of coolant and core dryout

  4. A two-compartment exposure device for foliar uptake study

    International Nuclear Information System (INIS)

    Zuo, Q.; Lin, H.; Zhang, X.L.; Li, Q.L.; Liu, S.Z.; Tao, S.

    2006-01-01

    An airtight two-chamber exposure devise was designed for investigating foliar uptake of polycyclic aromatic hydrocarbons (PAHs) by plants. The upper and the bottom chambers of the device were air-tightly separated by an aluminum foil and the plant aerial tissues and roots were exposed in the two chambers, respectively. The device was tested using maize exposed to several PAH species. Positive correlations between air and aerial tissue concentrations of the exposed PAH species were revealed. PAHs spiking in the culture solution had no influence on the leaf concentrations. -- A two-compartment gastight exposure device was developed for investigation of foliar uptake of PAHs by plants

  5. Arthroscopic meniscectomy in medial compartment osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Noguchi, Joji; Shimoyama, Gishichiro; Shinozaki, Toshiro; Nagata, Kensei

    2007-01-01

    The purpose of this research is to evaluate the results of arthroscopic meniscectomy in medial compartment osteoarthritis of the knee. The operation was performed on 25 knee joints (8 male, 17 female) with the mean age of 67 years. The mean period of follow-up was 19 months. Clinical results were more or less excellent, but radiological assessment suggested slight osteoarthritic changes. In addition, two cases progressed to subchondral bone collapse. Of 12 cases which had no bone marrow edema on MRI before surgery, six (50%) cases showed it at follow-up. These findings suggest a possible relationship between arthroscopic meniscectomy and later appearance of osteonecrosis in some cases. (author)

  6. Delayed Presentation of Gluteal Compartment Syndrome: The Argument for Fasciotomy

    Directory of Open Access Journals (Sweden)

    John E. Lawrence

    2016-01-01

    Full Text Available A male patient in his fifties presented to his local hospital with numbness and weakness of the right leg which left him unable to mobilise. He reported injecting heroin the previous morning. Following an initial diagnosis of acute limb ischaemia the patient was transferred to a tertiary centre where Computed Tomography Angiography was reported as normal. Detailed neurological examination revealed weakness in hip flexion and extension (1/5 on the Medical Research Council scale with complete paralysis of muscle groups distal to this. Sensation to pinprick and light touch was globally reduced. Blood tests revealed acute kidney injury with raised creatinine kinase and the patient was treated for rhabdomyolysis. Orthopaedic referral was made the following day and a diagnosis of gluteal compartment syndrome (GCS was made. Emergency fasciotomy was performed 56 hours after the onset of symptoms. There was immediate neurological improvement following decompression and the patient was rehabilitated with complete nerve recovery and function at eight-week follow-up. This is the first documented case of full functional recovery following a delayed presentation of GCS with sciatic nerve palsy. We discuss the arguments for and against fasciotomy in cases of compartment syndrome with significant delay in presentation or diagnosis.

  7. Shock absorber system for nuclear reactor ice condenser compartment

    International Nuclear Information System (INIS)

    Meier, J.F.; Rudd, G.E.; Pradhan, A.V.; George, J.A.; Lippincott, H.W.; Sutherland, J.D.

    1979-01-01

    A shock absorber system was designed to absorb the energy imparted to doors in a nuclear reactor ice condenser compartment as they swing rapidly to an open position. Each shock absorber which is installed on a wall adjacent to each door is large and must absorb up to about 40,000 foot pounds of energy. The basic shock absorber component comprises foam enclosed in a synthetic fabric bag having a volume about twice the foam volume. A stainless steel knitted mesh bag of the same volume as the fabric bag, contains the fabric bag and its enclosed foam. To protect the foam and bags during construction activities at the reactor site and from the shearing action of the doors, a protective sheet metal cover is installed over the shock absorber ends and the surface to be contacted by the moving door. With the above shock absorber mounted on a wall behind each door, as the door is forcibly opened by steam pressure and air resulting from a pipe break in the reactor compartment, it swings at a high velocity into contact with the shock absorber, crushes the foam and forces it into the fabric bag excess material thus containing the foam fragmented particles, and minimizes build-up of pressure in the bag as a result of the applied compressive force

  8. Involvement of the mitochondrial compartment in human NCL fibroblasts

    International Nuclear Information System (INIS)

    Pezzini, Francesco; Gismondi, Floriana; Tessa, Alessandra; Tonin, Paola; Carrozzo, Rosalba; Mole, Sara E.; Santorelli, Filippo M.; Simonati, Alessandro

    2011-01-01

    Highlights: ► Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. ► Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. ► Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  9. Identifiability Results for Several Classes of Linear Compartment Models.

    Science.gov (United States)

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.

  10. A multiple-compartment model for biokinetics studies in plants

    International Nuclear Information System (INIS)

    Garcia, Fermin; Pietrobron, Flavio; Fonseca, Agnes M.F.; Mol, Anderson W.; Rodriguez, Oscar; Guzman, Fernando

    2001-01-01

    In the present work is used the system of linear equations based in the general Assimakopoulos's GMCM model , for the development of a new method that will determine the flow's parameters and transfer coefficients in plants. The need of mathematical models to quantify the penetration of a trace substance in animals and plants, has often been stressed in the literature. Usually, in radiological environment studies, it is used the mean value of contaminant concentrations on whole or edible part plant body, without taking in account vegetable physiology regularities. In this work concepts and mathematical formulation of a Vegetable Multi-compartment Model (VMCM), taking into account the plant's physiology regularities is presented. The model based in general ideas of the GMCM , and statistical Square Minimum Method STATFLUX is proposed to use in inverse sense: the experimental time dependence of concentration in each compartment, should be input, and the parameters should be determined from this data in a statistical approach. The case of Uranium metabolism is discussed. (author)

  11. Compartment Syndrome as a Result of Systemic Capillary Leak Syndrome

    Directory of Open Access Journals (Sweden)

    Kwadwo Kyeremanteng

    2016-01-01

    Full Text Available Objective. To describe a single case of Systemic Capillary Leak Syndrome (SCLS with a rare complication of compartment syndrome. Patient. Our patient is a 57-year-old male, referred to our hospital due to polycythemia (hemoglobin (Hgb of 220 g/L, hypotension, acute renal failure, and bilateral calf pain. Measurements and Main Results. The patient required bilateral forearm, thigh, and calf fasciotomies during his ICU stay and continuous renal replacement therapy was instituted following onset of acute renal failure and oliguria. Ongoing hemodynamic (Norepinephrine and Milrinone infusion and respiratory (ventilator support in the ICU was provided until resolution of intravascular fluid extravasation. Conclusions. SCLS is an extremely rare disorder characterized by unexplained episodic capillary hyperpermeability, which causes shift of volume and protein from the intravascular space to the interstitial space. Patients present with significant hypotension, hemoconcentration, hypovolemia, and oliguria. Severe edema results from leakage of fluid and proteins into tissue. The most important part of treatment is maintaining stable hemodynamics, ruling out other causes of shock and diligent monitoring for complications. Awareness of the clinical syndrome with the rare complication of compartment syndrome may help guide investigations and diagnoses of these critically ill patients.

  12. Improved hydrogen combustion model for multi-compartment analysis

    International Nuclear Information System (INIS)

    Ogino, Masao; Hashimoto, Takashi

    2000-01-01

    NUPEC has been improving a hydrogen combustion model in MELCOR code for severe accident analysis. In the proposed combustion model, the flame velocity in a node was predicted using six different flame front shapes of fireball, prism, bubble, spherical jet, plane jet, and parallelepiped. A verification study of the proposed model was carried out using the NUPEC large-scale combustion test results following the previous work in which the GRS/Battelle multi-compartment combustion test results had been used. The selected test cases for the study were the premixed test and the scenario-oriented test which simulated the severe accident sequences of an actual plant. The improved MELCOR code replaced by the proposed model could predict sufficiently both results of the premixed test and the scenario-oriented test of NUPEC large-scale test. The improved MELCOR code was confirmed to simulate the combustion behavior in the multi-compartment containment vessel during a severe accident with acceptable degree of accuracy. Application of the new model to the LWR severe accident analysis will be continued. (author)

  13. Atraumatic medial collateral ligament oedema in medial compartment knee osteoarthritis

    International Nuclear Information System (INIS)

    Bergin, D.; Keogh, C.; O'Connell, M.; Zoga, A.; Rowe, D.; Shah, B.; Eustace, S.

    2002-01-01

    Objective: To describe and determine the prevalence of atraumatic medial collateral oedema identified in patients with medial compartment osteoarthritis. Design and patients: Sixty patients, 30 patients with medial compartment knee osteoarthritis (Kellgren and Lawrence grade 2 to 4) and 30 age-matched patients with atraumatic knee pain without osteoarthritis, referred for MR imaging over a 2 year period were included in the study. In each case, severity of osteoarthritis was recorded on radiographs and correlated with the presence or absence of medial collateral ligament oedema at MR imaging. Results: Medial collateral oedema was identified in 27 of the 30 patients with osteoarthritis, of whom 14 had grade 1 oedema and 13 had grade 2 oedema compared with the presence of medial collateral ligament oedema (grade 1) in only two of the 30 control patients without osteoarthritis (P<<0.0001). Conclusion: Medial collateral oedema is common in patients with osteoarthritis in the absence of trauma. When identified, medial collateral ligament oedema should be considered to be a feature of osteoarthritis and should not be incorrectly attributed to an acute traumatic injury. (orig.)

  14. Increased expression of endosomal members of toll-like receptor family abrogates wound healing in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2016-10-01

    The inflammatory phase of wound healing cascade is an important determinant of the fate of the wound. Acute inflammation is necessary to initiate proper wound healing, while chronic inflammation abrogates wound healing. Different endosomal members of toll-like receptor (TLR) family initiate inflammatory signalling via a range of different inflammatory mediators such as interferons, internal tissue damaged-associated molecular patterns (DAMPs) and hyperactive effector T cells. Sustained signalling of TLR9 and TLR7 contributes to chronic inflammation by activating the plasmacytoid dendritic cells. Diabetic wounds are also characterised by sustained inflammatory phase. The objective of this study was to analyse the differential expression of endosomal TLRs in human diabetic wounds compared with control wounds. We analysed the differential expression of TLR7 and TLR9 both at transcriptional and translational levels in wounds of 84 patients with type 2 diabetes mellitus (T2DM) and 6 control subjects without diabetes using quantitative real-time polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. TLR7 and TLR9 were significantly up-regulated in wounds of the patients with T2DM compared with the controls and were dependent on the infection status of the diabetic wounds, and wounds with microbial infection exhibited lower expression levels of endosomal TLRs. Altered endosomal TLR expression in T2DM subjects might be associated with wound healing impairment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger

    NARCIS (Netherlands)

    Oude Blenke, E.; Sleszynska, M.; Evers, M. J W; Storm, G.; Martin, N. I.; Mastrobattista, E.

    2017-01-01

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high

  16. Estimation of Water Footprint Compartments in National Wheat Production

    Directory of Open Access Journals (Sweden)

    B. Ababaei

    2016-09-01

    Full Text Available Introduction: Water use and pollution have raised to a critical level in many compartments of the world. If humankind is to meet the challenges over the coming fifty years, the agricultural share of water use has to be substantially reduced. In this study, a modern yet simple approach has been proposed through the introduction concept ‘Water Footprint’ (WF. This concept can be used to study the connection between each product and the water allocation to produce that product. This research estimates the green, blue and gray WF of wheat in Iran. Also a new WF compartment (white is used that is related about irrigation water loss. Materials and Methods: The national green (Effective precipitation, blue (Net irrigation requirement, gray (For diluting chemical fertilizers and white (Irrigation water losses water footprints (WF of wheat production were estimated for fifteen major wheat producing provinces of Iran. Evapotranspiration, irrigation requirement, gross irrigation requirement and effective rainfall were got using the AGWAT model. Yields of irrigated and rain-fed lands of each province were got from Iran Agricultural-Jihad Ministry. Another compartment of the wheat production WF is related about the volume of water required to assimilate the fertilizers leached in runoff (gray WF. Moreover, a new concept of white water footprint was proposed here and represents irrigation water losses, which was neglected in the original calculation framework. Finally, the national WF compartments of wheat production were estimated by taking the average of each compartment over all the provinces weighted by the share of each province in total wheat production of the selected provinces. Results and Discussion: In 2006-2012, more than 67% of the national wheat production was irrigated and 32.3% were rain-fed, on average, while 37.9% of the total wheat-cultivated lands were irrigated and 62.1% was rain-fed from more than 6,568 -ha. The total national WF of

  17. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework

    KAUST Repository

    Alsaiari, Shahad K.

    2017-12-22

    CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days employing CRISPR/Cas9 machinery. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled co-delivery of intact Cas9 protein and sgRNA.

  18. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework

    KAUST Repository

    Alsaiari, Shahad K.; Patil, Sachin; Alyami, Mram Z.; Alamoudi, Kholod; Aleisa, Fajr A; Merzaban, Jasmeen; Li, Mo; Khashab, Niveen M.

    2017-01-01

    CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days employing CRISPR/Cas9 machinery. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled co-delivery of intact Cas9 protein and sgRNA.

  19. Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin

    DEFF Research Database (Denmark)

    Enkavi, Giray; Mikkolainen, Heikki; Güngör, Burçin

    2017-01-01

    remained elusive. Here, based on an extensive set of atomistic simulations and free energy calculations, we clarify the mechanism and energetics of npc2-membrane binding and characterize the roles of physiologically relevant key lipids associated with the binding process. Our results capture in atomistic......Niemann-Pick Protein C2 (npc2) is a small soluble protein critical for cholesterol transport within and from the lysosome and the late endosome. Intriguingly, npc2-mediated cholesterol transport has been shown to be modulated by lipids, yet the molecular mechanism of npc2-membrane interactions has......). This mode is associated with cholesterol uptake and release. On the other hand, the second mode (Supine) places the cholesterol binding pocket away from the membrane surface, but has overall higher membrane binding affinity. We determined that bis(monoacylglycero)phosphate (bmp) is specifically required...

  20. Constitutively internalized dopamine transporter is targeted to late endosomes and lysosomal degradation in heterologous cell lines and dopaminergic neurons

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Madsen, Kenneth; Vægter, Christian Bjerggaard

    and amphetamine, a substrate of the DAT. In antibody feeding experiments we observed that Tac-DAT was constitutively internalized faster than Tac alone and using an ELISA based assay we could quantify time-dependent intracellular accumulation of the transporter. Incubation with inhibitors of lysosomal degradation...... (leupeptin, chloroquine, or ammonium chloride) increased the amount of transporter accumulated intracellularly over time, suggesting that constitutively endocytosed transporter was targeted to lysosomal degradation. This was further supported by expression of Tac-DAT in the immortalized dopaminergic cell...... dopaminergic neurons and visualized the DAT directly in the neurons using the fluorescent cocaine analog JHC 1-064. These data showed pronounced colocalization upon constitutive internalization with Lysotracker, a late endosomal/lysosomal marker; however only little co-lolization was observed with Alexa488...

  1. Mixing of radiolytic hydrogen generated within a containment compartment following a LOCA

    International Nuclear Information System (INIS)

    Willcutt, G.J.E. Jr.; Gido, R.G.

    1978-07-01

    The objective of this work was to determine hydrogen concentration variations with position and time in a closed containment compartment with radiolytic hydrogen generation in the water on the compartment floor following a Loss-of-Coolant-Accident (LOCA). One application is to determine the potential difference between the compartment maximum hydrogen concentration and a hydrogen detector reading, due to the detector location. Three possible mechanisms for hydrogen transport in the compartment were investigated: (1) molecular diffusion, (2) possible bubble formation and motion, and (3) natural convection flows. A base case cubic compartment with 6.55-m (21.5-ft) height was analyzed. Parameter studies were used to determine the sensitivity of results to compartment size, hydrogen generation rates, diffusion coefficients, and the temperature difference between the floor and the ceiling and walls of the compartment. Diffusion modeling indicates that if no other mixing mechanism is present for the base case, the maximum hydrogen volume percent (vol percent) concentration difference between the compartment floor and ceiling will be 4.8 percent. It will be 24.5 days before the maximum concentration difference is less than 0.5 percent. Bubbles do not appear to be a potential source of hydrogen pocketing in a containment compartment. Compartment natural convection circulation rates for a 2.8 K (5 0 F) temperature difference between the floor and the ceiling and walls are estimated to be at least the equivalent of 1 compartment volume per hour and probably in the range of 4 to 9 compartment volumes per hour. Related natural convection studies indicate there will be turbulent mixing in the compartment for a 2.8 K (5 0 F) temperature difference between the floor and the ceiling and walls

  2. Pediatric Nonfracture Acute Compartment Syndrome: A Review of 39 Cases.

    Science.gov (United States)

    Livingston, Kristin; Glotzbecker, Michael; Miller, Patricia E; Hresko, Michael T; Hedequist, Daniel; Shore, Benjamin J

    2016-01-01

    Compartment syndrome in the absence of fracture is rare and poorly described within the pediatric literature. The purpose of this study was to report the varying etiologies, risk factors, and treatment outcomes associated with pediatric nonfracture acute compartment syndrome (NFACS). We conducted a retrospective chart review on 37 children who suffered a NFACS and were treated at a single pediatric trauma center between 1997 and 2013. Demographic, diagnostic, treatment, and outcome characteristics were reviewed. Five causal groups were generated: trauma, exercise related (acute presentation after exercise without trauma), infectious, vascular, and postoperative (in the absence of osteotomy). Univariate and multivariate analyses were performed to identify risk factors of NFACS. P-values 39 cases of NFRCS in 37 children [6 females, 31 males, mean age of 11.7 y (SD+7.2 y)]. The leg was the most commonly involved limb (29 cases, 74%). Diagnosis of NFRCS was made either by compartment pressure monitoring [59%, 23/39 cases, mean pressure 66 mm Hg (SD+28)] or by clinical examination. According to etiology, vascular was most common (11/39, 28%), followed by trauma (10/39, 26%) and postoperative (8/39, 21%), with exertion and infection representing a small proportion (6/39, 15% and 4/39, 10%, respectively). Pain was present in 33 cases (85%), swelling in 28 cases (72%), paresthesias in 13 cases (33%), motor deficit in 12 cases (31%), and poor perfusion in 11 cases (28%). Average time from symptom onset to diagnosis was 48 hours (IQR, 9 to 96 h). At surgery, 21 patients (54%) had evidence of myonecrosis. Children required an average of 3 surgeries for wound closure. The median time to follow-up was 232 days (IQR, 73 to 608 d). A total of 54% made a full recovery, whereas 31% suffered a persistent neurological or functional deficit. NFACS in children is associated with a delay in diagnosis and a high rate of myonecrosis. Timely assessment with high clinical suspicion is

  3. Multi-compartment iodine calculations with FIPLOC/IMPAIR

    International Nuclear Information System (INIS)

    Ewig, F.; Allelein, H.J.; Schwarz, S.; Weber, G.

