WorldWideScience

Sample records for early endodermal transcript

  1. Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript.

    Directory of Open Access Journals (Sweden)

    Maurice A Canham

    2010-05-01

    Full Text Available ES cells are defined as self-renewing, pluripotent cell lines derived from early embryos. Cultures of ES cells are also characterized by the expression of certain markers thought to represent the pluripotent state. However, despite the widespread expression of key markers such as Oct4 and the appearance of a characteristic undifferentiated morphology, functional ES cells may represent only a small fraction of the cultures grown under self-renewing conditions. Thus phenotypically "undifferentiated" cells may consist of a heterogeneous population of functionally distinct cell types. Here we use a transgenic allele designed to detect low level transcription in the primitive endoderm lineage as a tool to identify an immediate early endoderm-like ES cell state. This reporter employs a tandem array of internal ribosomal entry sites to drive translation of an enhanced Yellow Fluorescent Protein (Venus from the transcript that normally encodes for the early endodermal marker Hex. Expression of this Venus transgene reports on single cells with low Hex transcript levels and reveals the existence of distinct populations of Oct4 positive undifferentiated ES cells. One of these cells types, characterized by both the expression of the Venus transgene and the ES cells marker SSEA-1 (V(+S(+, appears to represent an early step in primitive endoderm specification. We show that the fraction of cells present within this state is influenced by factors that both promote and suppress primitive endoderm differentiation, but conditions that support ES cell self-renewal prevent their progression into differentiation and support an equilibrium between this state and at least one other that resembles the Nanog positive inner cell mass of the mammalian blastocysts. Interestingly, while these subpopulations are equivalently and clonally interconvertible under self-renewing conditions, when induced to differentiate both in vivo and in vitro they exhibit different behaviours

  2. Functional Heterogeneity of Embryonic Stem Cells Revealed through Translational Amplification of an Early Endodermal Transcript

    Science.gov (United States)

    Canham, Maurice A.; Sharov, Alexei A.; Ko, Minoru S. H.; Brickman, Joshua M.

    2010-01-01

    ES cells are defined as self-renewing, pluripotent cell lines derived from early embryos. Cultures of ES cells are also characterized by the expression of certain markers thought to represent the pluripotent state. However, despite the widespread expression of key markers such as Oct4 and the appearance of a characteristic undifferentiated morphology, functional ES cells may represent only a small fraction of the cultures grown under self-renewing conditions. Thus phenotypically “undifferentiated” cells may consist of a heterogeneous population of functionally distinct cell types. Here we use a transgenic allele designed to detect low level transcription in the primitive endoderm lineage as a tool to identify an immediate early endoderm-like ES cell state. This reporter employs a tandem array of internal ribosomal entry sites to drive translation of an enhanced Yellow Fluorescent Protein (Venus) from the transcript that normally encodes for the early endodermal marker Hex. Expression of this Venus transgene reports on single cells with low Hex transcript levels and reveals the existence of distinct populations of Oct4 positive undifferentiated ES cells. One of these cells types, characterized by both the expression of the Venus transgene and the ES cells marker SSEA-1 (V+S+), appears to represent an early step in primitive endoderm specification. We show that the fraction of cells present within this state is influenced by factors that both promote and suppress primitive endoderm differentiation, but conditions that support ES cell self-renewal prevent their progression into differentiation and support an equilibrium between this state and at least one other that resembles the Nanog positive inner cell mass of the mammalian blastocysts. Interestingly, while these subpopulations are equivalently and clonally interconvertible under self-renewing conditions, when induced to differentiate both in vivo and in vitro they exhibit different behaviours. Most strikingly

  3. Direct transcriptional regulation of Gata4 during early endoderm specification is controlled by FoxA2 binding to an intronic enhancer.

    Science.gov (United States)

    Rojas, Anabel; Schachterle, William; Xu, Shan-Mei; Martín, Franz; Black, Brian L

    2010-10-15

    The embryonic endoderm is a multipotent progenitor cell population that gives rise to the epithelia of the digestive and respiratory tracts, the liver and the pancreas. Among the transcription factors that have been shown to be important for endoderm development and gut morphogenesis is GATA4. Despite the important role of GATA4 in endoderm development, its transcriptional regulation is not well understood. In this study, we identified an intronic enhancer from the mouse Gata4 gene that directs expression to the definitive endoderm in the early embryo. The activity of this enhancer is initially broad in all endodermal progenitors, as demonstrated by fate mapping analysis using the Cre/loxP system, but becomes restricted to the dorsal foregut and midgut, and associated organs such as dorsal pancreas and stomach. The function of the intronic Gata4 enhancer is dependent upon a conserved Forkhead transcription factor-binding site, which is bound by recombinant FoxA2 in vitro. These studies identify Gata4 as a direct transcriptional target of FoxA2 in the hierarchy of the transcriptional regulatory network that controls the development of the definitive endoderm. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Anterior endoderm and head induction in early vertebrate embryos.

    Science.gov (United States)

    de Souza, F S; Niehrs, C

    2000-05-01

    Early work on the formation of the vertebrate body axis indicated the existence of separate head- and trunk-inducing regions in Spemann's organizer of the amphibian gastrula. In mammals some head-organizing activity may be located in anterior visceral (extraembryonic) endoderm (AVE). By analogy, the equivalent structure in the Xenopus laevis gastrula, the anterior endoderm, has been proposed to be the amphibian head organizer. Here we review recent data that challenge this notion and indicate that the involvement of AVE in head induction seems to be an exclusively mammalian characteristic. In X. laevis and chick, it is the prechordal endomesoderm that is the dominant source of head-inducing signals during early gastrulation. Furthermore, head induction in mammals needs a combination of signals from anterior primitive endoderm, prechordal plate, and anterior ectoderm. Thus, despite the homology of vertebrate anterior primitive endoderm, a role in head induction seems not to be conserved.

  5. Sox17 expression patterns during gastrulation and early neurulation in the rabbit suggest two sources of endoderm formation.

    Science.gov (United States)

    Hassoun, Romia; Püschel, Bernd; Viebahn, Christoph

    2010-01-01

    Most gastrointestinal tract and associated gland epithelia originate from the endoderm germ layer discovered by Pander in 1817. The recent surge in stem cell concepts revived interest in the findings of 30 years ago that the endoderm layer itself originates from the epiblast (which since Pander's time had been held to be the forerunner of the ectoderm and mesoderm germ layers only). However, the question as to which parts of the mammalian gastrulation-stage embryonic disc generate endoderm cells is still unresolved. Therefore, the expression of the gene coding for the transcription factor Sox17, a key transcription factor involved in endoderm formation in mouse, chick, frog, and zebrafish, was analyzed in the rabbit, a model organism for mammalian gastrulation morphology, using whole-mount in situ hybridization and high-resolution histological analysis of embryos at gastrulation and early neurulation stages. Sox17 mRNA in the mesoderm and lower layer (hypoblast) compartments within and adjacent to Hensen's node and the anterior segment of the primitive streak confirmed the validity of this approach, as this region had previously been shown to form endoderm in mouse and chick. However, Sox17 expression in central and posterior epiblast at pregastrulation stages together with a transient expression at the posterior extremity of the primitive streak suggest that endoderm (possibly hindgut) may be formed close to the emerging cloacal membrane, as well.

  6. A new FACS approach isolates hESC derived endoderm using transcription factors.

    Directory of Open Access Journals (Sweden)

    Yuqiong Pan

    Full Text Available We show that high quality microarray gene expression profiles can be obtained following FACS sorting of cells using combinations of transcription factors. We use this transcription factor FACS (tfFACS methodology to perform a genomic analysis of hESC-derived endodermal lineages marked by combinations of SOX17, GATA4, and CXCR4, and find that triple positive cells have a much stronger definitive endoderm signature than other combinations of these markers. Additionally, SOX17(+ GATA4(+ cells can be obtained at a much earlier stage of differentiation, prior to expression of CXCR4(+ cells, providing an important new tool to isolate this earlier definitive endoderm subtype. Overall, tfFACS represents an advancement in FACS technology which broadly crosses multiple disciplines, most notably in regenerative medicine to redefine cellular populations.

  7. Generation of monoclonal antibodies specific for cell surface molecules expressed on early mouse endoderm.

    Science.gov (United States)

    Gadue, Paul; Gouon-Evans, Valerie; Cheng, Xin; Wandzioch, Ewa; Zaret, Kenneth S; Grompe, Markus; Streeter, Philip R; Keller, Gordon M

    2009-09-01

    The development of functional cell populations such as hepatocytes and pancreatic beta cells from embryonic stem cell (ESC) is dependent on the efficient induction of definitive endoderm early in the differentiation process. To monitor definitive endoderm formation in mouse ESC differentiation cultures in a quantitative fashion, we generated a reporter cell line that expresses human CD25 from the Foxa3 locus and human CD4 from the Foxa2 locus. Induction of these reporter ESCs with high concentrations of activin A led to the development of a CD25-Foxa3+CD4-Foxa2+ population within 4-5 days of culture. Isolation and characterization of this population showed that it consists predominantly of definitive endoderm that is able to undergo hepatic specification under the appropriate conditions. To develop reagents that can be used for studies on endoderm development from unmanipulated ESCs, from induced pluripotent stem cells, and from the mouse embryo, we generated monoclonal antibodies against the CD25-Foxa3+CD4-Foxa2+ population. With this approach, we identified two antibodies that react specifically with endoderm from ESC cultures and from the early embryo. The specificity of these antibodies enables one to quantitatively monitor endoderm development in ESC differentiation cultures, to study endoderm formation in the embryo, and to isolate pure populations of culture- or embryo-derived endodermal cells.

  8. The embryonic stem cell transcription factors Oct-4 and FoxD3 interact to regulate endodermal-specific promoter expression

    OpenAIRE

    Guo, Ying; De Costa, Robert; Ramsey, Heather; Starnes, Trevor; Vance, Gail; Robertson, Kent; Kelley, Mark; Reinbold, Rolland; Scholer, Hans; Hromas, Robert

    2002-01-01

    The POU homeodomain protein Oct-4 and the Forkhead Box protein FoxD3 (previously Genesis) are transcriptional regulators expressed in embryonic stem cells. Down-regulation of Oct-4 during gastrulation is essential for proper endoderm development. After gastrulation, FoxD3 is generally down-regulated during early endoderm formation, although it specifically remains expressed in the embryonic neural crest. In these studies, we have found that Oct-4 and FoxD3 can bind to identical regulatory DNA...

  9. The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation

    DEFF Research Database (Denmark)

    Kartikasari, Apriliana E R; Zhou, Josie X; Kanji, Murtaza S

    2013-01-01

    Stem cell differentiation depends on transcriptional activation driven by lineage-specific regulators as well as changes in chromatin organization. However, the coordination of these events is poorly understood. Here, we show that T-box proteins team up with chromatin modifying enzymes to drive...... feedback loop. In addition, Eomes activates a transcriptional network of core regulators of endodermal differentiation. Our results demonstrate that Jmjd3 sequentially associates with two T-box factors, Tbx3 and Eomes to drive stem cell differentiation towards the definitive endoderm lineage....

  10. Early in vitro differentiation of mouse definitive endoderm is not correlated with progressive maturation of nuclear DNA methylation patterns.

    Directory of Open Access Journals (Sweden)

    Jian Tajbakhsh

    Full Text Available The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6, and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative

  11. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors.

    Science.gov (United States)

    Brown, Stephanie; Teo, Adrian; Pauklin, Siim; Hannan, Nicholas; Cho, Candy H-H; Lim, Bing; Vardy, Leah; Dunn, N Ray; Trotter, Matthew; Pedersen, Roger; Vallier, Ludovic

    2011-08-01

    Activin/Nodal signaling is necessary to maintain pluripotency of human embryonic stem cells (hESCs) and to induce their differentiation toward endoderm. However, the mechanisms by which Activin/Nodal signaling achieves these opposite functions remain unclear. To unravel these mechanisms, we examined the transcriptional network controlled in hESCs by Smad2 and Smad3, which represent the direct effectors of Activin/Nodal signaling. These analyses reveal that Smad2/3 participate in the control of the core transcriptional network characterizing pluripotency, which includes Oct-4, Nanog, FoxD3, Dppa4, Tert, Myc, and UTF1. In addition, similar experiments performed on endoderm cells confirm that a broad part of the transcriptional network directing differentiation is downstream of Smad2/3. Therefore, Activin/Nodal signaling appears to control divergent transcriptional networks in hESCs and in endoderm. Importantly, we observed an overlap between the transcriptional network downstream of Nanog and Smad2/3 in hESCs; whereas, functional studies showed that both factors cooperate to control the expression of pluripotency genes. Therefore, the effect of Activin/Nodal signaling on pluripotency and differentiation could be dictated by tissue specific Smad2/3 partners such as Nanog, explaining the mechanisms by which signaling pathways can orchestrate divergent cell fate decisions.

  12. β-Pix directs collective migration of anterior visceral endoderm cells in the early mouse embryo.

    Science.gov (United States)

    Omelchenko, Tatiana; Rabadan, M Angeles; Hernández-Martínez, Rocío; Grego-Bessa, Joaquim; Anderson, Kathryn V; Hall, Alan

    2014-12-15

    Collective epithelial migration is important throughout embryonic development. The underlying mechanisms are poorly understood but likely involve spatially localized activation of Rho GTPases. We previously reported that Rac1 is essential for generating the protrusive activity that drives the collective migration of anterior visceral endoderm (AVE) cells in the early mouse embryo. To identify potential regulators of Rac1, we first performed an RNAi screen of Rho family exchange factors (guanine nucleotide exchange factor [GEF]) in an in vitro collective epithelial migration assay and identified β-Pix. Genetic deletion of β-Pix in mice disrupts collective AVE migration, while high-resolution live imaging revealed that this is associated with randomly directed protrusive activity. We conclude that β-Pix controls the spatial localization of Rac1 activity to drive collective AVE migration at a critical stage in mouse development.

  13. Parietal endoderm secreted S100A4 promotes early cardiomyogenesis in embryoid bodies

    DEFF Research Database (Denmark)

    Stary, Martina; Schneider, Mikael; Sheikh, Søren P

    2006-01-01

    Cardiomyogenesis is influenced by factors secreted by anterior-lateral and extra-embryonic endoderm. Differentiation of embryonic stem cells in embryoid bodies allows to study the influence of growth factors on cardiomyogenesis. By these means SPARC was identified as a new factor enhancing...

  14. Shadow enhancers flanking the HoxB cluster direct dynamic Hox expression in early heart and endoderm development.

    Science.gov (United States)

    Nolte, Christof; Jinks, Tim; Wang, Xinghao; Martinez Pastor, María Teresa; Krumlauf, Robb

    2013-11-01

    The products of Hox genes function in assigning positional identity along the anterior-posterior body axis during animal development. In mouse embryos, Hox genes located at the 3' end of HoxA and HoxB complexes are expressed in nested patterns in the progenitors of the secondary heart field during early cardiogenesis and the combined activities of both of these clusters are required for proper looping of the heart. Using Hox bacterial artificial chromosomes (BACs), transposon reporters, and transgenic analyses in mice, we present the identification of several novel enhancers flanking the HoxB complex which can work over a long range to mediate dynamic reporter expression in the endoderm and embryonic heart during development. These enhancers respond to exogenously added retinoic acid and we have identified two retinoic acid response elements (RAREs) within these control modules that play a role in potentiating their regulatory activity. Deletion analysis in HoxB BAC reporters reveals that these control modules, spread throughout the flanking intergenic region, have regulatory activities that overlap with other local enhancers. This suggests that they function as shadow enhancers to modulate the expression of genes from the HoxB complex during cardiac development. Regulatory analysis of the HoxA complex reveals that it also has enhancers in the 3' flanking region which contain RAREs and have the potential to modulate expression in endoderm and heart tissues. Together, the similarities in their location, enhancer output, and dependence on retinoid signaling suggest that a conserved cis-regulatory cassette located in the 3' proximal regions adjacent to the HoxA and HoxB complexes evolved to modulate Hox gene expression during mammalian cardiac and endoderm development. This suggests a common regulatory mechanism, whereby the conserved control modules act over a long range on multiple Hox genes to generate nested patterns of HoxA and HoxB expression during

  15. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Lina, E-mail: linasui@vub.ac.be [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Mfopou, Josue K. [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Geens, Mieke; Sermon, Karen [Department of Embryology and Genetics, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Bouwens, Luc [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Deep study the FGF signaling role during DE specification in the context of hESCs. Black-Right-Pointing-Pointer DE differentiation from hESCs has an early dependence on FGF signaling. Black-Right-Pointing-Pointer A serum-free DE protocol is developed based on the findings. Black-Right-Pointing-Pointer The DE cells showed potential to differentiate into pancreatic progenitor cells. -- Abstract: Considering their unlimited proliferation and pluripotency properties, human embryonic stem cells (hESCs) constitute a promising resource applicable for cell replacement therapy. To facilitate this clinical translation, it is critical to study and understand the early stage of hESCs differentiation wherein germ layers are defined. In this study, we examined the role of FGF signaling in Activin A-induced definitive endoderm (DE) differentiation in the absence of supplemented animal serum. We found that activated FGF/MAPK signaling is required at the early time point of Activin A-induced DE formation. In addition, FGF activation increased the number of DE cells compared to Activin A alone. These DE cells could further differentiate into PDX1 and NKX6.1 positive pancreatic progenitors in vitro. We conclude that Activin A combined with FGF/MAPK signaling efficiently induce DE cells in the absence of serum. These findings improve our understanding of human endoderm formation, and constitute a step forward in the generation of clinical grade hESCs progenies for cell therapy.

  16. Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rangarajan Sambathkumar

    2016-01-01

    Full Text Available Reprogramming can occur by the introduction of key transcription factors (TFs as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi Trichostatin A (TSA combined with a chromatin remodeling medium (CRM induced expression of a number of definitive endoderm and early and late pancreatic marker genes. When CRM was omitted, endoderm/pancreatic marker genes were not induced. Furthermore, treatment with DNA methyltransferase inhibitor (DNMTi 5-azacytidine (5AZA CRM did not affect gene expression changes, and when 5AZA was combined with TSA, no further increase in gene expression of endoderm, pancreatic endoderm, and endocrine markers was seen over levels induced with TSA alone. Interestingly, TSA-CRM did not affect expression of pluripotency and hepatocyte genes but induced some mesoderm transcripts. Upon removal of TSA-CRM, the endoderm/pancreatic gene expression profile returned to baseline. Our findings underscore the role epigenetic modification in transdifferentiation of one somatic cell into another. However, full reprogramming of fibroblasts to β-cells will require combination of this approach with TF overexpression and/or culture of the partially reprogrammed cells under β-cell specific conditions.

  17. Vertebrate intestinal endoderm development.

    Science.gov (United States)

    Spence, Jason R; Lauf, Ryan; Shroyer, Noah F

    2011-03-01

    The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence, as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes. Copyright © 2011 Wiley-Liss, Inc.

  18. Endoderm Induction for Hepatic and Pancreatic Diff erentiation of ES Cells

    Directory of Open Access Journals (Sweden)

    Caballero-Corbalan,Jose

    2008-04-01

    Full Text Available Hepatic and pancreatic differentiation from ES cells is of great interest for the impact that this knowledge could have on the treatment of hepatic and diabetic patients. The liver and pancreas initially develop by budding from the embryonic endoderm. Thus, the development of the endoderm represents an important step and has an integral common role in initiating the early stages of pancreatic and liver development. We know that the development of hepatocytes and insulin-producing pancreatic beta-cells from ES cells represents the culmination of a complex developmental program. However, there has been recent progress in directing ES cells to endoderm and early-stage hepatic and pancreatic progenitor cells. We here discuss the role of the microenvironment, transcriptional factors and cytokines, which have been recognized as important molecules during the major steps of the development of the liver and pancreas. We also present the most recent advances and efforts taken to produce definitive endoderm-committed ES cells for the further differentiation of hepatocyte-like and insulinproducing cells. Recent progress in the search for new sources of hepatocytes and beta-cells has opened up several possibilities for the future of new perspectives for future of new prophylactic and therapeutic possibilities for liver diseases and diabetes.

  19. Rad51 activates polyomavirus JC early transcription.

    Directory of Open Access Journals (Sweden)

    Martyn K White

    Full Text Available The human neurotropic polyomavirus JC (JCV causes the fatal CNS demyelinating disease progressive multifocal leukoencephalopathy (PML. JCV infection is very common and after primary infection, the virus is able to persist in an asymptomatic state. Rarely, and usually only under conditions of immune impairment, JCV re-emerges to actively replicate in the astrocytes and oligodendrocytes of the brain causing PML. The regulatory events involved in the reactivation of active viral replication in PML are not well understood but previous studies have implicated the transcription factor NF-κB acting at a well-characterized site in the JCV noncoding control region (NCCR. NF-κB in turn is regulated in a number of ways including activation by cytokines such as TNF-α, interactions with other transcription factors and epigenetic events involving protein acetylation--all of which can regulate the transcriptional activity of JCV. Active JCV infection is marked by the occurrence of rapid and extensive DNA damage in the host cell and the induction of the expression of cellular proteins involved in DNA repair including Rad51, a major component of the homologous recombination-directed double-strand break DNA repair machinery. Here we show that increased Rad51 expression activates the JCV early promoter. This activation is co-operative with the stimulation caused by NF-κB p65, abrogated by mutation of the NF-κB binding site or siRNA to NFκB p65 and enhanced by the histone deacetylase inhibitor sodium butyrate. These data indicate that the induction of Rad51 resulting from infection with JCV acts through NF-κB via its binding site to stimulate JCV early transcription. We suggest that this provides a novel positive feedback mechanism to enhance viral gene expression during the early stage of JCV infection.

  20. Polycomb enables primitive endoderm lineage priming in embryonic stem cells

    DEFF Research Database (Denmark)

    Illingworth, Robert S; Hölzenspies, Jurriaan J; Roske, Fabian V

    2016-01-01

    Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver...... polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision....

  1. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations.

    Science.gov (United States)

    Loh, Kyle M; Ang, Lay Teng; Zhang, Jingyao; Kumar, Vibhor; Ang, Jasmin; Auyeong, Jun Qiang; Lee, Kian Leong; Choo, Siew Hua; Lim, Christina Y Y; Nichane, Massimo; Tan, Junru; Noghabi, Monireh Soroush; Azzola, Lisa; Ng, Elizabeth S; Durruthy-Durruthy, Jens; Sebastiano, Vittorio; Poellinger, Lorenz; Elefanty, Andrew G; Stanley, Edouard G; Chen, Qingfeng; Prabhakar, Shyam; Weissman, Irving L; Lim, Bing

    2014-02-01

    Human pluripotent stem cell (hPSC) differentiation typically yields heterogeneous populations. Knowledge of signals controlling embryonic lineage bifurcations could efficiently yield desired cell types through exclusion of alternate fates. Therefore, we revisited signals driving induction and anterior-posterior patterning of definitive endoderm to generate a coherent roadmap for endoderm differentiation. With striking temporal dynamics, BMP and Wnt initially specified anterior primitive streak (progenitor to endoderm), yet, 24 hr later, suppressed endoderm and induced mesoderm. At lineage bifurcations, cross-repressive signals separated mutually exclusive fates; TGF-β and BMP/MAPK respectively induced pancreas versus liver from endoderm by suppressing the alternate lineage. We systematically blockaded alternate fates throughout multiple consecutive bifurcations, thereby efficiently differentiating multiple hPSC lines exclusively into endoderm and its derivatives. Comprehensive transcriptional and chromatin mapping of highly pure endodermal populations revealed that endodermal enhancers existed in a surprising diversity of "pre-enhancer" states before activation, reflecting the establishment of a permissive chromatin landscape as a prelude to differentiation.

  2. Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation

    Directory of Open Access Journals (Sweden)

    Hisham Mohammed

    2017-08-01

    Full Text Available The mouse inner cell mass (ICM segregates into the epiblast and primitive endoderm (PrE lineages coincident with implantation of the embryo. The epiblast subsequently undergoes considerable expansion of cell numbers prior to gastrulation. To investigate underlying regulatory principles, we performed systematic single-cell RNA sequencing (seq of conceptuses from E3.5 to E6.5. The epiblast shows reactivation and subsequent inactivation of the X chromosome, with Zfp57 expression associated with reactivation and inactivation together with other candidate regulators. At E6.5, the transition from epiblast to primitive streak is linked with decreased expression of polycomb subunits, suggesting a key regulatory role. Notably, our analyses suggest elevated transcriptional noise at E3.5 and within the non-committed epiblast at E6.5, coinciding with exit from pluripotency. By contrast, E6.5 primitive streak cells became highly synchronized and exhibit a shortened G1 cell-cycle phase, consistent with accelerated proliferation. Our study systematically charts transcriptional noise and uncovers molecular processes associated with early lineage decisions.

  3. Contribution of transcription to animal early development.

    Science.gov (United States)

    Wang, Jianbin; Davis, Richard E

    2014-01-01

    In mature gametes and during the oocyte-to-embryo transition, transcription is generally silenced and gene expression is post-transcriptionally regulated. However, we recently discovered that major transcription can occur immediately after fertilization, prior to pronuclear fusion, and in the first cell division of the oocyte-to-embryo transition in the nematode Ascaris suum. We postulate that the balance between transcriptional and post-transcriptional regulation during the oocyte-to-embryo transition may largely be determined by cell cycle length and thus the time available for the genome to be transcribed.

  4. Purification of Definitive Endoderm Generated from Pluripotent Stem Cells by Magnetic Cell Sorting.

    Science.gov (United States)

    Diekmann, Ulf; Davenport, Claudia; Kresse, Jasmin; Naujok, Ortwin

    2017-02-02

    Pluripotent stem cells have the capability to differentiate into any somatic cell type of the human body. The generation of surrogate cells for the treatment of liver, lung, and pancreatic diseases is of great medical interest. First, the in vitro formation into cells of the definitive endoderm is required. Upon commitment into this lineage, the cells express transcription factors such as FOXA2, SOX17, HNF1B; GATA family members; and the surface protein CXCR4. Unfortunately, some pluripotent stem cells resist the differentiation and contaminate the culture. Thus, we describe here an endoderm differentiation protocol, which yields endoderm-committed cells in high numbers in a 4-day treatment protocol. Second, a method for the purification of CXCR4-positive endoderm cells by magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS) is described. The purification by MACS is quick and reliable and can be used to obtain pure endoderm cells either meant for downstream analysis such as omics or further differentiation experiments into endoderm-derived somatic cells. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  5. The T-box transcription factor Eomesodermin is essential for AVE induction in the mouse embryo.

    Science.gov (United States)

    Nowotschin, Sonja; Costello, Ita; Piliszek, Anna; Kwon, Gloria S; Mao, Chai-an; Klein, William H; Robertson, Elizabeth J; Hadjantonakis, Anna-Katerina

    2013-05-01

    Reciprocal inductive interactions between the embryonic and extraembryonic tissues establish the anterior-posterior (AP) axis of the early mouse embryo. The anterior visceral endoderm (AVE) signaling center emerges at the distal tip of the embryo at embryonic day 5.5 and translocates to the prospective anterior side of the embryo. The process of AVE induction and migration are poorly understood. Here we demonstrate that the T-box gene Eomesodermin (Eomes) plays an essential role in AVE recruitment, in part by directly activating the homeobox transcription factor Lhx1. Thus, Eomes function in the visceral endoderm (VE) initiates an instructive transcriptional program controlling AP identity.

  6. Endoderm development in Caenorhabditis elegans: the synergistic action of ELT-2 and -7 mediates the specification→differentiation transition.

    Science.gov (United States)

    Sommermann, Erica M; Strohmaier, Keith R; Maduro, Morris F; Rothman, Joel H

    2010-11-01

    The transition from specification of cell identity to the differentiation of cells into an appropriate and enduring state is critical to the development of embryos. Transcriptional profiling in Caenorhabditis elegans has revealed a large number of genes that are expressed in the fully differentiated intestine; however, no regulatory factor has been found to be essential to initiate their expression once the endoderm has been specified. These gut-expressed genes possess a preponderance of GATA factor binding sites and one GATA factor, ELT-2, fulfills the expected characteristics of a key regulator of these genes based on its persistent expression exclusively in the developing and differentiated intestine and its ability to bind these regulatory sites. However, a striking characteristic of elt-2(0) knockout mutants is that while they die shortly after hatching owing to an obstructed gut passage, they nevertheless contain a gut that has undergone complete morphological differentiation. We have discovered a second gut-specific GATA factor, ELT-7, that profoundly synergizes with ELT-2 to create a transcriptional switch essential for gut cell differentiation. ELT-7 is first expressed in the early endoderm lineage and, when expressed ectopically, is sufficient to activate gut differentiation in nonendodermal progenitors. elt-7 is transcriptionally activated by the redundant endoderm-specifying factors END-1 and -3, and its product in turn activates both its own expression and that of elt-2, constituting an apparent positive feedback system. While elt-7 loss-of-function mutants lack a discernible phenotype, simultaneous loss of both elt-7 and elt-2 results in a striking all-or-none block to morphological differentiation of groups of gut cells with a region-specific bias, as well as reduced or abolished gut-specific expression of a number of terminal differentiation genes. ELT-2 and -7 synergize not only in activation of gene expression but also in repression of a gene that

  7. Electroporation of Nucleic Acids into Chick Endoderm Both In Vitro and In Ovo

    Science.gov (United States)

    Fukuda, Kimiko

    During gastrulation, vertebrate embryos generate three different germ layers, the ectoderm, mesoderm and endoderm. The endoderm layer is situated in the most ventral part of the embryo and differentiates into various tissues including the gut, respiratory and endocrine epithelium. In amniotes, the endoderm spreads out in a sheet-like manner and forms the most ventral layer in the early embryo. Subsequently, the anterior-most endoderm folds ventrally and forms a sack-like structure, the foregut. As the foregut extends posteriorly, the endoderm at the most posterior portion of the embryo forms another sack-like structure, the hindgut, and this grows rostrally. Finally, the foregut and hindgut meet at the level of the small intestine and form a simple tube. After the formation of tube, the endoderm becomes the lining epithelium of the gut and differentiates into various organs according to their position along the anterior7#x2014;posterior and the dorsal-ventral axes. These include the esophagus, lung, stomach, duodenum, pancreas, liver, small intestine and large intestine. These organs show specific morphologies and express particular factors depending on their function (Wells and Melton, 2000).

  8. Growth-limiting role of endothelial cells in endoderm development.

    Science.gov (United States)

    Sand, Fredrik Wolfhagen; Hörnblad, Andreas; Johansson, Jenny K; Lorén, Christina; Edsbagge, Josefina; Ståhlberg, Anders; Magenheim, Judith; Ilovich, Ohad; Mishani, Eyal; Dor, Yuval; Ahlgren, Ulf; Semb, Henrik

    2011-04-15

    Endoderm development is dependent on inductive signals from different structures in close vicinity, including the notochord, lateral plate mesoderm and endothelial cells. Recently, we demonstrated that a functional vascular system is necessary for proper pancreas development, and that sphingosine-1-phosphate (S1P) exhibits the traits of a blood vessel-derived molecule involved in early pancreas morphogenesis. To examine whether S1P(1)-signaling plays a more general role in endoderm development, S1P(1)-deficient mice were analyzed. S1P(1) ablation results in compromised growth of several foregut-derived organs, including the stomach, dorsal and ventral pancreas and liver. Within the developing pancreas the reduction in organ size was due to deficient proliferation of Pdx1(+) pancreatic progenitors, whereas endocrine cell differentiation was unaffected. Ablation of endothelial cells in vitro did not mimic the S1P(1) phenotype, instead, increased organ size and hyperbranching were observed. Consistent with a negative role for endothelial cells in endoderm organ expansion, excessive vasculature was discovered in S1P(1)-deficient embryos. Altogether, our results show that endothelial cell hyperplasia negatively influences organ development in several foregut-derived organs.

  9. Dataset of transcriptional landscape of B cell early activation

    Directory of Open Access Journals (Sweden)

    Alexander S. Garruss

    2015-09-01

    Full Text Available Signaling via B cell receptors (BCR and Toll-like receptors (TLRs result in activation of B cells with distinct physiological outcomes, but transcriptional regulatory mechanisms that drive activation and distinguish these pathways remain unknown. At early time points after BCR and TLR ligand exposure, 0.5 and 2 h, RNA-seq was performed allowing observations on rapid transcriptional changes. At 2 h, ChIP-seq was performed to allow observations on important regulatory mechanisms potentially driving transcriptional change. The dataset includes RNA-seq, ChIP-seq of control (Input, RNA Pol II, H3K4me3, H3K27me3, and a separate RNA-seq for miRNA expression, which can be found at Gene Expression Omnibus Dataset GSE61608. Here, we provide details on the experimental and analysis methods used to obtain and analyze this dataset and to examine the transcriptional landscape of B cell early activation.

  10. Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts

    NARCIS (Netherlands)

    Sambathkumar, Rangarajan; Kalo, Eric; Van Rossom, Rob; Faas, Marijke M.; de Vos, Paul; Verfaillie, Catherine M.

    2016-01-01

    Reprogramming can occur by the introduction of key transcription factors (TFs) as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) combined with a chromatin remodeling medium (CRM) induced expression of a number of definitive endoderm and

  11. Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts

    NARCIS (Netherlands)

    Sambathkumar, Rangarajan; Kalo, Eric; Van Rossom, Rob; Faas, Marijke M.; de Vos, Paul; Verfaillie, Catherine M.

    2016-01-01

    Reprogramming can occur by the introduction of key transcription factors (TFs) as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) combined with a chromatin remodeling medium (CRM) induced expression of a number of definitive endoderm and

  12. Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development.

    Science.gov (United States)

    Zhang, Lu; Nomura-Kitabayashi, Aya; Sultana, Nishat; Cai, Weibin; Cai, Xiaoqiang; Moon, Anne M; Cai, Chen-Leng

    2014-06-01

    The vertebrate heart develops from mesoderm and requires inductive signals secreted from early endoderm. During embryogenesis, Nkx2.5 acts as a key transcription factor and plays essential roles for heart formation from Drosophila to human. In mice, Nkx2.5 is expressed in the early first heart field, second heart field pharyngeal mesoderm, as well as pharyngeal endodermal cells underlying the second heart field. Currently, the specific requirements for Nkx2.5 in the endoderm versus mesoderm with regard to early heart formation are incompletely understood. Here, we performed tissue-specific deletion in mice to dissect the roles of Nkx2.5 in the pharyngeal endoderm and mesoderm. We found that heart development appeared normal after endodermal deletion of Nkx2.5 whereas mesodermal deletion engendered cardiac defects almost identical to those observed on Nkx2.5 null embryos (Nkx2.5(-/-)). Furthermore, re-expression of Nkx2.5 in the mesoderm rescued Nkx2.5(-/-) heart defects. Our findings reveal that Nkx2.5 in the mesoderm is essential while endodermal expression is dispensable for early heart formation in mammals.

  13. Molecular architecture of transcription factor hotspots in early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Baek, Songjoon; Rabiee, Atefeh;

    2014-01-01

    Transcription factors have recently been shown to colocalize in hotspot regions of the genome, which are further clustered into super-enhancers. However, the detailed molecular organization of transcription factors at hotspot regions is poorly defined. Here, we have used digital genomic...... footprinting to precisely define factor localization at a genome-wide level during the early phase of 3T3-L1 adipocyte differentiation, which allows us to obtain detailed molecular insight into how transcription factors target hotspots. We demonstrate the formation of ATF-C/EBP heterodimers at a composite...... motif on chromatin, and we suggest that this may be a general mechanism for integrating external signals on chromatin. Furthermore, we find evidence of extensive recruitment of transcription factors to hotspots through alternative mechanisms not involving their known motifs and demonstrate...

  14. Molecular architecture of transcription factor hotspots in early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Baek, Songjoon; Rabiee, Atefeh

    2014-01-01

    motif on chromatin, and we suggest that this may be a general mechanism for integrating external signals on chromatin. Furthermore, we find evidence of extensive recruitment of transcription factors to hotspots through alternative mechanisms not involving their known motifs and demonstrate......Transcription factors have recently been shown to colocalize in hotspot regions of the genome, which are further clustered into super-enhancers. However, the detailed molecular organization of transcription factors at hotspot regions is poorly defined. Here, we have used digital genomic...... footprinting to precisely define factor localization at a genome-wide level during the early phase of 3T3-L1 adipocyte differentiation, which allows us to obtain detailed molecular insight into how transcription factors target hotspots. We demonstrate the formation of ATF-C/EBP heterodimers at a composite...

  15. The transcription factor GATA6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development

    NARCIS (Netherlands)

    R. Keijzer (Richard); W.G. van Tuyl (Minke); C. Meijers (Carel); M.R. Post (Martin); D. Tibboel (Dick); M. Koutsourakis (Manousos); F.G. Grosveld (Frank)

    2001-01-01

    textabstractRecent loss-of-function studies in mice show that the transcription factor GATA6 is important for visceral endoderm differentiation. It is also expressed in early bronchial epithelium and the observation that this tissue does not receive any contribution from Gata6 double mutant embryoni

  16. Role of endodermal cell vacuoles in shoot gravitropism.

    Science.gov (United States)

    Kato, Takehide; Morita, Miyo Terao; Tasaka, Masao

    2002-06-01

    In higher plants, shoots and roots show negative and positive gravitropism, respectively. Data from surgical ablation experiments and analysis of starch deficient mutants have led to the suggestion that columella cells in the root cap function as gravity perception cells. On the other hand, endodermal cells are believed to be the statocytes (that is, gravity perceiving cells) of shoots. Statocytes in shoots and roots commonly contain amyloplasts which sediment under gravity. Through genetic research with Arabidopsis shoot gravitropism mutants, sgr1/scr and sgr7/shr, it was determined that endodermal cells are essential for shoot gravitropism. Moreover, some starch biosynthesis genes and EAL1 are important for the formation and maturation of amyloplasts in shoot endodermis. Thus, amyloplasts in the shoot endodermis would function as statoliths, just as in roots. The study of the sgr2 and zig/sgr4 mutants provides new insights into the early steps of shoot gravitropism, which still remains unclear. SGR2 and ZIG/SGR4 genes encode a phospholipase-like and a v-SNARE protein, respectively. Moreover, these genes are involved in vacuolar formation or function. Thus, the vacuole must play an important role in amyloplast sedimentation because the sgr2 and zig/sgr4 mutants display abnormal amyloplast sedimentation.

  17. Endodermal cyst in pineal region: Rare location

    Science.gov (United States)

    Lopez-Gonzalez, Miguel Angel; Dolan, Eugen

    2016-01-01

    Background: Pineal tumors are very uncommon intracranial lesions, and endodermal cysts in this location are extremely rare. Case Description: A 49-year-old right-handed female presented with 3 weeks history of progressive dizziness and imbalance. Imaging studies showed 1.8 cm × 1.7 cm × 1.8 cm pineal lesion with small enhancing mural component displacing ventrally the quadrigeminal plate and narrowing of aqueduct of Sylvius without hydrocephalus. In addition, she was found with small interhemispheric lipoma, and small posterior falx possible meningioma. Cerebrospinal fluid markers obtained by lumbar puncture were all negative. She underwent tumor resection, and final pathology reported endodermal cyst. No new deficits were encountered, and her gait imbalance improved significantly by 3 months follow-up. Conclusions: With evidence of enlargement or symptomatic pineal lesions, surgical consideration is necessary. Among pineal lesions, endodermal cysts are extremely uncommon and although benign pathology, long-term follow-up is advised due to unknown chronic behavior. PMID:27217965

  18. Polycomb enables primitive endoderm lineage priming in embryonic stem cells

    Science.gov (United States)

    Illingworth, Robert S; Hölzenspies, Jurriaan J; Roske, Fabian V; Bickmore, Wendy A; Brickman, Joshua M

    2016-01-01

    Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver of these coordinated changes, known as lineage priming, in a process that exploits novel polycomb activities. We find that intragenic levels of the polycomb mark H3K27me3 anti-correlate with changes in transcription, irrespective of the gene’s developmental trajectory or identity as a polycomb target. In contrast, promoter proximal H3K27me3 is markedly higher for PrEn priming genes. Consequently, depletion of this modification stimulates the degree to which ESCs are primed towards PrEn when challenged to differentiate, but has little effect on gene expression in self-renewing ESC culture. These observations link polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision. DOI: http://dx.doi.org/10.7554/eLife.14926.001 PMID:27723457

  19. Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes.

    Science.gov (United States)

    Christodoulou, Constantina; Longmire, Tyler A; Shen, Steven S; Bourdon, Alice; Sommer, Cesar A; Gadue, Paul; Spira, Avrum; Gouon-Evans, Valerie; Murphy, George J; Mostoslavsky, Gustavo; Kotton, Darrell N

    2011-06-01

    The directed differentiation of iPS and ES cells into definitive endoderm (DE) would allow the derivation of otherwise inaccessible progenitors for endodermal tissues. However, a global comparison of the relative equivalency of DE derived from iPS and ES populations has not been performed. Recent reports of molecular differences between iPS and ES cells have raised uncertainty as to whether iPS cells could generate autologous endodermal lineages in vitro. Here, we show that both mouse iPS and parental ES cells exhibited highly similar in vitro capacity to undergo directed differentiation into DE progenitors. With few exceptions, both cell types displayed similar surges in gene expression of specific master transcriptional regulators and global transcriptomes that define the developmental milestones of DE differentiation. Microarray analysis showed considerable overlap between the genetic programs of DE derived from ES/iPS cells in vitro and authentic DE from mouse embryos in vivo. Intriguingly, iPS cells exhibited aberrant silencing of imprinted genes known to participate in endoderm differentiation, yet retained a robust ability to differentiate into DE. Our results show that, despite some molecular differences, iPS cells can be efficiently differentiated into DE precursors, reinforcing their potential for development of cell-based therapies for diseased endoderm-derived tissues.

  20. Early transcriptional response of soybean contrasting accessions to root dehydration.

    Directory of Open Access Journals (Sweden)

    José Ribamar Costa Ferreira Neto

    Full Text Available Drought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration for drought-tolerant and sensitive soybean accessions, allowed to identify new molecular targets for drought tolerance. The survey uncovered 120,770 unique transcripts expressed by the contrasting accessions. Of these, 57,610 aligned with known cDNA sequences, allowing the annotation of 32,373 unitags. A total of 1,127 unitags were up-regulated only in the tolerant accession, whereas 1,557 were up-regulated in both as compared to their controls. An expression profile concerning the most representative Gene Ontology (GO categories for the tolerant accession revealed the expression "protein binding" as the most represented for "Molecular Function", whereas CDPK and CBL were the most up-regulated protein families in this category. Furthermore, particular genes expressed different isoforms according to the accession, showing the potential to operate in the distinction of physiological behaviors. Besides, heat maps comprising GO categories related to abiotic stress response and the unitags regulation observed in the expression contrasts covering tolerant and sensitive accessions, revealed the unitags potential for plant breeding. Candidate genes related to "hormone response" (LOX, ERF1b, XET, "water response" (PUB, BMY, "salt stress response" (WRKY, MYB and "oxidative stress response" (PER figured among the most promising molecular targets. Additionally, nine transcripts (HMGR, XET, WRKY20, RAP2-4, EREBP, NAC3, PER, GPX5 and BMY validated by RT-qPCR (four different time points confirmed their differential expression and pointed that already after 25 minutes a transcriptional reorganization started in response to the new condition, with important

  1. Thyroid Follicle Formation and Thyroglobulin Expression in Multipotent Endodermal Stem Cells

    Science.gov (United States)

    Latif, Rauf; Davies, Terry F.

    2013-01-01

    Objective The aim of this study was to assess the impact of transcriptional induction on thyroid follicular cell (TFC) differentiation from endodermally matured embryonic stem (ES) cells. The thyroid transcription factors—NKx2 homeobox 1 (NKx2-1, formerly called TTF-1) and Paired box gene 8 (Pax8)—are known to associate biochemically and synergistically in the activation of thyroid functional genes including the sodium/iodide symporter (NIS), thyrotropin (TSH) receptor (TSHR), thyroglobulin (Tg), and thyroid peroxidase (TPO) genes. In this study, we investigated the ability of ectopically expressed Pax8 and NKx2-1 to further the induction and differentiation of murine ES cells into potential TFCs. Methods ES cells were stably transfected with either the Pax8 gene, the NKx2-1 gene, or both genes to study the induction of NIS, TSHR, Tg, and TPO genes as assessed using both quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and protein expression. The derived cells were cultured with or without the presence of activin A to allow their differentiation into multipotent endodermal cells. Results The four thyroid-specific genes NIS, TSHR, Tg, and TPO were all significantly activated by expressing both transcription factors within the same ES cell. In contrast, significant but much lower transcriptional activity of the TSHR, Tg, and TPO genes was detected in cells expressing just NKx2-1, and only the NIS and TSHR genes responded to Pax8 alone. No Tg protein expression could be detected prior to their development into endodermal derivatives. However, after further differentiation of postembryoid body ES cells with activin A and TSH into endodermal cell lines, those cells with dual transfection of Pax8 and NKx2-1 demonstrated greatly enhanced expression of the NIS, TSHR, Tg, and TPO genes to such a degree that it was similar to that found in control thyroid cells. Furthermore, these same cells formed three-dimensional neofollicles in vitro and

  2. Early evolution of the T-box transcription factor family

    Science.gov (United States)

    Sebé-Pedrós, Arnau; Ariza-Cosano, Ana; Weirauch, Matthew T.; Leininger, Sven; Yang, Ally; Torruella, Guifré; Adamski, Marcin; Adamska, Maja; Hughes, Timothy R.; Gómez-Skarmeta, José Luis; Ruiz-Trillo, Iñaki

    2013-01-01

    Developmental transcription factors are key players in animal multicellularity, being members of the T-box family that are among the most important. Until recently, T-box transcription factors were thought to be exclusively present in metazoans. Here, we report the presence of T-box genes in several nonmetazoan lineages, including ichthyosporeans, filastereans, and fungi. Our data confirm that Brachyury is the most ancient member of the T-box family and establish that the T-box family diversified at the onset of Metazoa. Moreover, we demonstrate functional conservation of a homolog of Brachyury of the protist Capsaspora owczarzaki in Xenopus laevis. By comparing the molecular phenotype of C. owczarzaki Brachyury with that of homologs of early branching metazoans, we define a clear difference between unicellular holozoan and metazoan Brachyury homologs, suggesting that the specificity of Brachyury emerged at the origin of Metazoa. Experimental determination of the binding preferences of the C. owczarzaki Brachyury results in a similar motif to that of metazoan Brachyury and other T-box classes. This finding suggests that functional specificity between different T-box classes is likely achieved by interaction with alternative cofactors, as opposed to differences in binding specificity. PMID:24043797

  3. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.

    Science.gov (United States)

    Oliveri, Paola; Walton, Katherine D; Davidson, Eric H; McClay, David R

    2006-11-01

    The foxa gene is an integral component of the endoderm specification subcircuit of the endomesoderm gene regulatory network in the Strongylocentrotus purpuratus embryo. Its transcripts become confined to veg2, then veg1 endodermal territories, and, following gastrulation, throughout the gut. It is also expressed in the stomodeal ectoderm. gatae and otx genes provide input into the pregastrular regulatory system of foxa, and Foxa represses its own transcription, resulting in an oscillatory temporal expression profile. Here, we report three separate essential functions of the foxa gene: it represses mesodermal fate in the veg2 endomesoderm; it is required in postgastrular development for the expression of gut-specific genes; and it is necessary for stomodaeum formation. If its expression is reduced by a morpholino, more endomesoderm cells become pigment and other mesenchymal cell types, less gut is specified, and the larva has no mouth. Experiments in which blastomere transplantation is combined with foxa MASO treatment demonstrate that, in the normal endoderm, a crucial role of Foxa is to repress gcm expression in response to a Notch signal, and hence to repress mesodermal fate. Chimeric recombination experiments in which veg2, veg1 or ectoderm cells contained foxa MASO show which region of foxa expression controls each of the three functions. These experiments show that the foxa gene is a component of three distinct embryonic gene regulatory networks.

  4. At new heights - endodermal lineages in development and disease

    DEFF Research Database (Denmark)

    Ober, Elke A; Grapin-Botton, Anne

    2015-01-01

    The endoderm gives rise to diverse tissues and organs that are essential for the homeostasis and metabolism of the organism: the thymus, thyroid, lungs, liver and pancreas, and the functionally diverse domains of the digestive tract. Classically, the endoderm, the 'innermost germ layer...

  5. Developmentally programmed germ cell remodeling by endodermal cell cannibalism

    Science.gov (United States)

    Abdu, Yusuff; Maniscalco, Chelsea; Heddleston, John M.; Chew, Teng-Leong; Nance, Jeremy

    2016-01-01

    Primordial germ cells (PGCs) in many species associate intimately with endodermal cells, bu the significance of such interactions is largely unexplored. Here, we show that C. elegans PGCs form lobes that are removed and digested by endodermal cells, dramatically altering PGC size and mitochondrial content. We demonstrate that endodermal cells do not scavenge lobes PGCs shed, but rather, actively remove lobes from the cell body. CED-10/Rac1-induced actin, DYN-1/dynamin, and LST-4/SNX9 transiently surround lobe necks and are required within endodermal cells for lobe scission, suggesting that scission occurs through a mechanism resembling vesicle endocytosis. These findings reveal an unexpected role for endoderm in altering the contents of embryonic PGCs, and define a form of developmentally programmed cell remodeling involving intercellular cannibalism. Active roles for engulfing cells have been proposed in several neuronal remodeling events, suggesting that intercellular cannibalism may be a more widespread method used to shape cells. PMID:27842058

  6. Developmentally programmed germ cell remodelling by endodermal cell cannibalism.

    Science.gov (United States)

    Abdu, Yusuff; Maniscalco, Chelsea; Heddleston, John M; Chew, Teng-Leong; Nance, Jeremy

    2016-12-01

    Primordial germ cells (PGCs) in many species associate intimately with endodermal cells, but the significance of such interactions is largely unexplored. Here, we show that Caenorhabditis elegans PGCs form lobes that are removed and digested by endodermal cells, dramatically altering PGC size and mitochondrial content. We demonstrate that endodermal cells do not scavenge lobes PGCs shed, but rather, actively remove lobes from the cell body. CED-10 (Rac)-induced actin, DYN-1 (dynamin) and LST-4 (SNX9) transiently surround lobe necks and are required within endodermal cells for lobe scission, suggesting that scission occurs through a mechanism resembling vesicle endocytosis. These findings reveal an unexpected role for endoderm in altering the contents of embryonic PGCs, and define a form of developmentally programmed cell remodelling involving intercellular cannibalism. Active roles for engulfing cells have been proposed in several neuronal remodelling events, suggesting that intercellular cannibalism may be a more widespread method used to shape cells than previously thought.

  7. Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    Science.gov (United States)

    Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl

    2008-01-01

    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875

  8. Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Joseph Landry

    2008-10-01

    Full Text Available We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor, the largest subunit of NURF (Nucleosome Remodeling Factor in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf(-/- embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf(-/- embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo.

  9. Transcriptional inhibition of the bacteriophage T7 early promoter region by oligonucleotide triple helix formation.

    Science.gov (United States)

    Ross, C; Samuel, M; Broitman, S L

    1992-12-30

    We have identified a purine-rich triplex binding sequence overlapping a -35 transcriptional early promoter region of the bacteriophage T7. Triplex-forming oligonucleotide designed to bind this target was annealed to T7 templates and introduced into in vitro transcription systems under conditions favoring specific initiation from this promoter. These templates demonstrated significant transcriptional inhibition relative to naked genomic templates and templates mixed with non-triplex-forming oligonucleotide. It is suggested that triplex formation along this target interferes with transcriptional initiation, and this mechanism may hold potential to disrupt bacteriophage T7 early transcription in vivo.

  10. Induction and selection of Sox17-expressing endoderm cells generated from murine embryonic stem cells.

    Science.gov (United States)

    Schroeder, Insa S; Sulzbacher, Sabine; Nolden, Tobias; Fuchs, Joerg; Czarnota, Judith; Meisterfeld, Ronny; Himmelbauer, Heinz; Wobus, Anna M

    2012-01-01

    Embryonic stem (ES) cells offer a valuable source for generating insulin-producing cells. However, current differentiation protocols often result in heterogeneous cell populations of various developmental stages. Here we show the activin A-induced differentiation of mouse ES cells carrying a homologous dsRed-IRES-puromycin knock-in within the Sox17 locus into the endoderm lineage. Sox17-expressing cells were selected by fluorescence-assisted cell sorting (FACS) and characterized at the transcript and protein level. Treatment of ES cells with high concentrations of activin A for 10 days resulted in up to 19% Sox17-positive cells selected by FACS. Isolated Sox17-positive cells were characterized by defini- tive endoderm-specific Sox17/Cxcr4/Foxa2 transcripts, but lacked pluripotency-associated Oct4 mRNA and protein. The Sox17-expressing cells showed downregulation of extraembryonic endoderm (Sox7, Afp, Sdf1)-, mesoderm (Foxf1, Meox1)- and ectoderm (Pax6, NeuroD6)-specific transcripts. The presence of Hnf4α, Hes1 and Pdx1 mRNA demonstrated the expression of primitive gut/foregut cell-specific markers. Ngn3, Nkx6.1 and Nkx2.2 transcripts in Sox17-positive cells were determined as properties of pancreatic endocrine progenitors. Immunocytochemistry of activin A-induced Sox17-positive embryoid bodies revealed coexpression of Cxcr4 and Foxa2. Moreover, the histochemical demonstration of E-cadherin-, Cxcr4-, Sox9-, Hnf1β- and Ngn3-positive epithelial-like structures underlined the potential of Sox17-positive cells to further differentiate into the pancreatic lineage. By reducing the heterogeneity of the ES cell progeny, Sox17-expressing cells are a suitable model to evaluate the effects of growth and differentiation factors and of culture conditions to delineate the differentiation process for the generation of pancreatic cells in vitro.

  11. Differentiation into Endoderm Lineage: Pancreatic differentiation from Embryonic Stem Cells

    OpenAIRE

    2011-01-01

    The endoderm gives rise to digestive and respiratory tracts, thyroid, liver, and pancreas. Representative disease of endoderm lineages is type 1 diabetes resulting from destruction of the insulin-producing β cells. Generation of functional β cells from human embryonic stem (ES) cells in vitro can be practical, renewable cell source for replacement cell therapy for type 1 diabetes. It has been achieved by progressive instructive differentiation through each of the developmental stages. In this...

  12. Ectoderm, endoderm, and the evolution of heterodont dentitions.

    Science.gov (United States)

    Ohazama, Atsushi; Haworth, Kim E; Ota, Masato S; Khonsari, Roman H; Sharpe, Paul T

    2010-06-01

    Mammalian dentitions consist of different shapes/types of teeth that are positioned in different regions of the jaw (heterodont) whereas in many fish and reptiles all teeth are of similar type (homodont). The process by which heterodont dentitions have evolved in mammals is not understood. In many teleosts teeth develop in the pharynx from endoderm (endodermal teeth), whereas mammalian teeth develop from the oral ectoderm indicating that teeth can develop (and thus possibly evolve) via different mechanisms. In this article, we compare the molecular characteristics of pharyngeal/foregut endoderm with the molecular characteristics of oral ectoderm during mouse development. The expression domains of Claudin6, Hnf3beta, alpha-fetoprotein, Rbm35a, and Sox2 in the embryonic endoderm have boundaries overlapping the molar tooth-forming region, but not the incisor region in the oral ectoderm. These results suggest that molar teeth (but not incisors) develop from epithelium that shares molecular characteristics with pharyngeal endoderm. This opens the possibility that the two different theories proposed for the evolution of teeth may both be correct. Multicuspid (eg. molars) having evolved from the externalization of endodermal teeth into the oral cavity and monocuspid (eg. incisors) having evolved from internalization of ectodermal armour odontodes of ancient fishes. The two different mechanisms of tooth development may have provided the developmental and genetic diversity on which evolution has acted to produce heterodont dentitions in mammals.

  13. LIF supports primitive endoderm expansion during pre-implantation development

    DEFF Research Database (Denmark)

    Morgani, Sophie M; Brickman, Joshua M

    2015-01-01

    report that LIF has two distinct roles: it blocks early epiblast (Epi) differentiation, and it supports the expansion of primitive endoderm (PrE)-primed ESCs and PrE in vivo. We find that activation of JAK/STAT signalling downstream of LIF occurs initially throughout the pre-implantation embryo......, but later marks the PrE. Moreover, the addition of LIF to cultured embryos increases the GATA6(+) PrE population, whereas inhibition of JAK/STAT signalling reduces both NANOG(+) epiblast and GATA6(+) PrE. The reduction of the NANOG(+) Epi might be explained by its precocious differentiation to later Epi...... derivatives, whereas the increase in PrE is mediated both by an increase in proliferation and inhibition of PrE apoptosis that is normally triggered in embryos with an excess of GATA6(+) cells. Thus, it appears that the relative size of the PrE is determined by the number of LIF-producing cells in the embryo...

  14. Transcription factor cooperativity in early adipogenic hotspots and super-enhancers

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Rabiee, Atefeh; Nielsen, Ronni;

    2014-01-01

    It is becoming increasingly clear that transcription factors operate in complex networks through thousands of genomic binding sites, many of which bind several transcription factors. However, the extent and mechanisms of crosstalk between transcription factors at these hotspots remain unclear....... Using a combination of advanced proteomics and genomics approaches, we identify ∼12,000 transcription factor hotspots (∼400 bp) in the early phase of adipogenesis, and we find evidence of both simultaneous and sequential binding of transcription factors at these regions. We demonstrate that hotspots...... are highly enriched in large super-enhancer regions (several kilobases), which drive the early adipogenic reprogramming of gene expression. Our results indicate that cooperativity between transcription factors at the level of hotspots as well as super-enhancers is very important for enhancer activity...

  15. Regional repression of a Drosophila POU box gene in the endoderm involves inductive interactions between germ layers.

    Science.gov (United States)

    Affolter, M; Walldorf, U; Kloter, U; Schier, A F; Gehring, W J

    1993-04-01

    An induction process occurring between the mesodermal and the endodermal germ layers has recently been described in the regulation of the Drosophila homeotic gene labial (lab). We report here that proper spatial regulation of the Drosophila POU box gene pdm-1 products also involves interaction between these two germ layers. pdm-1 transcripts are initially present in both the anterior and the posterior endodermal midgut primordia. Upon fusion of the two primordia, transcripts disappear from two regions in the endoderm, a central domain and an anterior domain. The anterior repression domain of pdm-1 is independent of the expression of known homeotic genes and genes encoding secreted signalling molecules in the visceral mesoderm, both for its positioning and its repression. Repression in the central domain requires both the homeotic gene Ultrabithorax (Ubx) and the decapentaplegic (dpp) gene, which encodes a secreted protein. Both of these genes are also required for lab induction. However, the analysis of pdm-1 expression in various mutant backgrounds indicates that the regulation of lab and pdm-1 across germ layers is controlled by different genetic cascades. Our study indicates that dpp is not the signal that dictates central pdm-1 repression across germ layers and suggests that in the same midgut region, different signalling pathways result in the differential activation or repression of potential transcription factors.

  16. Network Analysis Identifies Crosstalk Interactions Governing TGF-β Signaling Dynamics during Endoderm Differentiation of Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Shibin Mathew

    2015-05-01

    Full Text Available The fate choice of human embryonic stem cells (hESCs is controlled by complex signaling milieu synthesized by diverse chemical factors in the growth media. Prevalence of crosstalks and interactions between parallel pathways renders any analysis probing the process of fate transition of hESCs elusive. This work presents an important step in the evaluation of network level interactions between signaling molecules controlling endoderm lineage specification from hESCs using a statistical network identification algorithm. Network analysis was performed on detailed signaling dynamics of key molecules from TGF-β/SMAD, PI3K/AKT and MAPK/ERK pathways under two common endoderm induction conditions. The results show the existence of significant crosstalk interactions during endoderm signaling and they identify differences in network connectivity between the induction conditions in the early and late phases of signaling dynamics. Predicted networks elucidate the significant effect of modulation of AKT mediated crosstalk leading to the success of PI3K inhibition in inducing efficient endoderm from hESCs in combination with TGF-β/SMAD signaling.

  17. Transcriptional regulation of early T-cell development in the thymus.

    Science.gov (United States)

    Seo, Wooseok; Taniuchi, Ichiro

    2016-03-01

    T-cell development occurs in multipotent progenitors arriving in the thymus, which provides a highly specialized microenvironment. Specification and sequential commitment processes to T cells begin in early thymic progenitors upon receiving thymus-specific environmental cues, resulting in the activation of the genetically programmed transcriptional cascade that includes turning on and off numerous transcription factors in a precise manner. Thus, early thymocyte differentiation has been an excellent model system to study cell differentiation processes. This review summarizes recent advances in our knowledge on thymic T-cell development from newly arrived multipotent T-cell progenitors to fully committed T-cell precursors, from the transcriptional regulation perspective.

  18. SCARECROW-LIKE23 and SCARECROW jointly specify endodermal cell fate but distinctly control SHORT-ROOT movement.

    Science.gov (United States)

    Long, Yuchen; Goedhart, Joachim; Schneijderberg, Martinus; Terpstra, Inez; Shimotohno, Akie; Bouchet, Benjamin P; Akhmanova, Anna; Gadella, Theodorus W J; Heidstra, Renze; Scheres, Ben; Blilou, Ikram

    2015-11-01

    Intercellular signaling through trafficking of regulatory proteins is a widespread phenomenon in plants and can deliver positional information for the determination of cell fate. In the Arabidopsis root meristem, the cell fate determinant SHORT-ROOT (SHR), a GRAS domain transcription factor, acts as a signaling molecule from the stele to the adjacent layer to specify endodermal cell fate. Upon exiting the stele, SHR activates another GRAS domain transcription factor, SCARCROW (SCR), which, together with several BIRD/INDETERMINATE DOMAIN proteins, restricts movement of SHR to define a single cell layer of endodermis. Here we report that endodermal cell fate also requires the joint activity of both SCR and its closest homologue SCARECROW-LIKE23 (SCL23). We show that SCL23 protein moves with zonation-dependent directionality. Within the meristem, SCL23 exhibits short-ranged movement from ground tissue to vasculature. Away from the meristem, SCL23 displays long-range rootward movement into meristematic vasculature and a bidirectional radial spread, respectively. As a known target of SHR and SCR, SCL23 also interacts with SCR and SHR and can restrict intercellular outspread of SHR without relying on nuclear retention as SCR does. Collectively, our data show that SCL23 is a mobile protein that controls movement of SHR and acts redundantly with SCR to specify endodermal fate in the root meristem.

  19. Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo.

    Science.gov (United States)

    Stower, Matthew J; Srinivas, Shankar

    2014-12-05

    The elaboration of anterior-posterior (A-P) pattern is one of the earliest events during development and requires the precisely coordinated action of several players at the level of molecules, cells and tissues. In mammals, it is controlled by a specialized population of migratory extraembryonic epithelial cells, the anterior visceral endoderm (AVE). The AVE is a signalling centre that is responsible for several important patterning events during early development, including specifying the orientation of the A-P axis and the position of the heart with respect to the brain. AVE cells undergo a characteristic stereotypical migration which is crucial to their functions.

  20. Patterning and shaping the endoderm in vivo and in culture

    DEFF Research Database (Denmark)

    Kraus, Marine R C; Grapin-Botton, Anne

    2012-01-01

    The definitive endoderm (DE) was first defined as the innermost germ layer found in all metazoan embryos. During development, it gives rise to a vast array of specialized epithelial cell types lining the respiratory and digestive systems, and contributes to associated organs such as thyroid, thymus......, lungs, liver, and pancreas. In the adult, the DE provides a protective barrier against the environment and assumes many essential functions including digestion, nutrient absorption, and glucose homeostasis. Since general endoderm formation and patterning have been reviewed recently in a comprehensive...

