WorldWideScience

Sample records for early embryonic functions

  1. Retinoic acid synthesis and functions in early embryonic development

    Directory of Open Access Journals (Sweden)

    Kam Richard Kin Ting

    2012-03-01

    Full Text Available Abstract Retinoic acid (RA is a morphogen derived from retinol (vitamin A that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR and retinoic acid X receptor (RXR which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.

  2. Gene function in early mouse embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Campbell Pearl A

    2007-03-01

    Full Text Available Abstract Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5 undergoing undirected differentiation into embryoid bodies (EBs over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1, our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2 that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of m

  3. Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript.

    Directory of Open Access Journals (Sweden)

    Maurice A Canham

    2010-05-01

    Full Text Available ES cells are defined as self-renewing, pluripotent cell lines derived from early embryos. Cultures of ES cells are also characterized by the expression of certain markers thought to represent the pluripotent state. However, despite the widespread expression of key markers such as Oct4 and the appearance of a characteristic undifferentiated morphology, functional ES cells may represent only a small fraction of the cultures grown under self-renewing conditions. Thus phenotypically "undifferentiated" cells may consist of a heterogeneous population of functionally distinct cell types. Here we use a transgenic allele designed to detect low level transcription in the primitive endoderm lineage as a tool to identify an immediate early endoderm-like ES cell state. This reporter employs a tandem array of internal ribosomal entry sites to drive translation of an enhanced Yellow Fluorescent Protein (Venus from the transcript that normally encodes for the early endodermal marker Hex. Expression of this Venus transgene reports on single cells with low Hex transcript levels and reveals the existence of distinct populations of Oct4 positive undifferentiated ES cells. One of these cells types, characterized by both the expression of the Venus transgene and the ES cells marker SSEA-1 (V(+S(+, appears to represent an early step in primitive endoderm specification. We show that the fraction of cells present within this state is influenced by factors that both promote and suppress primitive endoderm differentiation, but conditions that support ES cell self-renewal prevent their progression into differentiation and support an equilibrium between this state and at least one other that resembles the Nanog positive inner cell mass of the mammalian blastocysts. Interestingly, while these subpopulations are equivalently and clonally interconvertible under self-renewing conditions, when induced to differentiate both in vivo and in vitro they exhibit different behaviours

  4. Functional Heterogeneity of Embryonic Stem Cells Revealed through Translational Amplification of an Early Endodermal Transcript

    Science.gov (United States)

    Canham, Maurice A.; Sharov, Alexei A.; Ko, Minoru S. H.; Brickman, Joshua M.

    2010-01-01

    ES cells are defined as self-renewing, pluripotent cell lines derived from early embryos. Cultures of ES cells are also characterized by the expression of certain markers thought to represent the pluripotent state. However, despite the widespread expression of key markers such as Oct4 and the appearance of a characteristic undifferentiated morphology, functional ES cells may represent only a small fraction of the cultures grown under self-renewing conditions. Thus phenotypically “undifferentiated” cells may consist of a heterogeneous population of functionally distinct cell types. Here we use a transgenic allele designed to detect low level transcription in the primitive endoderm lineage as a tool to identify an immediate early endoderm-like ES cell state. This reporter employs a tandem array of internal ribosomal entry sites to drive translation of an enhanced Yellow Fluorescent Protein (Venus) from the transcript that normally encodes for the early endodermal marker Hex. Expression of this Venus transgene reports on single cells with low Hex transcript levels and reveals the existence of distinct populations of Oct4 positive undifferentiated ES cells. One of these cells types, characterized by both the expression of the Venus transgene and the ES cells marker SSEA-1 (V+S+), appears to represent an early step in primitive endoderm specification. We show that the fraction of cells present within this state is influenced by factors that both promote and suppress primitive endoderm differentiation, but conditions that support ES cell self-renewal prevent their progression into differentiation and support an equilibrium between this state and at least one other that resembles the Nanog positive inner cell mass of the mammalian blastocysts. Interestingly, while these subpopulations are equivalently and clonally interconvertible under self-renewing conditions, when induced to differentiate both in vivo and in vitro they exhibit different behaviours. Most strikingly

  5. BLM has early and late functions in homologous recombination repair in mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Chu, W K; Hanada, K; Kanaar, R;

    2010-01-01

    function of BLM remains unclear. Multiple roles have been proposed for BLM in the homologous recombination (HR) repair pathway, including 'early' functions, such as the stimulation of resection of DNA double-strand break ends or displacement of the invading strand of DNA displacement loops, and 'late...... in Rad54(-/-) cells rescued their mitomycin C (MMC) sensitivity, and decreased both the level of DNA damage and cell cycle perturbation induced by MMC, suggesting an early role for Blm. Our data are consistent with Blm having at least two roles in HR repair in mammalian cells....

  6. Hyaluronate degradation affects ventricular function of the early postlooped embryonic rat heart in situ.

    Science.gov (United States)

    Baldwin, H S; Lloyd, T R; Solursh, M

    1994-02-01

    Hyaluronic acid is the major glycosaminoglycan of the early cardiac extracellular matrix or "cardiac jelly," yet little is known about its role in the ontogeny of early ventricular performance. To investigate the in situ effect of hyaluronate degradation on ventricular function, whole rat embryos were cultured in rat serum alone (control embryos) or rat serum plus 20 TRU/mL of Streptomyces hyaluronidase (treatment embryos) from gestational day 9.5 (before formation of the heart tube) through initial looping of the heart. Cardiac function was measured before looping (24 hours in culture) and immediately after looping (36 hours in culture) by video motion analysis of the external wall motion of the bulbus cordis and primitive ventricle. Degradation of hyaluronic acid in the treated embryos was confirmed by Alcian blue staining at pH 2.5. Significant increases in heart rate, circumferential shortening fraction, maximum velocity of circumferential contraction, and maximum velocity of circumferential relaxation were observed with looping in both control and treatment embryos. Although there was minimal difference in ventricular performance between control and treatment embryos before looping, there was a significant increase in all parameters of ventricular performance in the hyaluronidase-treated embryos immediately after looping of the heart. Endocardial cushions were absent in hyaluronidase-treated embryos, and an additional group of embryos cultured in the presence of Streptomyces hyaluronidase for 48 to 72 hours failed to develop endocardial cushions. These experiments are the first to (1) document a quantifiable increase in ventricular performance during early cardiac looping and (2) demonstrate that hyaluronate degradation results in abnormal endocardial cushion formation and altered ventricular performance of the postlooped heart.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Reproductive effects of two neonicotinoid insecticides on mouse sperm function and early embryonic development in vitro.

    Directory of Open Access Journals (Sweden)

    Yi-Hua Gu

    Full Text Available Acetamiprid (ACE and imidacloprid (IMI are two major members in the family of neonicotinoid pesticides, which are synthesized with a higher selectivity to insects. The present study determined and compared in vitro effects of ACE, IMI and nicotine on mammalian reproduction by using an integrated testing strategy for reproductive toxicology, which covered sperm quality, sperm penetration into oocytes and preimplantation embryonic development. Direct chemical exposure (500 µM or 5 mM on spermatozoa during capacitation was performed, and in vitro fertilization (IVF process, zygotes and 2-cell embryos were respectively incubated with chemical-supplemented medium until blastocyst formation to evaluate the reproductive toxicity of these chemicals and monitor the stages mainly affected. Generally, treatment of 500 µM or 5 mM chemicals for 30 min did not change sperm motility and DNA integrity significantly but the fertilization ability in in vitro fertilization (IVF process, indicating that IVF process could detect and distinguish subtle effect of spermatozoa exposed to different chemicals. Culture experiment in the presence of chemicals in medium showed that fertilization process and zygotes are adversely affected by direct exposure of chemicals (PIMI>ACE, whereas developmental progression of 2-cell stage embryos was similar to controls (P>0.05. These findings unveiled the hazardous effects of neonicotinoid pesticides exposure on mammalian sperm fertilization ability as well as embryonic development, raising the concerns that neonicotinoid pesticides may pose reproductive risks on human reproductive health, especially in professional populations.

  8. Impact of nutritional stress on early embryonic survival

    Directory of Open Access Journals (Sweden)

    Sukanta Mondal

    2015-09-01

    Full Text Available Background: Low reproductive efficiency is the most critical problem faced by the livestock industry across the globe. Early embryonic loss is one the major cause of poor reproductive efficiency resulting in delayed pregnancy, fewer calves born, reduced milk production, slower genetic progress and substantial financial loss to the beef or dairy industry. The establishment of pregnancy results from the interaction between the embryo and the dam and is the culmination of a series of events initiated with development of the follicle and gametes. Among numerous internal and external factors nutrition has the potency to alter the micro-environment of the oocyte and the embryo, making it more hostile to optimal fertilization and pre-implantation embryonic growth. Understanding the impact of nutritional stress on oocyte function, embryo development and reciprocal signaling networks between the embryo and uterus will lead to alleviation of the problems of early embryonic mortality.

  9. Uncovering the post-embryonic functions of gametophytic- and embryonic-lethal genes.

    Science.gov (United States)

    Candela, Héctor; Pérez-Pérez, José Manuel; Micol, José Luis

    2011-06-01

    An estimated 500-1 000 Arabidopsis (Arabidopsis thaliana) genes mutate to embryonic lethality. In addition, several hundred mutations have been identified that cause gametophytic lethality. Thus, a significant fraction of the ∼25,000 protein-coding genes in Arabidopsis are indispensable to the early stages of the diploid phase or to the haploid gametophytic phase. The expression patterns of many of these genes indicate that they also act later in development but, because the mutants die at such early stages, conventional methods limit the study of their roles in adult diploid plants. Here, we describe the toolset that allows researchers to assess the post-embryonic functions of plant genes for which only gametophytic- and embryonic-lethal alleles have been isolated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest

    Directory of Open Access Journals (Sweden)

    Maria Maurer

    2015-07-01

    Full Text Available Background: Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods: This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results: Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion: Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting.

  11. Relationship between Intrauterine Bacterial Infection and Early Embryonic Developmental Arrest

    Institute of Scientific and Technical Information of China (English)

    Shao-Fei Yan; Xin-Yan Liu; Yun-Fei Cheng; Zhi-Yi Li; Jie Ou; Wei Wang; Feng-Qin Li

    2016-01-01

    Background:Early embryonic developmental arrest is the most commonly understudied adverse outcome of pregnancy.The relevance of intrauterine infection to spontaneous embryonic death is rarely studied and remains unclear.This study aimed to investigate the relationship between intrauterine bacterial infection and early embryonic developmental arrest.Methods:Embryonic chorion tissue and uterine swabs for bacterial detection were obtained from 33 patients who underwent artificial abortion (control group) and from 45 patients who displayed early embryonic developmental arrest (trial group).Results:Intrauterine bacterial infection was discovered in both groups.The infection rate was 24.44% (11/45) in the early embryonic developmental arrest group and 9.09% (3/33) in the artificial abortion group.Classification analysis revealed that the highest detection rate for Micrococcus luteus in the early embryonic developmental arrest group was 13.33% (6/45),and none was detected in the artificial abortion group.M.luteus infection was significantly different between the groups (P < 0.05 as shown by Fisher's exact test).In addition,no correlation was found between intrauterine bacterial infection and history of early embryonic developmental arrest.Conclusions:M.luteus infection is related to early embryonic developmental arrest and might be one of its causative factors.

  12. 干扰素在早期胚胎发育中的作用%Function of interferon in early embryonic development

    Institute of Scientific and Technical Information of China (English)

    刘晓光; 王莹; 贾雪梅; 凌秀凤

    2014-01-01

    Interferon ( IFN) is a cytokine playing important role in the process of immune response , including regulating resistance to viral infections , modulating normal and tumor cell survival and death , and enhancing innate and acquired immune responses .It also plays crucial role in early embryonic development and maintenance of pregnancy .This paper contributes to the insight of the present knowledge of embryonic IFN and their possible role in early pregnancy .%干扰素是在免疫应答中起着重要作用的一类细胞因子,具有强效的抗病毒、抗肿瘤活性以及免疫调节作用。干扰素在早期胚胎发育、维持妊娠中也具有重要作用,该文结合实验室的研究工作对这一领域的研究进展进行综述。

  13. Actin cytoskeleton contributes to the elastic modulus of embryonic tendon during early development.

    Science.gov (United States)

    Schiele, Nathan R; von Flotow, Friedrich; Tochka, Zachary L; Hockaday, Laura A; Marturano, Joseph E; Thibodeau, Jeffrey J; Kuo, Catherine K

    2015-06-01

    Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Regulation of DNA Replication in Early Embryonic Cleavages

    Directory of Open Access Journals (Sweden)

    Chames Kermi

    2017-01-01

    Full Text Available Early embryonic cleavages are characterized by short and highly synchronous cell cycles made of alternating S- and M-phases with virtually absent gap phases. In this contracted cell cycle, the duration of DNA synthesis can be extraordinarily short. Depending on the organism, the whole genome of an embryo is replicated at a speed that is between 20 to 60 times faster than that of a somatic cell. Because transcription in the early embryo is repressed, DNA synthesis relies on a large stockpile of maternally supplied proteins stored in the egg representing most, if not all, cellular genes. In addition, in early embryonic cell cycles, both replication and DNA damage checkpoints are inefficient. In this article, we will review current knowledge on how DNA synthesis is regulated in early embryos and discuss possible consequences of replicating chromosomes with little or no quality control.

  15. Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells.

    Science.gov (United States)

    Morange, M; Diu, A; Bensaude, O; Babinet, C

    1984-04-01

    In a previous paper, we have shown that in the absence of stress, mouse embryonal carcinoma cells, like mouse early embryo multipotent cells, synthesize high levels of 89- and 70-kilodalton heat shock proteins (HSP)(O. Bensaude and M. Morange, EMBO J. 2:173-177, 1983). We report here the pattern of proteins synthesized after a short period of hyperthermia in various mouse embryonal carcinoma cell lines and early mouse embryo cells. Among the various cell lines tested, two of them, PCC4-Aza R1 and PCC7-S-1009, showed an unusual response in that stimulation of HSP synthesis was not observed in these cells after hyperthermia. However, inducibility of 68- and 105-kilodalton HSP can be restored in PCC7-S-1009 cells after in vitro differentiation triggered by retinoic acid. Similarly, in the early mouse embryo, hyperthermia does not induce the synthesis of nonconstitutive HSP at the eight-cell stage, but induction of the 68-kilodalton HSP does occur at the blastocyst stage. Such a transition in the expression of HSP has already been described for Drosophila melanogaster and sea urchin embryos and recently for mouse embryos. It may be a general property of early embryonic cells.

  16. Live 4D optical coherence tomography for early embryonic mouse cardiac phenotyping

    Science.gov (United States)

    Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Overbeek, Paul A.; Larina, Irina V.

    2016-03-01

    Studying embryonic mouse development is important for our understanding of normal human embryogenesis and the underlying causes of congenital defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development using optical coherence tomography (OCT). We have previously developed imaging approaches that combine static embryo culture, OCT imaging and advanced image processing to visualize the whole live mouse embryos and obtain 4D (3D+time) cardiodynamic datasets with cellular resolution. Here, we present the study of using 4D OCT for dynamic imaging of early embryonic heart in live mouse embryos to assess mutant cardiac phenotypes during development, including a cardiac looping defect. Our results indicate that the live 4D OCT imaging approach is an efficient phenotyping tool that can reveal structural and functional cardiac defects at very early stages. Further studies integrating live embryonic cardiodynamic phenotyping with molecular and genetic approaches in mouse mutants will help to elucidate the underlying signaling defects.

  17. Computer simulation of early embryonic development

    NARCIS (Netherlands)

    Bezem, J.J.; Raven, Chr.P.

    1975-01-01

    A simple model, formulated in terms of elementary geometry, is presented, describing the early development of Lymnaea stagnalis. It includes the main morphogenetic processes active at this stage: cell division, cell flattening and differentiation. Though the model has been designed primarily to fit

  18. Revealing the bovine embryo transcript profiles during early in vivo embryonic development.

    Science.gov (United States)

    Vallée, Maud; Dufort, Isabelle; Desrosiers, Stéphanie; Labbe, Aurélie; Gravel, Catherine; Gilbert, Isabelle; Robert, Claude; Sirard, Marc-André

    2009-07-01

    Gene expression profiling is proving to be a powerful approach for the identification of molecular mechanisms underlying complex cellular functions such as the dynamic early embryonic development. The objective of this study was to perform a transcript abundance profiling analysis of bovine early embryonic development in vivo using a bovine developmental array. The molecular description of the first week of life at the mRNA level is particularly challenging when considering the important fluctuations in RNA content that occur between developmental stages. Accounting for the different intrinsic RNA content between developmental stages was achieved by restricting the reaction time during the global amplification steps and by using spiked controls and reference samples. Analysis based on intensity values revealed that most of the transcripts on the array were present at some point during in vivo bovine early embryonic development, while the varying number of genes detected in each developmental stage confirmed the dynamic profile of gene expression occurring during embryonic development. Pair-wise comparison of gene expression showed a marked difference between oocytes and blastocysts profiles, and principal component analysis revealed that the majority of the transcripts could be regrouped into three main clusters representing distinct RNA abundance profiles. Overall, these data provide a detailed temporal profile of the abundance of mRNAs revealing the richness of signaling processes in early mammalian development. Results presented here provide better knowledge of bovine in vivo embryonic development and contribute to the progression of our current knowledge regarding the first week of life in mammals.

  19. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    Institute of Scientific and Technical Information of China (English)

    Qian BA; Juan DUAN; Jia-qiang TIAN; Zi-liang WANG; Tao CHEN; Xiao-guang LI; Pei-zhan CHEN

    2013-01-01

    Aim:To investigate the embryotoxicity of dihydroartemisinin (DHA),the main active metabolite of artemisinin,in zebrafish,and explore the corresponding mechanisms.Methods:The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA.Developmental phenotypes of the embryos were observed.Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope.The expression of angiogenesis marker genes vegfa,flk1,and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays.Results:Exposure to DHA (1-10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage.Furthermore,exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP)zebrafish line.Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa,flk1,and flt1 in the embryos.Knockdown of the ilk1 protein partially blocked the effects of DHA on embryogenesis.Conclusion:DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development,demonstrating the potential embryotoxicity of DHA.

  20. Early embryonic development and transplantation in tree shrews

    OpenAIRE

    YAN, Lan-Zhen; Sun, Bin; LYU, Long-Bao; MA, Yu-Hua; Chen, Jia-Qi; Lin, Qing; Zheng, Ping; Zhao, Xu-dong

    2016-01-01

    As a novel experimental animal model, tree shrews have received increasing attention in recent years. Despite this, little is known in regards to the time phases of their embryonic development. In this study, surveillance systems were used to record the behavior and timing of copulations; embryos at different post-copulation stages were collected and cultured in vitro; and the developmental characteristics of both early-stage and in vitro cultured embryos were determined. A total of 163 femal...

  1. The Cross-talk Between TGF-β1 and Dlk1 Mediates Early Chondrogenesis During Embryonic Endochondral Ossification

    DEFF Research Database (Denmark)

    Taipaleenmaki, Hanna; M, Linda; Chen, Li

    2012-01-01

    Dlkl/Pref-1/FA1 (delta like-1/preadipocyte factor-1/Fetal Antigen-1) is a novel surface marker for embryonic chondroprogenitor cells undergoing lineage progression from proliferation to prehypertrophic stages. However, mechanisms mediating control of its expression during chondrogenesis are not k......Dlkl/Pref-1/FA1 (delta like-1/preadipocyte factor-1/Fetal Antigen-1) is a novel surface marker for embryonic chondroprogenitor cells undergoing lineage progression from proliferation to prehypertrophic stages. However, mechanisms mediating control of its expression during chondrogenesis...... are not known. Thus, we examined the effect of a number of signalling molecules and their inhibitors on Dlk1 expression during in vitro chondrogenic differentiation in mouse embryonic limb bud mesenchymal micromass cultures and mouse embryonic fibroblast (MEF) pellet cultures. Dlk1 was initially expressed...... its function in embryonic chondrogenesis. The cross-talk between TGF-β1 and Dlk1/FA1 was shown to promote early chondrogenesis during the embryonic endochondral ossification process....

  2. Importance of the pluripotency factor LIN28 in the mammalian nucleolus during early embryonic development.

    Science.gov (United States)

    Vogt, Edgar J; Meglicki, Maciej; Hartung, Kristina Ilka; Borsuk, Ewa; Behr, Rüdiger

    2012-12-01

    The maternal nucleolus is required for proper activation of the embryonic genome (EGA) and early embryonic development. Nucleologenesis is characterized by the transformation of a nucleolar precursor body (NPB) to a mature nucleolus during preimplantation development. However, the function of NPBs and the involved molecular factors are unknown. We uncover a novel role for the pluripotency factor LIN28, the biological significance of which was previously demonstrated in the reprogramming of human somatic cells to induced pluripotent stem (iPS) cells. Here, we show that LIN28 accumulates at the NPB and the mature nucleolus in mouse preimplantation embryos and embryonic stem cells (ESCs), where it colocalizes with the nucleolar marker B23 (nucleophosmin 1). LIN28 has nucleolar localization in non-human primate (NHP) preimplantation embryos, but is cytoplasmic in NHP ESCs. Lin28 transcripts show a striking decline before mouse EGA, whereas LIN28 protein localizes to NPBs at the time of EGA. Following knockdown with a Lin28 morpholino, the majority of embryos arrest between the 2- and 4-cell stages and never develop to morula or blastocyst. Lin28 morpholino-injected embryos arrested at the 2-cell stage were not enriched with nucleophosmin at presumptive NPB sites, indicating that functional NPBs were not assembled. Based on these results, we propose that LIN28 is an essential factor of nucleologenesis during early embryonic development.

  3. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis

    OpenAIRE

    2014-01-01

    Noxa functions in apoptosis and immune system of vertebrates, but its activities in embryo development remain unclear. In this study, we have studied the role of zebrafish Noxa (zNoxa) by using zNoxa-specifc morpholino knockdown and overexpression approaches in developing zebrafish embryos. Expression pattern analysis indicates that zNoxa transcript is of maternal origin, which displays a uniform distribution in early embryonic development until shield stage, and the zygote zNoxa transcriptio...