    1996-01-01

    The multi-compartment containment code FIPLOC for the simulation of severe accidents in LWR plants was extended by the integration of the iodine model IMPAIR-3. The iodine model which originally was only drafted for chains of compartments was changed for arbitrary compartment configurations and tightly coupled to the thermal hydraulic part. A main progress with the coupled version FIPLOC-3.0 is the sophisticated modelling of the aerosol iodine behaviour. In a PWR accident the mass of iodine is mainly released in form of CsI aerosol from the primary circuit. In IMPAIR-3 the aerosol behaviour of the species CsI, AgI and IO 3 - is modelled in a very simplified way causing large uncertainties in the calculated distributions. The behaviour of these three aerosol species is treated by the aerosol model MAEROS/MGA. Agglomeration, particle growth by condensation and all deposition processes are calculated. The solubility effect for the hygroscopic species CsI and IO 3 - are comprehended. Furthermore the impact of the iodine decay heat on the thermal hydraulic behaviour is considered. In order to test the code development a preliminary FIPLOC-3.0 calculation was done simulating a German PWR containment for the core melt scenario ND* according to the German risk study phase B. IN the calculation a contact of the core melt with the sump water was assumed and the containment vent line was opened after 70 hours. The result show that the different iodine species are distributed inhomogeneously within the containment. The CsI-aerosol concentrations differ by two orders of magnitude and the I 2 -concentration even by three orders of magnitude. Most of the iodine is assumed to be released as CsI aerosol out of the primary circuit. Since it fastly deposits its contribution to the release into the environment is minor. CsI is however dissolved in the sump, where mainly the gaseous I 2 is created which can react in the containment atmosphere to IO 3 - . (author) 11 figs., 3 tabs., 12

  4. Hypertonic lactated saline resuscitation reduces the risk of abdominal compartment syndrome in severely burned patients.

    Science.gov (United States)

    Oda, Jun; Ueyama, Masashi; Yamashita, Katsuyuki; Inoue, Takuya; Noborio, Mitsuhiro; Ode, Yasumasa; Aoki, Yoshiki; Sugimoto, Hisashi

    2006-01-01

    Secondary abdominal compartment syndrome is a lethal complication after resuscitation from burn shock. Hypertonic lactated saline (HLS) infusion reduces early fluid requirements in burn shock, but the effects of HLS on intraabdominal pressure have not been clarified. Patients admitted to our burn unit between 2002 and 2004 with burns > or =40% of the total body surface area without severe inhalation injury were entered into a fluid resuscitation protocol using HLS (n = 14) or lactated Ringer's solution (n = 22). Urine output was monitored hourly with a goal of 0.5 to 1.0 mL/kg per hour. Hemodynamic parameters, blood gas analysis, intrabladder pressure as an indicator of intraabdominal pressure (IAP), and the peak inspiratory pressure were recorded. Pulmonary compliance and the abdominal perfusion pressure were also calculated. In the HLS group, the amount of intravenous fluid volume needed to maintain adequate urine output was less at 3.1 +/- 0.9 versus 5.2 +/- 1.2 mL/24 h per kg per percentage of total body surface area, and the peak IAP and peak inspiratory pressure at 24 hours after injury were significantly lower than those in the lactated Ringer's group. Two of 14 patients (14%) in the HLS group and 11 of 22 patients (50%) developed IAH within 20.8 +/- 7.2 hours after injury. In patients with severe burn injury, a large intravenous fluid volume decreases abdominal perfusion during the resuscitative period because of increased IAP. Our data suggest that HLS resuscitation could reduce the risk of secondary abdominal compartment syndrome with lower fluid load in burn shock patients.

  5. The Compartment Syndrome Associated with Deep Vein Thrombosis due to Rattlesnake Bite: A Case Report

    Directory of Open Access Journals (Sweden)

    Radu Ciprian Tincu

    2017-08-01

    Full Text Available Background: Snakebite is a health issue specific to some parts of the world, especially in the tropical area, where it produces many victims. The main clinical damage caused by snake bite involves hemotoxic, neurotoxic and myotoxic reactions. It is also established that the importance of systemic impairment varies according to individual factors and are related to organ dysfunction, shock or hypotension. We report the case of a young woman suffering from snakebite who developed deep vein thrombosis and compartment syndrome. Case Report: We present the case of a 32-year-old Romanian woman who was injured by her own Crotalinae snake (also known as pit viper or rattlesnake on her left forearm. When admitted to our Emergency Department, she was conscious with a Glasgow coma scale of 12/15, somnolent, febrile, suffering of headache, tachypnea; the marks of the snakebite were located in the distal part of the anterior left forearm; she had pain and bleeding at the bite site and swelling of the left upper limb with lymphangitis up to the axilla. She experienced fasciotomy-requiring compartment syndrome of the upper limb and required unfractionated heparin and closed monitored using activated partial thromboplastin time evolution due micro-thrombosis in the brachial vein. Local improvement was achieved in the next 4 days with progressive diminish of local tenderness and swelling. Conclusion: Limb deep vein thrombosis might be induced by snakebite, despite pro-hemorrhagic general condition induced by the envenomation. High index of clinical suspicion is needed for early diagnosis and timely management which can improve survival of these patients

  6. Pre-sorting endosomal transport of the GPI-anchored protein, CD59, is regulated by EHD1

    Czech Academy of Sciences Publication Activity Database

    Cai, B.; Katafiasz, D.; Hořejší, Václav; Naslavsky, N.

    2011-01-01

    Roč. 12, č. 1 (2011), s. 102-120 ISSN 1398-9219 Institutional research plan: CEZ:AV0Z50520514 Keywords : canine kidney cells * recycling compartment * receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.919, year: 2011

  7. Microbial diversity in different compartments of an aquaponics system.

    Science.gov (United States)

    Schmautz, Zala; Graber, Andreas; Jaenicke, Sebastian; Goesmann, Alexander; Junge, Ranka; Smits, Theo H M

    2017-05-01

    Aquaponics is a solution for sustainable production of fish and plants in a single semi-closed system, where nutrient-rich water from the aquaculture provides nutrients for plant growth. We examined the microbial communities within an experimental aquaponics system. Whereas the fish feces contained a separate community dominated by bacteria of the genus Cetobacterium, the samples from plant roots, biofilter, and periphyton were more similar to each other, while the communities were more diverse. Detailed examination of the data gave the first indications to functional groups of organisms in the different compartments of the aquaponic system. As other nitrifiers other than members of the genus Nitrospira were only present at low numbers, it was anticipated that Nitrospirae may perform the nitrification process in the biofilm.

  8. Cellular endocytic compartment localization of expressed canine CD1 molecules

    DEFF Research Database (Denmark)

    Schjærff, Mette; Keller, Stefan M.; Affolter, Verena K.

    2016-01-01

    CD1 molecules are glycoproteins present primarily on dendritic cells (DCs), which recognize and presenta variety of foreign- and self-lipid antigens to T-cells. Humans have five different CD1 isoforms that sur-vey distinct cellular compartments allowing for recognition of a large repertoire...... onlya diminished GFP expression. In conclusion, canine CD1 transfectants show distinct localization patternsthat are similar to human CD1 proteins with the exception of the canine CD1d isoform, which most likelyis non-functional. These findings imply that canine CD1 localization overall resembles human...... CD1 traf-ficking patterns. This knowledge is important for the understanding of lipid antigen-receptor immunityin the dog....

  9. Abdominal compartment syndrome following abdominoplasty: A case report and review

    Directory of Open Access Journals (Sweden)

    Arash Izadpanah

    2014-01-01

    Full Text Available Abdominoplasty is among the most commonly performed aesthetic procedures in plastic surgery. Despite high complication rate, abdominal contouring procedures are expected to rise in popularity with the advent of bariatric surgery. Patients with a history of gastric bypass surgery have an elevated incidence of small bowel obstruction from internal herniation, which is associated with non-specific upper abdominal pain, nausea, and a decrease in appetite. Internal hernias, when subjected to elevated intra-abdominal pressures, have a high-risk of developing ischemic bowel. We present a case report of patient with previous laparoscopic Roux-en-y gastric bypass who developed acute ischemic bowel leading to abdominal compartment syndrome following abdominoplasty. To the best of our knowledge, this is the first reported case in the literature. We herein emphasise on the subtle symptoms and signs that warrant further investigations in prospective patients for an abdominal contouring procedure with a prior history of gastric bypass surgery.

  10. Geochemical isotope compartment model of the nitrogen cycle

    International Nuclear Information System (INIS)

    Weise, G.; Wetzel, K.; Stiehl, G.

    1981-01-01

    A model of the global cycle of nitrogen and its isotopes is described. It takes into account geochemical reservoirs (nitrogen in magmatic metamorphic, and sedimentary rocks and in the atmosphere) and the nitrogen exchange between magmatic rocks and the outer mantle, the transition of nitrogen exchange between sedimentary rocks and the atmosphere. With the aid of the mathematical formalisms of the compartment theory and on the basis of all available delta 11 N values assumptions regarding the isotope effects in forming these nitrogen fluxes data have been obtained on the degree of the nitrogen exchange between the earth crust and the outer mantle and on other nitrogen fluxes characterizing the global nitrogen cycle. (author)

  11. COMPBRN III: a computer code for modeling compartment fires

    International Nuclear Information System (INIS)

    Ho, V.; Siu, N.; Apostolakis, G.; Flanagan, G.F.

    1986-07-01

    The computer code COMPBRN III deterministically models the behavior of compartment fires. This code is an improvement of the original COMPBRN codes. It employs a different air entrainment model and numerical scheme to estimate properties of the ceiling hot gas layer model. Moreover, COMPBRN III incorporates a number of improvements in shape factor calculations and error checking, which distinguish it from the COMPBRN II code. This report presents the ceiling hot gas layer model employed by COMPBRN III as well as several other modifications. Information necessary to run COMPBRN III, including descriptions of required input and resulting output, are also presented. Simulation of experiments and a sample problem are included to demonstrate the usage of the code. 37 figs., 46 refs

  12. The intrinsic renal compartment syndrome: new perspectives in kidney transplantation.

    Science.gov (United States)

    Herrler, Tanja; Tischer, Anne; Meyer, Andreas; Feiler, Sergej; Guba, Markus; Nowak, Sebastian; Rentsch, Markus; Bartenstein, Peter; Hacker, Marcus; Jauch, Karl-Walter

    2010-01-15

    Inflammatory edema after ischemia-reperfusion may impair renal allograft function after kidney transplantation. This study examines the effect of edema-related pressure elevation on renal function and describes a simple method to relieve pressure within the renal compartment. Subcapsular pressure at 6, 12, 24, 48 hr, and 18 days after a 45 min warm ischemia was determined in a murine model of renal ischemia-reperfusion injury. Renal function was measured by Tc-MAG3 scintigraphy and laser Doppler perfusion. Structural damage was assessed by histologic analysis. As a therapeutic approach, parenchymal pressure was relieved by a standardized circular 0.3 mm incision at the lower pole of the kidney capsule. Compared with baseline (0.9+/-0.3 mm Hg), prolonged ischemia was associated with a sevenfold increase in subcapsular pressure 6 hr after ischemia (7.0+/-1.0 mm Hg; P<0.001). Pressure levels remained significantly elevated for 24 hr. Without therapy, a significant decrease in functional parameters was found with considerably reduced tubular excretion rate (33+/-3.5%, P<0.001) and renal perfusion (64.5+/-6.8%, P<0.005). Histologically, severe tissue damage was found. Surgical pressure relief was able to significantly prevent loss of tubular excretion rate (62.5+/-6.8%, P<0.05) and renal blood flow (96.2+/-4.8%; P<0.05) and preserved the integrity of renal structures. Our data support the hypothesis of the existence of a renal compartment syndrome as a consequence of ischemia-reperfusion injury. Surgical pressure relief effectively prevented functional and structural renal impairment, and we speculate that this approach might be of value for improving graft function after renal transplantation.

  13. Characterisation of open-door electrical cabinet fires in compartments

    Energy Technology Data Exchange (ETDEWEB)

    Coutin, M., E-mail: mickael.coutin@irsn.fr; Plumecocq, W.; Zavaleta, P.; Audouin, L.

    2015-05-15

    Highlights: • Heat release rate of electrical cabinet fire source in a vitiated atmosphere. • Experimental database for proper validation the combustible modelling, taking into account the oxygen depletion in an enclosure. • New model for complex fire source. - Abstract: The study of electrical fires is a major concern for fire safety in the industry and more particularly for fire safety in nuclear facilities. To investigate this topic, IRSN conducted a large number of real-scale experiments involving open-door electrical cabinets burning firstly under a calorimetric hood and then inside a mechanically-ventilated compartment. The main challenges are to determine accurately the heat release rate of such a complex fire source in a vitiated atmosphere and to provide an experimental database for validating properly the combustible modelling, taking into account the oxygen depletion in an enclosure. After providing a detailed description of the fire scenarios and of the experimental apparatus, this paper focuses on the characteristic stages of the cabinet fire development, essentially based on the heat release rate time evolution of the fire. The effects of the confinement, of the outlet branch location, of the ventilation management and of the fire barrier on the fire source were then investigated. The reproducibility of electrical cabinet fires is also studied. A new model for complex fire source (applied in this study for open-door electrical cabinet fires) was then developed. This model was introduced in the zone code SYLVIA and the major features of the compartment fire experiments, such as characteristic heat release rate with effect of oxygen depletion and over-pressure peak were then calculated with a rather good agreement for this complex fire source (i.e. electrical cabinet)

  14. Interventional Treatment of Abdominal Compartment Syndrome during Severe Acute Pancreatitis: Current Status and Historical Perspective

    Directory of Open Access Journals (Sweden)

    Dejan V. Radenkovic

    2016-01-01

    Full Text Available Abdominal compartment syndrome (ACS in patients with severe acute pancreatitis (SAP is a marker of severe disease. It occurs as combination of inflammation of retroperitoneum, visceral edema, ascites, acute peripancreatic fluid collections, paralytic ileus, and aggressive fluid resuscitation. The frequency of ACS in SAP may be rising due to more aggressive fluid resuscitation, a trend towards conservative treatment, and attempts to use a minimally invasive approach. There remains uncertainty about the most appropriate surgical technique for the treatment of ACS in SAP. Some unresolved questions remain including medical treatment, indications, timing, and interventional techniques. This review will focus on interventional treatment of this serious condition. First line therapy is conservative treatment aiming to decrease IAP and to restore organ dysfunction. If nonoperative measures are not effective, early abdominal decompression is mandatory. Midline laparostomy seems to be method of choice. Since it carries significant morbidity we need randomized studies to establish firm advantages over other described techniques. After ACS resolves efforts should be made to achieve early primary fascia closure. Additional data are necessary to resolve uncertainties regarding ideal timing and indication for operative treatment.

  15. Interventional Treatment of Abdominal Compartment Syndrome during Severe Acute Pancreatitis: Current Status and Historical Perspective.

    Science.gov (United States)

    Radenkovic, Dejan V; Johnson, Colin D; Milic, Natasa; Gregoric, Pavle; Ivancevic, Nenad; Bezmarevic, Mihailo; Bilanovic, Dragoljub; Cijan, Vladimir; Antic, Andrija; Bajec, Djordje

    2016-01-01

    Abdominal compartment syndrome (ACS) in patients with severe acute pancreatitis (SAP) is a marker of severe disease. It occurs as combination of inflammation of retroperitoneum, visceral edema, ascites, acute peripancreatic fluid collections, paralytic ileus, and aggressive fluid resuscitation. The frequency of ACS in SAP may be rising due to more aggressive fluid resuscitation, a trend towards conservative treatment, and attempts to use a minimally invasive approach. There remains uncertainty about the most appropriate surgical technique for the treatment of ACS in SAP. Some unresolved questions remain including medical treatment, indications, timing, and interventional techniques. This review will focus on interventional treatment of this serious condition. First line therapy is conservative treatment aiming to decrease IAP and to restore organ dysfunction. If nonoperative measures are not effective, early abdominal decompression is mandatory. Midline laparostomy seems to be method of choice. Since it carries significant morbidity we need randomized studies to establish firm advantages over other described techniques. After ACS resolves efforts should be made to achieve early primary fascia closure. Additional data are necessary to resolve uncertainties regarding ideal timing and indication for operative treatment.

  16. Membrane compartment of Can1 (MCC): specialized functional microdomain of the yeast plasma membrane

    OpenAIRE

    Doudová, Lenka

    2017-01-01

    Membrane compartment of Can1 (MCC): specialized functional microdomain of the yeast plasma membrane Yeast plasma membrane is divided into several different compartments. Membrane compartment of Can1 is specific for its protein and lipid composition, furthermore it creates furrow-like invaginations on the plasma membrane. These invaginations are made by multiprotein complexes called eisosomes, which are located in the cytosolic side of MCCs. It was established that this domain plays an importa...

  17. An efficient heuristic for the multi-compartment vehicle routing problem

    OpenAIRE

    Paulo Vitor Silvestrin

    2016-01-01

    We study a variant of the vehicle routing problem that allows vehicles with multiple compartments. The need for multiple compartments frequently arises in practical applications when there are several products of different quality or type, that must be kept or handled separately. The resulting problem is called the multi-compartment vehicle routing problem (MCVRP). We propose a tabu search heuristic and embed it into an iterated local search to solve the MCVRP. In several experiments we analy...

  18. A New Approach to Uncertainty Reduction in Launch Vehicle Compartment Venting

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch vehicle compartments are vented to the external environment during ascent to minimize undesirable structural loading. Prediction of venting performance is an...