  1. Patterning and shaping the endoderm in vivo and in culture

    DEFF Research Database (Denmark)

    Kraus, Marine R C; Grapin-Botton, Anne

    2012-01-01

    The definitive endoderm (DE) was first defined as the innermost germ layer found in all metazoan embryos. During development, it gives rise to a vast array of specialized epithelial cell types lining the respiratory and digestive systems, and contributes to associated organs such as thyroid, thymus......, lungs, liver, and pancreas. In the adult, the DE provides a protective barrier against the environment and assumes many essential functions including digestion, nutrient absorption, and glucose homeostasis. Since general endoderm formation and patterning have been reviewed recently in a comprehensive...

  2. Multimodal Transcription of Video: Examining Interaction in Early Years Classrooms

    Science.gov (United States)

    Cowan, Kate

    2014-01-01

    Video is an increasingly popular data collection tool for those undertaking social research, offering a temporal, sequential, fine-grained record which is durable, malleable and sharable. These characteristics make video a valuable resource for researching Early Years classrooms, particularly with regard to the study of children's interaction in…

  3. Gene expression analysis of canonical Wnt pathway transcriptional regulators during early morphogenesis of the facial region in the mouse embryo.

    Science.gov (United States)

    Vendrell, Victor; Summerhurst, Kristen; Sharpe, James; Davidson, Duncan; Murphy, Paula

    2009-06-01

    Structures and features of the face, throat and neck are formed from a series of branchial arches that grow out along the ventrolateral aspect of the embryonic head. Multiple signalling pathways have been implicated in patterning interactions that lead to species-specific growth and differentiation within the branchial region that sculpt these features. A direct role for Wnt signalling in particular has been shown. The spatial and temporal distribution of Wnt pathway components contributes to the operation of the signalling system. We present the precise distribution of gene expression of canonical Wnt pathway transcriptional regulators, Tcf1, Lef1, Tcf3, Tcf4 and beta-catenin between embryonic day (E) 9.5 and 11.5. In situ hybridization combined with Optical Projection Tomography was used to record and compare distribution of transcripts in 3D within the developing branchial arches. This shows widespread yet very specific expression of the gene set indicating that all genes contribute to proper patterning of the region. Tcf1 and Lef1 are more prominent in rostral arches, particularly at later ages, and Tcf3 and Tcf4 are in general expressed more deeply (medial/endodermal aspect) in the arches than Tcf1 and Lef1. Comparison with Wnt canonical pathway readout patterns shows that the relationship between the expression of individual transcription factors and activation of the pathway is not simple, indicating complexity and flexibility in the signalling system.

  4. A distinct microRNA signature for definitive endoderm derived from human embryonic stem cells.

    Science.gov (United States)

    Hinton, Andrew; Afrikanova, Ivka; Wilson, Mike; King, Charles C; Maurer, Brian; Yeo, Gene W; Hayek, Alberto; Pasquinelli, Amy E

    2010-06-01

    Human embryonic stem cells (hESCs) have the potential to differentiate into many adult cell types, and they are being explored as a resource for cell replacement therapies for multiple diseases. In order to optimize in vitro differentiation protocols, it will be necessary to elucidate regulatory mechanisms that contribute to lineage specification. MicroRNAs (miRNAs) are emerging as key regulators of hESC differentiation and embryonic development. In this study, we compare miRNA expression profiles between pluripotent hESCs and definitive endoderm (DE), an early step in the pathway toward the pancreatic lineage. Results from microarray analysis showed that DE can be distinguished by its unique miRNA profile, which consists of 37 significantly down-regulated and 17 up-regulated miRNAs in 2 different cell lines and in the presence/absence of feeder layers. Comparison to other hESC-derived lineages showed that most of the highly up-regulated miRNAs are specific to endoderm in early development. Notably, miR-375, which was previously implicated in regulating development and function of later stages of pancreatic development, is highly and specifically up-regulated during DE formation, suggesting that it may have a distinct role very early in development. Examination of potential mRNA targets showed that TIMM8A is repressed by ectopic miR-375 expression in pluripotent hESCs.

  5. Signaling Proteins and Transcription Factors in Normal and Malignant Early B Cell Development

    Directory of Open Access Journals (Sweden)

    Patricia Pérez-Vera

    2011-01-01

    Full Text Available B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates.

  6. Human Cytomegalovirus Immediate Early Interaction with Host Nuclear Structures: Definition of an Immediate Transcript Environment

    Science.gov (United States)

    Ishov, Alexander M.; Stenberg, Richard M.; Maul, Gerd G.

    1997-01-01

    The development of an induced transcript environment was investigated at the supramolecular level through comparative localization of the human cytomegalovirus immediate early (IE) transcripts and specific nuclear domains shortly after infection. Compact aggregates of IE transcripts form only adjacent to nuclear domain 10 (ND10), and the viral protein IE86 accumulates exclusively juxtaposed to the subpopulation of ND10 with transcripts. The stream of transcripts is funneled from ND10 into the spliceosome assembly factor SC35 domain through the accumulation of IE86 protein, which recruits some components of the basal transcription machinery. Concomitantly the IE72 protein binds to ND10 and later disperses them. The domain containing the zinc finger region of IE72 is essential for this dispersal. Positional analysis of proteins IE86 and IE72, IE transcripts, ND10, the spliceosome assembly factor SC35, and basal transcription factors defines spatially and temporally an immediate transcript environment, the basic components of which exist in the cell before viral infection, providing the structural environment for the virus to usurp. PMID:9214377

  7. Regulation of BDNF-mediated transcription of immediate early gene Arc by intracellular calcium and calmodulin

    OpenAIRE

    Zheng, Fei; Luo, Yongneng; Wang, Hongbing

    2009-01-01

    The induction of the immediate early gene Arc is strongly implicated in synaptic plasticity. Although the role of ERK was demonstrated, the regulation of Arc expression is largely unknown. In this study, we investigated the major signaling pathways underlying brain-derived neurotrophic factor (BDNF)-mediated Arc transcription in cultured cortical neurons. The BDNF-stimulated Arc transcription was solely regulated by the Ras-Raf-MAPK signaling through ERK, but not by phosphoinositide 3-kinase ...

  8. Notch signaling functions as a binary switch for the determination of glandular and luminal fates of endodermal epithelium during chicken stomach development.

    Science.gov (United States)

    Matsuda, Yoshimasa; Wakamatsu, Yoshio; Kohyama, Jun; Okano, Hideyuki; Fukuda, Kimiko; Yasugi, Sadao

    2005-06-01

    During development of the chicken proventriculus (glandular stomach), gut endoderm differentiates into glandular and luminal epithelium. We found that Delta1-expressing cells, undifferentiated cells and Notch-activated cells colocalize within the endodermal epithelium during early gland formation. Inhibition of Notch signaling using Numb or dominant-negative form of Su(H) resulted in a luminal differentiation, while forced activation of Notch signaling promoted the specification of immature glandular cells, but prevented the subsequent differentiation and the invagination of the glands. These results suggest that Delta1-mediated Notch signaling among endodermal cells functions as a binary switch for determination of glandular and luminal fates, and regulates patterned differentiation of glands in the chicken proventriculus.

  9. Transcription map of the early region of the Streptomyces bacteriophage phi C31.

    Science.gov (United States)

    Ingham, C J; Smith, M C

    1992-12-01

    Streptomyces coelicolor A3(2), lysogenised by the temperature-sensitive cts1 mutant of phi C31, can be synchronously induced into the lytic cycle by heat treatment. A transcription map of 10 kb of the phi C31 early gene cluster was deduced using low-resolution S1 nuclease mapping of RNA prepared 10 min after induction. At least nine early transcripts, early (e)RNAs 1-9, were localised reading exclusively rightwards with respect to the standard physical map of phi C31. The mRNAs were extensively overlapping, frequently initiating at the same place but terminating at different sites, and vice versa. Gene expression during the lytic cycle was tightly regulated; no transcription was observed before induction. Transcription was maximal at 10 min post-induction, and at 20 min, eRNAs 5 and 6 persisted whilst eRNAs 7-9 were severely reduced or absent. The pattern of transcription of the early region is consistent with the simultaneous activation of a large number of promoters and differential termination efficiency.

  10. Mechanical Coupling between Endoderm Invagination and Axis Extension in Drosophila.

    Directory of Open Access Journals (Sweden)

    Claire M Lye

    Full Text Available How genetic programs generate cell-intrinsic forces to shape embryos is actively studied, but less so how tissue-scale physical forces impact morphogenesis. Here we address the role of the latter during axis extension, using Drosophila germband extension (GBE as a model. We found previously that cells elongate in the anteroposterior (AP axis in the extending germband, suggesting that an extrinsic tensile force contributed to body axis extension. Here we further characterized the AP cell elongation patterns during GBE, by tracking cells and quantifying their apical cell deformation over time. AP cell elongation forms a gradient culminating at the posterior of the embryo, consistent with an AP-oriented tensile force propagating from there. To identify the morphogenetic movements that could be the source of this extrinsic force, we mapped gastrulation movements temporally using light sheet microscopy to image whole Drosophila embryos. We found that both mesoderm and endoderm invaginations are synchronous with the onset of GBE. The AP cell elongation gradient remains when mesoderm invagination is blocked but is abolished in the absence of endoderm invagination. This suggested that endoderm invagination is the source of the tensile force. We next looked for evidence of this force in a simplified system without polarized cell intercalation, in acellular embryos. Using Particle Image Velocimetry, we identify posteriorwards Myosin II flows towards the presumptive posterior endoderm, which still undergoes apical constriction in acellular embryos as in wildtype. We probed this posterior region using laser ablation and showed that tension is increased in the AP orientation, compared to dorsoventral orientation or to either orientations more anteriorly in the embryo. We propose that apical constriction leading to endoderm invagination is the source of the extrinsic force contributing to germband extension. This highlights the importance of physical

  11. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; John, Sam

    2011-01-01

    Adipogenesis is tightly controlled by a complex network of transcription factors acting at different stages of differentiation. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBP) family members are key regulators of this process. We have employed DNase I...... and chromatin remodelling and is required for their establishment. Furthermore, a subset of early remodelled C/EBP-binding sites persists throughout differentiation and is later occupied by PPARγ, indicating that early C/EBP family members, in addition to their well-established role in activation of PPARγ...... transcription, may act as pioneering factors for PPARγ binding....

  12. Ezh2 represses the basal cell lineage during lung endoderm development.

    Science.gov (United States)

    Snitow, Melinda E; Li, Shanru; Morley, Michael P; Rathi, Komal; Lu, Min Min; Kadzik, Rachel S; Stewart, Kathleen M; Morrisey, Edward E

    2015-01-01

    The development of the lung epithelium is regulated in a stepwise fashion to generate numerous differentiated and stem cell lineages in the adult lung. How these different lineages are generated in a spatially and temporally restricted fashion remains poorly understood, although epigenetic regulation probably plays an important role. We show that the Polycomb repressive complex 2 component Ezh2 is highly expressed in early lung development but is gradually downregulated by late gestation. Deletion of Ezh2 in early lung endoderm progenitors leads to the ectopic and premature appearance of Trp63+ basal cells that extend the entire length of the airway. Loss of Ezh2 also leads to reduced secretory cell differentiation. In their place, morphologically similar cells develop that express a subset of basal cell genes, including keratin 5, but no longer express high levels of either Trp63 or of standard secretory cell markers. This suggests that Ezh2 regulates the phenotypic switch between basal cells and secretory cells. Together, these findings show that Ezh2 restricts the basal cell lineage during normal lung endoderm development to allow the proper patterning of epithelial lineages during lung formation.

  13. Heterochromatin Reorganization during Early Mouse Development Requires a Single-Stranded Noncoding Transcript

    Directory of Open Access Journals (Sweden)

    Miguel Casanova

    2013-09-01

    Full Text Available The equalization of pericentric heterochromatin from distinct parental origins following fertilization is essential for genome function and development. The recent implication of noncoding transcripts in this process raises questions regarding the connection between RNA and the nuclear organization of distinct chromatin environments. Our study addresses the interrelationship between replication and transcription of the two parental pericentric heterochromatin (PHC domains and their reorganization during early embryonic development. We demonstrate that the replication of PHC is dispensable for its clustering at the late two-cell stage. In contrast, using parthenogenetic embryos, we show that pericentric transcripts are essential for this reorganization independent of the chromatin marks associated with the PHC domains. Finally, our discovery that only reverse pericentric transcripts are required for both the nuclear reorganization of PHC and development beyond the two-cell stage challenges current views on heterochromatin organization.

  14. Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense.

    NARCIS (Netherlands)

    Vos, J.B.; Sterkenburg, M.A. van; Rabe, K.F.; Schalkwijk, J.; Hiemstra, P.S.; Datson, N.A.

    2005-01-01

    The airway epithelium responds to microbial exposure by altering expression of a variety of genes to increase innate host defense. We aimed to delineate the early transcriptional response in human primary bronchial epithelial cells exposed for 6 h to a mixture of IL-1beta and TNF-alpha or heat-inact

  15. DELLA-induced early transcriptional changes during etiolated development in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Javier Gallego-Bartolomé

    Full Text Available The hormones gibberellins (GAs control a wide variety of processes in plants, including stress and developmental responses. This task largely relies on the activity of the DELLA proteins, nuclear-localized transcriptional regulators that do not seem to have DNA binding capacity. The identification of early target genes of DELLA action is key not only to understand how GAs regulate physiological responses, but also to get clues about the molecular mechanisms by which DELLAs regulate gene expression. Here, we have investigated the global, early transcriptional response triggered by the Arabidopsis DELLA protein GAI during skotomorphogenesis, a developmental program tightly regulated by GAs. Our results show that the induction of GAI activity has an almost immediate effect on gene expression. Although this transcriptional regulation is largely mediated by the PIFs and HY5 transcription factors based on target meta-analysis, additional evidence points to other transcription factors that would be directly involved in DELLA regulation of gene expression. First, we have identified cis elements recognized by Dofs and type-B ARRs among the sequences enriched in the promoters of GAI targets; and second, an enrichment in additional cis elements appeared when this analysis was extended to a dataset of early targets of the DELLA protein RGA: CArG boxes, bound by MADS-box proteins, and the E-box CACATG that links the activity of DELLAs to circadian transcriptional regulation. Finally, Gene Ontology analysis highlights the impact of DELLA regulation upon the homeostasis of the GA, auxin, and ethylene pathways, as well as upon pre-existing transcriptional networks.

  16. Reciprocal endoderm-mesoderm interactions mediated by fgf24 and fgf10 govern pancreas development.

    Science.gov (United States)

    Manfroid, Isabelle; Delporte, François; Baudhuin, Ariane; Motte, Patrick; Neumann, Carl J; Voz, Marianne L; Martial, Joseph A; Peers, Bernard

    2007-11-01

    In amniotes, the pancreatic mesenchyme plays a crucial role in pancreatic epithelium growth, notably through the secretion of fibroblast growth factors. However, the factors involved in the formation of the pancreatic mesenchyme are still largely unknown. In this study, we characterize, in zebrafish embryos, the pancreatic lateral plate mesoderm, which is located adjacent to the ventral pancreatic bud and is essential for its specification and growth. We firstly show that the endoderm, by expressing the fgf24 gene at early stages, triggers the patterning of the pancreatic lateral plate mesoderm. Based on the expression of isl1, fgf10 and meis genes, this tissue is analogous to the murine pancreatic mesenchyme. Secondly, Fgf10 acts redundantly with Fgf24 in the pancreatic lateral plate mesoderm and they are both required to specify the ventral pancreas. Our results unveil sequential signaling between the endoderm and mesoderm that is critical for the specification and growth of the ventral pancreas, and explain why the zebrafish ventral pancreatic bud generates the whole exocrine tissue.

  17. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root.

    Science.gov (United States)

    Shani, Eilon; Weinstain, Roy; Zhang, Yi; Castillejo, Cristina; Kaiserli, Eirini; Chory, Joanne; Tsien, Roger Y; Estelle, Mark

    2013-03-19

    Plant hormones are small-molecule signaling compounds that are collectively involved in all aspects of plant growth and development. Unlike animals, plants actively regulate the spatial distribution of several of their hormones. For example, auxin transport results in the formation of auxin maxima that have a key role in developmental patterning. However, the spatial distribution of the other plant hormones, including gibberellic acid (GA), is largely unknown. To address this, we generated two bioactive fluorescent GA compounds and studied their distribution in Arabidopsis thaliana roots. The labeled GAs specifically accumulated in the endodermal cells of the root elongation zone. Pharmacological studies, along with examination of mutants affected in endodermal specification, indicate that GA accumulation is an active and highly regulated process. Our results strongly suggest the presence of an active GA transport mechanism that would represent an additional level of GA regulation.

  18. Retroperitoneal endodermal sinus tumor patient with palliative care needs

    Directory of Open Access Journals (Sweden)

    Surbhi Kashyap

    2016-01-01

    Full Text Available This article is a case reflection of a personal encounter on the palliative care treatment required after the removal of a complicated case of a primary extra-gonadal retro-peritoneal endodermal sinus tumor (yolk sac tumor. This reflection is from the perspective of a recently graduated MD student who spent one month with an Indian pain management and palliative care team at the Institute Rotary Cancer Hospital (IRCH, All India Institute of Medical Sciences (AIIMS, New Delhi

  19. A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification

    Directory of Open Access Journals (Sweden)

    Scott A. Rankin

    2016-06-01

    Full Text Available Organogenesis of the trachea and lungs requires a complex series of mesoderm-endoderm interactions mediated by WNT, BMP, retinoic acid (RA, and hedgehog (Hh, but how these pathways interact in a gene regulatory network is less clear. Using Xenopus embryology, mouse genetics, and human ES cell cultures, we identified a conserved signaling cascade that initiates respiratory lineage specification. We show that RA has multiple roles; first RA pre-patterns the lateral plate mesoderm and then it promotes Hh ligand expression in the foregut endoderm. Hh subsequently signals back to the pre-patterned mesoderm to promote expression of the lung-inducing ligands Wnt2/2b and Bmp4. Finally, RA regulates the competence of the endoderm to activate the Nkx2-1+ respiratory program in response to these mesodermal WNT and BMP signals. These data provide insights into early lung development and a paradigm for how mesenchymal signals are coordinated with epithelial competence during organogenesis.

  20. Revealing the bovine embryo transcript profiles during early in vivo embryonic development.

    Science.gov (United States)

    Vallée, Maud; Dufort, Isabelle; Desrosiers, Stéphanie; Labbe, Aurélie; Gravel, Catherine; Gilbert, Isabelle; Robert, Claude; Sirard, Marc-André

    2009-07-01

    Gene expression profiling is proving to be a powerful approach for the identification of molecular mechanisms underlying complex cellular functions such as the dynamic early embryonic development. The objective of this study was to perform a transcript abundance profiling analysis of bovine early embryonic development in vivo using a bovine developmental array. The molecular description of the first week of life at the mRNA level is particularly challenging when considering the important fluctuations in RNA content that occur between developmental stages. Accounting for the different intrinsic RNA content between developmental stages was achieved by restricting the reaction time during the global amplification steps and by using spiked controls and reference samples. Analysis based on intensity values revealed that most of the transcripts on the array were present at some point during in vivo bovine early embryonic development, while the varying number of genes detected in each developmental stage confirmed the dynamic profile of gene expression occurring during embryonic development. Pair-wise comparison of gene expression showed a marked difference between oocytes and blastocysts profiles, and principal component analysis revealed that the majority of the transcripts could be regrouped into three main clusters representing distinct RNA abundance profiles. Overall, these data provide a detailed temporal profile of the abundance of mRNAs revealing the richness of signaling processes in early mammalian development. Results presented here provide better knowledge of bovine in vivo embryonic development and contribute to the progression of our current knowledge regarding the first week of life in mammals.

  1. Association between α-synuclein blood transcripts and early, neuroimaging-supported Parkinson's disease.

    Science.gov (United States)

    Locascio, Joseph J; Eberly, Shirley; Liao, Zhixiang; Liu, Ganqiang; Hoesing, Ashley N; Duong, Karen; Trisini-Lipsanopoulos, Ana; Dhima, Kaltra; Hung, Albert Y; Flaherty, Alice W; Schwarzschild, Michael A; Hayes, Michael T; Wills, Anne-Marie; Shivraj Sohur, U; Mejia, Nicte I; Selkoe, Dennis J; Oakes, David; Shoulson, Ira; Dong, Xianjun; Marek, Ken; Zheng, Bin; Ivinson, Adrian; Hyman, Bradley T; Growdon, John H; Sudarsky, Lewis R; Schlossmacher, Michael G; Ravina, Bernard; Scherzer, Clemens R

    2015-09-01

    There are no cures for neurodegenerative diseases and this is partially due to the difficulty of monitoring pathogenic molecules in patients during life. The Parkinson's disease gene α-synuclein (SNCA) is selectively expressed in blood cells and neurons. Here we show that SNCA transcripts in circulating blood cells are paradoxically reduced in early stage, untreated and dopamine transporter neuroimaging-supported Parkinson's disease in three independent regional, national, and international populations representing 500 cases and 363 controls and on three analogue and digital platforms with P disease of 2.45 compared to individuals in the highest quartile. Disease-relevant transcript isoforms were low even near disease onset. Importantly, low SNCA transcript abundance predicted cognitive decline in patients with Parkinson's disease during up to 5 years of longitudinal follow-up. This study reveals a consistent association of reduced SNCA transcripts in accessible peripheral blood and early-stage Parkinson's disease in 863 participants and suggests a clinical role as potential predictor of cognitive decline. Moreover, the three independent biobank cohorts provide a generally useful platform for rapidly validating any biological marker of this common disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Association between α-synuclein blood transcripts and early, neuroimaging-supported Parkinson’s disease

    Science.gov (United States)

    Locascio, Joseph J.; Eberly, Shirley; Liao, Zhixiang; Liu, Ganqiang; Hoesing, Ashley N.; Duong, Karen; Trisini-Lipsanopoulos, Ana; Dhima, Kaltra; Hung, Albert Y.; Flaherty, Alice W.; Schwarzschild, Michael A.; Hayes, Michael T.; Wills, Anne-Marie; Shivraj Sohur, U.; Mejia, Nicte I.; Selkoe, Dennis J.; Oakes, David; Shoulson, Ira; Dong, Xianjun; Marek, Ken; Zheng, Bin; Ivinson, Adrian; Hyman, Bradley T.; Growdon, John H.; Sudarsky, Lewis R.; Schlossmacher, Michael G.; Ravina, Bernard

    2015-01-01

    There are no cures for neurodegenerative diseases and this is partially due to the difficulty of monitoring pathogenic molecules in patients during life. The Parkinson’s disease gene α-synuclein (SNCA) is selectively expressed in blood cells and neurons. Here we show that SNCA transcripts in circulating blood cells are paradoxically reduced in early stage, untreated and dopamine transporter neuroimaging-supported Parkinson’s disease in three independent regional, national, and international populations representing 500 cases and 363 controls and on three analogue and digital platforms with P disease of 2.45 compared to individuals in the highest quartile. Disease-relevant transcript isoforms were low even near disease onset. Importantly, low SNCA transcript abundance predicted cognitive decline in patients with Parkinson’s disease during up to 5 years of longitudinal follow-up. This study reveals a consistent association of reduced SNCA transcripts in accessible peripheral blood and early-stage Parkinson’s disease in 863 participants and suggests a clinical role as potential predictor of cognitive decline. Moreover, the three independent biobank cohorts provide a generally useful platform for rapidly validating any biological marker of this common disease. PMID:26220939

  3. Early programming of the oocyte epigenome temporally controls late prophase I transcription and chromatin remodelling.

    Science.gov (United States)

    Navarro-Costa, Paulo; McCarthy, Alicia; Prudêncio, Pedro; Greer, Christina; Guilgur, Leonardo G; Becker, Jörg D; Secombe, Julie; Rangan, Prashanth; Martinho, Rui G

    2016-08-10

    Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I.

  4. Transcriptional dynamics reveal critical roles for non-coding RNAs in the immediate-early response.

    Directory of Open Access Journals (Sweden)

    Stuart Aitken

    2015-04-01

    Full Text Available The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers. However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE time series datasets to directly measure promoter activities over time. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their transcriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset.

  5. A core transcriptional network for early mesoderm development in Drosophila melanogaster

    OpenAIRE

    Sandmann, Thomas; Girardot, Charles; Brehme, Marc; Tongprasit, Waraporn; Stolc, Viktor; Furlong, Eileen E.M.

    2007-01-01

    Embryogenesis is controlled by large gene-regulatory networks, which generate spatially and temporally refined patterns of gene expression. Here, we report the characteristics of the regulatory network orchestrating early mesodermal development in the fruitfly Drosophila, where the transcription factor Twist is both necessary and sufficient to drive development. Through the integration of chromatin immunoprecipitation followed by microarray analysis (ChIP-on-chip) experiments during discrete ...

  6. The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos

    DEFF Research Database (Denmark)

    Morovic, Martin; Murin, Matej; Strejcek, Frantisek;

    2016-01-01

    One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription....... In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly...

  7. Virion-incorporated alpha-enolase suppresses the early stage of HIV-1 reverse transcription.

    Science.gov (United States)

    Kishimoto, Naoki; Iga, Nozomi; Yamamoto, Kengo; Takamune, Nobutoki; Misumi, Shogo

    2017-03-04

    Human immunodeficiency virus type-1 (HIV-1) particles contain not only viral-encoded but also host-encoded proteins. Interestingly, several studies showed that host proteins play a critical role in viral infectivity, replication and/or immunoreactivity in the next target cells. Here, we show that alpha-enolase (ENO1) is incorporated into HIV-1 virions and the virion-incorporated ENO1 prevents the early stage of HIV-1 reverse transcription. We found that viral particles contain two isoforms of ENO1 with different isoelectric points by two-dimensional electrophoresis. Suppression of ENO1 expression by RNA interference in the HIV-1 producer cells decreased ENO1 incorporation into virions without altering the packaging of viral structural proteins and viral production but increased viral infectivity. Although the low-level-ENO1-packaging virus maintained comparable levels of reverse transcriptase activity, viral genomic RNA and tRNA(Lys3) packaging to the control virus, its levels of early cDNA products of reverse transcription were higher than those of the control virus. In contrast, the high-level-ENO1-packaging virus, which was produced from ENO1-overexpressing cells, showed decreased infectivity and the levels of early cDNA products. Taken together, these findings reveal a novel function of ENO1 as a negative regulation factor targeting HIV-1 reverse transcription.

  8. MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.

    Science.gov (United States)

    Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel

    2011-02-15

    At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.

  9. Transcriptional Factor PU.1 Regulates Decidual C1q Expression in Early Pregnancy in Human.

    Science.gov (United States)

    Madhukaran, Shanmuga Priyaa; Kishore, Uday; Jamil, Kaiser; Teo, Boon Heng Dennis; Choolani, Mahesh; Lu, Jinhua

    2015-01-01

    C1q is the first recognition subcomponent of the complement classical pathway, which in addition to being synthesized in the liver, is also expressed by macrophages and dendritic cells (DCs). Trophoblast invasion during early placentation results in accumulation of debris that triggers the complement system. Hence, both early and late components of the classical pathway are widely distributed in the placenta and decidua. In addition, C1q has recently been shown to significantly contribute to feto-maternal tolerance, trophoblast migration, and spiral artery remodeling, although the exact mechanism remains unknown. Pregnancy in mice, genetically deficient in C1q, mirrors symptoms similar to that of human preeclampsia. Thus, regulated complement activation has been proposed as an essential requirement for normal successful pregnancy. Little is known about the molecular pathways that regulate C1q expression in pregnancy. PU.1, an Ets-family transcription factor, is required for the development of hematopoietic myeloid lineage immune cells, and its expression is tissue-specific. Recently, PU.1 has been shown to regulate C1q gene expression in DCs and macrophages. Here, we have examined if PU.1 transcription factor regulates decidual C1q expression. We used immune-histochemical analysis, PCR, and immunostaining to localize and study the gene expression of PU.1 transcription factor in early human decidua. PU.1 was highly expressed at gene and protein level in early human decidual cells including trophoblast and stromal cells. Surprisingly, nuclear as well as cytoplasmic PU.1 expression was observed. Decidual cells with predominantly nuclear PU.1 expression had higher C1q expression. It is likely that nuclear and cytoplasmic PU.1 localization has a role to play in early pregnancy via regulating C1q expression in the decidua during implantation.

  10. Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells.

    Science.gov (United States)

    Faial, Tiago; Bernardo, Andreia S; Mendjan, Sasha; Diamanti, Evangelia; Ortmann, Daniel; Gentsch, George E; Mascetti, Victoria L; Trotter, Matthew W B; Smith, James C; Pedersen, Roger A

    2015-06-15

    The transcription factor brachyury (T, BRA) is one of the first markers of gastrulation and lineage specification in vertebrates. Despite its wide use and importance in stem cell and developmental biology, its functional genomic targets in human cells are largely unknown. Here, we use differentiating human embryonic stem cells to study the role of BRA in activin A-induced endoderm and BMP4-induced mesoderm progenitors. We show that BRA has distinct genome-wide binding landscapes in these two cell populations, and that BRA interacts and collaborates with SMAD1 or SMAD2/3 signalling to regulate the expression of its target genes in a cell-specific manner. Importantly, by manipulating the levels of BRA in cells exposed to different signalling environments, we demonstrate that BRA is essential for mesoderm but not for endoderm formation. Together, our data illuminate the function of BRA in the context of human embryonic development and show that the regulatory role of BRA is context dependent. Our study reinforces the importance of analysing the functions of a transcription factor in different cellular and signalling environments.

  11. The influence of interspecies somatic cell nuclear transfer on epigenetic enzymes transcription in early embryos

    Directory of Open Access Journals (Sweden)

    Martin Morovic

    2016-10-01

    Full Text Available One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a genes in early embryonic stages of interspecies (bovine, porcine nuclear transfer embryos (iSCNT by RT-PCR were analyzed. Coming out from the diverse timing of embryonic genome activation (EGA in porcine and bovine preimplantation embryos, the intense effect of ooplasm on transferred somatic cell nucleus was expected. In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly infl uenced by the ooplasmic environment.

  12. Modular Transcriptional Networks of the Host Pulmonary Response during Early and Late Pneumococcal Pneumonia.

    Science.gov (United States)

    Scicluna, Brendon P; van Lieshout, Miriam H; Blok, Dana C; Florquin, Sandrine; van der Poll, Tom

    2015-05-12

    Streptococcus pneumoniae (Spneu) remains the most lethal bacterial pathogen and the dominant agent of community-acquired pneumonia. Treatment has perennially focused on the use of antibiotics, albeit scrutinized due to the occurrence of antibiotic-resistant Spneu strains. Immunomodulatory strategies have emerged as potential treatment options. Although promising, immunomodulation can lead to improper tissue functions either at steady state or upon infectious challenge. This argues for the availability of tools to enable a detailed assessment of whole pulmonary functions during the course of infection, not only those functions biased to the defense response. Thus, through the use of an unbiased tissue microarray and bioinformatics approach, we aimed to construct a comprehensive map of whole-lung transcriptional activity and cellular pathways during the course of pneumococcal pneumonia. We performed genome-wide transcriptional analysis of whole lungs before and 6 and 48 h after Spneu infection in mice. The 4,000 most variable transcripts across all samples were used to assemble a gene coexpression network comprising 13 intercorrelating modules (clusters of genes). Fifty-four percent of this whole-lung transcriptional network was altered 6 and 48 h after Spneu infection. Canonical signaling pathway analysis uncovered known pathways imparting protection, including IL17A/IL17F signaling and previously undetected mechanisms that included lipid metabolism. Through in silico prediction of cell types, pathways were observed to enrich for distinct cell types such as a novel stromal cell lipid metabolism pathway. These cellular mechanisms were furthermore anchored at functional hub genes of cellular fate, differentiation, growth and transcription. Collectively, we provide a benchmark unsupervised map of whole-lung transcriptional relationships and cellular activity during early and late pneumococcal pneumonia.

  13. Primitive endoderm differentiation: from specification to epithelium formation.

    Science.gov (United States)

    Hermitte, Stéphanie; Chazaud, Claire

    2014-12-05

    In amniotes, primitive endoderm (PrE) plays important roles not only for nutrient support but also as an inductive tissue required for embryo patterning. PrE is an epithelial monolayer that is visible shortly before embryo implantation and is one of the first three cell lineages produced by the embryo. We review here the molecular mechanisms that have been uncovered during the past 10 years on PrE and epiblast cell lineage specification within the inner cell mass of the blastocyst and on their subsequent steps of differentiation.

  14. Enhanced transcription and translation in clay hydrogel and implications for early life evolution

    Science.gov (United States)

    Yang, Dayong; Peng, Songming; Hartman, Mark R.; Gupton-Campolongo, Tiffany; Rice, Edward J.; Chang, Anna Kathryn; Gu, Zi; Lu, G. Q. (Max); Luo, Dan

    2013-11-01

    In most contemporary life forms, the confinement of cell membranes provides localized concentration and protection for biomolecules, leading to efficient biochemical reactions. Similarly, confinement may have also played an important role for prebiotic compartmentalization in early life evolution when the cell membrane had not yet formed. It remains an open question how biochemical reactions developed without the confinement of cell membranes. Here we mimic the confinement function of cells by creating a hydrogel made from geological clay minerals, which provides an efficient confinement environment for biomolecules. We also show that nucleic acids were concentrated in the clay hydrogel and were protected against nuclease, and that transcription and translation reactions were consistently enhanced. Taken together, our results support the importance of localized concentration and protection of biomolecules in early life evolution, and also implicate a clay hydrogel environment for biochemical reactions during early life evolution.

  15. Case report 434: Primary mediastinal endodermal sinus tumor with skeletal metastases

    Energy Technology Data Exchange (ETDEWEB)

    Ihmeidan, I.H.; Tehranzadeh, J.; Mnaymneh, W.; Albores-Saavedra, J.

    1987-10-01

    Mediastinal endodermal sinus tumor in females is exceedingly rare. The case of a 14-year-old girl with a mediastinal endodermal sinus tumor that first manifested itself as lytic skeletal metastases is presented. The differential diagnosis was considered and the criteria for diagnosis were described. The literature on the subject was reviewed.

  16. The lncRNA DEANR1 Facilitates Human Endoderm Differentiation by Activating FOXA2 Expression

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2015-04-01

    Full Text Available Long non-coding RNAs (lncRNAs regulate diverse biological processes, including cell lineage specification. Here, we report transcriptome profiling of human endoderm and pancreatic cell lineages using purified cell populations. Analysis of the data sets allows us to identify hundreds of lncRNAs that exhibit differentiation-stage-specific expression patterns. As a first step in characterizing these lncRNAs, we focus on an endoderm-specific lncRNA, definitive endoderm-associated lncRNA1 (DEANR1, and demonstrate that it plays an important role in human endoderm differentiation. DEANR1 contributes to endoderm differentiation by positively regulating expression of the endoderm factor FOXA2. Importantly, overexpression of FOXA2 is able to rescue endoderm differentiation defects caused by DEANR1 depletion. Mechanistically, DEANR1 facilitates FOXA2 activation by facilitating SMAD2/3 recruitment to the FOXA2 promoter. Thus, our study not only reveals a large set of differentiation-stage-specific lncRNAs but also characterizes a functional lncRNA that is important for endoderm differentiation.

  17. Embryonic development of endoderm in chicken (Gallus gallus domesticus).

    Science.gov (United States)

    Alcântara, Dayane; Rodrigues, Marcio N; Franciolli, André L R; Da Fonseca, Erika T; Silva, Fernanda M O; Carvalho, Rafael C; Fratini, Paula; Sarmento, Carlos Alberto P; Ferreira, Antonio José P; Miglino, Maria Angelica

    2013-08-01

    The poultry industry is a sector of agribusiness which represents an important role in the country's agricultural exports. Therefore, the study about embryogenesis of the domestic chicken (Gallus gallus domesticus) has a great economic importance. The aim of this study was to evaluate embryonic development of the endoderm in chicken (Gallus gallus domesticus). Forty fertilized eggs of domestic chickens, starting from the 1st day of gestation and so on until the 19 days of the incubation were collected from the Granja São José (Amparo, SP, Brazil). Embryos and fetus were fixed in 10% formaldehyde solution, identified, weighed, measured, and subjected to light and scanning electron microscopy. The endoderm originates the internal lining epithelium of the digestive, immune, respiratory systems, and the organs can be visualized from the second day (48 h) when the liver is formed. The formation of the digestive system was complete in the 12th day. Respiratory system organs begin at the fourth day as a disorganized tissue and undifferentiated. Their complete differentiation was observed at the 10 days of incubation, however, until the 19 days the syrinx was not observed. The formation of immune system at 10th day was observed with observation of the spleen, thymus, and cloacal bursa. The study of the organogenesis of the chicken based on germ layers is very complex and underexplored, and the study of chicken embryology is very important due the economic importance and growth of the use of this animal model studies such as genetic studies.

  18. Transcriptional ontogeny of the developing liver

    Directory of Open Access Journals (Sweden)

    Lee Janice S

    2012-01-01

    Full Text Available Abstract Background During embryogenesis the liver is derived from endodermal cells lining the digestive tract. These endodermal progenitor cells contribute to forming the parenchyma of a number of organs including the liver and pancreas. Early in organogenesis the fetal liver is populated by hematopoietic stem cells, the source for a number of blood cells including nucleated erythrocytes. A comprehensive analysis of the transcriptional changes that occur during the early stages of development to adulthood in the liver was carried out. Results We characterized gene expression changes in the developing mouse liver at gestational days (GD 11.5, 12.5, 13.5, 14.5, 16.5, and 19 and in the neonate (postnatal day (PND 7 and 32 compared to that in the adult liver (PND67 using full-genome microarrays. The fetal liver, and to a lesser extent the neonatal liver, exhibited dramatic differences in gene expression compared to adults. Canonical pathway analysis of the fetal liver signature demonstrated increases in functions important in cell replication and DNA fidelity whereas most metabolic pathways of intermediary metabolism were under expressed. Comparison of the dataset to a number of previously published microarray datasets revealed 1 a striking similarity between the fetal liver and that of the pancreas in both mice and humans, 2 a nucleated erythrocyte signature in the fetus and 3 under expression of most xenobiotic metabolism genes throughout development, with the exception of a number of transporters associated with either hematopoietic cells or cell proliferation in hepatocytes. Conclusions Overall, these findings reveal the complexity of gene expression changes during liver development and maturation, and provide a foundation to predict responses to chemical and drug exposure as a function of early life-stages.

  19. HAND2 Targets Define a Network of Transcriptional Regulators that Compartmentalize the Early Limb Bud Mesenchyme

    Science.gov (United States)

    Osterwalder, Marco; Speziale, Dario; Shoukry, Malak; Mohan, Rajiv; Ivanek, Robert; Kohler, Manuel; Beisel, Christian; Wen, Xiaohui; Scales, Suzie J.; Christoffels, Vincent M.; Visel, Axel; Lopez-Rios, Javier; Zeller, Rolf

    2014-01-01

    Summary The genetic networks that govern vertebrate development are well studied, but how the interactions of trans-acting factors with cis-regulatory modules (CRMs) are integrated into spatio-temporal regulation of gene expression is not clear. The transcriptional regulator HAND2 is required during limb, heart and branchial arch development. Here, we identify the genomic regions enriched in HAND2 chromatin complexes from mouse embryos and limb buds. Then, we analyze the HAND2 target CRMs in the genomic landscapes encoding transcriptional regulators required in early limb buds. HAND2 controls the expression of genes functioning in the proximal limb bud and orchestrates the establishment of anterior and posterior polarity of the nascent limb bud mesenchyme by impacting on Gli3 and Tbx3 expression. TBX3 is required downstream of HAND2 to refine the posterior Gli3 expression boundary. Our analysis uncovers the transcriptional circuits that function in establishing distinct mesenchymal compartments downstream of HAND2 and upstream of SHH signaling. PMID:25453830

  20. Transcriptional networks in the early development of sensory-motor circuits.

    Science.gov (United States)

    Dasen, Jeremy S

    2009-01-01

    The emergence of coordinated locomotor behaviors in vertebrates relies on the establishment of selective connections between discrete populations of neurons present in the spinal cord and peripheral nervous system. The assembly of the circuits necessary for movement presumably requires the generation of many unique cell types to accommodate the intricate connections between motor neurons, sensory neurons, interneurons, and muscle. The specification of diverse neuronal subtypes is mediated largely through networks of transcription factors that operate within progenitor and postmitotic cells. Selective patterns of transcription factor expression appear to define the cell-type-specific cellular programs that govern the axonal guidance decisions and synaptic specificities of neurons, and may lay the foundation through which innate motor behaviors are genetically predetermined. Recent studies on the developmental programs that specify two highly diverse neuronal classes-spinal motor neurons and proprioceptive sensory neurons-have provided important insights into the molecular strategies used in the earliest phases of locomotor circuit assembly. This chapter reviews progress toward elucidating the early transcriptional networks that define neuronal identity in the locomotor system, focusing on the pathways controlling the specific connections of motor neurons and sensory neurons in the formation of simple reflex circuits.

  1. The role of vaccinia termination factor and cis-acting elements in vaccinia virus early gene transcription termination.

    Science.gov (United States)

    Tate, Jessica; Gollnick, Paul

    2015-11-01

    Vaccinia virus early gene transcription termination requires the virion form of the viral RNA polymerase (vRNAP), Nucleoside Triphosphate Phosphohydrolase I (NPHI), ATP, the vaccinia termination factor (VTF), and a U5NU termination signal in the nascent transcript. VTF, also the viral mRNA capping enzyme, binds U5NU, and NPHI hydrolyzes ATP to release the transcript. NPHI can release transcripts independent of VTF and U5NU if vRNAP is not actively elongating. However, VTF and U5NU are required for transcript release from an elongating vRNAP, suggesting that the function of VTF and U5NU may be to stall the polymerase. Here we demonstrate that VTF inhibits transcription elongation by enhancing vRNAP pausing. Hence VTF provides the connection between the termination signal in the RNA transcript and viral RNA polymerase to initiate transcription termination. We also provide evidence that a second cis-acting element downstream of U5NU influences the location and efficiency of early gene transcription termination.

  2. Transcriptional analysis of early lineage commitment in human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Wormald Sam

    2007-03-01

    Full Text Available Abstract Background The mechanisms responsible for the maintenance of pluripotency in human embryonic stem cells, and those that drive their commitment into particular differentiation lineages, are poorly understood. In fact, even our knowledge of the phenotype of hESC is limited, because the immunological and molecular criteria presently used to define this phenotype describe the properties of a heterogeneous population of cells. Results We used a novel approach combining immunological and transcriptional analysis (immunotranscriptional profiling to compare gene expression in hESC populations at very early stages of differentiation. Immunotranscriptional profiling enabled us to identify novel markers of stem cells and their differentiated progeny, as well as novel potential regulators of hESC commitment and differentiation. The data show clearly that genes associated with the pluripotent state are downregulated in a coordinated fashion, and that they are co-expressed with lineage specific transcription factors in a continuum during the early stages of stem cell differentiation. Conclusion These findings, that show that maintenance of pluripotency and lineage commitment are dynamic, interactive processes in hESC cultures, have important practical implications for propagation and directed differentiation of these cells, and for the interpretation of mechanistic studies of hESC renewal and commitment. Since embryonic stem cells at defined stages of commitment can be isolated in large numbers by immunological means, they provide a powerful model for studying molecular genetics of stem cell commitment in the embryo.

  3. Transcriptional analysis of early lineage commitment in human embryonic stem cells

    Science.gov (United States)

    Laslett, Andrew L; Grimmond, Sean; Gardiner, Brooke; Stamp, Lincon; Lin, Adelia; Hawes, Susan M; Wormald, Sam; Nikolic-Paterson, David; Haylock, David; Pera, Martin F

    2007-01-01

    Background The mechanisms responsible for the maintenance of pluripotency in human embryonic stem cells, and those that drive their commitment into particular differentiation lineages, are poorly understood. In fact, even our knowledge of the phenotype of hESC is limited, because the immunological and molecular criteria presently used to define this phenotype describe the properties of a heterogeneous population of cells. Results We used a novel approach combining immunological and transcriptional analysis (immunotranscriptional profiling) to compare gene expression in hESC populations at very early stages of differentiation. Immunotranscriptional profiling enabled us to identify novel markers of stem cells and their differentiated progeny, as well as novel potential regulators of hESC commitment and differentiation. The data show clearly that genes associated with the pluripotent state are downregulated in a coordinated fashion, and that they are co-expressed with lineage specific transcription factors in a continuum during the early stages of stem cell differentiation. Conclusion These findings, that show that maintenance of pluripotency and lineage commitment are dynamic, interactive processes in hESC cultures, have important practical implications for propagation and directed differentiation of these cells, and for the interpretation of mechanistic studies of hESC renewal and commitment. Since embryonic stem cells at defined stages of commitment can be isolated in large numbers by immunological means, they provide a powerful model for studying molecular genetics of stem cell commitment in the embryo. PMID:17335568

  4. Regulation of Arabidopsis Early Anther Development by Putative Cell-Cell Signaling Molecules and Transcriptional Regulators

    Institute of Scientific and Technical Information of China (English)

    Yu-Jin Sun; Carey LH Hord; Chang-Bin Chen; Hong Ma

    2007-01-01

    Anther development in flowering plants involves the formation of several cell types, including the tapetal and pollen mother cells. The use of genetic and molecular tools has led to the identification and characterization of genes that are critical for normal cell division and differentiation in Arabidopsis early anther development. We review here several recent studies on these genes, including the demonstration that the putative receptor protein kinases BAM1 and BAM2 together play essential roles in the control of early cell division and differentiation. In addition, we discuss the hypothesis that BAM1/2 may form a positive-negative feedback regulatory loop with a previously identified key regulator, SPOROCYTELESS (also called NOZZLE),to control the balance between sporogenous and somatic cell types in the anther. Furthermore, we summarize the isolation and functional analysis of the DYSFUNCTIONAL TAPETUM1 (DYT1) gene in promoting proper tapetal cell differentiation. Our finding that DYT1 encodes a putative transcription factor of the bHLH family, as well as relevant expression analyses, strongly supports a model that DYT1 serves as a critical link between upstream factors and downstream target genes that are critical for normal tapetum development and function. These studies, together with other recently published works, indicate that cell-cell communication and transcriptional control are key processes essential for cell fate specification in anther development.

  5. Regulation of Human Cytomegalovirus Transcription in Latency: Beyond the Major Immediate-Early Promoter

    Directory of Open Access Journals (Sweden)

    John Sinclair

    2013-06-01

    Full Text Available Lytic infection of differentiated cell types with human cytomegalovirus (HCMV results in the temporal expression of between 170–200 open reading frames (ORFs. A number of studies have demonstrated the temporal regulation of these ORFs and that this is orchestrated by both viral and cellular mechanisms associated with the co-ordinated recruitment of transcription complexes and, more recently, higher order chromatin structure. Importantly, HCMV, like all herpes viruses, establishes a lifelong latent infection of the host—one major site of latency being the undifferentiated haematopoietic progenitor cells resident in the bone marrow. Crucially, the establishment of latency is concomitant with the recruitment of cellular enzymes that promote extensive methylation of histones bound to the major immediate early promoter. As such, the repressive chromatin structure formed at the major immediate early promoter (MIEP elicits inhibition of IE gene expression and is a major factor involved in maintenance of HCMV latency. However, it is becoming increasingly clear that a distinct subset of viral genes is also expressed during latency. In this review, we will discuss the mechanisms that control the expression of these latency-associated transcripts and illustrate that regulation of these latency-associated promoters is also subject to chromatin mediated regulation and that the instructive observations previously reported regarding the negative regulation of the MIEP during latency are paralleled in the regulation of latent gene expression.

  6. Gastric adenocarcinoma with features of endodermal sinus tumor

    Institute of Scientific and Technical Information of China (English)

    Malvinderjit Singh; Mukul Arya; Sury Anand; Nan Sandar

    2007-01-01

    Extragonadal germ cell tumors are rare. The most common sites for EGGCTs are in midline locations such as the mediastinum, retroperitoneum and pineal gland.These tumors rarely present in the stomach. We describe here a case where a middle aged man presented with typical symptoms of gastric cancer. After extensive workup, which included blood work, CT abdomen scan,upper endoscopy, and endoscopic ultrasound, the patient was diagnosed with gastric cancer. However,due to very high blood levels of alpha-fetoprotein, the specimen was sent for special histochemical staining,which demonstrated that the tumor had features of both adenocarcinoma and endodermal sinus tumor. This is a very aggressive tumor with a very poor prognosis.

  7. Direct contact with endoderm-like cells efficiently induces cardiac progenitors from mouse and human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    Full Text Available RATIONALE: Pluripotent stem cell-derived cardiac progenitor cells (CPCs have emerged as a powerful tool to study cardiogenesis in vitro and a potential cell source for cardiac regenerative medicine. However, available methods to induce CPCs are not efficient or require high-cost cytokines with extensive optimization due to cell line variations. OBJECTIVE: Based on our in-vivo observation that early endodermal cells maintain contact with nascent pre-cardiac mesoderm, we hypothesized that direct physical contact with endoderm promotes induction of CPCs from pluripotent cells. METHOD AND RESULT: To test the hypothesis, we cocultured mouse embryonic stem (ES cells with the endodermal cell line End2 by co-aggregation or End2-conditioned medium. Co-aggregation resulted in strong induction of Flk1(+ PDGFRa(+ CPCs in a dose-dependent manner, but the conditioned medium did not, indicating that direct contact is necessary for this process. To determine if direct contact with End2 cells also promotes the induction of committed cardiac progenitors, we utilized several mouse ES and induced pluripotent (iPS cell lines expressing fluorescent proteins under regulation of the CPC lineage markers Nkx2.5 or Isl1. In agreement with earlier data, co-aggregation with End2 cells potently induces both Nkx2.5(+ and Isl1(+ CPCs, leading to a sheet of beating cardiomyocytes. Furthermore, co-aggregation with End2 cells greatly promotes the induction of KDR(+ PDGFRa(+ CPCs from human ES cells. CONCLUSIONS: Our co-aggregation method provides an efficient, simple and cost-effective way to induce CPCs from mouse and human pluripotent cells.

  8. Pulmonary endoderm, second heart field and the morphogenesis of distal outflow tract in mouse embryonic heart.

    Science.gov (United States)

    Liang, Shi; Li, Hui-Chao; Wang, Yun-Xiu; Wu, Shan-Shan; Cai, Yu-Jin; Cui, Hui-Lin; Yang, Yan-Ping; Ya, Jing

    2014-05-01

    The second heart field (SHF), foregut endoderm and sonic hedgehog (SHH) signaling pathway are all reported to associate with normal morphogenesis and septation of outflow tract (OFT). However, the morphological relationships of the development of foregut endoderm and expression of SHH signaling pathway members with the development of surrounding SHF and OFT are seldom described. In this study, serial sections of mouse embryos from ED9 to ED13 (midgestation) were stained with a series of marker antibodies for specifically highlighting SHF (Isl-1), endoderm (Foxa2), basement membrane (Laminin), myocardium (MHC) and smooth muscle (α-SMA) respectively, or SHH receptors antibodies including patched1 (Ptc1), patched2 (Ptc2) and smoothened, to observe the spatiotemporal relationship between them and their contributions to OFT morphogenesis. Our results demonstrated that the development of an Isl-1 positive field in the splanchnic mesoderm ventral to foregut, a subset of SHF, is closely coupled with pulmonary endoderm or tracheal groove, the Isl-1 positive cells surrounding pulmonary endoderm are distributed in a special cone-shaped pattern and take part in the formation of the lateral walls of the intrapericardial aorta and pulmonary trunk and the transient aortic-pulmonary septum, and Ptc1 and Ptc2 are exclusively expressed in pulmonary endoderm during this Isl-l positive field development, suggesting special roles played in inducing the Isl-l positive field formation by pulmonary endoderm. It is indicated that pulmonary endoderm plays a role in the development and specification of SHF in midgestation, and that pulmonary endoderm-associated Isl-l positive field is involved in patterning the morphogenesis and septation of the intrapericardial arterial trunks.

  9. Pulmonary endoderm, second heart field and the morphogenesis of distal outflow tract in mouse embryonic heart

    Institute of Scientific and Technical Information of China (English)

    SHI Liang; JING Ya; LI Huichao; WANG Yunxiu; WU Shanshan; CAI Yujin; CUI Huilin; YANG Yanping

    2015-01-01

    Objective:The second heart field ( SHF) , foregut endoderm and sonic hedgehog ( SHH) signa-ling pathway are associate with normal morphogenesis and septation of outflow tract ( OFT) . However, the morpho-logical relationships of the development of foregut endoderm and expression of SHH signaling pathway members with the development of surrounding SHF and OFT are seldom described. In this study, serial sections of mouse embryos from ED9 to ED13 ( midgestation) were stained with a series of marker antibodies for specifically highlighting SHF ( Isl-1 ) , endoderm ( Foxa2 ) , basement membrane ( Laminin ) , myocardium ( MHC ) and smooth muscle (α-SMA) respectively, or SHH receptors antibodies including patched1 (Ptc1), patched2 (Ptc2) and smoothened, to observe the spatiotemporal relationship between them and their contributions to OFT morphogenesis. Results: Our results demonstrated that the development of an Isl-1 positive field in the splanchnic mesoderm ventral to foregut, a subset of SHF, was closely coupled with pulmonary endoderm or tracheal groove, the Isl-1 positive cells sur-rounding pulmonary endoderm were distributed in a special cone-shaped pattern and contributed to the formation of the lateral walls of the intrapericardial aorta and pulmonary trunk and the transient aortic-pulmonary septum, and Ptc1 and Ptc2 were exclusively expressed in pulmonary endoderm during this Isl-l positive field development, suggesting special roles played in inducing the Isl-l positive field formation by pulmonary endoderm. Conclusions: Pulmonary endoderm plays a role in the development and specification of SHF in midgestation, and that pulmonary endoderm-associated Isl-l positive field is involved in patterning the morphogenesis and septation of the intrapericardial arterial trunks.

  10. A late requirement for Wnt and FGF signaling during activin-induced formation of foregut endoderm from mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Hansson, Mattias; Olesen, Dorthe R; Peterslund, Janny M L

    2009-01-01

    Here we examine how BMP, Wnt, and FGF signaling modulate activin-induced mesendodermal differentiation of mouse ES cells grown under defined conditions in adherent monoculture. We monitor ES cells containing reporter genes for markers of primitive streak (PS) and its progeny and extend previous....... Notably, activin induction of Gsc-GFP(+) cells appears refractory to inhibition of canonical Wnt signaling but shows a dependence on early as well as late FGF signaling. Additionally, we find a late dependence on FGF signaling during induction of Sox17(+) cells by activin while BMP4-induced T expression...... requires FGF signaling in adherent but not aggregate culture. Lastly, we demonstrate that activin-induced definitive endoderm derived from mouse ES cells can incorporate into the developing foregut endoderm in vivo and adopt a mostly anterior foregut character after further culture in vitro....

  11. EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription.

    Directory of Open Access Journals (Sweden)

    Kevin Tsai

    2011-11-01

    Full Text Available Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs, suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus.

  12. Signaling and Gene Regulatory Networks Governing Definitive Endoderm Derivation From Pluripotent Stem Cells.

    Science.gov (United States)

    Mohammadnia, Abdulshakour; Yaqubi, Moein; Pourasgari, Farzaneh; Neely, Eric; Fallahi, Hossein; Massumi, Mohammad

    2016-09-01

    The generation of definitive endoderm (DE) from pluripotent stem cells (PSCs) is a fundamental stage in the formation of highly organized visceral organs, such as the liver and pancreas. Currently, there is a need for a comprehensive study that illustrates the involvement of different signaling pathways and their interactions in the derivation of DE cells from PSCs. This study aimed to identify signaling pathways that have the greatest influence on DE formation using analyses of transcriptional profiles, protein-protein interactions, protein-DNA interactions, and protein localization data. Using this approach, signaling networks involved in DE formation were constructed using systems biology and data mining tools, and the validity of the predicted networks was confirmed experimentally by measuring the mRNA levels of hub genes in several PSCs-derived DE cell lines. Based on our analyses, seven signaling pathways, including the BMP, ERK1-ERK2, FGF, TGF-beta, MAPK, Wnt, and PIP signaling pathways and their interactions, were found to play a role in the derivation of DE cells from PSCs. Lastly, the core gene regulatory network governing this differentiation process was constructed. The results of this study could improve our understanding surrounding the efficient generation of DE cells for the regeneration of visceral organs. J. Cell. Physiol. 231: 1994-2006, 2016. © 2016 Wiley Periodicals, Inc.

  13. Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair.

    Science.gov (United States)

    Reumann, Marie K; Strachna, Olga; Yagerman, Sarah; Torrecilla, Daniel; Kim, Jihye; Doty, Stephen B; Lukashova, Lyudmila; Boskey, Adele L; Mayer-Kuckuk, Philipp

    2011-10-01

    Transcription factors that play a role in ossification during development are expected to participate in postnatal fracture repair since the endochondral bone formation that occurs in embryos is recapitulated during fracture repair. However, inherent differences exist between bone development and fracture repair, including a sudden disruption of tissue integrity followed by an inflammatory response. This raises the possibility that repair-specific transcription factors participate in bone healing. Here, we assessed the consequence of loss of early growth response gene 1 (EGR-1) on endochondral bone healing because this transcription factor has been shown to modulate repair in vascularized tissues. Model fractures were created in ribs of wild type (wt) and EGR-1(-/-) mice. Differences in tissue morphology and composition between these two animal groups were followed over 28 post fracture days (PFDs). In wt mice, bone healing occurred in healing phases characteristic of endochondral bone repair. A similar healing sequence was observed in EGR-1(-/-) mice but was impaired by alterations. A persistent accumulation of fibrin between the disconnected bones was observed on PFD7 and remained pronounced in the callus on PFD14. Additionally, the PFD14 callus was abnormally enlarged and showed increased deposition of mineralized tissue. Cartilage ossification in the callus was associated with hyper-vascularity and -proliferation. Moreover, cell deposits located in proximity to the callus within skeletal muscle were detected on PFD14. Despite these impairments, repair in EGR-1(-/-) callus advanced on PFD28, suggesting EGR-1 is not essential for healing. Together, this study provides genetic evidence that EGR-1 is a pleiotropic regulator of endochondral fracture repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Early transcription factor subunits are encoded by vaccinia virus late genes.

    Science.gov (United States)

    Gershon, P D; Moss, B

    1990-06-01

    The vaccinia virus early transcription factor (VETF) was shown to be a virus-encoded heterodimer. The gene for the 82-kDa subunit was identified as open reading frame (ORF) A8L, based on the N-terminal sequence of factor purified by using DNA-affinity magnetic beads. The 70-kDa subunit of VETF was refractory to N-terminal analysis, and so N-terminal sequences were obtained for three internal tryptic peptides. All three peptides matched sequences within ORF D6R. ORFs A8L and D6R are located within the central region of the vaccinia virus genome and are separated by about 13,600 base pairs. Proteins corresponding to the 3' ends of ORFs A8L and D6R were overexpressed in Escherichia coli and used to prepare antisera that bound to the larger and smaller subunits, respectively, of affinity-purified VETF. Immunoblot analysis of proteins from infected cells indicated that both subunits are expressed exclusively in the late phase of infection, just prior to their packaging in virus particles. The two subunits of VETF have no significant local or overall amino acid sequence homology to one another, to other entries in biological sequence data bases including bacterial sigma factors, or to recently determined sequences of some eukaryotic transcription factors. The 70-kDa subunit, however, has motifs in common with a super-family of established and putative DNA and RNA helicases.

  15. Early Exercise Affects Mitochondrial Transcription Factors Expression after Cerebral Ischemia in Rats

    Directory of Open Access Journals (Sweden)

    Yongshan Hu

    2012-02-01

    Full Text Available Increasing evidence shows that exercise training is neuroprotective after stroke, but the underlying mechanisms are unknown. To clarify this critical issue, the current study investigated the effects of early treadmill exercise on the expression of mitochondrial biogenesis factors. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion followed by reperfusion. Expression of two genes critical for transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1 and nuclear respiratory factor-1 (NRF-1, were examined by RT-PCR after five days of exercise starting at 24 h after ischemia. Mitochondrial protein cytochrome C oxidase subunit IV (COX IV was detected by Western blot. Neurological status and cerebral infarct volume were evaluated as indices of brain damage. Treadmill training increased levels of PGC-1 and NRF-1 mRNA, indicating that exercise promotes rehabilitation after ischemia via regulation of mitochondrial biogenesis.

  16. Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction.

    Science.gov (United States)

    Xu, Risheng; Paul, Bindu D; Smith, Dani R; Tyagi, Richa; Rao, Feng; Khan, A Basit; Blech, Daniel J; Vandiver, M Scott; Harraz, Maged M; Guha, Prasun; Ahmed, Ishrat; Sen, Nilkantha; Gallagher, Michela; Snyder, Solomon H

    2013-10-01

    Profound induction of immediate early genes (IEGs) by neural activation is a critical determinant for plasticity in the brain, but intervening molecular signals are not well characterized. We demonstrate that inositol polyphosphate multikinase (IPMK) acts noncatalytically as a transcriptional coactivator to mediate induction of numerous IEGs. IEG induction by electroconvulsive stimulation is virtually abolished in the brains of IPMK-deleted mice, which also display deficits in spatial memory. Neural activity stimulates binding of IPMK to the histone acetyltransferase CBP and enhances its recruitment to IEG promoters. Interestingly, IPMK regulation of CBP recruitment and IEG induction does not require its catalytic activities. Dominant-negative constructs, which prevent IPMK-CBP binding, substantially decrease IEG induction. As IPMK is ubiquitously expressed, its epigenetic regulation of IEGs may influence diverse nonneural and neural biologic processes.

  17. BMPs regulate differentiation of a putative visceral endoderm layer within human embryonic stem-cell-derived embryoid bodies.

    Science.gov (United States)

    Conley, Brock J; Ellis, Sarah; Gulluyan, Lerna; Mollard, Richard

    2007-02-01

    Human embryonic stem cells (HESCs), pluripotent cells derived from the inner cell mass (ICM) of human blastocysts, represent a novel tool for the study of early human developmental events. When cultured in suspension with serum, HESCs form spherical structures resembling embryoid bodies (EBs). We show that differentiation of HESCs within EBs occurs radially, with central cells then undergoing apoptosis in association with EB cavitation. Cells within the outer layer of cavitating EBs display stage-specific immunoreactivity to pan-keratin, cytokeratin-8, GATA6, alpha-fetoprotein, and transthyretin specific antibodies, and hybridization to disabled-2, GATA4, and GATA6 specific riboprobes. Transmission electron microscopy of these cells reveals clathrin-coated micropinocytotic vesicles, microvilli, and many vacuoles, a phenotype consistent with mouse visceral endoderm (VE) rather than mouse definitive or parietal endoderm. When cultured in media supplemented with the BMP inhibitor noggin, or in the absence of serum, HESC derivatives do not develop the mouse VE-like phenotype. The addition of BMP-4 to noggin-treated HESCs cultured in serum or in serum-free conditions reconstituted development of the VE-like phenotype. These data demonstrate that human EBs undergo developmental events similar to those of mouse EBs and that in vitro BMP signalling induces derivatives of the human ICM to express a phenotype similar to mouse VE.