  4. A trade-off between embryonic development rate and immune function of avian offspring is concealed by embryonic temperature

    Science.gov (United States)

    Martin, Thomas E.; Arriero, Elena; Majewska, Ania

    2011-01-01

    Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.

  5. Early gene regulation of osteogenesis in embryonic stem cells

    KAUST Repository

    Kirkham, Glen R.

    2012-01-01

    The early gene regulatory networks (GRNs) that mediate stem cell differentiation are complex, and the underlying regulatory associations can be difficult to map accurately. In this study, the expression profiles of the genes Dlx5, Msx2 and Runx2 in mouse embryonic stem cells were monitored over a 48 hour period after exposure to the growth factors BMP2 and TGFβ1. Candidate GRNs of early osteogenesis were constructed based on published experimental findings and simulation results of Boolean and ordinary differential equation models were compared with our experimental data in order to test the validity of these models. Three gene regulatory networks were found to be consistent with the data, one of these networks exhibited sustained oscillation, a behaviour which is consistent with the general view of embryonic stem cell plasticity. The work cycle presented in this paper illustrates how mathematical modelling can be used to elucidate from gene expression profiles GRNs that are consistent with experimental data. © 2012 The Royal Society of Chemistry.

  6. Pluripotent Stem Cell Studies Elucidate the Underlying Mechanisms of Early Embryonic Development

    Directory of Open Access Journals (Sweden)

    Lingyu Li

    2011-03-01

    Full Text Available Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently, pluripotent stem cell lines derived from different developmental stages have provided an in vitro system for investigating molecular mechanisms regulating cell fate decisions. In this review, we summarize the major functions of the BMP, FGF, Nodal and Wnt signaling pathways, which have well-established roles in vertebrate embryogenesis. Then, we highlight recent studies in pluripotent stem cells that have revealed the stage-specific roles of BMP,FGF and Nodal pathways during neural differentiation. These findings enhance our understanding of the stepwise regulation of embryo patterning by particular signaling pathways and provide new insight into the mechanisms underlying early embryonic development.

  7. Dual effects of fluoxetine on mouse early embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Woon [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723 (Korea, Republic of); Choe, Changyong [National Institute of Animal Science, RDA, Cheonan 330-801 (Korea, Republic of); Kim, Eun-Jin [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Lee, Jae-Ik [Department of Obstetrics and Gynecology, Gyeongsang National University Hospital, Jinju 660-702 (Korea, Republic of); Yoon, Sook-Young [Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081 (Korea, Republic of); Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Kang, Dawon, E-mail: dawon@gnu.ac.kr [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of)

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  8. Golgi disruption and early embryonic lethality in mice lacking USO1.

    Directory of Open Access Journals (Sweden)

    Susie Kim

    Full Text Available Golgins are a family of long rod-like proteins characterized by the presence of central coiled-coil domains. Members of the golgin family have important roles in membrane trafficking, where they function as tethering factors that capture transport vesicles and facilitate membrane fusion. Golgin family members also have essential roles in maintaining the organization of the Golgi apparatus. Knockdown of individual golgins in cultured cells resulted in the disruption of the Golgi structure and the dispersal of Golgi marker proteins throughout the cytoplasm. However, these cellular phenotypes have not always been recapitulated in vivo. For example, embryonic development proceeds much further than expected and Golgi disruption was observed in only a subset of cell types in mice lacking the ubiquitously expressed golgin GMAP-210. Cell-type specific functional compensation among golgins may explain the absence of global cell lethality when a ubiquitously expressed golgin is missing. In this study we show that functional compensation does not occur for the golgin USO1. Mice lacking this ubiquitously expressed protein exhibit disruption of Golgi structure and early embryonic lethality, indicating that USO1 is indispensable for early embryonic development.

  9. Disruption of the Sec24d gene results in early embryonic lethality in the mouse.

    Directory of Open Access Journals (Sweden)

    Andrea C Baines

    Full Text Available Transport of newly synthesized proteins from the endoplasmic reticulum (ER to the Golgi is mediated by the coat protein complex COPII. The inner coat of COPII is assembled from heterodimers of SEC23 and SEC24. Though mice with mutations in one of the four Sec24 paralogs, Sec24b, exhibit a neural tube closure defect, deficiency in humans or mice has not yet been described for any of the other Sec24 paralogs. We now report characterization of mice with targeted disruption of Sec24d. Early embryonic lethality is observed in mice completely deficient in SEC24D, while a hypomorphic Sec24d allele permits survival to mid-embryogenesis. Mice haploinsufficient for Sec24d exhibit no phenotypic abnormality. A BAC transgene containing Sec24d rescues the embryonic lethality observed in Sec24d-null mice. These results demonstrate an absolute requirement for SEC24D expression in early mammalian development that is not compensated by the other three Sec24 paralogs. The early embryonic lethality resulting from loss of SEC24D in mice contrasts with the previously reported mild skeletal phenotype of SEC24D deficiency in zebrafish and restricted neural tube phenotype of SEC24B deficiency in mice. Taken together, these observations suggest that the multiple Sec24 paralogs have developed distinct functions over the course of vertebrate evolution.

  10. Functional analysis of Scr during embryonic and post-embryonic development in the cockroach, Periplaneta americana.

    Science.gov (United States)

    Hrycaj, Steven; Chesebro, John; Popadić, Aleksandar

    2010-05-01

    The cockroach, Periplaneta americana represents a basal insect lineage that undergoes the ancestral hemimetabolous mode of development. Here, we examine the embryonic and post-embryonic functions of the hox gene Scr in Periplaneta as a way of better understanding the roles of this gene in the evolution of insect body plans. During embryogenesis, Scr function is strictly limited to the head with no role in the prothorax. This indicates that the ancestral embryonic function of Scr was likely restricted to the head, and that the posterior expansion of expression in the T1 legs may have preceded any apparent gain of function during evolution. In addition, Scr plays a pivotal role in the formation of the dorsal ridge, a structure that separates the head and thorax in all insects. This is evidenced by the presence of a supernumerary segment that occurs between the labial and T1 segments of RNAiScr first nymphs and is attributed to an alteration in engrailed (en) expression. The fact that similar Scr phenotypes are observed in Tribolium but not in Drosophila or Oncopeltus reveals the presence of lineage-specific variation in the genetic architecture that controls the formation of the dorsal ridge. In direct contrast to the embryonic roles, Scr has no function in the head region during post-embryogenesis in Periplaneta, and instead, strictly acts to provide identity to the T1 segment. Furthermore, the strongest Periplaneta RNAiScr phenotypes develop ectopic wing-like tissue that originates from the posterior region of the prothoracic segment. This finding provides a novel insight into the current debate on the morphological origin of insect wings.

  11. Early embryonic development and transplantation in tree shrews.

    Science.gov (United States)

    Yan, Lan-Zhen; Sun, Bin; Lyu, Long-Bao; Ma, Yu-Hua; Chen, Jia-Qi; Lin, Qing; Zheng, Ping; Zhao, Xu-Dong

    2016-07-18

    As a novel experimental animal model, tree shrews have received increasing attention in recent years. Despite this, little is known in regards to the time phases of their embryonic development. In this study, surveillance systems were used to record the behavior and timing of copulations; embryos at different post-copulation stages were collected and cultured in vitro; and the developmental characteristics of both early-stage and in vitro cultured embryos were determined. A total of 163 females were collected following effective copulation, and 150 were used in either unilateral or bilateral oviduct embryo collections, with 307 embryos from 111 females obtained (conception rate=74%). Among them, 237 embryos were collected from 78 females, bilaterally, i.e., the average embryo number per female was 3.04; 172 fertilized eggs collected from 55 females, bilaterally, were cultured for 24-108 h in vitro for developmental observations; finally, 65 embryos from 23 bilateral cases and 70 embryos from 33 unilateral cases were used in embryo transplantation.

  12. Embryonic Blood-Cerebrospinal Fluid Barrier Formation and Function

    Directory of Open Access Journals (Sweden)

    David eBueno

    2014-10-01

    Full Text Available During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF. CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS. The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF.

  13. Construction and analysis of a subtractive cDNA library of early embryonic development in duck.

    Science.gov (United States)

    Liu, Y L; Zhong, L X; Li, J J; Shen, J D; Wang, D Q; Tao, Z R; Shi, F X; Lu, L Z

    2013-07-08

    Several studies have documented the process of early embryonic development in poultry; however, the molecular mechanisms underlying its developmental regulation are poorly understood, particularly in ducks. In this study, we analyzed differential gene expression of embryos 6 and 25 h following oviposition to determine which genes regulate the early developmental stage in ducks. Among 216 randomly selected clones, 39 protein-encoding cDNAs that function in metabolism, transcription, transportation, proliferation/apoptosis, cell cycle, cell adhesion, and methylation were identified. Additionally, the full-length cDNA of the Nanog gene, encoding a 302-amino acid protein, was obtained. Quantitative real-time polymerase chain reaction analyses were performed to detect expression levels of the selected genes during early and late embryonic stages, which revealed that these genes are expressed in a particular spatial and temporal pattern. These results indicate that these genes may play pivotal roles in the process of area pellucida formation through a complex and precise regulatory network during development in duck embryos.

  14. A Nestin-cre transgenic mouse is insufficient for recombination in early embryonic neural progenitors

    Directory of Open Access Journals (Sweden)

    Huixuan Liang

    2012-09-01

    Nestin-cre transgenic mice have been widely used to direct recombination to neural stem cells (NSCs and intermediate neural progenitor cells (NPCs. Here we report that a readily utilized, and the only commercially available, Nestin-cre line is insufficient for directing recombination in early embryonic NSCs and NPCs. Analysis of recombination efficiency in multiple cre-dependent reporters and a genetic mosaic line revealed consistent temporal and spatial patterns of recombination in NSCs and NPCs. For comparison we utilized a knock-in Emx1cre line and found robust recombination in NSCs and NPCs in ventricular and subventricular zones of the cerebral cortices as early as embryonic day 12.5. In addition we found that the rate of Nestin-cre driven recombination only reaches sufficiently high levels in NSCs and NPCs during late embryonic and early postnatal periods. These findings are important when commercially available cre lines are considered for directing recombination to embryonic NSCs and NPCs.

  15. Expression and function on embryonic development of lissencephaly-1 genes in zebrafish

    Institute of Scientific and Technical Information of China (English)

    Chengfu Sun; Mafei Xu; Zhen Xing; Zhili Wu; Yiping Li; Tsaiping Li; Mujun Zhao

    2009-01-01

    Lissencephaly is a severe disease characterized by brain malformation. The main causative gene of lissencephaly is LIS1. Mutation or deletion of LIS1 leads to prolifer-ation and migration deficiency of neurons in brain devel-opment. However, little is known about its biological function in embryonic development. In this article, we identified the expression patterns of zebrafish LIS1 gene and investigated its function in embryonic development. We demonstrated that zebrafish consisted of two LIS1 genes, LIS1a and LIS1b. Bioinformatics analysis revealed that LIS1 genes were conserved in evolution both in protein sequences and genomic structures. The expression patterns of zebrafish LIS1a and LIS1b showed that both transcripts were ubiquitously expressed at all embryonic developmental stages and in adult tissues examined. At the protein level, the LIS1 products mainly exist in brain tissue and in embryos at early stages as shown by western blotting analysis. The whole-mount immunostaining data showed that LIS1 proteins were distributed all over the embryos from 1-cell stage to 5 day post-fertilization. Knockdown of LIS1 protein expression through morpholino antisense oligonucleotides resulted in many developmental deficiencies in zebrafish, including brain malformation, circulation abnormality, and body curl. Taken together, our study suggested that zebrafish LIS1 plays a very important role in embryonic development.

  16. Phosphorylation dynamics during early differentiation of human embryonic stem cells

    NARCIS (Netherlands)

    van Hoof, D.; Munoz, J.; Braam, S.R.; Pinkse, M.W.H.; Linding, R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2009-01-01

    Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during

  17. Phosphorylation dynamics during early differentiation of human embryonic stem cells

    NARCIS (Netherlands)

    van Hoof, D.; Munoz, J.; Braam, S.R.; Pinkse, M.W.H.; Linding, R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2009-01-01

    Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during different

  18. Phosphorylation dynamics during early differentiation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Van Hoof, Dennis; Muñoz, Javier; Braam, Stefan R

    2009-01-01

    Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during...

  19. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis.

    Science.gov (United States)

    Zhong, J-X; Zhou, L; Li, Z; Wang, Y; Gui, J-F

    2014-06-01

    Noxa functions in apoptosis and immune system of vertebrates, but its activities in embryo development remain unclear. In this study, we have studied the role of zebrafish Noxa (zNoxa) by using zNoxa-specifc morpholino knockdown and overexpression approaches in developing zebrafish embryos. Expression pattern analysis indicates that zNoxa transcript is of maternal origin, which displays a uniform distribution in early embryonic development until shield stage, and the zygote zNoxa transcription is initiated from this stage and mainly localized in YSL of the embryos. The zNoxa expression alterations result in strong embryonic development defects, demonstrating that zNoxa regulates apoptosis from 75% epiboly stage of development onward, in which zNoxa firstly induces the expression of zBik, and then cooperates with zBik to regulate apoptosis. Moreover, zNoxa knockdown also causes a reduction in number of mitotic cells before 8 h.p.f., suggesting that zNoxa also promotes mitosis before 75% epiboly stage. The effect of zNoxa on mitosis is mediated by zWnt4b in early embryos, whereas zMcl1a and zMcl1b suppress the ability of zNoxa to regulate mitosis and apoptosis at different developmental stages. In addition, mammalian mouse Noxa (mNoxa) mRNA was demonstrated to rescue the arrest of mitosis when zNoxa was knocked down, suggesting that mouse and zebrafish Noxa might have similar dual functions. Therefore, the current findings indicate that Noxa is a novel regulator of early mitosis before 75% epiboly stage when it translates into a key mediator of apoptosis in subsequent embryogenesis.

  20. Endothelin-1 signalling controls early embryonic heart rate in vitro and in vivo.

    Science.gov (United States)

    Karppinen, S; Rapila, R; Mäkikallio, K; Hänninen, S L; Rysä, J; Vuolteenaho, O; Tavi, P

    2014-02-01

    Spontaneous activity of embryonic cardiomyocytes originates from sarcoplasmic reticulum (SR) Ca(2+) release during early cardiogenesis. However, the regulation of heart rate during embryonic development is still not clear. The aim of this study was to determine how endothelin-1 (ET-1) affects the heart rate of embryonic mice, as well as the pathway through which it exerts its effects. The effects of ET-1 and ET-1 receptor inhibition on cardiac contraction were studied using confocal Ca(2+) imaging of isolated mouse embryonic ventricular cardiomyocytes and ultrasonographic examination of embryonic cardiac contractions in utero. In addition, the amount of ET-1 peptide and ET receptor a (ETa) and b (ETb) mRNA levels were measured during different stages of development of the cardiac muscle. High ET-1 concentration and expression of both ETa and ETb receptors was observed in early cardiac tissue. ET-1 was found to increase the frequency of spontaneous Ca(2+) oscillations in E10.5 embryonic cardiomyocytes in vitro. Non-specific inhibition of ET receptors with tezosentan caused arrhythmia and bradycardia in isolated embryonic cardiomyocytes and in whole embryonic hearts both in vitro (E10.5) and in utero (E12.5). ET-1-mediated stimulation of early heart rate was found to occur via ETb receptors and subsequent inositol trisphosphate receptor activation and increased SR Ca(2+) leak. Endothelin-1 is required to maintain a sufficient heart rate, as well as to prevent arrhythmia during early development of the mouse heart. This is achieved through ETb receptor, which stimulates Ca(2+) leak through IP3 receptors. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  1. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates

    OpenAIRE

    Cinzia Chiandetti; Jessica Galliussi; Richard J. Andrew; Giorgio Vallortigara

    2013-01-01

    Genetic factors determine the asymmetrical position of vertebrate embryos allowing asymmetric environmental stimulation to shape cerebral lateralization. In birds, late-light stimulation, just before hatching, on the right optic nerve triggers anatomical and functional cerebral asymmetries. However, some brain asymmetries develop in absence of embryonic light stimulation. Furthermore, early-light action affects lateralization in the transparent zebrafish embryos before their visual system is ...

  2. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates

    OpenAIRE

    Cinzia Chiandetti; Jessica Galliussi; Andrew, Richard J; Giorgio Vallortigara

    2013-01-01

    Genetic factors determine the asymmetrical position of vertebrate embryos allowing asymmetric environmental stimulation to shape cerebral lateralization. In birds, late-light stimulation, just before hatching, on the right optic nerve triggers anatomical and functional cerebral asymmetries. However, some brain asymmetries develop in absence of embryonic light stimulation. Furthermore, early-light action affects lateralization in the transparent zebrafish embryos before their visual system is ...

  3. Circulating microRNAs as biomarkers of early embryonic viability in cattle

    Science.gov (United States)

    Embryonic mortality (EM) is considered to be the primary factor limiting pregnancy success in cattle and occurs early (< day 28) or late (= day 28) during gestation. The incidence of early EM in cattle is approximately 25% while late EM is approximately 3.2 to 42.7%. In cattle, real time ultrasonog...

  4. Generation of functional thyroid from embryonic stem cells.

    Science.gov (United States)

    Antonica, Francesco; Kasprzyk, Dominika Figini; Opitz, Robert; Iacovino, Michelina; Liao, Xiao-Hui; Dumitrescu, Alexandra Mihaela; Refetoff, Samuel; Peremans, Kathelijne; Manto, Mario; Kyba, Michael; Costagliola, Sabine

    2012-11-01

    The primary function of the thyroid gland is to metabolize iodide by synthesizing thyroid hormones, which are critical regulators of growth, development and metabolism in almost all tissues. So far, research on thyroid morphogenesis has been missing an efficient stem-cell model system that allows for the in vitro recapitulation of the molecular and morphogenic events regulating thyroid follicular-cell differentiation and subsequent assembly into functional thyroid follicles. Here we report that a transient overexpression of the transcription factors NKX2-1 and PAX8 is sufficient to direct mouse embryonic stem-cell differentiation into thyroid follicular cells that organize into three-dimensional follicular structures when treated with thyrotropin. These in vitro-derived follicles showed appreciable iodide organification activity. Importantly, when grafted in vivo into athyroid mice, these follicles rescued thyroid hormone plasma levels and promoted subsequent symptomatic recovery. Thus, mouse embryonic stem cells can be induced to differentiate into thyroid follicular cells in vitro and generate functional thyroid tissue.

  5. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum

    Science.gov (United States)

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237

  6. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum.

    Science.gov (United States)

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson; de Oliveira, Carlos Jorge Logullo; Campos, Eldo; da Fonseca, Rodrigo Nunes

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.

  7. Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    Science.gov (United States)

    Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl

    2008-01-01

    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875

  8. Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Joseph Landry

    2008-10-01

    Full Text Available We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor, the largest subunit of NURF (Nucleosome Remodeling Factor in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf(-/- embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf(-/- embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo.

  9. Effects of plane of nutrition on in vitro fertilization and early embryonic development in sheep.

    Science.gov (United States)

    Borowczyk, E; Caton, J S; Redmer, D A; Bilski, J J; Weigl, R M; Vonnahme, K A; Borowicz, P P; Kirsch, J D; Kraft, K C; Reynolds, L P; Grazul-Bilska, A T

    2006-06-01

    Nutrition has been shown to influence several reproductive functions, including hormone production, oocyte competence and fertilization, and early embryonic development. To determine the effects of maternal diet on in vitro fertilization (IVF) and early embryonic development, ewes (n = 18; 47.0 +/- 1.5 kg of initial BW) were divided into control and underfed (60% of control) nutritional planes for 8 wk before oocyte collection. Pelleted diets containing 2.4 Mcal of ME/kg and 13% CP (DM basis) were fed once daily. During the first 4-wk acclimation phase, control and underfed ewes were fed 1,000 and 600 g/d, respectively. From wk 4 to 8, control (adequate) ewes were fed to maintain BW and offered 720 g/d, whereas underfed ewes received 432 g/d (60% restricted). Synchronization of estrus was performed using progestagen sponges for 14 d. Follicular development was induced by twice daily injections of FSH on d 13 (5 units/injection) and 14 (4 units/injection) of the estrous cycle. Oocytes were collected from all visible follicles on d 15 of the estrous cycle. After IVF, the proportion of developing embryos was evaluated throughout an 8-d culture period. Under-nutrition decreased (P < 0.006) the rate of cleavage, number of blastocysts per ewe, and rate of blastocyst formation (from 79 to 64%; from 3.3 to 0.8; and from 31 to 8%, respectively). However, the number of visible follicles, total number of oocytes, number of healthy oocytes, percentage of healthy oocytes, number of cleaved oocytes, and morula formation per ewe were similar for control and underfed ewes. These data indicate that undernutrition of donor ewes, resulting in lower BW and BCS, has a negative effect on oocyte quality, which results in lower rates of cleavage and blastocyst formation.

  10. Transcriptomic profiling of bovine IVF embryos revealed candidate genes and pathways involved in early embryonic development

    Directory of Open Access Journals (Sweden)

    Yandell Brian S

    2010-01-01

    Full Text Available Abstract Background Early embryonic loss is a large contributor to infertility in cattle. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. The objective of this study was to identify genes differentially expressed between blastocysts and degenerative embryos at early stages of development. Results Using microarrays, genome-wide RNA expression was profiled and compared for in vitro fertilization (IVF - derived blastocysts and embryos undergoing degenerative development up to the same time point. Surprisingly similar transcriptomic profiles were found in degenerative embryos and blastocysts. Nonetheless, we identified 67 transcripts that significantly differed between these two groups of embryos at a 15% false discovery rate, including 33 transcripts showing at least a two-fold difference. Several signaling and metabolic pathways were found to be associated with the developmental status of embryos, among which were previously known important steroid biosynthesis and cell communication pathways in early embryonic development. Conclusions This study presents the first direct and comprehensive comparison of transcriptomes between IVF blastocysts and degenerative embryos, providing important information for potential genes and pathways associated with early embryonic development.