  19. Progressive quality control of secretory proteins in the early secretory compartment by ERp44.

    Science.gov (United States)

    Sannino, Sara; Anelli, Tiziana; Cortini, Margherita; Masui, Shoji; Degano, Massimo; Fagioli, Claudio; Inaba, Kenji; Sitia, Roberto

    2014-10-01

    ERp44 is a pH-regulated chaperone of the secretory pathway. In the acidic milieu of the Golgi, its C-terminal tail changes conformation, simultaneously exposing the substrate-binding site for cargo capture and the RDEL motif for ER retrieval through interactions with cognate receptors. Protonation of cysteine 29 in the active site allows tail movements in vitro and in vivo. Here, we show that conserved histidine residues in the C-terminal tail also regulate ERp44 in vivo. Mutants lacking these histidine residues retain substrates more efficiently. Surprisingly, they are also O-glycosylated and partially secreted. Co-expression of client proteins prevents secretion of the histidine mutants, forcing tail opening and RDEL accessibility. Client-induced RDEL exposure allows retrieval of proteins from distinct stations along the secretory pathway, as indicated by the changes in O-glycosylation patterns upon overexpression of different partners. The ensuing gradients might help to optimize folding and assembly of different cargoes. Endogenous ERp44 is O-glycosylated and secreted by human primary endometrial cells, suggesting possible pathophysiological roles of these processes. © 2014. Published by The Company of Biologists Ltd.

  20. Neutral Polymer Micelle Carriers with pH-Responsive, Endosome-Releasing Activity Modulate Antigen Trafficking to Enhance CD8 T-Cell Responses

    Science.gov (United States)

    Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S

    2014-01-01

    Synthetic subunit vaccines need to induce CD8+ cytotoxic T-cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8+ cytotoxic T-cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8+ T-cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendant pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25–30 nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5 h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4 h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8+ T cell responses (0.4 % IFN-γ+ of CD8+) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells in the

  1. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses.

    Science.gov (United States)

    Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S

    2014-10-10

    Synthetic subunit vaccines need to induce CD8(+) cytotoxic T cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8(+) cytotoxic T cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8(+) T cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendent pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25-30nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non-pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC 2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8(+) T cell responses (0.4% IFN-γ(+) of CD8(+)) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells

  2. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

    Science.gov (United States)

    Hurwitz, Stephanie N; Cheerathodi, Mujeeb R; Nkosi, Dingani; York, Sara B; Meckes, David G

    2018-03-01

    The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells. IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major

  3. Multi-compartment iodine calculations with FIPLOC/IMPAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ewig, F; Allelein, H J [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Schwarz, S; Weber, G [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)

    1996-12-01

    The multi-compartment containment code FIPLOC for the simulation of severe accidents in LWR plants was extended by the integration of the iodine model IMPAIR-3. The iodine model was changed for arbitrary compartment configurations and tightly coupled to the thermal hydraulic part. A main progress with the coupled version FIPLOC-3.0 is the sophisticated modelling of the aerosol iodine behaviour. In a PWR accident the mass of iodine is mainly released in form of CsI aerosol from the primary circuit. In IMPAIR-3 the aerosol behaviour of the species CsI, AgI and IO{sub 3}{sup -} is modelled in a very simplified way causing large uncertainties in the calculated distributions. The behaviour of these three aerosol species is treated by the aerosol model MAEROS/MGA. Agglomeration, particle growth by condensation and all deposition processes are calculated. The solubility effect for the hygroscopic species CsI and IO{sub 3}{sup -} are comprehended. Furthermore the impact of the iodine decay heat on the thermal hydraulic behaviour is considered. In order to test the code development a preliminary FIPLOC-3.0 calculation was done simulating a German PWR containment for the core melt scenario ND* according to the German risk study phase B. IN the calculation a contact of the core melt with the sump water was assumed and the containment vent line was opened after 70 hours. The result show that the different iodine species are distributed inhomogeneously within the containment. The CsI-aerosol concentrations differ by two orders of magnitude and the I{sub 2}-concentration even by three orders of magnitude. Most of the iodine is assumed to be released as CsI aerosol out of the primary circuit. Since it fastly deposits its contribution to the release into the environment is minor. CsI is however dissolved in the sump, where mainly the gaseous I{sub 2} is created which can react in the containment atmosphere to IO{sub 3}{sup -}. (author) 11 figs., 3 tabs., 12 refs.

  4. Influence of the fire location and the size of a compartment on the heat and smoke flow out of the compartment

    Science.gov (United States)

    Wegrzyński, Wojciech; Konecki, Marek

    2018-01-01

    This paper presents results of CFD and scale modelling of the flow of heat and smoke inside and outside of a compartment, in case of fire. Estimation of mass flow out of a compartment is critical, as it is the boundary condition in further considerations related to the exhaust of the smoke from a building - also in analysis related to the performance of natural ventilation in wind conditions. Both locations of the fire and the size of compartment were addressed as possible variables, which influence the mass and the temperature of smoke that leaves the room engulfed in fire. Results of the study show small to none influence of both size of the compartment and the location of the fire, on the mass flow of smoke exiting the room. On the same time, both of these parameters influence the temperature of the smoke - in larger compartments lower average temperatures of the smoke layer, but higher maximum values were observed. Results of this study may be useful also in the determination of the worst case scenarios for structural analysis, or in the investiga tion of the spread of fire through the compartment. Based on the results presented in this study, researchers can attribute an expert judgement choice of fire location, as a single scenario that is representative of a larger amount of probable scenarios.

  5. Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells

    DEFF Research Database (Denmark)

    Hartwig Petersen, Nicole; Færgeman, Nils J; Yu, Liqing

    2008-01-01

    fluorescent protein (NPC1L1-EGFP) and cholesterol analogues in hepatoma cells. At steady state about 42% of NPC1L1 resided in the transferrin (Tf) positive, sterol enriched endocytic recycling compartment (ERC), while time-lapse microscopy demonstrated NPC1L1 traffic between plasma membrane and ERC...... the ERC to the plasma membrane. NPC1L1-EGFP facilitated transport of fluorescent sterols from the plasma membrane to the ERC. Insulin induced translocation of vesicles containing NPC1L1 and fluorescent sterol from the ERC to the cell membrane. Upon polarization of hepatoma cells NPC1L1 resided almost...... exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1 mediated cellular sterol uptake....

  6. Seismic analysis of reactor exhaust-air Filter Compartment

    International Nuclear Information System (INIS)

    Gong, C.; Funderburk, E.L.; Jerrel, J.W.; Vashi, K.M.

    1991-01-01

    This paper presents the results of a scoping analysis for assessment of seismic adequacy of a Filter Compartments (FC) that is part of an Airborne Activity Confinement System (AACS) in K, L, and P Reactors at the Savannah River Site (SRS). For an expeditious assessment and to increase the possibility of showing the adequacy of the FC, the finite element model incorporated certain conceptual reinforcing modifications suggested by a previous study. The model also set the vertical displacements at zero at the interface between the FC and the rail dolly, upon which the FC rests by gravity. In addition, the rail-dolly was assumed to be rigid and rigidly attached to the rails. The analysis was performed using the dynamic modal superposition response spectra capability of the ABAQUS computer code. Certain modelling approximations and linearized representation of boundary conditions were employed for utilization of the code and the selected analysis capability. The analysis results showed that the FC stresses and deformations were within the yield limit and that the structural integrity of the FC and the operability of the filters can be preserved as required for the defined seismic event consistent with the linearization assumptions, modelling simplifications, and incorporation of the conceptual reinforcing modifications. However, the rail-dolly rigidity, the FC hold-down to the rails must be ensured for this scoping analysis to be valid. 2 refs

  7. Status of the International Space Station Waste and Hygiene Compartment

    Science.gov (United States)

    Walker, Stephanie; Zahner, Christopher

    2010-01-01

    The Waste and Hygiene Compartment (WHC) serves as the primary system for removal and containment of metabolic waste and hygiene activities on board the United States segment of the International Space Station (ISS). The WHC was launched on ULF 2 and is currently in the U.S. Laboratory and is integrated into the Water Recovery System (WRS) where pretreated urine is processed by the Urine Processor Assembly (UPA). The waste collection part of the WHC system is derived from the Service Module system and was provided by RSC-Energia along with additional hardware to allow for urine delivery to the UPA. The System has been integrated in an ISS standard equipment rack structure for use on the U.S. segment of the ISS. The system has experienced several events of interest during the deployment, checkout, and operation of the system during its first year of use and these will be covered in this paper. Design and on-orbit performance will also be discussed.

  8. Connexin Communication Compartments and Wound Repair in Epithelial Tissue.

    Science.gov (United States)

    Chanson, Marc; Watanabe, Masakatsu; O'Shaughnessy, Erin M; Zoso, Alice; Martin, Patricia E

    2018-05-03

    Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.

  9. Mathematical properties and parameter estimation for transit compartment pharmacodynamic models.

    Science.gov (United States)

    Yates, James W T

    2008-07-03

    One feature of recent research in pharmacodynamic modelling has been the move towards more mechanistically based model structures. However, in all of these models there are common sub-systems, such as feedback loops and time-delays, whose properties and contribution to the model behaviour merit some mathematical analysis. In this paper a common pharmacodynamic model sub-structure is considered: the linear transit compartment. These models have a number of interesting properties as the length of the cascade chain is increased. In the limiting case a pure time-delay is achieved [Milsum, J.H., 1966. Biological Control Systems Analysis. McGraw-Hill Book Company, New York] and the initial behaviour becoming increasingly sensitive to parameter value perturbation. It is also shown that the modelled drug effect is attenuated, though the duration of action is longer. Through this analysis the range of behaviours that such models are capable of reproducing are characterised. The properties of these models and the experimental requirements are discussed in order to highlight how mathematical analysis prior to experimentation can enhance the utility of mathematical modelling.

  10. Connexin Communication Compartments and Wound Repair in Epithelial Tissue

    Directory of Open Access Journals (Sweden)

    Marc Chanson

    2018-05-01

    Full Text Available Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.

  11. Shigella subverts the host recycling compartment to rupture its vacuole.

    Science.gov (United States)

    Mellouk, Nora; Weiner, Allon; Aulner, Nathalie; Schmitt, Christine; Elbaum, Michael; Shorte, Spencer L; Danckaert, Anne; Enninga, Jost

    2014-10-08

    Shigella enters epithlial cells via internalization into a vacuole. Subsequent vacuolar membrane rupture allows bacterial escape into the cytosol for replication and cell-to-cell spread. Bacterial effectors such as IpgD, a PI(4,5)P2 phosphatase that generates PI(5)P and alters host actin, facilitate this internalization. Here, we identify host proteins involved in Shigella uptake and vacuolar membrane rupture by high-content siRNA screening and subsequently focus on Rab11, a constituent of the recycling compartment. Rab11-positive vesicles are recruited to the invasion site before vacuolar rupture, and Rab11 knockdown dramatically decreases vacuolar membrane rupture. Additionally, Rab11 recruitment is absent and vacuolar rupture is delayed in the ipgD mutant that does not dephosphorylate PI(4,5)P₂ into PI(5)P. Ultrastructural analyses of Rab11-positive vesicles further reveal that ipgD mutant-containing vacuoles become confined in actin structures that likely contribute to delayed vacular rupture. These findings provide insight into the underlying molecular mechanism of vacuole progression and rupture during Shigella invasion. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Clonal dominance and transplantation dynamics in hematopoietic stem cell compartments.

    Directory of Open Access Journals (Sweden)

    Peter Ashcroft

    2017-10-01

    Full Text Available Hematopoietic stem cells in mammals are known to reside mostly in the bone marrow, but also transitively passage in small numbers in the blood. Experimental findings have suggested that they exist in a dynamic equilibrium, continuously migrating between these two compartments. Here we construct an individual-based mathematical model of this process, which is parametrised using existing empirical findings from mice. This approach allows us to quantify the amount of migration between the bone marrow niches and the peripheral blood. We use this model to investigate clonal hematopoiesis, which is a significant risk factor for hematologic cancers. We also analyse the engraftment of donor stem cells into non-conditioned and conditioned hosts, quantifying the impact of different treatment scenarios. The simplicity of the model permits a thorough mathematical analysis, providing deeper insights into the dynamics of both the model and of the real-world system. We predict the time taken for mutant clones to expand within a host, as well as chimerism levels that can be expected following transplantation therapy, and the probability that a preconditioned host is reconstituted by donor cells.

  13. Are certain fractures at increased risk for compartment syndrome after civilian ballistic injury?

    Science.gov (United States)

    Meskey, Thomas; Hardcastle, John; O'Toole, Robert V

    2011-11-01

    Compartment syndrome after ballistic fracture is uncommon but potentially devastating. Few data are available to help guide clinicians regarding risk factors for developing compartment syndrome after ballistic fractures. Our primary hypothesis was that ballistic fractures of certain bones would be at higher risk for development of compartment syndrome. A retrospective review at a Level I trauma center from 2001 through 2007 yielded 650 patients with 938 fractures resulting from gunshots. We reviewed all operative notes, clinic notes, discharge summaries, and data from our prospective trauma database. Cases in which the attending orthopedic surgeon diagnosed compartment syndrome and performed fasciotomy were considered cases with compartment syndrome. We excluded all prophylactic fasciotomies. Univariate analyses were conducted to identify risk factors associated with development of compartment syndrome. Twenty-six (2.8%) of the 938 fractures were associated with compartment syndrome. Only fibular (11.6%) and tibial (11.4%) fractures had incidence significantly higher than baseline for all ballistic fractures (p Ballistic fractures of the fibula and tibia are at increased risk for development of compartment syndrome over other ballistic fractures. We recommend increased vigilance when treating these injuries, particularly if the fracture is in the proximal aspect of the bone or is associated with vascular injury.

  14. Compartment syndrome, rhabdomyolysis and risk of acute renal failure as complications of the lithotomy position.

    NARCIS (Netherlands)

    Bocca, G.; Moorselaar, R.J.A. van; Feitz, W.F.J.; Staak, F.H.J.M. van der; Monnens, L.A.H.

    2002-01-01

    Compartment syndrome, rhabdomyolysis and the risk of acute renal failure are potential complications of the lithotomy position. A six-year-old girl is described who developed a compartment syndrome with rhabdomyolysis after prolonged surgery in the lithotomy position. This complication occurred

  15. The formation of endosymbiotic membrane compartments: membrane identity markers and the regulation of vesicle trafficking

    NARCIS (Netherlands)

    Ivanov, S.

    2012-01-01

    In symbiosis of plants and arbuscular mycorrhizal fungi as well as in rhizobium-legume symbiosis the microbes are hosted intracellularly, inside specialized membrane compartments of the host. These membrane compartments are morphologically different but similar in function, since they control

  16. 75 FR 81 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Flightcrew Rest Compartment Occupiable...

    Science.gov (United States)

    2010-01-04

    ... and protective breathing equipment (PBE). This analysis should consider the possibility of fire in any..., mechanical or structural failure, or persons standing below or against the crew rest compartment outlets. One..., volume of the compartment, and the ventilation rate. The system must have sufficient extinguishing agent...

  17. AERODYNAMIC IMPROVEMENT OF KhADI 33 RACING CAR RADIATOR COMPARTMENT

    Directory of Open Access Journals (Sweden)

    A. Avershyn

    2011-01-01

    Full Text Available Aerodynamic characteristics of radiator compartment of KhADI 33 racing car on the basis of the decision of the interfaced problem of internal and external aerodynamics are numerically investigated. The rational variant of radiator compartment which is characterized by high throughput and low level of non-uniformity of speed field at the input is offered.

  18. 46 CFR 105.25-7 - Ventilation systems for cargo tank or pumping system compartment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation systems for cargo tank or pumping system... Requirements-When Cargo Tanks Are Installed Below Decks § 105.25-7 Ventilation systems for cargo tank or pumping system compartment. (a) Each compartment shall be provided with a mechanical exhaust system...

  19. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Science.gov (United States)

    2010-01-01

    ... detection systems. 25.858 Section 25.858 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If... must be met for each cargo or baggage compartment with those provisions: (a) The detection system must...

  20. 19 CFR 24.13 - Car, compartment, and package seals; kind, procurement.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Car, compartment, and package seals; kind... SECURITY; DEPARTMENT OF THE TREASURY CUSTOMS FINANCIAL AND ACCOUNTING PROCEDURE § 24.13 Car, compartment.... Customs] [Can. Transit] for use on railroad cars, and “United States-Canada Customs” for use on samples...

  1. Validation of a multiple compartment model for the transport of cesium through animals

    International Nuclear Information System (INIS)

    Assimakopoulos, P.A.; Ioannides, K.G.; Pakou, A.A.

    1991-01-01

    A general multiple compartment model, which describes the transport of trace elements through animals is presented. This model considers a system of K interconnected compartments of volume V i , i = 1,2,....,K, each containing, at a given time t, N i molecules of a trace substance. (5 figs.)

  2. Stiffness and thickness of fascia do not explain chronic exertional compartment syndrome

    DEFF Research Database (Denmark)

    Dahl, Morten; Hansen, Philip; Stål, Per

    2011-01-01

    Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown.......Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown....

  3. 30 CFR 57.19107 - Precautions for work in compartment affected by hoisting operation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Precautions for work in compartment affected by hoisting operation. 57.19107 Section 57.19107 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... AND NONMETAL MINES Personnel Hoisting Shafts § 57.19107 Precautions for work in compartment affected...

  4. 30 CFR 56.19107 - Precautions for work in compartment affected by hoisting operation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Precautions for work in compartment affected by hoisting operation. 56.19107 Section 56.19107 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... NONMETAL MINES Personnel Hoisting Shafts § 56.19107 Precautions for work in compartment affected by...

  5. 77 FR 19148 - Special Conditions: Airbus, A350-900 Series Airplane; Crew Rest Compartments

    Science.gov (United States)

    2012-03-30

    ... accommodates side-by-side placement of LD-3 containers in the cargo compartment. The basic A350-900 series... total overhead crew rest compartment length, the exit separation should not be less than 50 percent of... by curtains. Flight tests must be conducted to show compliance with this requirement. Each system or...

  6. 46 CFR 58.16-20 - Ventilation of compartments containing gas-consuming appliances.

    Science.gov (United States)

    2010-10-01

    ... appliances. 58.16-20 Section 58.16-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... and Heating § 58.16-20 Ventilation of compartments containing gas-consuming appliances. (a) Compartments containing gas-consuming appliances which are located above the weather deck shall be fitted with...

  7. Unrecognized anterior compartment syndrome following ankle fracture surgery: a case report.

    Science.gov (United States)

    Seyahi, Aksel; Uludag, Serkan; Akman, Senol; Demirhan, Mehmet

    2009-01-01

    A 35-year-old male sustained a lateral malleolar fracture while playing football. The fracture was treated by open reduction and internal fixation with a tourniquet. The next day, the patient returned with pain and swelling of the ankle and was admitted again to the hospital with a suspected diagnosis of cellulitis. Ten hours later, the patient developed the symptoms of anterior compartment syndrome. Emergency open fasciotomy of the anterior compartment was performed. The retrospective analysis of the patient's history was suggestive of a predisposition to an exercise-induced compartment syndrome. We think that exertional increase of the compartmental pressure before the injury and the tourniquet used during surgery contributed together to the development of compartment syndrome. Physicians should be vigilant in identifying the features of compartment syndrome when managing patients injured during a sporting activity.