  18. Population based model of human embryonic stem cell (hESC differentiation during endoderm induction.

    Directory of Open Access Journals (Sweden)

    Keith Task

    Full Text Available The mechanisms by which human embryonic stem cells (hESC differentiate to endodermal lineage have not been extensively studied. Mathematical models can aid in the identification of mechanistic information. In this work we use a population-based modeling approach to understand the mechanism of endoderm induction in hESC, performed experimentally with exposure to Activin A and Activin A supplemented with growth factors (basic fibroblast growth factor (FGF2 and bone morphogenetic protein 4 (BMP4. The differentiating cell population is analyzed daily for cellular growth, cell death, and expression of the endoderm proteins Sox17 and CXCR4. The stochastic model starts with a population of undifferentiated cells, wherefrom it evolves in time by assigning each cell a propensity to proliferate, die and differentiate using certain user defined rules. Twelve alternate mechanisms which might describe the observed dynamics were simulated, and an ensemble parameter estimation was performed on each mechanism. A comparison of the quality of agreement of experimental data with simulations for several competing mechanisms led to the identification of one which adequately describes the observed dynamics under both induction conditions. The results indicate that hESC commitment to endoderm occurs through an intermediate mesendoderm germ layer which further differentiates into mesoderm and endoderm, and that during induction proliferation of the endoderm germ layer is promoted. Furthermore, our model suggests that CXCR4 is expressed in mesendoderm and endoderm, but is not expressed in mesoderm. Comparison between the two induction conditions indicates that supplementing FGF2 and BMP4 to Activin A enhances the kinetics of differentiation than Activin A alone. This mechanistic information can aid in the derivation of functional, mature cells from their progenitors. While applied to initial endoderm commitment of hESC, the model is general enough to be applicable

  19. Population based model of human embryonic stem cell (hESC) differentiation during endoderm induction.

    Science.gov (United States)

    Task, Keith; Jaramillo, Maria; Banerjee, Ipsita

    2012-01-01

    The mechanisms by which human embryonic stem cells (hESC) differentiate to endodermal lineage have not been extensively studied. Mathematical models can aid in the identification of mechanistic information. In this work we use a population-based modeling approach to understand the mechanism of endoderm induction in hESC, performed experimentally with exposure to Activin A and Activin A supplemented with growth factors (basic fibroblast growth factor (FGF2) and bone morphogenetic protein 4 (BMP4)). The differentiating cell population is analyzed daily for cellular growth, cell death, and expression of the endoderm proteins Sox17 and CXCR4. The stochastic model starts with a population of undifferentiated cells, wherefrom it evolves in time by assigning each cell a propensity to proliferate, die and differentiate using certain user defined rules. Twelve alternate mechanisms which might describe the observed dynamics were simulated, and an ensemble parameter estimation was performed on each mechanism. A comparison of the quality of agreement of experimental data with simulations for several competing mechanisms led to the identification of one which adequately describes the observed dynamics under both induction conditions. The results indicate that hESC commitment to endoderm occurs through an intermediate mesendoderm germ layer which further differentiates into mesoderm and endoderm, and that during induction proliferation of the endoderm germ layer is promoted. Furthermore, our model suggests that CXCR4 is expressed in mesendoderm and endoderm, but is not expressed in mesoderm. Comparison between the two induction conditions indicates that supplementing FGF2 and BMP4 to Activin A enhances the kinetics of differentiation than Activin A alone. This mechanistic information can aid in the derivation of functional, mature cells from their progenitors. While applied to initial endoderm commitment of hESC, the model is general enough to be applicable either to a system of

  20. Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress.

    Science.gov (United States)

    Montero-Palmero, M Belén; Martín-Barranco, Amanda; Escobar, Carolina; Hernández, Luis E

    2014-01-01

    Understanding the cellular mechanisms of plant tolerance to mercury (Hg) is important for developing phytoremediation strategies of Hg-contaminated soils. The early responses of alfalfa (Medicago sativa) seedlings to Hg were studied using transcriptomics analysis. A Medicago truncatula microarray was hybridized with high-quality root RNA from M. sativa treated with 3 μM Hg for 3, 6 and 24 h. The transcriptional pattern data were complementary to the measurements of root growth inhibition, lipid peroxidation, hydrogen peroxide (H2 O2 ) accumulation and NADPH-oxidase activity as stress indexes. Of 559 differentially expressed genes (DEGs), 91% were up-regulated. The majority of DEGs were shared between the 3 and 6 h (60%) time points, including the 'stress', 'secondary metabolism' and 'hormone metabolism' functional categories. Genes from ethylene metabolism and signalling were highly represented, suggesting that this phytohormone may be relevant for metal perception and homeostasis. Ethylene-insensitive alfalfa seedlings preincubated with the ethylene signalling inhibitor 1-methylcyclopronene and Arabidopsis thaliana ein2-5 mutants confirmed that ethylene participates in the early perception of Hg stress. It modulates root growth inhibition, NADPH-oxidase activity and Hg-induced apoplastic H2 O2 accumulation. Therefore, ethylene signalling attenuation could be useful in future phytotechnological applications to ameliorate stress symptoms in Hg-polluted plants.

  1. Expression of nk2.1a during early development of the thyroid gland in zebrafish.

    Science.gov (United States)

    Rohr, K B; Concha, M L

    2000-07-01

    We show here that a zebrafish orthologue of the Thyroid Transcription Factor-1 (TTF-1), nk2.1a, is expressed in the developing thyroid gland. Using a fate mapping approach we found that an early nk2.1a expression domain in the endoderm adjacent to the heart follows morphogenetic movements of the lower jaw, ending up in the region in which the mature thyroid gland is located. We therefore suggest that nk2.1a labels the thyroid precursor cells from somitogenesis stages onwards.

  2. PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2

    DEFF Research Database (Denmark)

    Zheng, Sika; Gray, Erin E; Chawla, Geetanjali

    2012-01-01

    . Psd-95 was transcribed early in mouse embryonic brain, but most of its product transcripts were degraded. The polypyrimidine tract binding proteins PTBP1 and PTBP2 repressed Psd-95 (also known as Dlg4) exon 18 splicing, leading to premature translation termination and nonsense-mediated mRNA decay......, expression of PSD-95 during early neural development is controlled at the RNA level by two PTB proteins whose sequential downregulation is necessary for synapse maturation....

  3. Early Transcriptional Responses of HepG2-A 16 Liver Cells to Infection by Plasmodium falciparum Sporozoites

    Science.gov (United States)

    2011-07-29

    286, ’JC 30, pp Early Transcriptional Responses of HepG2-A 16 Liver Cells to Infection by Plasmodium falciparum Sporozoites*[i] Received for...7500 and󈧏Sun BioMedical Technologies Inc., Ridgecrest, California 93555 Invasion of hepatocytes by Plasmodium sporozoites depos- ited by Anopheles...expression profiling of human HepG2-A16liver cells infected with Plasmodium falciparum sporozoites to understand the host early cellular events and

  4. Transcriptional regulation of human polo-like kinases and early mitotic inhibitors

    Institute of Scientific and Technical Information of China (English)

    Moe Tategu; Hiroki Nakagawa; Kaori Sasaki; Rieko Yamauchi; Sota Sekimachi; Yuka Suita; Naoko Watanabe; Kenichi Yoshida

    2008-01-01

    Human polo-like kinases (PLK1-PLK4) have been implicated in mitotic regulation and carcinogenesis.PLK1 phosphorylates early mitotic inhibitor 1 (Emil) to ensure mitosis entry,whereas Emi2 plays a key role during the meiotic cell cycle.Transcription factor E2F is primarily considered to regulate the G1/S transition of the cell cycle but its involvement in the regulation of mitosis has also been recently suggested.A gap still exists between the molecular basis of E2F and mitotic regulation.The present study was designed to characterize the transcriptional regulation of human PLK and Emi genes.Adenoviral overexpression of E2F1 increased PLK1 and PLK3 mRNA levels in A549 cells.A reporter gene assay revealed that the putative promoter regions of PLK1,PLK3,and PLK4 genes were responsive to ac-tivators E2F,E2F1-E2F3.We further characterized the putative promoter regions of Emil and Emi2 genes,and these could be regulated by activators E2F and E2F1-E2F4,respectively.Finally,PLK1-PLK4,Emil,and Emi2 mRNA expression levels in human adult,fetal tis-sues,and several cell lines indicated that each gene has a unique expression pattern but is uniquely expressed in common tissues and cells such as the testes and thymus.Collectively,these results indicate that E2F can integrate G1/S and G2/Mto oscillate the cell cycle by regu-lating mitotic genes PLK and Emi,leading to determination of the cell fate.

  5. Early transcriptional and epigenetic regulation of CD8(+) T cell differentiation revealed by single-cell RNA sequencing.

    Science.gov (United States)

    Kakaradov, Boyko; Arsenio, Janilyn; Widjaja, Christella E; He, Zhaoren; Aigner, Stefan; Metz, Patrick J; Yu, Bingfei; Wehrens, Ellen J; Lopez, Justine; Kim, Stephanie H; Zuniga, Elina I; Goldrath, Ananda W; Chang, John T; Yeo, Gene W

    2017-04-01

    During microbial infection, responding CD8(+) T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA-sequencing approach and analyzed individual CD8(+) T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants that controlled the fate specification of CD8(+) T lymphocytes. Our findings suggest a model for the differentiation of terminal effector cells initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, which highlights the power and necessity of single-cell approaches.

  6. Temporal transcription of the lactococcal temperate phage TP901-1 and DNA sequence of the early promoter region

    DEFF Research Database (Denmark)

    Madsen, Hans Peter Lynge; Hammer, Karin

    1998-01-01

    to a phage repressor, a single-stranded DNA-binding protein, a topoisomerase, a Cro-like protein and two other phage proteins of unknown function were detected. The gene arrangement in the early transcribed region of TP901-1 thus consists of two transcriptional units: one from PR containing four genes...

  7. Early and transient reverse transcription during primary deltaretroviral infection of sheep

    Directory of Open Access Journals (Sweden)

    Wattel Eric

    2008-02-01

    Full Text Available Abstract Background Intraindividual genetic variability plays a central role in deltaretrovirus replication and associated leukemogenesis in animals as in humans. To date, the replication of these viruses has only been investigated during the chronic phase of the infection when they mainly spread through the clonal expansion of their host cells, vary through a somatic mutation process without evidence for reverse transcriptase (RT-associated substitution. Primary infection of a new organism necessary involves allogenic cell infection and thus reverse transcription. Results Here we demonstrate that the primary experimental bovine leukemia virus (BLV infection of sheep displays an early and intense burst of horizontal replicative dissemination of the virus generating frequent RT-associated substitutions that account for 69% of the in vivo BLV genetic variability during the first 8 months of the infection. During this period, evidence has been found of a cell-to-cell passage of a mutated sequence and of a sequence having undergone both RT-associated and somatic mutations. The detection of RT-dependent proviral substitution was restricted to a narrow window encompassing the first 250 days following seroconversion. Conclusion In contrast to lentiviruses, deltaretroviruses display two time-dependent mechanisms of genetic variation that parallel their two-step nature of replication in vivo. We propose that the early and transient RT-based horizontal replication helps the virus escape the first wave of host immune response whereas somatic-dependent genetic variability during persistent clonal expansion helps infected clones escape the persistent and intense immune pressure that characterizes the chronic phase of deltaretrovirus infection.

  8. CstF-64 is necessary for endoderm differentiation resulting in cardiomyocyte defects

    Directory of Open Access Journals (Sweden)

    Bradford A. Youngblood

    2014-11-01

    Full Text Available Although adult cardiomyocytes have the capacity for cellular regeneration, they are unable to fully repair severely injured hearts. The use of embryonic stem cell (ESC-derived cardiomyocytes as transplantable heart muscle cells has been proposed as a solution, but is limited by the lack of understanding of the developmental pathways leading to specification of cardiac progenitors. Identification of these pathways will enhance the ability to differentiate cardiomyocytes into a clinical source of transplantable cells. Here, we show that the mRNA 3′ end processing protein, CstF-64, is essential for cardiomyocyte differentiation in mouse ESCs. Loss of CstF-64 in mouse ESCs results in loss of differentiation potential toward the endodermal lineage. However, CstF-64 knockout (Cstf2E6 cells were able to differentiate into neuronal progenitors, demonstrating that some differentiation pathways were still intact. Markers for mesodermal differentiation were also present, although Cstf2E6 cells were defective in forming beating cardiomyocytes and expressing cardiac specific markers. Since the extraembryonic endoderm is needed for cardiomyocyte differentiation and endodermal markers were decreased, we hypothesized that endodermal factors were required for efficient cardiomyocyte formation in the Cstf2E6 cells. Using conditioned medium from the extraembryonic endodermal (XEN stem cell line we were able to restore cardiomyocyte differentiation in Cstf2E6 cells, suggesting that CstF-64 has a role in regulating endoderm differentiation that is necessary for cardiac specification and that extraembryonic endoderm signaling is essential for cardiomyocyte development.

  9. Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor.

    Science.gov (United States)

    Heikinheimo, K; Kurppa, K J; Laiho, A; Peltonen, S; Berdal, A; Bouattour, A; Ruhin, B; Catón, J; Thesleff, I; Leivo, I; Morgan, P R

    2015-01-01

    The aim of the study was to characterize the molecular relationship between ameloblastoma and keratocystic odontogenic tumor (KCOT) by means of a genome-wide expression analysis. Total RNA from 27 fresh tumor samples of 15 solid/multicystic intraosseous ameloblastomas and 12 sporadic KCOTs was hybridized on Affymetrix whole genome arrays. Hierarchical clustering separated ameloblastomas and KCOTs into 2 distinct groups. The gene set enrichment analysis based on 303 dental genes showed a similar separation of ameloblastomas and KCOTs. Early dental epithelial markers PITX2, MSX2, DLX2, RUNX1, and ISL1 were differentially overexpressed in ameloblastoma, indicating its dental identity. Also, PTHLH, a hormone involved in tooth eruption and invasive growth, was one of the most differentially upregulated genes in ameloblastoma. The most differentially overexpressed genes in KCOT were squamous epithelial differentiation markers SPRR1A, KRTDAP, and KRT4, as well as DSG1, a component of desmosomal cell-cell junctions. Additonally, the epithelial stem cell marker SOX2 was significantly upregulated in KCOT when compared with ameloblastoma. Taken together, the gene expression profile of ameloblastoma reflects differentiation from dental lamina toward the cap/bell stage of tooth development, as indicated by dental epithelium-specific transcription factors. In contrast, gene expression of KCOT indicates differentiation toward keratinocytes. © International & American Associations for Dental Research 2014.

  10. An atypical bHLH transcription factor regulates early xylem development downstream of auxin.

    Science.gov (United States)

    Ohashi-Ito, Kyoko; Matsukawa, Manami; Fukuda, Hiroo

    2013-03-01

    The vascular system in plants, which comprises xylem, phloem and vascular stem cells, originates from provascular cells and forms a continuous network throughout the plant body. Although various aspects of vascular development have been extensively studied, the early process of vascular development remains largely unknown. LONESOME HIGHWAY (LHW), which encodes an atypical basic helix-loop-helix (bHLH) transcription factor, plays an essential role in establishing vascular cells. Here, we report the analysis of LHW homologs in relation to vascular development. Three LHW homologs, LONESOME HIGHWAY LIKE 1-3 (LHL1-LHL3), were preferentially expressed in the plant vasculature. Genetic analysis indicated that, although the LHL3 loss-of-function mutant showed no obvious phenotype, the lhw lhl3 double mutant displayed more severe phenotypic defects in the vasculature of the cotyledons and roots than the lhw single mutant. Only one xylem vessel was formed at the metaxylem position in lhw lhl3 roots, whereas the lhw root formed one protoxylem and one or two metaxylem vessels. Conversely, overexpression of LHL3 enhanced xylem development in the roots. Moreover, N-1-naphthylphthalamic acid caused ectopic LHL3 expression in accordance with induced auxin maximum. These results suggest that LHL3 plays a positive role in xylem differentiation downstream of auxin.

  11. TALE transcription factors during early development of the vertebrate brain and eye.

    Science.gov (United States)

    Schulte, Dorothea; Frank, Dale

    2014-01-01

    Our brain's cognitive performance arises from the coordinated activities of billions of nerve cells. Despite a high degree of morphological and functional differences, all neurons of the vertebrate central nervous system (CNS) arise from a common field of multipotent progenitors. Cell fate specification and differentiation are directed by multistep processes that include inductive/external cues, such as the extracellular matrix or growth factors, and cell-intrinsic determinants, such as transcription factors and epigenetic modulators of proteins and DNA. Here we review recent findings implicating TALE-homeodomain proteins in these processes. Although originally identified as HOX-cofactors, TALE proteins also contribute to many physiological processes that do not require HOX-activity. Particular focus is, therefore, given to HOX-dependent and -independent functions of TALE proteins during early vertebrate brain development. Additionally, we provide an overview about known upstream and downstream factors of TALE proteins in the developing vertebrate brain and discuss general concepts of how TALE proteins function to modulate neuronal cell fate specification.

  12. Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq.

    Directory of Open Access Journals (Sweden)

    Susan E Lott

    Full Text Available When Drosophila melanogaster embryos initiate zygotic transcription around mitotic cycle 10, the dose-sensitive expression of specialized genes on the X chromosome triggers a sex-determination cascade that, among other things, compensates for differences in sex chromosome dose by hypertranscribing the single X chromosome in males. However, there is an approximately 1 hour delay between the onset of zygotic transcription and the establishment of canonical dosage compensation near the end of mitotic cycle 14. During this time, zygotic transcription drives segmentation, cellularization, and other important developmental events. Since many of the genes involved in these processes are on the X chromosome, we wondered whether they are transcribed at higher levels in females and whether this might lead to sex-specific early embryonic patterning. To investigate this possibility, we developed methods to precisely stage, sex, and characterize the transcriptomes of individual embryos. We measured genome-wide mRNA abundance in male and female embryos at eight timepoints, spanning mitotic cycle 10 through late cycle 14, using polymorphisms between parental lines to distinguish maternal and zygotic transcription. We found limited sex-specific zygotic transcription, with a weak tendency for genes on the X to be expressed at higher levels in females. However, transcripts derived from the single X chromosome in males were more abundant that those derived from either X chromosome in females, demonstrating that there is widespread dosage compensation prior to the activation of the canonical MSL-mediated dosage compensation system. Crucially, this new system of early zygotic dosage compensation results in nearly identical transcript levels for key X-linked developmental regulators, including giant (gt, brinker (brk, buttonhead (btd, and short gastrulation (sog, in male and female embryos.

  13. Immediate-early gene product ICP22 inhibits the trans-transcription activating function of P53-mdm-2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As a product of HSVI immediate-early gene, ICP22 is capable of interacting with various cellular tran-scriptive and regulatory molecules during viral infection so as to impact the normal cellular molecular mechanism. ICP22 expressed in transfected cells can push the cells’ entering into S phase with binding to mdm-1 promoter region and impact its trans-transcription activating effect by P53. Consequently, the MDM-2 binds to P53, and the degradation effects by the ubiquitous pathway are decreased, improving indirectly the P53 levels in cells and making the cells progress into the S phase.

  14. Immediate-early gene product ICP22 inhibits the trans-transcription activating function of P53-mdm-2

    Institute of Scientific and Technical Information of China (English)

    GUO HongXiong; CUN Wei; LIU LongDing; WANG LiChun; ZHAO HongLing; DONG ChengHong; LI QiHan

    2007-01-01

    As a product of HSVI immediate-early gene, ICP22 is capable of interacting with various cellular transcriptive and regulatory molecules during viral infection so as to impact the normal cellular molecular mechanism. ICP22 expressed in transfected cells can push the cells' entering into S phase with binding to mdm-1 promoter region and impact its trans-transcription activating effect by P53. Consequently, the MDM-2 binds to P53, and the degradation effects by the ubiquitous pathway are decreased, improving indirectly the P53 levels in cells and making the cells progress into the S phase.

  15. Temporal transcription of the lactococcal temperate phage TP901-1 and DNA sequence of the early promoter region

    DEFF Research Database (Denmark)

    Madsen, Hans Peter Lynge; Hammer, Karin

    1998-01-01

    , of which at least two (the integrase gene and putative repressor) are needed for lysogeny, and the divergent and longer transcriptional unit from PL, presumably encoding functions required for the lytic life cycle. ORFs with homology to proteins involved in DNA replication were identified on the latter...... to a phage repressor, a single-stranded DNA-binding protein, a topoisomerase, a Cro-like protein and two other phage proteins of unknown function were detected. The gene arrangement in the early transcribed region of TP901-1 thus consists of two transcriptional units: one from PR containing four genes...

  16. An integrin-dependent role of pouch endoderm in hyoid cartilage development.

    Directory of Open Access Journals (Sweden)

    Justin Gage Crump

    2004-09-01

    Full Text Available Pharyngeal endoderm is essential for and can reprogram development of the head skeleton. Here we investigate the roles of specific endodermal structures in regulating craniofacial development. We have isolated an integrinalpha5 mutant in zebrafish that has region-specific losses of facial cartilages derived from hyoid neural crest cells. In addition, the cranial muscles that normally attach to the affected cartilage region and their associated nerve are secondarily reduced in integrinalpha5- animals. Earlier in development, integrinalpha5 mutants also have specific defects in the formation of the first pouch, an outpocketing of the pharyngeal endoderm. By fate mapping, we show that the cartilage regions that are lost in integrinalpha5 mutants develop from neural crest cells directly adjacent to the first pouch in wild-type animals. Furthermore, we demonstrate that Integrinalpha5 functions in the endoderm to control pouch formation and cartilage development. Time-lapse recordings suggest that the first pouch promotes region-specific cartilage development by regulating the local compaction and survival of skeletogenic neural crest cells. Thus, our results reveal a hierarchy of tissue interactions, at the top of which is the first endodermal pouch, which locally coordinates the development of multiple tissues in a specific region of the vertebrate face. Lastly, we discuss the implications of a mosaic assembly of the facial skeleton for the evolution of ray-finned fish.

  17. Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos

    OpenAIRE

    SAKURAI, Nobuyuki; Takahashi, Kazuki; EMURA, Natsuko; HASHIZUME, Tsutomu; SAWAI, Ken

    2016-01-01

    Transcription factor TEA domain family transcription factor 4 (Tead4) is one of the key factors involved in the differentiation of the trophectoderm (TE) in murine embryos. However, knowledge on the roles of TEAD4 in preimplantation development during bovine embryos is currently limited. This study examined the transcript and protein expression patterns of TEAD4 and attempted to elucidate the functions of TEAD4 during bovine preimplantation development using RNA interference. TEAD4 mRNA was f...

  18. Early Transcriptional Signatures of the Immune Response to a Live Attenuated Tetravalent Dengue Vaccine Candidate in Non-human Primates

    Science.gov (United States)

    Strouts, Fiona R.; Popper, Stephen J.; Partidos, Charalambos D.; Stinchcomb, Dan T.; Osorio, Jorge E.; Relman, David A.

    2016-01-01

    Background The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection. Methodology/Principal Findings In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone. Different doses and routes of vaccine administration were used, and viral load and neutralizing antibody titers were measured at different time-points following vaccination. All 30 vaccinated animals developed a neutralizing antibody response to each of the four dengue serotypes, and only 3 of these animals had detectable serum viral RNA after challenge with wild-type dengue virus (DENV), suggesting protection of vaccinated animals to DENV infection. The vaccine induced statistically significant changes in 595 gene transcripts on days 1, 3, 5 and 7 as compared with baseline and placebo-treated animals. Genes involved in the type I interferon (IFN) response, including IFI44, DDX58, MX1 and OASL, exhibited the highest fold-change in transcript abundance, and this response was strongest following double dose and subcutaneous (versus intradermal) vaccine administration. In addition, modules of genes involved in antigen presentation, dendritic cell activation, and T cell activation and signaling were enriched following vaccination. Increased abundance of gene transcripts related to T cell activation on day 5, and the type I IFN response on day 7, were significantly correlated with the development of high neutralizing antibody titers on day 30. Conclusions/Significance These results suggest that early transcriptional responses may be

  19. Early Transcriptional Signatures of the Immune Response to a Live Attenuated Tetravalent Dengue Vaccine Candidate in Non-human Primates.

    Directory of Open Access Journals (Sweden)

    Fiona R Strouts

    2016-05-01

    Full Text Available The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection.In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone. Different doses and routes of vaccine administration were used, and viral load and neutralizing antibody titers were measured at different time-points following vaccination. All 30 vaccinated animals developed a neutralizing antibody response to each of the four dengue serotypes, and only 3 of these animals had detectable serum viral RNA after challenge with wild-type dengue virus (DENV, suggesting protection of vaccinated animals to DENV infection. The vaccine induced statistically significant changes in 595 gene transcripts on days 1, 3, 5 and 7 as compared with baseline and placebo-treated animals. Genes involved in the type I interferon (IFN response, including IFI44, DDX58, MX1 and OASL, exhibited the highest fold-change in transcript abundance, and this response was strongest following double dose and subcutaneous (versus intradermal vaccine administration. In addition, modules of genes involved in antigen presentation, dendritic cell activation, and T cell activation and signaling were enriched following vaccination. Increased abundance of gene transcripts related to T cell activation on day 5, and the type I IFN response on day 7, were significantly correlated with the development of high neutralizing antibody titers on day 30.These results suggest that early transcriptional responses may be predictive of development of adaptive immunity to TDV

  20. Mammary epithelial morphogenesis and early breast cancer. Evidence of involvement of basal components of the RNA Polymerase I transcription machinery.

    Science.gov (United States)

    Rossetti, Stefano; Wierzbicki, Andrzej J; Sacchi, Nicoletta

    2016-09-16

    Upregulation of RNA Polymerase (Pol I)-mediated transcription of rRNA and increased ribogenesis are hallmarks of breast cancer. According to several datasets, including The Cancer Genome Atlas (TCGA), amplification/upregulation of genes encoding for basal components of the Pol I transcriptional machinery is frequent at different breast cancer stages. Here we show that knock down of the RNA polymerase I-specific transcription initiation factor RRN3 (TIF-IA) in breast cancer cells is sufficient to reduce rRNA synthesis and inhibit cell proliferation, and second that stable ectopic expression of RRN3 in human mammary epithelial (HME1) cells, by increasing rRNA transcription, confers increased sensitivity to the anti-proliferative effects of a selective Pol I inhibitor. Further, RRN3-overexpressing HME1 cells, when grown in in vitro 3-dimensional (3D) culture, develop into morphologically aberrant acinar structures lacking a lumen and filled with proliferative cells, thus acquiring a morphology resembling in situ ductal breast cancer lesions (DCIS). Consequently, interference with RRN3 control of Pol I transcription seems capable of both compromising mammary epithelial morphogenetic processes at early breast cancer stages, and driving breast cancer progression by fostering proliferation.

  1. S1P-Yap1 signaling regulates endoderm formation required for cardiac precursor cell migration in zebrafish.

    Science.gov (United States)

    Fukui, Hajime; Terai, Kenta; Nakajima, Hiroyuki; Chiba, Ayano; Fukuhara, Shigetomo; Mochizuki, Naoki

    2014-10-13

    To form the primary heart tube in zebrafish, bilateral cardiac precursor cells (CPCs) migrate toward the midline beneath the endoderm. Mutants lacking endoderm and fish with defective sphingosine 1-phosphate (S1P) signaling exhibit cardia bifida. Endoderm defects lead to the lack of foothold for the CPCs, whereas the cause of cardia bifida in S1P signaling mutants remains unclear. Here we show that S1P signaling regulates CPC migration through Yes-associated protein 1 (Yap1)-dependent endoderm survival. Cardia bifida seen in spns2 (S1P transporter) morphants and s1pr2 (S1P receptor-2) morphants could be rescued by endodermal expression of nuclear localized form of yap1. yap1 morphants had decreased expression of the Yap1/Tead target connective tissue growth factor a (Ctgfa) and consequently increased endodermal cell apoptosis. Consistently, ctgfa morphants showed defects of the endodermal sheet and cardia bifida. Collectively, we show that S1pr2/Yap1-regulated ctgfa expression is essential for the proper endoderm formation required for CPC migration.

  2. Cryptic Transcription and Early Termination in the Control of Gene Expression

    Directory of Open Access Journals (Sweden)

    Jessie Colin

    2011-01-01

    Full Text Available Recent studies on yeast transcriptome have revealed the presence of a large set of RNA polymerase II transcripts mapping to intergenic and antisense regions or overlapping canonical genes. Most of these ncRNAs (ncRNAs are subject to termination by the Nrd1-dependent pathway and rapid degradation by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs. CUTs are often considered as by-products of transcriptional noise, but in an increasing number of cases they play a central role in the control of gene expression. Regulatory mechanisms involving expression of a CUT are diverse and include attenuation, transcriptional interference, and alternative transcription start site choice. This review focuses on the impact of cryptic transcription on gene expression, describes the role of the Nrd1-complex as the main actor in preventing nonfunctional and potentially harmful transcription, and details a few systems where expression of a CUT has an essential regulatory function. We also summarize the most recent studies concerning other types of ncRNAs and their possible role in regulation.

  3. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg

    Directory of Open Access Journals (Sweden)

    Claudio Sette

    2011-04-01

    Full Text Available Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology.

  4. A role for the H4 subunit of vaccinia RNA polymerase in transcription initiation at a viral early promoter.

    Science.gov (United States)

    Deng, L; Shuman, S

    1994-05-13

    The vaccinia virus H4 gene encodes an essential subunit of the DNA-dependent RNA polymerase holoenzyme encapsidated within virus particles (Ahn, B., and Moss, B. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 3536-3540; Kane, E. M., and Shuman, S. (1992) J. Virol. 66, 5752-5762). The role of this protein in transcription of viral early genes was revealed by the effects of affinity-purified anti-H4 antibody on discrete phases of the early transcription reaction in vitro. Anti-H4 specifically prevented the synthesis of a 21-nucleotide nascent RNA chain but had no impact on elongation of the 21-mer RNA by preassembled ternary complexes. Inhibition of initiation but not elongation was also observed with affinity-purified anti-D6 antibody directed against the 70-kDa subunit of the vaccinia early transcription initiation factor (ETF). Native gel mobility-shift assays showed that anti-H4 prevented the NTP-dependent recruitment of RNA polymerase to the preinitiation complex of ETF bound at the early promoter. Two species of ternary complexes could be resolved by native gel electrophoresis. Addition of anti-H4 to preformed complexes elicited a supershift of both ternary species but not of the preinitiation complex. Supeshift by anti-D6 revealed that the more rapidly migrating species of ternary complex did not contain immunoreactive ETF. Loss of ETF from the ternary complex was time-dependent. Thus, whereas the H4 protein was a stable constituent of the elongation complex, ETF was dissociable. We suggest that H4 functions as a molecular bridge to ETF and thereby allows specific recognition of early promoters by the core RNA polymerase. H4 is unlike bacterial sigma factor in that it remains bound to polymerase after the elongation complex is established.

  5. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes.

    Science.gov (United States)

    Rosario, Christopher J; Tan, Ming

    2012-06-01

    The obligate intracellular bacterium Chlamydia has an unusual developmental cycle in which there is conversion between two forms that are specialized for either intracellular replication or propagation of the infection to a new host cell. Expression of late chlamydial genes is upregulated during conversion from the replicating to the infectious form, but the mechanism for this temporal regulation is unknown. We found that EUO, which is expressed from an early gene, binds to two sites upstream of the late operon omcAB, but only the downstream site was necessary for transcriptional repression. Using gel shift and in vitro transcription assays we showed that EUO specifically bound and repressed promoters of Chlamydia trachomatis late genes, but not early or mid genes. These findings support a role for EUO as a temporal repressor that negatively regulates late chlamydial genes and prevents their premature expression. The basis of this specificity is the ability of EUO to selectively bind promoter regions of late genes, which would prevent their transcription by RNA polymerase. Thus, we propose that EUO is a master regulator that prevents the terminal differentiation of the replicating form of chlamydiae into the infectious form until sufficient rounds of replication have occurred.

  6. Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley.

    Science.gov (United States)

    Cormack, Robert S; Eulgem, Thomas; Rushton, Paul J; Köchner, Petra; Hahlbrock, Klaus; Somssich, Imre E

    2002-06-07

    Two new WRKY transcription factors from parsley (Petroselinum crispum), WRKY4 and WRKY5, were isolated using the yeast one-hybrid system. In yeast, both proteins interacted sequence-specifically with W boxes (TTGACC) and activated transcription. They appear to contain functional leucine zippers, which increase their affinities for W boxes. Co-transfection experiments in parsley protoplasts confirmed their in vivo-binding specificity for W boxes. Elicitor-mediated expression of the WRKY5 gene, the first parsley member of the group III family of WRKY proteins, is extremely transient, with high mRNA levels occurring within a time window of less than 1 h. WRKY4 and -5, as well as the previously identified parsley transcription factors WRKY1 and -3, are encoded by immediate early elicitor-activated genes that differ in their sensitivity to cycloheximide (CHX) and their activation kinetics. We propose that a number of the pathways activated during the plant defense response require the induction of several distinct WRKY transcription factors with different DNA binding-site preferences to fine-tune the activation of a wide spectrum of target genes.

  7. Development of MAPC derived induced endodermal progenitors : Generation of pancreatic beta cells and hepatocytes

    NARCIS (Netherlands)

    Sambathkumar, Rangarajan

    2017-01-01

    Multipotent Adult Progenitor Cells (MAPCs) are one potential stem cell source to generate functional hepatocytes or β-cells. However, human MAPCs have less plasticity than pluripotent stem cells (PSCs), as their ability to generate endodermal cells is not robust. Here we studied the role of 14

  8. Prostaglandin E2 Regulates Liver versus Pancreas Cell Fate Decisions and Endodermal Outgrowth

    Science.gov (United States)

    Nissim, Sahar; Sherwood, Richard I.; Wucherpfennig, Julia; Saunders, Diane; Harris, James M.; Esain, Virginie; Carroll, Kelli J.; Frechette, Gregory M.; Kim, Andrew J.; Hwang, Katie L.; Cutting, Claire C.; Elledge, Susanna; North, Trista E.; Goessling, Wolfram

    2014-01-01

    SUMMARY The liver and pancreas arise from common endodermal progenitors. How these distinct cell fates are specified is poorly understood. Here, we describe prostaglandin E2 (PGE2) as a regulator of endodermal fate specification during development. Modulating PGE2 activity has opposing effects on liver-versus-pancreas specification in zebrafish embryos as well as mouse endodermal progenitors. The PGE2 synthetic enzyme cox2a and receptor ep2a are patterned such that cells closest to PGE2 synthesis acquire a liver fate whereas more distant cells acquire a pancreas fate. PGE2 interacts with the bmp2b pathway to regulate fate specification. At later stages of development, PGE2 acting via the ep4a receptor promotes outgrowth of both the liver and pancreas. PGE2 remains important for adult organ growth, as it modulates liver regeneration. This work provides in vivo evidence that PGE2 may act as a morphogen to regulate cell fate decisions and outgrowth of the embryonic endodermal anlagen. PMID:24530296

  9. Differentiation of mouse embryonic stem cells into endoderm without embryoid body formation.

    Directory of Open Access Journals (Sweden)

    Peter T W Kim

    Full Text Available Pluripotent embryonic stem cells hold a great promise as an unlimited source of tissue for treatment of chronic diseases such as Type 1 diabetes. Herein, we describe a protocol using all-trans-retinoic acid, basic fibroblast growth factor and dibutyryl cAMP (DBcAMP in the absence of embryoid body formation, for differentiation of murine embryonic stem cells into definitive endoderm that may serve as pancreatic precursors. The produced cells were analyzed by quantitative PCR, immunohistochemistry and static insulin release assay for markers of trilaminar embryo, and pancreas. Differentiated cells displayed increased Sox17 and Foxa2 expression consistent with definitive endoderm production. There was minimal production of Sox7, an extraembryonic endoderm marker, and Oct4, a marker of pluripotency. There was minimal mesoderm or neuroectoderm formation based on expression levels of the markers brachyury and Sox1, respectively. Various assays revealed that the cell clusters generated by this protocol express markers of the pancreatic lineage including insulin I, insulin II, C-peptide, PDX-1, carboxypeptidase E, pan-cytokeratin, amylase, glucagon, PAX6, Ngn3 and Nkx6.1. This protocol using all-trans-retinoic acid, DBcAMP, in the absence of embryoid bodies, generated cells that have features of definitive endoderm that may serve as pancreatic endocrine precursors.

  10. Actions of parathyroid hormone related peptide in mouse parietal endoderm formation

    NARCIS (Netherlands)

    Veltmaat, J.M.

    2001-01-01

    Summary Since about a decade, several reports have strongly suggested a role for parathyroid hormone related peptide (PTHrP) in the formation of parietal endoderm (PE) in the mouse embryo. This thesis is aimed first at elucidating the biological significance of parathyroid hormone related peptide

  11. Characterization of the nutritional endoderm in the direct developing frog Eleutherodactylus coqui.

    Science.gov (United States)

    Karadge, Uma; Elinson, Richard P

    2013-11-01

    Unlike Xenopus laevis, Eleutherodactylus coqui develops without a tadpole. The yolk-rich vegetal region of the embryo forms a transient nutritive tissue, the nutritional endoderm (NE). The definitive endoderm (DE) in E. coqui comes from cells closer to the animal pole in contrast to its vegetal origin in X. laevis. RNA important for initiating the endoderm specification network is absent in presumptive NE cells, raising the question whether signaling occurs in them. We explored the nature of NE and asked how differences between NE and DE cells arise. We identified differences between NE and DE that first become evident at gastrula, when NE cells become multinucleated. Nuclear β-catenin, an essential cofactor of sox 17, important for endoderm formation in X. laevis, is present in NE and DE at gastrula but remains in NE long after it is not seen in DE. We cloned E. coqui homologs of TGFβs activin b and derriere and provide evidence for their maternal expression. We also detected activin b and derriere RNAs in NE at gastrula and show that NE possesses some mesoderm-inducing activity, but it is delayed with respect to DE. Our findings indicate that altered development of NE begins at gastrula. RNAs important for mesendoderm induction and some mesoderm-inducing activity are present in NE.

  12. Wound-associated macrophages control collagen 1α2 transcription during the early stages of skin wound healing.

    Science.gov (United States)

    Rodero, Mathieu P; Legrand, Julien M D; Bou-Gharios, George; Khosrotehrani, Kiarash

    2013-02-01

    Wound-associated fibrosis is important to provide tensile strength upon wound healing but at the same time is detrimental to proper tissue regeneration. To date, there is no clear evidence of the role of macrophages and their subpopulations in the control of the kinetics of collagen production during wound healing. To evaluate in vivo the contribution of macrophages in collagen transcription, we depleted macrophages after wounding luciferase reporter mice of the collagen 1 alpha 2 (Col 1α2) promoter activity. Our data reveal that Col 1α2 starts to be transcribed at D2 after wounding, reaching a plateau after 7 days. Sustained macrophage depletion significantly reduced collagen 1α2 transcription from D4, indicating that the control of fibrosis by macrophages occurs during the early stages of the wound healing process. In conclusion, our results demonstrate an important role of wound macrophages in the control of collagen production during wound healing.

  13. Transcriptional activation of immediate-early gene ETR101 by human T-cell leukaemia virus type I Tax

    DEFF Research Database (Denmark)

    Chen, Li; Ma, Shiliang; Li, Bo

    2003-01-01

    Human T-cell leukaemia virus type I (HTLV-I) Tax regulates viral and cellular gene expression through interactions with multiple cellular transcription pathways. This study describes the finding of immediate-early gene ETR101 expression in HTLV-I-infected cells and its regulation by Tax. ETR101...... was persistently expressed in HTLV-I-infected cells but not in HTLV-I uninfected cells. Expression of ETR101 was dependent upon Tax expression in the inducible Tax-expressing cell line JPX-9 and also in Jurkat cells transiently transfected with Tax-expressing vectors. Tax transactivated the ETR101 gene promoter......-DNA complex in HTLV-I-infected cell lines. EMSA with specific antibodies confirmed that the CREB transcription factor was responsible for formation of this specific protein-DNA complex. These results suggested that Tax directly transactivated ETR101 gene expression, mainly through a CRE sequence via the CREB...

  14. Regulation of early T-lineage gene expression and developmental progression by the progenitor cell transcription factor PU.1.

    Science.gov (United States)

    Champhekar, Ameya; Damle, Sagar S; Freedman, George; Carotta, Sebastian; Nutt, Stephen L; Rothenberg, Ellen V

    2015-04-15

    The ETS family transcription factor PU.1 is essential for the development of several blood lineages, including T cells, but its function in intrathymic T-cell precursors has been poorly defined. In the thymus, high PU.1 expression persists through multiple cell divisions in early stages but then falls sharply during T-cell lineage commitment. PU.1 silencing is critical for T-cell commitment, but it has remained unknown how PU.1 activities could contribute positively to T-cell development. Here we employed conditional knockout and modified antagonist PU.1 constructs to perturb PU.1 function stage-specifically in early T cells. We show that PU.1 is needed for full proliferation, restricting access to some non-T fates, and controlling the timing of T-cell developmental progression such that removal or antagonism of endogenous PU.1 allows precocious access to T-cell differentiation. Dominant-negative effects reveal that this repression by PU.1 is mediated indirectly. Genome-wide transcriptome analysis identifies novel targets of PU.1 positive and negative regulation affecting progenitor cell signaling and cell biology and indicating distinct regulatory effects on different subsets of progenitor cell transcription factors. Thus, in addition to supporting early T-cell proliferation, PU.1 regulates the timing of activation of the core T-lineage developmental program.

  15. A common class of transcripts with 5′-intron depletion, distinct early coding sequence features, and N1-methyladenosine modification

    Science.gov (United States)

    Cenik, Can; Chua, Hon Nian; Singh, Guramrit; Akef, Abdalla; Snyder, Michael P.; Palazzo, Alexander F.

    2017-01-01

    Introns are found in 5′ untranslated regions (5′UTRs) for 35% of all human transcripts. These 5′UTR introns are not randomly distributed: Genes that encode secreted, membrane-bound and mitochondrial proteins are less likely to have them. Curiously, transcripts lacking 5′UTR introns tend to harbor specific RNA sequence elements in their early coding regions. To model and understand the connection between coding-region sequence and 5′UTR intron status, we developed a classifier that can predict 5′UTR intron status with >80% accuracy using only sequence features in the early coding region. Thus, the classifier identifies transcripts with 5′ proximal-intron-minus-like-coding regions (“5IM” transcripts). Unexpectedly, we found that the early coding sequence features defining 5IM transcripts are widespread, appearing in 21% of all human RefSeq transcripts. The 5IM class of transcripts is enriched for non-AUG start codons, more extensive secondary structure both preceding the start codon and near the 5′ cap, greater dependence on eIF4E for translation, and association with ER-proximal ribosomes. 5IM transcripts are bound by the exon junction complex (EJC) at noncanonical 5′ proximal positions. Finally, N1-methyladenosines are specifically enriched in the early coding regions of 5IM transcripts. Taken together, our analyses point to the existence of a distinct 5IM class comprising ∼20% of human transcripts. This class is defined by depletion of 5′ proximal introns, presence of specific RNA sequence features associated with low translation efficiency, N1-methyladenosines in the early coding region, and enrichment for noncanonical binding by the EJC. PMID:27994090

  16. Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/β-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria: Implications for the evolution of gastrulation

    Directory of Open Access Journals (Sweden)

    Kumburegama Shalika

    2011-01-01

    Full Text Available Abstract Background Gastrulation is a uniquely metazoan character, and its genesis was arguably the key step that enabled the remarkable diversification within this clade. The process of gastrulation involves two tightly coupled events during embryogenesis of most metazoans. Morphogenesis produces a distinct internal epithelial layer in the embryo, and this epithelium becomes segregated as an endoderm/endomesodermal germ layer through the activation of a specific gene regulatory program. The developmental mechanisms that induced archenteron formation and led to the segregation of germ layers during metazoan evolution are unknown. But an increased understanding of development in early diverging taxa at the base of the metazoan tree may provide insights into the origins of these developmental mechanisms. Results In the anthozoan cnidarian Nematostella vectensis, initial archenteron formation begins with bottle cell-induced buckling of the blastula epithelium at the animal pole. Here, we show that bottle cell formation and initial gut invagination in Nematostella requires NvStrabismus (NvStbm, a maternally-expressed core component of the Wnt/Planar Cell Polarity (PCP pathway. The NvStbm protein is localized to the animal pole of the zygote, remains asymmetrically expressed through the cleavage stages, and becomes restricted to the apical side of invaginating bottle cells at the blastopore. Antisense morpholino-mediated NvStbm-knockdown blocks bottle cell formation and initial archenteron invagination, but it has no effect on Wnt/ß-catenin signaling-mediated endoderm cell fate specification. Conversely, selectively blocking Wnt/ß-catenin signaling inhibits endoderm cell fate specification but does not affect bottle cell formation and initial archenteron invagination. Conclusions Our results demonstrate that Wnt/PCP-mediated initial archenteron invagination can be uncoupled from Wnt/ß-catenin-mediated endoderm cell fate specification in

  17. PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2.

    Science.gov (United States)

    Zheng, Sika; Gray, Erin E; Chawla, Geetanjali; Porse, Bo Torben; O'Dell, Thomas J; Black, Douglas L

    2012-01-15

    Postsynaptic density protein 95 (PSD-95) is essential for synaptic maturation and plasticity. Although its synaptic regulation has been widely studied, the control of PSD-95 cellular expression is not understood. We found that Psd-95 was controlled post-transcriptionally during neural development. Psd-95 was transcribed early in mouse embryonic brain, but most of its product transcripts were degraded. The polypyrimidine tract binding proteins PTBP1 and PTBP2 repressed Psd-95 (also known as Dlg4) exon 18 splicing, leading to premature translation termination and nonsense-mediated mRNA decay. The loss of first PTBP1 and then of PTBP2 during embryonic development allowed splicing of exon 18 and expression of PSD-95 late in neuronal maturation. Re-expression of PTBP1 or PTBP2 in differentiated neurons inhibited PSD-95 expression and impaired the development of glutamatergic synapses. Thus, expression of PSD-95 during early neural development is controlled at the RNA level by two PTB proteins whose sequential downregulation is necessary for synapse maturation.

  18. Omics-Based Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes during Early Infestation by Small Brown Planthopper

    Directory of Open Access Journals (Sweden)

    Weilin Zhang

    2015-12-01

    Full Text Available The small brown planthopper (SBPH is one of the destructive pests of rice. Although different biochemical pathways that are involved in rice responding to planthopper infestation have been documented, it is unclear which individual metabolic pathways are responsive to planthopper infestation. In this study, an omics-based comparative transcriptional profiling of two contrasting rice genotypes, an SBPH-resistant and an SBPH-susceptible rice line, was assessed for rice individual metabolic pathways responsive to SBPH infestation. When exposed to SBPH, 166 metabolic pathways were differentially regulated; of these, more than one-third of metabolic pathways displayed similar change patterns between these two contrasting rice genotypes; the difference of change pattern between these two contrasting rice genotypes mostly lies in biosynthetic pathways and the obvious difference of change pattern lies in energy metabolism pathways. Combining the Pathway Tools Omics Viewer with the web tool Venn, 21 and 6 metabolic pathways which potentially associated with SBPH resistance and susceptibility, respectively were identified. This study presents an omics-based comparative transcriptional profiling of SBPH-resistant and SBPH-susceptible rice plants during early infestation by SBPH, which will be very informative in studying rice-insect interaction. The results will provide insight into how rice plants respond to early infestation by SBPH from the biochemical pathways perspective.

  19. Role of the plasticity-associated transcription factor zif268 in the early phase of instrumental learning.

    Directory of Open Access Journals (Sweden)

    Matthieu Maroteaux

    Full Text Available Gene transcription is essential for learning, but the precise role of transcription factors that control expression of many other genes in specific learning paradigms is yet poorly understood. Zif268 (Krox24/Egr-1 is a transcription factor and an immediate-early gene associated with memory consolidation and reconsolidation, and induced in the striatum after addictive drugs exposure. In contrast, very little is known about its physiological role at early stages of operant learning. We investigated the role of Zif268 in operant conditioning for food. Zif268 expression was increased in all regions of the dorsal striatum and nucleus accumbens in mice subjected to the first session of operant conditioning. In contrast, Zif268 increase in the dorsomedial caudate-putamen and nucleus accumbens core was not detected in yoked mice passively receiving the food reward. This indicates that Zif268 induction in these structures is linked to experiencing or learning contingency, but not to reward delivery. When the task was learned (5 sessions, Zif268 induction disappeared in the nucleus accumbens and decreased in the medial caudate-putamen, whereas it remained high in the lateral caudate-putamen, previously implicated in habit formation. In transgenic mice expressing green fluorescent protein (GFP in the striatonigral neurons, Zif268 induction occured after the first training session in both GFP-positive and negative neurons indicating an enhanced Zif268 expression in both striatonigral and striatopallidal neurons. Mutant mice lacking Zif268 expression obtained less rewards, but displayed a normal discrimination between reinforced and non-reinforced targets, and an unaltered approach to food delivery box. In addition, their motivation to obtain food rewards, evaluated in a progressive ratio schedule, was blunted. In conclusion, Zif268 participates in the processes underlying performance and motivation to execute food-conditioned instrumental task.

  20. Quantitative models of the mechanisms that control genome-wide patterns of transcription factor binding during early Drosophila development.

    Directory of Open Access Journals (Sweden)

    Tommy Kaplan

    2011-02-01

    Full Text Available Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6-0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription

  1. S1pr2/Gα13 signaling regulates the migration of endocardial precursors by controlling endoderm convergence.

    Science.gov (United States)

    Xie, Huaping; Ye, Ding; Sepich, Diane; Lin, Fang

    2016-06-15

    Formation of the heart tube requires synchronized migration of endocardial and myocardial precursors. Our previous studies indicated that in S1pr2/Gα13-deficient embryos, impaired endoderm convergence disrupted the medial migration of myocardial precursors, resulting in the formation of two myocardial populations. Here we show that endoderm convergence also regulates endocardial migration. In embryos defective for S1pr2/Gα13 signaling, endocardial precursors failed to migrate towards the midline, and the presumptive endocardium surrounded the bilaterally-located myocardial cells rather than being encompassed by them. In vivo imaging of control embryos revealed that, like their myocardial counterparts, endocardial precursors migrated with the converging endoderm, though from a more anterior point, then moved from the dorsal to the ventral side of the endoderm (subduction), and finally migrated posteriorly towards myocardial precursors, ultimately forming the inner layer of the heart tube. In embryos defective for endoderm convergence due to an S1pr2/Gα13 deficiency, both the medial migration and the subduction of endocardial precursors were impaired, and their posterior migration towards the myocardial precursors was premature. This placed them medial to the myocardial populations, physically blocking the medial migration of the myocardial precursors. Furthermore, contact between the endocardial and myocardial precursor populations disrupted the epithelial architecture of the myocardial precursors, and thus their medial migration; in embryos depleted of endocardial cells, the myocardial migration defect was partially rescued. Our data indicate that endoderm convergence regulates the medial migration of endocardial precursors, and that premature association of the endocardial and myocardial populations contributes to myocardial migration defects observed in S1pr2/Gα13-deficient embryos. The demonstration that endoderm convergence regulates the synchronized

  2. Collagen Type I Improves the Differentiation of Human Embryonic Stem Cells towards Definitive Endoderm

    DEFF Research Database (Denmark)

    Rasmussen, Camilla Holzmann; Petersen, Dorthe Roenn; Møller, Jonas Bech

    2015-01-01

    producing beta cells focus on soluble molecules whereas the impact of cell-matrix interactions has been mainly unattended. In this study almost 500 different extracellular matrix protein combinations were screened to systemically identify extracellular matrix proteins that influence differentiation of human...... embryonic stem cells to the definitive endoderm lineage. The percentage of definitive endoderm cells after differentiation on collagen I and fibronectin was >85% and 65%, respectively. The cells on collagen I substrates displayed different morphology and gene expression during differentiation as assessed...... by time lapse studies compared to cells on the other tested substrates. Global gene expression analysis showed that cells differentiated on collagen I were largely similar to cells on fibronectin after completed differentiation. Collectively, the data suggest that collagen I induces a more rapid...

  3. Culture of mouse amniotic fluid-derived cells on irradiated STO feeders results in the generation of primitive endoderm cell lines capable of self-renewal in vitro.

    Science.gov (United States)

    Babic, Aleksandar M; Jang, Sunyoung; Nicolov, Eugenia; Voicu, Horatiu; Luckey, Chance J

    2013-01-01

    The cells present in amniotic fluid (AF) are currently used for prenatal diagnosis of fetal anomalies but are also a potential source of cells for cell therapy. To better characterize putative progenitor cell populations present in AF, we used culture conditions that support self-renewal to determine if these promoted the generation of stable cell lines from AF-derived cells (AFC). Cells isolated from E11.5 mouse were cultured on irradiated STO fibroblast feeder layers in human embryonic germ cell derivation conditions. The cultures grew multicellular epithelial colonies that could be repropagated from single cells. Reverse transcription semiquantitative polymerase chain reaction of established cell lines revealed that they belonged to the extraembryonic endoderm (ExEn) expressing high levels of Gata6, Gata4, Sox17, Foxa2 and Sox7 mRNA. Hierarchical clustering based on the whole transcriptome expression profile of the AFC lines (AFCL) shows significant correlation between transcription profiles of AFCL and blastocyst-derived XEN, an ExEn cell line. In vitro differentiation of AFCL results in the generation of cells expressing albumin and α-fetoprotein (AFP), while intramuscular injection of AFCL into immunodeficient mice produced AFP-positive tumors with primitive endodermal appearance. Hence, E11.5 mouse AF contains cells that efficiently produce XEN lines. These AF-derived XEN lines do not spontaneously differentiate into embryonic-type cells but are phenotypically stable and have the capacity for extensive expansion. The lack of requirement for reprogramming factors to turn AF-derived progenitor cells into stable cell lines capable of massive expansion together with the known ability of ExEn to contribute to embryonic tissue suggests that this cell type may be a candidate for banking for cell therapies. © 2013 S. Karger AG, Basel

  4. Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage

    Science.gov (United States)

    Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino

    2016-01-01

    In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956

  5. Structure of the transcription initiation and termination sequences of seven early genes in the vaccinia virus HindIII D fragment.

    Science.gov (United States)

    Lee-Chen, G J; Bourgeois, N; Davidson, K; Condit, R C; Niles, E G

    1988-03-01

    The vaccinia virus HindIII D fragment is 16,060 bp in length and encodes 13 complete genes [E.G. Niles et al. (1986). Virology 153, 96-112; S. L. Weinrich and D. E. Hruby (1986). Nucleic Acids Res. 14, 3003-3016]. Six of these genes are expressed only at early times after infection and one gene is expressed at both early and late times [G. -J. Lee-Chen and E. G. Niles (1988). Virology 163, 52-63]. Transcript mapping by S1 nuclease protection studies was carried out and compared to the results of primer extension analyses, in order to locate map positions of the 5' termini of each early mRNA. The lengths of the products of in vitro transcription, from DNA templates which possess the transcription start regions of each of the early genes, were determined and compared to the lengths of DNA products generated by S1 nuclease protection and primer extension, in order to demonstrate that the 5' termini identified by S1 mapping and primer extension are due to transcription initiation and not to mRNA processing. For each of the early genes in the HindIII D fragment, transcription starts within 25 nucleotides of the translation initiation codon. The precise location of the 3' termini of each early transcript was identified by S1 nuclease mapping. In all but one case, the 3' ends map within 75 nucleotides of the putative transcription termination signal TTTTTNT [G. Rohrmann, L. Yuen, and B. Moss (1986).

  6. DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos.

    Science.gov (United States)

    Encalada, S E; Martin, P R; Phillips, J B; Lyczak, R; Hamill, D R; Swan, K A; Bowerman, B

    2000-12-15

    In early Caenorhabditis elegans embryos, asymmetric cell divisions produce descendants with asynchronous cell cycle times. To investigate the relationship between cell cycle regulation and pattern formation, we have identified a collection of embryonic-lethal mutants in which cell divisions are delayed and cell fate patterns are abnormal. In div (for division delayed) mutant embryos, embryonic cell divisions are delayed but remain asynchronous. Some div mutants produce well-differentiated cell types, but they frequently lack the endodermal and mesodermal cell fates normally specified by a transcriptional activator called SKN-1. We show that mislocalization of PIE-1, a negative regulator of SKN-1, prevents the specification of endoderm and mesoderm in div-1 mutant embryos. In addition to defects in the normally asymmetric distribution of PIE-1, div mutants also exhibit other losses of asymmetry during early embryonic cleavages. The daughters of normally asymmetric divisions are nearly equal in size, and cytoplasmic P-granules are not properly localized to germline precursors in div mutant embryos. Thus the proper timing of cell division appears to be important for multiple aspects of asymmetric cell division. One div gene, div-1, encodes the B subunit of the DNA polymerase alpha-primase complex. Reducing the function of other DNA replication genes also results in a delayed division phenotype and embryonic lethality. Thus the other div genes we have identified are likely to encode additional components of the DNA replication machinery in C. elegans.

  7. Essential function of the transcription factor Rax in the early patterning of the mammalian hypothalamus.

    Science.gov (United States)

    Orquera, Daniela P; Nasif, Sofia; Low, Malcolm J; Rubinstein, Marcelo; de Souza, Flávio S J

    2016-08-01

    The hypothalamus is a region of the anterior forebrain that controls basic aspects of vertebrate physiology, but the genes involved in its development are still poorly understood. Here, we investigate the function of the homeobox gene Rax/Rx in early hypothalamic development using a conditional targeted inactivation strategy in the mouse. We found that lack of Rax expression prior to embryonic day 8.5 (E8.5) caused a general underdevelopment of the hypothalamic neuroepithelium, while inactivation at later timepoints had little effect. The early absence of Rax impaired neurogenesis and prevented the expression of molecular markers of the dorsomedial hypothalamus, including neuropeptides Proopiomelanocortin and Somatostatin. Interestingly, the expression domains of genes expressed in the ventromedial hypothalamus and infundibulum invaded dorsal hypothalamic territory, showing that Rax is needed for the proper dorsoventral patterning of the developing medial hypothalamus. The phenotypes caused by the early loss of Rax are similar to those of eliminating the expression of the morphogen Sonic hedgehog (Shh) specifically from the hypothalamus. Consistent with this similarity in phenotypes, we observed that Shh and Rax are coexpressed in the rostral forebrain at late head fold stages and that loss of Rax caused a downregulation of Shh expression in the dorsomedial portion of the hypothalamus. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Transcriptional profiling of suberoylanilide hydroxamic acid (SAHA regulated genes in mineralizing dental pulp cells at early and late time points

    Directory of Open Access Journals (Sweden)

    Henry F. Duncan

    2015-09-01

    Full Text Available Dental pulp tissue can be damaged by a range of irritants, however, if the irritation is removed and/or the tooth is adequately restored, pulp regeneration is possible (Mjör and Tronstad, 1974 [1]. At present, dental restorative materials limit healing by impairing mineralization and repair processes and as a result new biologically-based materials are being developed (Ferracane et al., 2010 [2]. Previous studies have highlighted the benefit of epigenetic modification by histone deacetylase inhibitor (HDACi application to dental pulp cells (DPCs, which induces changes to chromatin architecture, promoting gene expression and cellular-reparative events (Duncan et al., 2013 [3]; Paino et al., 2014 [4]. In this study a genome-wide transcription profiling in epigenetically-modified mineralizing primary DPC cultures was performed, at relatively early and late time-points, to identify differentially regulated transcripts that may provide novel therapeutic targets for use in restorative dentistry. Here we provide detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO: GSE67175.

  9. Single-Cell Transcript Profiles Reveal Multilineage Priming in Early Progenitors Derived from Lgr5+ Intestinal Stem Cells

    Directory of Open Access Journals (Sweden)

    Tae-Hee Kim

    2016-08-01

    Full Text Available Lgr5+ intestinal stem cells (ISCs drive epithelial self-renewal, and their immediate progeny—intestinal bipotential progenitors—produce absorptive and secretory lineages via lateral inhibition. To define features of early transit from the ISC compartment, we used a microfluidics approach to measure selected stem- and lineage-specific transcripts in single Lgr5+ cells. We identified two distinct cell populations, one that expresses known ISC markers and a second, abundant population that simultaneously expresses markers of stem and mature absorptive and secretory cells. Single-molecule mRNA in situ hybridization and immunofluorescence verified expression of lineage-restricted genes in a subset of Lgr5+ cells in vivo. Transcriptional network analysis revealed that one group of Lgr5+ cells arises from the other and displays characteristics expected of bipotential progenitors, including activation of Notch ligand and cell-cycle-inhibitor genes. These findings define the earliest steps in ISC differentiation and reveal multilineage gene priming as a fundamental property of the process.

  10. Interferon-gamma enhances tumor necrosis factor-alpha production by inhibiting early phase interleukin-10 transcription.

    Science.gov (United States)

    Shakhov, A N; Woerly, G; Car, B D; Ryffel, B

    1996-12-01

    The ability of cytokine synthesis inhibitory factor or interleukin-10 (IL-10) and interferon-gamma (IFN-gamma) to modulate the production of tumor necrosis factor (TNF-alpha) induced by lipopolysaccharide (LPS) was examined in mouse bone marrow-derived macrophages (BMDM). IFN-gamma profoundly enhances LPS-stimulated TNF-alpha production, whereas IL-10 is markedly inhibitory, demonstrating the opposing effects of IFN-gamma and IL-10 on BMDM. Early neutralization of endogenously produced, LPS-stimulated IL-10 markedly enhanced short term TNF-alpha production, an effect further amplified by the absence of IFN-gamma priming. The regulatory effects of IFN-gamma and IL-10 apparently occurred at the translational (or post-translational) level, with TNF-alpha mRNA steady-state levels remaining unchanged. Furthermore, IFN-gamma exerts its enhancing effect on TNF synthesis by the transcriptional inhibition of IL-10. This in vitro finding was also confirmed in vivo. In the absence of LPS, IFN-gamma was not capable of inducing TNF-alpha production in BMDM, indicating that LPS or other signals are necessary for transcriptional activation. Reduced but significant TNF-alpha production in LPS-injected IFN-gamma receptor -/- mice suggests that IFN-gamma is not an absolute requirement and that other cytokines or cell types contribute in a secondary fashion to the priming of LPS-induced TNF-alpha production in vivo.

  11. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    2010-01-01

    the mucosal surfaces of all epithelial linings by physical hindrance or specific binding of pathogenic agents including virus and bacteria. It has been shown that the presence and composition of the microbiota is directly involved in the regulation of gene transcription in the intestinal epithelium...... expression of all mucin genes are dependent on the presence of microorganisms and whether specific bacteria are capable of regulating mucus production in early life remains, however, to be established. The very first period after birth is believed to be vulnerable for establishment of the gut microbiota...... animal groups and the two different days tested, which will be presented at the meeting. This is the first study to examine effects of different colonizing bacteria on mucus related gene expression levels in new born mice. These results may thus improve our understanding of the complex interplay between...

  12. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    the mucosal surfaces of all epithelial linings by physical hindrance or specific binding of pathogenic agents including virus and bacteria. It has been shown that the presence and composition of the microbiota is directly involved in the regulation of gene transcription in the intestinal epithelium...... expression of all mucin genes are dependent on the presence of microorganisms and whether specific bacteria are capable of regulating mucus production in early life remains, however, to be established. The very first period after birth is believed to be vulnerable for establishment of the gut microbiota...... animal groups and the two different days tested, which will be presented at the meeting. This is the first study to examine effects of different colonizing bacteria on mucus related gene expression levels in new born mice. These results may thus improve our understanding of the complex interplay between...

  13. Zebrafish Plzf transcription factors enhance early type I IFN response induced by two non-enveloped RNA viruses.

    Science.gov (United States)

    Aleksejeva, E; Houel, A; Briolat, V; Levraud, J-P; Langevin, C; Boudinot, P

    2016-04-01

    The BTB-POZ transcription factor Promyelocytic Leukemia Zinc Finger (PLZF, or ZBTB16) has been recently identified as a major factor regulating the induction of a subset of Interferon stimulated genes in human and mouse. We show that the two co-orthologues of PLZF found in zebrafish show distinct expression patterns, especially in larvae. Although zbtb16a/plzfa and zbtb16b/plzfb are not modulated by IFN produced during viral infection, their over-expression increases the level of the early type I IFN response, at a critical phase in the race between the virus and the host response. The effect of Plzfb on IFN induction was also detectable after cell infection by different non-enveloped RNA viruses, but not after infection by the rhabdovirus SVCV. Our findings indicate that plzf implication in the regulation of type I IFN responses is conserved across vertebrates, but at multiple levels of the pathway and through different mechanisms.