  11. Apoptotic gene expression in the neural tube during early human embryonic development

    Institute of Scientific and Technical Information of China (English)

    Guifang Chen; Tiandong Li; Peipei Ding; Ping Yang; Xiao Zhang

    2011-01-01

    Neural tube development comprises neural induction,neural epithelial cell proliferation,and apoptosis,as well as migration of nerve cells.Too much or too little apoptosis leads to abnormal nervous system development.The present study analyzed expression and distribution of apoptotic-related factors,including Fas,FasL,and caspase-3,during human embryonic neural tube development.Experimental results showed that increased caspase-3 expression promoted neural apoptosis via a mitochondriai-mediated intrinsic pathway at 4 weeks during early human embryonic neural tube development.Subsequently,Fas and FasL expression increased during embryonic development.The results suggest that neural cells influence neural apoptosis through synergistic effects of extrinsic pathways.Therefore,neural apoptosis during the early period of neural tube development in the human embryo might be regulated by the death receptor induced apoptotic extrinsic pathways.

  12. Timing specific requirement of microRNA function is essential for embryonic and postnatal hippocampal development.

    Directory of Open Access Journals (Sweden)

    Qingsong Li

    Full Text Available The adult hippocampus consists of the dentate gyrus (DG and the CA1, CA2 and CA3 regions and is essential for learning and memory functions. During embryonic development, hippocampal neurons are derived from hippocampal neuroepithelial cells and dentate granular progenitors. The molecular mechanisms that control hippocampal progenitor proliferation and differentiation are not well understood. Here we show that noncoding microRNAs (miRNAs are essential for early hippocampal development in mice. Conditionally ablating the RNAase III enzyme Dicer at different embryonic time points utilizing three Cre mouse lines causes abnormal hippocampal morphology and affects the number of hippocampal progenitors due to altered proliferation and increased apoptosis. Lack of miRNAs at earlier stages causes early differentiation of hippocampal neurons, in particular in the CA1 and DG regions. Lack of miRNAs at a later stage specifically affects neuronal production in the CA3 region. Our results reveal a timing requirement of miRNAs for the formation of specific hippocampal regions, with the CA1 and DG developmentally hindered by an early loss of miRNAs and the CA3 region to a late loss of miRNAs. Collectively, our studies indicate the importance of the Dicer-mediated miRNA pathway in hippocampal development and functions.

  13. The Lin28/Let-7 system in early human embryonic tissue and ectopic pregnancy.

    Directory of Open Access Journals (Sweden)

    Teresa Lozoya

    Full Text Available Our objective was to determine the expression of the elements of the Lin28/Let-7 system, and related microRNAs (miRNAs, in early stages of human placentation and ectopic pregnancy, as a means to assess the potential role of this molecular hub in the pathogenesis of ectopic gestation. Seventeen patients suffering from tubal ectopic pregnancy (cases and forty-three women with normal on-going gestation that desired voluntary termination of pregnancy (VTOP; controls were recruited for the study. Embryonic tissues were subjected to RNA extraction and quantitative PCR analyses for LIN28B, Let-7a, miR-132, miR-145 and mir-323-3p were performed. Our results demonstrate that the expression of LIN28B mRNA was barely detectable in embryonic tissue from early stages of gestation and sharply increased thereafter to plateau between gestational weeks 7-9. In contrast, expression levels of Let-7, mir-132 and mir-145 were high in embryonic tissue from early gestations (≤ 6-weeks and abruptly declined thereafter, especially for Let-7. Opposite trends were detected for mir-323-3p. Embryonic expression of LIN28B mRNA was higher in early stages (≤ 6-weeks of ectopic pregnancy than in normal gestation. In contrast, Let-7a expression was significantly lower in early ectopic pregnancies, while miR-132 and miR-145 levels were not altered. Expression of mir-323-3p was also suppressed in ectopic embryonic tissue. We are the first to document reciprocal changes in the expression profiles of the gene encoding the RNA-binding protein, LIN28B, and the related miRNAs, Let-7a, mir-132 and mir-145, in early stages of human placentation. This finding suggests the potential involvement of LIN28B/Let-7 (deregulated pathways in the pathophysiology of ectopic pregnancy in humans.

  14. The Lin28/Let-7 system in early human embryonic tissue and ectopic pregnancy.

    Science.gov (United States)

    Lozoya, Teresa; Domínguez, Francisco; Romero-Ruiz, Antonio; Steffani, Liliana; Martínez, Sebastián; Monterde, Mercedes; Ferri, Blanca; Núñez, Maria Jose; AinhoaRomero-Espinós; Zamora, Omar; Gurrea, Marta; Sangiao-Alvarellos, Susana; Vega, Olivia; Simón, Carlos; Pellicer, Antonio; Tena-Sempere, Manuel

    2014-01-01

    Our objective was to determine the expression of the elements of the Lin28/Let-7 system, and related microRNAs (miRNAs), in early stages of human placentation and ectopic pregnancy, as a means to assess the potential role of this molecular hub in the pathogenesis of ectopic gestation. Seventeen patients suffering from tubal ectopic pregnancy (cases) and forty-three women with normal on-going gestation that desired voluntary termination of pregnancy (VTOP; controls) were recruited for the study. Embryonic tissues were subjected to RNA extraction and quantitative PCR analyses for LIN28B, Let-7a, miR-132, miR-145 and mir-323-3p were performed. Our results demonstrate that the expression of LIN28B mRNA was barely detectable in embryonic tissue from early stages of gestation and sharply increased thereafter to plateau between gestational weeks 7-9. In contrast, expression levels of Let-7, mir-132 and mir-145 were high in embryonic tissue from early gestations (≤ 6-weeks) and abruptly declined thereafter, especially for Let-7. Opposite trends were detected for mir-323-3p. Embryonic expression of LIN28B mRNA was higher in early stages (≤ 6-weeks) of ectopic pregnancy than in normal gestation. In contrast, Let-7a expression was significantly lower in early ectopic pregnancies, while miR-132 and miR-145 levels were not altered. Expression of mir-323-3p was also suppressed in ectopic embryonic tissue. We are the first to document reciprocal changes in the expression profiles of the gene encoding the RNA-binding protein, LIN28B, and the related miRNAs, Let-7a, mir-132 and mir-145, in early stages of human placentation. This finding suggests the potential involvement of LIN28B/Let-7 (de)regulated pathways in the pathophysiology of ectopic pregnancy in humans.

  15. EMBRYONIC VASCULAR DISRUPTION ADVERSE OUTCOMES: LINKING HIGH THROUGHPUT SIGNALING SIGNATURES WITH FUNCTIONAL CONSEQUENCES

    Science.gov (United States)

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...

  16. Generation of functional thyroid from embryonic stem cells

    Science.gov (United States)

    Antonica, Francesco; Kasprzyk, Dominika Figini; Opitz, Robert; Iacovino, Michelina; Liao, Xiao-Hui; Dumitrescu, Alexandra Mihaela; Refetoff, Samuel; Peremans, Kathelijne; Manto, Mario; Kyba, Michael; Costagliola, Sabine

    2013-01-01

    The primary function of thyroid gland is to metabolize iodide by synthesizing thyroid hormones that are critical regulators of growth, development and metabolism in virtually all tissues. To date, research on thyroid morphogenesis was missing an efficient stem-cell model system which allows to recapitulate in vitro the molecular and morphogenic events regulating thyroid follicular cells differentiation and subsequent assembly into functional thyroid follicles. Here we report that a transient overexpression of the transcription factors NKX2.1 and PAX8 is sufficient to direct mouse embryonic stem-cells (mESC) differentiation into thyroid follicular cells which organized into three-dimensional follicular structures when treated with thyrotropin. Those in vitro derived follicles showed significant iodide organification activity. Importantly, when grafted in vivo into athyreoid mice, these follicles rescued thyroid hormone plasma levels and promoted subsequent symptomatic recovery. Thus, mESC can be induced to differentiate into thyroid follicular cells in vitro and generate functional thyroid tissue. PMID:23051751

  17. Human Embryonic Stem Cells Form Functional Thyroid Follicles

    Science.gov (United States)

    Latif, Rauf; Davies, Terry F.

    2015-01-01

    Objective: The molecular events that lead to human thyroid cell speciation remain incompletely characterized. It has been shown that overexpression of the regulatory transcription factors Pax8 and Nkx2-1 (ttf-1) directs murine embryonic stem (mES) cells to differentiate into thyroid follicular cells by initiating a transcriptional regulatory network. Such cells subsequently organized into three-dimensional follicular structures in the presence of extracellular matrix. In the current study, human embryonic stem (hES) cells were studied with the aim of recapitulating this scenario and producing functional human thyroid cell lines. Methods: Reporter gene tagged pEZ-lentiviral vectors were used to express human PAX8-eGFP and NKX2-1-mCherry in the H9 hES cell line followed by differentiation into thyroid cells directed by Activin A and thyrotropin (TSH). Results: Both transcription factors were expressed efficiently in hES cells expressing either PAX8, NKX2-1, or in combination in the hES cells, which had low endogenous expression of these transcription factors. Further differentiation of the double transfected cells showed the expression of thyroid-specific genes, including thyroglobulin (TG), thyroid peroxidase (TPO), the sodium/iodide symporter (NIS), and the TSH receptor (TSHR) as assessed by reverse transcription polymerase chain reaction and immunostaining. Most notably, the Activin/TSH-induced differentiation approach resulted in thyroid follicle formation and abundant TG protein expression within the follicular lumens. On stimulation with TSH, these hES-derived follicles were also capable of dose-dependent cAMP generation and radioiodine uptake, indicating functional thyroid epithelial cells. Conclusion: The induced expression of PAX8 and NKX2-1 in hES cells was followed by differentiation into thyroid epithelial cells and their commitment to form functional three-dimensional neo-follicular structures. The data provide proof of principal that hES cells can be

  18. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates.

    Science.gov (United States)

    Chiandetti, Cinzia; Galliussi, Jessica; Andrew, Richard J; Vallortigara, Giorgio

    2013-01-01

    Genetic factors determine the asymmetrical position of vertebrate embryos allowing asymmetric environmental stimulation to shape cerebral lateralization. In birds, late-light stimulation, just before hatching, on the right optic nerve triggers anatomical and functional cerebral asymmetries. However, some brain asymmetries develop in absence of embryonic light stimulation. Furthermore, early-light action affects lateralization in the transparent zebrafish embryos before their visual system is functional. Here we investigated whether another pathway intervenes in establishing brain specialization. We exposed chicks' embryos to light before their visual system was formed. We observed that such early stimulation modulates cerebral lateralization in a comparable vein of late-light stimulation on active retinal cells. Our results show that, in a higher vertebrate brain, a second route, likely affecting the genetic expression of photosensitive regions, acts before the development of a functional visual system. More than one sensitive period seems thus available to light stimulation to trigger brain lateralization.

  19. Microglia proliferation is controlled by P2X7 receptors in a Pannexin-1-independent manner during early embryonic spinal cord invasion.

    Science.gov (United States)

    Rigato, Chiara; Swinnen, Nina; Buckinx, Roeland; Couillin, Isabelle; Mangin, Jean-Marie; Rigo, Jean-Michel; Legendre, Pascal; Le Corronc, Hervé

    2012-08-22

    Microglia are known to invade the mammalian spinal cord (SC) at an early embryonic stage. While the mechanisms underlying this early colonization of the nervous system are still unknown, we recently found that it is associated, at least partially, with the ability of microglia to proliferate at the onset of motoneuron developmental cell death and of synaptogenesis in mouse embryo (E13.5). In vitro studies have shown that the proliferation and activation of adult microglia can be influenced by the purinergic ionotropic receptor P2X7 via a coupling with Pannexin-1. By performing patch-clamp recordings in situ using a whole-mouse embryonic SC preparation, we show here that embryonic microglia already express functional P2X7R. P2X7R activation evoked a biphasic current in embryonic microglia, which is supposed to reflect large plasma membrane pore opening. However, although embryonic microglia express pannexin-1, this biphasic current was still recorded in microglia of pannexin-1 knock-out embryos, indicating that it rather reflected P2X7R intrinsic pore dilatation. More important, we found that proliferation of embryonic SC microglia, but not their activation state, depends almost entirely on P2X7R by comparing wild-type and P2X7R-/- embryos. Absence of P2X7R led also to a decrease in microglia density. Pannexin-1-/- embryos did not exhibit any difference in microglial proliferation, showing that the control of embryonic microglial proliferation by P2X7R does not depend on pannexin-1 expression. These results reveal a developmental role of P2X7R by controlling embryonic SC microglia proliferation at a critical developmental state in the SC of mouse embryos.

  20. Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells.

    Science.gov (United States)

    Hirata, Tetsuya; Amano, Tomokazu; Nakatake, Yuhki; Amano, Misa; Piao, Yulan; Hoang, Hien G; Ko, Minoru S H

    2012-01-01

    The generation of induced pluripotent stem cells (iPSCs) by the forced expression of defined transcription factors in somatic cells holds great promise for the future of regenerative medicine. However, the initial reprogramming mechanism is still poorly understood. Here we show that Zscan4, expressed transiently in2-cell embryos and embryonic stem cells (ESCs), efficiently produces iPSCs from mouse embryo fibroblasts when coexpressed with Klf4, Oct4, and Sox2. Interestingly, the forced expression of Zscan4 is required onlyfor the first few days of iPSC formation. Microarray analysis revealed transient and early induction of preimplantation-specific genes in a Zscan4-dependent manner. Our work indicates that Zscan4 is a previously unidentified potent natural factor that facilitates the reprogramming process and reactivates early embryonic genes.

  1. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Amanda Fraga

    Full Text Available Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3 and hexokinase (HexA genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.

  2. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells.

    OpenAIRE

    Nagy, A.; Rossant, J.; Nagy, R.; Abramow-Newerly, W; Roder, J C

    1993-01-01

    Several newly generated mouse embryonic stem (ES) cell lines were tested for their ability to produce completely ES cell-derived mice at early passage numbers by ES cell tetraploid embryo aggregation. One line, designated R1, produced live offspring which were completely ES cell-derived as judged by isoenzyme analysis and coat color. These cell culture-derived animals were normal, viable, and fertile. However, prolonged in vitro culture negatively affected this initial totipotency of R1, and...

  3. Alveolar flows of the developing lungs:from embryonic to early childhood airways

    Science.gov (United States)

    Tenenbaum-Katan, Janna; Hofemeier, Philipp; Fishler, Rami; Rothen-Rutishauser, Barbara; Sznitman, Josue

    2014-11-01

    At the onset of life in utero the respiratory system is simply a liquid-filled duct. With our first breath, alveoli are filled with air and become a significant port of entry for airborne particles. As such, alveolar lining is nearly fully functional at birth, though lung development continues during childhood as structural changes increase alveolar surface area to optimize ventilation. We hypothesize that such fluid dynamical changes potentially affect two phenomena occurring within alveoli: (i) flow patterns in airspaces at distinct stages of both in- and ex-utero life and (ii) fate of inhaled particles ex-utero. To investigate these phenomena, we combine experimental and numerical approaches where (i) microfluidic in vitro devices mimic liquid flows across the epithelium of fetal airspaces, and (ii) computational simulations are employed to examine particle transport and deposition in the deep alveolated regions of infants' lungs. Our approaches capture anatomically-inspired geometries based on morphometrical data, as well as physiological flows, including the convective-diffusive nature of submicron particle transport in alveolar regions.Overall, we investigate respiratory flows in alveolar regions of developing lungs, from early embryonic stages to late childhood

  4. Diverging functions of Scr between embryonic and post-embryonic development in a hemimetabolous insect, Oncopeltus fasciatus.

    Science.gov (United States)

    Chesebro, John; Hrycaj, Steven; Mahfooz, Najmus; Popadić, Aleksandar

    2009-05-01

    Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development.

  5. Monocytic cells derived from human embryonic stem cells and fetal liver share common differentiation pathways and homeostatic functions.

    Science.gov (United States)

    Klimchenko, Olena; Di Stefano, Antonio; Geoerger, Birgit; Hamidi, Sofiane; Opolon, Paule; Robert, Thomas; Routhier, Mélanie; El-Benna, Jamel; Delezoide, Anne-Lise; Boukour, Siham; Lescure, Bernadette; Solary, Eric; Vainchenker, William; Norol, Françoise

    2011-03-17

    The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14(low)CD16(-) precursor to form CD14(high)CD16(+) cells without producing the CD14(high)CD16(-) cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.

  6. Toward Development of Pluripotent Porcine Stem Cells by Road Mapping Early Embryonic Development

    DEFF Research Database (Denmark)

    Petkov, Stoyan; Freude, Kristine; Mashayekhi-Nezamabadi, Kaveh

    2017-01-01

    The lack in production of bona fide porcine pluripotent stem cells has definitely been hampered by a lack of research into porcine embryo development. Embryonic development in mammals is the extraordinary transition of a single-celled fertilized zygote into a complex fetus, which occurs...... in the uterus of the maternal adult during the early stages of gestation. Biomedical pig models could serve as genetic backgrounds for establishment of embryonic stem cells (ESCs) or other pluripotent stem cells (such as iPSC), which may be used to model and study diseases in vitro. This chapter provides...... insight into the current knowledge of pluripotent states in the developing pig embryo and the current status in establishment of bona fide porcine ESC (pESC) and piPSCs. It reflects the potential causes underlying the difficulty in establishing pluripotent stem cells and reviews recent data on global...

  7. Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition.

    Science.gov (United States)

    Sun, Congshan; Velazquez, Miguel A; Marfy-Smith, Stephanie; Sheth, Bhavwanti; Cox, Andy; Johnston, David A; Smyth, Neil; Fleming, Tom P

    2014-03-01

    Mammalian extra-embryonic lineages perform the crucial role of nutrient provision during gestation to support embryonic and fetal growth. These lineages derive from outer trophectoderm (TE) and internal primitive endoderm (PE) in the blastocyst and subsequently give rise to chorio-allantoic and visceral yolk sac placentae, respectively. We have shown maternal low protein diet exclusively during mouse preimplantation development (Emb-LPD) is sufficient to cause a compensatory increase in fetal and perinatal growth that correlates positively with increased adult-onset cardiovascular, metabolic and behavioural disease. Here, to investigate early mechanisms of compensatory nutrient provision, we assessed the influence of maternal Emb-LPD on endocytosis within extra-embryonic lineages using quantitative imaging and expression of markers and proteins involved. Blastocysts collected from Emb-LPD mothers within standard culture medium displayed enhanced TE endocytosis compared with embryos from control mothers with respect to the number and collective volume per cell of vesicles with endocytosed ligand and fluid and lysosomes, plus protein expression of megalin (Lrp2) LDL-family receptor. Endocytosis was also stimulated using similar criteria in the outer PE-like lineage of embryoid bodies formed from embryonic stem cell lines generated from Emb-LPD blastocysts. Using an in vitro model replicating the depleted amino acid (AA) composition found within the Emb-LPD uterine luminal fluid, we show TE endocytosis response is activated through reduced branched-chain AAs (leucine, isoleucine, valine). Moreover, activation appears mediated through RhoA GTPase signalling. Our data indicate early embryos regulate and stabilise endocytosis as a mechanism to compensate for poor maternal nutrient provision.

  8. In vitro differentiation of rat embryonic stem cells into functional cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Nan Cao; Jing Liao; Zumei Liu; Wen min Zhu; Jia Wang; Lijun Liu; Lili Yu

    2011-01-01

    The recent breakthrough in the generation of rat embryonic stem cells (rESCs) opens the door to application of gene targeting to create models for the study of human diseases.In addition,the in vitro differentiation system from rESCs into derivatives of three germ layers will serve as a powerful tool and resource for the investigation of mammalian development,cell function,tissue repair,and drug discovery.However,these uses have been limited by the difficulty of in vitro differentiation.The aims of this study were to establish an in vitro differentiation system from rESCs and to investigate whether rESCs are capable of forming terminal-differentiated cardiomyocytes.Using newly established rESCs,we found that embryoid body (EB)-based method used in mouse ESC (mESC) differentiation failed to work for the serum-free cultivated rESCs.We then developed a protocol by combination of three chemical inhibitors and feeder-conditioned medium.Under this condition,rESCs formed EBs,propagated and differentiated into three embryonic germ layers.Moreover,rESC-formed EBs could differentiate into spontaneously beating cardiomyocytes after plating.Analyses of molecular,structural,and functional properties revealed that rESC-derived cardiomyocytes were similar to those derived from fetal rat hearts and mESCs.In conclusion,we successfully developed an in vitro differentiation system for rESCs through which functional myocytes were generated and displayed phenotypes of rat fetal cardiomyocytes.This unique cellular system will provide a new approach to study the early development and cardiac function,and serve as an important tool in pharmacological testing and cell therapy.

  9. Interaction between SCO-spondin and low density lipoproteins from embryonic cerebrospinal fluid modulates their roles in early neurogenesis

    Directory of Open Access Journals (Sweden)

    América eVera

    2015-05-01

    Full Text Available During early stages of development, encephalic vesicles are composed by a layer of neuroepithelial cells surrounding a central cavity filled with embryonic cerebrospinal fluid (eCSF. This fluid contains several morphogens that regulate proliferation and differentiation of neuroepithelial cells. One of these neurogenic factors is SCO-spondin, a giant protein secreted to the eCSF from early stages of development. Inhibition of this protein in vivo or in vitro drastically decreases the neurodifferentiation process. Other important neurogenic factors of the eCSF are low density lipoproteins (LDL, the depletion of which generates a 60% decrease in mesencephalic explant neurodifferentiation. The presence of several LDL receptor class A (LDLrA domains (responsible for LDL binding in other proteins in the SCO-spondin sequence suggests a possible interaction between both molecules. This possibility was analyzed using three different experimental approaches: 1 Bioinformatics analyses of the SCO-spondin region, that contains eight LDLrA domains in tandem, and of comparisons with the LDL receptor consensus sequence; 2 Analysis of the physical interactions of both molecules through immunohistochemical colocalization in embryonic chick brains and through the immunoprecipitation of LDL with anti-SCO-spondin antibodies; and 3 Analysis of functional interactions during the neurodifferentiation process when these molecules were added to a culture medium of mesencephalic explants. The results revealed that LDL and SCO-spondin interact to form a complex that diminishes the neurogenic capacities that both molecules have separately. Our work suggests that the embryonic cerebrospinal fluid is an active signaling center with a complex regulation system that allows for correct brain development.