  8. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger.

    Science.gov (United States)

    Oude Blenke, E; Sleszynska, M; Evers, M J W; Storm, G; Martin, N I; Mastrobattista, E

    2017-02-15

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high membranolytic activity. However, such lytic peptides also impose a significant safety risk when applied in vivo as they often have similar activity against red blood cells and other nontarget cell membranes. Our aim is to control the membrane-disrupting capacity of these peptides in time and space by physically constraining them to a nanocarrier surface in such a way that they only become activated when delivered inside acidic endosomes. To this end, a variety of chemical approaches for the coupling of lytic peptides to liposomes via functionalized PEG-lipids were explored, including maleimide-thiol chemistry, click-chemistry, and aldehyde-hydrazide chemistry. The latter enables reversible conjugation via a hydrazone bond, allowing for release of the peptide under endosomal conditions. By carefully choosing the conjugation site and by using a pH activated analog of the melittin peptide, lytic activity toward a model membrane is completely inhibited at physiological pH. At endosomal pH the activity is restored by hydrolysis of the acid-labile hydrazone bond, releasing the peptide in its most active, free form. Furthermore, using an analogue containing a nonhydrolyzable bond as a control, it was shown that the activity observed can be completely attributed to release of the peptide, validating dynamic covalent conjugation as a suitable strategy to maintain safety during circulation.

  9. CFD analysis of flow in engine compartment of large urban bus; Ogata bus no engine room nai nagare kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, H; Otake, M; Iioka, K [Nissan Diesel Motor Co. Ltd., Saitama (Japan); Sato, K [Subaru Research Center Co. Ltd., Tokyo (Japan)

    1997-10-01

    A CFD simulation was performed to analyze the air flow in the engine compartment of a large urban bus. The conventional simulation technique takes a long time to perform the parameter study of a complex engine compartment shape. In this study, the use of orthogonal grids made modeling the engine compartment easy, so parameter study on modification of the engine compartment structure could be conducted in a short time. Thus this simulation enables engineers to more clearly understand the air flow patterns in the engine compartment, and to get guidlines for modifying the compartment structure to improve the cooling performance. 1 ref., 12 figs.

  10. Abdominal compartment syndrome and open abdomen management with negative pressure devices.

    Science.gov (United States)

    Surace, Alessandra; Ferrarese, Alessia; Marola, Silvia; Cumbo, Jacopo; Valentina, Gentile; Borello, Alessandro; Solej, Mario; Martino, Valter; Nano, Mario

    2015-01-01

    Abdominal compartment syndrome (ACS) is defined as an increase of intra-abdominal pressure (IAH) to values higher than 20 mmHg, associated with reduced perfusion and organ dysfunction. There is a classification of open abdomen which stratifies patients according to the natural history of improvement or clinical deterioration. The aim of treatment is to maintain the open abdomen at the lowest level and to prevent progression to a more complex level. Surgical treatment essentially consists in abdominal decompression by leaving the abdomen open. Analysis of the literature shows that negative pressure increases the rate of primary fascial closure; entero-cutaneous fistulas are seen in a minority of cases, without seeming consequence of the application of the dressing. Open abdomen management consists of three treatment stages: acute (24-48 hours), intermediate (from 48 hours to 10 days) and late or reconstruction (from 10 days to the final closure). It's important to recognize patients at risk of IAH and the first signs of ACS and intervene early with abdominal decompression if this will establish itself. Management of the open abdomen is now facilitated by negative pressure devices, which positively affect the morbidity and mortality of patients with ACS.

  11. Microwave tomography of extremities: 2. Functional fused imaging of flow reduction and simulated compartment syndrome

    International Nuclear Information System (INIS)

    Semenov, Serguei; Nair, Bindu; Kellam, James; Williams, Thomas; Quinn, Michael; Sizov, Yuri; Nazarov, Alexei; Pavlovsky, Andrey

    2011-01-01

    Medical imaging has recently expanded into the dual- or multi-modality fusion of anatomical and functional imaging modalities. This significantly improves the diagnostic power while simultaneously increasing the cost of already expensive medical devices or investigations and decreasing their mobility. We are introducing a novel imaging concept of four-dimensional (4D) microwave tomographic (MWT) functional imaging: three dimensional (3D) in the spatial domain plus one dimensional (1D) in the time, functional dynamic domain. Instead of a fusion of images obtained by different imaging modalities, 4D MWT fuses absolute anatomical images with dynamic, differential images of the same imaging technology. The approach was successively validated in animal experiments with short-term arterial flow reduction and a simulated compartment syndrome in an initial simplified experimental setting using a dedicated MWT system. The presented fused images are not perfect as MWT is a novel imaging modality at its early stage of the development and ways of reading reconstructed MWT images need to be further studied and understood. However, the reconstructed fused images present clear evidence that microwave tomography is an emerging imaging modality with great potentials for functional imaging.

  12. One elevated bladder pressure measurement may not be enough to diagnose abdominal compartment syndrome.

    Science.gov (United States)

    Young, Andrew Joseph; Weber, William; Wolfe, Luke; Ivatury, Rao R; Duane, Therese Marie

    2013-02-01

    Bladder pressure measurements (BPMs) are considered a key component in the diagnosis of abdominal compartment syndrome (ACS). The purpose of this observational review was to determine risk factors of ACS and associated mortality with particular focus on the role of BPM. A retrospective trauma registry and chart review was performed on trauma patients from January 2003 through December 2010. Comparisons were made between patients with and without ACS. There were 3172 patients included in the study of whom 46 had ACS. Patients with ACS were younger, more severely injured, with longer lengths of stay. Logistic regression determined Injury Severity Score (ISS) and urinary catheter days as independent predictors of ACS, whereas independent predictors of mortality included age, ISS, and ACS. Subset analysis demonstrated no association between BPM 20 mmHg or greater and diagnosis of ACS versus no ACS. Logistic regression indicated independent predictors of mortality were number of BPM 20 mmHg or greater and age. Patients with ACS are more severely injured with worse outcomes. An isolated BPM 20 mmHg or greater was not associated with ACS and may be inadequate to independently diagnose ACS. These findings suggest the need for repeat measurements with early intervention if they remain elevated in an effort to decrease mortality associated with ACS.

  13. L-Type Voltage-Gated Ca2+ Channels Regulate Synaptic-Activity-Triggered Recycling Endosome Fusion in Neuronal Dendrites

    Directory of Open Access Journals (Sweden)

    Brian G. Hiester

    2017-11-01

    Full Text Available The repertoire and abundance of proteins displayed on the surface of neuronal dendrites are tuned by regulated fusion of recycling endosomes (REs with the dendritic plasma membrane. While this process is critical for neuronal function and plasticity, how synaptic activity drives RE fusion remains unexplored. We demonstrate a multistep fusion mechanism that requires Ca2+ from distinct sources. NMDA receptor Ca2+ initiates RE fusion with the plasma membrane, while L-type voltage-gated Ca2+ channels (L-VGCCs regulate whether fused REs collapse into the membrane or reform without transferring their cargo to the cell surface. Accordingly, NMDA receptor activation triggered AMPA-type glutamate receptor trafficking to the dendritic surface in an L-VGCC-dependent manner. Conversely, potentiating L-VGCCs enhanced AMPA receptor surface expression only when NMDA receptors were also active. Thus L-VGCCs play a role in tuning activity-triggered surface expression of key synaptic proteins by gating the mode of RE fusion.

  14. The Human ABCG1 Transporter Mobilizes Plasma Membrane and Late Endosomal Non-Sphingomyelin-Associated-Cholesterol for Efflux and Esterification

    Directory of Open Access Journals (Sweden)

    Edward B. Neufeld

    2014-12-01

    Full Text Available We have previously shown that GFP-tagged human ABCG1 on the plasma membrane (PM and in late endosomes (LE mobilizes sterol on both sides of the membrane lipid bilayer, thereby increasing cellular cholesterol efflux to lipid surfaces. In the present study, we examined ABCG1-induced changes in membrane cholesterol distribution, organization, and mobility. ABCG1-GFP expression increased the amount of mobile, non-sphingomyelin(SM-associated cholesterol at the PM and LE, but not the amount of SM-associated-cholesterol or SM. ABCG1-mobilized non-SM-associated-cholesterol rapidly cycled between the PM and LE and effluxed from the PM to extracellular acceptors, or, relocated to intracellular sites of esterification. ABCG1 increased detergent-soluble pools of PM and LE cholesterol, generated detergent-resistant, non-SM-associated PM cholesterol, and increased resistance to both amphotericin B-induced (cholesterol-mediated and lysenin-induced (SM-mediated cytolysis, consistent with altered organization of both PM cholesterol and SM. ABCG1 itself resided in detergent-soluble membrane domains. We propose that PM and LE ABCG1 residing at the phase boundary between ordered (Lo and disordered (Ld membrane lipid domains alters SM and cholesterol organization thereby increasing cholesterol flux between Lo and Ld, and hence, the amount of cholesterol available for removal by acceptors on either side of the membrane bilayer for either efflux or esterification.

  15. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    Science.gov (United States)

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The functional interplay of Rab11, FIP3 and Rho proteins on the endosomal recycling pathway controls cell shape and symmetry.

    Science.gov (United States)

    Bouchet, Jérôme; McCaffrey, Mary W; Graziani, Andrea; Alcover, Andrés

    2018-07-04

    Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.

  17. The Vici Syndrome Protein EPG5 Is a Rab7 Effector that Determines the Fusion Specificity of Autophagosomes with Late Endosomes/Lysosomes.

    Science.gov (United States)

    Wang, Zheng; Miao, Guangyan; Xue, Xue; Guo, Xiangyang; Yuan, Chongzhen; Wang, Zhaoyu; Zhang, Gangming; Chen, Yingyu; Feng, Du; Hu, Junjie; Zhang, Hong

    2016-09-01

    Mutations in the human autophagy gene EPG5 cause the multisystem disorder Vici syndrome. Here we demonstrated that EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. EPG5 is recruited to late endosomes/lysosomes by direct interaction with Rab7 and the late endosomal/lysosomal R-SNARE VAMP7/8. EPG5 also binds to LC3/LGG-1 (mammalian and C. elegans Atg8 homolog, respectively) and to assembled STX17-SNAP29 Qabc SNARE complexes on autophagosomes. EPG5 stabilizes and facilitates the assembly of STX17-SNAP29-VAMP7/8 trans-SNARE complexes, and promotes STX17-SNAP29-VAMP7-mediated fusion of reconstituted proteoliposomes. Loss of EPG5 activity causes abnormal fusion of autophagosomes with various endocytic vesicles, in part due to elevated assembly of STX17-SNAP25-VAMP8 complexes. SNAP25 knockdown partially suppresses the autophagy defect caused by EPG5 depletion. Our study reveals that EPG5 is a Rab7 effector involved in autophagosome maturation, providing insight into the molecular mechanism underlying Vici syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Pre test parametric studies on single compartment vented enclosure

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Gera, B.; Singh, R.K.; Vaze, K.K.

    2011-01-01

    Establishing a proper design fire scenario is a challenging task and essential component for conducting fire safety design of buildings. A design fire scenario is a qualitative description of a fire with time identifying key events that characterize the fire (ignition, growth, flashover, fully-developed, and decay stages of fire). Proper fire safety design requires the appropriate selection of design fires against which the performance of the building is evaluated. The selection of the design fires directly impacts all aspects of fire safety performance, including the structural fire resistance, compartmentation against fire spread, egress systems, manual or automatic detection systems, suppression systems, and smoke control. The parameters affecting design fires include, the type, amount and arrangement of combustible materials, the ventilation conditions (air supply conditions, door/window open), and size of the compartment of fire origin. A design fire is a quantitative description of the characteristics of a fire, such as heat release rate (HRR), size of fire and its rate of spread, yield of products of combustion, and hot gas temperatures. Design fires are based on fire scenarios that replicate real fires. Six Computational Fluid Dynamics (CFD) numerical simulations were conducted in order to investigate the effect of fire load on fire dynamics in a) iso corner fire configuration b) IIT Delhi single compartment of a size of 5.0 m long, 5.0 m wide and 5.0 m high with doorway opening of 1m x 3m with centre fire of size 0.5 m x 0.5m. These types of simulation are carried out for deciding about the instrumentation scheme, safety aspect, and optimization of proposed experiments for National Fire Test Facility as pretest calculations. The simulations results are summarized in various identified applied parameter which are useful in terms of understanding the complex fire dynamics, validating the numerical tolls against experiments and using them (in form of values

  19. Modeling study on nuclide transport in ocean - an ocean compartment method

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Suh, Kyung Suk; Han, Kyoung Won

    1991-01-01

    An ocean compartment model simulating transport of nuclides by advection due to ocean circulation and interaction with suspended sediments is developed, by which concentration breakthrough curves of nuclides can be calculated as a function of time. Dividing ocean into arbitrary number of characteristic compartments and performing a balance of mass of nuclides in each ocean compartment, the governing equation for the concentration in the ocean is obtained and a solution by the numerical integration is obtained. The integration method is specially useful for general stiff systems. For transfer coefficients describing advective transport between adjacent compartments by ocean circulation, the ocean turnover time is calculated by a two-dimensional numerical ocean method. To exemplify the compartment model, a reference case calculation for breakthrough curves of three nuclides in low-level radioactive wastes, Tc-99, Cs-137, and Pu-238 released from hypothetical repository under the seabed is carried out with five ocean compartments. Sensitivity analysis studies for some parameters to the concentration breakthrough curves are also made, which indicates that parameters such as ocean turnover time and ocean water volume of compartments have an important effect on the breakthrough curves. (Author)

  20. Bilateral post-traumatic gluteal compartment syndrome: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Devashis Barick

    2015-01-01

    Full Text Available Gluteal compartment is a rare site for compartment syndrome. Gluteal compartment syndrome has most commonly been described in the literature as occurring after prolonged immobility associated with substance abuse, improper operative positioning, sickle cell-induced infarct, post-traumatic and spontaneous superior gluteal artery rupture, exercise, and post-arterial embolization of the internal iliac artery prior to abdominal aortic aneurysm repair. Trauma is rarely associated with this syndrome. Gluteal compartment syndrome occurs in approximately 0.9% of trauma patients. Posttraumatic gluteal compartment syndrome develops because of edema with traumatic contusions, crush injuries and hematoma formation due to blunt superior or inferior gluteal artery injuries in all compartments of the gluteal region Only 6 previous cases have been reported in the literature. Two previous cases involved positioning for urological procedures, while the other cited causes of bilateral gluteal compartment syndrome include exercise-induced, trauma, and prolonged immobilization from substance abuse. One of the most immediately devastating results of a missed compartment syndrome is the risk of the development of rhabdomyolysis with the resulting squeal of myoglobinuria, hyperkalemia, and acidosis resulting in renal failure, shock, multiple organ failure, disseminated intravascular coagulation, and possibly death. Here we report a case of posttraumatic bilateral compartment syndrome which developed secondary to pressure due to patient being trapped under a vehicle following a vehicular accident. He was operated upon and a bilateral fasciotomy was done. Although he did not develop any renal complications, the sciatic nerve palsy on the left side did not recover. The patient is still under follow up.

  1. Spectral Doppler findings in a rare case of acute compartment syndrome following leg burn

    Directory of Open Access Journals (Sweden)

    Omer A. Mahmoud

    2018-04-01

    Full Text Available Acute compartment syndrome (ACS is an orthopedic emergency condition, which is rarely attributed to burns. It occurs when pressure in an enclosed space rises to a point where it reduces blood flow and impairs tissue perfusion. Its consequences often lead to ischemia and possible necrosis within that space. Until now, the use of Doppler assessment to explore different types of compartment syndrome has yielded contradictory findings. Here, we present a significant increase of blood flow velocity in the arteries proximal to the burned area. Thus, the combination of Duplex ultrasound results with clinical findings will help vascular surgeons to make immediate decision to perform fasciotomy. Keywords: Compartment syndrome, Spectral Doppler

  2. Compartment Syndrome following Open Femoral Fracture with an Isolated Femoral Vein Injury Treated with Acute Repair

    Directory of Open Access Journals (Sweden)

    David Walmsley

    2014-01-01

    Full Text Available Acute compartment syndrome is a surgical emergency and its diagnosis is more difficult in obtunded or insensate patients. We present the case of a 34-year-old woman who sustained a Gustilo-Anderson grade III open midshaft femur fracture with an isolated femoral vein injury treated with direct repair. She developed lower leg compartment syndrome at 48 hours postoperatively, necessitating fasciotomies. She was subsequently found to have a DVT in her femoral vein at the level of the repair and was started on therapeutic anticoagulation. This case highlights the importance of recognition of isolated venous injuries in a trauma setting as a risk factor for developing compartment syndrome.

  3. Compartment and Crush Syndromes After Sleep Deprivation and a Therapeutic Dose of Zolpidem

    Directory of Open Access Journals (Sweden)

    Martin R. Huecker

    2017-07-01

    Full Text Available Despite extensive review in the literature, compartment syndrome and crush syndrome remain difficult to diagnose. Trauma, toxins and reperfusion have been associated with these syndromes. Cases involving alcohol and drug abuse have described patients “found down” compressing an extremity. We present a case of a registered nurse who developed compartment syndrome in multiple limbs due to prolonged sleep after sleep deprivation and zolpidem use. To our knowledge, this is the first case of compartment syndrome or crush syndrome to have occurred in the setting of zolpidem use. Sleep disruption in healthcare workers represents a public health issue with dangerous sequelae, both acute and chronic.

  4. Tracer kinetics: Modelling by partial differential equations of inhomogeneous compartments with age-dependent elimination rates. Pt. 2

    International Nuclear Information System (INIS)

    Winkler, E.

    1991-01-01

    The general theory of inhomogeneous compartments with age-dependent elimination rates is illustrated by examples. Mathematically, it turns out that models consisting of partial differential equations include ordinary, delayed and integro-differential equations, a general fact which is treated here in the context of linear tracer kinetics. The examples include standard compartments as a degenerate case, systems of standard compartments (compartment blocks), models resulting in special residence time distributions, models with pipes, and systems with heterogeneous particles. (orig./BBR) [de

  5. Delayed presentation of compartment syndrome of the thigh secondary to quadriceps trauma and vascular injury in a soccer athlete

    Directory of Open Access Journals (Sweden)

    Moo Ing How

    2015-01-01

    Conclusion: A high index of suspicion for compartment syndrome is needed in all severe quadriceps contusion. Vascular injury can cause thigh compartment syndrome in sports trauma. MRI findings of deep thigh muscle swelling and “blow-out” tear of the vastus lateralis are strongly suggestive of severe quadriceps injury, and may be a harbinger of delayed thigh compartment syndrome.