  14. Transcriptional activation of immediate-early gene ETR101 by human T-cell leukaemia virus type I Tax

    DEFF Research Database (Denmark)

    Chen, Li; Ma, Shiliang; Li, Bo;

    2003-01-01

    Human T-cell leukaemia virus type I (HTLV-I) Tax regulates viral and cellular gene expression through interactions with multiple cellular transcription pathways. This study describes the finding of immediate-early gene ETR101 expression in HTLV-I-infected cells and its regulation by Tax. ETR101...... was persistently expressed in HTLV-I-infected cells but not in HTLV-I uninfected cells. Expression of ETR101 was dependent upon Tax expression in the inducible Tax-expressing cell line JPX-9 and also in Jurkat cells transiently transfected with Tax-expressing vectors. Tax transactivated the ETR101 gene promoter...... in a transient transfection assay. A series of deletion and mutation analyses of the ETR101 gene promoter indicated that a 35 bp region immediately upstream of the TATA-box sequence, which contains a consensus cAMP response element (CRE) and a G+C-rich sequence, is the critical responsive element for Tax...

  15. Early cardiac failure in a child with Becker muscular dystrophy is due to an abnormally low amount of dystrophin transcript lacking exon 13.

    Science.gov (United States)

    Ishigaki, C; Patria, S Y; Nishio, H; Yoshioka, A; Matsuo, M

    1997-12-01

    Two Japanese brothers with Becker muscular dystrophy were shown by polymerase chain reaction (PCR) and cDNA sequence analysis to produce a dystrophin gene transcript lacking a single exon: that is, number 13. Despite having the same deletion mutation, the brothers showed clearly different clinical phenotypes: the younger brother developed cardiac failure at the age of nine, while the elder brother was asymptomatic. As alternative splicing was not responsible for this clinical difference, the amount of dystrophin transcript was examined by using reverse transcription semi-nested and parallel PCR. The results showed that the amount of the dystrophin transcript in the younger brother was 20% of that of the elder brother. This finding suggested that lesser amount of dystrophin transcript in the younger brother was responsible for the early onset of cardiac failure. This would represent a novel molecular mechanism for dystrophinopathy.

  16. Multiple ribosomal proteins are expressed at high levels in developing zebrafish endoderm and are required for normal exocrine pancreas development.

    Science.gov (United States)

    Provost, Elayne; Weier, Christopher A; Leach, Steven D

    2013-06-01

    Ribosomal protein L (rpl) genes are essential for assembly of the 60S subunit of the eukaryotic ribosome and may also carry out additional extra-ribosomal functions. We have identified a common expression pattern for rpl genes in developing zebrafish larvae. After initially widespread expression in early embryos, the expression of multiple rpl genes becomes increasingly restricted to the endoderm. With respect to the pancreas, rpl genes are highly expressed in ptf1a-expressing pancreatic progenitors at 48 hpf, suggesting possible functional roles in pancreatic morphogenesis and/or differentiation. Utilizing two available mutant lines, rpl23a(hi2582) and rpl6(hi3655b), we found that ptf1a-expressing pancreatic progenitors fail to properly expand in embryos homozygous for either of these genes. In addition to these durable homozygous phenotypes, we also demonstrated recoverable delays in ptf1a-expressing pancreatic progenitor expansion in rpl23a(hi2582) and rpl6(hi3655b) heterozygotes. Disruptions in ribosome assembly are generally understood to initiate a p53-dependent cellular stress response. However, concomitant p53 knockdown was unable to rescue normal pancreatic progenitor expansion in either rpl23a(hi2582) or rpl6(hi3655b) mutant embryos, suggesting required and p53-independent roles for rpl23a and rpl6 in pancreas development.

  17. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Directory of Open Access Journals (Sweden)

    Stephanie M Rainey

    2016-04-01

    Full Text Available The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus. Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to

  18. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Science.gov (United States)

    Rainey, Stephanie M; Martinez, Julien; McFarlane, Melanie; Juneja, Punita; Sarkies, Peter; Lulla, Aleksei; Schnettler, Esther; Varjak, Margus; Merits, Andres; Miska, Eric A; Jiggins, Francis M; Kohl, Alain

    2016-04-01

    The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus). Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs) have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to an induced

  19. Uncovering early response of gene regulatory networks in ES cells by systematic induction of transcription factors

    Science.gov (United States)

    Nishiyama, Akira; Xin, Li; Sharov, Alexei A.; Thomas, Marshall; Mowrer, Gregory; Meyers, Emily; Piao, Yulan; Mehta, Samir; Yee, Sarah; Nakatake, Yuhki; Stagg, Carole; Sharova, Lioudmila; Correa-Cerro, Lina S.; Bassey, Uwem; Hoang, Hien; Kim, Eugene; Tapnio, Richard; Qian, Yong; Dudekula, Dawood; Zalzman, Michal; Li, Manxiang; Falco, Geppino; Yang, Hsih-Te; Lee, Sung-Lim; Monti, Manuela; Stanghellini, Ilaria; Islam, Md. Nurul; Nagaraja, Ramaiah; Goldberg, Ilya; Wang, Weidong; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2009-01-01

    SUMMARY To examine transcription factor (TF) network(s), we created mouse ES cell lines, in each of which one of 50 TFs tagged with a FLAG moiety is inserted into a ubiquitously controllable tetracycline-repressible locus. Of the 50 TFs, Cdx2 provoked the most extensive transcriptome perturbation in ES cells, followed by Esx1, Sox9, Tcf3, Klf4, and Gata3. ChIP-Seq revealed that CDX2 binds to promoters of up-regulated target genes. By contrast, genes down-regulated by CDX2 did not show CDX2 binding, but were enriched with binding sites for POU5F1, SOX2, and NANOG. Genes with binding sites for these core TFs were also down-regulated by the induction of at least 15 other TFs, suggesting a common initial step for ES cell differentiation mediated by interference with the binding of core TFs to their target genes. These ES cell lines provide a fundamental resource to study biological networks in ES cells and mice. PMID:19796622

  20. EARLY RESPONSIVE to DEHYDRATION 15, a new transcription factor that integrates stress signaling pathways.

    Science.gov (United States)

    Alves, Murilo S; Fontes, Elizabeth P B; Fietto, Luciano G

    2011-12-01

    The Early Responsive to Dehydration (ERD) genes are defined as those genes that are rapidly activated during drought stress. The encoded proteins show a great structural and functional diversity, with a particular class of proteins acting as connectors of stress response pathways. Recent studies have shown that ERD15 proteins from different species of plants operate in cross-talk among different response pathways. In this mini-review, we show the recent progress on the functional role of this diverse family of proteins and demonstrate that a soybean ERD15 homolog can act as a connector in stress response pathways that trigger a programmed cell death signal.

  1. The ectomycorrhizal basidiomycete Hebeloma cylindrosporum undergoes early waves of transcriptional reprogramming prior to symbiotic structures differentiation.

    Science.gov (United States)

    Doré, Jeanne; Kohler, Annegret; Dubost, Audrey; Hundley, Hope; Singan, Vasanth; Peng, Yi; Kuo, Alan; Grigoriev, Igor V; Martin, Francis; Marmeisse, Roland; Gay, Gilles

    2017-03-01

    To clarify the early molecular interaction between ectomycorrhizal partners, we performed a RNA-Seq study of transcriptome reprogramming of the basidiomycete Hebeloma cylindrosporum before symbiotic structure differentiation with Pinus pinaster. Mycorrhiza transcriptome was studied for comparison. By reference to asymbiotic mycelium, 47 and 46 genes were specifically upregulated over fivefold (p ≤ 0.05) upon rhizosphere colonization and root adhesion respectively. Other 45 were upregulated throughout the symbiotic interaction, from rhizosphere colonization to differentiated mycorrhizas, whereas 274 were specifically upregulated in mycorrhizas. Although exoproteome represents 5.6% of H. cylindrosporum proteome, 38.5% of the genes upregulated upon pre-infectious root colonization encoded extracellular proteins. The proportion decreased to 23.5% in mycorrhizas. At all studied time points, mycorrhiza-induced small secreted proteins (MiSSPs), representing potential effectors, were over-represented among upregulated genes. This was also the case for carbohydrate-active enzymes (CAZymes). Several CAZymes were upregulated at all studied stages of the interaction. Consistent with a role in fungal morphogenesis and symbiotic interface differentiation, CAZymes over-expressed before and upon root attachment targeted fungal and both fungal and plant polysaccharides respectively. Different hydrophobins were upregulated upon early root adhesion, in mycorrhizas or throughout interaction. The functional classification of genes upregulated only in mycorrhizas pointed to intense metabolic activity and nutritional exchanges. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress.

    Science.gov (United States)

    Rosic, Nedeljka; Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Ling, Edmund Yew Siang; Edwards, David; Dove, Sophie; Hoegh-Guldberg, Ove

    2014-12-02

    Changes to the environment as a result of human activities can result in a range of impacts on reef building corals that include coral bleaching (reduced concentrations of algal symbionts), decreased coral growth and calcification, and increased incidence of diseases and mortality. Understanding how elevated temperatures and nutrient concentration affect early transcriptional changes in corals and their algal endosymbionts is critically important for evaluating the responses of coral reefs to global changes happening in the environment. Here, we investigated the expression of genes in colonies of the reef-building coral Acropora aspera exposed to short-term sub-lethal levels of thermal (+6°C) and nutrient stress (ammonium-enrichment: 20 μM). The RNA-Seq data provided hundreds of differentially expressed genes (DEGs) corresponding to various stress regimes, with 115 up- and 78 down-regulated genes common to all stress regimes. A list of DEGs included up-regulated coral genes like cytochrome c oxidase and NADH-ubiquinone oxidoreductase and up-regulated photosynthetic genes of algal origin, whereas coral GFP-like fluorescent chromoprotein and sodium/potassium-transporting ATPase showed reduced transcript levels. Taxonomic analyses of the coral holobiont disclosed the dominant presence of transcripts from coral (~70%) and Symbiodinium (~10-12%), as well as ~15-20% of unknown sequences which lacked sequence identity to known genes. Gene ontology analyses revealed enriched pathways, which led to changes in the dynamics of protein networks affecting growth, cellular processes, and energy requirement. In corals with preserved symbiont physiological performance (based on Fv/Fm, photo-pigment and symbiont density), transcriptomic changes and DEGs provided important insight into early stages of the stress response in the coral holobiont. Although there were no signs of coral bleaching after exposure to short-term thermal and nutrient stress conditions, we managed to detect

  3. Wnt/β-catenin signaling cell-autonomously converts non-hepatic endodermal cells to a liver fate

    Directory of Open Access Journals (Sweden)

    Juhoon So

    2012-07-01

    Wnt/β-catenin signaling plays multiple roles in liver development including hepatoblast proliferation and differentiation, hepatocyte differentiation, and liver zonation. A positive role for Wnt/β-catenin signaling in liver specification was recently identified in zebrafish; however, its underlying cellular mechanisms are unknown. Here, we present two cellular mechanisms by which Wnt/β-catenin signaling regulates liver specification. First, using lineage tracing we show that ectopic hepatoblasts, which form in the endoderm posterior to the liver upon activation of Wnt/β-catenin signaling, are derived from the direct conversion of non-hepatic endodermal cells, but not from the posterior migration of hepatoblasts. We found that endodermal cells at the 4–6th somite levels, which normally give rise to the intestinal bulb or intestine, gave rise to hepatoblasts in Wnt8a-overexpressing embryos, and that the distribution of traced endodermal cells in Wnt8a-overexpressing embryos was similar to that in controls. Second, by using an endoderm-restricted cell-transplantation technique and mosaic analysis with transgenic lines that cell-autonomously suppress or activate Wnt/β-catenin signaling upon heat-shock, we show that Wnt/β-catenin signaling acts cell-autonomously in endodermal cells to induce hepatic conversion. Altogether, these data demonstrate that Wnt/β-catenin signaling can induce the fate-change of non-hepatic endodermal cells into a liver fate in a cell-autonomous manner. These findings have potential application to hepatocyte differentiation protocols for the generation of mature hepatocytes from induced pluripotent stem cells, supplying a sufficient amount of hepatocytes for cell-based therapies to treat patients with severe liver diseases.

  4. RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors

    DEFF Research Database (Denmark)

    Thompson, Nancy; Gésina, Emilie; Scheinert, Peter;

    2012-01-01

    Pancreas development is initiated by the specification and expansion of a small group of endodermal cells. Several transcription factors are crucial for progenitor maintenance and expansion, but their interactions and the downstream targets mediating their activity are poorly understood. Among...... those factors, PTF1a, a basic helix-loop-helix (bHLH) transcription factor which controls pancreas exocrine cell differentiation, maintenance, and functionality, is also needed for the early specification of pancreas progenitors. We used RNA profiling and chromatin immunoprecipitation (ChIP) sequencing...... to identify a set of targets in pancreas progenitors. We demonstrate that Mnx1, a gene that is absolutely required in pancreas progenitors, is a major direct target of PTF1a and is regulated by a distant enhancer element. Pdx1, Nkx6.1, and Onecut1 are also direct PTF1a targets whose expression is promoted...

  5. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves

    Science.gov (United States)

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2015-01-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. PMID:25324298

  6. Distinct regulation of activity-dependent transcription of immediate early genes in cultured rat cortical neurons.

    Science.gov (United States)

    Fukuchi, Mamoru; Sanabe, Tomofumi; Watanabe, Toshifumi; Kubota, Takane; Tabuchi, Akiko; Tsuda, Masaaki

    2017-08-26

    The activity-regulated expression of immediate early genes (IEGs) contributes to long-lasting neuronal functions underlying long-term memory. However, their response properties following neuronal activity are unique and remain poorly understood. To address this knowledge gap, here we further investigated the response properties of two representative IEGs, c-fos and brain-derived neurotrophic factor (Bdnf). Treatment of cultured cortical cells with KCl produces a depolarization process that results in the increase of intracellular calcium concentration in a KCl concentration-dependent manner. Consistent with this increase, c-fos expression was induced in a KCl concentration-dependent manner. In contrast, however, Bdnf expression was optimally activated by both 25 and 50 mM concentration of KCl. Similar results were observed when the cells were treated with okadaic acid, which inhibits protein phosphatases and elicits the hyper-phosphorylation of signaling molecules. Thus, Bdnf expression is strictly regulated by a neuronal activity threshold in an all or nothing manner, whereas c-fos expression is activated in a neuronal activity-dependent manner. Our findings also suggest that these differential responses might be due to the presence or absence of a TATA box. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young

    2010-01-25

    Background: The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach.Results: Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters.Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters.Conclusion: Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. 2010 Yun et al; licensee BioMed Central Ltd.

  8. Molecular targets of developmental exposure to bisphenol A in diabesity: a focus on endoderm-derived organs.

    Science.gov (United States)

    Porreca, I; Ulloa-Severino, L; Almeida, P; Cuomo, D; Nardone, A; Falco, G; Mallardo, M; Ambrosino, C

    2017-01-01

    Several studies associate foetal human exposure to bisphenol A (BPA) to metabolic/endocrine diseases, mainly diabesity. They describe the role of BPA in the disruption of pancreatic beta cell, adipocyte and hepatocyte functions. Indeed, the complexity of the diabesity phenotype is due to the involvement of different endoderm-derived organs, all targets of BPA. Here, we analyse this point delineating a picture of different mechanisms of BPA toxicity in endoderm-derived organs leading to diabesity. Moving from epidemiological data, we summarize the in vivo experimental data of the BPA effects on endoderm-derived organs (thyroid, pancreas, liver, gut, prostate and lung) after prenatal exposure. Mainly, we gather molecular data evidencing harmful effects at low-dose exposure, pointing to the risk to human health. Although the fragmentation of molecular data does not allow a clear conclusion to be drawn, the present work indicates that the developmental exposure to BPA represents a risk for endoderm-derived organs development as it deregulates the gene expression from the earliest developmental stages. A more systematic analysis of BPA impact on the transcriptomes of endoderm-derived organs is still missing. Here, we suggest in vitro toxicogenomics approaches as a tool for the identification of common mechanisms of BPA toxicity leading to the diabesity in organs having the same developmental origin.

  9. Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome.

    Science.gov (United States)

    Arrell, D Kent; Niederländer, Nicolas J; Faustino, Randolph S; Behfar, Atta; Terzic, Andre

    2008-02-01

    In the developing embryo, instructive guidance from the ventral endoderm secures cardiac program induction within the anterolateral mesoderm. Endoderm-guided cardiogenesis, however, has yet to be resolved at the proteome level. Here, through cardiopoietic priming of the endoderm with the reprogramming cytokine tumor necrosis factor alpha (TNFalpha), candidate effectors of embryonic stem cell cardiac differentiation were delineated by comparative proteomics. Differential two-dimensional gel electrophoretic mapping revealed that more than 75% of protein species increased >1.5-fold in the TNFalpha-primed versus unprimed endodermal secretome. Protein spot identification by linear ion trap quadrupole (LTQ) tandem mass spectrometry (MS/MS) and validation by shotgun LTQ-Fourier transform MS/MS following multidimensional chromatography mapped 99 unique proteins from 153 spot assignments. A definitive set of 48 secretome proteins was deduced by iterative bioinformatic screening using algorithms for detection of canonical and noncanonical indices of secretion. Protein-protein interaction analysis, in conjunction with respective expression level changes, revealed a nonstochastic TNFalpha-centric secretome network with a scale-free hierarchical architecture. Cardiovascular development was the primary developmental function of the resolved TNFalpha-anchored network. Functional cooperativity of the derived cardioinductive network was validated through direct application of the TNFalpha-primed secretome on embryonic stem cells, potentiating cardiac commitment and sarcomerogenesis. Conversely, inhibition of primary network hubs negated the procardiogenic effects of TNFalpha priming. Thus, proteomic cartography establishes a systems biology framework for the endodermal secretome network guiding stem cell cardiopoiesis.

  10. Changes in glycosphingolipid composition during differentiation of human embryonic stem cells to ectodermal or endodermal lineages.

    Science.gov (United States)

    Liang, Yuh-Jin; Yang, Bei-Chia; Chen, Jin-Mei; Lin, Yu-Hsing; Huang, Chia-Lin; Cheng, Yuan-Yuan; Hsu, Chi-Yen; Khoo, Kay-Hooi; Shen, Chia-Ning; Yu, John

    2011-12-01

    Glycosphingolipids (GSLs) are ubiquitous components of cell membranes that can act as mediators of cell adhesion and signal transduction and can possibly be used as cell type-specific markers. Our previous study indicated that there was a striking switch in the core structures of GSLs during differentiation of human embryonic stem cells (hESCs) into embryoid body (EB), suggesting a close association of GSLs with cell differentiation. In this study, to further clarify if alterations in GSL patterns are correlated with lineage-specific differentiation of hESCs, we analyzed changes in GSLs as hESCs were differentiated into neural progenitors or endodermal cells by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and tandem mass spectrometry (MS/MS) analyses. During hESC differentiation into neural progenitor cells, we found that the core structures of GSLs switched from globo- and lacto- to mostly ganglio-series dominated by GD3. On the other hand, when hESCs were differentiated into endodermal cells, patterns of GSLs totally differed from those observed in EB outgrowth and neural progenitors. The most prominent GSL identified by the MALDI-MS and MS/MS analysis was Gb(4) Ceramide, with no appreciable amount of stage-specific embryonic antigens 3 or 4, or GD3, in endodermal cells. These changes in GSL profiling were accompanied by alterations in the biosynthetic pathways of expressions of key glycosyltransferases. Our findings suggest that changes in GSLs are closely associated with lineage specificity and differentiation of hESCs.

  11. From Definitive Endoderm to Gut-a Process of Growth and Maturation

    DEFF Research Database (Denmark)

    Guiu, Jordi; Jensen, Kim B

    2015-01-01

    The intestine and colon carries out vital functions, and their lifelong maintenance is of the upmost importance. Research over the past decades has carefully addressed bowel function, how it is maintained and begun to unravel how disorders such as cancer and inflammatory bowel disease form....... In contrast, very little is known about the molecular mechanisms that trigger tissue maturation during development. With this review, our aim is to carefully provide a critical appraisal of the literature to give a state-of-the-art view of intestinal development. Starting from definitive endoderm...

  12. Enhanced Differentiation of Human Embryonic Stem Cells Toward Definitive Endoderm on Ultrahigh Aspect Ratio Nanopillars

    DEFF Research Database (Denmark)

    Rasmussen, Camilla Holzmann; Reynolds, Paul M.; Petersen, Dorthe Roenn

    2016-01-01

    Differentiation of human embryonic stem cells is widely studied as a potential unlimited source for cell replacement therapy to treat degenerative diseases such as diabetes. The directed differentiation of human embryonic stem cells relies mainly on soluble factors. Although, some studies have...... of the ultrahigh aspect ratio nanopillars (stiffness can be reduced by 25.000X). It is found that tall nanopillars, yielding softer surfaces, significantly enhance the induction of defi nitive endoderm cells from pluripotent human embryonic stem cells, resulting in more consistent differentiation of a pure...

  13. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Inoue-Toyoda, Maki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Kato, Kohsuke [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp [University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Yoshikawa, Hiroyuki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan)

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  14. Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-induced acute kidney injury.

    Science.gov (United States)

    Panich, Tanaporn; Chancharoenthana, Wiwat; Somparn, Poorichaya; Issara-Amphorn, Jiraphorn; Hirankarn, Nattiya; Leelahavanichkul, Asada

    2017-01-07

    An early sepsis-induced acute kidney injury (sepsis-AKI) biomarker is currently in needed. Urinary neutrophil gelatinase-associated lipocalin (uNGAL) is a candidate of sepsis-AKI biomarker but with different cut-point values. Urinary exosomal activating transcriptional factor 3 (uATF3) has been mentioned as an interesting biomarker. We conducted experiments in mice and a prospective, multicenter study in patients as a proof of concept that urine exosome is an interesting biomarker. An early expression of ATF3 in kidney of CD-1 mice at 6 h after cecal ligation and puncture implied the possibility of uATF3 as an early sepsis-AKI biomarker. Increase serum creatinine (Scr) ≥0.3 mg/dL from the baseline was used as an AKI diagnosis and urine was analyzed for uATF3 and uNGAL. Patients with baseline Scr at admission ≥1.5 mg/dL were excluded. The analysis showed higher Scr, uNGAL and uATF3 in patients with sepsis-AKI in comparison with patients with sepsis-non-AKI and healthy volunteers. A fair correlation, r(2) = 0.47, between uATF3 and uNGAL was showed in sepsis-AKI group with Scr ≥2 mg/dL. To see if uATF3 could be an early sepsis-AKI biomarker, urine sample was collected daily during the first week of the admission. In sepsis-AKI and sepsis-non-AKI groups, uNGAL were 367 ± 43 ng/mL and 183 ± 23 ng/mL, respectively; and uATF3 were 19 ± 4 ng/mL and 1.4 ± 0.8 ng/mL, respectively. With the mean value of uNGAL and uATF3 in sepsis AKI as a cut-off level, AUROC of uNGAL and uATF3 were 64% (95% CI 0.54 to 0.74) and 84% (95% CI 0.77 to 0.91), respectively. Urine exosome is an interesting source of urine biomarker and uATF3 is an interesting sepsis-AKI biomarker.

  15. Genetic Dissection of Ventral Folding Morphogenesis in Mouse: Embryonic Visceral Endoderm-supplied BMP2 Positions Head and Heart

    Science.gov (United States)

    Gavrilov, Svetlana; Lacy, Elizabeth

    2013-01-01

    Ventral folding morphogenesis, a vital morphogenetic process in amniotes, mediates gut endoderm internalization, linear heart tube formation, ventral body wall closure and encasement of the fetus in extraembryonic membranes. Aberrant ventral folding morphogenesis underlies a number of birth defects, such as gastroschisis and ectopia cordis in human and misplacement of head and heart in mouse. Recent cell lineage-specific mouse mutant analyses identified the Bone Morphogenetic Protein (BMP) pathway and Anterior Visceral Endoderm (AVE) as key regulators of anterior ventral folding morphogenesis. Loss of BMP2 expression solely from embryonic visceral endoderm (EmVE) and the AVE blocks formation of foregut invagination, and simultaneously, aberrantly positions the heart anterior/dorsal to the head, suggesting a mechanistic link between foregut and head/heart morphogenesis. PMID:23706163

  16. Resolving Early Signaling Events in T-Cell Activation Leading to IL-2 and FOXP3 Transcription

    Directory of Open Access Journals (Sweden)

    Jeffrey P. Perley

    2014-11-01

    Full Text Available Signal intensity and feedback regulation are known to be major factors in the signaling events stemming from the T-cell receptor (TCR and its various coreceptors, but the exact nature of these relationships remains in question. We present a mathematical model of the complex signaling network involved in T-cell activation with cross-talk between the Erk, calcium, PKC and mTOR signaling pathways. The model parameters are adjusted to fit new and published data on TCR trafficking, Zap70, calcium, Erk and Isignaling. The regulation of the early signaling events by phosphatases, CD45 and SHP1, and the TCR dynamics are critical to determining the behavior of the model. Additional model corroboration is provided through quantitative and qualitative agreement with experimental data collected under different stimulating and knockout conditions. The resulting model is analyzed to investigate how signal intensity and feedback regulation affect TCR- and coreceptor-mediated signal transduction and their downstream transcriptional profiles to predict the outcome for a variety of stimulatory and knockdown experiments. Analysis of the model shows that: (1 SHP1 negative feedback is necessary for preventing hyperactivity in TCR signaling; (2 CD45 is required for TCR signaling, but also partially suppresses it at high expression levels; and (3 elevated FOXP3 and reduced IL-2 signaling, an expression profile often associated with T regulatory cells (Tregs, is observed when the system is subjected to weak TCR and CD28 costimulation or a severe reduction in CD45 activity.

  17. 5'-heterogeneity of glucocorticoid receptor messenger RNA is tissue specific: differential regulation of variant transcripts by early-life events.

    Science.gov (United States)

    McCormick, J A; Lyons, V; Jacobson, M D; Noble, J; Diorio, J; Nyirenda, M; Weaver, S; Ester, W; Yau, J L; Meaney, M J; Seckl, J R; Chapman, K E

    2000-04-01

    Glucocorticoid receptor (GR) gene expression is regulated in a complex tissue-specific manner, notably by early-life environmental events that program tissue GR levels. We have identified and characterized several new rat GR mRNAs. All encode a common protein, but differ in their 5'-leader sequences as a consequence of alternate splicing of, potentially, 11 different exon 1 sequences. Most are located in a 3-kb CpG island, upstream of exon 2, that exhibits substantial promoter activity in transfected cells. Ribonuclease (RNase) protection analysis demonstrated significant levels of six alternate exons 1 in vivo in rat, with differences between liver, hippocampus, and thymus reflecting tissue-specific differences in promoter activity. Two of the alternate exons 1 (exons 1(6) and 1(10)) were expressed in all tissues examined, together present in 77-87% of total GR mRNA. The remaining GR transcripts contained tissue-specific alternate first exons. Importantly, tissue-specific first exon usage was altered by perinatal environmental manipulations. Postnatal handling, which permanently increases GR in the hippocampus, causing attenuation of stress responses, selectively elevated GR mRNA containing the hippocampus-specific exon 1(7). Prenatal glucocorticoid exposure, which increases hepatic GR expression and produces adult hyperglycemia, decreased the proportion of hepatic GR mRNA containing the predominant exon 1(10), suggesting an increase in a minor exon 1 variant. Such tissue specificity of promoter usage allows differential GR regulation and programming.

  18. Expression of FoxA and GATA transcription factors correlates with regionalized gut development in two lophotrochozoan marine worms: Chaetopterus (Annelida and Themiste lageniformis (Sipuncula

    Directory of Open Access Journals (Sweden)

    Boyle Michael J

    2010-07-01

    Full Text Available Abstract Background A through gut is present in almost all metazoans, and most likely represents an ancient innovation that enabled bilaterian animals to exploit a wide range of habitats. Molecular developmental studies indicate that Fox and GATA regulatory genes specify tissue regions along the gut tube in a broad diversity of taxa, although little is known about gut regionalization within the Lophotrochozoa. In this study, we isolated FoxA and GATA456 orthologs and used whole mount in situ hybridization during larval gut formation in two marine worms: the segmented, polychaete annelid Chaetopterus, which develops a planktotrophic larva with a tripartite gut, and the non-segmented sipunculan Themiste lageniformis, which develops a lecithotrophic larva with a U-shaped gut. Results FoxA and GATA456 transcripts are predominantly restricted to gut tissue, and together show regional expression spanning most of the alimentary canal in each of these lophotrochozoans, although neither FoxA nor GATA456 is expressed in the posterior intestine of Chaetopterus. In both species, FoxA is expressed at the blastula stage, transiently in presumptive endoderm before formation of a definitive gut tube, and throughout early larval development in discrete foregut and hindgut domains. GATA456 genes are expressed during endoderm formation, and in endoderm and mesoderm associated with the midgut in each species. Several species-specific differences were detected, including an overlap of FoxA and GATA456 expression in the intestinal system of Themiste, which is instead complimentary in Chaetopterus. Other differences include additional discrete expression domains of FoxA in ectodermal trunk cells in Themiste but not Chaetopterus, and expression of GATA456 in anterior ectoderm and midgut cells unique to Chaetopterus. Conclusions This study of gene expression in a sipunculan contributes new comparative developmental insights from lophotrochozoans, and shows that FoxA and

  19. Definitive Endoderm Differentiation of Human Embryonic Stem Cells Combined with Selective Elimination of Undifferentiated Cells by Methionine Deprivation.

    Science.gov (United States)

    Tsuyama, Tomonori; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Human embryonic stem cells (ESCs) show a characteristic feature in that they are highly dependent on methionine metabolism. Undifferentiated human ESCs cannot survive under condition that methionine is deprived from culture medium. We describe here a procedure for definitive endoderm differentiation from human ESCs, in which human ESCs are subject to 10 days' (d) differentiation combined with methionine deprivation between differentiation days (d) 8 to (d) 10. Methionine deprivation results in elimination of undifferentiated cells from the culture with no significant loss of definitive endoderm cells, as compared to those cultured under complete condition throughout the whole culture period.

  20. Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation

    Science.gov (United States)

    Mitrossilis, Démosthène; Röper, Jens-Christian; Le Roy, Damien; Driquez, Benjamin; Michel, Aude; Ménager, Christine; Shaw, Gorky; Le Denmat, Simon; Ranno, Laurent; Dumas-Bouchiat, Frédéric; Dempsey, Nora M.; Farge, Emmanuel

    2017-01-01

    Animal development consists of a cascade of tissue differentiation and shape change. Associated mechanical signals regulate tissue differentiation. Here we demonstrate that endogenous mechanical cues also trigger biochemical pathways, generating the active morphogenetic movements shaping animal development through a mechanotransductive cascade of Myo-II medio-apical stabilization. To mimic physiological tissue deformation with a cell scale resolution, liposomes containing magnetic nanoparticles are injected into embryonic epithelia and submitted to time-variable forces generated by a linear array of micrometric soft magnets. Periodic magnetically induced deformations quantitatively phenocopy the soft mechanical endogenous snail-dependent apex pulsations, rescue the medio-apical accumulation of Rok, Myo-II and subsequent mesoderm invagination lacking in sna mutants, in a Fog-dependent mechanotransductive process. Mesoderm invagination then activates Myo-II apical accumulation, in a similar Fog-dependent mechanotransductive process, which in turn initiates endoderm invagination. This reveals the existence of a highly dynamic self-inductive cascade of mesoderm and endoderm invaginations, regulated by mechano-induced medio-apical stabilization of Myo-II.

  1. Nanotopographical control of human embryonic stem cell differentiation into definitive endoderm.

    Science.gov (United States)

    Ghanian, Mohammad Hossein; Farzaneh, Zahra; Barzin, Jalal; Zandi, Mojgan; Kazemi-Ashtiani, Mohammad; Alikhani, Mehdi; Ehsani, Morteza; Baharvand, Hossein

    2015-11-01

    Derivation of definitive endoderm (DE) from human embryonic stem cells (hESCs) can address the needs of regenerative medicine for endoderm-derived organs such as the pancreas and liver. Fibrous substrates which topographically recapitulate native extracellular matrix have been known to promote the stem cell differentiation. However, the optimal fiber diameter remains to be determined for the desired differentiation. Here, we have developed a simple method to precisely fabricate electrospun poly(ε-caprolactone) fibers with four distinct average diameters at nano- and microscale levels (200, 500, 800, and 1300 nm). Human ESCs were cultured as clumps or single cells and induced into DE differentiation to determine the optimal topography leading to the promoted differentiation compared with planar culture plates. Gene expression analysis of the DE-induced cells showed significant upregulation of DE-specific genes exclusively on the 200-nm fibers. By Western blot analysis, significant expression of DE-specific proteins was found when hESCs were cultured on the 200 nm substrate as single cells rather than clumps, probably due to more efficient cell-matrix interaction realized by morphological observations of the cell colonies. The results indicated that nanofibrillar substrates, only at ultrathin fiber diameters, provided a better environment for DE differentiation of hESC, which holds great promise in prospective tissue engineering applications.

  2. MED GATA factors promote robust development of the C. elegans endoderm

    Science.gov (United States)

    Maduro, Morris F.; Broitman-Maduro, Gina; Choi, Hailey; Carranza, Francisco; Wu, Allison Chia-Yi; Rifkin, Scott A.

    2015-01-01

    The MED-1,2 GATA factors contribute to specification of E, the progenitor of the C. elegans endoderm, through the genes end-1 and end-3, and in parallel with the maternal factors SKN-1, POP-1 and PAL-1. END-1,3 activate elt-2 and elt-7 to initiate a program of intestinal development, which is maintained by positive autoregulation. Here, we advance the understanding of MED-1,2 in E specification. We find that expression of end-1 and end-3 is greatly reduced in med-1,2(−) embryos. We generated strains in which MED sites have been mutated in end-1 and end-3. Without MED input, gut specification relies primarily on POP-1 and PAL-1. 25% of embryos fail to make intestine, while those that do display abnormal numbers of gut cells due to a delayed and stochastic acquisition of intestine fate. Surviving adults exhibit phenotypes consistent with a primary defect in the intestine. Our results establish that MED-1,2 provide robustness to endoderm specification through end-1 and end-3, and reveal that gut differentiation may be more directly linked to specification than previously appreciated. The results argue against an “all-or-none” description of cell specification, and suggest that activation of tissue-specific master regulators, even when expression of these is maintained by positive autoregulation, does not guarantee proper function of differentiated cells. PMID:25959238

  3. Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters.

    Science.gov (United States)

    Van Hoof, Dennis; Mendelsohn, Adam D; Seerke, Rina; Desai, Tejal A; German, Michael S

    2011-05-01

    Pancreatic β-cells function optimally when clustered in islet-like structures. However, nutrient and oxygen deprivation limits the viability of cells at the core of excessively large clusters. Hence, production of functional β-cells from human embryonic stem cells (hESCs) for patients with diabetes would benefit from the growth and differentiation of these cells in size-controlled aggregates. In this study, we controlled cluster size by seeding hESCs onto glass cover slips patterned by the covalent microcontact-printing of laminin in circular patches of 120 μm in diameter. These were used as substrates to grow and differentiate hESCs first into SOX17-positive/SOX7-negative definitive endoderm, after which many clusters released and formed uniformly sized three-dimensional clusters. Both released clusters and those that remained attached differentiated into HNF1β-positive primitive gut tube-like cells with high efficiency. Further differentiation yielded pancreatic endoderm-like cells that co-expressed PDX1 and NKX6.1. Controlling aggregate size allows efficient production of uniformly-clustered pancreatic endocrine precursors for in vivo engraftment or further in vitro maturation.

  4. Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Wei Jiang; Jinzhao Wang; Yi Zhang

    2013-01-01

    Definitive endoderm differentiation is crucial for generating respiratory and gastrointestinal organs including pancreas and liver.However,whether epigenetic regulation contributes to this process is unknown.Here,we show that the H3K27me3 demethylases KDM6A and KDM6B play an important role in endoderm differentiation from human ESCs.Knockdown of KDM6A or KDM6B impairs endoderm differentiation,which can be rescued by sequential treatment with WNT agonist and antagonist.KDM6A and KDM6B contribute to the activation of WNT3 and DKK1 at different differentiation stages when WNT3 and DKK1 are required for mesendoderm and definitive endoderm differentiation,respectively.Our study not only uncovers an important role of the H3K27me3 demethylases in definitive endoderm differentiation,but also reveals that they achieve this through modulating the WNT signalingpathway.

  5. Mitochondrial DNA transcription levels during spermatogenesis and early development in doubly uniparental inheritance of the mitochondrial DNA system of the blue mussel Mytilus galloprovincialis.

    Science.gov (United States)

    Sano, Natsumi; Obata, Mayu; Komaru, Akira

    2013-08-01

    In some species of bivalve, there are two highly diverged mitochondrial genomes, one found in all individuals (F type) and the other normally in males only (M type). In Mytilus, a maternally-dependent sex ratio of the progeny has been reported. Some females almost exclusively produce daughters, while others produce a high proportion of sons. We previously reported that in M. galloprovincialis, M type mtDNA copy number may be maintained during spermatogenesis and the development of larvae of male-biased mothers to sustain the doubly uniparental inheritance system. In this study, we investigated transcription levels of M type mtDNA before and after fertilization to understand its function in the germ line. First, we quantified transcription levels of M type mtDNA in testicular cells dissected using laser-capture micro-dissection. The transcription levels of M type mtDNA were not significantly different between spermatogonia and spermatocytes versus spermatids and spermatozoa. Next, we examined differences in transcription levels of M type mtDNA between larvae from male-biased and female-biased mothers. The transcription levels of M type mtDNA significantly increased 24 and 48 h after fertilization in male-biased crosses. By contrast, transcription levels significantly decreased in female-biased crosses. These results suggest M type mtDNA may play a role in early germ line formation.

  6. The Varicella-Zoster Virus Immediate-Early 63 protein affects chromatin controlled gene transcription in a cell-type dependent manner

    Directory of Open Access Journals (Sweden)

    Bontems Sébastien

    2007-10-01

    Full Text Available Abstract Background Varicella Zoster Virus Immediate Early 63 protein (IE63 has been shown to be essential for VZV replication, and critical for latency establishment. The activity of the protein as a transcriptional regulator is not fully clear yet. Using transient transfection assays, IE63 has been shown to repress viral and cellular promoters containing typical TATA boxes by interacting with general transcription factors. Results In this paper, IE63 regulation properties on endogenous gene expression were evaluated using an oligonucleotide-based micro-array approach. We found that IE63 modulates the transcription of only a few genes in HeLa cells including genes implicated in transcription or immunity. Furthermore, we showed that this effect is mediated by a modification of RNA POL II binding on the promoters tested and that IE63 phosphorylation was essential for these effects. In MeWo cells, the number of genes whose transcription was modified by IE63 was somewhat higher, including genes implicated in signal transduction, transcription, immunity, and heat-shock signalling. While IE63 did not modify the basal expression of several NF-κB dependent genes such as IL-8, ICAM-1, and IκBα, it modulates transcription of these genes upon TNFα induction. This effect was obviously correlated with the amount of p65 binding to the promoter of these genes and with histone H3 acetylation and HDAC-3 removal. Conclusion While IE63 only affected transcription of a small number of cellular genes, it interfered with the TNF-inducibility of several NF-κB dependent genes by the accelerated resynthesis of the inhibitor IκBα.

  7. Myocyte enhancer factor 2D regulates ectoderm specification and adhesion properties of animal cap cells in the early Xenopus embryo.

    Science.gov (United States)

    Katz Imberman, Sandra; Kolpakova, Alina; Keren, Aviad; Bengal, Eyal

    2015-08-01

    In Xenopus, animal cap (AC) cells give rise to ectoderm and its derivatives: epidermis and the central nervous system. Ectoderm has long been considered a default pathway of embryonic development, with cells that are not under the influence of vegetal Nodal signaling adopting an ectodermal program of gene expression. In the present study, we describe the involvement of the animally-localized maternal transcription factor myocyte enhancer factor (Mef) 2D in regulating the identity of AC cells. We find that Mef2D is required for the formation of both ectodermal lineages: neural and epidermis. Gain and loss of function experiments indicate that Mef2D regulates early gastrula expression of key ectodermal/epidermal genes in the animal region. Mef2D controls the activity of zygotic bone morphogenetic protein (BMP) signaling known to dictate the epidermal differentiation program. Exogenous expression of Mef2D in vegetal blastomeres was sufficient to induce ectopic expression of ectoderm/epidermal genes in the vegetal half of the embryo, when Nodal signaling was inhibited. Depletion of Mef2D caused a loss of AC cell adhesion that was rescued by the expression of E-cadherin or bone morphogenetic protein 4. In addition, expression of Mef2D in the prospective endoderm caused unusual aggregation of vegetal cells with animal cells in vitro and inappropriate segregation to other germ layers in vivo. Mef2D cooperates with another animally-expressed transcription factor, FoxI1e. Together, they regulate the expression of genes encoding signaling proteins and the transcription factors that control the regional identity of animal cells. Therefore, we describe a new role for the animally-localized Mef2D protein in early ectoderm specification, which is similar to that of the vegetally-localized VegT in endoderm and mesoderm formation. © 2015 FEBS.

  8. The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development.

    Directory of Open Access Journals (Sweden)

    Carine Benadiba

    Full Text Available The corpus callosum (CC is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3 is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus. Here we show that Rfx3-deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8 at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3 repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies.

  9. Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum).

    Science.gov (United States)

    Reynolds, T L; Crawford, R L

    1996-12-01

    A clone for an embryoid-abundant, early cysteine-labeled metallothionein (EcMt) gene has been isolated from a wheat pollen embryoid cDNA library. The transcript of this gene was only expressed in embryogenic microspores, pollen embryoids, and developing zygotic embryos of wheat. Accumulation of the EcMt mRNA showed a direct and positive correlation with an increase of the plant hormone, abscisic acid (ABA) in developing pollen embryoids. Treating cultures with an inhibitor of ABA biosynthesis, fluridone, suppressed not only ABA accumulation but also the appearance of the EcMt gene transcript and the ability of microspores to form embryoids. These results suggest that the EcMt gene may act as a molecular marker for pollen embryogenesis because ABA biosynthesis is accompanied by the increased expression of the EcMt transcript that coincides with the differentiation of pollen embryoids in wheat anther cultures.

  10. Targeted disruption of cubilin reveals essential developmental roles in the structure and function of endoderm and in somite formation

    Directory of Open Access Journals (Sweden)

    Cooley Marion A

    2006-06-01

    Full Text Available Abstract Background Cubilin is a peripheral membrane protein that interacts with the integral membrane proteins megalin and amnionless to mediate ligand endocytosis by absorptive epithelia such as the extraembryonic visceral endoderm (VE. Results Here we report the effects of the genetic deletion of cubilin on mouse embryonic development. Cubilin gene deletion is homozygous embryonic lethal with death occurring between 7.5–13.5 days post coitum (dpc. Cubilin-deficient embryos display developmental retardation and do not advance morphologically beyond the gross appearance of wild-type 8–8.5 dpc embryos. While mesodermal structures such as the allantois and the heart are formed in cubilin mutants, other mesoderm-derived tissues are anomalous or absent. Yolk sac blood islands are formed in cubilin mutants but are unusually large, and the yolk sac blood vessels fail to undergo remodeling. Furthermore, somite formation does not occur in cubilin mutants. Morphological abnormalities of endoderm occur in cubilin mutants and include a stratified epithelium in place of the normally simple columnar VE epithelium and a stratified cuboidal epithelium in place of the normally simple squamous epithelium of the definitive endoderm. Cubilin-deficient VE is also functionally defective, unable to mediate uptake of maternally derived high-density lipoprotein (HDL. Conclusion In summary, cubilin is required for embryonic development and is essential for the formation of somites, definitive endoderm and VE and for the absorptive function of VE including the process of maternal-embryo transport of HDL.

  11. Engineering the extracellular matrix for clinical applications: endoderm, mesoderm, and ectoderm.

    Science.gov (United States)

    Williams, Miguel L; Bhatia, Sujata K

    2014-03-01

    Tissue engineering is rapidly progressing from a research-based discipline to clinical applications. Emerging technologies could be utilized to develop therapeutics for a wide range of diseases, but many are contingent on a cell scaffold that can produce proper tissue ultrastructure. The extracellular matrix, which a cell scaffold simulates, is not merely a foundation for tissue growth but a dynamic participant in cellular crosstalk and organ homeostasis. Cells change their growth rates, recruitment, and differentiation in response to the composition, modulus, and patterning of the substrate on which they reside. Cell scaffolds can regulate these factors through precision design, functionalization, and application. The ideal therapy would utilize highly specialized cell scaffolds to best mimic the tissue of interest. This paper discusses advantages and challenges of optimized cell scaffold design in the endoderm, mesoderm, and ectoderm for clinical applications in tracheal transplant, cardiac regeneration, and skin grafts, respectively. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Early transcriptome analyses of Z-3-Hexenol-treated zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles.

    Science.gov (United States)

    Engelberth, Jurgen; Contreras, Claudia Fabiola; Dalvi, Chinmay; Li, Ting; Engelberth, Marie

    2013-01-01

    Green leaf volatiles (GLV), which are rapidly emitted by plants in response to insect herbivore damage, are now established as volatile defense signals. Receiving plants utilize these molecules to prime their defenses and respond faster and stronger when actually attacked. To further characterize the biological activity of these compounds we performed a microarray analysis of global gene expression. The focus of this project was to identify early transcriptional events elicited by Z-3-hexenol (Z-3-HOL) as our model GLV in maize (Zea mays) seedlings. The microarray results confirmed previous studies on Z-3-HOL -induced gene expression but also provided novel information about the complexity of Z-3-HOL -induced transcriptional networks. Besides identifying a distinct set of genes involved in direct and indirect defenses we also found significant expression of genes involved in transcriptional regulation, Ca(2+)-and lipid-related signaling, and cell wall reinforcement. By comparing these results with those obtained by treatment of maize seedlings with insect elicitors we found a high degree of correlation between the two expression profiles at this early time point, in particular for those genes related to defense. We further analyzed defense gene expression induced by other volatile defense signals and found Z-3-HOL to be significantly more active than methyl jasmonate, methyl salicylate, and ethylene. The data presented herein provides important information on early genetic networks that are activated by Z-3-HOL and demonstrates the effectiveness of this compound in the regulation of typical plant defenses against insect herbivores in maize.

  13. Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development.

    Science.gov (United States)

    Huang, Yun; Feng, Cui-Zhu; Ye, Qing; Wu, Wei-Hua; Chen, Yi-Fang

    2016-02-01

    The phytohormone abscisic acid (ABA) plays important roles during seed germination and early seedling development. Here, we characterized the function of the Arabidopsis WRKY6 transcription factor in ABA signaling. The transcript of WRKY6 was repressed during seed germination and early seedling development, and induced by exogenous ABA. The wrky6-1 and wrky6-2 mutants were ABA insensitive, whereas WRKY6-overexpressing lines showed ABA-hypersensitive phenotypes during seed germination and early seedling development. The expression of RAV1 was suppressed in the WRKY6-overexpressing lines and elevated in the wrky6 mutants, and the expression of ABI3, ABI4, and ABI5, which was directly down-regulated by RAV1, was enhanced in the WRKY6-overexpressing lines and repressed in the wrky6 mutants. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that WRKY6 could bind to the RAV1 promoter in vitro and in vivo. Overexpression of RAV1 in WRKY6-overexpressing lines abolished their ABA-hypersensitive phenotypes, and the rav1 wrky6-2 double mutant showed an ABA-hypersensitive phenotype, similar to rav1 mutant. Together, the results demonstrated that the Arabidopsis WRKY6 transcription factor played important roles in ABA signaling by directly down-regulating RAV1 expression.

  14. Correct patterning of the primitive streak requires the anterior visceral endoderm.

    Directory of Open Access Journals (Sweden)

    Daniel W Stuckey

    Full Text Available Anterior-posterior axis specification in the mouse requires signalling from a specialised extra-embryonic tissue called the anterior visceral endoderm (AVE. AVE precursors are induced at the distal tip of the embryo and move to the prospective anterior. Embryological and genetic analysis has demonstrated that the AVE is required for anterior patterning and for correctly positioning the site of primitive streak formation by inhibiting Nodal activity. We have carried out a genetic ablation of the Hex-expressing cells of the AVE (Hex-AVE by knocking the Diphtheria toxin subunit A into the Hex locus in an inducible manner. Using this model we have identified that, in addition to its requirement in the anterior of the embryo, the Hex-AVE sub-population has a novel role between 5.5 and 6.5dpc in patterning the primitive streak. Embryos lacking the Hex-AVE display delayed initiation of primitive streak formation and miss-patterning of the anterior primitive streak. We demonstrate that in the absence of the Hex-AVE the restriction of Bmp2 expression to the proximal visceral endoderm is also defective and expression of Wnt3 and Nodal is not correctly restricted to the posterior epiblast. These results, coupled with the observation that reducing Nodal signalling in Hex-AVE ablated embryos increases the frequency of phenotypes observed, suggests that these primitive streak patterning defects are due to defective Nodal signalling. Together, our experiments demonstrate that the AVE is not only required for anterior patterning, but also that specific sub-populations of this tissue are required to pattern the posterior of the embryo.

  15. Repressor element-1 silencing transcription factor/neuronal restrictive silencer factor (REST/NRSF can regulate HSV-1 immediate-early transcription via histone modification

    Directory of Open Access Journals (Sweden)

    Hill James M

    2007-06-01

    Full Text Available Abstract Background During primary infection of its human host, Herpes Simplex Virus Type-1 (HSV-1 establishes latency in neurons where the viral genome is maintained in a circular form associated with nucleosomes in a chromatin configration. During latency, most viral genes are silenced, although the molecular mechanisms responsible for this are unclear. We hypothesized that neuronal factors repress HSV-1 gene expression during latency. A search of the HSV-1 DNA sequence for potential regulatory elements identified a Repressor Element-1/Neuronal Restrictive Silencer Element (RE-1/NRSE located between HSV-1 genes ICP22 and ICP4. We predicted that the Repressor Element Silencing Transcription Factor/Neuronal Restrictive Silencer Factor (REST/NRSF regulates expression of ICP22 and ICP4. Results Transient cotransfection indicated that REST/NRSF inhibited the activity of both promoters. In contrast, cotransfection of a mutant form of REST/NRSF encoding only the DNA-binding domain of the protein resulted in less inhibition. Stably transformed cell lines containing episomal reporter plasmids with a chromatin structure showed that REST/NRSF specifically inhibited the ICP4 promoter, but not the ICP22 promoter. REST/NRSF inhibition of the ICP4 promoter was reversed by histone deacetylase (HDAC inhibitor Trichostatin A (TSA. Additionally, chromatin immuno-precipitation (ChIP assays indicated that the corepressor CoREST was recruited to the proximity of ICP4 promoter and that acetylation of histone H4 was reduced in the presence of REST/NRSF. Conclusion Since the ICP4 protein is a key transactivator of HSV-1 lytic cycle genes, these results suggest that REST/NRSF may have an important role in the establishment and/or maintenance of HSV-1 gene silencing during latency by targeting ICP4 expression.

  16. Deep RNA sequencing reveals hidden features and dynamics of early gene transcription in Paramecium bursaria chlorella virus 1.

    Directory of Open Access Journals (Sweden)

    Guillaume Blanc

    Full Text Available Paramecium bursaria chlorella virus 1 (PBCV-1 is the prototype of the genus Chlorovirus (family Phycodnaviridae that infects the unicellular, eukaryotic green alga Chlorella variabilis NC64A. The 331-kb PBCV-1 genome contains 416 major open reading frames. A mRNA-seq approach was used to analyze PBCV-1 transcriptomes at 6 progressive times during the first hour of infection. The alignment of 17 million reads to the PBCV-1 genome allowed the construction of single-base transcriptome maps. Significant transcription was detected for a subset of 50 viral genes as soon as 7 min after infection. By 20 min post infection (p.i., transcripts were detected for most PBCV-1 genes and transcript levels continued to increase globally up to 60 min p.i., at which time 41% or the poly (A+-containing RNAs in the infected cells mapped to the PBCV-1 genome. For some viral genes, the number of transcripts in the latter time points (20 to 60 min p.i. was much higher than that of the most highly expressed host genes. RNA-seq data revealed putative polyadenylation signal sequences in PBCV-1 genes that were identical to the polyadenylation signal AAUAAA of green algae. Several transcripts have an RNA fragment excised. However, the frequency of excision and the resulting putative shortened protein products suggest that most of these excision events have no functional role but are probably the result of the activity of misled splicesomes.

  17. Early Development of Hyperparathyroidism Due to Loss of PTH Transcriptional Repression in Patients With HNF1beta Mutations?

    NARCIS (Netherlands)

    Ferre, S.; Bongers, E.M.H.F.; Sonneveld, R.; Cornelissen, E.A.M.; Vlag, J. van der; Boekel, G.A.J van; Wetzels, J.F.M.; Hoenderop, J.G.J.; Bindels, R.J.M.; Nijenhuis, T.

    2013-01-01

    Context: Heterozygous mutations or deletions of the transcription factor hepatocyte nuclear factor 1beta (HNF1beta) result in a heterogeneous syndrome characterized by renal cysts and diabetes, together with a variety of other extrarenal and renal manifestations. Interestingly, in several patients

  18. A crucial role for the ubiquitously expressed transcription factor Sp1 at early stages of hematopoietic specification

    NARCIS (Netherlands)

    J. Gilmour (Jane); S.A. Assi (Salam); U. Jaegle (Ulrike); D.I. Kulu (Divine); H.J.G. van de Werken (Harmen); D. Clarke (Deborah); P. Westhead (Paul); J.N.J. Philipsen (Sjaak); C. Bonifer (Constanze)

    2014-01-01

    textabstractMammalian development is regulated by the interplay of tissue-specific and ubiquitously expressed transcription factors, such as Sp1. Sp1 knockout mice die in utero with multiple phenotypic aberrations, but the underlying molecular mechanism of this differentiation failure has been elusi

  19. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation.

    NARCIS (Netherlands)

    M. Marin; A. Karis (Alar); P. Visser (Pim); F.G. Grosveld (Frank); J.N.J. Philipsen (Sjaak)

    1997-01-01

    textabstractTranscription factor Sp1 has been implicated in the expression of many genes. Moreover, it has been suggested that Sp1 is linked to the maintenance of methylation-free CpG islands, the cell cycle, and the formation of active chromatin structures. We have inactivated the mouse Sp1 gene. S

  20. Early transcriptome analyses of Z-3-Hexenol-treated zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles.

    Directory of Open Access Journals (Sweden)

    Jurgen Engelberth

    Full Text Available Green leaf volatiles (GLV, which are rapidly emitted by plants in response to insect herbivore damage, are now established as volatile defense signals. Receiving plants utilize these molecules to prime their defenses and respond faster and stronger when actually attacked. To further characterize the biological activity of these compounds we performed a microarray analysis of global gene expression. The focus of this project was to identify early transcriptional events elicited by Z-3-hexenol (Z-3-HOL as our model GLV in maize (Zea mays seedlings. The microarray results confirmed previous studies on Z-3-HOL -induced gene expression but also provided novel information about the complexity of Z-3-HOL -induced transcriptional networks. Besides identifying a distinct set of genes involved in direct and indirect defenses we also found significant expression of genes involved in transcriptional regulation, Ca(2+-and lipid-related signaling, and cell wall reinforcement. By comparing these results with those obtained by treatment of maize seedlings with insect elicitors we found a high degree of correlation between the two expression profiles at this early time point, in particular for those genes related to defense. We further analyzed defense gene expression induced by other volatile defense signals and found Z-3-HOL to be significantly more active than methyl jasmonate, methyl salicylate, and ethylene. The data presented herein provides important information on early genetic networks that are activated by Z-3-HOL and demonstrates the effectiveness of this compound in the regulation of typical plant defenses against insect herbivores in maize.

  1. Definitive Endoderm Formation from Plucked Human Hair-Derived Induced Pluripotent Stem Cells and SK Channel Regulation

    Directory of Open Access Journals (Sweden)

    Anett Illing

    2013-01-01

    Full Text Available Pluripotent stem cells present an extraordinary powerful tool to investigate embryonic development in humans. Essentially, they provide a unique platform for dissecting the distinct mechanisms underlying pluripotency and subsequent lineage commitment. Modest information currently exists about the expression and the role of ion channels during human embryogenesis, organ development, and cell fate determination. Of note, small and intermediate conductance, calcium-activated potassium channels have been reported to modify stem cell behaviour and differentiation. These channels are broadly expressed throughout human tissues and are involved in various cellular processes, such as the after-hyperpolarization in excitable cells, and also in differentiation processes. To this end, human induced pluripotent stem cells (hiPSCs generated from plucked human hair keratinocytes have been exploited in vitro to recapitulate endoderm formation and, concomitantly, used to map the expression of the SK channel (SKCa subtypes over time. Thus, we report the successful generation of definitive endoderm from hiPSCs of ectodermal origin using a highly reproducible and robust differentiation system. Furthermore, we provide the first evidence that SKCas subtypes are dynamically regulated in the transition from a pluripotent stem cell to a more lineage restricted, endodermal progeny.

  2. The GCTM-5 Epitope Associated with the Mucin-Like Glycoprotein FCGBP Marks Progenitor Cells in Tissues of Endodermal Origin

    Science.gov (United States)

    Stamp, Lincon A.; Braxton, David R.; Wu, Jun; Akopian, Veronika; Hasegawa, Kouichi; Chandrasoma, Parakrama T.; hawes, Susan M.; Mclean, Catriona; Petrovic, Lydia m.; WANG, KASPER; Pera, Martin F.

    2013-01-01

    Monoclonal antibodies against cell surface markers are powerful tools in the study of tissue regeneration, repair, and neoplasia, but there is a paucity of specific reagents to identify stem and progenitor cells in tissues of endodermal origin. The epitope defined by the GCTM-5 monoclonal antibody is a putative marker of hepatic progenitors. We sought to analyze further the distribution of the GCTM-5 antigen in normal tissues and disease states and to characterize the antigen biochemically. The GCTM-5 epitope was specifically expressed on tissues derived from the definitive endoderm, in particular the fetal gut, liver, and pancreas. Antibody reactivity was detected in subpopulations of normal adult biliary and pancreatic duct cells, and GCTM-5-positive cells isolated from the nonparenchymal fraction of adult liver expressed markers of progenitor cells. The GCTM-5-positive cell populations in liver and pancreas expanded greatly in numbers in disease states such as biliary atresia, cirrhosis, and pancreatitis. Neoplasms arising in these tissues also expressed the GCTM-5 antigen, with pancreatic adenocarcinoma in particular showing strong and consistent reactivity. The GCTM-5 epitope was also strongly displayed on cells undergoing intestinal metaplasia in Barrett’s esophagus, a precursor to esophageal carcinoma. Biochemical, mass spectrometry, and immunochemical studies revealed that the GCTM-5 epitope is associated with the mucin-like glycoprotein FCGBP. The GCTM-5 epitope on the mucin-like glycoprotein FCGBP is a cell surface marker for the study of normal differentiation lineages, regeneration, and disease progression in tissues of endodermal origin. PMID:22761039

  3. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC matrix cells

    Directory of Open Access Journals (Sweden)

    Schultz Bruce

    2006-02-01

    Full Text Available Abstract Background Three transcription factors that are expressed at high levels in embryonic stem cells (ESCs are Nanog, Oct-4 and Sox-2. These transcription factors regulate the expression of other genes during development and are found at high levels in the pluripotent cells of the inner cell mass. The downregulation of these three transcription factors correlates with the loss of pluripotency and self-renewal, and the beginning of subsequent differentiation steps. The roles of Nanog, Oct-4 and Sox-2 have not been fully elucidated. They are important in embryonic development and maintenance of pluripotency in ESCs. We studied the expression of these transcription factors in porcine umbilical cord (PUC matrix cells. Methods Cells were isolated from Wharton's jelly of porcine umbilical cords (PUC and histochemically assayed for the presence of alkaline phosphatase and the presence of Nanog, Oct-4 and Sox-2 mRNA and protein. PCR amplicons were sequenced and compared with known sequences. The synthesis of Oct-4 and Nanog protein was analyzed using immunocytochemistry. FACS analysis was utilized to evaluate Hoechst 33342 dye-stained cells. Results PUC isolates were maintained in culture and formed colonies that express alkaline phosphatase. FACS analysis revealed a side population of Hoechst dye-excluding cells, the Hoechst exclusion was verapamil sensitive. Quantitative and non-quantitative RT-PCR reactions revealed expression of Nanog, Oct-4 and Sox-2 in day 15 embryonic discs, PUC cell isolates and porcine fibroblasts. Immunocytochemical analysis detected Nanog immunoreactivity in PUC cell nuclei, and faint labeling in fibroblasts. Oct-4 immunoreactivity was detected in the nuclei of some PUC cells, but not in fibroblasts. Conclusion Cells isolated from PUC express three transcription factors found in pluripotent stem cell markers both at the mRNA and protein level. The presence of these transcription factors, along with the other

  4. Fast neurotransmission related genes are expressed in non nervous endoderm in the sea anemone Nematostella vectensis.

    Directory of Open Access Journals (Sweden)

    Matan Oren

    Full Text Available Cnidarian nervous systems utilize chemical transmission to transfer signals through synapses and neurons. To date, ample evidence has been accumulated for the participation of neuropeptides, primarily RFamides, in neurotransmission. Yet, it is still not clear if this is the case for the classical fast neurotransmitters such as GABA, Glutamate, Acetylcholine and Monoamines. A large repertoire of cnidarian Fast Neurotransmitter related Genes (FNGs has been recently identified in the genome of the sea anemone, Nematostella vectensis. In order to test whether FNGs are localized in cnidarian neurons, we characterized the expression patterns of eight Nematostella genes that are closely or distantly related to human central and peripheral nervous systems genes, in adult Nematostella and compared them to the RFamide localization. Our results show common expression patterns for all tested genes, in a single endodermal cell layer. These expressions did not correspond with the RFamide expressing nerve cell network. Following these results we suggest that the tested Nematostella genes may not be directly involved in vertebrate-like fast neurotransmission.

  5. Acute promyelocytic leukemia in early pregnancy with translocation t(15;17) and variant PML/RARA fusion transcripts.

    Science.gov (United States)

    Park, Tae Sung; Lee, Seung Tae; Kim, Jin Seok; Song, Jaewoo; Lee, Kyung-A; Kim, Sue Jung; Seok, Yoon-Mi; Lee, Hyeon-Ji; Han, Jeong-Hyun; Kim, Jong-Kee; Lee, Eun Yup; Choi, Jong Rak

    2009-01-01

    A 32-year-old pregnant woman in the 13th gestational week was brought to Severance Hospital with gum bleeding and easy bruising. Initial laboratory results revealed anemia and thrombocytopenia. In a peripheral blood smear, 81% of leukocytes were large, abnormal promyelocytes. Bone marrow aspiration showed a hypercellular marrow with packed leukemic promyelocytes, and chromosome study revealed a karyotype of 46,XX,t(15;17)(q22;q21)[10]/46,XX[10]. In addition, variant fusion transcripts of PML/RARA were detected in the marrow specimen. The patient was diagnosed with acute promyelocytic leukemia (APL) and was treated with all-trans retinoic acid (ATRA) and idarubicin. One month from the patient's initial diagnosis a follow-up bone marrow examination was performed, revealing complete remission (CR). We know of no previous reports of APL during pregnancy associated with variant PML/RARA fusion transcripts. Here, we describe a novel case of APL in a pregnant woman with a t(15;17) translocation and variant fusion transcripts.

  6. A novel transcription factor, ERD15 (Early Responsive to Dehydration 15), connects endoplasmic reticulum stress with an osmotic stress-induced cell death signal.