  10. Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state.

    Directory of Open Access Journals (Sweden)

    Elham Schokraie

    Full Text Available Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.

  11. Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state.

    Science.gov (United States)

    Schokraie, Elham; Warnken, Uwe; Hotz-Wagenblatt, Agnes; Grohme, Markus A; Hengherr, Steffen; Förster, Frank; Schill, Ralph O; Frohme, Marcus; Dandekar, Thomas; Schnölzer, Martina

    2012-01-01

    Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.

  12. Sire effect on early and late embryonic death in French Holstein cattle.

    Science.gov (United States)

    Ledoux, D; Ponsart, C; Grimard, B; Gatien, J; Deloche, M C; Fritz, S; Lefebvre, R; Humblot, P

    2015-05-01

    We investigated the effect of maternal sire on early pregnancy failure (between D0, day of insemination and D90) in their progeny during the first and second lactations (n=3508) in the Holstein breed. The estimated breeding value (EBV) for cow fertility of 12 bulls (reliability⩾0.95) was used to create the following three groups: low, medium and high EBV (EBV from -0.7 to 1 expressed as genetic standard deviation relative to the mean of the breed). In their daughters (93 to 516 per bull), progesterone measurement was carried out on the day of artificial insemination (AI; D0) to check whether the cows were in the follicular phase and on D18 to 25 to assess non-fertilisation-early embryonic mortality (NF-EEM). Late embryonic mortality (LEM) and early foetal death (FD) were determined by ultrasonography on D45 and D90 and by the return to oestrus after the first AI. Frequencies of NF-EEM, LEM, FD and pregnancy were 33.3%, 11.7%, 1.4% and 48.5% and incidences were 35.1, 19.0, 2.7 and 51.1, respectively. Sire EBV was significantly related to the incidences of pregnancy failure between D0 and D90, fertilisation failure-early embryonic mortality (FF-EEM) and LEM but not to the incidence of FD between D45 and D90 of pregnancy. The relative risk (RR) of FF-EEM was significantly higher (RR=1.2; P<0.05) for the progeny group of low EBV bulls when compared with high EBV bulls. The same effect was observed when comparing LEM of the progeny groups from the low EBV bulls to those from moderate and high EBV bulls (RR, respectively, of 1.3 and 1.4; P<005). The incidence of FF-EEM was significantly higher when cows were inseminated before 80 days postpartum compared with later, and for the extreme values of the difference between milk fat and protein content measured during the first 3 months of lactation. FF-EEM was also significantly related to the year of observation. The incidence of LEM was higher for the highest producing cows and was influenced by interaction between milk

  13. Stage-dependent remodeling of the nuclear envelope and lamina during rabbit early embryonic development.

    Science.gov (United States)

    Popken, Jens; Schmid, Volker J; Strauss, Axel; Guengoer, Tuna; Wolf, Eckhard; Zakhartchenko, Valeri

    2016-04-22

    Utilizing 3D structured illumination microscopy, we investigated the quality and quantity of nuclear invaginations and the distribution of nuclear pores during rabbit early embryonic development and identified the exact time point of nucleoporin 153 (NUP153) association with chromatin during mitosis. Contrary to bovine early embryonic nuclei, featuring almost exclusively nuclear invaginations containing a small volume of cytoplasm, nuclei in rabbit early embryonic stages show additionally numerous invaginations containing a large volume of cytoplasm. Small-volume invaginations frequently emanated from large-volume nuclear invaginations but not vice versa, indicating a different underlying mechanism. Large- and small-volume nuclear envelope invaginations required the presence of chromatin, as they were restricted to chromatin-positive areas. The chromatin-free contact areas between nucleolar precursor bodies (NPBs) and large-volume invaginations were free of nuclear pores. Small-volume invaginations were not in contact with NPBs. The number of invaginations and isolated intranuclear vesicles per nucleus peaked at the 4-cell stage. At this stage, the nuclear surface showed highly concentrated clusters of nuclear pores surrounded by areas free of nuclear pores. Isolated intranuclear lamina vesicles were usually NUP153 negative. Cytoplasmic, randomly distributed NUP153-positive clusters were highly abundant at the zygote stage and decreased in number until they were almost absent at the 8-cell stage and later. These large NUP153 clusters may represent a maternally provided NUP153 deposit, but they were not visible as clusters during mitosis. Major genome activation at the 8- to 16-cell stage may mark the switch from a necessity for a deposit to on-demand production. NUP153 association with chromatin is initiated during metaphase before the initiation of the regeneration of the lamina. To our knowledge, the present study demonstrates for the first time major remodeling

  14. The dynamics of polycomb group proteins in early embryonic nervous system in mouse and human.

    Science.gov (United States)

    Qi, Lu; Cao, Jing-Li; Hu, Yi; Yang, Ji-Gao; Ji, Yuan; Huang, Jing; Zhang, Yi; Sun, Da-Guang; Xia, Hong-Fei; Ma, Xu

    2013-11-01

    Polycomb group (PcG) proteins are transcription regulatory proteins that control the expression of a variety of genes and the antero-posterior neural patterning from early embryogenesis. Although expression of PcG genes in the nervous system has been noticed, but the expression pattern of PcG proteins in early embryonic nervous system is still unclear. In this study, we analyzed the expression pattern of PRC1 complex members (BMI-1 and RING1B) and PRC2 complex members (EED, SUZ12 and EZH2) in early embryonic nervous system in mouse and human by Western blot and Immunohistochemistry. The results of Western blot showed that EED protein was significantly up-regulated with the increase of the day of pregnancy during the early embryogenesis in mouse. BMI-1 protein level was significantly increased from the day 10 of pregnancy, when compared with the day 9 of pregnancy. But the SUZ12, EZH2 and RING1B protein level did not change significantly. From the results of Immunohistochemistry, we found that the four PcG proteins were all expressed in the fetal brain and fetal spinal cord in mouse. In human, the expression of EED, SUZ12, and EZH2 was not significantly different in cerebral cortex and sacral spinal cord, but BMI-1 and RING1B expression was enhanced with the development of embryos in early pregnancy. Collectively, our findings showed that PRC1 and PRC2 were spatiotemporally expressed in brain and spinal cord of early embryos.

  15. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation.

    Science.gov (United States)

    Merrick, Deborah; Stadler, Lukas Kurt Josef; Larner, Dean; Smith, Janet

    2009-01-01

    Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3(-/-)) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3(-/-) mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3(-/-) and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3(-/-) and mdx mutants have cardiac defects. In cav-3(-/-) mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3(-/-) mutants. In double mutant (mdxcav-3(+/-)) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3(+/-)), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive cells are depleted

  16. Capturing structure and function in an embryonic heart with Biophotonic tools

    Directory of Open Access Journals (Sweden)

    Ganga eKarunamuni

    2014-09-01

    Full Text Available Disturbed cardiac function (flow, excitation, contraction, calcium transients at an early stage of development has been shown to correlate with and may lead to cellular/molecular, functional and structural cardiac anomalies at later stages culminating in the congenital heart defects (CHDs that present at birth. It is not surprising that cardiac function, which drives embryonic and extraembryonic circulation, is also connected to neural and placental development. While our knowledge of molecular and cellular steps in cardiac development is growing rapidly, our understanding of the role of cardiovascular function in the embryo is still rudimentary. One reason for the scanty information in this area is that the tools to study early cardiac function are limited. Recently developed and adapted Biophotonic tools may overcome the challenges of studying the tiny fragile beating heart. In this chapter, the strengths and limitations of Biophotonic tools will be described with emphasis on Optical Coherence Tomography (OCT. OCT can be used for detailed structural and functional studies of the tubular and looping avian embryo heart under physiological conditions. The same hearts can be subsequently rapidly and quantitatively phenotyped at a later stage using OCT. When combined with other tools such as Optimal Mapping (OM and Optical Pacing (OP, OCT has the potential to reveal in spatial and temporal detail the biophysical changes that can potentially impact mechanotransduction pathways. This information may provide better explanations for the etiology of the CHDs when interwoven with our understanding of the multiple molecular pathways that have been described to be involved. Examples of application of these tools to study the etiology of CHDs are presented. Directions for future directions and advances in the use of Biophotonic tools are discussed.

  17. Canonical Wnt signaling promotes early hematopoietic progenitor formation and erythroid specification during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Anuradha Tarafdar

    Full Text Available The generation of hematopoietic stem cells (HSCs during development is a complex process linked to morphogenic signals. Understanding this process is important for regenerative medicine applications that require in vitro production of HSC. In this study we investigated the effects of canonical Wnt/β-catenin signaling during early embryonic differentiation and hematopoietic specification using an embryonic stem cell system. Our data clearly demonstrates that following early differentiation induction, canonical Wnt signaling induces a strong mesodermal program whilst maintaining a degree of stemness potential. This involved a complex interplay between β-catenin/TCF/LEF/Brachyury/Nanog. β-catenin mediated up-regulation of TCF/LEF resulted in enhanced brachyury levels, which in-turn lead to Nanog up-regulation. During differentiation, active canonical Wnt signaling also up-regulated key transcription factors and cell specific markers essential for hematopoietic specification, in particular genes involved in establishing primitive erythropoiesis. This led to a significant increase in primitive erythroid colony formation. β-catenin signaling also augmented early hematopoietic and multipotent progenitor (MPP formation. Following culture in a MPP specific cytokine cocktail, activation of β-catenin suppressed differentiation of the early hematopoietic progenitor population, with cells displaying a higher replating capacity and a propensity to form megakaryocytic erythroid progenitors. This bias towards erythroid lineage commitment was also observed when hematopoietic progenitors were directed to undergo myeloid colony formation. Overall this study underscores the importance of canonical Wnt/β-catenin signaling in mesodermal specification, primitive erythropoiesis and early hematopietic progenitor formation during hematopoietic induction.

  18. Canonical Wnt signaling promotes early hematopoietic progenitor formation and erythroid specification during embryonic stem cell differentiation.

    Science.gov (United States)

    Tarafdar, Anuradha; Dobbin, Edwina; Corrigan, Pamela; Freeburn, Robin; Wheadon, Helen

    2013-01-01

    The generation of hematopoietic stem cells (HSCs) during development is a complex process linked to morphogenic signals. Understanding this process is important for regenerative medicine applications that require in vitro production of HSC. In this study we investigated the effects of canonical Wnt/β-catenin signaling during early embryonic differentiation and hematopoietic specification using an embryonic stem cell system. Our data clearly demonstrates that following early differentiation induction, canonical Wnt signaling induces a strong mesodermal program whilst maintaining a degree of stemness potential. This involved a complex interplay between β-catenin/TCF/LEF/Brachyury/Nanog. β-catenin mediated up-regulation of TCF/LEF resulted in enhanced brachyury levels, which in-turn lead to Nanog up-regulation. During differentiation, active canonical Wnt signaling also up-regulated key transcription factors and cell specific markers essential for hematopoietic specification, in particular genes involved in establishing primitive erythropoiesis. This led to a significant increase in primitive erythroid colony formation. β-catenin signaling also augmented early hematopoietic and multipotent progenitor (MPP) formation. Following culture in a MPP specific cytokine cocktail, activation of β-catenin suppressed differentiation of the early hematopoietic progenitor population, with cells displaying a higher replating capacity and a propensity to form megakaryocytic erythroid progenitors. This bias towards erythroid lineage commitment was also observed when hematopoietic progenitors were directed to undergo myeloid colony formation. Overall this study underscores the importance of canonical Wnt/β-catenin signaling in mesodermal specification, primitive erythropoiesis and early hematopietic progenitor formation during hematopoietic induction.

  19. Optical mapping of conduction in early embryonic quail hearts with light-sheet microscopy (Conference Presentation)

    Science.gov (United States)

    Ma, Pei; Gu, Shi; Wang, Yves T.; Jenkins, Michael W.; Rollins, Andrew M.

    2016-03-01

    Optical mapping (OM) using fluorescent voltage-sensitive dyes (VSD) to measure membrane potential is currently the most effective method for electrophysiology studies in early embryonic hearts due to its noninvasiveness and large field-of-view. Conventional OM acquires bright-field images, collecting signals that are integrated in depth and projected onto a 2D plane, not capturing the 3D structure of the sample. Early embryonic hearts, especially at looping stages, have a complicated, tubular geometry. Therefore, conventional OM cannot provide a full picture of the electrical conduction circumferentially around the heart, and may result in incomplete and inaccurate measurements. Here, we demonstrate OM of Hamburger and Hamilton stage 14 embryonic quail hearts using a new commercially-available VSD, Fluovolt, and depth sectioning using a custom built light-sheet microscopy system. Axial and lateral resolution of the system is 14µm and 8µm respectively. For OM imaging, the field-of-view was set to 900µm×900µm to cover the entire heart. 2D over time OM image sets at multiple cross-sections through the looping-stage heart were recorded. The shapes of both atrial and ventricular action potentials acquired were consistent with previous reports using conventional VSD (di-4-ANNEPS). With Fluovolt, signal-to-noise ratio (SNR) is improved significantly by a factor of 2-10 (compared with di-4-ANNEPS) enabling light-sheet OM, which intrinsically has lower SNR due to smaller sampling volumes. Electrophysiologic parameters are rate dependent. Optical pacing was successfully integrated into the system to ensure heart rate consistency. This will also enable accurately gated reconstruction of full four dimensional conduction maps and 3D conduction velocity measurements.

  20. Early embryonic chromosome instability results in stable mosaic pattern in human tissues.

    Directory of Open Access Journals (Sweden)

    Hasmik Mkrtchyan

    Full Text Available The discovery of copy number variations (CNV in the human genome opened new perspectives on the study of the genetic causes of inherited disorders and the aetiology of common diseases. Here, a single-cell-level investigation of CNV in different human tissues led us to uncover the phenomenon of mitotically derived genomic mosaicism, which is stable in different cell types of one individual. The CNV mosaic ratios were different between the 10 individuals studied. However, they were stable in the T lymphocytes, immortalized B lymphoblastoid cells, and skin fibroblasts analyzed in each individual. Because these cell types have a common origin in the connective tissues, we suggest that mitotic changes in CNV regions may happen early during embryonic development and occur only once, after which the stable mosaic ratio is maintained throughout the differentiated tissues. This concept is further supported by a unique study of immortalized B lymphoblastoid cell lines obtained with 20 year difference from two subjects. We provide the first evidence of somatic mosaicism for CNV, with stable variation ratios in different cell types of one individual leading to the hypothesis of early embryonic chromosome instability resulting in stable mosaic pattern in human tissues. This concept has the potential to open new perspectives in personalized genetic diagnostics and can explain genetic phenomena like diminished penetrance in autosomal dominant diseases. We propose that further genomic studies should focus on the single-cell level, to better understand the aetiology of aging and diseases mediated by somatic mutations.

  1. Transcriptional analysis of early lineage commitment in human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Wormald Sam

    2007-03-01

    Full Text Available Abstract Background The mechanisms responsible for the maintenance of pluripotency in human embryonic stem cells, and those that drive their commitment into particular differentiation lineages, are poorly understood. In fact, even our knowledge of the phenotype of hESC is limited, because the immunological and molecular criteria presently used to define this phenotype describe the properties of a heterogeneous population of cells. Results We used a novel approach combining immunological and transcriptional analysis (immunotranscriptional profiling to compare gene expression in hESC populations at very early stages of differentiation. Immunotranscriptional profiling enabled us to identify novel markers of stem cells and their differentiated progeny, as well as novel potential regulators of hESC commitment and differentiation. The data show clearly that genes associated with the pluripotent state are downregulated in a coordinated fashion, and that they are co-expressed with lineage specific transcription factors in a continuum during the early stages of stem cell differentiation. Conclusion These findings, that show that maintenance of pluripotency and lineage commitment are dynamic, interactive processes in hESC cultures, have important practical implications for propagation and directed differentiation of these cells, and for the interpretation of mechanistic studies of hESC renewal and commitment. Since embryonic stem cells at defined stages of commitment can be isolated in large numbers by immunological means, they provide a powerful model for studying molecular genetics of stem cell commitment in the embryo.

  2. Transcriptional analysis of early lineage commitment in human embryonic stem cells

    Science.gov (United States)

    Laslett, Andrew L; Grimmond, Sean; Gardiner, Brooke; Stamp, Lincon; Lin, Adelia; Hawes, Susan M; Wormald, Sam; Nikolic-Paterson, David; Haylock, David; Pera, Martin F

    2007-01-01

    Background The mechanisms responsible for the maintenance of pluripotency in human embryonic stem cells, and those that drive their commitment into particular differentiation lineages, are poorly understood. In fact, even our knowledge of the phenotype of hESC is limited, because the immunological and molecular criteria presently used to define this phenotype describe the properties of a heterogeneous population of cells. Results We used a novel approach combining immunological and transcriptional analysis (immunotranscriptional profiling) to compare gene expression in hESC populations at very early stages of differentiation. Immunotranscriptional profiling enabled us to identify novel markers of stem cells and their differentiated progeny, as well as novel potential regulators of hESC commitment and differentiation. The data show clearly that genes associated with the pluripotent state are downregulated in a coordinated fashion, and that they are co-expressed with lineage specific transcription factors in a continuum during the early stages of stem cell differentiation. Conclusion These findings, that show that maintenance of pluripotency and lineage commitment are dynamic, interactive processes in hESC cultures, have important practical implications for propagation and directed differentiation of these cells, and for the interpretation of mechanistic studies of hESC renewal and commitment. Since embryonic stem cells at defined stages of commitment can be isolated in large numbers by immunological means, they provide a powerful model for studying molecular genetics of stem cell commitment in the embryo. PMID:17335568

  3. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, L.S.; Bennett, P.R.; Moore, G.E. [Queen Charlotte`s and Chelsea Hospital, London (United Kingdom)

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  4. Variations of X chromosome inactivation occur in early passages of female human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Tamar Dvash

    Full Text Available X chromosome inactivation (XCI is a dosage compensation mechanism essential for embryonic development and cell physiology. Human embryonic stem cells (hESCs derived from inner cell mass (ICM of blastocyst stage embryos have been used as a model system to understand XCI initiation and maintenance. Previous studies of undifferentiated female hESCs at intermediate passages have shown three possible states of XCI; 1 cells in a pre-XCI state, 2 cells that already exhibit XCI, or 3 cells that never undergo XCI even upon differentiation. In this study, XCI status was assayed in ten female hESC lines between passage 5 and 15 to determine whether XCI variations occur in early passages of hESCs. Our results show that three different states of XCI already exist in the early passages of hESC. In addition, we observe one cell line with skewed XCI and preferential expression of X-linked genes from the paternal allele, while another cell line exhibits random XCI. Skewed XCI in undifferentiated hESCs may be due to clonal selection in culture instead of non-random XCI in ICM cells. We also found that XIST promoter methylation is correlated with silencing of XIST transcripts in early passages of hESCs, even in the pre-XCI state. In conclusion, XCI variations already take place in early passages of hESCs, which may be a consequence of in vitro culture selection during the derivation process. Nevertheless, we cannot rule out the possibility that XCI variations in hESCs may reflect heterogeneous XCI states in ICM cells that stochastically give rise to hESCs.

  5. Xenotransplantation of Embryonic Pig Kidney or Pancreas to Replace the Function of Mature Organs

    Directory of Open Access Journals (Sweden)

    Marc R. Hammerman

    2011-01-01

    Full Text Available Lack of donor availability limits the number of human donor organs. The need for host immunosuppression complicates transplantation procedures. Ultrastructurally precise kidneys differentiate in situ following xenotransplantation in mesentery of embryonic pig renal primordia. The developing organ attracts its blood supply from the host, obviating humoral rejection. Engraftment of pig renal primordia transplanted directly into rats requires host immune suppression. However, insulin-producing cells originating from embryonic pig pancreas obtained very early following initiation of organogenesis [embryonic day 28 (E28] engraft long term in nonimmune-suppressed diabetic rats or rhesus macaques. Engraftment of morphologically similar cells originating from adult porcine islets of Langerhans (islets occurs in rats previously transplanted with E28 pig pancreatic primordia. Here, we review recent findings germane to xenotransplantation of pig renal or pancreatic primordia as a novel organ replacement strategy.

  6. Chromosomal anomaly spectrum in early pregnancy loss in relation to presence or absence of an embryonic pole.

    Science.gov (United States)

    Muñoz, Monica; Arigita, Marta; Bennasar, Mar; Soler, Anna; Sanchez, Aurora; Borrell, Antoni

    2010-12-01

    To compare the cytogenetic findings in a series of missed miscarriages evaluated by chorionic villus sampling, in relation to embryonic pole presence (embryonic or anembryonic). Prospective cross-sectional study. Tertiary referral hospital. Women presenting with a missed miscarriage. Transcervical chorionic villus sampling and cytogenetic studies in the chorionic villi with use of the semidirect method. Embryonic pole presence or absence assessed by transvaginal ultrasound examination. Type of chromosomal anomalies found in both subgroups. Although the chromosomal abnormality rate was similar for miscarriages with absent or present embryo (61% vs. 68% respectively), frequencies for viable autosomal trisomies (2.3% vs. 19%) and monosomy X (0% vs. 9.2%) were significantly lower when no embryonic pole was seen. Viable autosomal trisomies and monosomies X appear not to be a common cause of miscarriage with an early fetal demise (anembryonic miscarriage). Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Investigation of chromosome abnormalities and early embryonic mortality in goose lines.