  6. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    Science.gov (United States)

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  7. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics.

    Science.gov (United States)

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian

    2015-08-01

    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  8. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis.

    Directory of Open Access Journals (Sweden)

    Xuejun Tian

    2015-03-01

    Full Text Available Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj, causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.

  9. Shock Transmission Analyses of a Simplified Frigate Compartment Using LS-DYNA

    National Research Council Canada - National Science Library

    Trouwborst, W

    1999-01-01

    This report gives results as obtained with finite element analyses using the explicit finite element program LS-DYNA for a longitudinal slice of a frigate's compartment loaded with a shock pulse based...

  10. A case of abdominal compartment syndrome derived from simple elongated sigmoid colon in an elderly man

    Directory of Open Access Journals (Sweden)

    Masaaki Shida

    2016-01-01

    Discussion and conclusion: Considering the increase in the aging population, we must bear in mind that abdominal compartment syndrome may occur in simple elongated sigmoid colon without other risk factors.

  11. Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Stephen J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, controls the cooling rate in one or both compartments to synchronize, alternating cycles of cooling the compartments to their set point temperatures.

  12. A delayed presentation of bilateral leg compartment syndrome following non-stop dancing.

    Science.gov (United States)

    Jefferies, James Gordon; Carter, Tom; White, Tim Oliver

    2015-03-18

    We present the case of a young man with a 48 h delayed presentation of bilateral lower limb acute compartment syndrome (ACS) affecting the anterior compartments following an extended period of dancing at a music festival. On making the diagnosis of ACS, the patient was immediately taken to theatre for fasciotomies and compartmental decompression. Repeat look fasciotomies revealed further necrosis to the muscles of the anterior compartments bilaterally and, effectively, all the muscle bellies within the anterior compartments were excised. The patient has been left with a significant functional deficit and disability. This case highlights the importance of timely diagnosis of ACS as delay in presentation can impact significantly on subsequent functional outcome and quality of life. 2015 BMJ Publishing Group Ltd.

  13. Stiffness and thickness of fascia do not explain chronic exertional compartment syndrome

    DEFF Research Database (Denmark)

    Dahl, Morten; Hansen, Philip; Stål, Per

    2011-01-01

    Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown....

  14. Assessment of Fire Growth and Mitigation in Submarine Plastic Waste Stowage Compartments

    National Research Council Canada - National Science Library

    Ndubizu, Chuka

    2000-01-01

    This report presents the results of tests to assess the fire growth characteristics and the ease of fire control in the proposed Virginia-class and the Ohio-class submarine plastic waste stowage compartments...

  15. Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Ivan Stupák

    2017-11-01

    Full Text Available Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus—Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium, we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.

  16. Propriety check for quenching meshes for control of hydrogen combustion between two compartments

    International Nuclear Information System (INIS)

    Yang, S. Y.; Jeong, S. H.; Kim, H. Z.; Kim, H. D.; Hong, S. W.

    2001-01-01

    In our previous study, the quenching meshes have been proposed for the control of hydrogen combustion under nuclear severe accident. It has been investigated whether the method of installation of quenching mesh to prevent flame from propagating to the other compartment is proper or not. Schlieren photograph is used to visualize the propagation of flame between two compartments. Without the quenching mesh equipped between the compartments, it has been observed that the flame always propagates from a compartment to the other. The data on quencing distance of hydrogen premixed flames gotten in our previous study is alayzed to setup of optimum quenching mesh, too. Such experimental results establish that the quenching meshes proposed for the control of hydrogen combustion are resonably available

  17. Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Lundell, Henrik; Sønderby, Casper Kaae

    2013-01-01

    Pulsed field gradient diffusion sequences (PFG) with multiple diffusion encoding blocks have been indicated to offer new microstructural tissue information, such as the ability to detect nonspherical compartment shapes in macroscopically isotropic samples, i.e. samples with negligible directional...

  18. Architectural properties of the neuromuscular compartments in selected forearm skeletal muscles.

    Science.gov (United States)

    Liu, An-Tang; Liu, Ben-Li; Lu, Li-Xuan; Chen, Gang; Yu, Da-Zhi; Zhu, Lie; Guo, Rong; Dang, Rui-Shan; Jiang, Hua

    2014-07-01

    The purposes f this study were to (i) explore the possibility of splitting the selected forearm muscles into separate compartments in human subjects; (ii) quantify the architectural properties of each neuromuscular compartment; and (iii) discuss the implication of these properties in split tendon transfer procedures. Twenty upper limbs from 10 fresh human cadavers were used in this study. Ten limbs of five cadavers were used for intramuscular nerve study by modified Sihler's staining technique, which confirmed the neuromuscular compartments. The other 10 limbs were included for architectural analysis of neuromuscular compartments. The architectural features of the compartments including muscle weight, muscle length, fiber length, pennation angle, and sarcomere length were determined. Physiological cross-sectional area and fiber length/muscle length ratio were calculated. Five of the selected forearm muscles were ideal candidates for splitting, including flexor carpi ulnaris, flexor carpi radials, extensor carpi radialis brevis, extensor carpi ulnaris and pronator teres. The humeral head of pronator teres contained the longest fiber length (6.23 ± 0.31 cm), and the radial compartment of extensor carpi ulnaris contained the shortest (2.90 ± 0.28 cm). The ulnar compartment of flexor carpi ulnaris had the largest physiological cross-sectional area (5.17 ± 0.59 cm(2)), and the ulnar head of pronator teres had the smallest (0.67 ± 0.06 cm(2)). Fiber length/muscle length ratios of the neuromuscular compartments were relatively low (average 0.27 ± 0.09, range 0.18-0.39) except for the ulnar head of pronator teres, which had the highest one (0.72 ± 0.05). Using modified Sihler's technique, this research demonstrated that each compartment of these selected forearm muscles has its own neurovascular supply after being split along its central tendon. Data of the architectural properties of each neuromuscular compartment provide insight into the 'design' of their

  19. Architectural properties of the neuromuscular compartments in selected forearm skeletal muscles

    Science.gov (United States)

    Liu, An-Tang; Liu, Ben-Li; Lu, Li-Xuan; Chen, Gang; Yu, Da-Zhi; Zhu, Lie; Guo, Rong; Dang, Rui-Shan; Jiang, Hua

    2014-01-01

    The purposes f this study were to (i) explore the possibility of splitting the selected forearm muscles into separate compartments in human subjects; (ii) quantify the architectural properties of each neuromuscular compartment; and (iii) discuss the implication of these properties in split tendon transfer procedures. Twenty upper limbs from 10 fresh human cadavers were used in this study. Ten limbs of five cadavers were used for intramuscular nerve study by modified Sihler's staining technique, which confirmed the neuromuscular compartments. The other 10 limbs were included for architectural analysis of neuromuscular compartments. The architectural features of the compartments including muscle weight, muscle length, fiber length, pennation angle, and sarcomere length were determined. Physiological cross-sectional area and fiber length/muscle length ratio were calculated. Five of the selected forearm muscles were ideal candidates for splitting, including flexor carpi ulnaris, flexor carpi radials, extensor carpi radialis brevis, extensor carpi ulnaris and pronator teres. The humeral head of pronator teres contained the longest fiber length (6.23 ± 0.31 cm), and the radial compartment of extensor carpi ulnaris contained the shortest (2.90 ± 0.28 cm). The ulnar compartment of flexor carpi ulnaris had the largest physiological cross-sectional area (5.17 ± 0.59 cm2), and the ulnar head of pronator teres had the smallest (0.67 ± 0.06 cm2). Fiber length/muscle length ratios of the neuromuscular compartments were relatively low (average 0.27 ± 0.09, range 0.18–0.39) except for the ulnar head of pronator teres, which had the highest one (0.72 ± 0.05). Using modified Sihler's technique, this research demonstrated that each compartment of these selected forearm muscles has its own neurovascular supply after being split along its central tendon. Data of the architectural properties of each neuromuscular compartment provide insight into the ‘design’ of their

  20. Compartment analysis of 125I-labelled albumin washout from coronary vessels of isolated perfused hearts

    International Nuclear Information System (INIS)

    Cheng Eap Ng; Seh-Hoon Song

    1978-01-01

    Albumin labelled with 125 I was used as a tracer to investigate the washout kinetics of plasma from the coronary circulation of isolated perfused feline hearts. Compartmentalization with experimental results showed at least two compartments. The model was compared with a three-compartment model found previously for red blood cells. The results indicate that there is a separation of plasma and RBC in the coronary microcirculation. (author)

  1. Development of a compartment model based on CFD simulations for description of mixing in bioreactors

    Directory of Open Access Journals (Sweden)

    Crine, M.

    2010-01-01

    Full Text Available Understanding and modeling the complex interactions between biological reaction and hydrodynamics are a key problem when dealing with bioprocesses. It is fundamental to be able to accurately predict the hydrodynamics behavior of bioreactors of different size and its interaction with the biological reaction. CFD can provide detailed modeling about hydrodynamics and mixing. However, it is computationally intensive, especially when reactions are taken into account. Another way to predict hydrodynamics is the use of "Compartment" or "Multi-zone" models which are much less demanding in computation time than CFD. However, compartments and fluxes between them are often defined by considering global quantities not representative of the flow. To overcome the limitations of these two methods, a solution is to combine compartment modeling and CFD simulations. Therefore, the aim of this study is to develop a methodology in order to propose a compartment model based on CFD simulations of a bioreactor. The flow rate between two compartments can be easily computed from the velocity fields obtained by CFD. The difficulty lies in the definition of the zones in such a way they can be considered as perfectly mixed. The creation of the model compartments from CFD cells can be achieved manually or automatically. The manual zoning consists in aggregating CFD cells according to the user's wish. The automatic zoning defines compartments as regions within which the value of one or several properties are uniform with respect to a given tolerance. Both manual and automatic zoning methods have been developed and compared by simulating the mixing of an inert scalar. For the automatic zoning, several algorithms and different flow properties have been tested as criteria for the compartment creation.

  2. A surgical approach to the lateral compartment of the equine guttural pouch in the standing horse

    DEFF Research Database (Denmark)

    Muñoz, Juan A.; Stephen, Jennifer; Baptiste, Keith Edward

    2008-01-01

    The objective of this study was to evaluate the feasibility, efficacy and complications following lavage and drainage of the laterial compartment (LC) of the equine guttural pounch (GP) using a modified Garm´s technique (MGT)......The objective of this study was to evaluate the feasibility, efficacy and complications following lavage and drainage of the laterial compartment (LC) of the equine guttural pounch (GP) using a modified Garm´s technique (MGT)...

  3. Chronic exertional compartment syndrome with medial tibial stress syndrome in twins.

    Science.gov (United States)

    Banerjee, Purnajyoti; McLean, Christopher

    2011-06-14

    Chronic exertional compartment syndrome and medial tibial stress syndrome are uncommon conditions that affect long-distance runners or players involved in team sports that require extensive running. We report 2 cases of bilateral chronic exertional compartment syndrome, with medial tibial stress syndrome in identical twins diagnosed with the use of a Kodiag monitor (B. Braun Medical, Sheffield, United Kingdom) fulfilling the modified diagnostic criteria for chronic exertional compartment syndrome as described by Pedowitz et al, which includes: (1) pre-exercise compartment pressure level >15 mm Hg; (2) 1 minute post-exercise pressure >30 mm Hg; and (3) 5 minutes post-exercise pressure >20 mm Hg in the presence of clinical features. Both patients were treated with bilateral anterior fasciotomies through minimal incision and deep posterior fasciotomies with tibial periosteal stripping performed through longer anteromedial incisions under direct vision followed by intensive physiotherapy resulting in complete symptomatic recovery. The etiology of chronic exertional compartment syndrome is not fully understood, but it is postulated abnormal increases in intramuscular pressure during exercise impair local perfusion, causing ischemic muscle pain. No familial predisposition has been reported to date. However, some authors have found that no significant difference exists in the relative perfusion, in patients, diagnosed with chronic exertional compartment syndrome. Magnetic resonance images of affected compartments have indicated that the pain is not due to ischemia, but rather from a disproportionate oxygen supply versus demand. We believe this is the first report of chronic exertional compartment syndrome with medial tibial stress syndrome in twins, raising the question of whether there is a genetic predisposition to the causation of these conditions. Copyright 2011, SLACK Incorporated.

  4. Bilateral calf chronic compartment syndrome in an elderly male: a case report.

    LENUS (Irish Health Repository)

    Siau, Keith

    2009-01-01

    Leg pain is a common presentation to the outpatient department. Bilateral calf chronic compartment syndrome is a rare cause of bilateral calf pain. Although this condition has been well documented in young athletes, it has rarely been reported in the elderly. We present the case of a 68-year-old male bodybuilder with bilateral calf chronic compartment syndrome, describe the presentation and evaluation of the condition, and provide a review of the literature herewith.

  5. CHRONIC COMPARTMENT SYNDROME OF LOWER LEG. AN UNUSUAL CASE IN NON ATHLETIC PATIENT.

    Directory of Open Access Journals (Sweden)

    Andrea Schiavone

    2016-10-01

    Full Text Available Chronic exertional anterior compartment syndrome is debilitating disease of lower limb. The clinical picture is characterised by limited symptomology at rest, pain during sporting activities, tumefaction and contractures of limb as well impotency by pain of the entire forefoot and hypoesthesia. Usually the most affected patients are athletes. We analyse a case of chronic post traumatic compartment syndrome of the anterior tibial muscle in an unsportsmanlike patient.

  6. Investigation of Local Hydrogen Risk in the RDT Compartment of OPR1000 under SBO Scenario

    International Nuclear Information System (INIS)

    Kim, Nam Kyung; Jeon, Joon Goo; Choi, Won Jun; Song, Kyu Sang; Jeun, Gyoo Dong; Kim, Sung Joong

    2016-01-01

    As TMI-2 and Fukushima accidents revealed, a high concentration of hydrogen in a nuclear power plant (NPP) could cause hydrogen combustion. In order to take follow-up measures, an average and local hydrogen concentration in the NPP containment are regulated below 0.1 using hydrogen mitigation system such as igniter and/or passive autocatalytic recombiner (PAR). During a severe accident, some compartments of the NPP containment temporarily may show peaks of the local hydrogen concentration over 0.1 depending on the geometry of the containment structure and hydrogen transportation path. For example, the compartment of a reactor drain tank (RDT) is connected to the pressurizer nozzle and if the relieved pressure drives the significant amount of steam and hydrogen, then substantial peaks of the hydrogen concentration can occur. Before the RPV failure under SBO scenario, the RDT compartment was the main region for hydrogen release due to the RDT break. Therefore, confirming the local hydrogen risk in the RDT compartment is very important to verify the integrity of the NPP containment. In this study, the local hydrogen risk in the RDT compartment of OPR1000 under SBO scenario was evaluated using MELCOR 1.8.6 code in terms of the hydrogen volume fraction and the Shapiro diagram. (1) The RDT compartment showed the peaks of the hydrogen volume fraction over 0.1. As a future work, the local hydrogen risk of the compartment of a steam generator (SG) needs to be analyzed under SBLOCA scenario. Because the SG compartment is also a main region of hydrogen release under SBLOCA scenario. In the long run, the analysis for the detailed hydrogen distribution, based on detailed modeling of the whole OPR1000 containment, needs to be performed.

  7. Focuss algorithm application in kinetic compartment modeling for PET tracer

    International Nuclear Information System (INIS)

    Huang Xinrui; Bao Shanglian

    2004-01-01

    Molecular imaging is in the process of becoming. Its application mostly depends on the molecular discovery process of imaging probes and drugs, from the mouse to the patient, from research to clinical practice. Positron emission tomography (PET) can non-invasively monitor . pharmacokinetic and functional processes of drugs in intact organisms at tracer concentrations by kinetic modeling. It has been known that for all biological systems, linear or nonlinear, if the system is injected by a tracer in a steady state, the distribution of the tracer follows the kinetics of a linear compartmental system, which has sums of exponential solutions. Based on the general compartmental description of the tracer's fate in vivo, we presented a novel kinetic modeling approach for the quantification of in vivo tracer studies with dynamic positron emission tomography (PET), which can determine a parsimonious model consisting with the measured data. This kinetic modeling technique allows for estimation of parametric images from a voxel based analysis and requires no a priori decision about the tracer's fate in vivo, instead determining the most appropriate model from the information contained within the kinetic data. Choosing a set of exponential functions, convolved with the plasma input function, as basis functions, the time activity curve of a region or a pixel can be written as a linear combination of the basis functions with corresponding coefficients. The number of non-zero coefficients returned corresponds to the model order which is related to the number of tissue compartments. The system macro parameters are simply determined using the focal underdetermined system solver (FOCUSS) algorithm. The FOCUSS algorithm is a nonparametric algorithm for finding localized energy solutions from limited data and is a recursive linear estimation procedure. FOCUSS algorithm usually converges very fast, so demands a few iterations. The effectiveness is verified by simulation and clinical

  8. Search for and characterization of microorganisms in deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, Vanessa

    2011-01-01

    Over the past 50 years, the scientific community has shown a growing interest for deep geological compartments. However, these ecosystems remain largely unknown due to their inaccessibility. The aim of the present thesis was double; the first aim was to characterize, from a microbiological perspective, four terrestrial Triassic sedimentary formations located between 1700 and 2000 m depth in the Parisian Basin and collected by the ANDRA during a deep drilling campaign in 2008, and the second aim was to study the combined effects of temperature, pressure and salinity on the metabolic activity of anaerobic prokaryotes in order to predict their reaction to geological burial. Incubations in a large variety of media were carried out in order to stimulate the growth of the main trophic types found in such environments such as methanogens, fermenters and bacteria reducing sulphur compounds, however, no viable and cultivable microorganisms could be isolated. In parallel, a molecular approach was used to i) compare the efficacy of several DNA extractions methods and ii) analyse the bacterial diversity, using DGGE (Denaturing Gel Gradient Electrophoresis) and cloning, present in rock inner cores conserved either at atmospheric pressure or under pressure, in their initial states and following incubations in various media. The genetic exploration of these samples revealed a very low biomass and a poor diversity composed mainly of aerobic and mesophilic members of the Bacteria domain, a priori unadapted to such a deep, hot, saline and anoxic environment. This unexpected microbial community also found in many subsurface ecosystems as well as in extreme ecosystems could have partially originated from a paleo-recharge of the Trias aquifer with cold waters coming from the melting of ice formed during the last Pleistocene glaciation. The second objective was to study the combined effects of temperature (40, 55 and 70 C), pressure (1, 90 and 180 bars) and salinity (13, 50, 110, 180

  9. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    International Nuclear Information System (INIS)

    Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J

    2016-01-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. (paper)

  10. Clinical practice guidelines for the management of acute limb compartment syndrome following trauma.

    Science.gov (United States)

    Wall, Christopher J; Lynch, Joan; Harris, Ian A; Richardson, Martin D; Brand, Caroline; Lowe, Adrian J; Sugrue, Michael

    2010-03-01

    Acute compartment syndrome is a serious and not uncommon complication of limb trauma. The condition is a surgical emergency, and is associated with significant morbidity if not managed appropriately. There is variation in management of acute limb compartment syndrome in Australia. Clinical practice guidelines for the management of acute limb compartment syndrome following trauma were developed in accordance with Australian National Health and Medical Research Council recommendations. The guidelines were based on critically appraised literature evidence and the consensus opinion of a multidisciplinary team involved in trauma management who met in a nominal panel process. Recommendations were developed for key decision nodes in the patient care pathway, including methods of diagnosis in alert and unconscious patients, appropriate assessment of compartment pressure, timing and technique of fasciotomy, fasciotomy wound management, and prevention of compartment syndrome in patients with limb injuries. The recommendations were largely consensus based in the absence of well-designed clinical trial evidence. Clinical practice guidelines for the management of acute limb compartment syndrome following trauma have been developed that will support consistency in management and optimize patient health outcomes.