    Science.gov (United States)

    Alves, Murilo S; Reis, Pedro A B; Dadalto, Silvana P; Faria, Jerusa A Q A; Fontes, Elizabeth P B; Fietto, Luciano G

    2011-06-03

    As in all other eukaryotic organisms, endoplasmic reticulum (ER) stress triggers the evolutionarily conserved unfolded protein response in soybean, but it also communicates with other adaptive signaling responses, such as osmotic stress-induced and ER stress-induced programmed cell death. These two signaling pathways converge at the level of gene transcription to activate an integrated cascade that is mediated by N-rich proteins (NRPs). Here, we describe a novel transcription factor, GmERD15 (Glycine max Early Responsive to Dehydration 15), which is induced by ER stress and osmotic stress to activate the expression of NRP genes. GmERD15 was isolated because of its capacity to stably associate with the NRP-B promoter in yeast. It specifically binds to a 187-bp fragment of the NRP-B promoter in vitro and activates the transcription of a reporter gene in yeast. Furthermore, GmERD15 was found in both the cytoplasm and the nucleus, and a ChIP assay revealed that it binds to the NRP-B promoter in vivo. Expression of GmERD15 in soybean protoplasts activated the NRP-B promoter and induced expression of the NRP-B gene. Collectively, these results support the interpretation that GmERD15 functions as an upstream component of stress-induced NRP-B-mediated signaling to connect stress in the ER to an osmotic stress-induced cell death signal.

  7. MiRNA-Mediated Regulation of the SWI/SNF Chromatin Remodeling Complex Controls Pluripotency and Endodermal Differentiation in Human ESCs.

    Science.gov (United States)

    Wade, Staton L; Langer, Lee F; Ward, James M; Archer, Trevor K

    2015-10-01

    MicroRNAs and chromatin remodeling complexes represent powerful epigenetic mechanisms that regulate the pluripotent state. miR-302 is a strong inducer of pluripotency, which is characterized by a distinct chromatin architecture. This suggests that miR-302 regulates global chromatin structure; however, a direct relationship between miR-302 and chromatin remodelers has not been established. Here, we provide data to show that miR-302 regulates Brg1 chromatin remodeling complex composition in human embryonic stem cells (hESCs) through direct repression of the BAF53a and BAF170 subunits. With the subsequent overexpression of BAF170 in hESCs, we show that miR-302's inhibition of BAF170 protein levels can affect the expression of genes involved in cell proliferation. Furthermore, miR-302-mediated repression of BAF170 regulates pluripotency by positively influencing mesendodermal differentiation. Overexpression of BAF170 in hESCs led to biased differentiation toward the ectoderm lineage during EB formation and severely hindered directed definitive endoderm differentiation. Taken together, these data uncover a direct regulatory relationship between miR-302 and the Brg1 chromatin remodeling complex that controls gene expression and cell fate decisions in hESCs and suggests that similar mechanisms are at play during early human development.

  8. Nodal signaling from the visceral endoderm is required to maintain Nodal gene expression in the epiblast and drive DVE/AVE migration.

    Science.gov (United States)

    Kumar, Amit; Lualdi, Margaret; Lyozin, George T; Sharma, Prashant; Loncarek, Jadranka; Fu, Xin-Yuan; Kuehn, Michael R

    2015-04-01

    In the early mouse embryo, a specialized population of extraembryonic visceral endoderm (VE) cells called the distal VE (DVE) arises at the tip of the egg cylinder stage embryo and then asymmetrically migrates to the prospective anterior, recruiting additional distal cells. Upon migration these cells, called the anterior VE (AVE), establish the anterior posterior (AP) axis by restricting gastrulation-inducing signals to the opposite pole. The Nodal-signaling pathway has been shown to have a critical role in the generation and migration of the DVE/AVE. The Nodal gene is expressed in both the VE and in the pluripotent epiblast, which gives rise to the germ layers. Previous findings have provided conflicting evidence as to the relative importance of Nodal signaling from the epiblast vs. VE for AP patterning. Here we show that conditional mutagenesis of the Nodal gene specifically within the VE leads to reduced Nodal expression levels in the epiblast and incomplete or failed DVE/AVE migration. These results support a required role for VE Nodal to maintain normal levels of expression in the epiblast, and suggest signaling from both VE and epiblast is important for DVE/AVE migration.

  9. Transcriptional activity and nuclear localization of Cabut, the Drosophila ortholog of vertebrate TGF-β-inducible early-response gene (TIEG proteins.

    Directory of Open Access Journals (Sweden)

    Yaiza Belacortu

    Full Text Available BACKGROUND: Cabut (Cbt is a C(2H(2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs, which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein. METHODOLOGY/PRINCIPAL FINDINGS: To determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2. CONCLUSIONS/SIGNIFICANCE: Our results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the

  10. Effects of Zn fertilization on hordein transcripts at early developmental stage of barley grain and correlation with increased Zn concentration in the mature grain.

    Directory of Open Access Journals (Sweden)

    Mohammad Nasir Uddin

    Full Text Available Zinc deficiency is causing malnutrition for nearly one third of world populations. It is especially relevant in cereal-based diets in which low amounts of mineral and protein are present. In biological systems, Zn is mainly associated with protein. Cereal grains contain the highest Zn concentration during early developmental stage. Although hordeins are the major storage proteins in the mature barley grain and suggested to be involved in Zn binding, very little information is available regarding the Zn fertilization effects of hordein transcripts at early developmental stage and possible incorporation of Zn with hordein protein of matured grain. Zinc fertilization experiments were conducted in a greenhouse with barley cv. Golden Promise. Zn concentration of the matured grain was measured and the results showed that the increasing Zn fertilization increased grain Zn concentration. Quantitative real time PCR showed increased level of total hordein transcripts upon increasing level of Zn fertilization at 10 days after pollination. Among the hordein transcripts the amount of B-hordeins was highly correlated with the Zn concentration of matured grain. In addition, protein content of the matured grain was analysed and a positive linear relationship was found between the percentage of B-hordein and total grain Zn concentration while C-hordein level decreased. Zn sensing dithizone assay was applied to localize Zn in the matured grain. The Zn distribution was not limited to the embryo and aleurone layer but was also present in the outer part of the endosperm (sub-aleurone layers which known to be rich in proteins including B-hordeins. Increased Zn fertilization enriched Zn even in the endosperm. Therefore, the increased amount of B-hordein and decreased C-hordein content suggested that B-hordein upregulation or difference between B and C hordein could be one of the key factors for Zn biofortification of cereal grains due to the Zn fertilization.

  11. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata.

    Science.gov (United States)

    Poupardin, Rodolphe; Schöttner, Konrad; Korbelová, Jaroslava; Provazník, Jan; Doležel, David; Pavlinic, Dinko; Beneš, Vladimír; Koštál, Vladimír

    2015-09-21

    Diapause is a developmental alternative to direct ontogeny in many invertebrates. Its primary adaptive meaning is to secure survival over unfavourable seasons in a state of developmental arrest usually accompanied by metabolic suppression and enhanced tolerance to environmental stressors. During photoperiodically triggered diapause of insects, the ontogeny is centrally turned off under hormonal control, the molecular details of this transition being poorly understood. Using RNAseq technology, we characterized transcription profiles associated with photoperiodic diapause induction in the larvae of the drosophilid fly Chymomyza costata with the goal of identifying candidate genes and processes linked to upstream regulatory events that eventually lead to a complex phenotypic change. Short day photoperiod triggering diapause was associated to inhibition of 20-hydroxy ecdysone (20-HE) signalling during the photoperiod-sensitive stage of C. costata larval development. The mRNA levels of several key genes involved in 20-HE biosynthesis, perception, and signalling were significantly downregulated under short days. Hormonal change was translated into downregulation of a series of other transcripts with broad influence on gene expression, protein translation, alternative histone marking by methylation and alternative splicing. These changes probably resulted in blockade of direct development and deep restructuring of metabolic pathways indicated by differential expression of genes involved in cell cycle regulation, metabolism, detoxification, redox balance, protection against oxidative stress, cuticle formation and synthesis of larval storage proteins. This highly complex alteration of gene transcription was expressed already during first extended night, within the first four hours after the change of the photoperiodic signal from long days to short days. We validated our RNAseq differential gene expression results in an independent qRT-PCR experiment involving wild

  12. The sub-nucleolar localization of PHF6 defines its role in rDNA transcription and early processing events

    Science.gov (United States)

    Todd, Matthew A M; Huh, Michael S; Picketts, David J

    2016-01-01

    Ribosomal RNA synthesis occurs in the nucleolus and is a tightly regulated process that is targeted in some developmental diseases and hyperactivated in multiple cancers. Subcellular localization and immunoprecipitation coupled mass spectrometry demonstrated that a proportion of plant homeodomain (PHD) finger protein 6 (PHF6) protein is localized within the nucleolus and interacts with proteins involved in ribosomal processing. PHF6 sequence variants cause Börjeson–Forssman–Lehmann syndrome (BFLS, MIM#301900) and are also associated with a female-specific phenotype overlapping with Coffin–Siris syndrome (MIM#135900), T-cell acute lymphoblastic leukemia (MIM#613065), and acute myeloid leukemia (MIM#601626); however, very little is known about its cellular function, including its nucleolar role. HEK 293T cells were treated with RNase A, DNase I, actinomycin D, or 5,6-dichloro-β-D-ribofuranosylbenzimadole, followed by immunocytochemistry to determine PHF6 sub-nucleolar localization. We observed RNA-dependent localization of PHF6 to the sub-nucleolar fibrillar center (FC) and dense fibrillar component (DFC), at whose interface rRNA transcription occurs. Subsequent ChIP-qPCR analysis revealed strong enrichment of PHF6 across the entire rDNA-coding sequence but not along the intergenic spacer (IGS) region. When rRNA levels were quantified in a PHF6 gain-of-function model, we observed an overall decrease in rRNA transcription, accompanied by a modest increase in repressive promoter-associated RNA (pRNA) and a significant increase in the expression levels of the non-coding IGS36RNA and IGS39RNA transcripts. Collectively, our results demonstrate a role for PHF6 in carefully mediating the overall levels of ribosome biogenesis within a cell. PMID:27165002

  13. Ectopic expression and knockdown of a zebrafish sox21 reveal its role as a transcriptional repressor in early development.

    Science.gov (United States)

    Argenton, Francesco; Giudici, Simona; Deflorian, Gianluca; Cimbro, Simona; Cotelli, Franco; Beltrame, Monica

    2004-02-01

    Sox proteins are DNA-binding proteins belonging to the HMG box superfamily and they play key roles in animal embryonic development. Zebrafish Sox21a is part of group B Sox proteins and its chicken and mouse orthologs have been described as transcriptional repressor and activator, respectively, in two different target gene contexts. Zebrafish sox21a is present as a maternal transcript in the oocyte and is mainly expressed at the developing midbrain-hindbrain boundary from the onset of neurulation. In order to understand its role in vivo, we ectopically expressed sox21a by microinjection. Ectopic expression of full length sox21a leads to dorsalization of the embryos. A subset of the dorsalized embryos shows a partial axis splitting, and hence an ectopic neural tube, as an additional phenotype. At gastrulation, injected embryos show expansion of the expression domains of organizer-specific genes, such as chordin and goosecoid. Molecular markers used in somitogenesis highlight that sox21a-injected embryos have shortened AP axis, undulating axial structures, enlarged or even radialized paraxial territory. The developmental abnormalities caused by ectopic expression of sox21a are suggestive of defects in convergence-extension morphogenetic movements. Antisense morpholino oligonucleotides, designed to functionally knockdown sox21a, cause ventralization of the embryos. Moreover, gain-of-function experiments with chimeric constructs, where Sox21a DNA-binding domain is fused to a transcriptional activator (VP16) or repressor (EnR) domain, suggests that zebrafish Sox21a acts as a repressor in dorso-ventral patterning.

  14. Community structure analysis of transcriptional networks reveals distinct molecular pathways for early- and late-onset temporal lobe epilepsy with childhood febrile seizures.

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Moreira-Filho

    Full Text Available Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS constitute an initial precipitating insult (IPI commonly associated with mesial temporal lobe epilepsy (MTLE. FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E or late (L disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i the visualization and analysis of differentially expressed (DE and complete (CO - all valid GO annotated transcripts - GCNs for the E and L groups; ii the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less

  15. Community structure analysis of transcriptional networks reveals distinct molecular pathways for early- and late-onset temporal lobe epilepsy with childhood febrile seizures.

    Science.gov (United States)

    Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Iamashita, Priscila; Silva, Filipi Nascimento; Costa, Luciano da Fontoura; Silva, Alexandre Valotta; Castro, Luiz Henrique Martins; Wen, Hung-Tzu

    2015-01-01

    Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to

  16. Lytic HSV-1 infection induces the multifunctional transcription factor Early Growth Response-1 (EGR-1 in rabbit corneal cells

    Directory of Open Access Journals (Sweden)

    McFerrin Harris E

    2011-05-01

    Full Text Available Abstract Background Herpes simplex virus type-1 (HSV-1 infections can cause a number of diseases ranging from simple cold sores to dangerous keratitis and lethal encephalitis. The interaction between virus and host cells, critical for viral replication, is being extensively investigated by many laboratories. In this study, we tested the hypothesis that HSV-1 lytic infection triggers the expression of important multi-functional transcription factor Egr1. The mechanisms of induction are mediated, at least in part, by signaling pathways such as NFκB and CREB. Methods SIRC, VERO, and 293HEK cell lines were infected with HSV-1, and the Egr-1 transcript and protein were detected by RT-PCR and Western blot, respectively. The localization and expression profile of Egr-1 were investigated further by immunofluorescence microscopy analyses. The recruitment of transcription factors to the Egr-1 promoter during infection was studied by chromatin immunoprecipitation (ChIP. Various inhibitors and dominant-negative mutant were used to assess the mechanisms of Egr-1 induction and their effects were addressed by immunofluorescence microscopy. Results Western blot analyses showed that Egr-1 was absent in uninfected cells; however, the protein was detected 24-72 hours post treatment, and the response was directly proportional to the titer of the virus used for infection. Using recombinant HSV-1 expressing EGFP, Egr-1 was detected only in the infected cells. ChIP assays demonstrated that NFкB and cAMP response element binding protein (CREB were recruited to the Egr-1 promoter upon infection. Additional studies showed that inhibitors of NFкB and dominant-negative CREB repressed the Egr-1 induction by HSV-1 infection. Conclusion Collectively, these results demonstrate that Egr-1 is expressed rapidly upon HSV-1 infection and that this novel induction could be due to the NFкB/CREB-mediated transactivation. Egr-1 induction might play a key role in the viral gene

  17. TALEN/CRISPR-mediated eGFP knock-in add-on at the OCT4 locus does not impact differentiation of human embryonic stem cells towards endoderm.

    Directory of Open Access Journals (Sweden)

    Nicole A J Krentz

    Full Text Available Human embryonic stem cells (hESCs have great promise as a source of unlimited transplantable cells for regenerative medicine. However, current progress on producing the desired cell type for disease treatment has been limited due to an insufficient understanding of the developmental processes that govern their differentiation, as well as a paucity of tools to systematically study differentiation in the lab. In order to overcome these limitations, cell-type reporter hESC lines will be required. Here we outline two strategies using Transcription Activator Like Effector Nucleases (TALENs and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-CRISPR-Associated protein (Cas to create OCT4-eGFP knock-in add-on hESC lines. Thirty-one and forty-seven percent of clones were correctly modified using the TALEN and CRISPR-Cas9 systems, respectively. Further analysis of three correctly targeted clones demonstrated that the insertion of eGFP in-frame with OCT4 neither significantly impacted expression from the wild type allele nor did the fusion protein have a dramatically different biological stability. Importantly, the OCT4-eGFP fusion was easily detected using microscopy, flow cytometry and western blotting. The OCT4 reporter lines remained equally competent at producing CXCR4+ definitive endoderm that expressed a panel of endodermal genes. Moreover, the genomic modification did not impact the formation of NKX6.1+/SOX9+ pancreatic progenitor cells following directed differentiation. In conclusion, these findings demonstrate for the first time that CRISPR-Cas9 can be used to modify OCT4 and highlight the feasibility of creating cell-type specific reporter hESC lines utilizing genome-editing tools that facilitate homologous recombination.

  18. Early

    Directory of Open Access Journals (Sweden)

    Kamel Abd Elaziz Mohamed

    2014-04-01

    Conclusion: Early PDT is recommended for patients who require prolonged tracheal intubation in the ICU as outcomes like the duration of mechanical ventilation length of ICU stay and hospital stay were significantly shorter in early tracheostomy.

  19. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    2010-01-01

    The interplay between the gut microbiota and the intestinal mucus layer is important both in the maintenance of the epithelial barrier as part of the innate immune defense, and in the conservation of gut homeostasis. Little is known about how the microbiota regulates mucin proteins, which protect...... the mucosal surfaces of all epithelial linings by physical hindrance or specific binding of pathogenic agents including virus and bacteria. It has been shown that the presence and composition of the microbiota is directly involved in the regulation of gene transcription in the intestinal epithelium....... The intestinal mucus layer of germ free mice has been shown to display a distinctly different composition and structure compared to mucus from conventionally bred animals in vitro and in vivo. This points towards an important role of the microbiota in the regulation of mucin production. To which extent...

  20. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    The interplay between the gut microbiota and the intestinal mucus layer is important both in the maintenance of the epithelial barrier as part of the innate immune defense, and in the conservation of gut homeostasis. Little is known about how the microbiota regulates mucin proteins, which protect...... the mucosal surfaces of all epithelial linings by physical hindrance or specific binding of pathogenic agents including virus and bacteria. It has been shown that the presence and composition of the microbiota is directly involved in the regulation of gene transcription in the intestinal epithelium....... The intestinal mucus layer of germ free mice has been shown to display a distinctly different composition and structure compared to mucus from conventionally bred animals in vitro and in vivo. This points towards an important role of the microbiota in the regulation of mucin production. To which extent...

  1. Gata4 expression in lateral mesoderm is downstream of BMP4 and isactivated directly by Forkhead and GATA transcription factors through adistal enhancer element

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Anabel; De Val, Sarah; Heidt, Analeah B.; Xu, Shan-Mei; Bristow, James; Black, Brian L.

    2005-05-20

    The GATA family of zinc-finger transcription factors plays key roles in the specification and differentiation of multiple cell types during development. GATA4 is an early regulator of gene expression during the development of endoderm and mesoderm, and genetic studies in mice have demonstrated that GATA4 is required for embryonic development.Despite the importance of GATA4 in tissue specification and differentiation, the mechanisms by which Gata4 expression is activated and the transcription factor pathways upstream of GATA4 remain largely undefined. To identify transcriptional regulators of Gata4 in the mouse,we screened conserved noncoding sequences from the mouse Gata4 gene for enhancer activity in transgenic embryos. Here, we define the regulation of a distal enhancer element from Gata4 that is sufficient to direct expression throughout the lateral mesoderm, beginning at 7.5 days of mouse embryonic development. The activity of this enhancer is initially broad but eventually becomes restricted to the mesenchyme surrounding the liver. We demonstrate that the function of this enhancer in transgenic embryos is dependent upon highly conserved Forkhead and GATA transcription factor binding sites, which are bound by FOXF1 and GATA4,respectively. Furthermore, the activity of the Gata4 lateral mesoderm enhancer is attenuated by the BMP antagonist Noggin, and the enhancer is not activated in Bmp4-null embryos. Thus, these studies establish that Gata4 is a direct transcriptional target of Forkhead and GATA transcription factors in the lateral mesoderm, and demonstrate that Gata4lateral mesoderm enhancer activation requires BMP4, supporting a model in which GATA4 serves as a downstream effector of BMP signaling in the lateral mesoderm.

  2. lncRNA profiling in early-stage chronic lymphocytic leukemia identifies transcriptional fingerprints with relevance in clinical outcome

    OpenAIRE

    Ronchetti, D.; Manzoni, M; Agnelli, L; Vinci, C; Fabris, S; Cutrona, G; Matis, S.; Colombo,M.; Galletti, S.; Taiana, E.; Recchia, A.G.; Bossio, S.; Gentile, M; Musolino, C.; Di Raimondo, F

    2016-01-01

    Long non-coding RNAs (lncRNAs) represent a novel class of functional RNA molecules with an important emerging role in cancer. To elucidate their potential pathogenetic role in chronic lymphocytic leukemia (CLL), a biologically and clinically heterogeneous neoplasia, we investigated lncRNAs expression in a prospective series of 217 early-stage Binet A CLL patients and 26 different subpopulations of normal B-cells, through a custom annotation pipeline of microarray data. Our study identified a ...

  3. Early Detection and Serotyping of Dengue Viruses Clinical Isolates Using Reverse Transcription Polymerase Chain Reaction (RT-PCR 2 Primers

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Siregar

    2015-11-01

    Full Text Available Recently several methods for confirming Dengue Virus have been developed involve virus isolation, detection of virus antigen, and nucleic acid using PCR. It has been reported that rapid detection method for confirming DHF by Multiplex RT-PCR had been successfully developed. It was more effective than the other methods with a high sensitivity and specivicity were 100% at the early phase (day 1-3. This study was designed to develop rapid detection and serotyping methods for Dengue Virus using RT-PCR 2 primers (Dcon and preM with annealing temperature was 57oC. The whole blood samples were collected from suspected dengue fever patients that had been confirmed with NS1 kit from R.S. Persahabatan DKI Jakarta and R.S. Prof. Dr. Sardjito DI Yogyakarta during Februari-August 2009. The PCR products showed that in 12 samples, 100 % were postitive with different pattern among the serotypes especially for DEN1 and DEN2, but not for DEN3 and Den4.  This method was also able to confirm the double infection DEN2-DEN3, but not for the other ones because of the unspecific pattern. From the results, it indicated that the 2 primers can be a promising early detection and serotyping method of Dengue Virus which infected the DHF patients. Key words: Dengue Virus, DHF, early detection, serotyping, RT-PCR 2 primers.

  4. Derivation and transcriptional profiling analysis of pluripotent stem cell lines from rat blastocysts

    Institute of Scientific and Technical Information of China (English)

    Chunliang Li; Ying Yang; Junjie Gu; Yu Ma; Ying Jin

    2009-01-01

    Embryonic stem (ES) cells are derived from blastocyst-stage embryos. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research and a potential cell resource for therapy. ES cells of mouse and human have been successfully generated and applied in a wide range of research. However, no genuine ES cell lines have been obtained from rat to date. In this study, we identified pluripotent cells in early rat embryos using specific antibodies against markers of pluripotent stem cells. Subsequently, by modifying the culture medium for rat blastocysts, we derived pluripotent rat ES-llke cell lines, which expressed pluripotency markers and formed embryoid bodies (EBs) in vitro. Importantly, these rat ES-like cells were able to produce teratomas. Both EBs and teratomas contained tissues from all three embryonic germ layers, in addition, from the rat ES-like cells, we derived a rat primitive endoderm (PrE) cell line. Furthermore, we conducted transcriptional profiling of the rat ES-like cells and identified the unique molecular signature of the rat pluripotent stem cells. Our analysis demonstrates that multiple signaling pathways, including the BMP, Activin and roTOR pathways, may be involved in keeping the rat ES-like cells in an undifferentiated state. The cell lines and information obtained in this study will accelerate our understanding of the molecular regulation underlying pluripotency and guide us in the appropriate manipulation of ES cells from a particular species.

  5. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells.

    Science.gov (United States)

    Schwartz, Anton M; Putlyaeva, Lidia V; Covich, Milica; Klepikova, Anna V; Akulich, Kseniya A; Vorontsov, Ilya E; Korneev, Kirill V; Dmitriev, Sergey E; Polanovsky, Oleg L; Sidorenko, Svetlana P; Kulakovskiy, Ivan V; Kuprash, Dmitry V

    2016-10-01

    Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells.

  6. Molecular characterization of collagen IV evidences early transcription expression related to the immune response against bacterial infection in the red abalone (Haliotis rufescens).

    Science.gov (United States)

    Chovar-Vera, Ornella; Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian

    2015-02-01

    Collagen IV has been described as a structural protein of the basement membrane, which as a whole forms a specialized extracellular matrix. Recent studies have indicated a possible relationship between collagen IV and the innate immune response of invertebrate organisms. The present study characterized the alpha-1 chain of collagen IV in the red abalone Haliotis rufescens (Hr-ColIV) and evaluated its association with the innate immune response against Vibrio anguillarum. To further evidence the immune response, the matrix metalloproteinase-1 (Hr-MMP-1) and C-type lectin (Hr-CLEC) genes were also assessed. The complete sequence of Hr-ColIV was composed of 6658 bp, with a 5'UTR of 154 bp, a 3'UTR of 1177 bp, and an ORF of 5327 bp that coded for 1776 amino acids. The innate immune response generated against V. anguillarum resulted in a significant increase in the transcript levels of Hr-ColIV between 3 and 6 hpi, whereas Hr-MMP-1 and Hr-CLEC had the highest transcript activity 6 and 12 hpi, respectively. The results obtained in this study propose a putative biological function for collagen IV involved in the early innate immune response of the red abalone H. rufescens.

  7. Recruitment of the transcriptional coactivator HCF-1 to viral immediate-early promoters during initiation of reactivation from latency of herpes simplex virus type 1.

    Science.gov (United States)

    Whitlow, Zackary; Kristie, Thomas M

    2009-09-01

    The transcriptional coactivator host cell factor 1 (HCF-1) is critical for the expression of immediate-early (IE) genes of the alphaherpesviruses herpes simplex virus type 1 (HSV-1) and varicella-zoster virus. HCF-1 may also be involved in the reactivation of these viruses from latency as it is sequestered in the cytoplasm of sensory neurons but is rapidly relocalized to the nucleus upon stimulation that results in reactivation. Here, chromatin immunoprecipitation assays demonstrate that HCF-1 is recruited to IE promoters of viral genomes during the initiation of reactivation, correlating with RNA polymerase II occupancy and IE expression. The data support the model whereby HCF-1 plays a pivotal role in the reactivation of HSV-1 from latency.

  8. Heterosis in early maize ear inflorescence development: a genome-wide transcription analysis for two maize inbred lines and their hybrid.

    Science.gov (United States)

    Ding, Haiping; Qin, Cheng; Luo, Xirong; Li, Lujiang; Chen, Zhe; Liu, Hongjun; Gao, Jian; Lin, Haijian; Shen, Yaou; Zhao, Maojun; Lübberstedt, Thomas; Zhang, Zhiming; Pan, Guangtang

    2014-08-11

    Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17) and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs) genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex), five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity), and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization). Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an indication that in

  9. Heterosis in Early Maize Ear Inflorescence Development: A Genome-Wide Transcription Analysis for Two Maize Inbred Lines and Their Hybrid

    Directory of Open Access Journals (Sweden)

    Haiping Ding

    2014-08-01

    Full Text Available Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17 and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex, five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity, and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization. Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an

  10. Ubiquitous expression of selenoprotein N transcripts in chicken tissues and early developmental expression pattern in skeletal muscles.

    Science.gov (United States)

    Zhang, Jiuli; Li, Jinlong; Zhang, Ziwei; Sun, Bo; Wang, Rihua; Jiang, Zhihui; Li, Shu; Xu, Shiwen

    2012-05-01

    Previous results revealed a ubiquitous expression pattern of selenoprotein N (SelN, SEPN1) in humans, zebrafish, and mouse, suggesting that it plays a potential role during the embryogenesis of these species. However, no information is known about the tissue distribution of SelN and mRNA expression analysis in the muscle tissues during development in birds. We analyzed the mRNA expression of SelN in 26 different tissues of 90-day-old chickens and the expression of SelN in the muscle tissues of 12-day-old chicken embryos and 15-month-old adult chickens by quantitative real-time PCR. The results showed that SelN transcripts were expressed widely in the chicken tissues. Moreover, the expression of SelN mRNA in skeletal muscles was present at a high level in whole embryos and at a lower level in postnatal stages. However, the expression of SelN mRNA in cardiac muscle showed a different expression pattern compared with skeletal muscles. Our data indicate that the expression of the SelN gene in chicken is ubiquitous, suggesting a role of SelN in the development of chick embryo skeletal muscles.

  11. Hnf-1β transcription factor is an early hif-1α-independent marker of epithelial hypoxia and controls renal repair.

    Directory of Open Access Journals (Sweden)

    Stanislas Faguer

    Full Text Available Epithelial repair following acute kidney injury (AKI requires epithelial-mesenchyme-epithelial cycling associated with transient re-expression of genes normally expressed during kidney development as well as activation of growth factors and cytokine-induced signaling. In normal kidney, the Hnf-1β transcription factor drives nephrogenesis, tubulogenesis and epithelial homeostasis through the regulation of epithelial planar cell polarity and expression of developmental or tubular segment-specific genes. In a mouse model of ischemic AKI induced by a 2-hours hemorrhagic shock, we show that expression of this factor is tightly regulated in the early phase of renal repair with a biphasic expression profile (early down-regulation followed by transient over-expression. These changes are associated to tubular epithelial differentiation as assessed by KSP-cadherin and megalin-cubilin endocytic complex expression analysis. In addition, early decrease in Hnf1b expression is associated with the transient over-expression of one of its main target genes, the suppressor of cytokine signaling Socs3, which has been shown essential for renal repair. In vitro, hypoxia induced early up-regulation of Hnf-1β from 1 to 24 hours, independently of the hypoxia-inducible factor Hif-1α. When prolonged, hypoxia induced Hnf-1β down-regulation while normoxia led to Hnf-1β normalization. Last, Hnf-1β down-regulation using RNA interference in HK-2 cells led to phenotype switch from an epithelial to a mesenchyme state. Taken together, we showed that Hnf-1β may drive recovery from ischemic AKI by regulating both the expression of genes important for homeostasis control during organ repair and the state of epithelial cell differentiation.

  12. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis.

    Science.gov (United States)

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang; Zhao, Zhongying

    2016-06-10

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development.

  13. Loss of PiT-1 results in abnormal endocytosis in the yolk sac visceral endoderm.

    Science.gov (United States)

    Wallingford, Mary C; Giachelli, Cecilia M

    2014-08-01

    PiT-1 protein is a transmembrane sodium-dependent phosphate (Pi) transporter. PiT-1 knock out (KO) embryos die from largely unknown causes by embryonic day (E) 12.5. We tested the hypothesis that PiT-1 is required for endocytosis in the embryonic yolk sac (YS) visceral endoderm (VE). Here we present data supporting that PiT-1 KO results in a YS remodeling defect and decreased endocytosis in the YS VE. The remodeling defect is not due to an upstream cardiomyocyte requirement for PiT-1, as SM22αCre-specific KO of PiT-1 in the developing heart and the YS mesodermal layer (ME) does not recapitulate the PiT-1 global KO phenotype. Furthermore, we find that high levels of PiT-1 protein localize to the YS VE apical membrane. Together these data support that PiT-1 is likely required in YS VE. During normal development maternal immunoglobulin (IgG) is endocytosed into YS VE and accumulates in the apical side of the VE in a specialized lysosome termed the apical vacuole (AV). We have identified a reduction in PiT-1 KO VE cell height and a striking loss of IgG accumulation in the PiT-1 KO VE. The endocytosis genes Tfeb, Lamtor2 and Snx2 are increased at the RNA level. Lysotracker Red staining reveals a loss of distinct AVs, and yolk sacs incubated ex vivo with phRODO Green Dextran for Endocytosis demonstrate a functional loss of endocytosis. As yolk sac endocytosis is controlled in part by microautophagy, but expression of LC3 had not been examined, we investigated LC3 expression during yolk sac development and found stage-specific LC3 RNA expression that is predominantly from the YS VE layer at E9.5. Normalized LC3-II protein levels are decreased in the PiT-1 KO YS, supporting a requirement for PiT-1 in autophagy in the YS. Therefore, we propose the novel idea that PiT-1 is central to the regulation of endocytosis and autophagy in the YS VE.

  14. Transcriptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain.

    Science.gov (United States)

    Hamm, Danielle C; Bondra, Eliana R; Harrison, Melissa M

    2015-02-01

    Delayed transcriptional activation of the zygotic genome is a nearly universal phenomenon in metazoans. Immediately following fertilization, development is controlled by maternally deposited products, and it is not until later stages that widespread activation of the zygotic genome occurs. Although the mechanisms driving this genome activation are currently unknown, the transcriptional activator Zelda (ZLD) has been shown to be instrumental in driving this process in Drosophila melanogaster. Here we define functional domains of ZLD required for both DNA binding and transcriptional activation. We show that the C-terminal cluster of four zinc fingers mediates binding to TAGteam DNA elements in the promoters of early expressed genes. All four zinc fingers are required for this activity, and splice isoforms lacking three of the four zinc fingers fail to activate transcription. These truncated splice isoforms dominantly suppress activation by the full-length, embryonically expressed isoform. We map the transcriptional activation domain of ZLD to a central region characterized by low complexity. Despite relatively little sequence conservation within this domain, ZLD orthologs from Drosophila virilis, Anopheles gambiae, and Nasonia vitripennis activate transcription in D. melanogaster cells. Transcriptional activation by these ZLD orthologs suggests that ZLD functions through conserved interactions with a protein cofactor(s). We have identified distinct DNA-binding and activation domains within the critical transcription factor ZLD that controls the initial activation of the zygotic genome.

  15. Cell type specific repression of the varicella zoster virus immediate early gene 62 promoter by the cellular Oct-2 transcription factor.

    Science.gov (United States)

    Patel, Y; Gough, G; Coffin, R S; Thomas, S; Cohen, J I; Latchman, D S

    1998-05-11

    The cellular transcription factor Oct-2.1 has previously been shown to repress the transactivation of the varicella zoster virus (VZV) immediate early gene promoter by viral transactivators but not to inhibit its basal activity. In the case of the related virus herpes simplex virus (HSV), the effect of Oct-2 on the IE promoters has been shown to be cell type specific and to differ between the different alternatively spliced forms of Oct-2. Here we show that as well as Oct-2.1, the Oct-2.4 and 2.5 isoforms which are expressed in neuronal cells can inhibit transactivation of the VZV immediate early promoter regardless of the cell type used. In contrast, all the isoforms of Oct-2 can inhibit basal activity of the VZV promoter in neuronal cells but not in other cell types indicating that this effect is cell type specific. These effects are discussed in terms of the differential regulation of latent infections with HSV or VZV in dorsal root ganglia.

  16. The promoter of the white spot syndrome virus immediate-early gene WSSV108 is activated by the cellular KLF transcription factor.

    Science.gov (United States)

    Liu, Wang-Jing; Lo, Chu-Fang; Kou, Guang-Hsiung; Leu, Jiann-Horng; Lai, Ying-Jang; Chang, Li-Kwan; Chang, Yun-Shiang

    2015-03-01

    A series of deletion and mutation assays of the white spot syndrome virus (WSSV) immediate-early gene WSSV108 promoter showed that a Krüppel-like factor (KLF) binding site located from -504 to -495 (relative to the transcription start site) is important for the overall level of WSSV108 promoter activity. Electrophoretic mobility shift assays further showed that overexpressed recombinant Penaeus monodon KLF (rPmKLF) formed a specific protein-DNA complex with the (32)P-labeled KLF binding site of the WSSV108 promoter, and that higher levels of Litopenaeus vannamei KLF (LvKLF) were expressed in WSSV-infected shrimp. A transactivation assay indicated that the WSSV108 promoter was strongly activated by rPmKLF in a dose-dependent manner. Lastly, we found that specific silencing of LvKLF expression in vivo by dsRNA injection dramatically reduced both WSSV108 expression and WSSV replication. We conclude that shrimp KLF is important for WSSV genome replication and gene expression, and that it binds to the WSSV108 promoter to enhance the expression of this immediate-early gene.

  17. Secreted cerberus1 as a marker for quantification of definitive endoderm differentiation of the pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hidefumi Iwashita

    Full Text Available To date, CXCR4 and E-cadherin double-positive cells detected by flow cytometry have been used to identify the differentiation of embryonic stem (ES cells or induced pluripotent stem (iPS cells into definitive endoderm (DE lineages. Quantification of DE differentiation from ES/iPS cells by using flow cytometry is a multi-step procedure including dissociation of the cells, antibody reaction, and flow cytometry analysis. To establish a quick assay method for quantification of ES/iPS cell differentiation into the DE without dissociating the cells, we examined whether secreted Cerberus1 (Cer1 protein could be used as a marker. Cer1 is a secreted protein expressed first in the anterior visceral endoderm and then in the DE. The amount of Cer1 secreted correlated with the proportion of CXCR4+/E-Cadherin+ cells that differentiated from mouse ES cells. In addition, we found that human iPS cell-derived DE also expressed the secreted CER1 and that the expression level correlated with the proportion of SOX17+/FOXA2+ cells present. Taken together, these results show that Cer1 (or CER1 serves as a good marker for quantification of DE differentiation of mouse and human ES/iPS cells.

  18. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2010-01-01

    Full Text Available The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays.

  19. Neurotrophin/Trk receptor signaling mediates C/EBPα, -β and NeuroD recruitment to immediate-early gene promoters in neuronal cells and requires C/EBPs to induce immediate-early gene transcription

    Directory of Open Access Journals (Sweden)

    von Bohlen und Halbach Oliver

    2007-01-01

    Full Text Available Abstract Background Extracellular signaling through receptors for neurotrophins mediates diverse neuronal functions, including survival, migration and differentiation in the central nervous system, but the transcriptional targets and regulators that mediate these diverse neurotrophin functions are not well understood. Results We have identified the immediate-early (IE genes Fos, Egr1 and Egr2 as transcriptional targets of brain derived neurotrophic factor (BDNF/TrkB signaling in primary cortical neurons, and show that the Fos serum response element area responds to BDNF/TrkB in a manner dependent on a combined C/EBP-Ebox element. The Egr1 and Egr2 promoters contain homologous regulatory elements. We found that C/EBPα/β and NeuroD formed complexes in vitro and in vivo, and were recruited to all three homologous promoter regions. C/EBPα and NeuroD co-operatively activated the Fos promoter in transfection assays. Genetic depletion of Trk receptors led to impaired recruitment of C/EBPs and NeuroD in vivo, and elimination of Cebpa and Cebpb alleles reduced BDNF induction of Fos, Egr1 and Egr2 in primary neurons. Finally, defective differentiation of cortical dendrites, as measured by MAP2 staining, was observed in both compound Cebp and Ntrk knockout mice. Conclusion We here identify three IE genes as targets for BDNF/TrkB signaling, show that C/EBPα and -β are recruited along with NeuroD to target promoters, and that C/EBPs are essential mediators of Trk signaling in cortical neurons. We show also that C/EBPs and Trks are required for cortical dendrite differentiation, consistent with Trks regulating dendritic differentiation via a C/EBP-dependent mechanism. Finally, this study indicates that BDNF induction of IE genes important for neuronal function depends on transcription factors (C/EBP, NeuroD up-regulated during neuronal development, thereby coupling the functional competence of the neuronal cells to their differentiation.

  20. Drosophila S2 cells are non-permissive for vaccinia virus DNA replication following entry via low pH-dependent endocytosis and early transcription.

    Directory of Open Access Journals (Sweden)

    Zain Bengali

    Full Text Available Vaccinia virus (VACV, a member of the chordopox subfamily of the Poxviridae, abortively infects insect cells. We have investigated VACV infection of Drosophila S2 cells, which are useful for protein expression and genome-wide RNAi screening. Biochemical and electron microscopic analyses indicated that VACV entry into Drosophila S2 cells depended on the VACV multiprotein entry-fusion complex but appeared to occur exclusively by a low pH-dependent endocytic mechanism, in contrast to both neutral and low pH entry pathways used in mammalian cells. Deep RNA sequencing revealed that the entire VACV early transcriptome, comprising 118 open reading frames, was robustly expressed but neither intermediate nor late mRNAs were made. Nor was viral late protein synthesis or inhibition of host protein synthesis detected by pulse-labeling with radioactive amino acids. Some reduction in viral early proteins was noted by Western blotting. Nevertheless, synthesis of the multitude of early proteins needed for intermediate gene expression was demonstrated by transfection of a plasmid containing a reporter gene regulated by an intermediate promoter. In addition, expression of a reporter gene with a late promoter was achieved by cotransfection of intermediate genes encoding the late transcription factors. The requirement for transfection of DNA templates for intermediate and late gene expression indicated a defect in viral genome replication in VACV-infected S2 cells, which was confirmed by direct analysis. Furthermore, VACV-infected S2 cells did not support the replication of a transfected plasmid, which occurs in mammalian cells and is dependent on all known viral replication proteins, indicating a primary restriction of DNA synthesis.

  1. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction.

    Science.gov (United States)

    Torres, Maria F; Ghaffari, Noushin; Buiate, Ester A S; Moore, Neil; Schwartz, Scott; Johnson, Charles D; Vaillancourt, Lisa J

    2016-03-08

    Colletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease. It progresses through three recognizable phases of pathogenic development in planta: melanized appressoria on the host surface prior to penetration; biotrophy, characterized by intracellular colonization of living host cells; and necrotrophy, characterized by host cell death and symptom development. A "Mixed Effects" Generalized Linear Model (GLM) was developed and applied to an existing Illumina transcriptome dataset, substantially increasing the statistical power of the analysis of C. graminicola gene expression during infection and colonization. Additionally, the in planta transcriptome of the wild-type was compared with that of a mutant strain impaired in the establishment of biotrophy, allowing detailed dissection of events occurring specifically during penetration, and during early versus late biotrophy. More than 2000 fungal genes were differentially transcribed during appressorial maturation, penetration, and colonization. Secreted proteins, secondary metabolism genes, and membrane receptors were over-represented among the differentially expressed genes, suggesting that the fungus engages in an intimate and dynamic conversation with the host, beginning prior to penetration. This communication process probably involves reception of plant signals triggering subsequent developmental progress in the fungus, as well as production of signals that induce responses in the host. Later phases of biotrophy were more similar to necrotrophy, with increased production of secreted proteases, inducers of plant cell death, hydrolases, and membrane bound transporters for the uptake and egress of potential toxins, signals, and nutrients. This approach revealed, in unprecedented detail, fungal genes specifically expressed during critical phases of host penetration and biotrophic establishment. Many encoded secreted proteins, secondary metabolism enzymes, and receptors that may

  2. Early growth response 4 is involved in cell proliferation of small cell lung cancer through transcriptional activation of its downstream genes.

    Directory of Open Access Journals (Sweden)

    Taisuke Matsuo

    Full Text Available Small cell lung cancer (SCLC is aggressive, with rapid growth and frequent bone metastasis; however, its detailed molecular mechanism remains poorly understood. Here, we report the critical role of early growth factor 4 (EGR4, a DNA-binding, zinc-finger transcription factor, in cell proliferation of SCLC. EGR4 overexpression in HEK293T cells conferred significant upregulation of specific splice variants of the parathyroid hormone-related protein (PTHrP gene, resulting in enhancement of the secretion of PTHrP protein, a known mediator of osteolytic bone metastasis. More importantly, depletion of EGR4 expression by siRNA significantly suppressed growth of the SCLC cell lines, SBC-5, SBC-3 and NCI-H1048. On the other hand, introduction of EGR4 into NIH3T3 cells significantly enhanced cell growth. We identified four EGR4 target genes, SAMD5, RAB15, SYNPO and DLX5, which were the most significantly downregulated genes upon depletion of EGR4 expression in all of the SCLC cells examined, and demonstrated the direct recruitment of EGR4 to their promoters by ChIP and luciferase reporter analysis. Notably, knockdown of the expression of these genes by siRNA remarkably suppressed the growth of all the SCLC cells. Taken together, our findings suggest that EGR4 likely regulates the bone metastasis and proliferation of SCLC cells via transcriptional regulation of several target genes, and may therefore be a promising target for the development of anticancer drugs for SCLC patients.

  3. DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Masaaki Oda

    2013-06-01

    Full Text Available DNA methylation changes dynamically during development and is essential for embryogenesis in mammals. However, how DNA methylation affects developmental gene expression and cell differentiation remains elusive. During embryogenesis, many key transcription factors are used repeatedly, triggering different outcomes depending on the cell type and developmental stage. Here, we report that DNA methylation modulates transcription-factor output in the context of cell differentiation. Using a drug-inducible Gata4 system and a mouse embryonic stem (ES cell model of mesoderm differentiation, we examined the cellular response to Gata4 in ES and mesoderm cells. The activation of Gata4 in ES cells is known to drive their differentiation to endoderm. We show that the differentiation of wild-type ES cells into mesoderm blocks their Gata4-induced endoderm differentiation, while mesoderm cells derived from ES cells that are deficient in the DNA methyltransferases Dnmt3a and Dnmt3b can retain their response to Gata4, allowing lineage conversion from mesoderm cells to endoderm. Transcriptome analysis of the cells' response to Gata4 over time revealed groups of endoderm and mesoderm developmental genes whose expression was induced by Gata4 only when DNA methylation was lost, suggesting that DNA methylation restricts the ability of these genes to respond to Gata4, rather than controlling their transcription per se. Gata4-binding-site profiles and DNA methylation analyses suggested that DNA methylation modulates the Gata4 response through diverse mechanisms. Our data indicate that epigenetic regulation by DNA methylation functions as a heritable safeguard to prevent transcription factors from activating inappropriate downstream genes, thereby contributing to the restriction of the differentiation potential of somatic cells.

  4. Tlys, a newly identified Sulfolobus spindle-shaped virus 1 transcript expressed in the lysogenic state, encodes a DNA-binding protein interacting at the promoters of the early genes

    DEFF Research Database (Denmark)

    Fusco, Salvatore; She, Qunxin; Bartolucci, Simonetta

    2013-01-01

    the growth of the lysogenic host. The correponding gene f55 lies between two transcriptional units (T6 and Tind) that are upregulated upon UV irradiation. The open reading frame f55 encodes a 6.3-kDa protein which shows sequence identity with negative regulators that fold into the ribbon-helix-helix DNA......-binding motif. DNA-binding assays demonstrated that the recombinant F55, purified from Escherichia coli, is indeed a putative transcription factor able to recognize site specifically target sequences in the promoters of the early induced T5, T6, and Tind transcripts, as well as of its own promoter. Binding...... sites of F55 are included within a tandem-repeated sequence overlapping the transcription start sites and/or the B recognition element of the pertinent genes. The strongest binding was observed with the promoters of T5 and T6, and an apparent cooperativity in binding was observed with the Tind promoter...

  5. The evolutionary duplication and probable demise of an endodermal GATA factor in Caenorhabditis elegans.

    OpenAIRE

    Fukushige, Tetsunari; Goszczynski, Barbara; Tian, Helen; McGhee, James D

    2003-01-01

    We describe the elt-4 gene from the nematode Caenorhabditis elegans. elt-4 is predicted to encode a very small (72 residues, 8.1 kD) GATA-type zinc finger transcription factor. The elt-4 gene is located approximately 5 kb upstream of the C. elegans elt-2 gene, which also encodes a GATA-type transcription factor; the zinc finger DNA-binding domains are highly conserved (24/25 residues) between the two proteins. The elt-2 gene is expressed only in the intestine and is essential for normal intes...

  6. Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B

    Science.gov (United States)

    Russo, Roberta; Zito, Francesca; Costa, Caterina; Bonaventura, Rosa

    2010-01-01

    Members of the 14-3-3 protein family are involved in many important cellular events, including stress response, survival and apoptosis. Genes of the 14-3-3 family are conserved from plants to humans, and some members are responsive to UV radiation. Here, we report the isolation of the complete cDNA encoding the 14-3-3 epsilon isoform from Paracentrotus lividus sea urchin embryos, referred to as Pl14-3-3ε, and the phylogenetic relationship with other homologues described in different phyla. Pl14-3-3ε mRNA levels were measured by QPCR during development and found to increase from the mesenchyme blastula to the prism stage. In response to UV-B (312 nm) exposure, early stage embryos collected 2 h later showed a 2.3-fold (at 400 J/m2) and a 2.7-fold (at 800 J/m2) increase in Pl14-3-3ε transcript levels compared with controls. The spatial expression of Pl14-3-3ε mRNA, detected by whole mount in situ hybridization in both control and UV-B exposed embryos, harvested at late developmental stages, showed transcripts to be located in the archenteron of gastrula stage and widely distributed in all germ layers, respectively. The Pl14-3-3ε mRNA delocalization parallels the failure in archenteron elongation observed morphologically, as well as the lack of specific endoderm markers, investigated by indirect immuno-fluorescence on whole mount embryos. Results confirm the involvement of 14-3-3ε in the stress response elicited by UV-B and demonstrate, for the first time, its contribution at the transcriptional level in the sea urchin embryo. PMID:20607471

  7. Acellular Lung Scaffolds Direct Differentiation of Endoderm to Functional Airway Epithelial Cells: Requirement of Matrix-Bound HS Proteoglycans

    Directory of Open Access Journals (Sweden)

    Sharareh Shojaie

    2015-03-01

    Full Text Available Efficient differentiation of pluripotent cells to proximal and distal lung epithelial cell populations remains a challenging task. The 3D extracellular matrix (ECM scaffold is a key component that regulates the interaction of secreted factors with cells during development by often binding to and limiting their diffusion within local gradients. Here we examined the role of the lung ECM in differentiation of pluripotent cells in vitro and demonstrate the robust inductive capacity of the native lung matrix alone. Extended culture of stem cell-derived definitive endoderm on decellularized lung scaffolds in defined, serum-free medium resulted in differentiation into mature airway epithelia, complete with ciliated cells, club cells, and basal cells with morphological and functional similarities to native airways. Heparitinase I, but not chondroitinase ABC, treatment of scaffolds revealed that the differentiation achieved is dependent on heparan sulfate proteoglycans and its bound factors remaining on decellularized scaffolds.

  8. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level

    DEFF Research Database (Denmark)

    Norrman, Karin; Strömbeck, Anna; Semb, Henrik

    2013-01-01

    of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments. Differentiation efficiencies were evaluated by gene expression profiling over time at cell population level. A panel of key markers was used to study DE...... for the three activin A based protocols applied. Our data provide novel insights in DE gene expression at the cellular level of in vitro differentiated human embryonic stem cells, and illustrate the power of using single-cell gene expression profiling to study differentiation heterogeneity and to characterize......Characterization of directed differentiation of pluripotent stem cells towards therapeutically relevant cell types, including pancreatic beta-cells and hepatocytes, depends on molecular markers and assays that resolve the signature of individual cells. Pancreas and liver both have a common origin...

  9. The corn snake yolk sac becomes a solid tissue filled with blood vessels and yolk-rich endodermal cells

    Science.gov (United States)

    Elinson, Richard P.; Stewart, James R.

    2014-01-01

    The amniote egg was a key innovation in vertebrate evolution because it supports an independent existence in terrestrial environments. The egg is provisioned with yolk, and development depends on the yolk sac for the mobilization of nutrients. We have examined the yolk sac of the corn snake Pantherophis guttatus by the dissection of living eggs. In contrast to the familiar fluid-filled sac of birds, the corn snake yolk sac invades the yolk mass to become a solid tissue. There is extensive proliferation of yolk-filled endodermal cells, which associate with a meshwork of blood vessels. These novel attributes of the yolk sac of corn snakes compared with birds suggest new pathways for the evolution of the amniote egg. PMID:24402715

  10. Effects on transcriptional regulation and lipid droplet characteristics in the liver of female juvenile pigs after early postnatal feed restriction and refeeding are dependent on birth weight.

    Directory of Open Access Journals (Sweden)

    Constance Nebendahl

    Full Text Available Epidemiological and experimental data indicate that caloric restriction in early postnatal life may improve liver lipid metabolism in low birth weight individuals. The present study investigated transcriptional and metabolic responses to low (U and normal (N birth weight (d 75, T1 and postnatal feed restriction (R, 60% of controls, d 98, T2 followed by subsequent refeeding until d 131 of age (T3. Liver tissue studies were performed with a total of 42 female pigs which were born by multiparous German landrace sows. Overall, 194 genes were differentially expressed in the liver of U vs. N (T1 animals with roles in lipid metabolism. The total mean area and number of lipid droplets (LD was about 4.6- and 3.7 times higher in U compared to N. In U, the mean LD size (µm(2 was 24.9% higher. 3-week feed restriction reduced total mean area of LDs by 58.3 and 72.7% in U and N, respectively. A functional role of the affected genes in amino acid metabolism was additionally indicated. This was reflected by a 17.0% higher arginine concentration in the liver of UR animals (vs. NR. To evaluate persistency of effects, analyses were also done after refeeding period at T3. Overall, 4 and 22 genes show persistent regulation in U and N animals after 5 weeks of refeeding, respectively. These genes are involved in e.g. processes of lipid and protein metabolism and glucose homeostasis. Moreover, the recovery of total mean LD area in U and N animals back to the previous T1 level was observed. However, when compared to controls, the mean LD size was still reduced by 23.3% in UR, whereas it was increased in NR (+24.7%. The present results suggest that short-term postnatal feed restriction period programmed juvenile U animals for an increased rate of hepatic lipolysis in later life.

  11. Effects on transcriptional regulation and lipid droplet characteristics in the liver of female juvenile pigs after early postnatal feed restriction and refeeding are dependent on birth weight.

    Science.gov (United States)

    Nebendahl, Constance; Krüger, Ricarda; Görs, Solvig; Albrecht, Elke; Martens, Karen; Hennig, Steffen; Storm, Niels; Höppner, Wolfgang; Pfuhl, Ralf; Metzler-Zebeli, Barbara U; Hammon, Harald M; Metges, Cornelia C

    2013-01-01

    Epidemiological and experimental data indicate that caloric restriction in early postnatal life may improve liver lipid metabolism in low birth weight individuals. The present study investigated transcriptional and metabolic responses to low (U) and normal (N) birth weight (d 75, T1) and postnatal feed restriction (R, 60% of controls, d 98, T2) followed by subsequent refeeding until d 131 of age (T3). Liver tissue studies were performed with a total of 42 female pigs which were born by multiparous German landrace sows. Overall, 194 genes were differentially expressed in the liver of U vs. N (T1) animals with roles in lipid metabolism. The total mean area and number of lipid droplets (LD) was about 4.6- and 3.7 times higher in U compared to N. In U, the mean LD size (µm(2)) was 24.9% higher. 3-week feed restriction reduced total mean area of LDs by 58.3 and 72.7% in U and N, respectively. A functional role of the affected genes in amino acid metabolism was additionally indicated. This was reflected by a 17.0% higher arginine concentration in the liver of UR animals (vs. NR). To evaluate persistency of effects, analyses were also done after refeeding period at T3. Overall, 4 and 22 genes show persistent regulation in U and N animals after 5 weeks of refeeding, respectively. These genes are involved in e.g. processes of lipid and protein metabolism and glucose homeostasis. Moreover, the recovery of total mean LD area in U and N animals back to the previous T1 level was observed. However, when compared to controls, the mean LD size was still reduced by 23.3% in UR, whereas it was increased in NR (+24.7%). The present results suggest that short-term postnatal feed restriction period programmed juvenile U animals for an increased rate of hepatic lipolysis in later life.

  12. The Impact of Promoting Transcription on Early Text Production: Effects on Bursts and Pauses, Levels of Written Language, and Writing Performance

    Science.gov (United States)

    Alves, Rui A.; Limpo, Teresa; Fidalgo, Raquel; Carvalhais, Lénia; Pereira, Luísa Álvares; Castro, São Luís

    2016-01-01

    Writing development seems heavily dependent upon the automatization of transcription. This study aimed to further investigate the link between transcription and writing by examining the effects of promoting handwriting and spelling skills on a comprehensive set of writing measures (viz., bursts and pauses, levels of written language, and writing…

  13. Mouse amnionless, which is required for primitive streak assembly, mediates cell-surface localization and endocytic function of cubilin on visceral endoderm and kidney proximal tubules.

    Science.gov (United States)

    Strope, Sharon; Rivi, Roberta; Metzger, Thomas; Manova, Katia; Lacy, Elizabeth

    2004-10-01

    Impaired primitive streak assembly in the mouse amnionless (amn) mutant results in the absence of non-axial trunk mesoderm, a derivative of the middle region of the primitive streak. In addition, the epiblast of amn mutants fails to increase significantly in size after E7.0, indicating that middle primitive streak assembly is mechanistically tied to the growth of the embryo during gastrulation. Amn, a novel transmembrane protein, is expressed exclusively in an extra-embryonic tissue, visceral endoderm (VE), during the early post-implantation stages. We show that Amn is also expressed in kidney proximal tubules (KPT) and intestinal epithelium, which, like the VE, are polarized epithelia specialized for resorption and secretion. To explore whether Amn participates in the development or function of KPT and intestinal epithelia and to gain insight into the function of Amn during gastrulation, we constructed Amn(-/-) ES cell+/+ blastocyst chimeras. While chimeras form anatomically normal kidneys and intestine, they exhibit variable, selective proteinuria, a sign of KPT malfunction. In humans, AMN has been genetically connected to Cubilin (CUBN), a multi-ligand scavenger receptor expressed by KPT, intestine and yolk sac. Loss of CUBN, the intestinal intrinsic factor (IF)-vitamin B12 receptor, results in hereditary megaloblastic anemia (MGA1), owing to vitamin B12 malabsorption. The recent report of MGA1 families with mutations in AMN suggests that AMN functions in the same pathway as CUBN. We demonstrate that Cubn is not properly localized to the cell surface in Amn(-/-) tissues in the embryo and adult mouse, and that adult chimeras exhibit selective proteinuria of Cubn ligands. This study demonstrates that Amn is an essential component of the Cubn receptor complex in vivo and suggests that Amn/Cubn is required for endocytosis/transcytosis of one or more ligands in the VE during gastrulation to coordinate growth and patterning of the embryo. Furthermore, as AMN is

  14. Human embryonic stem cell-derived pancreatic endoderm alleviates diabetic pathology and improves reproductive outcome in C57BL/KsJ-Lep(db/+) gestational diabetes mellitus mice.

    Science.gov (United States)

    Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua

    2015-07-01

    Gestational diabetes mellitus is a condition commonly encountered during mid to late pregnancy with pathologic manifestations including hyperglycemia, hyperinsulinemia, insulin resistance, and fetal maldevelopment. The cause of gestational diabetes mellitus can be attributed to both genetic and environmental factors, hence complicating its diagnosis and treatment. Pancreatic progenitors derived from human embryonic stem cells were shown to be able to effectively treat diabetes in mice. In this study, we have developed a system of treating diabetes using human embryonic stem cell-derived pancreatic endoderm in a mouse model of gestational diabetes mellitus. Human embryonic stem cells were differentiated in vitro into pancreatic endoderm, which were then transplanted into db/+ mice suffering from gestational diabetes mellitus. The transplant greatly improved glucose metabolism and reproductive outcome of the females compared with the control groups. Our findings support the feasibility of using differentiated human embryonic stem cells for treating gestational diabetes mellitus patients.

  15. Transient Downregulation of Nanog and Oct4 Induced by DETA/NO Exposure in Mouse Embryonic Stem Cells Leads to Mesodermal/Endodermal Lineage Differentiation

    Directory of Open Access Journals (Sweden)

    Sergio Mora-Castilla

    2014-01-01

    Full Text Available The function of pluripotency genes in differentiation is a matter of investigation. We report here that Nanog and Oct4 are reexpressed in two mouse embryonic stem cell (mESC lines following exposure to the differentiating agent DETA/NO. Both cell lines express a battery of both endoderm and mesoderm markers following induction of differentiation with DETA/NO-based protocols. Confocal analysis of cells undergoing directed differentiation shows that the majority of cells expressing Nanog express also endoderm genes such as Gata4 and FoxA2 (75.4% and 96.2%, resp.. Simultaneously, mRNA of mesodermal markers Flk1 and Mef2c are also regulated by the treatment. Acetylated histone H3 occupancy at the promoter of Nanog is involved in the process of reexpression. Furthermore, Nanog binding to the promoter of Brachyury leads to repression of this gene, thus disrupting mesendoderm transition.

  16. Transient Downregulation of Nanog and Oct4 Induced by DETA/NO Exposure in Mouse Embryonic Stem Cells Leads to Mesodermal/Endodermal Lineage Differentiation.

    Science.gov (United States)

    Mora-Castilla, Sergio; Tejedo, Juan R; Tapia-Limonchi, Rafael; Díaz, Irene; Hitos, Ana B; Cahuana, Gladys M; Hmadcha, Abdelkrim; Martín, Franz; Soria, Bernat; Bedoya, Francisco J

    2014-01-01

    The function of pluripotency genes in differentiation is a matter of investigation. We report here that Nanog and Oct4 are reexpressed in two mouse embryonic stem cell (mESC) lines following exposure to the differentiating agent DETA/NO. Both cell lines express a battery of both endoderm and mesoderm markers following induction of differentiation with DETA/NO-based protocols. Confocal analysis of cells undergoing directed differentiation shows that the majority of cells expressing Nanog express also endoderm genes such as Gata4 and FoxA2 (75.4% and 96.2%, resp.). Simultaneously, mRNA of mesodermal markers Flk1 and Mef2c are also regulated by the treatment. Acetylated histone H3 occupancy at the promoter of Nanog is involved in the process of reexpression. Furthermore, Nanog binding to the promoter of Brachyury leads to repression of this gene, thus disrupting mesendoderm transition.

  17. Nodal dependent differential localisation of dishevelled-2 demarcates regions of differing cell behaviour in the visceral endoderm.

    Directory of Open Access Journals (Sweden)

    Georgios Trichas

    2011-02-01

    Full Text Available The anterior visceral endoderm (AVE, a signalling centre within the simple epithelium of the visceral endoderm (VE, is required for anterior-posterior axis specification in the mouse embryo. AVE cells migrate directionally within the VE, thereby properly positioning the future anterior of the embryo and orientating the primary body axis. AVE cells consistently come to an abrupt stop at the border between the anterior epiblast and extra-embryonic ectoderm, which represents an end-point to their proximal migration. Little is known about the underlying basis for this barrier and how surrounding cells in the VE respond to or influence AVE migration. We use high-resolution 3D reconstructions of protein localisation patterns and time-lapse microscopy to show that AVE cells move by exchanging neighbours within an intact epithelium. Cell movement and mixing is restricted to the VE overlying the epiblast, characterised by the enrichment of Dishevelled-2 (Dvl2 to the lateral plasma membrane, a hallmark of Planar Cell Polarity (PCP signalling. AVE cells halt upon reaching the adjoining region of VE overlying the extra-embryonic ectoderm, which displays reduced neighbour exchange and in which Dvl2 is excluded specifically from the plasma membrane. Though a single continuous sheet, these two regions of VE show distinct patterns of F-actin localisation, in cortical rings and an apical shroud, respectively. We genetically perturb PCP signalling and show that this disrupts the localisation pattern of Dvl2 and F-actin and the normal migration of AVE cells. In Nodal null embryos, membrane localisation of Dvl2 is reduced, while in mutants for the Nodal inhibitor Lefty1, Dvl2 is ectopically membrane localised, establishing a role for Nodal in modulating PCP signalling. These results show that the limits of AVE migration are determined by regional differences in cell behaviour and protein localisation within an otherwise apparently uniform VE. In addition to

  18. Efficient definitive endoderm induction from mouse embryonic stem cell adherent cultures: A rapid screening model for differentiation studies

    Directory of Open Access Journals (Sweden)

    Josué Kunjom Mfopou

    2014-01-01

    Full Text Available Definitive endoderm (DE differentiation from mouse embryonic stem cell (mESC monolayer cultures has been limited by poor cell survival or low efficiency. Recently, a combination of TGFβ and Wnt activation with BMP inhibition improved DE induction in embryoid bodies cultured in suspension. Based on these observations we developed a protocol to efficiently induce DE cells in monolayer cultures of mESCs. We obtained a good cell yield with 54.92% DE induction as shown by Foxa2, Sox17, Cxcr4 and E-Cadherin expression. These DE-cells could be further differentiated into posterior foregut and pancreatic phenotypes using a culture protocol initially developed for human embryonic stem cell (hESC differentiation. In addition, this mESC-derived DE gave rise to hepatocyte-like cells after exposure to BMP and FGF ligands. Our data therefore indicate a substantial improvement of monolayer DE induction from mESCs and support the concept that differentiation conditions for mESC-derived DE are similar to those for hESCs. As mESCs are easier to maintain and manipulate in culture compared to hESCs, and considering the shorter duration of embryonic development in the mouse, this method of efficient DE induction on monolayer will promote the development of new differentiation protocols to obtain DE-derivatives, like pancreatic beta-cells, for future use in cell replacement therapies.