    Science.gov (United States)

    Liptói, Krisztina; Hidas, A; Rouvier, R

    2005-01-01

    Early embryonic mortality and chromosome abnormalities were studied in three goose lines: Grey Landes (line 7), White Polish (line 4) and their synthetic line (line 9). Eggs laid at the beginning, in the middle and at the end of the laying season were set. At candling at 5th day after egg set, all eggs (2847) were examined and those showing no normal embryonic development were opened 2847. Dead embryos were classified phenotypically and karyotyped. The mean ratio of embryonic mortality (EM) among fertile eggs was 9.4%, 5.2%, 7.3% in the lines 4, 7 and 9, respectively. The mean ratio of embryos with chromosomal abnormalities (CA) among the dead embryos was 8.0%, 14.8% and 13.1% in the lines 4, 7 and 9, respectively. Gander effect and layer within gander effect on embryo mortality were significant, indicating genetic factors. Father and mother of the layer effects were also significant, showing family effects. Animals producing dead embryos and embryos with chromosome abnormalities in high proportion were selected. In the selected groups the mean EM was 17.7-22.9%, and the mean CA was 11.7-34.7% among the three lines. The repetition of CA was not observed in the reproductive season of following year, while animals repeated the high EM (repeatability coefficient of 0.54). This shows that some part of EM may be resulted from other genetic factors. Ganders and layers progeny of these selected animals showed also high EM. It was concluded that culling pairs giving high EM value in their embryos could increase the average level of embryo viability and that the study of genetic determinism of that trait should be continued in geese.

  8. Boolean genetic network model for the control of C. elegans early embryonic cell cycles

    Science.gov (United States)

    2013-01-01

    Background In Caenorhabditis elegans early embryo, cell cycles only have two phases: DNA synthesis and mitosis, which are different from the typical 4-phase cell cycle. Modeling this cell-cycle process into network can fill up the gap in C. elegans cell-cycle study and provide a thorough understanding on the cell-cycle regulations and progressions at the network level. Methods In this paper, C. elegans early embryonic cell-cycle network has been constructed based on the knowledge of key regulators and their interactions from literature studies. A discrete dynamical Boolean model has been applied in computer simulations to study dynamical properties of this network. The cell-cycle network is compared with random networks and tested under several perturbations to analyze its robustness. To investigate whether our proposed network could explain biological experiment results, we have also compared the network simulation results with gene knock down experiment data. Results With the Boolean model, this study showed that the cell-cycle network was stable with a set of attractors (fixed points). A biological pathway was observed in the simulation, which corresponded to a whole cell-cycle progression. The C. elegans network was significantly robust when compared with random networks of the same size because there were less attractors and larger basins than random networks. Moreover, the network was also robust under perturbations with no significant change of the basin size. In addition, the smaller number of attractors and the shorter biological pathway from gene knock down network simulation interpreted the shorter cell-cycle lengths in mutant from the RNAi gene knock down experiment data. Hence, we demonstrated that the results in network simulation could be verified by the RNAi gene knock down experiment data. Conclusions A C. elegans early embryonic cell cycles network was constructed and its properties were analyzed and compared with those of random networks

  9. The role of apoptosis in early embryonic development of the adenohypophysis in rats

    Directory of Open Access Journals (Sweden)

    Gedrange Tomas

    2008-07-01

    Full Text Available Abstract Background Apoptosis is involved in fundamental processes of life, like embryonic development, tissue homeostasis, or immune defense. Defects in apoptosis cause or contribute to developmental malformation, cancer, and degenerative disorders. Methods The developing adenohypophysis area of rat fetuses was studied at the embryonic stage 13.5 (gestational day for apoptotic and proliferative cell activities using histological serial sections. Results A high cell proliferation rate was observed throughout the adenohypophysis. In contrast, apoptotic cells visualized by evidence of active caspase-3, were detected only in the basal epithelial cones as an introducing event for fusion and closure of the pharyngeal roof. Conclusion We can clearly show an increasing number of apoptotic events only at the basic fusion sides of the adenohypophysis as well as in the opening region of this organ. Apoptotic destruction of epithelial cells at the basal cones of the adenohypophysis begins even before differentiation of the adenohypophyseal cells and their contact with the neurohypophysis. In early stages of development, thus, apoptotic activity of the adenohypophysis is restricted to the basal areas mentioned. In our test animals, the adenohypophysis develops after closure of the anterior neuroporus.

  10. Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish

    Science.gov (United States)

    Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.

    2014-06-01

    With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.

  11. Functional genetic targeting of embryonic kidney progenitor cells ex vivo.

    Science.gov (United States)

    Junttila, Sanna; Saarela, Ulla; Halt, Kimmo; Manninen, Aki; Pärssinen, Heikki; Lecca, M Rita; Brändli, André W; Sims-Lucas, Sunder; Skovorodkin, Ilya; Vainio, Seppo J

    2015-05-01

    The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor-treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting.

  12. Florfenicol induces early embryonic death in eggs collected from treated hens.

    Science.gov (United States)

    Al-Shahrani, S; Naidoo, V

    2015-08-18

    Florfenicol, a commonly used veterinary antibiotic, was reported to have caused a severe drop in egg hatchability following its off-label use on a broiler breeder farm in South Africa. According to the pharmacovigilance report, hatchability dropped by 80 % for up to a week following a five day course at 10 mg/kg (both males and females treated metaphylactically) to manage an Escherichia coli infection. While mammalian toxicity studies indicate the potential for early embryonic death in utero or testicular damage, no literature is available on the avian toxicity of florfenicol. For this study we investigated the effects of florfenicol at various doses from 10 to 90 mg/kg on the egg hatchability in a breeder flock we kept and established under controlled conditions, with the same cockerels and hens being exposed in a phased manner. Following five days of oral exposure, no toxic signs were evident in any of the cockerels or hens treated at doses up to 90 mg/kg. Treatment of only the cockerels had no effect on egg hatchability, while treatment of only the hens at doses of 60 and 90 mg/kg resulted in decreased hatchability of 0 % in comparison to 70 % of the control as early 24 h after treatment. In all cases, decreased hatchability was associated with embryonic death at 5 days of development. The toxic effects of florfenicol were completely reversible with comparable hatchability being present by day 4 post-treatment withdrawal. Toxicity correlated with total egg florfenicol concentrations with an LC50 of 1.07 μg/g. Florfenicol appears to be toxic to the developing chick embryo at around day 5 of incubation, in the absence of related toxicity in the hen or cockerel.

  13. Analysis of mRNA associated factors during bovine oocyte maturation and early embryonic development.

    Science.gov (United States)

    Siemer, Corinna; Smiljakovic, Tatjana; Bhojwani, Monika; Leiding, Claus; Kanitz, Wilhelm; Kubelka, Michal; Tomek, Wolfgang

    2009-12-01

    Regulation of gene expression at the translational level is particularly essential during developmental periods, when transcription is impaired. According to the closed-loop model of translational initiation, we have analyzed components of the 5 -mRNA cap-binding complex eIF4F (eIF4E, eIF4G, eIF4A), the eIF4E repressor 4E-BP1, and 3 -mRNA poly-(A) tail-associated proteins (PABP1 and 3, PAIP1 and 2, CPEB1, Maskin) during in vitro maturation of bovine oocytes and early embryonic development up to the 16-cell stage. Furthermore, we have elucidated the activity of distinct kinases which are potentially involved in their phosphorylation. Major phosphorylation of specific target sequences of PKA, PKB, PKC, CDKs, ATM/ATR, and MAPK were observed in M II stage oocytes. Furthermore, main changes in the abundance and/or phosphorylation of distinct mRNA-binding factors occur at the transition from M II stage oocytes to 2-cell embryos. In conclusion, the results indicate that, at the transition from oocyte to embryonic development, translational initiation is regulated by striking differences in the abundance and/or phosphorylation of 5 -end and 3 -end mRNA associated factors, mainly the poly-(A) bindings proteins PABP1 and 3, their repressor PAIP2 and a Maskin-like protein with distinct eIF4E-binding properties which prevents eIF4E/cap binding and eIF4F formation in vitro. Nevertheless, from the M II stage to 16-cell embryos a substantial amount of eIF4E and, to a lesser extent, of eIF4G was precipitated by (7)m-GTP-Separose indicating eIF4F complex formation. Therefore, it is likely that in general the reduction in PABP1 and 3 abundance represses overall translation during early embryonic development.

  14. The potential role of As-sumo-1 in the embryonic diapause process and early embryo development of Artemia sinica.

    Science.gov (United States)

    Chu, Bing; Yao, Feng; Cheng, Cheng; Wu, Yang; Mei, Yanli; Li, Xuejie; Liu, Yan; Wang, Peisheng; Hou, Lin; Zou, Xiangyang

    2014-01-01

    During embryonic development of Artemia sinica, environmental stresses induce the embryo diapause phenomenon, required to resist apoptosis and regulate cell cycle activity. The small ubiquitin-related modifier-1 (SUMO), a reversible post-translational protein modifier, plays an important role in embryo development. SUMO regulates multiple cellular processes, including development and other biological processes. The molecular mechanism of diapause, diapause termination and the role of As-sumo-1 in this processes and in early embryo development of Artemia sinica still remains unknown. In this study, the complete cDNA sequences of the sumo-1 homolog, sumo ligase homolog, caspase-1 homolog and cyclin B homolog from Artemia sinica were cloned. The mRNA expression patterns of As-sumo-1, sumo ligase, caspase-1, cyclin B and the location of As-sumo-1 were investigated. SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E proteins were analyzed during different developmental stages of the embryo of A. sinica. Small interfering RNA (siRNA) was used to verify the function of sumo-1 in A. sinica. The full-length cDNA of As-sumo-1 was 476 bp, encoding a 92 amino acid protein. The As-caspases-1 cDNA was 966 bp, encoding a 245 amino-acid protein. The As-sumo ligase cDNA was 1556 bp encoding, a 343 amino acid protein, and the cyclin B cDNA was 739 bp, encoding a 133 amino acid protein. The expressions of As-sumo-1, As-caspase-1 and As-cyclin B were highest at the 10 h stage of embryonic development, and As-sumo ligase showed its highest expression at 0 h. The expression of As-SUMO-1 showed no tissue or organ specificity. Western blotting showed high expression of As-SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E at the 10 h stage. The siRNA caused abnormal development of the embryo, with increased malformation and mortality. As-SUMO-1 is a crucial regulation and modification protein resumption of embryonic diapause and early embryo development of A. sinica.

  15. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    Science.gov (United States)

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility

  16. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Kawamura

    Full Text Available Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for

  17. PGC-1α and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function

    NARCIS (Netherlands)

    M.J. Birket (Matthew); S. Casini (Simona); G. Kosmidis (Georgios); D.J. Elliott (David); A.A. Gerencser (Akos); A. Baartscheer (Antonius); C. Schumacher (Cees); P.G. Mastroberardino (Pier); A.G. Elefanty (Andrew); E.G. Stanley (Ed); C.L. Mummery (Christine)

    2013-01-01

    textabstractDiminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, wh

  18. Red Ginseng Extract Facilitates the Early Differentiation of Human Embryonic Stem Cells into Mesendoderm Lineage

    Directory of Open Access Journals (Sweden)

    Yoon Young Kim

    2011-01-01

    Full Text Available Human embryonic stem cells (hESCs have capacities to self-renew and differentiate into all cell types in vitro. Red ginseng (RG is known to have a wide range of pharmacological effects in vivo; however, the reports on its effects on hESCs are few. In this paper, we tried to demonstrate the effects of RG on the proliferation and differentiation of hESCs. Undifferentiated hESCs, embryoid bodies (EBs, and hESC-derived cardiac progenitors (CPs were treated with RG extract at 0.125, 0.25, and 0.5 mg/mL. After treatment of undifferentiated hESCs from day 2 to day 6 of culture, BrdU labeling showed that RG treatment increased the proliferation of hESCs, and the expression of Oct4 and Nanog was increased in RG-treated group. To find out the effects of RG on early differentiation stage cells, EBs were treated with RG extract for 10 days and attached for further differentiation. Immunostaining for three germ layer markers showed that RG treatment increased the expressions of Brachyury and HNF3β on EBs. Also, RG treatment increased the expression of Brachyury in early-stage and of Nkx2.5 in late-stage hESC-derived CPs. These results demonstrate facilitating effects of RG extract on the proliferation and early differentiation of hESC.

  19. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Martin Pook

    Full Text Available Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA. We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain-145 kDa-accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.

  20. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells.

    Science.gov (United States)

    Pook, Martin; Teino, Indrek; Kallas, Ade; Maimets, Toivo; Ingerpuu, Sulev; Jaks, Viljar

    2015-01-01

    Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain-145 kDa-accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.

  1. The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development.

    Directory of Open Access Journals (Sweden)

    Bridget Biersmith

    Full Text Available Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegansCed-5, human DOCK180, DrosophilaMyoblast city, or Mbc family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg, the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development.

  2. Student Learning of Early Embryonic Development via the Utilization of Research Resources from the Nematode "Caenorhabditis elegans"

    Science.gov (United States)

    Lu, Fong-Mei; Eliceiri, Kevin W.; Squirrell, Jayne M.; White, John G.; Stewart, James

    2008-01-01

    This study was undertaken to gain insights into undergraduate students' understanding of early embryonic development, specifically, how well they comprehend the concepts of volume constancy, cell lineages, body plan axes, and temporal and spatial dimensionality in development. To study student learning, a curriculum was developed incorporating…

  3. A New Model to Perform Electrophysiological Studies in the Early Embryonic Mouse Heart

    Directory of Open Access Journals (Sweden)

    Anna Kornblum

    2013-07-01

    Full Text Available Background: The first electrocardiograms (ECGs have been recorded with a capillary electrometer in the late 19th century by John Burdon Sanderson and Augustus Waller. In 1903 Willem Einthoven used the much more sensitive string galvanometer and was awarded Nobel Price in Medicine for this discovery. Though the physical principles of that era are still in use, there have been many advances but also challenges in cardiac electrophysiology over the last decades. One challenge is to record electrocardiograms of rather small animals such as mice and even smaller organisms such as their embryos. As mice belong to the most routinely used laboratory animals it is important to better understand their physiology and specific diseases. We therefore aimed to study whether it is feasible to measure electrical activities of embryonic mouse hearts. Methods and Results: For our studies we used substrate-integrated Microelectrode Arrays combined with newly developed stimulation electrodes to perform electrophysiological studies in these hearts. The system enabled us to perform ECG-like recordings with atrio-ventricular (anterograde and ventriculo-atrial (retrograde stimulation. The functional separation of atria and ventricles, indicated by a stable atrio-ventricular conduction time, occurred clearly earlier than the morphological separation. Electrical stimulation induced a reversible prolongation of the anterograde and retrograde conduction up to atrio-ventricular conduction blocks at higher frequencies. Conclusion: These results yield new insight into functional aspects of murine cardiac development, and may help as a new diagnostic tool to uncover the functional and electrophysiological background of embryonic cardiac phenotypes of genetically altered mice.

  4. Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition

    Science.gov (United States)

    Midgett, Madeline; López, Claudia S.; David, Larry; Maloyan, Alina; Rugonyi, Sandra

    2017-01-01

    Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease. However, the progressive detrimental remodeling processes that relate altered blood flow to cardiac defects remain unclear. Endothelial–mesenchymal cell transition is one of the many complex developmental events involved in transforming the early embryonic outflow tract into the aorta, pulmonary trunk, interventricular septum, and semilunar valves. This study elucidated the effects of increased hemodynamic load on endothelial–mesenchymal transition remodeling of the outflow tract cushions in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24. Increased hemodynamic load induced increased cell density in outflow tract cushions, fewer cells along the endocardial lining, endocardium junction disruption, and altered periostin expression as measured by confocal microscopy analysis. In addition, 3D focused ion beam scanning electron microscopy analysis determined that a portion of endocardial cells adopted a migratory shape after outflow tract banding that is more irregular, elongated, and with extensive cellular projections compared to normal cells. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with a more active stage of endothelial–mesenchymal transition. Outflow tract banding enhances the endothelial–mesenchymal transition phenotype during formation of the outflow tract cushions, suggesting that endothelial–mesenchymal transition is a critical developmental process that when disturbed by altered blood flow gives rise to cardiac malformation and defects. PMID:28228731

  5. Drosophila KDEL receptor function in the embryonic salivary gland and epidermis.

    Directory of Open Access Journals (Sweden)

    Elliott W Abrams

    Full Text Available Core components of the secretory pathway have largely been identified and studied in single cell systems such as the budding yeast S. cerevisiae or in mammalian tissue culture. These studies provide details on the molecular functions of the secretory machinery; they fail, however, to provide insight into the role of these proteins in the context of specialized organs of higher eukaryotes. Here, we identify and characterize the first loss-of-function mutations in a KDEL receptor gene from higher eukaryotes. Transcripts from the Drosophila KDEL receptor gene KdelR - formerly known as dmErd2 - are provided maternally and, at later stages, are at elevated levels in several embryonic cell types, including the salivary gland secretory cells, the fat body and the epidermis. We show that, unlike Saccharomyces cerevisiae Erd2 mutants, which are viable, KdelR mutations are early larval lethal, with homozygous mutant animals dying as first instar larvae. KdelR mutants have larval cuticle defects similar to those observed with loss-of-function mutations in other core secretory pathway genes and with mutations in CrebA, which encodes a bZip transcription factor that coordinately upregulates secretory pathway component genes in specialized secretory cell types. Using the salivary gland, we demonstrate a requirement for KdelR in maintaining the ER pool of a subset of soluble resident ER proteins. These studies underscore the utility of the Drosophila salivary gland as a unique system for studying the molecular machinery of the secretory pathway in vivo in a complex eukaryote.

  6. The influence of early embryo traits on human embryonic stem cell derivation efficiency.

    Science.gov (United States)

    O'Leary, Thomas; Heindryckx, Björn; Lierman, Sylvie; Van der Jeught, Margot; Menten, Björn; Deforce, Dieter; Cornelissen, Ria; de Sousa Lopes, Susana Chuva; De Sutter, Petra

    2011-05-01

    Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.

  7. Toxic effects of 1-methyl-3-octylimidazolium bromide on the early embryonic development of the frog Rana nigromaculata.

    Science.gov (United States)

    Li, Xiao-Yu; Zhou, Jing; Yu, Miao; Wang, Jian-Ji; Pei, Yuan Chao

    2009-02-01

    Toxic effects of 1-methyl-3-octylimidazolium bromide ([C8mim]Br) on the early embryonic development of the frog Rana nigromaculata were evaluated. Frog embryos in different developmental stages (early cleavage, early gastrula, or neural plate) were exposed to 0, 45, 63, or 88.2 mg/L of the ionic liquid [C8mim]Br for 96 h. The 96-h median lethal concentration values at the early cleavage, early gastrula, and neural plate stages of development were 85.1, 43.4, and 42.4 mg/L, respectively. In embryos exposed to [C8mim]Br, the duration of embryo dechorionation was prolonged in the early cleavage and neural plate, but not the early gastrula, stages of development compared with control embryos. Embryos in the neural plate developmental stage were found to have the highest mortality rate following [C8mim]Br exposure. These results suggest that [C8mim]Br has toxic effects on the early embryonic development of the frog.

  8. Regulation of embryonic size in early mouse development in vitro culture system.

    Science.gov (United States)

    Hisaki, Tomoka; Kawai, Ikuma; Sugiura, Koji; Naito, Kunihiko; Kano, Kiyoshi

    2014-08-01

    Mammals self-regulate their body size throughout development. In the uterus, embryos are properly regulated to be a specific size at birth. Previously, size and cell number in aggregated embryos, which were made from two or more morulae, and half embryos, which were halved at the 2-cell stage, have been analysed in vivo in preimplantation and post-implantation development in mice. Here, we examined whether or not the mouse embryo has the capacity to self-regulate growth using an in vitro culture system. To elucidate embryonic histology, cells were counted in aggregated or half embryos in comparison with control embryos. Both double- and triple-aggregated embryos contained more cells than did control embryos during all culture periods, and the relative growth ratios showed no growth inhibition in an in vitro culture system. Meanwhile, half embryos contained fewer cells than control embryos, but the number grew throughout the culture period. Our data suggest that the growth of aggregated embryos is not affected and continues in an in vitro culture system. On the other hand, the growth of half embryos accelerates and continues in an in vitro culture system. This situation, in turn, implied that post-implantation mouse embryos might have some potential to regulate their own growth and size as seen by using an in vitro culture system without uterus factors. In conclusion, our results indicated that embryos have some ways in which to regulate their own size in mouse early development.

  9. Evolutionary development of embryonic cerebrospinal fluid composition and regulation: an open research field with implications for brain development and function.