  11. The longest telomeres: a general signature of adult stem cell compartments

    Science.gov (United States)

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  12. Fire simulation in large compartments with a fire model 'CFAST'. Part 1. Survey of applicability for analyzing air-temperature profile in compartments

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Shirai, Koji; Eguchi, Yuzuru; Sano, Tadashi

    2012-01-01

    The basic performance of numerical analysis of air-temperature profiles in large-scale compartments by using a zone model, CFAST (Consolidated model of Fire growth And Smoke Transport), which has been widely applied for fire protection design of buildings is examined. Special attentions are paid to the dependence of the setting boundary conditions and the choosing model parameters. The simulations carried out under the denkyoken-test conditions, in which the air-temperature profiles in compartments and the heat-release rate of a fire have been precisely measured, indicate that the CFAST has a capability to appropriately represent the time-histories of air-temperature in the high air-temperature layer generated in the vicinity of ceiling of the compartment which includes the source of a fire, by applying the proper boundary conditions, i.e., time-histories of air-temperature in the upper (high temperature) layer given by the CFAST agree well with those of observations. The sensitivity analysis in the simulations also reveals that the appropriately setting of the boundary-conditions, especially for the heat-release ratio from a fire and the heat-transfer rate from walls of compartments to ambient air is vital. Contrary to this, the impacts of choosing numerical parameters on the air-temperature analysis are quite small. (author)

  13. Body fat measurement among Singaporean Chinese, Malays and Indians: a comparative study using a four-compartment model and different two-compartment models

    NARCIS (Netherlands)

    Deurenberg-Yap, M.; Schmidt, G.; Staveren, van W.A.; Hautvast, J.G.A.J.; Deurenberg, P.

    2001-01-01

    This cross-sectional study compared body fat percentage (BF€obtained from a four-compartment (4C) model with BF␏rom hydrometry (using 2H2O), dual-energy X-ray absorptiometry (DXA) and densitometry among the three main ethnic groups (Chinese, Malays and Indians) in Singapore, and determined the

  14. Creatine-creatine phosphate shuttle modeled as two-compartment system at different levels of creatine kinase activity

    DEFF Research Database (Denmark)

    Fedosov, Sergey

    1994-01-01

    In order to characterize ADP-ATP and creatine-creatine phosphate (Cr-CrP) shuttles a minimal mathematical model with two compartments and cyclic turnover of matter was designed. The 'mitochondrial' compartment contained 'ATP-synthase' and 'mitochondrial ereatine kinase' (mitCK). The 'cytoplasmic......' compartment consisted of 'ATPase', 'cytoplasmic creatine kinase' (cytCK) and an 'ADP-binding structure'. The exchange of metabolites between these compartments was limited. Different levels of cytCK and mitCK expression as welt as different exchange rate constants between the compartments were assigned...

  15. Acidocalcisomes as calcium- and polyphosphate-storage compartments during embryogenesis of the insect Rhodnius prolixus Stahl.

    Directory of Open Access Journals (Sweden)

    Isabela Ramos

    Full Text Available BACKGROUND: The yolk of insect eggs is a cellular domain specialized in the storage of reserve components for embryo development. The reserve macromolecules are stored in different organelles and their interactions with the embryo cells are mostly unknown. Acidocalcisomes are lysosome-related organelles characterized by their acidic nature, high electron density and large content of polyphosphate bound to several cations. In this work, we report the presence of acidocalcisome-like organelles in eggs of the insect vector Rhodnius prolixus. METHODOLOGY/PRINCIPAL FINDINGS: Characterization of the elemental composition of electron-dense vesicles by electron probe X-ray microanalysis revealed a composition similar to that previously described for acidocalcisomes. Following subcellular fractionation experiments, fractions enriched in acidocalcisomes were obtained and characterized. Immunofluorescence showed that polyphosphate polymers and the vacuolar proton translocating pyrophosphatase (V-H(+-PPase, considered as a marker for acidocalcisomes are found in the same vesicles and that these organelles are mainly localized in the egg cortex. Polyphosphate quantification showed that acidocalcisomes contain a significant amount of polyphosphate detected at day-0 eggs. Elemental analyses of the egg fractions showed that 24.5±0.65% of the egg calcium are also stored in such organelles. During embryogenesis, incubation of acidocalcisomes with acridine orange showed that these organelles are acidified at day-3 (coinciding with the period of yolk mobilization and polyphosphate quantification showed that the levels of polyphosphate tend to decrease during early embryogenesis, being approximately 30% lower at day-3 compared to day-0 eggs. CONCLUSIONS: We found that acidocalcisomes are present in the eggs and are the main storage compartments of polyphosphate and calcium in the egg yolk. As such components have been shown to be involved in a series of dynamic

  16. [Two compartment model of body composition and abdominal fat area in postmenopausal women - pilot study].

    Science.gov (United States)

    Milewska, Magdalena; Mioduszewska, Milena; Pańczyk, Mariusz; Kucharska, Alicja; Sińska, Beata; Dąbrowska-Bender, Marta; Michota-Katulska, Ewa; Zegan, Magdalena; Szabla, Anna

    2016-01-01

    Both menopausal period and aging have influence on body composition, increase of total body fat and visceral fat in particular. We should be aware that changes in body composition, mainly fat translocation to abdominal region, can occur without significant changes in body weight. Therefore quantitative abdominal fat assessment should be our aim. Body composition analysis based on two compartment model and abdominal fat area assessment in cross section. Subjects in postmenopausal period (41 women) were recruited for this study and divided into 2 groups: group 1 - women aged 45-56 years and group 2 - women aged 57-79 years. Body composition analysis and abdominal fat area assessment were conducted by using bioelectrical impedance method with BioScan 920 (Maltron int.) accordingly with standardized procedure. Women in early postmenopausal stage (Group 1) had statistically significant lower total body fat percentage in comparison with women in late postmenopausal period (Group 2) (41.09 ± 7.72% vs. 50.7 ± 9.88%, p=0.0021). Also women in group 1 were characterized by significant lower visceral fat area (VAT) as well as subcutaneous fat area (SAT) in comparison with group 2 (respectively VAT 119.25 ± 30.09 cm2 vs. 199.36 ± 87.38 cm2, p=0.0011; SAT 175.19 ±57.67 cm2 vs. 223.4±74.29 cm2, p=0.0336). According to VAT criteria (>120 cm2), 44% of women in group 1 and 80% in group 2 had excess of visceral fat. Both total body fat and intra-abdominal fat increased with age, independently of weight changes.

  17. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    Science.gov (United States)

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Pulmonary Immune-Compartment-Specific Interferon Gamma Responses in HIV-Infected Individuals with Active Tuberculosis (TB in an Area of High TB Prevalence

    Directory of Open Access Journals (Sweden)

    S. Buldeo

    2012-01-01

    Full Text Available There is a paucity of data on the pulmonary immune-compartment interferon gamma (IFNγ response to M. tuberculosis, particularly in settings of high tuberculosis (TB prevalence and in HIV-coinfected individuals. This data is necessary to understand the diagnostic potential of commercially available interferon gamma release assays (IGRAs in both the pulmonary immune-compartment and peripheral blood. We used intracellular cytokine staining by flow cytometry to assess the IFNγ response to purified protein derivative (PPD and early secretory antigen 6 (ESAT6 in induced sputa (ISp and blood samples from HIV-infected, smear-negative, TB suspects. We found that individuals with active TB disease produced significantly less IFNγ in response to PPD in their induced sputa samples than individuals with non-active TB (control group. This difference was not reflected in the peripheral blood, even within the CD27− CD4+ memory T lymphocyte population. These findings suggest that progression to active TB disease may be associated with the loss of IFNγ secretion at the site of primary infection. Our findings highlight the importance of studying pulmonary immune-compartment M. tuberculosis specific responses to elucidate IFNγ secretion across the spectrum of TB disease.

  19. Heavy subunit of cell surface Gal/GalNAc lectin (Hgl) undergoes degradation via endo-lysosomal compartments in Entamoeba histolytica.

    Science.gov (United States)

    Verma, Kuldeep; Datta, Sunando

    2017-06-14

    The human gut parasite Entamoeba histolytica uses a multifunctional virulence factor, Hgl, a cell surface transmembrane receptor subunit of Gal/GalNAc lectin that contributes to adhesion, invasion, cytotoxicity and immune response in the host. At present, the physiologic importance of Hgl receptor is mostly known for pathogenicity of E. histolytica. However, the molecular mechanisms of Hgl trafficking events and their association with the intracellular membrane transport machinery are largely unknown. We used biochemical and microscopy-based assays to understand the Hgl trafficking in the amoebic trophozoites. Our results suggest that the Hgl is constitutively degraded through delivery into amoebic lysosome-like compartments. Further, we also observed that the Hgl was significantly colocalized with amoebic Rab GTPases such as EhRab5, EhRab7A, and EhRab11B. While, we detected association of Hgl with all these Rab GTPases in early vacuolar compartments, only EhRab7A remains associated with Hgl till its transport to amoebic lysosome-like compartments.

  20. Postsynaptic density protein 95 in the striosome and matrix compartments of the human neostriatum.

    Directory of Open Access Journals (Sweden)

    Ryoma eMorigaki

    2015-11-01

    Full Text Available The human neostriatum consists of two functional subdivisions referred to as the striosome (patch and matrix compartments. The striosome-matrix dopamine systems play a central role in cortico-thalamo-basal ganglia circuits, and their involvement is thought to underlie the genesis of multiple movement and behavioral disorders, and of drug addiction. Human neuropathology also has shown that striosomes and matrix have differential vulnerability patterns in several striatal neurodegenerative diseases. Postsynaptic density protein 95 (PSD-95, also known as DLG4, is a major scaffolding protein in the postsynaptic densities of dendritic spines. PSD-95 is now known to negatively regulate not only N-methyl-D-aspartate glutamate signaling, but also dopamine D1 signals at sites of postsynaptic transmission. Accordingly, a neuroprotective role for PSD-95 against dopamine D1 receptor (D1R-mediated neurotoxicity in striatal neurodegeneration also has been suggested. Here, we used a highly sensitive immunohistochemistry technique to show that in the human neostriatum, PSD-95 is differentially concentrated in the striosome and matrix compartments, with a higher density of PSD-95 labeling in the matrix compartment than in the striosomes. This compartment-specific distribution of PSD-95 was strikingly complementary to that of D1R. In addition to the possible involvement of PSD-95-mediated synaptic function in compartment-specific dopamine signals, we suggest that the striosomes might be more susceptible to D1R-mediated neurotoxicity than the matrix compartment. This notion may provide new insight into the compartment-specific vulnerability of MSNs in striatal neurodegeneration.

  1. Spontaneous Compartment Syndrome of the Thigh in the Absence of Trauma.

    Science.gov (United States)

    Javedani, Parisa P; Ratnabalasuriar, Radhika; Grall, Kristi J H

    2016-07-01

    Compartment syndrome occurs when an increase in pressure results in vascular and functional impairment of the underlying nerve and muscles. Thigh compartment syndrome (TCS) is uncommon, but clinical suspicion warrants emergent surgical consultation and fasciotomy. We present a 42-year-old man evaluated for right lateral thigh pain, without a history of trauma, deep venous thrombosis (DVT), previous surgery, or intravenous drug use. He was febrile, tachycardic, with a mild leukocytosis, an elevated C-reactive protein level, and an elevated creatinine kinase level. Radiographs showed no abnormality and right lower extremity duplex ultrasound showed no DVT. A computed tomography scan of the right lower extremity was concerning for compartment syndrome. Surgical consultation was obtained, and the patient was taken to the operating room for fasciotomy. He was diagnosed with compartment syndrome intraoperatively. The patient was discharged on hospital day 10. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: TCS is exceedingly rare, especially in the absence of underlying traumatic and nontraumatic etiologies. The diagnosis is challenging because more elastic fascia with larger space in the thigh allows for accommodation of acute increases in pressure. Consequently, there may not be the expected acute rise in compartment pressures; increased compartment pressure may only be a late sign, when underlying neurovascular damage has already occurred. TCS is complicated by high morbidity and mortality. Emergent surgical consultation should be obtained when there is a high clinical suspicion for TCS, and limb-saving fasciotomy should not be delayed. This case shows the importance of a high level of suspicion for TCS in patients with no identifiable etiology and no historical risk factors for development of compartment syndrome, because TCS may not present with classic symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Bilateral simultaneous traumatic upper arm compartment syndromes associated with anabolic steroids.

    Science.gov (United States)

    Erturan, Gurhan; Davies, Nev; Williams, Huw; Deo, Sunny

    2013-01-01

    Acute compartment syndrome, a surgical emergency, is defined as increased pressure in an osseofascial space. The resulting reduction of capillary perfusion to that compartment requires prompt fasciotomy. Treatment delay has a poor prognosis, and is associated with muscle and nerve ischemia, resultant infarction, and late-onset contractures. We report a case of traumatic bilateral upper limb acute compartment syndrome associated with anabolic steroids, requiring bilateral emergency fasciotomies. A 25-year-old male bodybuilder taking anabolic steroids, with no past medical history, presented to the Emergency Department 25 min after a road traffic accident. Secondary survey confirmed injuries to both upper limbs with no distal neurovascular deficit. Plain radiographs demonstrated bilateral metaphyseal fractures of the distal humeri. Within 2 h of the accident, the patient developed clinical features that were consistent with bilateral upper arm compartment syndrome. Bilateral fasciotomies of both anterior and posterior compartments were performed, confirming clinical suspicion. We suggest consideration of a history of anabolic steroid use when evaluating patients with extremity trauma. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Wang, Mingbo [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); She, Zhending [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China); Fan, Kunwu; Xu, Cheng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Chu, Bin; Chen, Changsheng [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shi, Shengjun, E-mail: shengjunshi@yahoo.com [The Burns Department of Zhujiang Hospital, Southern Medical University, Guangzhou 510280 (China); Tan, Rongwei, E-mail: tanrw@landobiom.com [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China)

    2015-07-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation.

  4. ICM: an Integrated Compartment Method for numerically solving partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1981-05-01

    An integrated compartment method (ICM) is proposed to construct a set of algebraic equations from a system of partial differential equations. The ICM combines the utility of integral formulation of finite element approach, the simplicity of interpolation of finite difference approximation, and the flexibility of compartment analyses. The integral formulation eases the treatment of boundary conditions, in particular, the Neumann-type boundary conditions. The simplicity of interpolation provides great economy in computation. The flexibility of discretization with irregular compartments of various shapes and sizes offers advantages in resolving complex boundaries enclosing compound regions of interest. The basic procedures of ICM are first to discretize the region of interest into compartments, then to apply three integral theorems of vectors to transform the volume integral to the surface integral, and finally to use interpolation to relate the interfacial values in terms of compartment values to close the system. The Navier-Stokes equations are used as an example of how to derive the corresponding ICM alogrithm for a given set of partial differential equations. Because of the structure of the algorithm, the basic computer program remains the same for cases in one-, two-, or three-dimensional problems.

  5. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments

    International Nuclear Information System (INIS)

    Wang Hui; Wang Jianlong

    2008-01-01

    By using a self-made carbon/polytetrafluoroethylene (C/PTFE) O 2 -fed as the cathode and Ti/IrO 2 /RuO 2 as the anode, the degradation of three organic compounds (phenol, 4-chlorophenol, and 2,4-dichlorophenol) was investigated in the diaphragm (with terylene as diaphragm material) electrolysis device by electrochemical oxidation process. The result indicated that the concentration of hydrogen peroxide (H 2 O 2 ) was 8.3 mg/L, and hydroxyl radical (HO·) was determined in the cathodic compartment by electron spin resonance spectrum (ESR). The removal efficiency for organic compounds reached about 90% after 120 min, conforming to the sequence of phenol, 4-chlorophenol, and 2,4-dichlorophenol. And the dechlorination degree of 4-chlorophenol exceeded 90% after 80 min. For H 2 O 2 , HO· existed in the catholyte and reduction dechlorination at the cathode, the mineralization of organics in the cathodic compartment was better than that in the anodic compartment. The degradation of organics was supposed to be cooperative oxidation by direct or indirect electrochemical oxidation at the anode and H 2 O 2 , HO· produced by oxygen reduction at the cathode. High-performance liquid chromatography (HPLC) allowed identifying phenol as the dechlorination product of 4-chlorophenol in the cathodic compartment, and hydroquinone, 4-chlorocatechol, benzoquinone, maleic, fumaric, oxalic, and formic acids as the main oxidation intermediates in the cathodic and anodic compartments. A reaction scheme involving all these intermediates was proposed

  6. Anatomical variations within the deep posterior compartment of the leg and important clinical consequences.

    Science.gov (United States)

    Hislop, M; Tierney, P

    2004-09-01

    The management of musculoskeletal conditions makes up a large part of a sports medicine practitioner's practice. A thorough knowledge of anatomy is an essential component of the armament necessary to decipher the large number of potential conditions that may confront these practitioners. To cloud the issue further, anatomical variations may be present, such as supernumerary muscles, thickened fascial bands or variant courses of nerves and blood vessels, which can themselves manifest as acute or chronic conditions that lead to significant morbidity or limitation of activity. There are a number of contentious areas within the literature surrounding the anatomy of the leg, particularly involving the deep posterior compartment. Conditions such as chronic exertional compartment syndrome, tibial periostitis (shin splints), peripheral nerve entrapment and tarsal tunnel syndrome may all be affected by subtle anatomical variations. This paper primarily focuses on the deep posterior compartment of the leg and uses the gross dissection of cadaveric specimens to describe definitively the anatomy of the deep posterior compartment. Variant fascial attachments of flexor digitorum longus are documented and potential clinical sequelae such as chronic exertional compartment syndrome and tarsal tunnel syndrome are discussed.