  19. miR-410 enhanced hESC-derived pancreatic endoderm transplant to alleviate gestational diabetes mellitus.

    Science.gov (United States)

    Mi, Yang; Guo, Na; He, Tongqiang; Ji, Jing; Li, Zhibin; Huang, Pu

    2015-12-01

    Gestational diabetes mellitus (GDM) is a condition commonly encountered during mid to late pregnancy with pathologic manifestations including hyperglycemia, hyperinsulinemia, insulin resistance, and fetal mal-development. The deficit and dysfunction of insulin secreting β-cells are signature symptoms for GDM. Pancreatic progenitors derived from human embryonic stem cells (hESCs) were shown to be able to effectively treat diabetes in mice. In this study, we first identified that microRNA-410 (miR-410) directly targets lactate dehydrogenase A (LDHA), a gene selectively repressed in normal insulin secreting β-cells. hESCs that can be induced to express miR-410 hence keeping LDHA levels in check were then differentiated in vitro into pancreatic endoderm, followed by transplantation into db/+ mouse model of GDM. The transplant greatly improved glucose metabolism and reproductive outcome of the pregnant females suffering from GDM. Our findings describe for the first time the method of combining miRNA with hESCs, providing proof of concept by employing genetically modified stem cell therapy for treating GDM.

  20. Germ Cell Tumor Targeting Chemotherapy in Gastric Adenocarcinoma with an Endodermal Sinus Tumor Component: A Case Report.

    Science.gov (United States)

    Choi, Jung Eun; Choe, A Reum; Yoon, Sang Eun; Nam, Eun Mi; Park, Heejung; Lee, Kyoung Eun

    2017-01-01

    The most common sites for extragonadal germ cell tumors are the midline mediastinum, retroperitoneum and, much less frequently, the stomach. The stomach-originated primary germ cell tumor carries a poor prognosis, especially when metastasis occurs to the liver, with a mean survival time of 1 month. We describe the case of a 77-year-old male who presented with usual symptoms of gastric malignancy. Gastrectomy was performed. Histopathology of surgically resected tissue revealed a mixture of adenocarcinoma and endodermal sinus tumor components with α-fetoprotein production. After liver metastasis was identified, oxaliplatin and capecitabine were administered as palliative chemotherapy. The response was poor. For the second-line therapy, bleomycin, etoposide, and cisplatin (BEP) therapy was initiated. The overall response to these drugs was a partial response and the residual liver lesion was considered to be resectable. The patient died of pneumonia 11 months following the BEP session, representing an overall survival time of 22 months. Gastric adenocarcinoma with a germ cell tumor component is uncommon and an effective combination of chemotherapeutic agents is not yet clear. In this case, the patient received germ cell tumor-targeting chemotherapy and showed a durable response. Hence, germ cell-targeting cytotoxic agents have potential as the 'front-line regimen'.

  1. Structure and Ultrastructure of the Endodermal Region of the Alimentary Tract in the Freshwater Shrimp Neocaridina heteropoda (Crustacea, Malacostraca.

    Directory of Open Access Journals (Sweden)

    Lidia Sonakowska

    Full Text Available The freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca, Decapoda originates from Asia and is one of the species that is widely available all over the world because it is the most popular shrimp that is bred in aquaria. The structure and the ultrastructure of the midgut have been described using X-ray microtomography, transmission electron microscopy, light and fluorescence microscopes. The endodermal region of the alimentary system in N. heteropoda consists of an intestine and a hepatopancreas. No differences were observed in the structure and ultrastructure of males and females of the shrimp that were examined. The intestine is a tube-shaped organ and the hepatopancreas is composed of two large diverticles that are divided into the blind-end tubules. Hepatopancreatic tubules have three distinct zones - proximal, medial and distal. Among the epithelial cells of the intestine, two types of cells were distinguished - D and E-cells, while three types of cells were observed in the epithelium of the hepatopancreas - F, B and E-cells. Our studies showed that the regionalization in the activity of cells occurs along the length of the hepatopancreatic tubules. The role and ultrastructure of all types of epithelial cells are discussed, with the special emphasis on the function of the E-cells, which are the midgut regenerative cells. Additionally, we present the first report on the existence of an intercellular junction that is connected with the E-cells of Crustacea.

  2. Structure and Ultrastructure of the Endodermal Region of the Alimentary Tract in the Freshwater Shrimp Neocaridina heteropoda (Crustacea, Malacostraca).

    Science.gov (United States)

    Sonakowska, Lidia; Włodarczyk, Agnieszka; Poprawa, Izabela; Binkowski, Marcin; Śróbka, Joanna; Kamińska, Karolina; Kszuk-Jendrysik, Michalina; Chajec, Łukasz; Zajusz, Bartłomiej; Rost-Roszkowska, Magdalena Maria

    2015-01-01

    The freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca, Decapoda) originates from Asia and is one of the species that is widely available all over the world because it is the most popular shrimp that is bred in aquaria. The structure and the ultrastructure of the midgut have been described using X-ray microtomography, transmission electron microscopy, light and fluorescence microscopes. The endodermal region of the alimentary system in N. heteropoda consists of an intestine and a hepatopancreas. No differences were observed in the structure and ultrastructure of males and females of the shrimp that were examined. The intestine is a tube-shaped organ and the hepatopancreas is composed of two large diverticles that are divided into the blind-end tubules. Hepatopancreatic tubules have three distinct zones - proximal, medial and distal. Among the epithelial cells of the intestine, two types of cells were distinguished - D and E-cells, while three types of cells were observed in the epithelium of the hepatopancreas - F, B and E-cells. Our studies showed that the regionalization in the activity of cells occurs along the length of the hepatopancreatic tubules. The role and ultrastructure of all types of epithelial cells are discussed, with the special emphasis on the function of the E-cells, which are the midgut regenerative cells. Additionally, we present the first report on the existence of an intercellular junction that is connected with the E-cells of Crustacea.

  3. Atmospheric-pressure plasma-irradiation inhibits mouse embryonic stem cell differentiation to mesoderm and endoderm but promotes ectoderm differentiation

    Science.gov (United States)

    Miura, Taichi; Hamaguchi, Satoshi; Nishihara, Shoko

    2016-04-01

    Recently, various effects of low-temperature atmospheric-pressure plasma irradiation on living cells have been demonstrated, such as tissue sterilization, blood coagulation, angiogenesis, wound healing, and tumor elimination. However, the effect of plasma-irradiation on the differentiation of mouse embryonic stem cells (mESCs) has not yet been clarified. A large number of reactive species are generated by plasma-irradiation in medium, of which hydrogen peroxide (H2O2) is one of the main species generated. Here, we investigated the effect of plasma-irradiation on the differentiation of mESCs using an embryoid body (EB) formation assay with plasma-irradiated medium or H2O2-supplemented non-irradiated medium. Our findings demonstrated that plasma-irradiated medium potently inhibits the differentiation from mESCs to mesoderm and endoderm by inhibiting Wnt signaling as determined by quantitative polymerase chain reaction and immunoblotting analyses. In contrast, both the plasma-irradiated medium and H2O2-supplemented non-irradiated medium enhanced the differentiation to epiblastoid, ectodermal, and neuronal lineages by activation of fibroblast growth factor 4 (FGF4) signaling, suggesting that these effects are caused by the H2O2 generated by plasma-irradiation in medium. However, in each case, the differentiation to glial cells remained unaffected. This study is the first demonstration that plasma-irradiation affects the differentiation of mESCs by the regulation of Wnt and FGF4 signaling pathways.

  4. Tolerance induction and reversal of diabetes in mice transplanted with human embryonic stem cell-derived pancreatic endoderm.

    Science.gov (United States)

    Szot, Gregory L; Yadav, Mahesh; Lang, Jiena; Kroon, Evert; Kerr, Justin; Kadoya, Kuniko; Brandon, Eugene P; Baetge, Emmanuel E; Bour-Jordan, Hélène; Bluestone, Jeffrey A

    2015-02-05

    Type 1 diabetes (T1D) is an autoimmune disease caused by T cell-mediated destruction of insulin-producing β cells in the islets of Langerhans. In most cases, reversal of disease would require strategies combining islet cell replacement with immunotherapy that are currently available only for the most severely affected patients. Here, we demonstrate that immunotherapies that target T cell costimulatory pathways block the rejection of xenogeneic human embryonic-stem-cell-derived pancreatic endoderm (hESC-PE) in mice. The therapy allowed for long-term development of hESC-PE into islet-like structures capable of producing human insulin and maintaining normoglycemia. Moreover, short-term costimulation blockade led to robust immune tolerance that could be transferred independently of regulatory T cells. Importantly, costimulation blockade prevented the rejection of allogeneic hESC-PE by human PBMCs in a humanized model in vivo. These results support the clinical development of hESC-derived therapy, combined with tolerogenic treatments, as a sustainable alternative strategy for patients with T1D.

  5. Transcription factories

    Science.gov (United States)

    Rieder, Dietmar; Trajanoski, Zlatko; McNally, James G.

    2012-01-01

    There is considerable evidence that transcription does not occur homogeneously or diffusely throughout the nucleus, but rather at a number of specialized, discrete sites termed transcription factories. The factories are composed of ~4–30 RNA polymerase molecules, and are associated with many other molecules involved in transcriptional activation and mRNA processing. Some data suggest that the polymerase molecules within a factory remain stationary relative to the transcribed DNA, which is thought to be reeled through the factory site. There is also some evidence that transcription factories could help organize chromatin and nuclear structure, contributing to both the formation of chromatin loops and the clustering of active and co-regulated genes. PMID:23109938

  6. Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).

    Science.gov (United States)

    Kampa, Marilena; Notas, George; Pelekanou, Vassiliki; Troullinaki, Maria; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Lavrentaki, Katerina; Castanas, Elias

    2012-08-01

    The complexity of estrogen actions mainly relies to the presence of different identified receptors (ERα, ERβ, their isoforms, and GPR30/GPER) and their discrete cellular distribution. Depending on the localization of the receptor that mediates estrogen effects, nuclear and extra-nuclear actions have been described. The latter can trigger a number of signaling events leading also to transcriptional modifications. In an attempt to clarify the nature of the receptor(s) involved in the membrane initiated effect of estrogens on gene expression, we performed a whole transcriptome analysis of breast cancer cell lines with different receptor profiles (T47D, MCF7, MDA-MB-231, SK-BR-3). A pharmacological approach was conducted with the use of estradiol (E(2)) or membrane-impermeable E(2)-BSA in the absence or presence of a specific ERα-β or GPR30/GPER antagonist. Our results clearly show that in addition to the ERα isoforms and/or GPR30/GPER that mainly mediate the transcriptional effect of E(2)-BSA, there is a specific transcriptional signature (found in T47D and MCF-7 cells) suggesting the presence of an unidentified membrane ER element (ERx). Analysis of its signature and phenotypic verification revealed that important cell function such as apoptosis, transcriptional regulation, and growth factor signaling are associated with ERx. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Transcriptional regulation of the Herpes Simplex Virus 1α-gene by the viral immediate-early protein ICP22 in association with VP16

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Herpes Simplex Virus 1 (HSV1) is capable of inducing two forms of infection in individuals, and the establishment of which type of infection occurs is linked to the transcriptional activation of viral α genes. One of the HSV1 α genes, ICP22, is known to have multiple functions during virus replication, but its distinct roles are still unclear. This study showed that ICP22 functions as a general repressor for certain viral and cellular promoters, and this transcriptional repression by ICP22 is independent of the specific upstream promoter element, as shown using the CAT enzyme assay system. Further work also found that VP16 interfered with ICP22 mediated transcriptional repression of the viral α4 gene, through interactions with specific elements upstream of the α4 gene promoter. These findings support the possibility that ICP22 and VP16 control transcription of HSV1α genes in a common pathway for the establishment of either viral lytic or latent infections.

  8. Transcript dynamics at early stages of molecular interactions of MYMIV with resistant and susceptible genotypes of the leguminous host, Vigna mungo.

    Science.gov (United States)

    Kundu, Anirban; Patel, Anju; Paul, Sujay; Pal, Amita

    2015-01-01

    Initial phases of the MYMIV-Vigna mungo interaction is crucial in determining the infection phenotype upon challenging with the virus. During incompatible interaction, the plant deploys multiple stratagems that include extensive transcriptional alterations defying the virulence factors of the pathogen. Such molecular events are not frequently addressed by genomic tools. In order to obtain a critical insight to unravel how V. mungo respond to Mungbean yellow mosaic India virus (MYMIV), we have employed the PCR based suppression subtractive hybridization technique to identify genes that exhibit altered expressions. Dynamics of 345 candidate genes are illustrated that differentially expressed either in compatible or incompatible reactions and their possible biological and cellular functions are predicted. The MYMIV-induced physiological aspects of the resistant host include reactive oxygen species generation, induction of Ca2+ mediated signaling, enhanced expression of transcripts involved in phenylpropanoid and ubiquitin-proteasomal pathways; all these together confer resistance against the invader. Elicitation of genes implicated in salicylic acid (SA) pathway suggests that immune response is under the regulation of SA signaling. A significant fraction of modulated transcripts are of unknown function indicating participation of novel candidate genes in restricting this viral pathogen. Susceptibility on the other hand, as exhibited by V. mungo Cv. T9 is perhaps due to the poor execution of these transcript modulation exhibiting remarkable repression of photosynthesis related genes resulting in chlorosis of leaves followed by penalty in crop yield. Thus, the present findings revealed an insight on the molecular warfare during host-virus interaction suggesting plausible signaling mechanisms and key biochemical pathways overriding MYMIV invasion in resistant genotype of V. mungo. In addition to inflate the existing knowledge base, the genomic resources identified in

  9. Transcript dynamics at early stages of molecular interactions of MYMIV with resistant and susceptible genotypes of the leguminous host, Vigna mungo.

    Directory of Open Access Journals (Sweden)

    Anirban Kundu

    Full Text Available Initial phases of the MYMIV-Vigna mungo interaction is crucial in determining the infection phenotype upon challenging with the virus. During incompatible interaction, the plant deploys multiple stratagems that include extensive transcriptional alterations defying the virulence factors of the pathogen. Such molecular events are not frequently addressed by genomic tools. In order to obtain a critical insight to unravel how V. mungo respond to Mungbean yellow mosaic India virus (MYMIV, we have employed the PCR based suppression subtractive hybridization technique to identify genes that exhibit altered expressions. Dynamics of 345 candidate genes are illustrated that differentially expressed either in compatible or incompatible reactions and their possible biological and cellular functions are predicted. The MYMIV-induced physiological aspects of the resistant host include reactive oxygen species generation, induction of Ca2+ mediated signaling, enhanced expression of transcripts involved in phenylpropanoid and ubiquitin-proteasomal pathways; all these together confer resistance against the invader. Elicitation of genes implicated in salicylic acid (SA pathway suggests that immune response is under the regulation of SA signaling. A significant fraction of modulated transcripts are of unknown function indicating participation of novel candidate genes in restricting this viral pathogen. Susceptibility on the other hand, as exhibited by V. mungo Cv. T9 is perhaps due to the poor execution of these transcript modulation exhibiting remarkable repression of photosynthesis related genes resulting in chlorosis of leaves followed by penalty in crop yield. Thus, the present findings revealed an insight on the molecular warfare during host-virus interaction suggesting plausible signaling mechanisms and key biochemical pathways overriding MYMIV invasion in resistant genotype of V. mungo. In addition to inflate the existing knowledge base, the genomic resources

  10. The FOX transcription factor Hcm1 regulates oxidative metabolism in response to early nutrient limitation in yeast. Role of Snf1 and Tor1/Sch9 kinases.

    Science.gov (United States)

    Rodríguez-Colman, María José; Sorolla, M Alba; Vall-Llaura, Núria; Tamarit, Jordi; Ros, Joaquim; Cabiscol, Elisa

    2013-08-01

    Within Saccharomyces cerevisiae, Hcm1is a member of the forkhead transcription factor family with a role in chromosome organization. Our group recently described its involvement in mitochondrial biogenesis and stress resistance, and reports here that Hcm1 played a role in adaptation to respiratory metabolism when glucose or nitrogen was decreased. Regulation of Hcm1 activity occurs in at least three ways: i) protein quantity, ii) subcellular localization, and iii) transcriptional activity. Transcriptional activity was measured using a reporter gene fused to a promoter that contains a binding site for Hcm1. We also analyzed the levels of several genes whose expression is known to be regulated by Hcm1 levels and the role of the main kinases known to respond to nutrients. Lack of sucrose-nonfermenting (Snf1) kinase increases cytoplasmic localization of Hcm1, whereas Δtor1 cells showed a mild increase in nuclear Hcm1. In vitro experiments showed that Snf1 clearly phosphorylates Hcm1 while Sch9 exerts a milder phosphorylation. Although in vitroTor1 does not directly phosphorylate Hcm1, in vivo rapamycin treatment increases nuclear Hcm1. We conclude that Hcm1 participates in the adaptation of cells from fermentation to respiratory metabolism during nutrient scarcity. According to our hypothesis, when nutrient levels decrease, Snf1 phosphorylates Hcm1. This results in a shift from the cytoplasm to the nucleus and increased transcriptional activity of genes involved in respiration, use of alternative energy sources, NAD synthesis and oxidative stress resistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Early and late trisporoids differentially regulate β-carotene production and gene transcript Levels in the mucoralean fungi Blakeslea trispora and Mucor mucedo.

    Science.gov (United States)

    Sahadevan, Yamuna; Richter-Fecken, Mareike; Kaerger, Kerstin; Voigt, Kerstin; Boland, Wilhelm

    2013-12-01

    The multistep cleavage of carotenoids in Mucorales during the sexual phase results in a cocktail of trisporic acid (C18) sex pheromones. We hypothesized that the C18 trisporoid intermediates have a specific regulatory function for sex pheromone production and carotenogenesis that varies with genus/species and vegetative and sexual phases of their life cycles. Real-time quantitative PCR kinetics determined for Blakeslea trispora displayed a very high transcript turnover in the gene for carotenoid cleavage dioxygenase, tsp3, during the sexual phase. An in vivo enzyme assay and chromatographic analysis led to the identification of β-apo-12'-carotenal as the first apocarotenoid involved in trisporic acid biosynthesis in B. trispora. Supplementation of C18 trisporoids, namely D'orenone, methyl trisporate C, and trisporin C, increased tsp3 transcripts in the plus compared to minus partners. Interestingly, the tsp1 gene, which is involved in trisporic acid biosynthesis, was downregulated compared to tsp3 irrespective of asexual or sexual phase. Only the minus partners of both B. trispora and Mucor mucedo had enhanced β-carotene production after treatment with C20 apocarotenoids, 15 different trisporoids, and their analogues. We conclude that the apocarotenoids and trisporoids influence gene transcription and metabolite production, depending upon the fungal strain, corresponding genus, and developmental phase, representing a "chemical dialect" during sexual communication.

  12. Gut endoderm is involved in the transfer of left-right asymmetry from the node to the lateral plate mesoderm in the mouse embryo

    OpenAIRE

    Saund, Ranajeet S.; Kanai-Azuma, Masami; Kanai, Yoshiakira; Kim, Injune; Lucero, Mary T.; Saijoh, Yukio

    2012-01-01

    In the mouse, the initial signals that establish left-right (LR) asymmetry are determined in the node by nodal flow. These signals are then transferred to the lateral plate mesoderm (LPM) through cellular and molecular mechanisms that are not well characterized. We hypothesized that endoderm might play a role in this process because it is tightly apposed to the node and covers the outer surface of the embryo, and, just after nodal flow is established, higher Ca2+ flux has been reported on the...

  13. The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth.

    Science.gov (United States)

    Zhou, Wenbin; Cheng, Yuxiang; Yap, Aaron; Chateigner-Boutin, Anne-Laure; Delannoy, Etienne; Hammani, Kamel; Small, Ian; Huang, Jirong

    2009-04-01

    Virescence, a phenotype in which leaves green more slowly than usual, is recognized to play a role in protection from photo-oxidative damage before healthy chloroplasts are developed. The elucidation of the molecular mechanisms underlying virescence will provide insights into how the development of chloroplasts is controlled. In this study, we find that knockout alleles of Yellow Seedlings 1 (YS1) in Arabidopsis lead to a virescent phenotype, which disappears by 3 weeks after germination. The ys1 mutation resulted in marked decreases in photosynthetic capacity and photosynthetic pigment complexes, and disturbed ultrastructure of thylakoid membranes in 8-day-old seedlings. However, cotyledons of ys1 seedlings pre-treated in the dark for 5 days turn green almost as fast as the wild type in light, revealing that the developmental defects in ys1 are limited to the first few days after germination. Inspection of all known plastid RNA editing and splicing events revealed that YS1 is absolutely required for editing of site 25992 in rpoB transcripts encoding the beta subunit of the plastid-encoded RNA polymerase (PEP). YS1 is a nuclear-encoded chloroplast-localized pentatricopeptide repeat protein differing from previously described editing factors in that it has a C-terminal DYW motif. A defect in PEP activity is consistent with the changes in plastid transcript patterns observed in ys1 seedlings. We conclude that the activity of PEP containing RpoB translated from unedited transcripts is insufficient to support rapid chloroplast differentiation. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  14. Early Complete Molecular Response to First-Line Nilotinib in Two Patients with Chronic Myeloid Leukemia Carrying the p230 Transcript

    Directory of Open Access Journals (Sweden)

    Marianna Greco

    2013-01-01

    Full Text Available Chronic myeloid leukemia (CML with the rare fusion gene e19a2, encoding a p230 protein, has been described in patients with typical or rather aggressive clinical course. Although tyrosine kinase inhibitors (TKIs induce a substantial cytogenetic and molecular response in all phases of CML, a minority of p230 positive patients have been treated with TKIs. We report two cases of CML patients carrying the p230 transcript, who achieved fast and deep complete molecular response (CMR after frontline treatment with nilotinib. Our results suggest the use of nilotinib as frontline agent for the treatment of this CML variant.

  15. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence

    DEFF Research Database (Denmark)

    Christiansen, Michael W.; Matthewman, Colette; Podzimska-Sroka, Dagmara Agata;

    2016-01-01

    -expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling......The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005...

  16. Delayed Accumulation of H3K27me3 on Nascent DNA Is Essential for Recruitment of Transcription Factors at Early Stages of Stem Cell Differentiation.

    Science.gov (United States)

    Petruk, Svetlana; Cai, Jingli; Sussman, Robyn; Sun, Guizhi; Kovermann, Sina K; Mariani, Samanta A; Calabretta, Bruno; McMahon, Steven B; Brock, Hugh W; Iacovitti, Lorraine; Mazo, Alexander

    2017-04-20

    Recruitment of transcription factors (TFs) to repressed genes in euchromatin is essential to activate new transcriptional programs during cell differentiation. However, recruitment of all TFs, including pioneer factors, is impeded by condensed H3K27me3-containing chromatin. Single-cell and gene-specific analyses revealed that, during the first hours of induction of differentiation of mammalian embryonic stem cells (ESCs), accumulation of the repressive histone mark H3K27me3 is delayed after DNA replication, indicative of a decondensed chromatin structure in all regions of the replicating genome. This delay provides a critical "window of opportunity" for recruitment of lineage-specific TFs to DNA. Increasing the levels of post-replicative H3K27me3 or preventing S phase entry inhibited recruitment of new TFs to DNA and significantly blocked cell differentiation. These findings suggest that recruitment of lineage-specifying TFs occurs soon after replication and is facilitated by a decondensed chromatin structure. This insight may explain the developmental plasticity of stem cells and facilitate their exploitation for therapeutic purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Neurogenic Basic Helix-Loop-Helix Transcription Factor NeuroD6 Concomitantly Increases Mitochondrial mass and Regulates Cytoskeletal Organization in the Early Stages of Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Kristin Kathleen Baxter

    2009-08-01

    Full Text Available Mitochondria play a central role during neurogenesis by providing energy in the form of ATP for cytoskeletal remodelling, outgrowth of neuronal processes, growth cone activity and synaptic activity. However, the fundamental question of how differentiating neurons control mitochondrial biogenesis remains vastly unexplored. Since our previous studies have shown that the neurogenic bHLH (basic helix–loop–helix transcription factor NeuroD6 is sufficient to induce differentiation of the neuronal progenitor-like PC12 cells and that it triggers expression of mitochondrial-related genes, we investigated whether NeuroD6 could modulate the mitochondrial biomass using our PC12-ND6 cellular paradigm. Using a combination of flow cytometry, confocal microscopy and mitochondrial fractionation, we demonstrate that NeuroD6 stimulates maximal mitochondrial mass at the lamellipodia stage, thus preceding axonal growth. NeuroD6 triggers remodelling of the actin and microtubule networks in conjunction with increased expression of the motor protein KIF5B, thus promoting mitochondrial movement in developing neurites with accumulation in growth cones. Maintenance of the NeuroD6-induced mitochondrial mass requires an intact cytoskeletal network, as its disruption severely reduces mitochondrial mass. The present study provides the first evidence that NeuroD6 plays an integrative role in co-ordinating increase in mitochondrial mass with cytoskeletal remodelling, suggestive of a role of this transcription factor as a co-regulator of neuronal differentiation and energy metabolism.

  18. The neurogenic basic helix–loop–helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Kristin Kathleen Baxter

    2009-09-01

    Full Text Available Mitochondria play a central role during neurogenesis by providing energy in the form of ATP for cytoskeletal remodelling, outgrowth of neuronal processes, growth cone activity and synaptic activity. However, the fundamental question of how differentiating neurons control mitochondrial biogenesis remains vastly unexplored. Since our previous studies have shown that the neurogenic bHLH (basic helix–loop–helix transcription factor NeuroD6 is sufficient to induce differentiation of the neuronal progenitor-like PC12 cells and that it triggers expression of mitochondrial-related genes, we investigated whether NeuroD6 could modulate the mitochondrial biomass using our PC12-ND6 cellular paradigm. Using a combination of flow cytometry, confocal microscopy and mitochondrial fractionation, we demonstrate that NeuroD6 stimulates maximal mitochondrial mass at the lamellipodia stage, thus preceding axonal growth. NeuroD6 triggers remodelling of the actin and microtubule networks in conjunction with increased expression of the motor protein KIF5B, thus promoting mitochondrial movement in developing neurites with accumulation in growth cones. Maintenance of the NeuroD6-induced mitochondrial mass requires an intact cytoskeletal network, as its disruption severely reduces mitochondrial mass. The present study provides the first evidence that NeuroD6 plays an integrative role in co-ordinating increase in mitochondrial mass with cytoskeletal remodelling, suggestive of a role of this transcription factor as a co-regulator of neuronal differentiation and energy metabolism.

  19. The transcription factor protein Sox11 enhances early osteoblast differentiation by facilitating proliferation and the survival of mesenchymal and osteoblast progenitors.

    Science.gov (United States)

    Gadi, Jogeswar; Jung, Seung-Hyun; Lee, Min-Jung; Jami, Ajita; Ruthala, Kalyani; Kim, Kyoung-Min; Cho, Nam-Hoon; Jung, Han-Sung; Kim, Cheol-Hee; Lim, Sung-Kil

    2013-08-30

    Sox11 deletion mice are known to exhibit developmental defects of craniofacial skeletal malformations, asplenia, and hypoplasia of the lung, stomach, and pancreas. Despite the importance of Sox11 in the developing skeleton, the role of Sox11 in osteogenesis has not been studied yet. In this study, we identified that Sox11 is an important transcription factor for regulating the proliferation and survival of osteoblast precursor cells as well as the self-renewal potency of mesenchymal progenitor cells via up-regulation of Tead2. Furthermore, Sox11 also plays an important role in the segregation of functional osteoblast lineage progenitors from osteochondrogenic progenitors. Facilitation of osteoblast differentiation from mesenchymal cells was achieved by enhanced expression of the osteoblast lineage specific transcription factors Runx2 and Osterix. Morpholino-targeted disruption of Sox11 in zebrafish impaired organogenesis, including the bones, which were under mineralized. These results indicated that Sox11 plays a crucial role in the proliferation and survival of mesenchymal and osteoblast precursors by Tead2, and osteogenic differentiation by regulating Runx2 and Osterix.

  20. AVE protein expression and visceral endoderm cell behavior during anterior-posterior axis formation in mouse embryos: Asymmetry in OTX2 and DKK1 expression.

    Science.gov (United States)

    Hoshino, Hideharu; Shioi, Go; Aizawa, Shinichi

    2015-06-15

    The initial landmark of anterior-posterior (A-P) axis formation in mouse embryos is the distal visceral endoderm, DVE, which expresses a series of anterior genes at embryonic day 5.5 (E5.5). Subsequently, DVE cells move to the future anterior region, generating anterior visceral endoderm (AVE). Questions remain regarding how the DVE is formed and how the direction of the movement is determined. This study compares the detailed expression patterns of OTX2, HHEX, CER1, LEFTY1 and DKK1 by immunohistology and live imaging at E4.5-E6.5. At E6.5, the AVE is subdivided into four domains: most anterior (OTX2, HHEX, CER1-low/DKK1-high), anterior (OTX2, HHEX, CER1-high/DKK1-low), main (OTX2, HHEX, CER1, LEFTY1-high) and antero-lateral and posterior (OTX2, HHEX-low). The study demonstrates how this pattern is established. AVE protein expression in the DVE occurs de novo at E5.25-E5.5. Neither HHEX, LEFTY1 nor CER1 expression is asymmetric. In contrast, OTX2 expression is tilted on the future posterior side with the DKK1 expression at its proximal domain; the DVE cells move in the opposite direction of the tilt.

  1. Immediate-Early Gene Transcriptional Activation in Hippocampus Ca1 and Ca3 Does Not Accurately Reflect Rapid, Pattern Completion-Based Retrieval of Context Memory

    Science.gov (United States)

    Pevzner, Aleksandr; Guzowski, John F.

    2015-01-01

    No studies to date have examined whether immediate-early gene (IEG) activation is driven by context memory recall. To address this question, we utilized the context preexposure facilitation effect (CPFE) paradigm. In CPFE, animals acquire contextual fear conditioning through hippocampus-dependent rapid retrieval of a previously formed contextual…

  2. Transcription elongation

    Science.gov (United States)

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity. PMID:25764114

  3. Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development.

    Science.gov (United States)

    Soyer, Josselin; Flasse, Lydie; Raffelsberger, Wolfgang; Beucher, Anthony; Orvain, Christophe; Peers, Bernard; Ravassard, Philippe; Vermot, Julien; Voz, Marianne L; Mellitzer, Georg; Gradwohl, Gérard

    2010-01-01

    The transcription factor neurogenin 3 (Neurog3 or Ngn3) controls islet cell fate specification in multipotent pancreatic progenitor cells in the mouse embryo. However, our knowledge of the genetic programs implemented by Ngn3, which control generic and islet subtype-specific properties, is still fragmentary. Gene expression profiling in isolated Ngn3-positive progenitor cells resulted in the identification of the uncharacterized winged helix transcription factor Rfx6. Rfx6 is initially expressed broadly in the gut endoderm, notably in Pdx1-positive cells in the developing pancreatic buds, and then becomes progressively restricted to the endocrine lineage, suggesting a dual function in both endoderm development and islet cell differentiation. Rfx6 is found in postmitotic islet progenitor cells in the embryo and is maintained in all developing and adult islet cell types. Rfx6 is dependent on Ngn3 and acts upstream of or in parallel with NeuroD, Pax4 and Arx transcription factors during islet cell differentiation. In zebrafish, the Rfx6 ortholog is similarly found in progenitors and hormone expressing cells of the islet lineage. Loss-of-function studies in zebrafish revealed that rfx6 is required for the differentiation of glucagon-, ghrelin- and somatostatin-expressing cells, which, in the absence of rfx6, are blocked at the progenitor stage. By contrast, beta cells, whose number is only slightly reduced, were no longer clustered in a compact islet. These data unveil Rfx6 as a novel regulator of islet cell development.

  4. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2.

    Science.gov (United States)

    Simmini, Salvatore; Bialecka, Monika; Huch, Meritxell; Kester, Lennart; van de Wetering, Marc; Sato, Toshiro; Beck, Felix; van Oudenaarden, Alexander; Clevers, Hans; Deschamps, Jacqueline

    2014-12-11

    The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene repertoire that they express. Both types of stem cells have been shown to grow from single cells into 3D structures (organoids) in vitro. We show that single adult Lgr5-positive stem cells, isolated from small intestinal organoids, require Cdx2 to maintain their intestinal identity and are converted cell-autonomously into pyloric stem cells in the absence of this transcription factor. Clonal descendants of Cdx2(null) small intestinal stem cells enter the gastric differentiation program instead of producing intestinal derivatives. We show that the intestinal genetic programme is critically dependent on the single transcription factor encoding gene Cdx2.

  5. Polymethoxyflavonoids from Kaempferia parviflora induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation.

    Science.gov (United States)

    Horikawa, Takumi; Shimada, Tsutomu; Okabe, Yui; Kinoshita, Kaoru; Koyama, Kiyotaka; Miyamoto, Ken-ichi; Ichinose, Koji; Takahashi, Kunio; Aburada, Masaki

    2012-01-01

    We previously reported that Kaempferia parviflora WALL. ex BAKER (KP) and its ethyl acetate extract (KPE) improve various metabolic disorders in obesity-model mice. However the mechanism is not certain, and, in this study, in order to elucidate the mechanism of the suppressive effect of KP on fat accumulation, we focused on adipocytes, which are closely linked to metabolic diseases. The finding was that KPE and its components, 3,5,7,4'-tetramethoxyflavone and 3,5,7,3',4'-pentamethoxyflavone, strongly induced differentiation of 3T3-L1 preadipocytes to adipocytes. The above two polymethoxyflavonoids (PMFs) also induced adiponectin mRNA levels, and release of adiponectin into the medium. In addition, these PMFs enhanced the expression of peroxisome proliferator-activated receptor γ (PPARγ), but did not show PPARγ ligand activity. We then investigated the expression of the differentiation-regulator located upstream of PPARγ. Expression of CCAAT/enhancer-binding protein (C/EBP) β and -δ mRNA, a transcriptional regulator of PPARγ, was induced, and expression of GATA-2 mRNA, a down-regulator of adipogenesis, was suppressed by these PMFs. These functions of the KP PMFs that enhance adipogenesis and secretion of adiponectin are, to some extent at least, involved in the mechanisms of anti-metabolic disorders effects.

  6. Early host responses to avian influenza A virus are prolonged and enhanced at transcriptional level depending on maturation of the immune system.

    Science.gov (United States)

    Reemers, Sylvia S; van Leenen, Dik; Koerkamp, Marian J Groot; van Haarlem, Daphne; van de Haar, Peter; van Eden, Willem; Vervelde, Lonneke

    2010-05-01

    Newly hatched chickens are more susceptible to infectious diseases than older birds because of an immature immune system. The aim of this study was to determine to what extent host responses to avian influenza virus (AIV) inoculation are affected by age. Therefore, 1- and 4-week (wk) old birds were inoculated with H9N2 AIV or saline. The trachea and lung were sampled at 0, 8, 16 and 24h post-inoculation (h.p.i.) and gene expression profiles determined using microarray analysis. Firstly, saline controls of both groups were compared to analyse the changes in gene profiles related to development. In 1-wk-old birds, higher expression of genes related to development of the respiratory immune system and innate responses were found, whereas in 4-wk-old birds genes were up regulated that relate to the presence of higher numbers of leukocytes in the respiratory tract. After inoculation with H9N2, gene expression was most affected at 16 h.p.i. in 1-wk-old birds and at 16 and 24h.p.i. in 4-wk-old birds in the trachea and especially in the lung. In 1-wk-old birds less immune related genes including innate related genes were induced which might be due to age-dependent reduced functionality of antigen presenting cells (APC), T cells and NK cells. In contrast cytokine and chemokines gene expression was related to viral load in 1-wk-old birds and less in 4-wk-old birds. Expression of cellular host factors that block virus replication by interacting with viral factors was independent of age or tissue for most host factors. These data show that differences in development are reflected in gene expression and suggest that the strength of host responses at transcriptional level may be a key factor in age-dependent susceptibility to infection, and the cellular host factors involved in virus replication are not.

  7. Serratia marcescens ShlA pore-forming toxin is responsible for early induction of autophagy in host cells and is transcriptionally regulated by RcsB.

    Science.gov (United States)

    Di Venanzio, Gisela; Stepanenko, Tatiana M; García Véscovi, Eleonora

    2014-09-01

    Serratia marcescens is a Gram-negative bacterium that thrives in a wide variety of ambient niches and interacts with an ample range of hosts. As an opportunistic human pathogen, it has increased its clinical incidence in recent years, being responsible for life-threatening nosocomial infections. S. marcescens produces numerous exoproteins with toxic effects, including the ShlA pore-forming toxin, which has been catalogued as its most potent cytotoxin. However, the regulatory mechanisms that govern ShlA expression, as well as its action toward the host, have remained unclear. We have shown that S. marcescens elicits an autophagic response in host nonphagocytic cells. In this work, we determine that the expression of ShlA is responsible for the autophagic response that is promoted prior to bacterial internalization in epithelial cells. We show that a strain unable to express ShlA is no longer able to induce this autophagic mechanism, while heterologous expression of ShlA/ShlB suffices to confer on noninvasive Escherichia coli the capacity to trigger autophagy. We also demonstrate that shlBA harbors a binding motif for the RcsB regulator in its promoter region. RcsB-dependent control of shlBA constitutes a feed-forward regulatory mechanism that allows interplay with flagellar-biogenesis regulation. At the top of the circuit, activated RcsB downregulates expression of flagella by binding to the flhDC promoter region, preventing FliA-activated transcription of shlBA. Simultaneously, RcsB interaction within the shlBA promoter represses ShlA expression. This circuit offers multiple access points to fine-tune ShlA production. These findings also strengthen the case for an RcsB role in orchestrating the expression of Serratia virulence factors.

  8. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.

  9. A retinoic acid responsive Hoxa3 transgene expressed in embryonic pharyngeal endoderm, cardiac neural crest and a subdomain of the second heart field.

    Directory of Open Access Journals (Sweden)

    Nata Y S-G Diman

    Full Text Available A transgenic mouse line harbouring a β-galacdosidase reporter gene controlled by the proximal 2 kb promoter of Hoxa3 was previously generated to investigate the regulatory cues governing Hoxa3 expression in the mouse. Examination of transgenic embryos from embryonic day (E 8.0 to E15.5 revealed regionally restricted reporter activity in the developing heart. Indeed, transgene expression specifically delineated cells from three distinct lineages: a subpopulation of the second heart field contributing to outflow tract myocardium, the cardiac neural crest cells and the pharyngeal endoderm. Manipulation of the Retinoic Acid (RA signaling pathway showed that RA is required for correct expression of the transgene. Therefore, this transgenic line may serve as a cardiosensor line of particular interest for further analysis of outflow tract development.

  10. A Retinoic Acid Responsive Hoxa3 Transgene Expressed in Embryonic Pharyngeal Endoderm, Cardiac Neural Crest and a Subdomain of the Second Heart Field

    Science.gov (United States)

    Diman, Nata Y. S.-G.; Remacle, Sophie; Bertrand, Nicolas; Picard, Jacques J.; Zaffran, Stéphane; Rezsohazy, René

    2011-01-01

    A transgenic mouse line harbouring a β-galacdosidase reporter gene controlled by the proximal 2 kb promoter of Hoxa3 was previously generated to investigate the regulatory cues governing Hoxa3 expression in the mouse. Examination of transgenic embryos from embryonic day (E) 8.0 to E15.5 revealed regionally restricted reporter activity in the developing heart. Indeed, transgene expression specifically delineated cells from three distinct lineages: a subpopulation of the second heart field contributing to outflow tract myocardium, the cardiac neural crest cells and the pharyngeal endoderm. Manipulation of the Retinoic Acid (RA) signaling pathway showed that RA is required for correct expression of the transgene. Therefore, this transgenic line may serve as a cardiosensor line of particular interest for further analysis of outflow tract development. PMID:22110697

  11. DMSO efficiently down regulates pluripotency genes in human embryonic stem cells during definitive endoderm derivation and increases the proficiency of hepatic differentiation.

    Directory of Open Access Journals (Sweden)

    Katherine Czysz

    Full Text Available BACKGROUND: Definitive endoderm (DE is one of the three germ layers which during in vivo vertebrate development gives rise to a variety of organs including liver, lungs, thyroid and pancreas; consequently efficient in vitro initiation of stem cell differentiation to DE cells is a prerequisite for successful cellular specification to subsequent DE-derived cell types [1, 2]. In this study we present a novel approach to rapidly and efficiently down regulate pluripotency genes during initiation of differentiation to DE cells by addition of dimethyl sulfoxide (DMSO to Activin A-based culture medium and report its effects on the downstream differentiation to hepatocyte-like cells. MATERIALS AND METHODS: Human embryonic stem cells (hESC were differentiated to DE using standard methods in medium supplemented with 100ng/ml of Activin A and compared to cultures where DE specification was additionally enhanced with different concentrations of DMSO. DE cells were subsequently primed to generate hepatic-like cells to investigate whether the addition of DMSO during formation of DE improved subsequent expression of hepatic markers. A combination of flow cytometry, real-time quantitative reverse PCR and immunofluorescence was applied throughout the differentiation process to monitor expression of pluripotency (POUF5/OCT4 & NANOG, definitive endoderm (SOX17, CXCR4 & GATA4 and hepatic (AFP & ALB genes to generate differentiation stage-specific signatures. RESULTS: Addition of DMSO to the Activin A-based medium during DE specification resulted in rapid down regulation of the pluripotency genes OCT4 and NANOG, accompanied by an increase expression of the DE genes SOX17, CXCR4 and GATA4. Importantly, the expression level of ALB in DMSO-treated cells was also higher than in cells which were differentiated to the DE stage via standard Activin A treatment.

  12. sRNA-seq analysis of human embryonic stem cells and definitive endoderm reveals differentially expressed microRNAs and novel IsomiRs with distinct targets.

    Science.gov (United States)

    Hinton, Andrew; Hunter, Shaun E; Afrikanova, Ivka; Jones, G Adam; Lopez, Ana D; Fogel, Gary B; Hayek, Alberto; King, Charles C

    2014-09-01

    MicroRNAs (miRNAs) are noncoding, regulatory RNAs expressed dynamically during differentiation of human embryonic stem cells (hESCs) into defined lineages. Mapping developmental expression of miRNAs during transition from pluripotency to definitive endoderm (DE) should help to elucidate the mechanisms underlying lineage specification and ultimately enhance differentiation protocols. In this report, next generation sequencing was used to build upon our previous analysis of miRNA expression in human hESCs and DE. From millions of sequencing reads, 747 and 734 annotated miRNAs were identified in pluripotent and DE cells, respectively, including 77 differentially expressed miRNAs. Among these, four of the top five upregulated miRNAs were previously undetected in DE. Furthermore, the stem-loop for miR-302a, an important miRNA for both hESCs self-renewal and endoderm specification, produced several highly expressed miRNA species (isomiRs). Overall, isomiRs represented >10% of sequencing reads in >40% of all detected stem-loop arms, suggesting that the impact of these abundant miRNA species may have been overlooked in previous studies. Because of their relative abundance, the role of differential isomiR targeting was studied using the miR-302 cluster as a model system. A miRNA mimetic for miR-302a-5p, but not miR-302a-5p(+3), decreased expression of orthodenticle homeobox 2 (OTX2). Conversely, isomiR 302a-5p(+3) selectively decreased expression of tuberous sclerosis protein 1, but not OTX2, indicating nonoverlapping specificity of miRNA processing variants. Taken together, our characterization of miRNA expression, which includes novel miRNAs and isomiRs, helps establish a foundation for understanding the role of miRNAs in DE formation and selective targeting by isomiRs.

  13. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    Directory of Open Access Journals (Sweden)

    Ralf Kist

    2014-10-01

    Full Text Available In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  14. Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats.

    Science.gov (United States)

    Matveyenko, Aleksey V; Georgia, Senta; Bhushan, Anil; Butler, Peter C

    2010-11-01

    Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant.

  15. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    Science.gov (United States)

    Kist, Ralf; Watson, Michelle; Crosier, Moira; Robinson, Max; Fuchs, Jennifer; Reichelt, Julia; Peters, Heiko

    2014-10-01

    In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  16. A New Vaccinia Virus Intermediate Transcription Factor

    OpenAIRE

    Sanz, Patrick; Moss, Bernard

    1998-01-01

    Transcription of the vaccinia virus genome is mediated by a virus-encoded multisubunit DNA-dependent RNA polymerase in conjunction with early-, intermediate-, and late-stage-specific factors. Previous studies indicated that two virus-encoded proteins (capping enzyme and VITF-1) and one unidentified cellular protein (VITF-2) are required for specific transcription of an intermediate promoter template in vitro. We have now extensively purified an additional virus-induced intermediate transcript...

  17. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis of sensory hair cells in the mouse inner ear

    Directory of Open Access Journals (Sweden)

    Neil eSegil

    2015-05-01

    Full Text Available Aminoglycoside antibiotics are the drug of choice for treating many bacterial infections, but their administration results in hearing loss in nearly one fourth of the patients who receive them. Several biochemical pathways have been implicated in aminoglycoside antibiotic ototoxicity; however, little is known about how hair cells respond to aminoglycoside antibiotics at the transcriptome level. Here we have investigated the genome-wide response to the aminoglycoside antibiotic gentamicin. Using organotypic cultures of the perinatal organ of Corti, we performed RNA sequencing using cDNA libraries obtained from FACS-purified hair cells. Within 3 hours of gentamicin treatment, the messenger RNA level of more than three thousand genes in hair cells changed significantly. Bioinformatic analysis of these changes highlighted several known signal transduction pathways, including the JNK pathway and the NF-κB pathway, in addition to genes involved in the stress response, apoptosis, cell cycle control, and DNA damage repair. In contrast, only 698 genes, mainly involved in cell cycle and metabolite biosynthetic processes, were significantly affected in the non-hair cell population. The gene expression profiles of hair cells in response to gentamicin share a considerable similarity with those previously observed in gentamicin-induced nephrotoxicity. Our findings suggest that previously observed early responses to gentamicin in hair cells in specific signaling pathways are reflected in changes in gene expression. Additionally, the observed changes in gene expression of cell cycle regulatory genes indicate a disruption of the postmitotic state, which may suggest an alternative pathway regulating gentamicin-induced hair cell death. This work provides a more comprehensive view of aminoglycoside antibiotic ototoxicity, and thus contribute to identifying potential pathways or therapeutic targets to alleviate this important side effect of aminoglycoside

  18. Cocaine induces a differential dose-dependent alteration in the expression profile of immediate early genes, transcription factors, and caspases in PC12 cells: a possible mechanism of neurotoxic damage in cocaine addiction.

    Science.gov (United States)

    Imam, Syed Z; Duhart, Helen M; Skinner, John T; Ali, Syed F

    2005-08-01

    Cocaine is a widely used drug of abuse and psychostimulant that acts on the central nervous system by blocking the dopamine reuptake sites. PC12 cells, a rat pheochromocytoma clonal line, in the presence of nerve growth factor (NGF), multiply and differentiate into competent neurons that can synthesize, store, and secrete the neurotransmitter dopamine (DA). In the present study, we evaluated the effect of increasing doses of cocaine on the expression of immediate early genes (IEGs), c-fos and c-jun, and closely related transcription factors, SP-1 and NF-kbeta, at 24 h after the exposure to cocaine (50, 100, 200, 500, 1000, 2500 microM) in NGF-differentiated PC12 cells. Cocaine (50-500 microM) resulted in significant induction of the expression of c-fos, c-jun, SP-1, and NF-kbeta. However, higher concentrations of cocaine (1000 and 2500 microM) resulted in the downregulation of these expressions after 24 h. To further understand the role of dose-dependent changes in the mechanisms of cell death, we evaluated the protein expression of apoptotic markers. A concentration-dependent increase in the expression of caspase-9 and -3 was observed up to 500 microM cocaine. However, the higher dose did not show any expression. We also evaluated the effect of increasing doses of cocaine on DA concentration and the expression of dopamine transporter (DAT). A significant dose-dependent decrease in the concentration of DA as well as the expression of DAT was observed 24 h after the exposure of PC12 cells to cocaine. Therefore, in the present study, we reported that cocaine has both upstream and downstream regulatory actions on some IEGs and transcription factors that can regulate the mechanism of cell death, and these effects on gene expression are independent of its action on the dopaminergic system.

  19. Expression of the Adenovirus Early Gene 1A Transcription-Repression Domain Alone Downregulates HER2 and Results in the Death of Human Breast Cancer Cells Upregulated for the HER2 Proto-Oncogene.

    Science.gov (United States)

    Loewenstein, Paul M; Green, Maurice

    2011-07-01

    Adenovirus (Ad) early gene 1A 243 residue protein (E1A 243R) possesses a potent transcription-repression function within the N-terminal 80 amino acids (E1A 1-80). We examined the ability of E1A 243R and E1A 1-80 to repress transcription of both an exogenous and the endogenous HER2 promoter in a human breast cancer cell line upregulated for the HER2 proto-oncogene (SK-BR-3). Both moieties repressed HER2 expression by over 90%. When E1A 1-80 was expressed from a nonreplicative Ad vector, levels of expression were lower than anticipated. Addition of nonspecific sequences to the E1A 1-80 C-terminus (E1A 1-80 C+) enhanced its expression 10- to 20-fold. Because "oncogene addiction" suggests that repression of HER2 could kill HER2 upregulated cells, we examined the ability of full-length E1A 243R and E1A 1-80 C+ delivered by an Ad vector to kill HER2 upregulated SK-BR-3 cells. Expression of both E1A 243R and E1A 1-80 C+ killed SK-BR-3 cells but not normal breast cells. E1A 1-80 C+ is a particularly effective killer of SK-BR-3 cells. At 144 h post infection, over 85% of SK-BR-3 cells were killed by a 100 moi of the Ad vector expressing E1A 1-80 C+. As controls, Ad vectors expressing E1A 243R with deletion of all known functional domains or expressing unrelated β-galactosidase had no effect. Three additional human breast cancer cells lines reported to be upregulated for HER2 or another EGF family member (EGFR) were found to be efficiently killed by expression of E1A 1-80 C+, whereas three additional "normal" cell lines (two derived from breast and one from foreskin) were not. The ability of the E1A transcription-repression domain alone to kill HER2 upregulated breast cancer cells has potential for development of therapies for treatment of aggressive human breast cancers and potentially other human cancers that overexpress HER2.

  20. Cell fate regulation in early mammalian development

    Science.gov (United States)

    Oron, Efrat; Ivanova, Natalia

    2012-08-01

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.

  1. Zebrafish hhex, nk2.1a, and pax2.1 regulate thyroid growth and differentiation downstream of Nodal-dependent transcription factors.

    Science.gov (United States)

    Elsalini, Osama A; von Gartzen, Julia; Cramer, Matthias; Rohr, Klaus B

    2003-11-01

    During zebrafish development, the thyroid primordium initiates expression of molecular markers such as hhex and nk2.1a in the endoderm prior to pharynx formation. As expected for an endodermally derived organ, initiation of thyroid development depends on Nodal signalling. We find that it also depends on three downstream effectors of Nodal activity, casanova (cas), bonnie and clyde (bon), and faust (fau)/gata5. Despite their early Nodal-dependent expression in the endoderm, both hhex and nk2.1a are only required relatively late during thyroid development. In hhex and nk2.1a loss-of-function phenotypes, thyroid development is initiated and arrests only after the primordium has evaginated from the pharyngeal epithelium. Thus, like pax2.1, both hhex and nk2.1a have similarly late roles in differentiation or growth of thyroid follicular cells, and here, we show that all three genes act in parallel rather than in a single pathway. Our functional analysis suggests that these genes have similar roles as in mammalian thyroid development, albeit in a different temporal mode of organogenesis.

  2. Transcriptional regulation of lung development: emergence of specificity

    Directory of Open Access Journals (Sweden)

    Minoo Parviz

    2000-09-01

    Full Text Available Abstract The lung is the product of a set of complex developmental interactions between two distinct tissues, the endodermally derived epithelium and the mesoderm. Each tissue contributes to lung development by fine-tuning the spatial and temporal pattern of gene expression for a distinct array of signaling molecules, transcriptional molecules and molecules related to the extracellular matrix. Morphoregulatory transcriptional factors such as NKX2.1 have the crucial role of connecting the cell–cell crosstalk to the activation or repression of gene expression through which processes such as cellular proliferation, migration, differentiation and apoptosis can be controlled. Although none of the factors participating in lung development are exclusively lung-specific, their unique combinations and interactions constitute the basis for emergence of lung structural and functional specificities. An understanding of the individual molecules and their unique interactions in the context of lung development is necessary for the construction of a morphogenetic map for this vital organ as well as for the development of rational and innovative approaches to congenital and induced lung disease.

  3. Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Lee J Samuel

    Full Text Available BACKGROUND: Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/beta-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation. CONCLUSIONS/SIGNIFICANCE: We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/beta-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.

  4. Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1, which modulates the expression and localization of the immediate early protein ICP0

    Directory of Open Access Journals (Sweden)

    Kimura Hiroshi

    2011-05-01

    Full Text Available Abstract Background Herpes simplex viruses (HSVs rapidly shut off macromolecular synthesis in host cells. In contrast, global microarray analyses have shown that HSV infection markedly up-regulates a number of host cell genes that may play important roles in HSV-host cell interactions. To understand the regulatory mechanisms involved, we initiated studies focusing on the zinc finger transcription factor insulinoma-associated 1 (INSM1, a host cell protein markedly up-regulated by HSV infection. Results INSM1 gene expression in HSV-1-infected normal human epidermal keratinocytes increased at least 400-fold 9 h after infection; INSM1 promoter activity was also markedly stimulated. Expression and subcellular localization of the immediate early HSV protein ICP0 was affected by INSM1 expression, and chromatin immunoprecipitation (ChIP assays revealed binding of INSM1 to the ICP0 promoter. Moreover, the role of INSM1 in HSV-1 infection was further clarified by inhibition of HSV-1 replication by INSM1-specific siRNA. Conclusions The results suggest that INSM1 up-regulation plays a positive role in HSV-1 replication, probably by binding to the ICP0 promoter.

  5. Sox17-dependent gene expression and early heart and gut development in Sox17-deficient mouse embryos.

    Science.gov (United States)

    Pfister, Sabine; Jones, Vanessa J; Power, Melinda; Truisi, Germaine L; Khoo, Poh-Lynn; Steiner, Kirsten A; Kanai-Azuma, Masami; Kanai, Yoshiakira; Tam, Patrick P L; Loebel, David A F

    2011-01-01

    Sox17 is a transcription factor that is required for maintenance of the definitive endoderm in mouse embryos. By expression profiling of wild-type and mutant embryos and Sox17-overexpressing hepatoma cells, we identified genes with Sox17-dependent expression. Among the genes that were up-regulated in Sox17-null embryos and down-regulated by Sox17 expressing HepG2 cells is a set of genes that are expressed in the developing liver, suggesting that one function of Sox17 is the repression of liver gene expression, which is compatible with a role for Sox17 in maintaining the definitive endoderm in a progenitor state. Consistent with these findings, Sox17(-/-) cells display a diminished capacity to contribute to the definitive endoderm when transplanted into wild-type hosts. Analysis of gene ontology further revealed that many genes related to heart development were downregulated in Sox17-null embryos. This is associated with the defective development of the heart in the mutant embryos, which is accompanied by localised loss of Myocd-expressing cardiogenic progenitors and the malformation of the anterior intestinal portal.

  6. A Comprehensive Biophysical Model of Ion and Water Transport in Plant Roots. I. Clarifying the Roles of Endodermal Barriers in the Salt Stress Response

    Directory of Open Access Journals (Sweden)

    Kylie J. Foster

    2017-07-01

    Full Text Available In this paper, we present a detailed and comprehensive mathematical model of active and passive ion and water transport in plant roots. Two key features are the explicit consideration of the separate, but interconnected, apoplastic, and symplastic transport pathways for ions and water, and the inclusion of both active and passive ion transport mechanisms. The model is used to investigate the respective roles of the endodermal Casparian strip and suberin lamellae in the salt stress response of plant roots. While it is thought that these barriers influence different transport pathways, it has proven difficult to distinguish their separate functions experimentally. In particular, the specific role of the suberin lamellae has been unclear. A key finding based on our simulations was that the Casparian strip is essential in preventing excessive uptake of Na+ into the plant via apoplastic bypass, with a barrier efficiency that is reflected by a sharp gradient in the steady-state radial distribution of apoplastic Na+ across the barrier. Even more significantly, this function cannot be replaced by the action of membrane transporters. The simulations also demonstrated that the positive effect of the Casparian strip of controlling Na+ uptake, was somewhat offset by its contribution to the osmotic stress component: a more effective barrier increased the detrimental osmotic stress effect. In contrast, the suberin lamellae were found to play a relatively minor, even non-essential, role in the overall response to salt stress, with the presence of the suberin lamellae resulting in only a slight reduction in Na+ uptake. However, perhaps more significantly, the simulations identified a possible role of suberin lamellae in reducing plant energy requirements by acting as a physical barrier to preventing the passive leakage of Na+ into endodermal cells. The model results suggest that more and particular experimental attention should be paid to the properties of the

  7. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer.

    Science.gov (United States)

    Podlutsky, Andrej; Valcarcel-Ares, Marta Noa; Yancey, Krysta; Podlutskaya, Viktorija; Nagykaldi, Eszter; Gautam, Tripti; Miller, Richard A; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2017-02-23

    during early life determine cellular DNA repair capacity in rodents, presumably by transcriptional control of genes involved in DNA repair. Because lifestyle factors (e.g., nutrition and childhood obesity) cause huge variation in peripubertal GH/IGF-1 levels in children, further studies are warranted to determine their persisting influence on cellular cancer resistance pathways.

  8. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape.

    Science.gov (United States)

    Sherwood, Richard I; Hashimoto, Tatsunori; O'Donnell, Charles W; Lewis, Sophia; Barkal, Amira A; van Hoff, John Peter; Karun, Vivek; Jaakkola, Tommi; Gifford, David K

    2014-02-01

    We describe protein interaction quantitation (PIQ), a computational method for modeling the magnitude and shape of genome-wide DNase I hypersensitivity profiles to identify transcription factor (TF) binding sites. Through the use of machine-learning techniques, PIQ identified binding sites for >700 TFs from one DNase I hypersensitivity analysis followed by sequencing (DNase-seq) experiment with accuracy comparable to that of chromatin immunoprecipitation followed by sequencing (ChIP-seq). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into prepancreatic and intestinal endoderm. We identified 120 and experimentally validated eight 'pioneer' TF families that dynamically open chromatin. Four pioneer TF families only opened chromatin in one direction from their motifs. Furthermore, we identified 'settler' TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and nondirectional pioneer activity shapes the chromatin landscape for population by settler TFs.

  9. Visualization of the Epiblast and Visceral Endodermal Cells Using Fgf5-P2A-Venus BAC Transgenic Mice and Epiblast Stem Cells.

    Directory of Open Access Journals (Sweden)

    Le Tran Phuc Khoa

    Full Text Available Fibroblast growth factor 5 (Fgf5 has been widely used as a marker for the epiblast in the postimplantation embryo and epiblast stem cells (mEpiSCs in the mouse, making it valuable for study of differentiation of various tissues and epiblast cells in vivo and in vitro. Here, we report for the first time the generation of Fgf5-P2A-Venus BAC transgenic (Tg mice and show that the BAC Tg can recapitulate endogenous Fgf5 expression in epiblast and visceral endodermal cells of E6.5 and 7.5 embryos. We also show that Fgf5-P2A-Venus BAC Tg mEpiSCs in the undifferentiated state expressed abundant Venus, and upon reprogramming into naïve state, Venus was suppressed. Furthermore, while most Tg mEpiSCs expressed Venus abundantly, surprisingly the Tg mEpiSCs contained a minor subpopulation of Venus-negative cells that were capable of conversion to Venus-positive cells, indicating that even Fgf5 expression shows dynamic heterogeneity in mEpiSCs. Taken together, Fgf5-P2A-Venus BAC Tg mice and mEpiSCs generated in this study will be useful for developmental biology as well as stem cell biology research.

  10. Chemical Composition of Hypodermal and Endodermal Cell Walls and Xylem Vessels Isolated from Clivia miniata (Identification of the Biopolymers Lignin and Suberin).

    Science.gov (United States)

    Zeier, J.; Schreiber, L.

    1997-01-01

    The occurrence of the biopolymers lignin and suberin was investigated with hypodermal (HCW) and endodermal cell walls (ECW) and xylem vessels (XV) isolated from Clivia miniata Reg. roots. Both biopolymers were detected in HCW and ECW, whereas in XV, typical aliphatic suberin monomers were missing and only representative lignin monomers such as guaiacyl (G) and syringyl (S) units could be detected. The absolute amounts of lignin were about one order of magnitude higher compared with suberin in both HCW and ECW. The ratios of the two aromatic lignin units (G/S) decreased from 39 in XV and 10 in HCW to about 1 in ECW, indicating significant differences in lignin structure and function between the three investigated samples. Additionally, compared with the detectable lignin-derived aromatic units G and S, significantly higher amounts of esterified p-coumaric acid-derived aromatic monomers were obtained with HCW, but not with ECW. This is interpreted as a functional adaption of HCW toward pathogen defense at the root/soil interface. The final aim of this study was to provide a thorough chemical characterization of the composition of HCW, ECW, and XV, which in turn will form the basis for a better understanding of the relevant barriers toward the passive, radial, and apoplastic diffusion of solutes from the soil across the root cortex into the root cylinder. PMID:12223670

  11. Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality.

    Science.gov (United States)

    Ramasamy, Thamil Selvee; Yu, Jason S L; Selden, Clare; Hodgson, Humphery; Cui, Wei

    2013-02-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of human hepatocytes, owing to their indefinite self-renewal and pluripotent properties. Both hESC-/iPSC-derived hepatocytes hold great promise in treating liver diseases as potential candidates for cell replacement therapies or as an in vitro platform to conduct new drug trials. It has been previously demonstrated that the initiation of hESC differentiation in monolayer cultures increases the generation of definitive endoderm (DE) and subsequently of hepatocyte differentiation. However, monolayer culture may hinder the maturation of hESC-derived hepatocytes, since such two-dimensional (2D) conditions do not accurately reflect the complex nature of three-dimensional (3D) hepatocyte specification in vivo. Here, we report the sequential application of 2D and 3D culture systems to differentiate hESCs to hepatocytes. Human ESCs were initially differentiated in a monolayer culture to DE cells, which were then inoculated into Algimatrix scaffolds. Treatments of hESC-DE cells with a ROCK inhibitor before and after inoculation dramatically enhanced their survival and the formation of spheroids, which are distinct from HepG2 carcinoma cells. In comparison with monolayer culture alone, sequential 2D and 3D cultures significantly improved hepatocyte differentiation and function. Our results demonstrate that hESC-DE cells can be incorporated into Algimatrix 3D culture systems to enhance hepatocyte differentiation and function.