    Science.gov (United States)

    Bueno, David; Garcia-Fernàndez, Jordi

    2016-03-15

    Within the consolidated field of evolutionary development, there is emerging research on evolutionary aspects of central nervous system development and its implications for adult brain structure and function, including behaviour. The central nervous system is one of the most intriguing systems in complex metazoans, as it controls all body and mind functions. Its failure is responsible for a number of severe and largely incurable diseases, including neurological and neurodegenerative ones. Moreover, the evolution of the nervous system is thought to be a critical step in the adaptive radiation of vertebrates. Brain formation is initiated early during development. Most embryological, genetic and evolutionary studies have focused on brain neurogenesis and regionalisation, including the formation and function of organising centres, and the comparison of homolog gene expression and function among model organisms from different taxa. The architecture of the vertebrate brain primordium also reveals the existence of connected internal cavities, the cephalic vesicles, which in fetuses and adults become the ventricular system of the brain. During embryonic and fetal development, brain cavities and ventricles are filled with a complex, protein-rich fluid called cerebrospinal fluid (CSF). However, CSF has not been widely analysed from either an embryological or evolutionary perspective. Recently, it has been demonstrated in higher vertebrates that embryonic cerebrospinal fluid has key functions in delivering diffusible signals and nutrients to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. Moreover, it has been shown that the composition and homeostasis of CSF are tightly controlled in a time-dependent manner from the closure of the anterior neuropore, just before the initiation of primary neurogenesis, up to the formation of functional choroid plexuses. In

  10. Generation of multipotent early lymphoid progenitors from human embryonic stem cells.

    Science.gov (United States)

    Larbi, Aniya; Mitjavila-Garcia, Maria Teresa; Flamant, Stéphane; Valogne, Yannick; Clay, Denis; Usunier, Benoît; l'Homme, Bruno; Féraud, Olivier; Casal, Ibrahim; Gobbo, Emilie; Divers, Dominique; Chapel, Alain; Turhan, Ali G; Bennaceur-Griscelli, Annelise; Haddad, Rima

    2014-12-15

    During human embryonic stem cell (ESC) hematopoietic differentiation, the description of the initial steps of lymphopoiesis remains elusive. Using a two-step culture procedure, we identified two original populations of ESC-derived hematopoietic progenitor cells (HPCs) with CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) phenotypes. Bulk cultures and limiting dilution assays, culture with MS5 cells in the presence of Notch ligand Delta-like-1 (DL-1), and ex vivo colonization tests using fetal thymic organ cultures showed that although CD34(+)CD45RA(+)CD7(-) HPCs could generate cells of the three lymphoid lineages, their potential was skewed toward the B cell lineages. In contrast, CD34(+)CD45RA(+)CD7(+) HPCs predominantly exhibited a T/natural killer (NK) cell differentiation potential. Furthermore these cells could differentiate equivalently into cells of the granulo-macrophagic lineage and dendritic cells and lacked erythroid potential. Expression profiling of 18 markers by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) HPCs express genes of the lymphoid specification and that CD34(+)CD45RA(+)CD7(-) cells express B-cell-associated genes, while CD34(+)CD45RA(+)CD7(+) HPCs display a T-cell molecular profile. Altogether, these findings indicate that CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) HPCs correspond to candidate multipotent early lymphoid progenitors polarized toward either the B or T/NK lineage, respectively. This work should improve our understanding of the early steps of lymphopoiesis from pluripotent stem cells and pave the way for the production of lymphocytes for cell-based immunotherapy and lymphoid development studies.

  11. Changing nuclear landscape and unique PML structures during early epigenetic transitions of human embryonic stem cells.

    Science.gov (United States)

    Butler, John T; Hall, Lisa L; Smith, Kelly P; Lawrence, Jeanne B

    2009-07-01

    The complex nuclear structure of somatic cells is important to epigenomic regulation, yet little is known about nuclear organization of human embryonic stem cells (hESC). Here we surveyed several nuclear structures in pluripotent and transitioning hESC. Observations of centromeres, telomeres, SC35 speckles, Cajal Bodies, lamin A/C and emerin, nuclear shape and size demonstrate a very different "nuclear landscape" in hESC. This landscape is remodeled during a brief transitional window, concomitant with or just prior to differentiation onset. Notably, hESC initially contain abundant signal for spliceosome assembly factor, SC35, but lack discrete SC35 domains; these form as cells begin to specialize, likely reflecting cell-type specific genomic organization. Concomitantly, nuclear size increases and shape changes as lamin A/C and emerin incorporate into the lamina. During this brief window, hESC exhibit dramatically different PML-defined structures, which in somatic cells are linked to gene regulation and cancer. Unlike the numerous, spherical somatic PML bodies, hES cells often display approximately 1-3 large PML structures of two morphological types: long linear "rods" or elaborate "rosettes", which lack substantial SUMO-1, Daxx, and Sp100. These occur primarily between Day 0-2 of differentiation and become rare thereafter. PML rods may be "taut" between other structures, such as centromeres, but clearly show some relationship with the lamina, where PML often abuts or fills a "gap" in early lamin A/C staining. Findings demonstrate that pluripotent hES cells have a markedly different overall nuclear architecture, remodeling of which is linked to early epigenomic programming and involves formation of unique PML-defined structures.

  12. Deep sequencing and expression of microRNAs from early honeybee (Apis mellifera embryos reveals a role in regulating early embryonic patterning

    Directory of Open Access Journals (Sweden)

    Zondag Lisa

    2012-11-01

    Full Text Available Abstract Background Recent evidence supports the proposal that the observed diversity of animal body plans has been produced through alterations to the complexity of the regulatory genome rather than increases in the protein-coding content of a genome. One significant form of gene regulation is the contribution made by the non-coding content of the genome. Non-coding RNAs play roles in embryonic development of animals and these functions might be expected to evolve rapidly. Using next-generation sequencing and in situ hybridization, we have examined the miRNA content of early honeybee embryos. Results Through small RNA sequencing we found that 28% of known miRNAs are expressed in the early embryo. We also identified developmentally expressed microRNAs that are unique to the Apoidea clade. Examination of expression patterns implied these miRNAs have roles in patterning the anterior-posterior and dorso-ventral axes as well as the extraembryonic membranes. Knockdown of Dicer, a key component of miRNA processing, confirmed that miRNAs are likely to have a role in patterning these tissues. Conclusions Examination of the expression patterns of novel miRNAs, some unique to the Apis group, indicated that they are likely to play a role in early honeybee development. Known miRNAs that are deeply conserved in animal phyla display differences in expression pattern between honeybee and Drosophila, particularly at early stages of development. This may indicate miRNAs play a rapidly evolving role in regulating developmental pathways, most likely through changes to the way their expression is regulated.

  13. High resolution ultrasound-guided microinjection for interventional studies of early embryonic and placental development in vivo in mice

    Directory of Open Access Journals (Sweden)

    Sunn Nana

    2006-02-01

    survival rate was similar in sham experiments, 54% (33/61, for which procedures were identical but no microinjection was performed, suggesting that surgery and manipulation of the uterus were the main causes of embryonic death. Conclusion Ultrasound-guided microinjection into the ectoplacental cone region at E6.5 or E7.5 and the amniotic cavity at E7.5 was achieved with a 7 day postnatal survival of ≥60%. Target accuracy of these sites and of the exocoelomic cavity at E7.5 was ≥51%. We suggest that this approach may be useful for exploring gene function during early placental and embryonic development.

  14. Release of Ecdysteroid-Phosphates from Egg Yolk Granules and Their Dephosphorylation during Early Embryonic Development in Silkworm, Bombyx mori

    OpenAIRE

    Yamada, Ryouichi; Yamahama, Yumi; Sonobe, Haruyuki

    2005-01-01

    Newly laid eggs of many insect species store maternal ecdysteroids as physiologically inactive phosphoric esters. In the silkworm Bombyx mori, we previously reported the presence of a specific enzyme, called ecdysteroid-phosphate phosphatase (EPPase), which catalyzes the dephosphorylation of ecdysteroid-phosphates to increase the amount of free ecdysteroids during early embryonic development. In this study, we demonstrated that (1) EPPase is found in the cytosol of yolk cells, (2) ecdysteroid...

  15. Sept6 is required for ciliogenesis in Kupffer's vesicle, the pronephros, and the neural tube during early embryonic development.

    Science.gov (United States)

    Zhai, Gang; Gu, Qilin; He, Jiangyan; Lou, Qiyong; Chen, Xiaowen; Jin, Xia; Bi, Erfei; Yin, Zhan

    2014-04-01

    Septins are conserved filament-forming GTP-binding proteins that act as cellular scaffolds or diffusion barriers in a number of cellular processes. However, the role of septins in vertebrate development remains relatively obscure. Here, we show that zebrafish septin 6 (sept6) is first expressed in the notochord and then in nearly all of the ciliary organs, including Kupffer's vesicle (KV), the pronephros, eye, olfactory bulb, and neural tube. Knockdown of sept6 in zebrafish embryos results in reduced numbers and length of cilia in KV. Consequently, cilium-related functions, such as the left-right patterning of internal organs and nodal/spaw signaling, are compromised. Knockdown of sept6 also results in aberrant cilium formation in the pronephros and neural tube, leading to cilium-related defects in pronephros development and Sonic hedgehog (Shh) signaling. We further demonstrate that SEPT6 associates with acetylated α-tubulin in vivo and localizes along the axoneme in the cilia of zebrafish pronephric duct cells as well as cultured ZF4 cells. Our study reveals a novel role of sept6 in ciliogenesis during early embryonic development in zebrafish.

  16. miR-142-3p Contributes to Early Cardiac Fate Decision of Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Zhong-Yan Chen

    2017-01-01

    Full Text Available MicroRNAs (miRNAs play important roles in cell fate decisions. However, the miRNAs and their targets involved in the regulation of cardiac lineage specification are largely unexplored. Here, we report novel functions of miR-142-3p in the regulation of cardiomyocyte differentiation from mouse embryonic stem cells (mESCs. With a miRNA array screen, we identified a number of miRNAs significantly changed during mESC differentiation into the mesodermal and cardiac progenitor cells, and miR-142-3p was one among the markedly downregulated miRNAs. Ectopic expression and inhibition of miR-142-3p did not alter the characteristics of undifferentiated ESCs, whereas ectopic expression of miR-142-3p impaired cardiomyocyte formation. In addition, ectopic expression of miR-142-3p inhibited the expression of a cardiac mesodermal marker gene Mesp1 and downstream cardiac transcription factors Nkx2.5, Tbx5, and Mef2c but not the expression of three germ layer-specific genes. We further demonstrated that miR-142-3p targeted the 3′-untranslated region of Mef2c. These results reveal miR-142-3p as an important regulator of early cardiomyocyte differentiation. Our findings provide new knowledge for further understanding of roles and mechanisms of miRNAs as critical regulators of cardiomyocyte differentiation.

  17. Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives.

    Science.gov (United States)

    Chen, Aaron; Lieu, Deborah K; Freschauf, Lauren; Lew, Valerie; Sharma, Himanshu; Wang, Jiaxian; Nguyen, Diep; Karakikes, Ioannis; Hajjar, Roger J; Gopinathan, Ajay; Botvinick, Elliot; Fowlkes, Charless C; Li, Ronald A; Khine, Michelle

    2011-12-22

    A biomimetic substrate for cell-culture is fabricated by plasma treatment of a prestressed thermoplastic shrink film to create tunable multiscaled alignment "wrinkles". Using this substrate, the functional alignment of human embryonic stem cell derived cardiomyocytes is demonstrated.

  18. Dynamic expression of calretinin in embryonic and early fetal human cortex

    Directory of Open Access Journals (Sweden)

    Miriam eGonzalez-Gomez

    2014-06-01

    Full Text Available Calretinin (CR is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS 17 to 23, calbindin (CB and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem. By contrast, CR is confined to the subventricular zone (SVZ of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem, from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the monolayer of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the pioneer cortical plate appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW. At CS 21-23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial steps

  19. The role of apoptosis in early embryonic development of the adenohypophysis in rats

    OpenAIRE

    Gedrange Tomas; Kleinheinz Johannes; Driemel Oliver; Faltermeier Andreas; Lotz Kristina; Weingärtner Jens; Proff Peter

    2008-01-01

    Abstract Background Apoptosis is involved in fundamental processes of life, like embryonic development, tissue homeostasis, or immune defense. Defects in apoptosis cause or contribute to developmental malformation, cancer, and degenerative disorders. Methods The developing adenohypophysis area of rat fetuses was studied at the embryonic stage 13.5 (gestational day) for apoptotic and proliferative cell activities using histological serial sections. Results A high cell proliferation rate was ob...

  20. Embryonic, Larval, and Early Juvenile Development of the Tropical Sea Urchin, Salmacis sphaeroides (Echinodermata: Echinoidea

    Directory of Open Access Journals (Sweden)

    M. Aminur Rahman

    2012-01-01

    Full Text Available Salmacis sphaeroides (Linnaeus, 1758 is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10−5 dilution was 96.6±1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell, 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72±4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition.

  1. Development and morphogenesis of human wrist joint during embryonic and early fetal period.

    Science.gov (United States)

    Hita-Contreras, Fidel; Martínez-Amat, Antonio; Ortiz, Raúl; Caba, Octavio; Alvarez, Pablo; Prados, José C; Lomas-Vega, Rafael; Aránega, Antonia; Sánchez-Montesinos, Indalecio; Mérida-Velasco, Juan A

    2012-06-01

    The development of the human wrist joint has been studied widely, with the main focus on carpal chondrogenesis, ligaments and triangular fibrocartilage. However, there are some discrepancies concerning the origin and morphogenetic time-table of these structures, including nerves, muscles and vascular elements. For this study we used serial sections of 57 human embryonic (n = 30) and fetal (n = 27) specimens from O'Rahilly stages 17-23 and 9-14 weeks, respectively. The following phases in carpal morphogenesis have been established: undifferentiated mesenchyme (stage 17), condensated mesenchyme (stages 18 and 19), pre-chondrogenic (stages 19 and 20) and chondrogenic (stages 21 and over). Carpal chondrification and osteogenic processes are similar, starting with capitate and hamate (stage 19) and ending with pisiform (stage 22). In week 14, a vascular bud penetrates into the lunate cartilaginous mold, early sign of the osteogenic process that will be completed after birth. In stage 18, median, ulnar and radial nerves and thenar eminence appear in the hand plate. In stage 21, there are indications of the interosseous muscles, and in stage 22 flexor digitorum superficialis, flexor digitorum profundus and lumbrical muscles, transverse carpal ligament and collateral ligaments emerge. In stage 23, the articular disc, radiocarpal and ulnocarpal ligaments and deep palmar arterial arch become visible. Radiate carpal and interosseous ligaments appear in week 9, and in week 10, dorsal radiocarpal ligament and articular capsule are evident. Finally, synovial membrane is observed in week 13. We have performed a complete analysis of the morphogenesis of the structures of the human wrist joint. Our results present new data on nervous and arterial elements and provide the basis for further investigations on anatomical pathology, comparative morphology and evolutionary anthropology. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  2. Different concentrations of kaempferol distinctly modulate murine embryonic stem cell function.

    Science.gov (United States)

    Correia, Marcelo; Rodrigues, Ana S; Perestrelo, Tânia; Pereira, Sandro L; Ribeiro, Marcelo F; Sousa, Maria I; Ramalho-Santos, João

    2016-01-01

    Kaempferol (3,4',5,7-tetrahydroxyflavone) is a natural flavonoid with several beneficial and protective effects. It has been demonstrated that kaempferol has anticancer properties, particularly due to its effects on proliferation, apoptosis and the cell cycle. However, possible effects on pluripotent embryonic stem cell function have not yet been addressed. Embryonic stem cells have the ability to self-renew and to differentiate into all three germ layers with potential applications in regenerative medicine and in vitro toxicology. We show that exposure of murine embryonic stem cells (mESC) to high concentrations of kaempferol (200 μM) leads to decreased cell numbers, although the resulting smaller cell colonies remain pluripotent. However, lower concentrations of this compound (20 μM) increase the expression of pluripotency markers in mESCs. Mitochondrial membrane potential and mitochondrial mass are not affected, but a dose-dependent increase in apoptosis takes place. Moreover, mESC differentiation is impaired by kaempferol, which was not related to apoptosis induction. Our results show that low concentrations of kaempferol can be beneficial for pluripotency, but inhibit proper differentiation of mESCs. Additionally, high concentrations induce apoptosis and increase mitochondrial reactive oxygen species (ROS).

  3. Cigarette smoking during early pregnancy reduces the number of embryonic germ and somatic cells

    DEFF Research Database (Denmark)

    Mamsen, Linn; Lutterodt, M C; Andersen, Elisabeth Anne Wreford

    2010-01-01

    BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first-trimeste......BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first...... confounders such as alcohol and coffee consumption (P = 0.002). The number of germ cells in embryonic gonads, irrespective of gender, was also significantly reduced by 41% (95% CI 58-19%, P = 0.001) in exposed versus non-exposed embryonic gonads. CONCLUSIONS: Prenatal exposure to maternal cigarette smoke...... reduces the number of germ and somatic cells in embryonic male and female gonads. This effect may have long-term consequences on the future fertility of exposed offspring. These findings may provide one potential cause of the reduced fertility observed during recent years....

  4. Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene

    Science.gov (United States)

    Czerwinska, Areta M.; Grabowska, Iwona; Archacka, Karolina; Bem, Joanna; Swierczek, Barbara; Helinska, Anita; Streminska, Wladyslawa; Fogtman, Anna; Iwanicka-Nowicka, Roksana; Koblowska, Marta

    2016-01-01

    The transcription factor Pax7 plays a key role during embryonic myogenesis and sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Overexpression of Pax7 has been shown to promote the myogenic differentiation of pluripotent stem cells. However, the effects of the absence of functional Pax7 in differentiating embryonic stem cells (ESCs) have not yet been directly tested. Herein, we studied mouse stem cells that lacked a functional Pax7 gene and characterized the differentiation of these stem cells under conditions that promoted the derivation of myoblasts in vitro. We analyzed the expression of myogenic factors, such as myogenic regulatory factors and muscle-specific microRNAs, in wild-type and mutant cells. Finally, we compared the transcriptome of both types of cells and did not find substantial differences in the expression of genes related to the regulation of myogenesis. As a result, we showed that the absence of functional Pax7 does not prevent the in vitro myogenic differentiation of ESCs. PMID:26649785

  5. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    Directory of Open Access Journals (Sweden)

    Keisuke Nagao

    Full Text Available BACKGROUND: EpCAM (CD326 is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. METHODOLOGY/PRINCIPAL FINDINGS: To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts, eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. CONCLUSION: EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  6. Regulatory Changes of N-Acetylgalactosamine Terminal Sugar in Early Mouse Embryonic Paraxial Mesenchyme

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Miri

    2012-01-01

    changes during the early embryonic development of vertebrae in mice. Therefore it most likely plays a key role (s in the development of vertebrae, especially in the conversion of mesenchymal cells into chondroblasts. The other tested terminal sugars may have no role in this phenomenon.

  7. Generation of the Dimensional Embryology Application (App) for Visualization of Early Chick and Frog Embryonic Development

    Science.gov (United States)

    Webb, Rebecca L.; Bilitski, James; Zerbee, Alyssa; Symans, Alexandra; Chop, Alexandra; Seitz, Brianne; Tran, Cindy

    2015-01-01

    The study of embryonic development of multiple organisms, including model organisms such as frogs and chicks, is included in many undergraduate biology programs, as well as in a variety of graduate programs. As our knowledge of biological systems increases and the amount of material to be taught expands, the time spent instructing students about…

  8. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiugong, E-mail: xiugong.gao@fda.hhs.gov; Sprando, Robert L.; Yourick, Jeffrey J.

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.

  9. Bridging the gap: functional healing of embryonic small intestine ex vivo.

    Science.gov (United States)

    Coletta, Riccardo; Roberts, Neil A; Oltrabella, Francesca; Khalil, Basem A; Morabito, Antonino; Woolf, Adrian S

    2016-02-01

    The ability to grow embryonic organs ex vivo provides an opportunity to follow their differentiation in a controlled environment, with resulting insights into normal development. Additionally, similar strategies can be used to assess effects on organogenesis of physical and chemical manipulations. This study aimed to create an organ culture model with which to test physical manipulations to enhance healing of gut segments, thus generating a single functional organ. Embryonic mouse jejunum was isolated and cut into 2-3 mm tubes, which were placed in pairs, separated by a small gap, on semi-permeable supports. Each pair was linked by a nylon suture threaded through their lumens. After 3 days in organ culture fed by defined serum-free media, the rudiments differentiated to form tubes of smooth muscle surrounding a core of rudimentary villi. Of 34 such pairs, 74% had touching and well aligned proximate ends. Of these joined structures, 80% (59% of the total pairs) had a continuous lumen, as assessed by observing the trajectories of fluorescent dextrans injected into their distal ends. Fused organ pairs formed a single functional unit, as assessed by spontaneous contraction waves propagated along their lengths. In these healed intestines, peripherin(+) neurons formed a nexus in the zone of fusion, linking the rudiment pairs. In future, this system could be used to test whether growth factors enhance fusion. Such results should in turn inform the design of novel treatments for short bowel syndrome, a potentially fatal condition with a currently limited and imperfect range of therapies.

  10. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.

    Science.gov (United States)

    Narayanan, Karthikeyan; Schumacher, Karl M; Tasnim, Farah; Kandasamy, Karthikeyan; Schumacher, Annegret; Ni, Ming; Gao, Shujun; Gopalan, Began; Zink, Daniele; Ying, Jackie Y

    2013-04-01

    Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.

  11. A1 demonstrates restricted tissue distribution during embryonic development and functions to protect against cell death.

    Science.gov (United States)

    Carrió, R.; López-Hoyos, M.; Jimeno, J.; Benedict, M. A.; Merino, R.; Benito, A.; Fernández-Luna, J. L.; Núñez, G.; García-Porrero, J. A.; Merino, J.