  7. Medial unicompartmental knee arthroplasty improves congruence and restores joint space width of the lateral compartment.

    Science.gov (United States)

    Khamaisy, Saker; Zuiderbaan, Hendrik A; van der List, Jelle P; Nam, Denis; Pearle, Andrew D

    2016-06-01

    Osteoarthritic progression of the lateral compartment remains a leading indication for medial unicompartmental knee arthroplasty (UKA) revision. Therefore, the purpose of this study was to evaluate the alterations of the lateral compartment congruence and joint space width (JSW) following medial UKA. Retrospectively, lateral compartment congruence and JSW were evaluated in 174 knees (74 females, 85 males, mean age 65.5years; SD±10.1) preoperatively and six weeks postoperatively, and compared to 41 healthy knees (26 men, 15 women, mean age 33.7years; SD±6.4). Congruence (CI) was calculated using validated software that evaluates the geometric relationship between surfaces and calculates a congruence index (CI). JSW was measured on three sides (inner, middle, outer) by subdividing the lateral compartment into four quarters. The CI of the control group was 0.98 (SD±0.01). The preoperative CI was 0.88 (SD±0.01), which improved significantly to 0.93 (SD±0.03) postoperatively (pcongruence and restores the JSW of the lateral compartment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Congruence and joint space width alterations of the medial compartment following lateral unicompartmental knee arthroplasty.

    Science.gov (United States)

    Zuiderbaan, H A; Khamaisy, S; Thein, R; Nawabi, D H; Pearle, A D

    2015-01-01

    Progressive degenerative changes in the medial compartment of the knee following lateral unicompartmental arthroplasty (UKA) remains a leading indication for revision surgery. The purpose of this study is to evaluate changes in the congruence and joint space width (JSW) of the medial compartment following lateral UKA. The congruence of the medial compartment of 53 knees (24 men, 23 women, mean age 13.1 years; sd 62.1) following lateral UKA was evaluated pre-operatively and six weeks post-operatively, and compared with 41 normal knees (26 men, 15 women, mean age 33.7 years; sd 6.4), using an Interactive closest point algorithm which calculated the congruence index (CI) by performing a rigid transformation that best aligns the digitised tibial and femoral surfaces. Inner, middle and outer JSWs were measured by sub-dividing the medial compartment into four quarters on pre- and post-operative, weight bearing tunnel view radiographs. The mean CI of knees following lateral UKA significantly improved from 0.92 (sd 0.06) pre-operatively to 0.96 (sd 0.02) (p congruence and normalise the JSW of the medial compartment, potentially preventing progression of degenerative change. ©2015 The British Editorial Society of Bone & Joint Surgery.

  9. Quantitative muscle hardness as a noninvasive means for detecting patients at risk of compartment syndromes

    International Nuclear Information System (INIS)

    Steinberg, Bruce; Riel, Ryan; Armitage, Marshal; Berrey, Hudson

    2011-01-01

    The purpose of this project was to study the efficacy of quantitative muscle hardness (QH) curve analysis for noninvasive measurement of muscle compartment interstitial pressure (IMP), and to eliminate the need for a comparison normal QH measurement to determine a pathologic reading. Elevation of IMP may lead to limb compartment syndrome, which may result in irreversible dysfunction, chronic pain and contracture. Two studies were performed by two separate independent examiners on male volunteers, where IMP measurements and QH curves were obtained. QH curves were divided into three parts comparing the third part to the second part using the coefficient of determination (R 2 ). In 205 limb compartments, there were 1432 comparison readings of the IMP versus R 2 . Using receiver operator characteristic curve analysis for all data from both studies, an R 2 cutoff of 0.974 best corresponded to a pathologic IMP of 50 mmHg. For both sets of data and for each compartment tested, the mean IMP values were statistically different (t-test: P < 0.0001) for the group with R 2 values less than 0.974 compared to the group of R 2 values greater than or equal to 0.974. In addition, a pressure prediction model was formulated with a strong overall correlation coefficient of 0.78. The data of this study support that QH analysis is potentially useful for the monitoring of IMP elevation in compartment syndrome

  10. Coordinate expansion of murine hematopoietic and mesenchymal stem cell compartments by SHIPi.

    Science.gov (United States)

    Brooks, R; Iyer, S; Akada, H; Neelam, S; Russo, C M; Chisholm, J D; Kerr, W G

    2015-03-01

    Promoting the expansion of adult stem cell populations offers the potential to ameliorate radiation or chemotherapy-induced bone marrow failure and allows for expedited recovery for patients undergoing these therapies. Previous genetic studies suggested a pivotal role for SH2 domain-containing inositol-5-phosphatase 1 (SHIP1) in limiting the size of the hematopoietic stem cell (HSC) compartment. The aim of this study was to determine whether our recent development of small molecule SHIP1 inhibitors offers the potential for pharmacological expansion of the HSC compartment in vivo. We show here that treatment of mice with aminosteroid inhibitors of SHIP1 (SHIPi) more than doubles the size of the adult mesenchymal stem cell (MSC) compartment while simultaneously expanding the HSC pool sixfold. Consistent with its ability to target SHIP1 function in vivo, SHIPi also significantly increases plasma granulocyte colony-stimulating factor (G-CSF) levels, a growth factor that supports proliferation of HSC. Here, we show that SHIPi-induced G-CSF production mediates HSC and MSC expansion, as in vivo neutralization of G-CSF abrogates the SHIPi-induced expansion of both the HSC and MSC compartments. Due to its expansionary effect on adult stem cell compartments, SHIPi represents a potential novel strategy to improve declining stem cell function in both therapy induced and genetically derived bone marrow failure syndromes. © 2014 AlphaMed Press.

  11. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    International Nuclear Information System (INIS)

    Wang, Feng; Wang, Mingbo; She, Zhending; Fan, Kunwu; Xu, Cheng; Chu, Bin; Chen, Changsheng; Shi, Shengjun; Tan, Rongwei

    2015-01-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation

  12. Two novel WD40 domain–containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway

    Science.gov (United States)

    Shi, Yufeng; Stefan, Christopher J.; Rue, Sarah M.; Teis, David; Emr, Scott D.

    2011-01-01

    Regulated secretion, nutrient uptake, and responses to extracellular signals depend on cell-surface proteins that are internalized and recycled back to the plasma membrane. However, the underlying mechanisms that govern membrane protein recycling to the cell surface are not fully known. Using a chemical-genetic screen in yeast, we show that the arginine transporter Can1 is recycled back to the cell surface via two independent pathways mediated by the sorting nexins Snx4/41/42 and the retromer complex, respectively. In addition, we identify two novel WD40-domain endosomal recycling proteins, Ere1 and Ere2, that function in the retromer pathway. Ere1 is required for Can1 recycling via the retromer-mediated pathway, but it is not required for the transport of other retromer cargoes, such as Vps10 and Ftr1. Biochemical studies reveal that Ere1 physically interacts with internalized Can1. Ere2 is present in a complex containing Ere1 on endosomes and functions as a regulator of Ere1. Taken together, our results suggest that Snx4/41/42 and the retromer comprise two independent pathways for the recycling of internalized cell-surface proteins. Moreover, a complex containing the two novel proteins Ere1 and Ere2 mediates cargo-specific recognition by the retromer pathway. PMID:21880895

  13. Involvement of Gβγ subunits of Gi protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes.

    Science.gov (United States)

    Kajimoto, Taketoshi; Mohamed, Nesma Nabil Ibrahim; Badawy, Shaymaa Mohamed Mohamed; Matovelo, Shubi Ambwene; Hirase, Mitsuhiro; Nakamura, Shunsuke; Yoshida, Daisuke; Okada, Taro; Ijuin, Takeshi; Nakamura, Shun-Ichi

    2018-01-05

    Exosomes play a critical role in cell-to-cell communication by delivering cargo molecules to recipient cells. However, the mechanism underlying the generation of the exosomal multivesicular endosome (MVE) is one of the mysteries in the field of endosome research. Although sphingolipid metabolites such as ceramide and sphingosine 1-phosphate (S1P) are known to play important roles in MVE formation and maturation, the detailed molecular mechanisms are still unclear. Here, we show that Rho family GTPases, including Cdc42 and Rac1, are constitutively activated on exosomal MVEs and are regulated by S1P signaling as measured by fluorescence resonance energy transfer (FRET)-based conformational changes. Moreover, we detected S1P signaling-induced filamentous actin (F-actin) formation. A selective inhibitor of Gβγ subunits, M119, strongly inhibited both F-actin formation on MVEs and cargo sorting into exosomal intralumenal vesicles of MVEs, both of which were fully rescued by the simultaneous expression of constitutively active Cdc42 and Rac1. Our results shed light on the mechanism underlying exosomal MVE maturation and inform the understanding of the physiological relevance of continuous activation of the S1P receptor and subsequent downstream G protein signaling to Gβγ subunits/Rho family GTPases-regulated F-actin formation on MVEs for cargo sorting into exosomal intralumenal vesicles. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies.

    Science.gov (United States)

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L; Hacia, Joseph G; Paine, Michael L

    2017-03-13

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.

  15. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment.

    Science.gov (United States)

    Sohn, Peter Dongmin; Tracy, Tara E; Son, Hye-In; Zhou, Yungui; Leite, Renata E P; Miller, Bruce L; Seeley, William W; Grinberg, Lea T; Gan, Li

    2016-06-29

    Neurons are highly polarized cells in which asymmetric axonal-dendritic distribution of proteins is crucial for neuronal function. Loss of polarized distribution of the axonal protein tau is an early sign of Alzheimer's disease (AD) and other neurodegenerative disorders. The cytoskeletal network in the axon initial segment (AIS) forms a barrier between the axon and the somatodentritic compartment, contributing to axonal retention of tau. Although perturbation of the AIS cytoskeleton has been implicated in neurological disorders, the molecular triggers and functional consequence of AIS perturbation are incompletely understood. Here we report that tau acetylation and consequent destabilization of the AIS cytoskeleton promote the somatodendritic mislocalization of tau. AIS cytoskeletal proteins, including ankyrin G and βIV-spectrin, were downregulated in AD brains and negatively correlated with an increase in tau acetylated at K274 and K281. AIS proteins were also diminished in transgenic mice expressing tauK274/281Q, a tau mutant that mimics K274 and K281 acetylation. In primary neuronal cultures, the tauK274/281Q mutant caused hyperdynamic microtubules (MTs) in the AIS, shown by live-imaging of MT mobility and fluorescence recovery after photobleaching. Using photoconvertible tau constructs, we found that axonal tauK274/281Q was missorted into the somatodendritic compartment. Stabilizing MTs with epothilone D to restore the cytoskeletal barrier in the AIS prevented tau mislocalization in primary neuronal cultures. Together, these findings demonstrate that tau acetylation contributes to the pathogenesis of neurodegenerative disease by compromising the cytoskeletal sorting machinery in the AIS.

  16. Effects of long-duration bed rest on structural compartments of m. soleus in man

    Science.gov (United States)

    Belozerova, I.; Shenkman, B.; Mazin, M.; Leblanc, A.; LeBlanc, A. D. (Principal Investigator)

    2001-01-01

    Magnetic resonance imaging (MRI), histomorphometry and electron microscopy of muscle demonstrate that long-term exposure to actual or simulated weightlessness (including head down bed rest) leads to decreased volume of antigravity muscles in mammals. In muscles interbundle space is occupied by the connective tissue. Rat studies show that hindlimb unloading induces muscle fiber atrophy along with increase in muscle non-fiber connective tissue compartment. Beside that, usually 20% of the muscle fiber volume is comprised by non-contractile (non-myofibrillar) compartment. The aim of the present study was to compare changes in muscle volume, and in muscle fiber size with alterations in myofibrillar apparatus, and in connective tissue compartment in human m. soleus under conditions of 120 day long head down bed rest (HDBR).

  17. Optochemical Control of Protein Localization and Activity within Cell-like Compartments.

    Science.gov (United States)

    Caldwell, Reese M; Bermudez, Jessica G; Thai, David; Aonbangkhen, Chanat; Schuster, Benjamin S; Courtney, Taylor; Deiters, Alexander; Hammer, Daniel A; Chenoweth, David M; Good, Matthew C

    2018-05-08

    We report inducible dimerization strategies for controlling protein positioning, enzymatic activity, and organelle assembly inside synthetic cell-like compartments upon photostimulation. Using a photocaged TMP-Haloligand compound, we demonstrate small molecule and light-induced dimerization of DHFR and Haloenzyme to localize proteins to a compartment boundary and reconstitute tripartite sfGFP assembly. Using photocaged rapamycin and fragments of split TEV protease fused to FRB and FKBP, we establish optical triggering of protease activity inside cell-size compartments. We apply light-inducible protease activation to initiate assembly of membraneless organelles, demonstrating the applicability of these tools for characterizing cell biological processes in vitro. This modular toolkit, which affords spatial and temporal control of protein function in a minimal cell-like system, represents a critical step toward the reconstitution of a tunable synthetic cell, built from the bottom up.

  18. Hydrogen Generation by Koh-Ethanol Plasma Electrolysis Using Double Compartement Reactor

    Science.gov (United States)

    Saksono, Nelson; Sasiang, Johannes; Dewi Rosalina, Chandra; Budikania, Trisutanti

    2018-03-01

    This study has successfully investigated the generation of hydrogen using double compartment reactor with plasma electrolysis process. Double compartment reactor is designed to achieve high discharged voltage, high concentration, and also reduce the energy consumption. The experimental results showed the use of double compartment reactor increased the productivity ratio 90 times higher compared to Faraday electrolysis process. The highest hydrogen production obtained is 26.50 mmol/min while the energy consumption can reach up 1.71 kJ/mmol H2 at 0.01 M KOH solution. It was shown that KOH concentration, addition of ethanol, cathode depth, and temperature have important effects on hydrogen production, energy consumption, and process efficiency.

  19. Gluteal Compartment Syndrome following bariatric surgery: A rare but important complication

    Directory of Open Access Journals (Sweden)

    Bernadette Pereira

    2015-03-01

    Full Text Available Gluteal Compartment Syndrome is a rare condition caused by excessive pressure within the gluteal compartments which leads to a number of potentially serious sequelae including rhabdomyolysis, nerve damage, renal failure and death. As bariatric patients are heavy and during prolonged bariatric procedures lie in one position for extended periods of time, they are especially susceptible to developing this complication. It is therefore essential that bariatric surgeons are aware of this complication and how to minimise the chances of it occurring and how to diagnose it. We describe a case of Gluteal Compartment Syndrome in a patient following a gastric bypass and review the aetiology, pathophysiology, treatment and prevention of this complication.

  20. Preliminary Study on GF/Carbon/Epoxy Composite Permeability in Designing Close Compartment Processing

    Science.gov (United States)

    Ya’acob, A. M.; Razali, D. A.; Anwar, U. A.; Radhi, A. H.; Ishak, A. A.; Minhat, M.; Aris, K. D. Mohd; Johari, M. K.; Casey, T.

    2018-05-01

    This project involves discovering how the permeability effect inside a close compartment in processing. After the appropriate pressure range was found, the close compartment was designed by studying the relationship between pressure output and the flow rate. A variety of pressure ranges have been used in this test to determine the effective pressure range that can be applied to the manufacturing process. Based on the results, the suitable pressure ranges were found between 55 psi to 75 psi. These pressures have been chosen based on the area covered on the product surfaces and time taken to penetrate the proposed area. The relationship between pressure and flow rate have been found to be directly proportional until 75 psi only. In conclusion, 70 psi for the proposed design of close compartment mould is suitable to be used to fulfill the required area of 120 mm square within 90 seconds.

  1. Acute compartment syndrome after rupture of the medial head of gastrocnemius in a child.

    Science.gov (United States)

    Pai, Vasu; Pai, Vishal

    2007-01-01

    Rupture of the gastrocnemius muscle is an uncommon injury, with most cases occurring in athletes and, typically, presenting with the acute onset of focal calf pain and ecchymosis after injury. Although gastrocnemius ruptures are usually treated symptomatically with good results, we present an unusual case of a medial head of gastrocnemius muscle tear complicated by acute compartment syndrome in a 7-year-old boy whose right calf was crushed in a fall. After confirmation of the diagnosis of compartment syndrome, the patient underwent emergency fasciotomy with evacuation of hematoma, and, thereafter, he recovered unremarkably. Clinicians and surgeons need to maintain a high index of suspicion for compartment syndrome associated with gastrocnemius muscle injury, so that timely surgical decompression can be undertaken and complications related to delayed diagnosis and treatment can be avoided.