  12. Assessment of the Role of MAP Kinase in Mediating Activity-Dependent Transcriptional Activation of the Immediate Early Gene "Arc/Arg3.1" in the Dentate Gyrus in Vivo

    Science.gov (United States)

    Chotiner, Jennifer K.; Nielson, Jessica; Farris, Shannon; Lewandowski, Gail; Huang, Fen; Banos, Karla; de Leon, Ray; Steward, Oswald

    2010-01-01

    Different physiological and behavioral events activate transcription of "Arc/Arg3.1" in neurons in vivo, but the signal transduction pathways that mediate induction in particular situations remain to be defined. Here, we explore the relationships between induction of "Arc/Arg3.1" transcription in dentate granule cells in vivo and activation of…

  13. Assessment of the Role of MAP Kinase in Mediating Activity-Dependent Transcriptional Activation of the Immediate Early Gene "Arc/Arg3.1" in the Dentate Gyrus in Vivo

    Science.gov (United States)

    Chotiner, Jennifer K.; Nielson, Jessica; Farris, Shannon; Lewandowski, Gail; Huang, Fen; Banos, Karla; de Leon, Ray; Steward, Oswald

    2010-01-01

    Different physiological and behavioral events activate transcription of "Arc/Arg3.1" in neurons in vivo, but the signal transduction pathways that mediate induction in particular situations remain to be defined. Here, we explore the relationships between induction of "Arc/Arg3.1" transcription in dentate granule cells in vivo and activation of…

  14. Boosting transcription by transcription: enhancer-associated transcripts.

    Science.gov (United States)

    Darrow, Emily M; Chadwick, Brian P

    2013-12-01

    Enhancers are traditionally viewed as DNA sequences located some distance from a promoter that act in cis and in an orientation-independent fashion to increase utilization of specific promoters and thereby regulate gene expression. Much progress has been made over the last decade toward understanding how these distant elements interact with target promoters, but how transcription is enhanced remains an object of active inquiry. Recent reports convey the prevalence and diversity of enhancer transcription and transcripts and support both as key factors with mechanistically distinct, but not mutually exclusive roles in enhancer function. Decoupling the causes and effects of transcription on the local chromatin landscape and understanding the role of enhancer transcripts in the context of long-range interactions are challenges that require additional attention. In this review, we focus on the possible functions of enhancer transcription by highlighting several recent enhancer RNA papers and, within the context of other enhancer studies, speculate on the role of enhancer transcription in regulating differential gene expression.

  15. BEP Protocol for Ovarian Endodermal Sinus Tumor:Report of Five Cases%BEP方案治疗卵巢内胚窦瘤病例分析

    Institute of Scientific and Technical Information of China (English)

    赵兴元

    2011-01-01

    Objective Treatments and follow-up results of 5 patients with ovarian endodermal sinus tumors admitted to our hospital from 1996 to 2002 were analyzed retrospectively, to demonstrate the exact effect of etoposide + cisplatin + bleo-mycin ( BEP ) protocol. Methods Five patients underwent BEP protocol chemotherapy after operations. One course of treatment was 4 weeks, 4 times of medication in 1 course, altogether 4 courses. Results Four patients survived till now ( 7 ~ 14 years ); 1 had only 1 course of chemotherapy after whole hysterectomy and double oophorectomy and died 5 months after operation. Conclusion BEP, which can prolong survival time of patients and especially retain young women's fertility, should be used as first-line chemotherapeutic protocol.%目的 回顾性分析1996-2002年在本院收治的5例卵巢内胚窦瘤患者的治疗及随诊结果,论证足叶乙甙+顺铂+平阳霉素(BEP)方案对此病的确切疗效.方法 5例卵巢内胚窦瘤患者术后行BEP方案化疗,每4周为1个疗程,每疗程用药4 d,共治疗4个疗程,化疗后随访.结果 4例分别存活至今(7~14年);1例全子宫双附件切除术后只行1疗程化疗,术后5个月死亡.结论 BEP方案化疗疗效可延长患者的生存时间,特别是对于年轻妇女可保留其生育能力,应作为一线化疗方案.

  16. Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells.

    Science.gov (United States)

    Massumi, Mohammad; Hoveizi, Elham; Baktash, Parvaneh; Hooti, Abdollah; Ghazizadeh, Leili; Nadri, Samad; Pourasgari, Farzaneh; Hajarizadeh, Athena; Soleimani, Masoud; Nabiuni, Mohammad; Khorramizadeh, Mohammad R

    2014-03-10

    Due to pluripotency of induced pluripotent stem (iPS) cells, and the lack of immunological incompatibility and ethical issues, iPS cells have been considered as an invaluable cell source for future cell replacement therapy. This study was aimed first at establishment of novel iPS cells, ECiPS, which directly reprogrammed from human Eye Conjunctiva-derived Mesenchymal Stem Cells (EC-MSCs); second, comparing the inductive effects of Wnt3a/Activin A biomolecules to IDE1 small molecule in derivation of definitive endoderm (DE) from the ECiPS cells. To that end, first, the EC-MSCs were transduced by SOKM-expressing lentiviruses and characterized for endogenous expression of embryonic markers Then the established ECiPS cells were induced to DE formation by Wnt3a/Activin A or IDE1. Quantification of GSC, Sox17 and Foxa2 expression, as DE-specific markers, in both mRNA and protein levels revealed that induction of ECiPS cells by either Wnt3a/Activin A or IDE1 could enhance the expression level of the genes; however the levels of increase were higher in Wnt3a/Activin A induced ECiPS-EBs than IDE1 induced cells. Furthermore, the flow cytometry analyses showed no synergistic effect between Activin A and Wnt3a to derive DE-like cells from ECiPS cells. The comparative findings suggest that although both Wnt3a/Activin A signaling and IDE1 molecule could be used for differentiation of iPS into DE cells, the DE-inducing effect of Wnt3a/Activin A was statistically higher than IDE1.

  17. Transcription in archaea

    Science.gov (United States)

    Kyrpides, N. C.; Ouzounis, C. A.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.

  18. Modulation of Bmp4 signalling in the epithelial-mesenchymal interactions that take place in early thymus and parathyroid development in avian embryos.

    Science.gov (United States)

    Neves, Hélia; Dupin, Elisabeth; Parreira, Leonor; Le Douarin, Nicole M

    2012-01-15

    Epithelial-mesenchymal interactions are crucial for the development of the endoderm of the pharyngeal pouches into the epithelia of thymus and parathyroid glands. Here we investigated the dynamics of epithelial-mesenchymal interactions that take place at the earliest stages of thymic and parathyroid organogenesis using the quail-chick model together with a co-culture system capable of reproducing these early events in vitro. The presumptive territories of thymus and parathyroid epithelia were identified in three-dimensionally preserved pharyngeal endoderm of embryonic day 4.5 chick embryos on the basis of the expression of Foxn1 and Gcm2, respectively: the thymic rudiment is located in the dorsal domain of the third and fourth pouches, while the parathyroid rudiment occupies a more medial/anterior pouch domain. Using in vitro quail-chick tissue associations combined with in ovo transplantations, we show that the somatopleural but not the limb bud mesenchyme, can mimic the role of neural crest-derived pharyngeal mesenchyme to sustain development of these glands up to terminal differentiation. Furthermore, mesenchymal-derived Bmp4 appears to be essential to promote early stages of endoderm development during a short window of time, irrespective of the mesenchymal source. In vivo studies using the quail-chick system and implantation of growth factor soaked-beads further showed that expression of Bmp4 by the mesenchyme is necessary during a 24 h-period of time. After this period however, Bmp4 is no longer required and another signalling factor produced by the mesenchyme, Fgf10, influences later differentiation of the pouch endoderm. These results show that morphological development and cell differentiation of thymus and parathyroid epithelia require a succession of signals emanating from the associated mesenchyme, among which Bmp4 plays a pivotal role for triggering thymic epithelium specification.

  19. Transcriptional networks in leaf senescence.

    Science.gov (United States)

    Schippers, Jos H M

    2015-10-01

    Plant senescence is a natural phenomenon known for the appearance of beautiful autumn colors and the ripening of cereals in the field. Senescence is a controlled process that plants utilize to remobilize nutrients from source leaves to developing tissues. While during the past decades, molecular components underlying the onset of senescence have been intensively studied, knowledge remains scarce on the age-dependent mechanisms that control the onset of senescence. Recent advances have uncovered transcriptional networks regulating the competence to senesce. Here, gene regulatory networks acting as internal timing mechanisms for the onset of senescence are highlighted, illustrating that early and late leaf developmental phases are highly connected.

  20. Mapping Yeast Transcriptional Networks

    OpenAIRE

    Hughes, Timothy R; de Boer, Carl G.

    2013-01-01

    The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face....

  1. A Nonnatural Transcriptional Coactivator

    Science.gov (United States)

    Nyanguile, Origene; Uesugi, Motonari; Austin, David J.; Verdine, Gregory L.

    1997-12-01

    In eukaryotes, sequence-specific DNA-binding proteins activate gene expression by recruiting the transcriptional apparatus and chromatin remodeling proteins to the promoter through protein-protein contacts. In many instances, the connection between DNA-binding proteins and the transcriptional apparatus is established through the intermediacy of adapter proteins known as coactivators. Here we describe synthetic molecules with low molecular weight that act as transcriptional coactivators. We demonstrate that a completely nonnatural activation domain in one such molecule is capable of stimulating transcription in vitro and in vivo. The present strategy provides a means of gaining external control over gene activation through intervention using small molecules.

  2. Massively Systematic Transcript End Readout (MASTER): Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields

    Science.gov (United States)

    Vvedenskaya, Irina O.; Zhang, Yuanchao; Goldman, Seth R.; Valenti, Anna; Visone, Valeria; Taylor, Deanne M.; Ebright, Richard H.; Nickels, Bryce E.

    2015-01-01

    SUMMARY We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 47 (~16,000) bar-coded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields ("massively systematic transcript end readout," MASTER). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo, we define the TSS-region DNA-sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield, and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching"). PMID:26626484

  3. Massively Systematic Transcript End Readout, "MASTER": Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields.

    Science.gov (United States)

    Vvedenskaya, Irina O; Zhang, Yuanchao; Goldman, Seth R; Valenti, Anna; Visone, Valeria; Taylor, Deanne M; Ebright, Richard H; Nickels, Bryce E

    2015-12-17

    We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 4(7) (∼ 16,000) barcoded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields (massively systematic transcript end readout, "MASTER"). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo; we define the TSS-region DNA sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield; and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching").

  4. Mitochondrial biology. Replication-transcription switch in human mitochondria.

    Science.gov (United States)

    Agaronyan, Karen; Morozov, Yaroslav I; Anikin, Michael; Temiakov, Dmitry

    2015-01-30

    Coordinated replication and expression of the mitochondrial genome is critical for metabolically active cells during various stages of development. However, it is not known whether replication and transcription can occur simultaneously without interfering with each other and whether mitochondrial DNA copy number can be regulated by the transcription machinery. We found that interaction of human transcription elongation factor TEFM with mitochondrial RNA polymerase and nascent transcript prevents the generation of replication primers and increases transcription processivity and thereby serves as a molecular switch between replication and transcription, which appear to be mutually exclusive processes in mitochondria. TEFM may allow mitochondria to increase transcription rates and, as a consequence, respiration and adenosine triphosphate production without the need to replicate mitochondrial DNA, as has been observed during spermatogenesis and the early stages of embryogenesis.

  5. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  6. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein codi...

  7. Mechanical Properties of Transcription

    Science.gov (United States)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  8. Transcriptional Regulation by CHIP/LDB Complexes

    Science.gov (United States)

    Bronstein, Revital; Levkovitz, Liron; Yosef, Nir; Yanku, Michaela; Ruppin, Eytan; Sharan, Roded; Westphal, Heiner; Oliver, Brian; Segal, Daniel

    2010-01-01

    It is increasingly clear that transcription factors play versatile roles in turning genes “on” or “off” depending on cellular context via the various transcription complexes they form. This poses a major challenge in unraveling combinatorial transcription complex codes. Here we use the powerful genetics of Drosophila combined with microarray and bioinformatics analyses to tackle this challenge. The nuclear adaptor CHIP/LDB is a major developmental regulator capable of forming tissue-specific transcription complexes with various types of transcription factors and cofactors, making it a valuable model to study the intricacies of gene regulation. To date only few CHIP/LDB complexes target genes have been identified, and possible tissue-dependent crosstalk between these complexes has not been rigorously explored. SSDP proteins protect CHIP/LDB complexes from proteasome dependent degradation and are rate-limiting cofactors for these complexes. By using mutations in SSDP, we identified 189 down-stream targets of CHIP/LDB and show that these genes are enriched for the binding sites of APTEROUS (AP) and PANNIER (PNR), two well studied transcription factors associated with CHIP/LDB complexes. We performed extensive genetic screens and identified target genes that genetically interact with components of CHIP/LDB complexes in directing the development of the wings (28 genes) and thoracic bristles (23 genes). Moreover, by in vivo RNAi silencing we uncovered novel roles for two of the target genes, xbp1 and Gs-alpha, in early development of these structures. Taken together, our results suggest that loss of SSDP disrupts the normal balance between the CHIP-AP and the CHIP-PNR transcription complexes, resulting in down-regulation of CHIP-AP target genes and the concomitant up-regulation of CHIP-PNR target genes. Understanding the combinatorial nature of transcription complexes as presented here is crucial to the study of transcription regulation of gene batteries required

  9. Isl1 is a direct transcriptional target of Forkhead transcription factors in second heart field-derived mesoderm

    Science.gov (United States)

    Kang, Jione; Nathan, Elisha; Xu, Shan-Mei; Tzahor, Eldad; Black, Brian L.

    2009-01-01

    The cells of the second heart field (SHF) contribute to the outflow tract and right ventricle, as well as to parts of the left ventricle and atria. Isl1, a member of the LIM-homeodomain transcription factor family, is expressed early in this cardiac progenitor population and functions near the top of a transcriptional pathway essential for heart development. Isl1 is required for the survival and migration of SHF-derived cells into the early developing heart at the inflow and outflow poles. Despite this important role for Isl1 in early heart formation, the transcriptional regulation of Isl1 has remained largely undefined. Therefore, to identify transcription factors that regulate Isl1 expression in vivo, we screened the conserved noncoding sequences from the mouse Isl1 locus for enhancer activity in transgenic mouse embryos. Here, we report the identification of an enhancer from the mouse Isl1 gene that is sufficient to direct expression to the SHF and its derivatives. The Isl1 SHF enhancer contains three consensus Forkhead transcription factor binding sites that are efficiently and specifically bound by Forkhead transcription factors. Importantly, the activity of the enhancer is dependent on these three Forkhead binding sites in transgenic mouse embryos. Thus, these studies demonstrate that Isl1 is a direct transcriptional target of Forkhead transcription factors in the SHF and establish a transcriptional pathway upstream of Isl1 in the SHF. PMID:19580802

  10. Inhibition of Rho kinase regulates specification of early differentiation events in P19 embryonal carcinoma stem cells.

    Directory of Open Access Journals (Sweden)

    Roman J Krawetz

    Full Text Available BACKGROUND: The Rho kinase pathway plays a key role in many early cell/tissue determination events that take place in embryogenesis. Rho and its downstream effector Rho kinase (ROCK play pivotal roles in cell migration, apoptosis (membrane blebbing, cell proliferation/cell cycle, cell-cell adhesion and gene regulation. We and others have previously demonstrated that inhibition of ROCK blocks endoderm differentiation in embryonal carcinoma stem cells, however, the effect of ROCK inhibition on mesoderm and ectoderm specification has not been fully examined. In this study, the role of ROCK within the specification and differentiation of all three germ layers was examined. METHODOLOGY/PRINCIPAL FINDINGS: P19 cells were treated with the specific ROCK inhibitor Y-27623, and increase in differentiation efficiency into neuro-ectodermal and mesodermal lineages was observed. However, as expected a dramatic decrease in early endodermal markers was observed when ROCK was inhibited. Interestingly, within these ROCK-inhibited RA treated cultures, increased levels of mesodermal or ectodermal markers were not observed, instead it was found that the pluripotent markers SSEA-1 and Oct-4 remained up-regulated similar to that seen in undifferentiated cultures. Using standard and widely accepted methods for reproducible P19 differentiation into all three germ layers, an enhancement of mesoderm and ectoderm differentiation with a concurrent loss of endoderm lineage specification was observed with Y-27632 treatment. Evidence would suggest that this effect is in part mediated through TGF-β and SMAD signaling as ROCK-inhibited cells displayed aberrant SMAD activation and did not return to a 'ground' state after the inhibition had been removed. CONCLUSIONS/SIGNIFICANCE: Given this data and the fact that only a partial rescue of normal differentiation capacity occurred when ROCK inhibition was alleviated, the effect of ROCK inhibition on the differentiation capacity of

  11. Endoderme com atividade meristemática em raiz de Canna edulis Kerr-Gawler (Cannaceae Endodermis with meristematic activity in the root of Canna edulis Kerr-Gawler (Cannaceae

    Directory of Open Access Journals (Sweden)

    Alexandre A. Alonso

    2004-09-01

    Full Text Available Canna edulis é uma planta ornamental utilizada em muitos países como fonte alimentar alternativa. O objetivo deste trabalho foi descrever a formação do córtex radicular a partir da análise anatômica da região apical. Na região situada a 220µm do pró-meristema, os tecidos meristemáticos apicais já se apresentam organizados em protoderme, meristema fundamental e procâmbio. Em fase subseqüente na diferenciação celular, a 450µm do pró-meristema, as camadas de células do córtex estão dispostas em fileiras radiais iniciando-se na endoderme. Depois que as iniciais endodérmicas cessam as divisões, adquirem estrias de Caspary. Na raiz, a 1.700µm do pró-meristema, os tecidos primários já se encontram diferenciados, sendo o padrão de distribuição celular observado no córtex de C. edulis característico ao apresentado por outras espécies de Zingiberales. A análise anatômica da região apical levou à constatação que 2/3 do córtex é resultante da atividade meristemática da endoderme e o restante das células corticais são originadas diretamente do meristema fundamental.Canna edulis is a ornamental plant used in many countries how alternative nutritional source. This work describes the development of the radicular cortex from anatomical observations of apical region. In the region situated at 220µm from the promeristem, apical meristematic tissues at once present themselves organized in protoderm, ground meristem and procambium. During the subsequent phase of cellular differentiation, at 450µm from the promeristem, cell layers of the cortex are arranged in radial tiers to be initiated in the endodermis, indicating the presence of meristematic endodermis activity. After finishing divisions, endodermic initial acquire Casparian strips. In the root at 1,700µm from of promeristem, primary tissues are immediately differentiated, the pattern of cellular distribution being observed in the cortex of Canna edulis, a

  12. Transcriptional Activation of the Zygotic Genome in Drosophila.

    Science.gov (United States)

    Harrison, Melissa M; Eisen, Michael B

    2015-01-01

    During the first stages of metazoan development, the genomes of the highly specified sperm and egg must unite and be reprogrammed to allow for the generation of a new organism. This process is controlled by maternally deposited products. Initially, the zygotic genome is largely transcriptionally quiescent, and it is not until hours later that the zygotic genome takes control of development. The transcriptional activation of the zygotic genome is tightly coordinated with the degradation of the maternal products. Here, we review the current understanding of the processes that mediate the reprogramming of the early embryonic genome and facilitate transcriptional activation during the early stages of Drosophila development.

  13. Early development, pattern, and reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa).

    Science.gov (United States)

    Nakanishi, Nagayasu; Yuan, David; Jacobs, David K; Hartenstein, Volker

    2008-10-01

    We examined the development of the nervous system in Aurelia (Cnidaria, Scyphozoa) from the early planula to the polyp stage using confocal and transmission electron microscopy. Fluorescently labeled anti-FMRFamide, antitaurine, and antityrosinated tubulin antibodies were used to visualize the nervous system. The first detectable FMRFamide-like immunoreactivity occurs in a narrow circumferential belt toward the anterior/aboral end of the ectoderm in the early planula. As the planula matures, the FMRFamide-immunoreactive cells send horizontal processes (i.e., neurites) basally along the longitudinal axis. Neurites extend both anteriorly/aborally and posteriorly/orally, but the preference is for anterior neurite extension, and neurites converge to form a plexus at the aboral/anterior end at the base of the ectoderm. In the mature planula, a subset of cells in the apical organ at the anterior/aboral pole begins to show FMRFamide-like and taurine-like immunoreactivity, suggesting a sensory function of the apical organ. During metamorphosis, FMRFamide-like immunoreactivity diminishes in the ectoderm but begins to occur in the degenerating primary endoderm, indicating that degenerating FMRFamide-immunoreactive neurons are taken up by the primary endoderm. FMRFamide-like expression reappears in the ectoderm of the oral disc and the tentacle anlagen of the growing polyp, indicating metamorphosis-associated restructuring of the nervous system. These observations are discussed in the context of metazoan nervous system evolution.

  14. DNA supercoiling during transcription.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle D

    2016-11-01

    The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.

  15. DNA supercoiling during transcription

    Science.gov (United States)

    Ma, Jie; Wang, Michelle D.

    2017-01-01

    The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.

  16. Early Growth Response 1 (Egr-1) Regulates N-Methyl-d-aspartate Receptor (NMDAR)-dependent Transcription of PSD-95 and α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor (AMPAR) Trafficking in Hippocampal Primary Neurons*

    Science.gov (United States)

    Qin, Xike; Jiang, Yongjun; Tse, Yiu Chung; Wang, Yunling; Wong, Tak Pan; Paudel, Hemant K.

    2015-01-01

    The N-methyl-d-aspartate receptor (NMDAR) controls synaptic plasticity and memory function and is one of the major inducers of transcription factor Egr-1 in the hippocampus. However, how Egr-1 mediates the NMDAR signal in neurons has remained unclear. Here, we show that the hippocampus of mice lacking Egr-1 displays electrophysiology properties and ultrastructure that are similar to mice overexpressing PSD-95, a major scaffolding protein of postsynaptic density involved in synapse formation, synaptic plasticity, and synaptic targeting of AMPA receptors (AMPARs), which mediate the vast majority of excitatory transmission in the CNS. We demonstrate that Egr-1 is a transcription repressor of the PSD-95 gene and is recruited to the PSD-95 promoter in response to NMDAR activation. Knockdown of Egr-1 in rat hippocampal primary neurons blocks NMDAR-induced PSD-95 down-regulation and AMPAR endocytosis. Likewise, overexpression of Egr-1 in rat hippocampal primary neurons causes reduction in PSD-95 protein level and promotes AMPAR endocytosis. Our data indicate that Egr-1 is involved in NMDAR-mediated PSD-95 down-regulation and AMPAR endocytosis, a process important in the expression of long term depression. PMID:26475861

  17. CXCR2 Inhibition in Human Pluripotent Stem Cells Induces Predominant Differentiation to Mesoderm and Endoderm Through Repression of mTOR, β-Catenin, and hTERT Activities

    Science.gov (United States)

    Jung, Ji-Hye; Kang, Ka-Won; Kim, Jihea; Hong, Soon-Chul; Park, Yong

    2016-01-01

    On the basis of our previous report verifying that chemokine (C-X-C motif) receptor 2 (CXCR2) ligands in human placenta-derived cell conditioned medium (hPCCM) support human pluripotent stem cell (hPSC) propagation without exogenous basic fibroblast growth factor (bFGF), this study was designed to identify the effect of CXCR2 manipulation on the fate of hPSCs and the underlying mechanism, which had not been previously determined. We observed that CXCR2 inhibition in hPSCs induces predominant differentiation to mesoderm and endoderm with concomitant loss of hPSC characteristics and accompanying decreased expression of mammalian target of rapamycin (mTOR), β-catenin, and human telomerase reverse transcriptase (hTERT). These phenomena are recapitulated in hPSCs propagated in conventional culture conditions, including bFGF as well as those in hPCCM without exogenous bFGF, suggesting that the action of CXCR2 on hPSCs might not be associated with a bFGF-related mechanism. In addition, the specific CXCR2 ligand growth-related oncogene α (GROα) markedly increased the expression of ectodermal markers in differentiation-committed embryoid bodies derived from hPSCs. This finding suggests that CXCR2 inhibition in hPSCs prohibits the propagation of hPSCs and leads to predominant differentiation to mesoderm and endoderm owing to the blockage of ectodermal differentiation. Taken together, our results indicate that CXCR2 preferentially supports the maintenance of hPSC characteristics as well as facilitates ectodermal differentiation after the commitment to differentiation, and the mechanism might be associated with mTOR, β-catenin, and hTERT activities. PMID:27188501

  18. 植物内皮层凯氏带及其在抗盐胁迫中的作用%Endodermal Casparian strips and its role in adaptation to salt stress

    Institute of Scientific and Technical Information of China (English)

    蔡霞; 吴小琴; 周庆源; 林金星; 陈彤

    2011-01-01

    Endodermal Casparian strip is an apoplastic barrier for radial water and solution flow in plant roots. The investigations on fine structures and chemical properties of endodermal Casparian strip are difficult, so the understandings on these aspects are insufficient at present. Due to the continuous improvements in microscopic techniques and identification methods, investigations on structures and functions of Casparian strip have been significantly intensified. However, only a few investigations have been carried out on the resistive roles in case of salt stress. This paper reviewed current advancements in the investigations on Casparian strips in order to provide new ideas for further study.%内皮层凯氏带是植物根中水分和离子径向运输的屏障.由于内皮层凯氏带的精细结构及化学性质等方面的研究难度较大,因此多年来进展缓慢.随着显微技术和鉴定方法的不断改进,对凯氏带的结构和功能的研究得以深入,但对其发育、化学成分及与抗盐胁迫的关系方面的报道还不多见.本文就凯氏带的结构发育、化学组成以及其在抗盐胁迫中的作用进行了综述,以期为内皮层凯氏带功能的进一步研究提供新的思路.

  19. The embryo as a laboratory: quantifying transcription in Drosophila

    Science.gov (United States)

    Gregor, Thomas; Garcia, Hernan G.; Little, Shawn C.

    2014-01-01

    Transcriptional regulation of gene expression is fundamental to most cellular processes, including determination of cellular fates. Quantitative studies of transcription in cultured cells have led to significant advances in identifying mechanisms underlying transcriptional control. Recent progress allowed implementation of these same quantitative methods in multicellular organisms to ask how transcriptional regulation unfolds both in vivo and at the single molecule level in the context of embryonic development. Here we review some of these advances in early Drosophila development, which bring the embryo on par with its single-celled counterparts. In particular, we discuss progress in methods to measure mRNA and protein distributions in fixed and living embryos, and we highlight some initial applications that lead to fundamental new insights about molecular transcription processes. We end with an outlook on how to further exploit the unique advantages that come with investigating transcriptional control in the developmental context of the embryo. PMID:25005921

  20. Transcription-associated quality control of mRNP

    DEFF Research Database (Denmark)

    Schmid, Manfred; Jensen, Torben Heick

    2013-01-01

    synthesis process so as to discard, retain or transcriptionally silence unwanted molecules. In this review we discuss the somewhat paradoxical circumstance that the retention or turnover of RNA is often linked to its synthesis. This occurs via the association of chromatin, or the transcription elongation...... complex, with RNA degradation (co)factors. Although our main focus is on protein-coding genes, we also discuss mechanisms of transcription-connected turnover of non-protein-coding RNA from where important general principles are derived......Although a prime purpose of transcription is to produce RNA, a substantial amount of transcript is nevertheless turned over very early in its lifetime. During transcription RNAs are matured by nucleases from longer precursors and activities are also employed to exert quality control over the RNA...

  1. An invertebrate signal transducer and activator of transcription 5 (STAT5) ortholog from the disk abalone, Haliotis discus discus: Genomic structure, early developmental expression, and immune responses to bacterial and viral stresses.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Park, Hae-Chul; Lee, Jehee

    2016-03-01

    Signal transducer and activator of transcription (STAT) family members are key signaling molecules that transduce cellular responses from the cell membrane to the nucleus upon Janus kinase (JAK) activation. Although seven STAT members have been reported in mammals, very limited information on STAT genes in molluscans is available. In this study, we identified and characterized a STAT paralog that is homologous to STAT5 from the disk abalone, Haliotis discus discus, and designated as AbSTAT5. Comparison of the deduced amino acid sequence for AbSTAT5 (790 amino acids) with other counterparts revealed conserved residues important for functions and typical domain regions, including the N-terminal domain, coiled-coil domain, DNA-binding domain, linker domain, and Src homology 2 (SH2) domains as mammalian counterparts. Analysis of STAT phylogeny revealed that AbSTAT5 was clustered with the molluscan subgroup in STAT5 clade with distinct evolution. According to the genomic structure of AbSTAT5, the coding sequence was distributed into 20 exons with 19 introns. Immunologically essential transcription factor-binding sites, such as GATA-1, HNF, SP1, C/EBP, Oct-1, AP1, c-Jun, and Sox-2, were predicted at the 5'-proximal region of AbSTAT5. Expression of AbSTAT5 mRNA was detected in different stages of embryonic development and observed at considerably higher levels in the morula and late veliger stages. Tissue-specific expressional studies revealed that the highest level of AbSTAT5 transcripts was detected in hemocytes, followed by gill tissues. Temporal expressions of AbSTAT5 were analyzed upon live bacterial (Vibrio parahemolyticus and Listeria monocytogenes), viral (viral hemorrhagic septicemia virus), and pathogen-associated molecular pattern (lipopolysaccharides and Poly I:C) stimulations, and significant elevations indicated immune modulation. These results suggest that AbSTAT5 may be involved in maintaining innate immune responses from developmental to adult stages in

  2. Smad transcription factors.

    Science.gov (United States)

    Massagué, Joan; Seoane, Joan; Wotton, David

    2005-12-01

    Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.

  3. The transcription factor encyclopedia.

    Science.gov (United States)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  4. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written......ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  5. HDAC inhibitors stimulate viral transcription by multiple mechanisms

    Directory of Open Access Journals (Sweden)

    Milavetz Barry

    2008-03-01

    Full Text Available Abstract Background The effects of histone deacetylase inhibitor (HDACi treatment on SV40 transcription and replication were determined by monitoring the levels of early and late expression, the extent of replication, and the percentage of SV40 minichromosomes capable of transcription and replication following treatment with sodium butyrate (NaBu and trichostatin A (TSA. Results The HDACi treatment was found to maximally stimulate early transcription at early times and late transcription at late times through increased numbers of minichromosomes which carry RNA polymerase II (RNAPII transcription complexes and increased occupancy of the transcribing minichromosomes by RNAPII. HDACi treatment also partially relieved the normal down-regulation of early transcription by T-antigen seen later in infection. The increased recruitment of transcribing minichromosomes at late times was correlated to a corresponding reduction in SV40 replication and the percentage of minichromosomes capable of replication. Conclusion These results suggest that histone deacetylation plays a critical role in the regulation of many aspects of an SV40 lytic infection.

  6. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation

    Science.gov (United States)

    2013-01-01

    Background The number of fibrous roots that develop into storage roots determines sweetpotato yield. The aim of the present study was to identify the molecular mechanisms involved in the initiation of storage root formation, by performing a detailed transcriptomic analysis of initiating storage roots using next-generation sequencing platforms. A two-step approach was undertaken: (1) generating a database for the sweetpotato root transcriptome using 454-Roche sequencing of a cDNA library created from pooled samples of two root types: fibrous and initiating storage roots; (2) comparing the expression profiles of initiating storage roots and fibrous roots, using the Illumina Genome Analyzer to sequence cDNA libraries of the two root types and map the data onto the root transcriptome database. Results Use of the 454-Roche platform generated a total of 524,607 reads, 85.6% of which were clustered into 55,296 contigs that matched 40,278 known genes. The reads, generated by the Illumina Genome Analyzer, were found to map to 31,284 contigs out of the 55,296 contigs serving as the database. A total of 8,353 contigs were found to exhibit differential expression between the two root types (at least 2.5-fold change). The Illumina-based differential expression results were validated for nine putative genes using quantitative real-time PCR. The differential expression profiles indicated down-regulation of classical root functions, such as transport, as well as down-regulation of lignin biosynthesis in initiating storage roots, and up-regulation of carbohydrate metabolism and starch biosynthesis. In addition, data indicated delicate control of regulators of meristematic tissue identity and maintenance, associated with the initiation of storage root formation. Conclusions This study adds a valuable resource of sweetpotato root transcript sequences to available data, facilitating the identification of genes of interest. This resource enabled us to identify genes that are involved

  7. Rhythm quantization for transcription

    NARCIS (Netherlands)

    Cemgil, A.T.; Desain, P.W.M.; Kappen, H.J.

    1999-01-01

    Automatic Music Transcription is the extraction of an acceptable notation from performed music. One important task in this problem is rhythm quantization which refers to categorization of note durations. Although quantization of a pure mechanical performance is rather straightforward, the task becom

  8. Bayesian Music Transcription

    NARCIS (Netherlands)

    Cemgil, A.T.

    2004-01-01

    Music transcription refers to extraction of a human readable and interpretable description from a recording of a music performance. The final goal is to implement a program that can automatically infer a musical notation that lists the pitch levels of notes and corresponding score positions in any a

  9. Mapping yeast transcriptional networks.

    Science.gov (United States)

    Hughes, Timothy R; de Boer, Carl G

    2013-09-01

    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  10. Bayesian Music Transcription

    NARCIS (Netherlands)

    Cemgil, A.T.

    2004-01-01

    Music transcription refers to extraction of a human readable and interpretable description from a recording of a music performance. The final goal is to implement a program that can automatically infer a musical notation that lists the pitch levels of notes and corresponding score positions in any

  11. Transcription Dynamics in Living Cells.

    Science.gov (United States)

    Lenstra, Tineke L; Rodriguez, Joseph; Chen, Huimin; Larson, Daniel R

    2016-07-01

    The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.

  12. Pleiotropic action of aldosterone in epithelia mediated by transcription and post-transcription mechanisms.

    Science.gov (United States)

    Verrey, F; Pearce, D; Pfeiffer, R; Spindler, B; Mastroberardino, L; Summa, V; Zecevic, M

    2000-04-01

    The aldosterone-induced increase in sodium reabsorption across tight epithelia can be divided schematically into two functional phases: an early regulatory phase starting after a lag period of 20 to 60 minutes, during which the pre-existing transport machinery is activated, and a late phase (>2.5 h), which can be viewed as an anabolic action leading to a further amplification/differentiation of the Na+ transport machinery. At the transcriptional level, both early and late responses are initiated during the lag period, but the functional impact of newly synthesized regulatory proteins is faster than that of the structural ones. K-Ras2 and SGK were identified as the first early aldosterone-induced regulatory proteins in A6 epithelia. Their mRNAs also were shown to be regulated in vivo by aldosterone, and their expression (constitutively active K-Ras2 and wild-type SGK) was shown to increase the function of ENaC coexpressed in Xenopus oocytes. Recently, aldosterone was also shown to act on transcription factors in A6 epithelia: It down-regulates the mRNAs of the proliferation-promoting c-Myc, c-Jun, and c-Fos by a post-transcriptional mechanism, whereas it up-regulates that of Fra-2 (c-Fos antagonist) at the transcriptional level. Together, these new data illustrate the complexity of the regulatory network controlled by aldosterone and support the view that its early action is mediated by the induction of key regulatory proteins such as K-Ras2 and SGK. These early induced proteins are sites of convergence for different regulatory inputs, and thus, their aldosterone-regulated expression level tunes the impact of other regulatory cascades on sodium transport. This suggests mechanisms for the escape from aldosterone action.

  13. Early life stress and serotonin transporter gene variation interact to affect the transcription of the glucocorticoid and mineralocorticoid receptors, and the co-chaperone FKBP5, in the adult rat brain.

    Directory of Open Access Journals (Sweden)

    Rick H. A. Van der Doelen

    2014-10-01

    Full Text Available The short allelic variant of the serotonin transporter (5-HTT promoter-linked polymorphic region (5-HTTLPR has been associated with the etiology of major depression by interaction with early life stress (ELS. A frequently observed endophenotype in depression is the abnormal regulation of levels of stress hormones such as glucocorticoids. It is hypothesized that altered central glucocorticoid influence on stress-related behavior and memory processes could underlie the depressogenic interaction of 5-HTTLPR and ELS. One possible mechanism could be the altered expression of the genes encoding the glucocorticoid and mineralocorticoid receptor (GR, MR and their inhibitory regulator FK506-binding protein 51 (FKBP5 in stress-related forebrain areas. To test this notion, we exposed heterozygous (5-HTT+/- and homozygous (5-HTT-/- serotonin transporter knockout rats and their wildtype littermates (5-HTT+/+ to daily 3 h maternal separations from postnatal day 2 to 14. In the medial prefrontal cortex (mPFC and hippocampus of the adult male offspring, we found that GR, MR and FKBP5 mRNA levels were affected by ELS x 5-HTT genotype interaction. Specifically, 5-HTT+/+ rats exposed to ELS showed decreased GR and FKBP5 mRNA in the dorsal and ventral mPFC, respectively. In contrast, 5-HTT+/- rats showed increased MR mRNA levels in the hippocampus and 5-HTT-/- rats showed increased FKBP5 mRNA in the ventral mPFC after ELS exposure. These findings indicate that 5-HTT genotype determines the specific adaptation of GR, MR and FKBP5 expression in response to early life adversity. Therefore, altered extra-hypothalamic glucocorticoid signaling should be considered to play a role in the depressogenic interaction of ELS and 5-HTTLPR.

  14. Regulation of transcription factor during liver development%肝脏发育过程中转录因子的调控

    Institute of Scientific and Technical Information of China (English)

    王敏君; 陈费; 向导; 刘长城; 何志颖; 王欣; 胡以平

    2011-01-01

    肝脏的发育经历了一系列内胚层和中胚层之间复杂的相互作用,其中转录因子扮演着重要角色.肝脏发育主要可分为两个阶段,首先是前肠内胚层感受心脏中胚层的信号而建立"响应态(competence)",肝向特化基因逐渐表达并形成新生肝芽.此阶段受到转录调控网络的控制,其中FoxA家族,锌指结构转录因子GATA4/6,同源结构域因子Hhex、Onecutl、Onecut2和Proxl发挥了重要的作用.其次是肝脏内细胞群体如肝细胞和胆管细胞的分化成熟阶段.这个过程的完成主要受肝富集转录因子.HNF1α、HNF4、HNF6和C/EBPα的调控.本文概述了肝脏发育中复杂的转录调控网络及其发挥的作用.%Liver development comprises a series of reciprocal interactions between embryonic endoderm and nearby mesoderm, and it is known that transcription factors play important roles in this process. Liver development mainly includes two stages. The first stage is the establishment of competence in the foregut to respond to signals from cardiac mesoderm. After the foregut closure, the endoderm cells are specialized to hepatic development, and thereafter the liver bud formed under the influence of transcriptional networks including FoxA family, zinc finger transcription factor GATA4/6, homeodomain factor Hhex, Onecut1, Onecut2 and Prox1. The second stage is the differentiation and maturation of hepatocytes and cholangiocytes. In this stage, the cellular responses to inductive signals is regulated by liver enriched transcription factors including CCAAT/enhancer binding protein (C/EBP), hepatic nuclear factor 1 (HNF-1), HNF-4 and HNF-6. This review summarizes the complex networks of transcription factors in the regulation of liver development.

  15. Non-transcriptional regulatory processes shape transcriptional network dynamics

    OpenAIRE

    Ray, J. Christian J; Tabor, Jeffrey J.; Igoshin, Oleg A.

    2011-01-01

    Information about the extra- or intracellular environment is often captured as biochemical signals propagating through regulatory networks. These signals eventually drive phenotypic changes, typically by altering gene expression programs in the cell. Reconstruction of transcriptional regulatory networks has given a compelling picture of bacterial physiology, but transcriptional network maps alone often fail to describe phenotypes. In many cases, the dynamical performance of transcriptional re...

  16. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... targeting specific cis-acting elements in genes, and by the significant lack of fixed tertiary structure in their extensive intrinsically disordered regions. Recent research in protein intrinsic disorder (ID) has changed our understanding of transcriptional activation domains from 'negative noodles' to ID...... them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions...

  17. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...... topoisomerase-DNA cleavage complex. The second study is an investigation of how topoisomerases influence gene regulation by keeping the genome in an optimal topological state....

  18. SNFing HIV transcription

    Directory of Open Access Journals (Sweden)

    Bukrinsky Michael

    2006-08-01

    Full Text Available Abstract The SWI/SNF chromatin remodeling complex is an essential regulator of transcription of cellular genes. HIV-1 infection induces exit of a core component of SWI/SNF, Ini1, into the cytoplasm and its association with the viral pre-integration complex. Several recent papers published in EMBO Journal, Journal of Biological Chemistry, and Retrovirology provide new information regarding possible functions of Ini1 and SWI/SNF in HIV life cycle. It appears that Ini1 has an inhibitory effect on pre-integration steps of HIV replication, but also contributes to stimulation of Tat-mediated transcription. This stimulation involves displacement of the nucleosome positioned at the HIV promoter.

  19. Directed pancreatic acinar differentiation of mouse embryonic stem cells via embryonic signalling molecules and exocrine transcription factors.

    Directory of Open Access Journals (Sweden)

    Fabien Delaspre

    Full Text Available Pluripotent embryonic stem cells (ESC are a promising cellular system for generating an unlimited source of tissue for the treatment of chronic diseases and valuable in vitro differentiation models for drug testing. Our aim was to direct differentiation of mouse ESC into pancreatic acinar cells, which play key roles in pancreatitis and pancreatic cancer. To that end, ESC were first differentiated as embryoid bodies and sequentially incubated with activin A, inhibitors of Sonic hedgehog (Shh and bone morphogenetic protein (BMP pathways, fibroblast growth factors (FGF and retinoic acid (RA in order to achieve a stepwise increase in the expression of mRNA transcripts encoding for endodermal and pancreatic progenitor markers. Subsequent plating in Matrigel® and concomitant modulation of FGF, glucocorticoid, and folllistatin signalling pathways involved in exocrine differentiation resulted in a significant increase of mRNAs encoding secretory enzymes and in the number of cells co-expressing their protein products. Also, pancreatic endocrine marker expression was down-regulated and accompanied by a significant reduction in the number of hormone-expressing cells with a limited presence of hepatic marker expressing-cells. These findings suggest a selective activation of the acinar differentiation program. The newly differentiated cells were able to release α-amylase and this feature was greatly improved by lentiviral-mediated expression of Rbpjl and Ptf1a, two transcription factors involved in the maximal production of digestive enzymes. This study provides a novel method to produce functional pancreatic exocrine cells from ESC.

  20. Tuning the orchestra: transcriptional pathways controlling axon regeneration

    Directory of Open Access Journals (Sweden)

    Andrea eTedeschi

    2012-01-01

    Full Text Available Trauma in the adult mammalian central nervous system leads to irreversible structural and functional impairment due to failed regeneration attempts. In contrast, neurons in the peripheral nervous system exhibit a greater regenerative ability. It has been proposed that an orchestrated sequence of transcriptional events controlling the expression of specific sets of genes may be the underlying basis of an early cell-autonomous regenerative response. Understanding whether transcriptional fine tuning, in parallel with strategies aimed at counteracting extrinsic impediments promotes axon re-growth following central nervous system injuries represents an exciting challenge for future studies. Transcriptional pathways controlling axon regeneration are presented and discussed in this review.

  1. 血清和无血清诱导方法分化小鼠胚胎干细胞为定形内胚层的比较%Serum and non-serum method-induced differentiation of mouse embryonic stem cells into definitive endoderm

    Institute of Scientific and Technical Information of China (English)

    李阳芳; 兰勇; 张亚卓; 王欣; 胡以平

    2013-01-01

    Objective To compare the efficiencies of two methods (serum and non-serum) in inducing mouse embryonic stem cell differentiation into definitive endoderm cells. Methods The serum and non-serum methods were used to induce differentiation of mouse embryonic stem cells into definitive endoderm cells. Fluorescence activated cell sorter (FACS) was used to analyze the inducing time and efficiency of definitive endoderm using their surface protein marks (Cxcr4, c-Kit and E-cadherin). Meanwhile, RT-PCR was used to analyze the gene profile of definitive endoderm induced by the two methods. Realtime PCR was used to analyze the gene expression in definitive endoderm during the induction course in the non-serum group. The Cxcr4 and c-Kit double positive definitive endoderm cells were sorted by flow cytometry and gene profile was characterized by RT-PCR. Results Definitive endoderm cells were induced from mouse embryonic stem cells by both serum and non-serum methods. However, the efficiency of non-serum group (74. 19%) was higher than that in the serum group, and the induction outcome reached a climax at the 4th day of induction. Conclusion We have established a highly efficient method to induce differentiation of mouse embryonic stem cells into definitive endoderm, which lays a foundation for further differentiation into liver and pancreatic cells.%目的 比较两种方法(血清诱导方法和无血清诱导方法)诱导小鼠胚胎干细胞分化为定形内胚层细胞的效率.方法 利用血清诱导法和无血清诱导法分别诱导分化小鼠胚胎干细胞,根据定形内胚层表面标记蛋白(Cxcr4、c-Kit和E cadherin)的表达,通过流式细胞术分析定形内胚层诱导的时间及效率,并利用RT-PCR检测两种方法诱导的定形内胚层基因表达谱;同时利用荧光定量PCR检测无血清诱导过程中内胚层基因的表达情况;利用流式细胞术分选Cxcr4和c-Kit双阳性细胞进行定形内胚

  2. Deciphering Transcriptional Regulation

    DEFF Research Database (Denmark)

    Valen, Eivind

    RNA); and ii) translation, in which the mRNA is translated into a protein. This thesis focus on the ¿rst of these steps, transcription, and speci¿cally the initiation of this. Simpli¿ed, initiation is preceded by the binding of several proteins, known as transcription factors (TFs), to DNA. This takes place......The myriad of cells in the human body are all made from the same blueprint: the human genome. At the heart of this diversity lies the concept of gene regulation, the process in which it is decided which genes are used where and when. Genes do not function as on/off buttons, but more like a volume...... control spanning the range from completely muted to cranked up to maximum. The volume, in this case, is the production rate of proteins. This production is the result of a two step procedure: i) transcription, in which a small part of DNA from the genome (a gene) is transcribed into an RNA molecule (an m...

  3. Transcriptional networks in epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Christo Venkov

    Full Text Available Epithelial-mesenchymal transition (EMT changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts.

  4. Non-transcriptional regulatory processes shape transcriptional network dynamics.

    Science.gov (United States)

    Ray, J Christian J; Tabor, Jeffrey J; Igoshin, Oleg A

    2011-10-11

    Information about the extra- or intracellular environment is often captured as biochemical signals that propagate through regulatory networks. These signals eventually drive phenotypic changes, typically by altering gene expression programmes in the cell. Reconstruction of transcriptional regulatory networks has given a compelling picture of bacterial physiology, but transcriptional network maps alone often fail to describe phenotypes. Cellular response dynamics are ultimately determined by interactions between transcriptional and non-transcriptional networks, with dramatic implications for physiology and evolution. Here, we provide an overview of non-transcriptional interactions that can affect the performance of natural and synthetic bacterial regulatory networks.

  5. Dual functions of transcription factors, transforming growth factor-beta-inducible early gene (TIEG)2 and Sp3, are mediated by CACCC element and Sp1 sites of human monoamine oxidase (MAO) B gene.

    Science.gov (United States)

    Ou, Xiao-Ming; Chen, Kevin; Shih, Jean C

    2004-05-14

    Monoamine oxidases (MAO) A and B catalyze the oxidative deamination of many biogenic and dietary amines. Abnormal expression of MAO has been implicated in several psychiatric and neurodegenerative disorders. Human MAO B core promoter (-246 to -99 region) consists of CACCC element flanked by two clusters of overlapping Sp1 sites. Here, we show that cotransfection with transforming growth factor (TGF)-beta-inducible early gene (TIEG)2 increased MAO B gene expression at promoter, mRNA, protein, and catalytic activity levels in both SH-SY5Y and HepG2 cells. Mutation of the CACCC element increased the MAO B promoter activity, and cotransfection with TIEG2 further increased the promoter activity, suggesting that CACCC was a repressor element. This increase was reduced when the proximal Sp1 overlapping sites was mutated. Similar interactions were found with Sp3. These results showed that TIEG2 and Sp3 were repressors at the CACCC element but were activators at proximal Sp1 overlapping sites of MAO B. Gel-shift and chromatin immunoprecipitation assays showed that TIEG2 and Sp3 bound directly to CACCC element and the proximal Sp1 sites in both synthetic oligonucleotides and natural MAO B core promoter. TIEG2 had a higher affinity to Sp1 sites than CACCC element, whereas Sp3 had an equal affinity to both elements. Thus, TIEG2 was an activator, but Sp3 had no effect on MAO B gene expression. This study provides new insights into MAO B gene expression and illustrates the complexity of gene regulation.

  6. ScreeninG of transcription factors from Magnaporthe oryzae which are speciaLLy expressed in its earLy infection staGe%稻瘟病菌中侵染初期特异表达的转录因子筛选

    Institute of Scientific and Technical Information of China (English)

    孟秀利; 李亚; 周波; 鲁国东

    2014-01-01

    稻瘟病是威胁水稻产量的重要病害,弄清楚稻瘟病菌与水稻的互作对于防控稻瘟病具有重要的意义。转录因子是调控基因表达的重要因子,对于调控稻瘟病菌的生长发育和致病性具有重要作用。为了寻找在稻瘟病菌侵染初期特异表达的转录因子,我们首先从稻瘟病菌数据库中找到486个假定的转录因子,然后通过RT-PCR方法筛选出30个在侵染时期特异表达的转录因子。这些转录因子根据结构域的不同可以分为10种类型。具体来讲,9个属于Zn2Cys6类转录因子,4个属于C2H2 zinc finger类转录因子,6个属于HMG类转录因子,携带Transcription factor jumonji和 NucLeic acid-binding,OB-foLd结构域的转录因子分别含有3个,而携带Winged heLix repressor DNA-binding结构域、ssDNA-binding transcriptionaL reguLator结构域、Homeodomain-Like结构域、zinc finger MIZ-type结构域和 zinc finger DHHC-type结构域的转录因子分别含有1个。%Rice bLast is an important disease which threatens the product of rice. It is significant to study the interac-tion between rice and Magnaporthe oryzae. Transcription factors( TFs)can pLay an important roLe in reguLating the ex-pression of genes. The purpose of this articLe is to screen TFs which can speciaLLy express in the earLy stage of infec-tion. 486 TFs were seLected and studied from the genome database of Magnaporthe oryzae and 30 TFs of them were found speciaLLy expressed in the earLy stage of infection by RT-PCR. The 30 TFs were divided into 10 types based on their protein domains. 9 TFs contain Zn2Cys6 domain and 4 TFs contain C2H2 zinc finger domain. 6 TFs contain HMG domain. 3 TFs contain Winged heLix repressor DNA-binding domain or NucLeic acid-binding OB-foLd domain. There are onLy one TF that contains Winged heLix repressor DNA-binding domain,ssDNA-binding transcriptionaL reg-uLator domain,Homeodomain-Like domain,zinc finger MIZ-type domain or zinc

  7. Retention of transcription initiation factor sigma(70) in transcription elongation: Single-molecule analysis

    OpenAIRE

    Kapanidis, A. N.; Margeat, E; Laurence, T A; Doose, S.; Ho, S O; Mukhopadhyay, J.; Kortkhonjia, E; Mekler, V; Ebright, R H; S. Weiss

    2005-01-01

    We report a single-molecule assay that defines, simultaneously, the translocational position of a protein complex relative to DNA and the subunit stoichiometry of the complex. We applied the assay to define translocational positions and sigma(70) contents of bacterial transcription elongation complexes in vitro. The results confirm ensemble results indicating that a large fraction, similar to 70%-90%, of early elongation complexes retain sigma(70) and that a determinant for sigma(70) recognit...

  8. A Combination of Human Embryonic Stem Cell-Derived Pancreatic Endoderm Transplant with LDHA-Repressing miRNA Can Attenuate High-Fat Diet Induced Type II Diabetes in Mice

    Directory of Open Access Journals (Sweden)

    Yunya Chen

    2015-01-01

    Full Text Available Type II diabetes mellitus (T2D is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. The deficit and dysfunction of insulin secreting β-cell are signature symptom for T2D. Additionally, in pancreatic β-cell, a small group of genes which are abundantly expressed in most other tissues are highly selectively repressed. Lactate dehydrogenase A (LDHA is one of such genes. Upregulation of LDHA is found in both human T2D and rodent T2D models. In this study, we identified a LDHA-suppressing microRNA (hsa-miR-590-3p and used it together with human embryonic stem cell (hESC derived pancreatic endoderm (PE transplantation into a high-fat diet induced T2D mouse model. The procedure significantly improved glucose metabolism and other symptoms of T2D. Our findings support the potential T2D treatment using the combination of microRNA and hESC-differentiated PE cells.

  9. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation

    Science.gov (United States)

    Chauvier, Adrien; Picard-Jean, Frédéric; Berger-Dancause, Jean-Christophe; Bastet, Laurène; Naghdi, Mohammad Reza; Dubé, Audrey; Turcotte, Pierre; Perreault, Jonathan; Lafontaine, Daniel A.

    2017-01-01

    On the basis of nascent transcript sequencing, it has been postulated but never demonstrated that transcriptional pausing at translation start sites is important for gene regulation. Here we show that the Escherichia coli thiamin pyrophosphate (TPP) thiC riboswitch contains a regulatory pause site in the translation initiation region that acts as a checkpoint for thiC expression. By biochemically probing nascent transcription complexes halted at defined positions, we find a narrow transcriptional window for metabolite binding, in which the downstream boundary is delimited by the checkpoint. We show that transcription complexes at the regulatory pause site favour the formation of a riboswitch intramolecular lock that strongly prevents TPP binding. In contrast, cotranscriptional metabolite binding increases RNA polymerase pausing and induces Rho-dependent transcription termination at the checkpoint. Early transcriptional pausing may provide a general mechanism, whereby transient transcriptional windows directly coordinate the sensing of environmental cues and bacterial mRNA regulation. PMID:28071751

  10. Localization of Bmp-4, Shh and Wnt-5a transcripts during early mice tooth development by in situ hybridization Localização de transcritos de Bmp-4, Shh e Wnt-5a durante as fases iniciais do desenvolvimento dentário de camundongos por hibridização in situ

    Directory of Open Access Journals (Sweden)

    Fábio Daumas Nunes

    2007-06-01

    Full Text Available A comparative nonisotopic in situ hybridization (ISH analysis was carried out for the detection of Bmp-4, Shh and Wnt-5a transcripts during mice odontogenesis from initiation to cap stage. Bmp-4 was expressed early in the epithelium and then in the underlying mesenchyme. Shh expression was seen in the odontogenic epithelial lining thickening, being stronger in the enamel knot area, during the cap stage. Wnt-5a transcripts were expressed only in the mesenchyme during the initiation, bud and cap stages, with strong expression in the dental mesenchyme during the bud stage. The present results showed that Bmp-4, Shh and Wnt-5a are expressed since the very early stages of tooth development, and they suggest that the Wnt-5a gene is expressed in different cell populations than Bmp-4 and Shh.No presente trabalho, realizou-se uma análise comparativa não isotópica por hibridização in situ a fim de se detectar a presença de transcritos de Bmp-4, Shh e Wnt-5a durante as fases iniciais da odontogênese em camundongos, desde a iniciação até o estágio de capuz. No estágio de iniciação, observou-se expressão precoce de Bmp-4 no epitélio e no mesênquima subjacente, enquanto que a expressão de Shh ocorreu durante o estágio de capuz, na região de espessamento do revestimento epitelial odontogênico, tornando-se mais intensa na área de nó do esmalte. Os transcritos de Wnt-5a foram expressos somente no mesênquima durante os estágios de iniciação, botão e capuz, com intenso sinal na região no mesênquima na fase de botão. Estes resultados mostraram que Bmp-4, Shh e Wnt-5a são expressos desde os estágios mais precoces do desenvolvimento dentário, sugerindo que o gene Wnt-5a seja expresso em populações celulares distintas daquelas que expressam Bmp-4 e Shh.

  11. ZO-1 and ZO-2 are required for extra-embryonic endoderm integrity, primitive ectoderm survival and normal cavitation in embryoid bodies derived from mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Dominic C Y Phua

    Full Text Available The Zonula Occludens proteins ZO-1 and ZO-2 are cell-cell junction-associated adaptor proteins that are essential for the structural and regulatory functions of tight junctions in epithelial cells and their absence leads to early embryonic lethality in mouse models. Here, we use the embryoid body, an in vitro peri-implantation mouse embryogenesis model, to elucidate and dissect the roles ZO-1 and ZO-2 play in epithelial morphogenesis and de novo tight junction assembly. Through the generation of individual or combined ZO-1 and ZO-2 null embryoid bodies, we show that their dual deletion prevents tight junction formation, resulting in the disorganization and compromised barrier function of embryoid body epithelial layers. The disorganization is associated with poor microvilli development, fragmented basement membrane deposition and impaired cavity formation, all of which are key epithelial tissue morphogenetic processes. Expression of Podocalyxin, which positively regulates the formation of microvilli and the apical membrane, is repressed in embryoid bodies lacking both ZO-1 and ZO-2 and this correlates with an aberrant submembranous localization of Ezrin. The null embryoid bodies thus give an insight into how the two ZO proteins influence early mouse embryogenesis and possible mechanisms underlying the embryonic lethal phenotype.

  12. ZO-1 and ZO-2 are required for extra-embryonic endoderm integrity, primitive ectoderm survival and normal cavitation in embryoid bodies derived from mouse embryonic stem cells.

    Science.gov (United States)

    Phua, Dominic C Y; Xu, Jianliang; Ali, Safiah Mohamed; Boey, Adrian; Gounko, Natalia V; Hunziker, Walter

    2014-01-01

    The Zonula Occludens proteins ZO-1 and ZO-2 are cell-cell junction-associated adaptor proteins that are essential for the structural and regulatory functions of tight junctions in epithelial cells and their absence leads to early embryonic lethality in mouse models. Here, we use the embryoid body, an in vitro peri-implantation mouse embryogenesis model, to elucidate and dissect the roles ZO-1 and ZO-2 play in epithelial morphogenesis and de novo tight junction assembly. Through the generation of individual or combined ZO-1 and ZO-2 null embryoid bodies, we show that their dual deletion prevents tight junction formation, resulting in the disorganization and compromised barrier function of embryoid body epithelial layers. The disorganization is associated with poor microvilli development, fragmented basement membrane deposition and impaired cavity formation, all of which are key epithelial tissue morphogenetic processes. Expression of Podocalyxin, which positively regulates the formation of microvilli and the apical membrane, is repressed in embryoid bodies lacking both ZO-1 and ZO-2 and this correlates with an aberrant submembranous localization of Ezrin. The null embryoid bodies thus give an insight into how the two ZO proteins influence early mouse embryogenesis and possible mechanisms underlying the embryonic lethal phenotype.

  13. Regulated assembly of transcription factors and control of transcription initiation.

    Science.gov (United States)

    Beckett, D

    2001-11-30

    Proteins that function in regulation of transcription initiation are typically homo or hetero-oligomeric. Results of recent biophysical studies of transcription regulators indicate that the assembly of these proteins is often subject to regulation. This regulation of assembly dictates the frequency of transcription initiation via its influence on the affinity of a transcription regulator for DNA and its affect on target site selection. Factors that modulate transcription factor assembly include binding of small molecules, post-translational modification, DNA binding and interactions with other proteins. Here, the results of recent structural and/or thermodynamic studies of a number of transcription regulators that are subject to regulated assembly are reviewed. The accumulated data indicate that this phenomenon is ubiquitous and that mechanisms utilized in eukaryotes and prokaryotes share common features. Copyright 2001 Academic Press.

  14. Gene Transcription Profile of the Detached Retina (An AOS Thesis)

    Science.gov (United States)

    Zacks, David N.

    2009-01-01

    Purpose: Separation of the neurosensory retina from the retinal pigment epithelium (RPE) yields many morphologic and functional consequences, including death of the photoreceptor cells, Müller cell hypertrophy, and inner retinal rewiring. Many of these changes are due to the separation-induced activation of specific genes. In this work, we define the gene transcription profile within the retina as a function of time after detachment. We also define the early activation of kinases that might be responsible for the detachment-induced changes in gene transcription. Methods: Separation of the retina from the RPE was induced in Brown-Norway rats by the injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested at 1, 7, and 28 days after separation. Gene transcription profiles for each time point were determined using the Affymetrix Rat 230A gene microarray chip. Transcription levels in detached retinas were compared to those of nondetached retinas with the BRB-ArrayTools Version 3.6.0 using a random variance analysis of variance (ANOVA) model. Confirmation of the significant transcriptional changes for a subset of the genes was performed using microfluidic quantitative real-time polymerase chain reaction (qRT-PCR) assays. Kinase activation was explored using Western blot analysis to look for early phosphorylation of any of the 3 main families of mitogen-activated protein kinases (MAPK): the p38 family, the Janus kinase family, and the p42/p44 family. Results: Retinas separated from the RPE showed extensive alterations in their gene transcription profile. Many of these changes were initiated as early as 1 day after separation, with significant increases by 7 days. ANOVA analysis defined 144 genes that had significantly altered transcription levels as a function of time after separation when setting a false discovery rate at ≤0.1. Confirmatory RT-PCR was performed on 51 of these 144 genes. Differential transcription detected on the microarray

  15. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    . Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t......RNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal...

  16. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...

  17. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...

  18. DNA topology and transcription

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  19. DNA topology and transcription.

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions.

  20. Targeted transcript mapping for agronomic traits in potato

    NARCIS (Netherlands)

    Fernandez del Carmen, M.A.; Celis-Gamboa, C.; Visser, R.G.F.; Bachem, C.W.B.

    2007-01-01

    A combination of cDNA-amplified fragment length polymorphism (AFLP) and bulked segregant analysis (BSA) was used to identify genes co-segregating with earliness of tuberization in a diploid potato population. This approach identified 37 transcript-derived fragments with a polymorphic segregation pat

  1. Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts

    DEFF Research Database (Denmark)

    Meola, Nicola; Domanski, Michal; Karadoulama, Evdoxia

    2016-01-01

    , the Zn-finger protein ZCCHC8, and the RNA-binding factor RBM7. NEXT primarily targets early and unprocessed transcripts, which demands a rationale for how the nuclear exosome recognizes processed RNAs. Here, we describe the poly(A) tail exosome targeting (PAXT) connection, which comprises the ZFC3H1 Zn...

  2. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    A post-transcriptional operon is a set of monocistronic mRNAs encoding functionally related proteins that are co-regulated by a group of RNA-binding proteins and/or small non-coding RNAs so that protein expression is coordinated at the post-transcriptional level. The post-transcriptional operon...... model (PTO) is used to describe data from an assortment of methods (e.g. RIP-Chip, CLIP-Chip, miRNA profiling, ribosome profiling) that globally address the functionality of mRNA. Several examples of post-transcriptional operons have been documented in the literature and demonstrate the usefulness...

  3. Promoter-mediated transcriptional dynamics.

    Science.gov (United States)

    Zhang, Jiajun; Zhou, Tianshou

    2014-01-21

    Genes in eukaryotic cells are typically regulated by complex promoters containing multiple binding sites for a variety of transcription factors, but how promoter dynamics affect transcriptional dynamics has remained poorly understood. In this study, we analyze gene models at the transcriptional regulation level, which incorporate the complexity of promoter structure (PS) defined as transcriptional exits (i.e., ON states of the promoter) and the transition pattern (described by a matrix consisting of transition rates among promoter activity states). We show that multiple exits of transcription are the essential origin of generating multimodal distributions of mRNA, but promoters with the same transition pattern can lead to multimodality of different modes, depending on the regulation of transcriptional factors. In turn, for similar mRNA distributions in the models, the mean ON or OFF time distributions may exhibit different characteristics, thus providing the supplemental information on PS. In addition, we demonstrate that the transcriptional noise can be characterized by a nonlinear function of mean ON and OFF times. These results not only reveal essential characteristics of promoter-mediated transcriptional dynamics but also provide signatures useful for inferring PS based on characteristics of transcriptional outputs. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Promoters, Transcripts, and Regulatory Proteins of Mungbean Yellow Mosaic Geminivirus†

    Science.gov (United States)

    Shivaprasad, P. V.; Akbergenov, Rashid; Trinks, Daniela; Rajeswaran, R.; Veluthambi, K.; Hohn, Thomas; Pooggin, Mikhail M.