    1996-01-01

    Members of the bcl-2 gene family are essential regulators of cell survival in a wide range of biological processes. A1, a member of the family, is known to be expressed in certain adult tissues. However, the precise tissue distribution and function of A1 remains poorly understood. We show here that A1 is expressed in multiple tissues during murine embryonic development. In the embryo, A1 was detected first at embryonic day 11.5 in liver, brain, and limbs. At day 13.5 of gestation, A1 expression was observed in the central nervous system, liver, perichondrium, and digital zones of developing limbs in a pattern different from that of bcl-X. In the central nervous system of 15.5-day embryos, A1 was expressed at high levels in the ventricular zone and cortical plate of brain cortex. Significantly, the interdigital zones of limbs and the intermediate region of the developing brain cortex, two sites associated with extensive cell death, were devoid of A1 and bcl-X. The expression of A1 was retained in many adult tissues. To assess the ability of A1 to modulate cell death, stable transfectants expressing different amounts of A1 protein were generated in K562 cells. Expression of A1 was associated with retardation of apoptotic cell death induced by actinomycin D and cycloheximide as well as by okadaic acid. Confocal microscopy showed that the A1 protein was localized to the cytoplasm in a pattern similar to that of Bcl-2. These results demonstrate that the expression of A1 is wider than previously reported in adult tissues. Furthermore, its distribution in multiple tissues of the embryo suggests that A1 plays a role in the regulation of physiological cell death during embryonic development. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:8952545

  12. The effect of unilateral ovariectomy on early embryonic survival and embryo development in rabbits

    Directory of Open Access Journals (Sweden)

    R. Peiró

    2014-06-01

    Full Text Available Unilateral ovariectomy can be used to study uterine capacity in rabbits because an overcrowding of the functional uterine horn is produced. Due to the uterus duplex, the rabbit is the ideal model for such studies. However, this technique may affect embryo survival. The aim of this work is to study the effect of unilateral ovariectomy on early embryo survival and development in rabbit. A total of 101 unilateral ovariectomised females and 52 intact females were compared after slaughter at 30 h post-mating. Early embryo survival was estimated as the ratio between number of embryo recovered and ovulation rate. No differences were found between intact and unilaterally ovariectomised females in this trait. Unilateral ovariectomy did not change embryo development, measured as the number of embryo cells. Variability of embryo development was not affected either. At 30 h post-mating, the majority of embryos (86.2% were 4-cell stage. Embryo quality was evaluated according to morphological criteria. No difference in embryo quality between intact and unilaterally ovariectomised females was found. Therefore, unilateral ovariectomy performed before puberty in rabbit does not modify early embryo survival and development.

  13. Pharmacological and molecular characterization of functional P2 receptors in rat embryonic cardiomyocytes.

    Science.gov (United States)

    Cheung, Kwok-Kuen; Marques-da-Silva, Camila; Vairo, Leandro; dos Santos, Danúbia Silva; Goldenberg, Regina; Coutinho-Silva, Robson; Burnstock, Geoffrey

    2015-03-01

    Purinergic receptors activated by extracellular nucleotides (adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP)) are well known to exert physiological effects on the cardiovascular system, whether nucleotides participate functionally in embryonic heart development is not clear. The responsiveness of embryonic cardiomyocytes (E) 12 to P2 receptor agonists by measuring Ca(2+) influx did not present response to ATP, but responses to P2 agonists were detected in cardiomyocytes taken from E14 and E18 rats. Photometry revealed that the responses to ATP were concentration-dependent with an EC50 of 1.32 μM and 0.18 μM for E14 and E18 cardiomyocytes, respectively. In addition, other P2 agonists were also able to induce Ca(2+) mobilization. RT-PCR showed the presence of P2X2 and P2X4 receptor transcripts on E14 cardiomyocytes with a lower expression of P2X3 and P2X7 receptors. P2X1 and a low level of P2X5 receptor messenger RNA (mRNA) were also expressed at E18. Immunofluorescence data indicated that only P2X2 and P2X4 receptor proteins were expressed in E14 cardiomyocytes while protein for all the P2X receptor subtypes was expressed in E18, except for P2X3 and P2X6. Responses mediated by agonists specific for P2Y receptors subtypes showed that P2Y receptors (P2Y1, P2Y2, P2Y4 and P2Y6) were also present in both E14 and E18 cardiomyocytes. Dye transfer experiments showed that ATP induces coupling of cells at E12, but this response is decreased at E14 and lost at E18. Conversely, UTP induced coupling with five or more cells in most cells from E12 to E18. Our results show that specific P2 receptor subtypes are present in embryonic rat cardiomyocytes, including P2X7 and P2Y4 receptors that have not been identified in adult rat cardiomyocytes. The responsiveness to ATP stimulation even before birth, suggests that ATP may be an important messenger in embryonic as well as in adult hearts.

  14. [Microglial cells and development of the embryonic central nervous system].

    Science.gov (United States)

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  15. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells.

    Science.gov (United States)

    Gao, Xiugong; Sprando, Robert L; Yourick, Jeffrey J

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72h after exposure to 0.25mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment.

  16. Early embryonic intra-cardiac flow fields at three idealized ventricular morphologies

    Science.gov (United States)

    Pekkan, Kerem; Jamaly, Mohammad; Kara, Burak; Keller, Bradley; Sotiropoulos, Fotis

    2009-11-01

    Pulsatile 3D multiple inlet/outlet flow within tiny (100-300μm dia) embryonic ventricles feature distinct intra-cardiac flow streams whose role in regulating the morphogenesis of spiral aorto-pulmonary septum has long been debated. The low Re number flow regimes limit mixing of these streams as replicated in our flow-visualization experiments with chick embryos. A state-of-the art high-resolution immersed boundary CFD solver which was developed for complex patient-specific cardiovascular internal flow problems is applied and optimized for this problem. Idealized tubular ventricles at 3 major embryonic stages (straight, C- and D- loops) are created by our sketch-based anatomical editing tool. CFD results are validated with PIV measurements acquired from a micro-fabricated C-loop stage replica and in vivo flow vis data from confocal microscopy. This model provided the inlet velocity profile for arterial models and flow fields at the inner curvature of embryonic hearts for different ventricular topologies are compared for off-design modes.

  17. Electrical Stimulation of Embryonic Neurons for 1 Hour Improves Axon Regeneration and the Number of Reinnervated Muscles that Function

    Science.gov (United States)

    Liu, Yang; Grumbles, Robert M.; Thomas, Christine K.

    2013-01-01

    Motoneuron death following spinal cord injury or disease results in muscle denervation, atrophy, and paralysis. We have previously transplanted embryonic ventral spinal cord cells into peripheral nerve to reinnervate denervated muscles and to reduce muscle atrophy, but reinnervation was incomplete. Here, our aim was to determine whether brief electrical stimulation of embryonic neurons in peripheral nerve changes motoneuron survival, axon regeneration, and muscle reinnervation and function because neural depolarization is crucial for embryonic neuron survival and may promote activity-dependent axon growth. At 1 week after denervation by sciatic nerve section, embryonic day 14-15 cells were purified for motoneurons, injected into the tibial nerve of adult Fischer rats, and stimulated immediately for up to 1 hour. More myelinated axons were present in tibial nerves when transplants had been stimulated at 1 Hz for 1 hour at 10 weeks following transplantation. More muscles were reinnervated if the stimulation treatment lasted for 1 hour. Reinnervation reduced muscle atrophy, with or without the stimulation treatment. These data suggest that brief stimulation of embryonic neurons promotes axon growth, which has a long-term impact on muscle reinnervation and function. Muscle reinnervation is important because it may enable the use of functional electrical stimulation to restore limb movements. PMID:23771218

  18. Caffeine acts via A1 adenosine receptors to disrupt embryonic cardiac function.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available BACKGROUND: Evidence suggests that adenosine acts via cardiac A1 adenosine receptors (A1ARs to protect embryos against hypoxia. During embryogenesis, A1ARs are the dominant regulator of heart rate, and A1AR activation reduces heart rate. Adenosine action is inhibited by caffeine, which is widely consumed during pregnancy. In this study, we tested the hypothesis that caffeine influences developing embryos by altering cardiac function. METHODOLOGY/PRINCIPAL FINDINGS: Effects of caffeine and adenosine receptor-selective antagonists on heart rate were studied in vitro using whole murine embryos at E9.5 and isolated hearts at E12.5. Embryos were examined in room air (21% O(2 or hypoxic (2% O(2 conditions. Hypoxia decreased heart rates of E9.5 embryos by 15.8% and in E12.5 isolated hearts by 27.1%. In room air, caffeine (200 µM had no effect on E9.5 heart rates; however, caffeine increased heart rates at E12.5 by 37.7%. Caffeine abolished hypoxia-mediated bradycardia at E9.5 and blunted hypoxia-mediated bradycardia at E12.5. Real-time PCR analysis of RNA from isolated E9.5 and E12.5 hearts showed that A1AR and A2aAR genes were expressed at both ages. Treatment with adenosine receptor-selective antagonists revealed that SCH-58261 (A2aAR-specific antagonist had no affects on heart function, whereas DPCPX (A1AR-specific antagonist had effects similar to caffeine treatment at E9.5 and E12.5. At E12.5, embryonic hearts lacking A1AR expression (A1AR-/- had elevated heart rates compared to A1AR+/- littermates, A1AR-/- heart rates failed to decrease to levels comparable to those of controls. Caffeine did not significantly affect heart rates of A1AR-/- embryos. CONCLUSIONS/SIGNIFICANCE: These data show that caffeine alters embryonic cardiac function and disrupts the normal cardiac response to hypoxia through blockade of A1AR action. Our results raise concern for caffeine exposure during embryogenesis, particularly in pregnancies with increased risk of

  19. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    Directory of Open Access Journals (Sweden)

    Jacqueline Gürke

    Full Text Available During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2, branched chain ketoacid dehydrogenase (Bckdha and dehydrolipoyl dehydrogenase (Dld, were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  20. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    Science.gov (United States)

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  1. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy

    Science.gov (United States)

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I.; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling. PMID:26020623

  2. Effects of DNA damage on oocyte meiotic maturation and early embryonic development

    Directory of Open Access Journals (Sweden)

    Shen YIN,Junyu MA,Wei SHEN

    2014-09-01

    Full Text Available DNA damage is one of the most common threats to meiotic cells. It has the potential to induce infertility and genetic abnormalities that may be passed to the embryo. Here, we reviewed exogenous factors which could induce DNA damage. Specially, we addressed the different effects of DNA damage on mouse oocytes and embryonic development. Complex DNA damage, double-strand breaks, represents a more difficult repair process and involves various repair pathways. Understanding the mechanisms involved in DNA damage responses may improve therapeutic strategies for ovarian cancer and fertility preservation.

  3. Role of microglia in embryonic neurogenesis

    Science.gov (United States)

    Tong, Chih Kong

    2016-01-01

    Microglia begin colonizing the developing brain as early as embryonic day 9, prior to the emergence of neurons and other glia. Their ontogeny is also distinct from other central nervous system cells, as they derive from yolk sac hematopoietic progenitors and not neural progenitors. In this review, we feature these unique characteristics of microglia and assess the spatiotemporal similarities between microglia colonization of the central nervous system and embryonic neurogenesis. We also infer to existing evidence for microglia function from embryonic through to postnatal neurodevelopment to postulate roles for microglia in neurogenesis. PMID:27555616

  4. Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality.

    Directory of Open Access Journals (Sweden)

    Paula Dietrich

    Full Text Available Familial Dysautonomia (FD is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population, and leads to death before the age of 40. The disease is characterized by abnormal development and progressive degeneration of the sensory and autonomic nervous system. A single base pair substitution in intron 20 of the Ikbkap gene accounts for 98% of FD cases, and results in the expression of low levels of the full-length mRNA with simultaneous expression of an aberrantly spliced mRNA in which exon 20 is missing. To date, there is no animal model for the disease, and the essential cellular functions of IKAP--the protein encoded by Ikbkap--remain unknown. To better understand the normal function of IKAP and in an effort to generate a mouse model for FD, we have targeted the mouse Ikbkap gene by homologous recombination. We created two distinct alleles that result in either loss of Ikbkap expression, or expression of an mRNA lacking only exon 20. Homozygosity for either mutation leads to developmental delay, cardiovascular and brain malformations, accompanied with early embryonic lethality. Our analyses indicate that IKAP is essential for expression of specific genes involved in cardiac morphogenesis, and that cardiac failure is the likely cause of abnormal vascular development and embryonic lethality. Our results also indicate that deletion of exon 20 abolishes gene function. This implies that the truncated IKAP protein expressed in FD patients does not retain any significant biological function.

  5. Student Learning of Early Embryonic Development via the Utilization of Research Resources from the Nematode Caenorhabditis elegans

    Science.gov (United States)

    Eliceiri, Kevin W.; Squirrell, Jayne M.; White, John G.; Stewart, James

    2008-01-01

    This study was undertaken to gain insights into undergraduate students' understanding of early embryonic development, specifically, how well they comprehend the concepts of volume constancy, cell lineages, body plan axes, and temporal and spatial dimensionality in development. To study student learning, a curriculum was developed incorporating resources from the Caenorhabditis elegans research community. Students engaged in a preactivity assessment, followed by instructional materials (IMs) emphasizing inquiry-based learning and a postinstruction assessment to gauge their learning. This study, conducted at two research sites with eight and nine students, respectively, shows that before instruction, most students confused embryonic cell cleavage, where total volume is constant, with regular cell division, in which total cell volume doubles. Despite their ability to construct a cell lineage tree, most of the study participants were not aware of its biological significance. All students correctly identified cells of anterior and posterior axis, but not cells of the dorsal and ventral axis. Although the students had no difficulty with the time dimensional aspect of development, most viewed an embryo as spatially two-dimensional rather than three-dimensional. Furthermore, this study indicates that combining authentic research resources with inquiry-based learning benefits student learning of key concepts in embryology. PMID:18316809

  6. Functional Characterization of Single-Nucleotide Polymorphisms in the Human Undifferentiated Embryonic-Cell Transcription Factor 1 Gene

    NARCIS (Netherlands)

    Thummer, Rajkumar P.; Drenth-Diephuis, Loes J.; Carney, Karen E.; Eggen, Bart J. L.

    2010-01-01

    Single-nucleotide polymorphisms (SNPs) are single-nucleotide sequence variations between individuals. Two missense SNPs are present in the human undifferentiated embryonic-cell transcription factor 1 (UTF1) gene and their consequences for UTF1 function are investigated in this study. Expression of t

  7. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Directory of Open Access Journals (Sweden)

    Siebler Mario

    2009-08-01

    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  8. Observation on Double Fertilization and Early Embryonic Development in Autotetraploid Polyembryonic Rice

    Institute of Scientific and Technical Information of China (English)

    DAI Xi-mei; YANG Xu; HUANG Qun-ce; QIN Guang-yong

    2009-01-01

    The process of double fertilization and the characters of embryo and endosperm development in an autotetraploid polyembryonic mutant rice IR36-Shuang were studied with a laser scanning confocal microscopy. Some abnormalities including degenerated ovary, abortive embryo sac, single fertilization, double-ovule and double-embryo and so on. were found during double fertilization and embryo development in IR36-Shuang. The rate of the abnormalities was 46.67% in IR36-Shuang, significantly higher than that in the control, an autotetraploid rice line IR36-4X (33.00%). Cytological and embryonic evidences were provided for seed setting decline and the initiation of additional embryo in IR36-Shuang.

  9. Analysis of Mitochondrial Function and Localisation during Human Embryonic Stem Cell Differentiation In Vitro

    Science.gov (United States)

    Prowse, Andrew B. J.; Chong, Fenny; Elliott, David A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gray, Peter P.; Munro, Trent P.; Osborne, Geoffrey W.

    2012-01-01

    Human embryonic stem cell (hESC) derivatives show promise as viable cell therapy options for multiple disorders in different tissues. Recent advances in stem cell biology have lead to the reliable production and detailed molecular characterisation of a range of cell-types. However, the role of mitochondria during differentiation has yet to be fully elucidated. Mitochondria mediate a cells response to altered energy requirements (e.g. cardiomyocyte contraction) and, as such, the mitochondrial phenotype is likely to change during the dynamic process of hESC differentiation. We demonstrate that manipulating mitochondrial biogenesis alters mesendoderm commitment. To investigate mitochondrial localisation during early lineage specification of hESCs we developed a mitochondrial reporter line, KMEL2, in which sequences encoding the green fluorescent protein (GFP) are targeted to the mitochondria. Differentiation of KMEL2 lines into the three germ layers showed that the mitochondria in these differentiated progeny are GFP positive. Therefore, KMEL2 hESCs facilitate the study of mitochondria in a range of cell types and, importantly, permit real-time analysis of mitochondria via the GFP tag. PMID:23284940

  10. Analysis of mitochondrial function and localisation during human embryonic stem cell differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Andrew B J Prowse

    Full Text Available Human embryonic stem cell (hESC derivatives show promise as viable cell therapy options for multiple disorders in different tissues. Recent advances in stem cell biology have lead to the reliable production and detailed molecular characterisation of a range of cell-types. However, the role of mitochondria during differentiation has yet to be fully elucidated. Mitochondria mediate a cells response to altered energy requirements (e.g. cardiomyocyte contraction and, as such, the mitochondrial phenotype is likely to change during the dynamic process of hESC differentiation. We demonstrate that manipulating mitochondrial biogenesis alters mesendoderm commitment. To investigate mitochondrial localisation during early lineage specification of hESCs we developed a mitochondrial reporter line, KMEL2, in which sequences encoding the green fluorescent protein (GFP are targeted to the mitochondria. Differentiation of KMEL2 lines into the three germ layers showed that the mitochondria in these differentiated progeny are GFP positive. Therefore, KMEL2 hESCs facilitate the study of mitochondria in a range of cell types and, importantly, permit real-time analysis of mitochondria via the GFP tag.

  11. Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development.

    Directory of Open Access Journals (Sweden)

    Julien Ackermann

    Full Text Available The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.

  12. Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development

    DEFF Research Database (Denmark)

    Rabatel, Andréane; Febvay, Gérard; Gaget, Karen;

    2013-01-01

    embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes...... encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data...... are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together...

  13. High-sensitivity Mass Spectrometry for Probing Gene Translation in Single Embryonic Cells in the Early Frog (Xenopus Embryo

    Directory of Open Access Journals (Sweden)

    Camille Lombard-Banek

    2016-10-01

    Full Text Available Direct measurement of protein expression with single-cell resolution promises to deepen the understanding of basic molecular processes during normal and impaired development. High-resolution mass spectrometry provides detailed coverage of the proteomic composition of large numbers of cells. Here we discuss recent mass spectrometry developments based on single-cell capillary electrophoresis that extend discovery proteomics to sufficient sensitivity to enable the measurement of proteins in single cells. The single-cell mass spectrometry system is used to detect a large number of proteins in single embryonic cells in blastomeres in the 16-cell embryo of the South African clawed frog (Xenopus laevis that give rise to distinct tissue types. Single-cell measurements of protein expression provide complementary information on gene transcription during early development of the vertebrate embryo, raising a potential to understand how differential gene expression coordinates normal cell heterogeneity during development.

  14. Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology.

    Directory of Open Access Journals (Sweden)

    Sri Kripa Balakrishnan

    Full Text Available The CCCTC-binding factor CTCF is the only known vertebrate insulator protein and has been shown to regulate important developmental processes such as imprinting, X-chromosome inactivation and genomic architecture. In this study, we examined the role of CTCF in human embryonic stem cell (hESC biology. We demonstrate that CTCF associates with several important pluripotency genes, including NANOG, SOX2, cMYC and LIN28 and is critical for hESC proliferation. CTCF depletion impacts expression of pluripotency genes and accelerates loss of pluripotency upon BMP4 induced differentiation, but does not result in spontaneous differentiation. We find that CTCF associates with the distal ends and internal sites of the co-regulated 160 kb NANOG-DPPA3-GDF3 locus. Each of these sites can function as a CTCF-dependent enhancer-blocking insulator in heterologous assays. In hESCs, CTCF exists in multisubunit protein complexes and can be poly(ADPribosylated. Known CTCF cofactors, such as Cohesin, differentially co-localize in the vicinity of specific CTCF binding sites within the NANOG locus. Importantly, the association of some cofactors and protein PARlation selectively changes upon differentiation although CTCF binding remains constant. Understanding how unique cofactors may impart specialized functions to CTCF at specific genomic locations will further illuminate its role in stem cell biology.

  15. Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development.

    Science.gov (United States)

    Parent, Audrey V; Russ, Holger A; Khan, Imran S; LaFlam, Taylor N; Metzger, Todd C; Anderson, Mark S; Hebrok, Matthias

    2013-08-01

    Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into thymic epithelial progenitors (TEPs) by precise regulation of TGFβ, BMP4, RA, Wnt, Shh, and FGF signaling. The hESC-derived TEPs further mature into functional TECs that support T cell development upon transplantation into thymus-deficient mice. Importantly, the engrafted TEPs produce T cells capable of in vitro proliferation as well as in vivo immune responses. Thus, hESC-derived TEP grafts may have broad applications for enhancing engraftment in cell-based therapies as well as restoring age- and stress-related thymic decline.

  16. Renal collecting system growth and function depend upon embryonic γ1 laminin expression.

    Science.gov (United States)

    Yang, Dong-Hua; McKee, Karen K; Chen, Zu-Lin; Mernaugh, Glenda; Strickland, Sidney; Zent, Roy; Yurchenco, Peter D

    2011-10-01

    In order to understand the functions of laminins in the renal collecting system, the Lamc1 gene was inactivated in the developing mouse ureteric bud (UB). Embryos bearing null alleles exhibited laminin deficiency prior to mesenchymal tubular induction and either failed to develop a UB with involution of the mesenchyme, or developed small kidneys with decreased proliferation and branching, delayed renal vesicle formation and postnatal emergence of a water transport deficit. Embryonic day 12.5 kidneys revealed an almost complete absence of basement membrane proteins and reduced levels of α6 integrin and FGF2. mRNA levels for fibroblast growth factor 2 (FGF2) and mediators of the GDNF/RET and WNT11 signaling pathway were also decreased. Furthermore, collecting duct cells derived from laminin-deficient kidneys and grown in collagen gels were found to proliferate and branch slowly. The laminin-deficient cells exhibited decreased activation of growth factor- and integrin-dependent pathways, whereas heparin lyase-treated and β1 integrin-null cells exhibited more selective decreases. Collectively, these data support a requirement of γ1 laminins for assembly of the collecting duct system basement membrane, in which immobilized ligands act as solid-phase agonists to promote branching morphogenesis, growth and water transport functions.