  2. Development of a dynamic compartment model for the prediction of tritium behavior around NPPs

    International Nuclear Information System (INIS)

    Choi, Heui-Joo; Lee, Hansoo; Kang, Hee Suk; Choi, Yong Ho

    2003-01-01

    KAERI has developed a new model to find the relationship between the tritium release rate and tritium concentration in the environment. The model was based upon a dynamic compartment model. In this paper three kinds of global tritium cycling model were compared to estimate the natural background concentration of tritium in Korea. The dry and wet deposition rates were calculated using a computer program called DEPOS to derive a source term. The mechanisms considered for the transfer of tritium between the compartments were evaporation, groundwater flow, infiltration, runoff, and hydrodynamic dispersion. Also, transfer coefficients between the compartments were obtained using realistic geographical data. In order to illustrate the model various release scenarios were developed, and the change of tritium concentration in groundwater and surface water around the nuclear power plants was estimated. (author)

  3. Polarized trafficking: the palmitoylation cycle distributes cytoplasmic proteins to distinct neuronal compartments.

    Science.gov (United States)

    Tortosa, Elena; Hoogenraad, Casper C

    2018-02-01

    In neurons, polarized cargo distribution occurs mainly between the soma and axonal and dendritic compartments, and requires coordinated regulation of cytoskeletal remodeling and membrane trafficking. The Golgi complex plays a critical role during neuronal polarization and secretory trafficking has been shown to differentially transport proteins to both axons and dendrites. Besides the Golgi protein sorting, recent data revealed that palmitoylation cycles are an efficient mechanism to localize cytoplasmic, non-transmembrane proteins to particular neuronal compartments, such as the newly formed axon. Palmitoylation allows substrate proteins to bind to and ride with Golgi-derived secretory vesicles to all neuronal compartments. By allowing cytoplasmic proteins to 'hitchhike' on transport carriers in a non-polarized fashion, compartmentalized depalmitoylation may act as a selective retention mechanism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Forearm Compartment Syndrome of a Newborn Associated with Extravasation of Contrast Agent

    Directory of Open Access Journals (Sweden)

    Egemen Altan

    2013-01-01

    Full Text Available Extravasation of contrast agents is a possible complication of imaging studies. Although extravasations typically cause minimal swelling or erythema, they can lead to compartment syndrome when the volume of extravasation is high. In this article, we will present an exceptional case where an insignificant amount of contrast agent extravasation led to a forearm compartment syndrome in a newborn, who was treated with an extended fasciotomy. We would like to emphasize the preventive techniques and treatment options of this iatrogenic complication in newborns. Close followup of the patient by the nurses, awareness of the parents and the personnel in the radiology department are the most important preventive measures in this extremity-threatening complication. Forearm compartment syndrome due to contrast agent extravasation may progress more rapidly in newborns even with smaller amounts of extravasation and prompt recognition of the pathology and immediate intervention are unevitable.

  5. Interventional and surgical management of abdominal compartment syndrome in severe acute pancreatitis.

    Science.gov (United States)

    Dambrauskas, Zilvinas; Parseliūnas, Audrius; Maleckas, Almantas; Gulbinas, Antanas; Barauskas, Giedrius; Pundzius, Juozas

    2010-01-01

    Management of the abdominal compartment syndrome during severe acute pancreatitis by the open abdomen method is associated with considerable morbidity and resource utilization. Thus, the aim of this study was to evaluate the safety and efficacy of the ultrasound-guided percutaneous interventions and/or minimally invasive surgery in the treatment of abdominal compartment syndrome. Forty-four patients with severe acute pancreatitis were enrolled into a prospective study and treated according to the standard management protocol. Interventional and/or surgical management of abdominal compartment syndrome was employed in 6 (13.6%) cases. In the context of this study, we assessed the feasibility and effectiveness of subcutaneous fasciotomy of the anterior m. rectus abdominis sheath, as well as the role of ultrasound-guided drainage of intra-abdominal and peripancreatic fluid collections in the management of abdominal compartment syndrome. Subcutaneous fasciotomy of the anterior m. rectus sheath and ultrasound-guided drainage of intra-abdominal and peripancreatic fluid collections seem to be safe (minor risk of bleeding or infection, closed abdomen, and easy care for the patient) and effective (resulted in a sustained decrease of intra-abdominal pressure to 13-16 mm Hg and regression of organ failures after intervention). Subcutaneous anterior m. rectus fasciotomy may appear to be beneficial in case of refractory abdominal compartment syndrome avoiding morbidity associated with the open abdomen technique. Both the subcutaneous fasciotomy and ultrasound-guided drainage of intra-abdominal and/or peripancreatic fluid collections seem to be safe and effective alternatives in the management of abdominal compartment syndrome; however, prospective studies are needed to further evaluate their clinical role.

  6. Three-compartment modeling of C-11 N-Methyl spiperone kinetics in the human brain

    International Nuclear Information System (INIS)

    Brooks, R.A.; Wong, D.F.; Di Chiro, G.; Wayner, R.T.; Douglass, K.H.; Frost, J.J.; Larson, S.M.; Wagner, H.N. Jr.

    1984-01-01

    N-Methyl spiperone, as well as spiperone, has been used to study the dopamine receptor system in the brain. The authors have applied a 3-compartment model consisting of vascular, extravascular unbound, and receptor-bound activity to two normal volunteers and one patient with Parkinson's disease. The model differs from that proposed by another study, in that, as in the Sokoloff model for deoxyglucose, there is no explicit term for blood flow. Furthermore, the authors used a 3-compartment model for the cerebellum as well as the caudate/putamen. Serial scans were obtained by PET for up to 2 hrs after injection of the tracer. Time-activity curves were generated over the caudate, putamen and cerebellum. The results indicate a close fit of the observed data to the 3-compatment model. In the model, K1 represents the rate constant of delivery of the tracer in the tissue from the vascular compartment. K2 is the reverse rate constant. K1 was approximately equal to K2 for the cerebellum. In the basal ganglia, K2 was less than K1 due to nonspecific binding in compartment 2. K3 represents the rate constant of binding of the tracer to the receptor binding sites in the cerebral cortex and basal ganglia and to nonspecific binding sites in the cerebellum which contains essentially no dopamine receptors. K4 represents the rate constant for dissociation of the tracer from the receptors. For N-methyl spiperone K4 is very low in the caudate/putamen. The 3-compartment model seemed to fit the data better than the 2-compartment model for both the caudate/putamen and cerebellar activity

  7. Effect of heterogeneity on the characterization of cell membrane compartments: I. Uniform size and permeability.

    Science.gov (United States)

    Hall, Damien

    2010-03-15

    Observations of the motion of individual molecules in the membrane of a number of different cell types have led to the suggestion that the outer membrane of many eukaryotic cells may be effectively partitioned into microdomains. A major cause of this suggested partitioning is believed to be due to the direct/indirect association of the cytosolic face of the cell membrane with the cortical cytoskeleton. Such intimate association is thought to introduce effective hydrodynamic barriers into the membrane that are capable of frustrating molecular Brownian motion over distance scales greater than the average size of the compartment. To date, the standard analytical method for deducing compartment characteristics has relied on observing the random walk behavior of a labeled lipid or protein at various temporal frequencies and different total lengths of time. Simple theoretical arguments suggest that the presence of restrictive barriers imparts a characteristic turnover to a plot of mean squared displacement versus sampling period that can be interpreted to yield the average dimensions of the compartment expressed as the respective side lengths of a rectangle. In the following series of articles, we used computer simulation methods to investigate how well the conventional analytical strategy coped with heterogeneity in size, shape, and barrier permeability of the cell membrane compartments. We also explored questions relating to the necessary extent of sampling required (with regard to both the recorded time of a single trajectory and the number of trajectories included in the measurement bin) for faithful representation of the actual distribution of compartment sizes found using the SPT technique. In the current investigation, we turned our attention to the analytical characterization of diffusion through cell membrane compartments having both a uniform size and permeability. For this ideal case, we found that (i) an optimum sampling time interval existed for the analysis

  8. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development.

    Science.gov (United States)

    Peremyslov, Valera V; Cole, Rex A; Fowler, John E; Dolja, Valerian V

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.

  9. Tracer kinetics: Modelling by partial differential equations of inhomogeneous compartments with age-dependent elimination rates. Pt. 1

    International Nuclear Information System (INIS)

    Winkler, E.

    1991-01-01

    Mathematical models in tracer kinetics are usually based on ordinary differential equations which correspond to a system of kinetically homogeneous compartments (standard compartments). A generalization is possible by the admission of inhomogeneities in the behaviour of the elements belonging to a compartment. The important special case of the age-dependence of elimination rates is treated in its deterministic version. It leads to partial different equations (i.e., systems with distributed coefficients) with the 'age' or the 'residence time' of an element of the compartment as a variable additional to 'time'. The basic equations for one generalized compartment and for systems of such compartments are given together with their general solutions. (orig.) [de

  10. Combined Psoas Compartment-Sciatic Block in a Pediatric Patient with High-Risk Cardiopulmonary

    Directory of Open Access Journals (Sweden)

    Levent Þahin

    2013-03-01

    Full Text Available There is high potential for complications in cardiopulmonary high-risk patients with valvular heart disease at perioperative period. The operation was planned due to pathological fracture of the femoral shaft of a nine year old male patient weighing 26 kilograms. He had 3o tricuspid insufficiency, 3o mitral insufficiency and pulmonary hypertension in preoperative evaluation. Sciatic nerve block and psoas compartment block was performed to patient for anesthesia and analgesia. In conclusion we think that combined psoas compartment-sciatic nerve block may be a good alternative to other methods of anesthesia in high-risk pediatric patients with cardiopulmonary perspective in lower-extremity surgery.

  11. Experimental investigation on the flow around a simplified geometry of automotive engine compartment

    Science.gov (United States)

    D'Hondt, Marion; Gilliéron, Patrick; Devinant, Philippe

    2011-05-01

    In the current sustainable development context, car manufacturers have to keep doing efforts to reduce the aerodynamic drag of automotive vehicle in order to decrease their CO2 and greenhouse gas emissions. The cooling airflow, through the engine compartment of vehicles, contributes from 5 to 10% to the total aerodynamic drag. By means of simplified car geometry, equipped with an engine compartment, the configurations that favor a low contribution to total drag are identified. PIV (particle image velocimetry) velocity measurements in the wake of the geometry allow explaining these drag reductions. Besides, the cooling flow rate is also assessed and gives indications on the configurations that favor the engine cooling.

  12. Compartment modelling in nuclear medicine: a new program for the determination of transfer coefficients

    International Nuclear Information System (INIS)

    Hallstadius, L.

    1986-01-01

    In many investigations concerning transport/exchange of matter in a natural system, e.g. functional studies in nuclear medicine, it is advantageous to relate experimental results to a model of the system. A new computer program is presented for the determination of linear transfer coefficients in a compartment model from experimentally observed time-compartment content curves. The program performs a least-square fit with the specified precision of the observed values as weight factors. The resulting uncertainty in the calculated transfer coefficients may also be assessed. The application of the program in nuclear medicine is demonstrated and discussed. (author)

  13. Solution methods for compartment models of transport through the environment using numerical inversion of Laplace transforms

    International Nuclear Information System (INIS)

    Garratt, T.J.

    1989-05-01

    Compartment models for the transport of radionuclides in the biosphere are conventionally solved using a numerical time-stepping procedure. This report examines an alternative method based on the numerical inversion of Laplace transforms, which is potentially more efficient and accurate for some classes of problem. The central problem considered is the most efficient and robust technique for solving the Laplace-transformed rate equations. The conclusion is that Gaussian elimination is the most efficient and robust solution method. A general compartment model has been implemented on a personal computer and used to solve a realistic case including radionuclide decay chains. (author)

  14. [Application of three compartment model and response surface model to clinical anesthesia using Microsoft Excel].

    Science.gov (United States)

    Abe, Eiji; Abe, Mari

    2011-08-01

    With the spread of total intravenous anesthesia, clinical pharmacology has become more important. We report Microsoft Excel file applying three compartment model and response surface model to clinical anesthesia. On the Microsoft Excel sheet, propofol, remifentanil and fentanyl effect-site concentrations are predicted (three compartment model), and probabilities of no response to prodding, shaking, surrogates of painful stimuli and laryngoscopy are calculated using predicted effect-site drug concentration. Time-dependent changes in these calculated values are shown graphically. Recent development in anesthetic drug interaction studies are remarkable, and its application to clinical anesthesia with this Excel file is simple and helpful for clinical anesthesia.

  15. Combustion of lean hydrogen-air mixtures in the connected compartments

    International Nuclear Information System (INIS)

    Fan Liu; Yoshio Yoshizawa; Akio Miyori; Kenya Kubota

    1997-01-01

    A study of combustion experiments with premixed lean hydrogen-air mixtures was conducted in a vessel consisting of two compartments connected by a diameter-variable vent. Effects of various parameters (hydrogen concentration, vent diameter and initial pressure) on mechanical loads of the combustion processes including mainly the peak pressures and the rates of pressure rise were investigated. Relation of flow and combustion was approached. Ignition-combustion processes were discussed, and the combustion types were classified into three patterns according to the pressure-time histories and the flow characteristics in main combustion compartment

  16. Open abdomen procedure in managing abdominal compartment syndrome in a child with severe fungal peritonitis and sepsis after gastric perforation

    Directory of Open Access Journals (Sweden)

    Wei Lai

    2016-04-01

    Full Text Available Abdominal compartment syndrome with increased abdominal pressure resulted in multi-organ dysfunctions can be lethal in children. The open abdomen procedure intentionally leaves the abdominal cavity open in patients with severe abdominal sepsis and abdominal compartment syndrome by temporarily relieving the abdominal pressure. We reported our experience of open abdomen procedure in successfully treating a 4-year old boy with abdominal compartment syndrome caused by severe fungal peritonitis and sepsis after gastric perforation.

  17. Systemic Administration of Carbon Monoxide-Releasing Molecule-3 Protects the Skeletal Muscle in Porcine Model of Compartment Syndrome.

    Science.gov (United States)

    Bihari, Aurelia; Cepinskas, Gediminas; Sanders, David; Lawendy, Abdel-Rahman

    2018-05-01

    Acute limb compartment syndrome, a complication of musculoskeletal trauma, results in muscle necrosis and cell death. Carbon monoxide, liberated from the carbon monoxide-releasing molecule-3, has been shown protective in a rat model of compartment syndrome. The purpose of this study was to test the effect of carbon monoxide-releasing molecule-3 in a preclinical large animal model of compartment syndrome, with the ultimate goal of developing a pharmacologic adjunct treatment for compartment syndrome. Animal research study. Basic research laboratory in a hospital setting. Male Yorkshire-Landrace pigs (50-60 kg). Pigs underwent 6 hours of intracompartmental pressure elevation by infusing fluid into the anterior compartment of the right hind limb. Carbon monoxide-releasing molecule-3 was administered systemically (2 mg/kg, IV) at fasciotomy, followed by 3-hour reperfusion. Muscle perfusion, inflammation, injury, and apoptosis were assessed in the skeletal muscle. Systemic leukocyte activation was assessed during compartment syndrome and reperfusion. Elevation of hind limb intracompartmental pressure resulted in significant microvascular perfusion deficits (44% ± 1% continuously perfused capillaries in compartment syndrome vs 76% ± 4% in sham; p molecule-3 at fasciotomy increased the number of continuously perfused capillaries (68% ± 3%; p molecule-3 at fasciotomy offered protection against compartment syndrome-induced microvascular perfusion deficit, tissue injury, and systemic leukocyte activation. The data suggest the potential therapeutic application of carbon monoxide-releasing molecule-3 to patients at risk of developing compartment syndrome.

  18. Performance of Anaerobic Baffled Reactor with Three Compartments in Removal of COD of Wastewater of Chilly Sauce

    Directory of Open Access Journals (Sweden)

    Sumantri Indro

    2018-01-01

    Full Text Available The objective in this study is to examine the performance of each compartment of the number of compartments of anaerobic baffled reactor (ABR to the COD removal of the chilly sauce wastewater. Three-compartments of ABR were conducted in this experiment with the total volume of 60 l. ABR is very suitable for processing waste water with high content of COD. Wastewater conducted in this research is a degradable chilly sauce synthetic and high content of organic compounds. While the COD parameter is the main parameter to indicate the achievement of wastewater treatment plant. Stepwise in the research starting with the preparation of raw materials such as sample preparation of synthetic wastewater and preparation of activated sludge. Variable used is the time digestion in the ABR, sludge volume (50% and 70%, and initial COD concentrations (6000 – 14000 mg/L. The response is observed up to 7 days process. For a load of organic compounds, the first compartment has high degree of decomposition of organic compounds than 2nd and 3rd, it is shown that the COD removal the second and third compartment increase insignificantly compare the first compartment. As for the different height of the activated sludge indicated that for organic load of of 6170 mg/L up to 14265 mg/L, the first compartment has removal efficiency 79-73%, in the second compartment is 81-75%, 81-77% and third compartment.

  19. Handling of computational in vitro/in vivo correlation problems by Microsoft Excel: IV. Generalized matrix analysis of linear compartment systems.

    Science.gov (United States)

    Langenbucher, Frieder

    2005-01-01

    A linear system comprising n compartments is completely defined by the rate constants between any of the compartments and the initial condition in which compartment(s) the drug is present at the beginning. The generalized solution is the time profiles of drug amount in each compartment, described by polyexponential equations. Based on standard matrix operations, an Excel worksheet computes the rate constants and the coefficients, finally the full time profiles for a specified range of time values.

  20. Human Cytomegalovirus Exploits Interferon-Induced Transmembrane Proteins To Facilitate Morphogenesis of the Virion Assembly Compartment

    Science.gov (United States)

    Xie, Maorong; Xuan, Baoqin; Shan, Jiaoyu; Pan, Deng; Sun, Yamei; Shan, Zhao; Zhang, Jinping; Yu, Dong

    2014-01-01

    ABSTRACT Recently, interferon-induced transmembrane proteins (IFITMs) have been identified to be key effector molecules in the host type I interferon defense system. The invasion of host cells by a large range of RNA viruses is inhibited by IFITMs during the entry step. However, the roles of IFITMs in DNA virus infections have not been studied in detail. In this study, we report that human cytomegalovirus (HCMV), a large human DNA virus, exploits IFITMs to facilitate the formation of the virion assembly compartment (vAC) during infection of human fibroblasts. We found that IFITMs were expressed constitutively in human embryonic lung fibroblasts (MRC5 cells). HCMV infection inhibited IFITM protein accumulation in the later stages of infection. Overexpression of an IFITM protein in MRC5 cells slightly enhanced HCMV production and knockdown of IFITMs by RNA interference reduced the virus titer by about 100-fold on day 8 postinfection, according to the findings of a virus yield assay at a low multiplicity of infection. Virus gene expression and DNA synthesis were not affected, but the typical round structure of the vAC was not formed after the suppression of IFITMs, thereby resulting in defective virion assembly and the production of less infectious virion particles. Interestingly, the replication of herpes simplex virus, a human herpesvirus that is closely related to HCMV, was not affected by the suppression of IFITMs in MRC5 cells. These results indicate that IFITMs are involved in a specific pathway required for HCMV replication. IMPORTANCE HCMV is known to repurpose the interferon-stimulated genes (ISGs) viperin and tetherin to facilitate its replication. Our results expand the range of ISGs that can be exploited by HCMV for its replication. This is also the first report of a proviral function of IFITMs in DNA virus replication. In addition, whereas previous studies showed that IFITMs modulate virus entry, which is a very early stage in the virus life cycle, we