    2005-01-01

    Geminiviruses package circular single-stranded DNA and replicate in the nucleus via a double-stranded intermediate. This intermediate also serves as a template for bidirectional transcription by polymerase II. Here, we map promoters and transcripts and characterize regulatory proteins of Mungbean yellow mosaic virus-Vigna (MYMV), a bipartite geminivirus in the genus Begomovirus. The following new features, which might also apply to other begomoviruses, were revealed in MYMV. The leftward and rightward promoters on DNA-B share the transcription activator AC2-responsive region, which does not overlap the common region that is nearly identical in the two DNA components. The transcription unit for BC1 (movement protein) includes a conserved, leader-based intron. Besides negative-feedback regulation of its own leftward promoter on DNA-A, the replication protein AC1, in cooperation with AC2, synergistically transactivates the rightward promoter, which drives a dicistronic transcription unit for the coat protein AV1. AC2 and the replication enhancer AC3 are expressed from one dicistronic transcript driven by a strong promoter mapped within the upstream AC1 gene. Early and constitutive expression of AC2 is consistent with its essential dual function as an activator of viral transcription and a suppressor of silencing. PMID:15956560

  5. Promoters, transcripts, and regulatory proteins of Mungbean yellow mosaic geminivirus.

    Science.gov (United States)

    Shivaprasad, P V; Akbergenov, Rashid; Trinks, Daniela; Rajeswaran, R; Veluthambi, K; Hohn, Thomas; Pooggin, Mikhail M

    2005-07-01

    Geminiviruses package circular single-stranded DNA and replicate in the nucleus via a double-stranded intermediate. This intermediate also serves as a template for bidirectional transcription by polymerase II. Here, we map promoters and transcripts and characterize regulatory proteins of Mungbean yellow mosaic virus-Vigna (MYMV), a bipartite geminivirus in the genus Begomovirus. The following new features, which might also apply to other begomoviruses, were revealed in MYMV. The leftward and rightward promoters on DNA-B share the transcription activator AC2-responsive region, which does not overlap the common region that is nearly identical in the two DNA components. The transcription unit for BC1 (movement protein) includes a conserved, leader-based intron. Besides negative-feedback regulation of its own leftward promoter on DNA-A, the replication protein AC1, in cooperation with AC2, synergistically transactivates the rightward promoter, which drives a dicistronic transcription unit for the coat protein AV1. AC2 and the replication enhancer AC3 are expressed from one dicistronic transcript driven by a strong promoter mapped within the upstream AC1 gene. Early and constitutive expression of AC2 is consistent with its essential dual function as an activator of viral transcription and a suppressor of silencing.

  6. Accumulation of Transcripts Abundance after Barley Inoculation with Cochliobolus sativus

    Directory of Open Access Journals (Sweden)

    Mohammad Imad Eddin Arabi

    2015-03-01

    Full Text Available Spot blotch caused by the hemibiotrophic pathogen Cochliobolus sativus has been the major yield-reducing factor for barley production during the last decade. Monitoring transcriptional reorganization triggered in response to this fungus is an essential first step for the functional analysis of genes involved in the process. To characterize the defense responses initiated by barley resistant and susceptible cultivars, a survey of transcript abundance at early time points of C. sativus inoculation was conducted. A notable number of transcripts exhibiting significant differential accumulations in the resistant and susceptible cultivars were detected compared to the non-inoculated controls. At the p-value of 0.0001, transcripts were divided into three general categories; defense, regulatory and unknown function, and the resistant cultivar had the greatest number of common transcripts at different time points. Quantities of differentially accumulated gene transcripts in both cultivars were identified at 24 h post infection, the approximate time when the pathogen changes trophic lifestyles. The unique and common accumulated transcripts might be of considerable interest for enhancing effective resistance to C. sativus.

  7. Mastering Transcription: Multiplexed Analysis of Transcription Start Site Sequences.

    Science.gov (United States)

    Hochschild, Ann

    2015-12-17

    In this issue of Molecular Cell, Vvedenskaya et al. (2015) describe a high-throughput sequencing-based methodology for the massively parallel analysis of transcription from a high-complexity barcoded template library both in vitro and in vivo, providing a powerful new tool for the study of transcription.

  8. Culture adaptation alters transcriptional hierarchies among single human embryonic stem cells reflecting altered patterns of differentiation.

    Science.gov (United States)

    Gokhale, Paul J; Au-Young, Janice K; Dadi, SriVidya; Keys, David N; Harrison, Neil J; Jones, Mark; Soneji, Shamit; Enver, Tariq; Sherlock, Jon K; Andrews, Peter W

    2015-01-01

    We have used single cell transcriptome analysis to re-examine the substates of early passage, karyotypically Normal, and late passage, karyotypically Abnormal ('Culture Adapted') human embryonic stem cells characterized by differential expression of the cell surface marker antigen, SSEA3. The results confirmed that culture adaptation is associated with alterations to the dynamics of the SSEA3(+) and SSEA3(-) substates of these cells, with SSEA3(-) Adapted cells remaining within the stem cell compartment whereas the SSEA3(-) Normal cells appear to have differentiated. However, the single cell data reveal that these substates are characterized by further heterogeneity that changes on culture adaptation. Notably the Adapted population includes cells with a transcriptome substate suggestive of a shift to a more naïve-like phenotype in contrast to the cells of the Normal population. Further, a subset of the Normal SSEA3(+) cells expresses genes typical of endoderm differentiation, despite also expressing the undifferentiated stem cell genes, POU5F1 (OCT4) and NANOG, whereas such apparently lineage-primed cells are absent from the Adapted population. These results suggest that the selective growth advantage gained by genetically variant, culture adapted human embryonic stem cells may derive in part from a changed substate structure that influences their propensity for differentiation.

  9. Transcriptional and post-transcriptional profile of human chromosome 21.

    Science.gov (United States)

    Nikolaev, Sergey I; Deutsch, Samuel; Genolet, Raphael; Borel, Christelle; Parand, Leila; Ucla, Catherine; Schütz, Frederic; Duriaux Sail, Genevieve; Dupré, Yann; Jaquier-Gubler, Pascale; Araud, Tanguy; Conne, Beatrice; Descombes, Patrick; Vassalli, Jean-Dominique; Curran, Joseph; Antonarakis, Stylianos E

    2009-08-01

    Recent studies have demonstrated extensive transcriptional activity across the human genome, a substantial fraction of which is not associated with any functional annotation. However, very little is known regarding the post-transcriptional processes that operate within the different classes of RNA molecules. To characterize the post-transcriptional properties of expressed sequences from human chromosome 21 (HSA21), we separated RNA molecules from three cell lines (GM06990, HeLa S3, and SK-N-AS) according to their ribosome content by sucrose gradient fractionation. Polyribosomal-associated RNA and total RNA were subsequently hybridized to genomic tiling arrays. We found that approximately 50% of the transcriptional signals were located outside of annotated exons and were considered as TARs (transcriptionally active regions). Although TARs were observed among polysome-associated RNAs, RT-PCR and RACE experiments revealed that approximately 40% were likely to represent nonspecific cross-hybridization artifacts. Bioinformatics discrimination of TARs according to conservation and sequence complexity allowed us to identify a set of high-confidence TARs. This set of TARs was significantly depleted in the polysomes, suggesting that it was not likely to be involved in translation. Analysis of polysome representation of RefSeq exons showed that at least 15% of RefSeq transcripts undergo significant post-transcriptional regulation in at least two of the three cell lines tested. Among the regulated transcripts, enrichment analysis revealed an over-representation of genes involved in Alzheimer's disease (AD), including APP and the BACE1 protease that cleaves APP to produce the pathogenic beta 42 peptide. We demonstrate that the combination of RNA fractionation and tiling arrays is a powerful method to assess the transcriptional and post-transcriptional properties of genomic regions.

  10. Residual expression of reprogramming factors affects the transcriptional program and epigenetic signatures of induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Cesar A Sommer

    Full Text Available Delivery of the transcription factors Oct4, Klf4, Sox2 and c-Myc via integrating viral vectors has been widely employed to generate induced pluripotent stem cell (iPSC lines from both normal and disease-specific somatic tissues, providing an invaluable resource for medical research and drug development. Residual reprogramming transgene expression from integrated viruses nevertheless alters the biological properties of iPSCs and has been associated with a reduced developmental competence both in vivo and in vitro. We performed transcriptional profiling of mouse iPSC lines before and after excision of a polycistronic lentiviral reprogramming vector to systematically define the overall impact of persistent transgene expression on the molecular features of iPSCs. We demonstrate that residual expression of the Yamanaka factors prevents iPSCs from acquiring the transcriptional program exhibited by embryonic stem cells (ESCs and that the expression profiles of iPSCs generated with and without c-Myc are indistinguishable. After vector excision, we find 36% of iPSC clones show normal methylation of the Gtl2 region, an imprinted locus that marks ESC-equivalent iPSC lines. Furthermore, we show that the reprogramming factor Klf4 binds to the promoter region of Gtl2. Regardless of Gtl2 methylation status, we find similar endodermal and hepatocyte differentiation potential comparing syngeneic Gtl2(ON vs Gtl2(OFF iPSC clones. Our findings provide new insights into the reprogramming process and emphasize the importance of generating iPSCs free of any residual transgene expression.

  11. Progress in Written Language Bursts, Pauses, Transcription, and Written Composition across Schooling

    Science.gov (United States)

    Alves, Rui A.; Limpo, Teresa

    2015-01-01

    Research on adult writers has shown that writing proceeds through bursts of transcription activity interspersed by long pauses. Yet few studies have examined how these writing behaviors unfold during early and middle childhood. This study traces the progress of bursts, pauses, transcription, and written composition in Portuguese students from…

  12. Biochemical analysis of the basic helix-loop-helix transcription factor Olig2

    NARCIS (Netherlands)

    Meijer, D.H.M.

    2014-01-01

    The basic helix-loop-helix (bHLH) transcription factors oligodendrocyte transcription factor 1 (Olig1) and Olig2 are structurally similar and, to a first approximation, coordinately expressed in the developing CNS and postnatal brain. Notwithstanding these similarities, it was apparent from early on

  13. Gene expression of herpes simplex virus. II. Uv radiological analysis of viral transcription units

    Energy Technology Data Exchange (ETDEWEB)

    Millette, R. L.; Klaiber, R.

    1980-06-01

    The transcriptional organization of the genome of herpes simplex virus type 1 was analyzed by measuring the sensitivity of viral polypeptide synthesis to uv irradiation of the infecting virus. Herpes simplex virus type 1 was irradiated with various doses of uv light and used to infect xeroderma pigmentosum fibroblasts. Immediate early transcription units were analyzed by having cycloheximide present throughout the period of infection, removing the drug at 8 h postinfection, and pulse-labeling proteins with (355)methionine. Delayed early transcription units were analyzed in similar studies by having 9-beta-D-arabinofuranosyladenine present during the experiment to block replication of the input irradiated genome. The results indicate that none of the immediate early genes analyzed can be cotranscribed, whereas some of the delayed early genes might be cotranscribed. No evidence was found for the existence of large, multigene transcription units.

  14. Mechanosensitive mechanisms in transcriptional regulation.

    Science.gov (United States)

    Mammoto, Akiko; Mammoto, Tadanori; Ingber, Donald E

    2012-07-01

    Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine.

  15. Transcriptional networks controlling adipocyte differentiation

    DEFF Research Database (Denmark)

    Siersbæk, R; Mandrup, Susanne

    2011-01-01

    Adipocyte differentiation is regulated by a complex cascade of signals that drive the transcriptional reprogramming of the fibroblastic precursors. Genome-wide analyses of chromatin accessibility and binding of adipogenic transcription factors make it possible to generate "snapshots" of the trans...

  16. Structural basis of transcription activation.

    Science.gov (United States)

    Feng, Yu; Zhang, Yu; Ebright, Richard H

    2016-06-10

    Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme. Copyright © 2016, American Association for the Advancement of Science.

  17. Structural basis of transcription elongation.

    Science.gov (United States)

    Martinez-Rucobo, Fuensanta W; Cramer, Patrick

    2013-01-01

    For transcription elongation, all cellular RNA polymerases form a stable elongation complex (EC) with the DNA template and the RNA transcript. Since the millennium, a wealth of structural information and complementary functional studies provided a detailed three-dimensional picture of the EC and many of its functional states. Here we summarize these studies that elucidated EC structure and maintenance, nucleotide selection and addition, translocation, elongation inhibition, pausing and proofreading, backtracking, arrest and reactivation, processivity, DNA lesion-induced stalling, lesion bypass, and transcriptional mutagenesis. In the future, additional structural and functional studies of elongation factors that control the EC and their possible allosteric modes of action should result in a more complete understanding of the dynamic molecular mechanisms underlying transcription elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Thermodynamic Model of Transcription Elongation

    Science.gov (United States)

    Tadigotla, Vasisht; O'Maoileidigh, Daibhid; Sengupta, Anirvan; Epshtein, Vitaly; Ebright, Richard; Nudler, Evgeny; Ruckenstein, Andrei

    2006-03-01

    We present a statistical mechanics approach to the prediction of backtracked pauses in prokaryotic transcription elongation derived from structural models of the transcription elongation complex (TEC). Our algorithm is based on the thermodynamic stability of TEC along the DNA template calculated from the sequence dependent free-energy of DNA-DNA, DNA-RNA and RNA-RNA base pairing associated with (a) the translocation and size fluctuations of the transcription bubble; (b) the changes in the DNA-RNA hybrid; and (c) the changes in the RNA folding free-energy. The calculations involve no adjustable parameters apart from a cutoff used to discriminate paused from non-paused complexes. When applied to 100 experimental pauses in transcription elongation by E. coli RNA polymerase on ten DNA templates the approach produces highly statistically significant results. Transcription elongation is an inherently kinetic process and a simplified kinetic model with the same predictive power is presented separately.

  19. Early traumatic events in psychopaths.

    Science.gov (United States)

    Borja, Karina; Ostrosky, Feggy

    2013-07-01

    The relationship between diverse early traumatic events and psychopathy was studied in 194 male inmates. Criminal history transcripts were revised, and clinical interviews were conducted to determine the level of psychopathy using the Psychopathy Checklist-Revised (PCL-R) Form, and the Early Trauma Inventory was applied to assess the incidence of abuse before 18 years of age. Psychopathic inmates presented a higher victimization level and were more exposed to certain types of intended abuse than sociopathic inmates, while the sum of events and emotional abuse were associated with the PCL-R score. Our studies support the influence of early adverse events in the development of psychopathic offenders.

  20. Transcription of the soybean leghemoglobin genes during nodule development

    DEFF Research Database (Denmark)

    Marcker, Anne; Lund, Marianne; Jensen, Erik Ø

    1984-01-01

    During the early stages of soybean nodule development the leghemoglobin (Lb) genes are activated sequentially in the opposite order to which they are arranged in the soybean genome. At a specific stage after the initial activation of all the Lb genes, a large increment occurs in the transcription...... of the Lb(c1), Lb(c3) and Lb(a) genes while the transcription of the Lb(c2) gene is not amplified to a similar extent. All the Lb genes retain significant activity for a long period during the lifetime of a nodule. Consequently the soybean Lb genes are not regulated by a developmental gene switching...

  1. Transcription regulation mechanisms of bacteriophages

    Science.gov (United States)

    Yang, Haiquan; Ma, Yingfang; Wang, Yitian; Yang, Haixia; Shen, Wei; Chen, Xianzhong

    2014-01-01

    Phage diversity significantly contributes to ecology and evolution of new bacterial species through horizontal gene transfer. Therefore, it is essential to understand the mechanisms underlying phage-host interactions. After initial infection, the phage utilizes the transcriptional machinery of the host to direct the expression of its own genes. This review presents a view on the transcriptional regulation mechanisms of bacteriophages, and its contribution to phage diversity and classification. Through this review, we aim to broaden the understanding of phage-host interactions while providing a reference source for researchers studying the regulation of phage transcription. PMID:25482231

  2. Sigma Factors for Cyanobacterial Transcription

    Directory of Open Access Journals (Sweden)

    Sousuke Imamura

    2009-04-01

    Full Text Available Cyanobacteria are photosynthesizing microorganisms that can be used as a model for analyzing gene expression. The expression of genes involves transcription and translation. Transcription is performed by the RNA polymerase (RNAP holoenzyme, comprising a core enzyme and a sigma (σ factor which confers promoter selectivity. The unique structure, expression, and function of cyanobacterial σ factors (and RNAP core subunits are summarized here based on studies, reported previously. The types of promoter recognized by the σ factors are also discussed with regard to transcriptional regulation.

  3. Intron and intronless transcription of the chicken polyubiquitin gene UbII.

    Science.gov (United States)

    Mezquita, J; López-Ibor, B; Pau, M; Mezquita, C

    1993-03-22

    We have previously reported that the chicken polyubiquitin gene UbII is preferentially expressed during spermatogenesis and we show here that UbII is the predominant polyubiquitin gene expressed in early embryogenesis. Two main initiation sites were detected. Transcription from the initiation site used in early embryos results in the presence of an intron in the 5'-untranslated region of the transcripts as has been reported for other polyubiquitin messages. In mature testis, however, the use of a different initiation site, located within the intron, produces intronless transcripts. Distinct promoter sequences, present in each initiation site, may regulate the differential expression observed in this gene.

  4. RNA-guided transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  5. Premature termination of transcription by RNAP II: the beginning of the end.

    Science.gov (United States)

    Contreras, Xavier; Benkirane, Monsef; Kiernan, Rosemary

    2013-01-01

    Transcription elongation is now recognized as an important mechanism of gene regulation in eukaryotes. A large number of genes undergo an early step in transcription that is rate limiting for expression. Genome-wide studies showing that RNA polymerase II accumulates to high densities near the promoters of many genes has led to the idea that promoter-proximal pausing of transcription is a widespread, rate-limiting step in early elongation. Recent evidence suggests that much of this paused RNA polymerase II is competent for transcription elongation. Here, we discuss recent studies suggesting that RNA polymerase II that accumulates nearby the promoter of a subset of genes is undergoing premature termination of transcription.

  6. The eukaryotic gene transcription machinery.

    Science.gov (United States)

    Kornberg, R D

    2001-08-01

    Seven purified proteins may be combined to reconstitute regulated, promoter-dependent RNA polymerase II transcription: five general transcription factors, Mediator, and RNA polymerase II. The entire system has been conserved across species from yeast to humans. The structure of RNA polymerase II, consisting of 10 polypeptides with a mass of about 500 kDa, has been determined at atomic resolution. On the basis of this structure, that of an actively transcribing RNA polymerase II complex has been determined as well.

  7. Samuel Goudsmit - Early Influences

    Science.gov (United States)

    Goudsmit, Esther

    2010-03-01

    Samuel Goudsmit, born in 1902 in The Hague, Netherlands, earned his Ph.D. at the University of Leiden in 1926 with Paul Ehrenfest. The present talk will describe some aspects of his background and early formative years in order to provide context for the broad range of his professional life. Sam belonged to a large tribe of paternal and maternal uncles, aunts and first cousins; including his parents, grandparents and sister Ro, they numbered forty. Sam was the first of the tribe to be educated beyond high school. Early interests as a child and later as a university student in the Netherlands prefigured his significant and diverse contributions in several realms including not only physics but also teaching, Egyptology and scientific Intelligence. Bibliographic sources will include: The American Institute of Physics' Oral History Transcripts and photographs from the Emilio Segre visual archives, memoirs and conversations of those who knew Sam and also letters to his daughter, Esther.

  8. Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis.

    Science.gov (United States)

    Nairn, Alison V; Aoki, Kazuhiro; dela Rosa, Mitche; Porterfield, Mindy; Lim, Jae-Min; Kulik, Michael; Pierce, J Michael; Wells, Lance; Dalton, Stephen; Tiemeyer, Michael; Moremen, Kelley W

    2012-11-02

    The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development.

  9. Thermodynamic and Kinetic Modeling of Transcriptional Pausing

    National Research Council Canada - National Science Library

    Vasisht R. Tadigotla; Dáibhid Ó. Maoiléidigh; Anirvan M. Sengupta; Vitaly Epshtein; Richard H. Ebright; Evgeny Nudler; Andrei E. Ruckenstein

    2006-01-01

    We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC...

  10. National Capital Planning Commission Meeting Transcripts

    Data.gov (United States)

    National Capital Planning Commission — Transcripts of the monthly (with the exception of August) National Capital Planning Commission meeting transcripts are provided for research to confirm actions taken...

  11. Effects of hemorrhage on cytokine gene transcription.

    Science.gov (United States)

    Shenkar, R; Abraham, E

    1993-08-01

    Injury and blood loss are often followed by infection and the rapid development of organ system dysfunction, frequently involving mucosal sites, such as the lung and intestine. To examine possible mechanisms contributing to these conditions, we used semiquantitative polymerase chain reactions to determine cytokine mRNA expression among cellular populations isolated from mucosal and systemic anatomic sites of mice at predetermined time points following 30% blood volume hemorrhage with resuscitation 1 hr later. Within 1 hr after hemorrhage, significant increases were observed in mRNA levels for IL-1 alpha, IL-1 beta, IL-5, and TGF-beta in intraparenchymal pulmonary mononuclear cells. The levels of TGF-beta transcripts among alveolar macrophages were increased 1 hr following blood loss, and increase in IL-1 alpha transcripts was found starting 2 hr posthemorrhage. Cells from Peyer's patches showed significant increases in mRNA levels for IL-1 beta, IL-2, IL-5, IL-6, IFN-gamma, and TGF-beta during the 4 hr following hemorrhage. Significant increases in mRNA levels for IL-1 beta, TNF-alpha, and TGF-beta were present within 4 hr of blood loss among cells isolated from mesenteric lymph nodes. The expression of mRNA for most cytokines was not significantly altered in splenocytes or peripheral blood mononuclear cells at any time point following hemorrhage. These experiments demonstrate that blood loss, even if resuscitated, produces significant increases in proinflammatory and immunoregulatory cytokine gene transcription as early as 1 hr following hemorrhage. These posthemorrhage alterations in cytokine mRNA expression were particularly prominent at mucosal sites, suggesting a mechanism for the increased incidence of pulmonary and intestinal involvement in organ system failure following severe blood loss and injury.

  12. Transcription of the soybean leghemoglobin genes during nodule development

    DEFF Research Database (Denmark)

    Marcker, Anne; Ø Jensen, Erik; Marcker, Kjeld A

    1984-01-01

    mechanism as is the case for vertebrate globin genes. Concomitantly with the increase in Lb gene transcription some of the other nodule specific plant genes are activated. These specific changes in the activities of the Lb and nodulin genes precede the activation of the bacterial nitrogenase gene. Thus......During the early stages of soybean nodule development the leghemoglobin (Lb) genes are activated sequentially in the opposite order to which they are arranged in the soybean genome. At a specific stage after the initial activation of all the Lb genes, a large increment occurs in the transcription...... of the Lb(c1), Lb(c3) and Lb(a) genes while the transcription of the Lb(c2) gene is not amplified to a similar extent. All the Lb genes retain significant activity for a long period during the lifetime of a nodule. Consequently the soybean Lb genes are not regulated by a developmental gene switching...

  13. Transcriptional responses of human epidermal keratinocytes to Oncostatin-M.

    Science.gov (United States)

    Finelt, Nika; Gazel, Alix; Gorelick, Steven; Blumenberg, Miroslav

    2005-08-21

    Oncostatin-M (OsM) plays an important role in inflammatory and oncogenic processes in skin, including psoriasis and Kaposi sarcoma. However, the molecular responses to OsM in keratinocytes have not been explored in depth. Here we show the results of transcriptional profiling in OsM-treated primary human epidermal keratinocytes, using high-density DNA microarrays. We find that OsM strongly and specifically affects the expression of many genes, in particular those involved with innate immunity, angiogenesis, adhesion, motility, tissue remodeling, cell cycle and transcription. The timing of the responses to OsM comprises two waves, early at 1h, and late at 48 h, with much fewer genes regulated in the intervening time points. Secreted cytokines and growth factors and their receptors, as well as nuclear transcription factors, are primary targets of OsM regulation, and these, in turn, effect the secondary changes.

  14. Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer.

    Science.gov (United States)

    Lu, Yi

    2009-07-02

    Prostate cancer is the most frequently diagnosed cancer and the second leading cause of cancer deaths in American males today. Novel and effective treatment such as gene therapy is greatly desired. The early viral based gene therapy uses tissue-nonspecific promoters, which causes unintended toxicity to other normal tissues. In this chapter, we will review the transcriptionally regulated gene therapy strategy for prostate cancer treatment. We will describe the development of transcriptionally regulated prostate cancer gene therapy in the following areas: (1) Comparison of different routes for best viral delivery to the prostate; (2) Study of transcriptionally regulated, prostate-targeted viral vectors: specificity and activity of the transgene under several different prostate-specific promoters were compared in vitro and in vivo; (3) Selection of therapeutic transgenes and strategies for prostate cancer gene therapy (4) Oncolytic virotherapy for prostate cancer. In addition, the current challenges and future directions in this field are also discussed.

  15. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression

    Science.gov (United States)

    Kula, Anna; Marcello, Alessandro

    2012-01-01

    Gene expression of the human immunodeficiency virus type 1 (HIV-1) is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE). These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function. PMID:24832221

  16. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression

    Directory of Open Access Journals (Sweden)

    Alessandro Marcello

    2012-07-01

    Full Text Available Gene expression of the human immunodeficiency virus type 1 (HIV-1 is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE. These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function.

  17. Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti.

    Science.gov (United States)

    Jonusaite, Sima; Donini, Andrew; Kelly, Scott P

    2017-03-01

    This study examined the distribution and localization of the septate junction (SJ) proteins snakeskin (Ssk) and mesh in osmoregulatory organs of larval mosquito (Aedes aegypti), as well as their response to altered environmental salt levels. Ssk and mesh transcripts and immunoreactivity were detected in tissues of endodermal origin such as the midgut and Malpighian tubules of A. aegypti larvae, but not in ectodermally derived hindgut and anal papillae. Immunolocalization of Ssk and mesh in the midgut and Malpighian tubules indicated that both proteins are concentrated at regions of cell-cell contact between epithelial cells. Transcript abundance of ssk and mesh was higher in the midgut and Malpighian tubules of brackish water (BW, 30% SW) reared A. aegypti larvae when compared with freshwater (FW) reared animals. Therefore, [(3)H]polyethylene glycol (MW 400Da, PEG-400) flux was examined across isolated midgut and Malpighian tubule preparations as a measure of their paracellular permeability. It was found that PEG-400 flux was greater across the midgut of BW versus FW larvae while the Malpighian tubules of BW-reared larvae had reduced PEG-400 permeability in conjunction with increased Cl(-) secretion compared to FW animals. Taken together, data suggest that Ssk and mesh are found in smooth SJs (sSJs) of larval A. aegypti and that their abundance alters in association with changes in epithelial permeability when larvae reside in water of differing salt content. This latter observation suggests that Ssk and mesh play a role in the homeostatic control of salt and water balance in larval A. aegypti. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A new trick to tune down TGFβ signal

    Institute of Scientific and Technical Information of China (English)

    Jian ZHANG

    2004-01-01

    @@ Signal transduction in early embryogenesis needs to be properly controlled. A new player involved in tuning down TGF β signaling has now been identified - new evidence that multi-layer control of signaling is essential in vivo. How primary germ layers (ectoderm, mesoderm and endoderm) form has been a fascinating question for developmental biologists for decades. Traditional embryo transplantation experiments in amphibian suggest that initial mesoderm formation is an induction event in blastula by secreted signal(s) from vegetal mass (develop into future endoderm tissues) to equatorial region (develop into future mesoderm tissues). We now believe that maternal transcription factor(s) activate zygotic signals,which in turn trigger mesoderm formation.

  19. Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Agustino Martinez-Antonio

    2011-06-01

    Full Text Available Escherichia coli is the most well-know bacterial model about the function of its molecular components. In this review are presented several structural and functional aspects of their transcriptional regulatory network constituted by transcription factors and target genes. The network discussed here represent to 1531 genes and 3421 regulatory interactions. This network shows a power-law distribution with a few global regulators and most of genes poorly connected. 176 of genes in the network correspond to transcription factors, which form a sub-network of seven hierarchical layers where global regulators tend to be set in superior layers while local regulators are located in the lower ones. There is a small set of proteins know as nucleoid-associated proteins, which are in a high cellular concentrations and reshape the nucleoid structure to influence the running of global transcriptional programs, to this mode of regulation is named analog regulation. Specific signal effectors assist the activity of most of transcription factors in E. coli. These effectors switch and tune the activity of transcription factors. To this type of regulation, depending of environmental signals is named the digital-precise-regulation. The integration of regulatory programs have place in the promoter region of transcription units where it is common to observe co-regulation among global and local TFs as well as of TFs sensing exogenous and endogenous conditions. The mechanistic logic to understand the harmonious operation of regulatory programs in the network should consider the globalism of TFs, their signal perceived, coregulation, genome position, and cellular concentration. Finally, duplicated TFs and their horizontal transfer influence the evolvability of members of the network. The most duplicated and transferred TFs are located in the network periphery.

  20. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Directory of Open Access Journals (Sweden)

    Ralph D Hector

    Full Text Available Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5 cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR, which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  1. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Science.gov (United States)

    Hector, Ralph D; Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  2. Structural basis of transcription initiation.

    Science.gov (United States)

    Zhang, Yu; Feng, Yu; Chatterjee, Sujoy; Tuske, Steve; Ho, Mary X; Arnold, Eddy; Ebright, Richard H

    2012-11-23

    During transcription initiation, RNA polymerase (RNAP) binds and unwinds promoter DNA to form an RNAP-promoter open complex. We have determined crystal structures at 2.9 and 3.0 Å resolution of functional transcription initiation complexes comprising Thermus thermophilus RNA polymerase, σ(A), and a promoter DNA fragment corresponding to the transcription bubble and downstream double-stranded DNA of the RNAP-promoter open complex. The structures show that σ recognizes the -10 element and discriminator element through interactions that include the unstacking and insertion into pockets of three DNA bases and that RNAP recognizes the -4/+2 region through interactions that include the unstacking and insertion into a pocket of the +2 base. The structures further show that interactions between σ and template-strand single-stranded DNA (ssDNA) preorganize template-strand ssDNA to engage the RNAP active center.

  3. Transcription factors - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-03-01

    Full Text Available A hearty wellcome to prof. Higgins editorial toil: a necessary tool for those colleagues (young and older fighting each day with the transcription factor they are involved with. In fact, the book is a full coverage compendium of state of the art papers dealing with practical thecniques and theoretical concepts about transcription factors. Each of the chapters (twenty-four is written by colleagues already working with one of the many trascription factors we become acquainted with. For the sake of the reader the volume is divided in four parts: Part I is a brief (when compared to the others three ! introductory presentation of the shuttling (i.e., transcription factor nuclear-cytoplasmic trafficking achieved by three reviews presentation of this biologically critical phenomenon. Part II (nine chapters is devoted to the necessary techniques to study nuclear translocation ...............

  4. Pervasive transcription: detecting functional RNAs in bacteria.

    Science.gov (United States)

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  5. NAC transcription factors in senescence

    DEFF Research Database (Denmark)

    Podzimska-Sroka, Dagmara; O'Shea, Charlotte; Gregersen, Per L.;

    2015-01-01

    Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes...... as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics...

  6. Subventricular zone microglia transcriptional networks.

    Science.gov (United States)

    Starossom, Sarah C; Imitola, Jaime; Wang, Yue; Cao, Li; Khoury, Samia J

    2011-07-01

    Microglia play an important role in inflammatory diseases of the central nervous system. There is evidence of microglial diversity with distinct phenotypes exhibiting either neuroprotection and repair or neurotoxicity. However the precise molecular mechanisms underlying this diversity are still unknown. Using a model of experimental autoimmune encephalomyelitis (EAE) we performed transcriptional profiling of isolated subventricular zone microglia from the acute and chronic disease phases of EAE. We found that microglia exhibit disease phase specific gene expression signatures, that correspond to unique gene ontology functions and genomic networks. Our data demonstrate for the first time, distinct transcriptional networks of microglia activation in vivo, that suggests a role as mediators of injury or repair.

  7. Longitudinal evaluation of leukocyte transcripts in killer whales (Orcinus Orca).

    Science.gov (United States)

    Sitt, Tatjana; Bowen, Lizabeth; Lee, Chia-Shan; Blanchard, Myra T; McBain, James; Dold, Christopher; Stott, Jeffrey L

    2016-07-01

    Early identification of illness and/or presence of environmental and/or social stressors in free-ranging and domestic cetaceans is a priority for marine mammal health care professionals. Incorporation of leukocyte gene transcript analysis into the diagnostic tool kit has the potential to augment classical diagnostics based upon ease of sample storage and shipment, inducible nature and well-defined roles of transcription and associated downstream actions. Development of biomarkers that could serve to identify "insults" and potentially differentiate disease etiology would be of great diagnostic value. To this end, a modest number of peripheral blood leukocyte gene transcripts were selected for application to a domestic killer whale population with a focus on broad representation of inducible immunologically relevant genes. Normalized leukocyte transcript values, longitudinally acquired from 232 blood samples derived from 26 clinically healthy whales, were not visibly influenced temporally nor by sex or the specific Park in which they resided. Stability in leukocyte transcript number during periods of health enhances their potential use in diagnostics through identification of outliers. Transcript levels of two cytokine genes, IL-4 and IL-17, were highly variable within the group as compared to the other transcripts. IL-4 transcripts were typically absent. Analysis of transcript levels on the other genes of interest, on an individual animal basis, identified more outliers than were visible when analyzed in the context of the entire population. The majority of outliers (9 samples) were low, though elevated transcripts were identified for IL-17 from 2 animals and one each for Cox-2 and IL-10. The low number of outliers was not unexpected as sample selection was intentionally directed towards animals that were clinically healthy at the time of collection. Outliers may reflect animals experiencing subclinical disease that is transient and self-limiting. The immunologic

  8. Longitudinal evaluation of leukocyte transcripts in killer whales (Orcinus Orca)

    Science.gov (United States)

    Sitt, Tatjana; Bowen, Lizabeth; Lee, Chia-Shan; Blanchard, Myra; McBain, James; Dold, Christopher; Stott, Jeffrey L.

    2016-01-01

    Early identification of illness and/or presence of environmental and/or social stressors in free-ranging and domestic cetaceans is a priority for marine mammal health care professionals. Incorporation of leukocyte gene transcript analysis into the diagnostic tool kit has the potential to augment classical diagnostics based upon ease of sample storage and shipment, inducible nature and well-defined roles of transcription and associated downstream actions. Development of biomarkers that could serve to identify “insults” and potentially differentiate disease etiology would be of great diagnostic value. To this end, a modest number of peripheral blood leukocyte gene transcripts were selected for application to a domestic killer whale population with a focus on broad representation of inducible immunologically relevant genes. Normalized leukocyte transcript values, longitudinally acquired from 232 blood samples derived from 26 clinically healthy whales, were not visibly influenced temporally nor by sex or the specific Park in which they resided. Stability in leukocyte transcript number during periods of health enhances their potential use in diagnostics through identification of outliers. Transcript levels of two cytokine genes, IL-4 and IL-17, were highly variable within the group as compared to the other transcripts. IL-4 transcripts were typically absent. Analysis of transcript levels on the other genes of interest, on an individual animal basis, identified more outliers than were visible when analyzed in the context of the entire population. The majority of outliers (9 samples) were low, though elevated transcripts were identified for IL-17 from 2 animals and one each for Cox-2 and IL-10. The low number of outliers was not unexpected as sample selection was intentionally directed towards animals that were clinically healthy at the time of collection. Outliers may reflect animals experiencing subclinical disease that is transient and self-limiting. The

  9. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    Science.gov (United States)

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  10. Early clerkships

    NARCIS (Netherlands)

    Kamalski, Digna M. A.; Ter Braak, Edith W. M. T.; Ten Cate, Olle Th. J.; Borleffs, Jan C. C.

    2007-01-01

    Background: Early clinical experience is being introduced in innovative, vertically integrated undergraduate medical curricula. While in many cases, this early clinical experience is limited to the presence of patients during lectures, in Utrecht students gain 'hands on' experience of daily clinical

  11. Structural insights into transcription complexes.

    Science.gov (United States)

    Berger, Imre; Blanco, Alexandre G; Boelens, Rolf; Cavarelli, Jean; Coll, Miquel; Folkers, Gert E; Nie, Yan; Pogenberg, Vivian; Schultz, Patrick; Wilmanns, Matthias; Moras, Dino; Poterszman, Arnaud

    2011-08-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of structural proteomics on our understanding of the molecular basis of gene expression. While most atomic structures were obtained by X-ray crystallography, the impact of solution NMR and cryo-electron microscopy is far from being negligible. Here, we summarize some highlights and illustrate the importance of specific technologies on the structural biology of protein-protein or protein/DNA transcription complexes: structure/function analysis of components the eukaryotic basal and activated transcription machinery with focus on the TFIID and TFIIH multi-subunit complexes as well as transcription regulators such as members of the nuclear hormone receptor families. We also discuss molecular aspects of promoter recognition and epigenetic control of gene expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Structural insights into transcription complexes

    NARCIS (Netherlands)

    Berger, I.; Blanco, A.G.; Boelens, R.; Cavarelli, J.; Coll, M.; Folkers, G.E.; Nie, Y.; Pogenberg, V.; Schultz, P.; Wilmanns, M.; Moras, D.; Poterszman, A.

    2011-01-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of

  13. Transcription factor-based biosensor

    Science.gov (United States)

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  14. Regulating transcription traffic around DSBs.

    Science.gov (United States)

    Plosky, Brian S

    2015-05-07

    If a double-strand break (DSB) occurs and either a DNA polymerase or RNA polymerase is coming along, how do we save the train? In this issue of Molecular Cell, Ui et al. (2015) describe a connection between an elongation factor and a repressive complex to prevent transcription in proximity to a DSB.

  15. HDG1 transcription factor targets

    NARCIS (Netherlands)

    Horstman, A.; Boutilier, K.A.; Sanchez Perez, Gabino

    2015-01-01

    The AIL transcription factor BABY BOOM (BBM) is required together with the related PLETHORA proteins for embryo and root meristem development and its expression is sufficient to confer pluripotency and totipotency to somatic tissues. We show that BBM and other AIL proteins interact with multiple

  16. Transcription factors in alkaloid biosynthesis.

    Science.gov (United States)

    Yamada, Yasuyuki; Sato, Fumihiko

    2013-01-01

    Higher plants produce a large variety of low-molecular weight secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used pharmaceutically. Whereas alkaloid chemistry has been intensively investigated, alkaloid biosynthesis, including the relevant biosynthetic enzymes, genes and their regulation, and especially transcription factors, is largely unknown, as only a limited number of plant species produce certain types of alkaloids and they are difficult to study. Recently, however, several groups have succeeded in isolating the transcription factors that are involved in the biosynthesis of several types of alkaloids, including bHLH, ERF, and WRKY. Most of them show Jasmonate (JA) responsiveness, which suggests that the JA signaling cascade plays an important role in alkaloid biosynthesis. Here, we summarize the types and functions of transcription factors that have been isolated in alkaloid biosynthesis, and characterize their similarities and differences compared to those in other secondary metabolite pathways, such as phenylpropanoid and terpenoid biosyntheses. The evolution of this biosynthetic pathway and regulatory network, as well as the application of these transcription factors to metabolic engineering, is discussed.

  17. Transcriptional networks in plant immunity.

    Science.gov (United States)

    Tsuda, Kenichi; Somssich, Imre E

    2015-05-01

    Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity.

  18. Differentiation of intestinal absorptive cells derived from mouse embryonic bodies can be promoted by inducing the differentiation of definitive endoderm in vivo%小鼠拟胚体中定型内胚层的比例对小肠吸收细胞分化的促进作用

    Institute of Scientific and Technical Information of China (English)

    邓娜; 于涛; 石柳; 兰绍阳; 周慧敏; 陈浩; 陈其奎

    2011-01-01

    AIM: To investigate the effect of inducing the differentiation of definitive endoderm derived from mouse embryonic bodies (Ebs) cultured bythe hanging drop method in promoting the differentiation of intestinal absorptive cells in vivo.METHODS: The differentiation of definitive endoderm during Ebs formation derived from mouse ES-E14TG2a embryonic stem cells (ESC) and the role of Activin A in promoting its differentiation were monitored by detecting its markers by RT-PCR and fluorescence-activated cell sorting. Subsequently, the Ebs with high proportion of definitive endoderm were hypodermi-cally engrafted into the back of NOD/SCID mice to form grafts. The markers for small intestinal absorptive cells, including SI, LPH, and Fabp2, were detected in these grafts by quantitative RT-PCR and immunohistochemistry.RESULTS: The marker genes for definitive endoderm were more highly expressed in the 5-day Ebs than in other stages of Ebs (Gsc: 0.9809 ± 0.1001 νs 0.5435 ± 0.0821,0.5525 ± 0.0786,0.2234 ± 0.0425; Tm4sf2: 0.9231 ± 0.1121 vs 0.0017 ± 0.0007, 0.0176 ± 0.0058, 0.6542 ± 0.0742; Gpcl: 0.8639 ± 0.1098 vs 0.5882 ± 0.1027,0.7112 ± 0.0956, 0.4239 ± 0.0874, all P < 0.05). The percentage of definitive endoderm cells in the 5-day Ebs induced with 50 μg/L Activin A (SF-A group) was significantly higher than that in controls (all P < 0.05). SI and LPH mRNA expression in the grafts from the SF-A group was significantly higher than that in control groups (all P < 0.05). Immu-nohistochemical analysis revealed that Fabp2 was expressed in some immature cells without specific structure or adenoid structures in the grafts from the SF-A group.CONCLUSION: The differentiation of definitive endoderm derived from mouse ESC could be induced with 50 ug/L Activin A in Ebs cultured by the hanging drop method. Increasing the proportion of definitive endoderm in Ebs promotes the differentiation of intestinal absorptive cells in vivo.%目的:探讨悬浮状态下小鼠拟胚体中

  19. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases

    Directory of Open Access Journals (Sweden)

    Daria Lavysh

    2017-02-01

    Full Text Available Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5′ ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases.

  20. The H4 subunit of vaccinia virus RNA polymerase is not required for transcription initiation at a viral late promoter.

    OpenAIRE

    Wright, C F; Coroneos, A M

    1995-01-01

    Chromatography of RNA polymerase purified from vaccinia virions and from vaccinia virus-infected HeLa cells resulted in the separation of populations active for early and late transcription. An RNA polymerase population immunodepleted for the vaccinia virus H4 gene peptide could support late transcription.

  1. Wilms' tumor suppressor gene (WT1) suppresses apoptosis by transcriptionally downregulating BAX expression in immature rat granulosa cells

    National Research Council Canada - National Science Library

    Park, Minji; Choi, Yuri; Choi, Hyeonhae; Roh, Jaesook

    2014-01-01

    The important role of WT1 in early folliculogenesis was evident from its restricted expression pattern in immature follicles and from its involvement in transcriptional control of inhibin-α and FSH receptor...

  2. Stepwise mechanism for transcription fidelity

    Directory of Open Access Journals (Sweden)

    Zorov Savva

    2010-05-01

    Full Text Available Abstract Background Transcription is the first step of gene expression and is characterized by a high fidelity of RNA synthesis. During transcription, the RNA polymerase active centre discriminates against not just non-complementary ribo NTP substrates but also against complementary 2'- and 3'-deoxy NTPs. A flexible domain of the RNA polymerase active centre, the Trigger Loop, was shown to play an important role in this process, but the mechanisms of this participation remained elusive. Results Here we show that transcription fidelity is achieved through a multi-step process. The initial binding in the active centre is the major discrimination step for some non-complementary substrates, although for the rest of misincorporation events discrimination at this step is very poor. During the second step, non-complementary and 2'-deoxy NTPs are discriminated against based on differences in reaction transition state stabilization and partly in general base catalysis, for correct versus non-correct substrates. This step is determined by two residues of the Trigger Loop that participate in catalysis. In the following step, non-complementary and 2'-deoxy NTPs are actively removed from the active centre through a rearrangement of the Trigger Loop. The only step of discrimination against 3'-deoxy substrates, distinct from the ones above, is based on failure to orient the Trigger Loop catalytic residues in the absence of 3'OH. Conclusions We demonstrate that fidelity of transcription by multi-subunit RNA polymerases is achieved through a stepwise process. We show that individual steps contribute differently to discrimination against various erroneous substrates. We define the mechanisms and contributions of each of these steps to the overall fidelity of transcription.

  3. Transcriptional regulation of cardiac genes balance pro- and anti-hypertrophic mechanisms in hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Nina Gennebäck

    2012-06-01

    Full Text Available Hypertrophic cardiomyopathy (HCM is characterized by unexplained left ventricular hypertrophy. HCM is often hereditary, but our knowledge of the mechanisms leading from mutation to phenotype is incomplete. The transcriptional expression patterns in the myocar - dium of HCM patients may contribute to understanding the mechanisms that drive and stabilize the hypertrophy. Cardiac myectomies/biopsies from 8 patients with hypertrophic obstructive cardiomyopathy (HOCM and 5 controls were studied with whole genome Illumina microarray gene expression (detecting 18 189 mRNA. When comparing HOCM myocardium to controls, there was significant transcriptional down-regulation of the MYH6, EGR1, APOB and FOS genes, and significant transcriptional up-regulation of the ACE2, JAK2, NPPA (ANP, APOA1 and HDAC5 genes. The transcriptional regulation revealed both pro- and anti-hypertrophic mechanisms. The pro-hypertrophic response was explained by the transcriptional down-regulation of MYH6, indicating that the switch to the fetal gene program is maintained, and the transcriptional up-regulation of JAK2 in the JAK-STAT pathway. The anti-hypertrophic response was seen as a transcriptional down-regulation of the immediate early genes (IEGs, FOS and EGR1, and a transcriptional up-regulation of ACE2 and HDAC5. This can be interpreted as a transcriptional endogenous protection system in the heart of the HOCM patients, neither growing nor suppressing the already hypertrophic myocardium.

  4. Investigating transcription reinitiation through in vitro approaches.

    Science.gov (United States)

    Dieci, Giorgio; Fermi, Beatrice; Bosio, Maria Cristina

    2014-01-01

    By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies.

  5. Early literacy

    DEFF Research Database (Denmark)

    Jensen, Anders Skriver

    2012-01-01

    This paper discusses findings from the Danish contribution to the EASE project, a European research project running from 2008 to 2010 on early literacy in relation to the transition from childcare to school. It explores a holistic, inclusive approach to early literacy that resists a narrow...... and schools. The paper also draws on Gee’s (2001, 2003, 2004, 2008) sociocultural approach to literacy, and Honneth’s (2003, 2006) concept of recognition. Emphasizing participation and recognition as key elements, it claims that stakeholders in early liter- acy must pay attention to how diverse early literacy...... opportunities empower children, especially when these opportunities are employed in a project-based learning environ- ment in which each child is able to contribute to the shared literacy events....

  6. Sequential antagonism of early and late Wnt-signaling by zebrafish colgate promotes dorsal and anterior fates.

    Science.gov (United States)

    Nambiar, Roopa M; Henion, Paul D

    2004-03-01

    The establishment of the vertebrate body plan involves patterning of the ectoderm, mesoderm, and endoderm along the dorsoventral and antero-posterior axes. Interactions among numerous signaling molecules from several multigene families, including Wnts, have been implicated in regulating these processes. Here we provide evidence that the zebrafish colgate(b382) (col) mutation results in increased Wnt signaling that leads to defects in dorsal and anterior development. col mutants display early defects in dorsoventral patterning manifested by a decrease in the expression of dorsal shield-specific markers and ectopic expression of ventrolaterally expressed genes during gastrulation. In addition to these early patterning defects, col mutants display a striking regional posteriorization within the neuroectoderm, resulting in a reduction in anterior fates and an expansion of posterior fates within the forebrain and midbrain-hindbrain regions. We are able to correlate these phenotypes to the overactivation of Wnt signaling in col mutants. The early dorsal and anterior patterning phenotypes of the col mutant embryos are selectively rescued by inactivation of Wnt8 function by morpholino translational interference. In contrast, the regionalized neuroectoderm posterioriorization phenotype is selectively rescued by morpholino-mediated inactivation of Wnt8b. These results suggest that col-mediated antagonism of early and late Wnt-signaling activity during gastrulation is normally required sequentially for both early dorsoventral patterning and the specification and patterning of regional fates within the anterior neuroectoderm.

  7. Transcription Against an Applied Force

    Science.gov (United States)

    Yin, Hong; Wang, Michelle D.; Svoboda, Karel; Landick, Robert; Block, Steven M.; Gelles, Jeff

    1995-12-01

    The force produced by a single molecule of Escherichia coli RNA polymerase during transcription was measured optically. Polymerase immobilized on a surface was used to transcribe a DNA template attached to a polystyrene bead 0.5 micrometer in diameter. The bead position was measured by interferometry while a force opposing translocation of the polymerase along the DNA was applied with an optical trap. At saturating nucleoside triphosphate concentrations, polymerase molecules stalled reversibly at a mean applied force estimated to be 14 piconewtons. This force is substantially larger than those measured for the cytoskeletal motors kinesin and myosin and exceeds mechanical loads that are estimated to oppose transcriptional elongation in vivo. The data are consistent with efficient conversion of the free energy liberated by RNA synthesis into mechanical work.

  8. Rethinking transcription coupled DNA repair.

    Science.gov (United States)

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Pleiohomeotic interacts with the core transcription elongation factor Spt5 to regulate gene expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Robert Harvey

    Full Text Available The early elongation checkpoint regulated by Positive Transcription Elongation Factor b (P-TEFb is a critical control point for the expression of many genes. Spt5 interacts directly with RNA polymerase II and has an essential role in establishing this checkpoint, and also for further transcript elongation. Here we demonstrate that Drosophila Spt5 interacts both physically and genetically with the Polycomb Group (PcG protein Pleiohomeotic (Pho, and the majority of Pho binding sites overlap with Spt5 binding sites across the genome in S2 cells. Our results indicate that Pho can interact with Spt5 to regulate transcription elongation in a gene specific manner.

  10. Transcriptional Responses of Glutathione Transferase Genes in Ruditapes philippinarum Exposed to Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Bruno Reis

    2015-04-01

    Full Text Available Glutathione Transferases (GSTs are phase II detoxification enzymes known to be involved in the molecular response against microcystins (MCs induced toxicity. However, the individual role of the several GST isoforms in the MC detoxification process is still unknown. In this study, the time-dependent changes on gene expression of several GST isoforms (pi, mu, sigma 1, sigma 2 in parallel with enzymatic activity of total GST were investigated in gills and hepatopancreas of the bivalve Ruditapes philippinarum exposed to pure MC-LR (10 and 100 µg/L. No significant changes in GST enzyme activities were found on both organs. In contrast, MC-LR affected the transcriptional activities of these detoxification enzymes both in gills and hepatopancreas. GST transcriptional changes in gills promoted by MC-LR were characterized by an early (12 h induction of mu and sigma 1 transcripts. On the other hand, the GST transcriptional changes in hepatopancreas were characterized by a later induction (48 h of mu transcript, but also by an early inhibition (6 h of the four transcripts. The different transcription patterns obtained for the tested GST isoforms in this study highlight the potential divergent physiological roles played by these isoenzymes during the detoxification of MC-LR.

  11. Sry is a transcriptional activator.

    Science.gov (United States)

    Dubin, R A; Ostrer, H

    1994-09-01

    The SRY gene functions as a genetic switch in gonadal ridge initiating testis determination. The mouse Sry and human SRY open reading frames (ORFs) share a conserved DNA-binding domain (the HMG-box) yet exhibit no additional homology outside this region. As judged by the accumulation of lacZ-SRY hybrid proteins in the nucleus, both the human and mouse SRY ORFs contain a nuclear localization signal. The mouse Sry HMG-box domain selectively binds the sequence NACAAT in vitro when challenged with a random pool of oligonucleotides and binds AACAAT with the highest affinity. When put under the control of a heterologous promotor, the mouse Sry gene activated transcription of a reporter gene containing multiple copies of the AACAAT binding site. Activation was likewise observed for a GAL4-responsive reporter gene, when the mouse Sry gene was linked to the DNA-binding domain of GAL4. Using this system, the activation function was mapped to a glutamine/histidine-rich domain. In addition, LexA-mouse Sry fusion genes activated a LexA-responsive reporter gene in yeast. In contrast, a GAL4-human SRY fusion gene did not cause transcriptional activation. These studies suggest that both the human and the mouse SRY ORFs encode nuclear, DNA-binding proteins and that the mouse Sry ORF can function as a transcriptional activator with separable DNA-binding and activator domains.

  12. Functionality of intergenic transcription: an evolutionary comparison.

    Directory of Open Access Journals (Sweden)

    Philipp Khaitovich

    2006-10-01

    Full Text Available Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts.

  13. Functionality of Intergenic Transcription: An Evolutionary Comparison

    Science.gov (United States)

    Visagie, Johann; Giger, Thomas; Joerchel, Sabrina; Petzold, Ekkehard; Green, Richard E; Lachmann, Michael; Pääbo, Svante

    2006-01-01

    Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts. PMID:17040132

  14. Mutual interdependence of splicing and transcription elongation.

    Science.gov (United States)

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  15. Endothelial cell promotion of early liver and pancreas development.

    Science.gov (United States)

    Freedman, Deborah A; Kashima, Yasushige; Zaret, Kenneth S

    2007-01-01

    Different steps of embryonic pancreas and liver development require inductive signals from endothelial cells. During liver development, interactions between newly specified hepatic endoderm cells and nascent endothelial cells are crucial for the endoderm's subsequent growth and morphogenesis into a liver bud. Reconstitution of endothelial cell stimulation of hepatic cell growth with embryonic tissue explants demonstrated that endothelial signalling occurs independent of the blood supply. During pancreas development, midgut endoderm interactions with aortic endothelial cells induce Ptf1a, a crucial pancreatic determinant. Endothelial cells also have a later effect on pancreas development, by promoting survival of the dorsal mesenchyme, which in turn produces factors supporting pancreatic endoderm. A major goal of our laboratory is to determine the endothelial-derived molecules involved in these inductive events. Our data show that cultured endothelial cells induce Ptf1a in dorsal endoderm explants lacking an endogenous vasculature. We are purifying endothelial cell line product(s) responsible for this effect. We are also identifying endothelial-responsive regulatory elements in genes such as Ptf1a by genetic mapping and chromatin-based assays. These latter approaches will allow us to track endothelial-responsive signal pathways from DNA targets within progenitor cells. The diversity of organogenic steps dependent upon endothelial cell signalling suggests that cross-regulation of tissue development with its vasculature is a general phenomenon.

  16. The great repression: chromatin and cryptic transcription.

    Science.gov (United States)

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  17. TAF7: traffic controller in transcription initiation.

    Science.gov (United States)

    Gegonne, Anne; Devaiah, Ballachanda N; Singer, Dinah S

    2013-01-01

    TAF7, a component of the TFIID complex, controls the first steps of transcription. It interacts with and regulates the enzymatic activities of transcription factors that regulate RNA polymerase II progression. Its diverse functions in transcription initiation are consistent with its essential role in cell proliferation.

  18. Interplay between DNA supercoiling and transcription elongation.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  19. A unified model for yeast transcript definition.

    Science.gov (United States)

    de Boer, Carl G; van Bakel, Harm; Tsui, Kyle; Li, Joyce; Morris, Quaid D; Nislow, Corey; Greenblatt, Jack F; Hughes, Timothy R

    2014-01-01

    Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution.

  20. 18 CFR 1b.12 - Transcripts.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  1. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2

    NARCIS (Netherlands)

    Simmini, Salvatore; Bialecka, Monika; Huch, Meritxell; Kester, Lennart; van de Wetering, Marc; Sato, Toshiro; Beck, Felix; van Oudenaarden, Alexander; Clevers, Hans; Deschamps, Jacqueline

    2014-01-01

    The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene

  2. Wound-regulated accumulation of specific transcripts in tomato fruit: interactions with fruit development, ethylene and light.

    Science.gov (United States)

    Parsons, B L; Mattoo, A K

    1991-09-01

    Regulation of three cDNA clones (pT52, pT53, and pT58) was analyzed in terms of wounding alone and wounding in conjunction with developmental and environmental cues (ripening, ethylene, and light) in tomato fruit tissue. The pT52-specific transcript level is induced by wounding in early-red and red stage fruit and by ethylene. The pT58-specific transcript level is also induced by wounding and ethylene in early-red stage fruit but is not induced by wounding in red fruit. The pT53-specific transcript level is repressed by wounding in early-red and red stage fruit. Like the pT52- and pT58-specific transcripts, the pT53-specific transcript is induced by ethylene. Furthermore, the level of the pT52-specific transcript is regulated by light. Analysis of unwounded tissue showed that the abundance of each cDNA-specific transcript changes during fruit ripening and that each of the transcripts is present in other plant organs as well. This analysis provides information about the interactions between developmental and environmental factors affecting these genes.

  3. Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots.

    Science.gov (United States)

    D'haeseleer, Katrien; Den Herder, Griet; Laffont, Carole; Plet, Julie; Mortier, Virginie; Lelandais-Brière, Christine; De Bodt, Stefanie; De Keyser, Annick; Crespi, Martin; Holsters, Marcelle; Frugier, Florian; Goormachtig, Sofie

    2011-08-01

    • Legume roots develop two types of lateral organs, lateral roots and nodules. Nodules develop as a result of a symbiotic interaction with rhizobia and provide a niche for the bacteria to fix atmospheric nitrogen for the plant. • The Arabidopsis NAC1 transcription factor is involved in lateral root formation, and is regulated post-transcriptionally by miRNA164 and by SINAT5-dependent ubiquitination. We analyzed in Medicago truncatula the role of the closest NAC1 homolog in lateral root formation and in nodulation. • MtNAC1 shows a different expression pattern in response to auxin than its Arabidopsis homolog and no changes in lateral root number or nodulation were observed in plants affected in MtNAC1 expression. In addition, no interaction was found with SINA E3 ligases, suggesting that post-translational regulation of MtNAC1 does not occur in M. truncatula. Similar to what was found in Arabidopsis, a conserved miR164 target site was retrieved in MtNAC1, which reduced protein accumulation of a GFP-miR164 sensor. Furthermore, miR164 and MtNAC1 show an overlapping expression pattern in symbiotic nodules, and overexpression of this miRNA led to a reduction in nodule number. • This work suggests that regulatory pathways controlling a conserved transcription factor are complex and divergent between M. truncatula and Arabidopsis.

  4. Requirements for E1A dependent transcription in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mymryk Joe S

    2009-04-01

    Full Text Available Abstract Background The human adenovirus type 5 early region 1A (E1A gene encodes proteins that are potent regulators of transcription. E1A does not bind DNA directly, but is recruited to target promoters by the interaction with sequence specific DNA binding proteins. In mammalian systems, E1A has been shown to contain two regions that can independently induce transcription when fused to a heterologous DNA binding domain. When expressed in Saccharomyces cerevisiae, each of these regions of E1A also acts as a strong transcriptional activator. This allows yeast to be used as a model system to study mechanisms by which E1A stimulates transcription. Results Using 81 mutant yeast strains, we have evaluated the effect of deleting components of the ADA, COMPASS, CSR, INO80, ISW1, NuA3, NuA4, Mediator, PAF, RSC, SAGA, SAS, SLIK, SWI/SNF and SWR1 transcriptional regulatory complexes on E1A dependent transcription. In addition, we examined the role of histone H2B ubiquitylation by Rad6/Bre1 on transcriptional activation. Conclusion Our analysis indicates that the two activation domains of E1A function via distinct mechanisms, identify new factors regulating E1A dependent transcription and suggest that yeast can serve as a valid model system for at least some aspects of E1A function.

  5. Tissue-specific 5' heterogeneity of PPARα transcripts and their differential regulation by leptin.

    Science.gov (United States)

    Garratt, Emma S; Vickers, Mark H; Gluckman, Peter D; Hanson, Mark A; Burdge, Graham C; Lillycrop, Karen A

    2013-01-01

    The genes encoding nuclear receptors comprise multiple 5'untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR) α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1) and liver (P2) transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3-13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors.

  6. Transcriptional Regulation of Heart Development in Zebrafish

    Science.gov (United States)

    Lu, Fei; Langenbacher, Adam D.; Chen, Jau-Nian

    2016-01-01

    Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis. PMID:27148546

  7. Transcription factories: genetic programming in three dimensions.

    Science.gov (United States)

    Edelman, Lucas Brandon; Fraser, Peter

    2012-04-01

    Among the most intensively studied systems in molecular biology is the eukaryotic transcriptional apparatus, which expresses genes in a regulated manner across hundreds of different cell types. Several studies over the past few years have added weight to the concept that transcription takes place within discrete 'transcription factories' assembled inside the cell nucleus. These studies apply innovative technical approaches to gain insights into the molecular constituents, dynamical behaviour and organizational regulators of transcription factories, providing exciting insights into the spatial dimension of transcriptional control.

  8. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription.

    Science.gov (United States)

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.

  9. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    MYBs to activate transcription of GLS biosynthetic genes. A lot is known about transcriptional regulation of these nine GLS regulators. This thesis aimed at identifying regulatory mechanisms at the protein level, allowing rapid and specific regulation of transcription factors using GLS as a model....... The general introduction and the first chapter provide background on protein level regulation and underline the importance of these mechanisms in regulating transcription factors. The remaining chapters report the identification of multiple new regulators of MYB transcription factors, potentially involved...... in their regulation at multiple steps of their activation. Plant signaling in connection with transcription factor regulation is an exciting field, allowing research on multiple regulatory mechanisms. This thesis shed light on the importance of integrating all steps of transcription factor activation in a regulatory...

  10. Murine inner cell mass-derived lineages depend on Sall4 function

    Science.gov (United States)

    Elling, Ulrich; Klasen, Christian; Eisenberger, Tobias; Anlag, Katrin; Treier, Mathias

    2006-01-01

    Sall4 is a mammalian Spalt transcription factor expressed by cells of the early embryo and germ cells, an expression pattern similar to that of both Oct4 and Sox2, which play essential roles during early murine development. We show that the activity of Sall4 is cell-autonomously required for the development of the epiblast and primitive endoderm from the inner cell mass. Furthermore, no embryonic or extraembryonic endoderm stem cell lines could be established from Sall4-deficient blastocysts. In contrast, neither the development of the trophoblast lineage nor the ability to generate trophoblast cell lines from murine blastocysts was impaired in the absence of Sall4. These data establish Sall4 as an essential transcription factor required for the early development of inner cell mass-derived cell lineages. PMID:17060609

  11. Viral retasking of hBre1/RNF20 to recruit hPaf1 for transcriptional activation.

    Directory of Open Access Journals (Sweden)

    Gregory J Fonseca

    Full Text Available Upon infection, human adenovirus (HAdV must activate the expression of its early genes to reprogram the cellular environment to support virus replication. This activation is orchestrated in large part by the first HAdV gene expressed during infection, early region 1A (E1A. E1A binds and appropriates components of the cellular transcriptional machinery to modulate cellular gene transcription and activate viral early genes transcription. Previously, we identified hBre1/RNF20 as a target for E1A. The interaction between E1A and hBre1 antagonizes the innate antiviral response by blocking H2B monoubiquitination, a chromatin modification necessary for the interferon (IFN response. Here, we describe a second distinct role for the interaction of E1A with hBre1 in transcriptional activation of HAdV early genes. Furthermore, we show that E1A changes the function of hBre1 from a ubiquitin ligase involved in substrate selection to a scaffold which recruits hPaf1 as a means to stimulate transcription and transcription-coupled histone modifications. By using hBre1 to recruit hPaf1, E1A is able to optimally activate viral early transcription and begin the cycle of viral replication. The ability of E1A to target hBre1 to simultaneously repress cellular IFN dependent transcription while activating viral transcription, represents an elegant example of the incredible economy of action accomplished by a viral regulatory protein through a single protein interaction.