  17. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Angelo H All

    Full Text Available BACKGROUND: Transplantations of human stem cell derivatives have been widely investigated in rodent models for the potential restoration of function of neural pathways after spinal cord injury (SCI. Studies have already demonstrated cells survival following transplantation in SCI. We sought to evaluate survival and potential therapeutic effects of transplanted human embryonic stem (hES cell-derived oligodendrocyte progenitor cells (OPCs in a contusive injury in rats. Bioluminescence imaging was utilized to verify survivability of cells up to 4 weeks, and somatosensory evoked potential (SSEPs were recorded at the cortex to monitor function of sensory pathways throughout the 6-week recovery period. PRINCIPAL FINDINGS: hES cells were transduced with the firefly luciferase gene and differentiated into OPCs. OPCs were transplanted into the lesion epicenter of rat spinal cords 2 hours after inducing a moderate contusive SCI. The hES-treatment group showed improved SSEPs, including increased amplitude and decreased latencies, compared to the control group. The bioluminescence of transplanted OPCs decreased by 97% in the injured spinal cord compared to only 80% when injected into an uninjured spinal cord. Bioluminescence increased in both experimental groups such that by week 3, no statistical difference was detected, signifying that the cells survived and proliferated independent of injury. Post-mortem histology of the spinal cords showed integration of human cells expressing mature oligodendrocyte markers and myelin basic protein without the expression of markers for astrocytes (GFAP or pluripotent cells (OCT4. CONCLUSIONS: hES-derived OPCs transplanted 2 hours after contusive SCI survive and differentiate into OLs that produce MBP. Treated rats demonstrated functional improvements in SSEP amplitudes and latencies compared to controls as early as 1 week post-injury. Finally, the hostile injury microenvironment at 2 hours post-injury initially caused

  18. Approach to quantify two-dimensional strain of chick embryonic heart in early stage based on spectral domain optical coherence tomography

    Science.gov (United States)

    Zhao, Yuqian; Dou, Shidan; Zhu, Wenlong; Wang, Yi; Xu, Tao; Wang, Fengwen; Ma, Zhenhe

    2015-03-01

    The heart undergoes remarkable changes during embryonic development due to genetic programming and epigenetic influences, in which mechanical loads is a key factor. As embryonic research development, an important goal is to develop mathematical models that describe the influence of mechanics on embryonic heart development. However, basic parameters for the modeling are difficult to acquire since the embryonic heart is tiny and beating fast in the early stages. Optical coherence tomography (OCT) technique provides depth-resolved image with high resolution and high acquisition speed in a noninvasive manner. In this paper, we performed 4D[(x,y,z) + t] scan on the outflow tract (OFT) of the chick embryonic heart at stage of HH18(~ 3 days of incubation) in vivo using spectral domain OCT (SDOCT). Parameters such as displacement and geometrical size of the OFT were extracted from the structural images of the SDOCT. Two-dimensional strain vector were solved using strain-displacement relations in curvilinear cylindrical coordinates based on kinetic theory of elasticity. Based on the geometrical size and other initial conditions, two-dimensional elasticity finite element model of the OFT myocardial wall deformation were established and then solved by direct frequency response method. Comparison between experimental data and simulation result shows the utility of the finite element models. Our results demonstrate that mathematical modeling based on parameters provided by SDOCT is a useful approach for studying cardiac development in early stage.

  19. Cell proliferation is not required for the initiation of early cleft formation in mouse embryonic submandibular epithelium in vitro.

    Science.gov (United States)

    Nakanishi, Y; Morita, T; Nogawa, H

    1987-03-01

    An X-ray irradiation method was employed to analyse the role of cell proliferation in vitro in the cleft formation of mouse embryonic submandibular epithelium at early stages. When the mid 12-day gland was exposed to 200 rad of X-rays, the growth was severely retarded. In contrast, late 12-day and early 13-day glands grew apparently in a normal fashion, as did the control gland, for up to 40 h. In either case, they formed shallow clefts within 10 h of culture. With 1000 rad irradiation, the mid 12-day gland did not grow at all, but formed clefts within 20 h of culture followed by a rapid degeneration. Under the same conditions, the growth of the late 12-day gland, which was at the stage just before branching, was retarded until 10 h of culture, followed by a slight increase in epithelial size, but cleft formation was also observed within 6-10 h, as in the control gland. When exposed to a dose of 1000 rad of X-rays, the early 13-day and the late 12-day glands exhibited similar radiosensitivity; the initial narrow clefts in the epithelium deepened and new clefts began to form within 6-10 h of culture. [3H]thymidine incorporation studies revealed that a dose of 1000 rad reduced DNA synthesis of mid and late 12-day glands by 72 and 65%, respectively. Histological examination of X-irradiated late 12-day gland showed that mitotic figures were rarely seen in the epithelium at 6 h of culture. Aphidicolin, a specific inhibitor of DNA synthesis, could not halt the cleft formation of the late 12-day gland. In this experiment 89% of DNA synthesis was inhibited. Treatment of an X-ray irradiated late 12-day gland with aphidicolin blocked 92% of the DNA synthesis, but did not prevent cleft formation taking place. These results indicate that neither cell division nor DNA synthesis, is required for the initiation process of the cleft formation of the mouse embryonic submandibular epithelium at early morphogenetic stages in vitro.

  20. Marked accumulation of valproic acid in embryonic neuroepithelium of the mouse during early organogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Dencker, L.; Nau, H.; D' Argy, R. (Univ. of Uppsala (Sweden))

    1990-06-01

    Valproic acid, an antiepileptic drug, causes neural tube defects in mice and man. 14C-labeled valproic acid (sodium-salt) was administered to pregnant mice on days 8 and 9 of gestation (period of high sensitivity in regard to formation of neural tube defects in this species). Two dose levels of valproic acid (1 and 400 mg/kg) were used; in each case the total radioactivity administered was the same: 400 microCi/kg or 14.7 MBq/kg. Autoradiography combined with computerized densitometry revealed that in low-dose animals most of the radioactivity was confined to maternal liver and kidney, while at high doses more activity was observed in soft tissues and fluids, including amniotic fluid. In the embryo, the neuroepithelium showed the highest concentration, irrespective of dose and survival interval (30 min, 3 h, and 6 h). Upon administration of the high dose, up to five times more radioactivity (approximately 2,000 times more valproic acid) was recovered in embryonic tissues than after the low dose. It is concluded that high doses of VPA saturate the capacities of metabolism, excretion, and protein binding in the maternal organism, resulting in a higher proportion of the dose reaching the embryo, allowing more of the drug to be accumulated by the target organ, the neuroepithelium.

  1. Energetic Effects of Pre-hatch Albumen Removal on Embryonic Development and Early Ontogeny in Gallus gallus.

    Science.gov (United States)

    Peña-Villalobos, Isaac; Piriz, Gabriela; Palma, Verónica; Sabat, Pablo

    2016-01-01

    Studies on the yolk and albumen content in bird eggs, and the effects of variations in their relative loads in the phenotype of the birds, have revealed multiple consequences at different levels of biological organization, from biochemical traits to behavior. However, little is known about the effect of albumen variation on energetics performance during development and early ontogeny, despite the fact that variation in energy expenditure may have consequences in terms of fitness for both feral and domestic species. In this work, we evaluated experimentally whether variations in the content of albumen of Gallus gallus eggs could generate differences in metabolic rates during embryonic development. Additionally, we assessed changes in the activity of mitochondrial enzymes (cytochrome c oxidase and citrate synthase) in skeletal muscles and liver. Finally, we evaluated the success of hatching of these embryos and their metabolic rates (MR) post-hatching. The results revealed a significant reduction in MR in the last fifth of embryonic life, and reduced catabolic activities in the skeletal muscle of chicks hatched from albumen-removed eggs. However, the same group demonstrated an increase in catabolic activity in the liver, suggesting the existence of changes in energy allocation between tissues. Besides, we found a decrease in hatching success in the albumen-removed group, suggesting a negative effect of the lower albumen content on eggs, possibly due to lower catabolic activities in skeletal muscle. We also found a compensatory phenomenon in the first week after hatching, i.e., birds from albumen-removed eggs did not show a decrease in MR either at thermoneutral temperatures or at 10°C, compared to the control group. Collectively, our data suggest that a reduction in albumen may generate a trade-off between tissue metabolic activities, and may explain the differences in metabolic rates and hatching success, supporting the immediate adaptive response (IAR) hypothesis.

  2. Energetic Effects of Pre-hatch Albumen Removal on Embryonic Development and Early Ontogeny in Gallus gallus

    Science.gov (United States)

    Peña-Villalobos, Isaac; Piriz, Gabriela; Palma, Verónica; Sabat, Pablo

    2017-01-01

    Studies on the yolk and albumen content in bird eggs, and the effects of variations in their relative loads in the phenotype of the birds, have revealed multiple consequences at different levels of biological organization, from biochemical traits to behavior. However, little is known about the effect of albumen variation on energetics performance during development and early ontogeny, despite the fact that variation in energy expenditure may have consequences in terms of fitness for both feral and domestic species. In this work, we evaluated experimentally whether variations in the content of albumen of Gallus gallus eggs could generate differences in metabolic rates during embryonic development. Additionally, we assessed changes in the activity of mitochondrial enzymes (cytochrome c oxidase and citrate synthase) in skeletal muscles and liver. Finally, we evaluated the success of hatching of these embryos and their metabolic rates (MR) post-hatching. The results revealed a significant reduction in MR in the last fifth of embryonic life, and reduced catabolic activities in the skeletal muscle of chicks hatched from albumen-removed eggs. However, the same group demonstrated an increase in catabolic activity in the liver, suggesting the existence of changes in energy allocation between tissues. Besides, we found a decrease in hatching success in the albumen-removed group, suggesting a negative effect of the lower albumen content on eggs, possibly due to lower catabolic activities in skeletal muscle. We also found a compensatory phenomenon in the first week after hatching, i.e., birds from albumen-removed eggs did not show a decrease in MR either at thermoneutral temperatures or at 10°C, compared to the control group. Collectively, our data suggest that a reduction in albumen may generate a trade-off between tissue metabolic activities, and may explain the differences in metabolic rates and hatching success, supporting the immediate adaptive response (IAR) hypothesis

  3. Executive Function and Early Reading Skills

    Science.gov (United States)

    Foy, Judith G.; Mann, Virginia A.

    2013-01-01

    The purpose of this study was to examine how executive function skills in verbal and nonverbal auditory tasks are related to early reading skills in beginning readers. Kindergarteners (N = 41, aged 5 years) completed verbal (phonemes) and nonverbal (environmental sounds) Continuous Performance tasks yielding measures of executive function (misses,…

  4. Embryo-endometrial interactions during early development after embryonic diapause in the marsupial tammar wallaby.

    Science.gov (United States)

    Renfree, Marilyn B; Shaw, Geoff

    2014-01-01

    The marsupial tammar wallaby has the longest period of embryonic diapause of any mammal. Reproduction in the tammar is seasonal, regulated by photoperiod and also lactation. Reactivation is triggered by falling daylength after the austral summer solstice in December. Young are born late January and commence a 9-10-month lactation. Females mate immediately after birth. The resulting conceptus develops over 6- 7 days to form a unilaminar blastocyst of 80-100 cells and enters lactationally, and later seasonally, controlled diapause. The proximate endocrine signal for reactivation is an increase in progesterone which alters uterine secretions. Since the diapausing blastocyst is surrounded by the zona and 2 other acellular coats, the mucoid layer and shell coat, the uterine signals that maintain or terminate diapause must involve soluble factors in the secretions rather than any direct cellular interaction between uterus and embryo. Our studies suggest involvement of a number of cytokines in the regulation of diapause in tammars. The endometrium secretes platelet activating factor (PAF) and leukaemia inhibitory factor, which increase after reactivation. Receptors for PAF are low on the blastocyst during diapause but are upregulated at reactivation. Conversely, there is endometrial expression of the muscle segment homeobox gene MSX2 throughout diapause, but it is rapidly downregulated at reactivation. These patterns are consistent with those observed in diapausing mice and mink after reactivation, despite the very different patterns of endocrine control of diapause in these 3 divergent species. These common patterns suggest a similar underlying mechanism for diapause, perhaps common to all mammals, but which is activated in only a few.

  5. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thomas C Schulz

    Full Text Available Development of a human embryonic stem cell (hESC-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50-100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry.

  6. 4D embryonic cardiography using gated optical coherence tomography

    Science.gov (United States)

    Jenkins, M. W.; Rothenberg, F.; Roy, D.; Nikolski, V. P.; Hu, Z.; Watanabe, M.; Wilson, D. L.; Efimov, I. R.; Rollins, A. M.

    2006-01-01

    Simultaneous imaging of very early embryonic heart structure and function has technical limitations of spatial and temporal resolution. We have developed a gated technique using optical coherence tomography (OCT) that can rapidly image beating embryonic hearts in four-dimensions (4D), at high spatial resolution (10-15 μm), and with a depth penetration of 1.5 - 2.0 mm that is suitable for the study of early embryonic hearts. We acquired data from paced, excised, embryonic chicken and mouse hearts using gated sampling and employed image processing techniques to visualize the hearts in 4D and measure physiologic parameters such as cardiac volume, ejection fraction, and wall thickness. This technique is being developed to longitudinally investigate the physiology of intact embryonic hearts and events that lead to congenital heart defects.

  7. Loss of Vps54 Function Leads to Vesicle Traffic Impairment, Protein Mis-Sorting and Embryonic Lethality

    OpenAIRE

    Karlsson, Páll; Droce, Aida; Moser, Jakob; Cuhlmann, Simon; Padilla, Carolina; Heimann, Peter; Bartsch, Jörg; Füchtbauer, Annette; Füchtbauer, Ernst-Martin; Schmitt-John, Thomas

    2013-01-01

    The identification of the mutation causing the phenotype of the amyotrophic lateral sclerosis (ALS) model mouse, wobbler, has linked motor neuron degeneration with retrograde vesicle traffic. The wobbler mutation affects protein stability of Vps54, a ubiquitously expressed vesicle-tethering factor and leads to partial loss of Vps54 function. Moreover, the Vps54 null mutation causes embryonic lethality, which is associated with extensive membrane blebbing in the neural tube and is most likely ...

  8. Molecular Cloning and Functional Analysis of ESGP, an Embryonic Stem Cell and Germ Cell Specific Protein

    Institute of Scientific and Technical Information of China (English)

    Yan-Mei CHEN; Zhong-Wei DU; Zhen YAO

    2005-01-01

    Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends.ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG)(SeqWeb version 2.0.2, http://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic carcinoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression,forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.

  9. Inhibition of Rho kinase regulates specification of early differentiation events in P19 embryonal carcinoma stem cells.

    Directory of Open Access Journals (Sweden)

    Roman J Krawetz

    Full Text Available BACKGROUND: The Rho kinase pathway plays a key role in many early cell/tissue determination events that take place in embryogenesis. Rho and its downstream effector Rho kinase (ROCK play pivotal roles in cell migration, apoptosis (membrane blebbing, cell proliferation/cell cycle, cell-cell adhesion and gene regulation. We and others have previously demonstrated that inhibition of ROCK blocks endoderm differentiation in embryonal carcinoma stem cells, however, the effect of ROCK inhibition on mesoderm and ectoderm specification has not been fully examined. In this study, the role of ROCK within the specification and differentiation of all three germ layers was examined. METHODOLOGY/PRINCIPAL FINDINGS: P19 cells were treated with the specific ROCK inhibitor Y-27623, and increase in differentiation efficiency into neuro-ectodermal and mesodermal lineages was observed. However, as expected a dramatic decrease in early endodermal markers was observed when ROCK was inhibited. Interestingly, within these ROCK-inhibited RA treated cultures, increased levels of mesodermal or ectodermal markers were not observed, instead it was found that the pluripotent markers SSEA-1 and Oct-4 remained up-regulated similar to that seen in undifferentiated cultures. Using standard and widely accepted methods for reproducible P19 differentiation into all three germ layers, an enhancement of mesoderm and ectoderm differentiation with a concurrent loss of endoderm lineage specification was observed with Y-27632 treatment. Evidence would suggest that this effect is in part mediated through TGF-β and SMAD signaling as ROCK-inhibited cells displayed aberrant SMAD activation and did not return to a 'ground' state after the inhibition had been removed. CONCLUSIONS/SIGNIFICANCE: Given this data and the fact that only a partial rescue of normal differentiation capacity occurred when ROCK inhibition was alleviated, the effect of ROCK inhibition on the differentiation capacity of

  10. Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2.

    Science.gov (United States)

    Satyanarayana, Ande; Berthet, Cyril; Lopez-Molina, Javier; Coppola, Vincenzo; Tessarollo, Lino; Kaldis, Philipp

    2008-10-01

    It was believed that Cdk2-cyclin E complexes are essential to drive cells through the G1-S phase transition. However, it was discovered recently that the mitotic kinase Cdk1 (Cdc2a) compensates for the loss of Cdk2. In the present study, we tested whether Cdk2 can compensate for the loss of Cdk1. We generated a knockin mouse in which the Cdk2 cDNA was knocked into the Cdk1 locus (Cdk1Cdk2KI). Substitution of both copies of Cdk1 by Cdk2 led to early embryonic lethality, even though Cdk2 was expressed from the Cdk1 locus. In addition, we generated Cdk2-/- Cdk1+/Cdk2KI mice in which one copy of Cdk2 and one copy of Cdk1 were expressed from the Cdk1 locus and the Cdk2 gene was deleted from the endogenous Cdk2 locus. We found that both male and female Cdk2-/- Cdk1+/Cdk2KI mice were sterile, similar to Cdk2-/- mice, even though they expressed the Cdk2 protein from the Cdk1 locus in testes. The translocational and cell cycle properties of knockin Cdk2 in Cdk2-/- Cdk1+/Cdk2KI cells were comparable to those of endogenous Cdk2, but we detected premature transcriptional activation of Cdk1 during liver regeneration in the absence of Cdk2. This study provides evidence of the molecular differences between Cdk2 and Cdk1 and highlights that the timing of transcriptional activation and the genetic locus play important roles in determining the function of Cdk proteins in vivo.

  11. Functional Characteristics of Reversibly Immortalized Hepatic Progenitor Cells Derived from Mouse Embryonic Liver

    Directory of Open Access Journals (Sweden)

    Yang Bi

    2014-10-01

    Full Text Available Background/Aims: Liver is a vital organ and retains its regeneration capability throughout adulthood, which requires contributions from different cell populations, including liver precursors and intrahepatic stem cells. To overcome the mortality of hepatic progenitors (iHPs in vitro, we aim to establish reversibly immortalized hepatic progenitor cells from mouse embryonic liver. Methods and Results: Using retroviral system to stably express SV40 T antigen flanked with Cre/LoxP sites, we establish a repertoire of iHP clones with varied differentiation potential. The iHP cells maintain long-term proliferative activity and express varied levels of progenitor markers (Pou5f1/Oct4 and Dlk and hepatocyte markers (AFP, Alb and ApoB. Five representative iHP clones express hepatic/pancreatic transcription factors HNF3α/Foxa1, HNF3β/Foxa2, and HNF4α/MODY1. Dexamethasone is shown to promote the expression of hepatocyte markers AFP and TAT, along with ICG-uptake and glycogen storage functions in the iHP clones. Cre-mediated removal of SV40 T antigen reverses the proliferative activity of iHP cells. When iHP cells are subcutaneously implanted in athymic nude mice, no tumor formation is observed for up to 8 weeks. Conclusions: We demonstrate that the established iHP cells are stable, reversible, and non-tumorigenic hepatic progenitor-like cells, which should be valuable for studying liver organogenesis, metabolic regulations, and hepatic lineage-specific differentiation.

  12. Light impacts embryonic and early larval development of the European eel, Anguilla anguilla

    DEFF Research Database (Denmark)

    Politis, Sebastian Nikitas; Butts, Ian; Tomkiewicz, Jonna

    2014-01-01

    intensity white (full spectrum, 10.5 μmol m-2 s-1), blue (~470 nm, 3.9 μmol m-2 s-1), green (~530 nm, 1.5 μmol m-2 s-1), and red light (~690 nm, 1.1 μmol m-2 s-1). Additionally, offspring were reared in continuous darkness (0:24 h light/dark). Results showed that light critically influenced early life...... in the 24:0 h light/dark photoperiod (13 ± 8%), and larvae reared in red light (22 ± 8%) had higher survival than those reared in green (14 ± 8%) or white light (11 ± 8%). Under continuous darkness, development and survival of offspring was as high as the best intensity-photoperiod-spectral composition......Little is known about the natural ecology of European eel during early life history. Weextend our understandings on the ecology of this species by studying howearly life stages perform under various light regimes.We assessed the effects of intensity, photoperiod (12:12 and 24:0 h light...

  13. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    Science.gov (United States)

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  14. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    Directory of Open Access Journals (Sweden)

    Ryosuke Motani

    Full Text Available Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia, which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic. This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  15. Influence of mefloquine administration during early pregnancy on rat embryonic development.

    Science.gov (United States)

    El-Dakdoky, Mai Helmy

    2015-02-01

    Mefloquine (MQ) is a potent effective antimalarial drug against multiple drug-resistant Plasmodium falciparum. It has been proved that MQ can be given safely during the second and third trimesters. However, there is very limited information on the drug safety during the first trimester. The aim of the present work was to investigate the embryotoxicity and teratogenicity of MQ during critical periods of early development. Wistar rats were orally administered with a single dose of MQ (45 mg/kg bwt or 187 mg/kg bwt) on the 1st, 6th or 13th days of pregnancy. Cyclophosphamide (CPA) was chosen as a positive control. On the 21st day of gestation, standard parameters of reproductive performance and fetal examination were estimated. Malondialdehyde (MDA) level, glutathione reductase activity and glutathione (GSH) content were evaluated in placenta and liver homogenates of mothers and fetuses. The results indicated that MQ did not adversely affect the number of implantation, resorption, litter size and fetal body weight and length. Only groups treated with MQ on the 1st day of gestation exhibited significant decrease in fetal body weight. Examination of fetuses for external, visceral and skeletal changes showed minimal variations involving extension of lateral brain ventricles and renal pelvis and signs of delayed ossification. These variations were accompanied with significant elevation of MDA level and reduction of GSH content of fetal liver. Prenatal exposure to MQ at early pregnancy did not cause any embryolethal or teratogenic effect. It could slightly exacerbate minor variations.

  16. Early executive function predicts reasoning development.

    Science.gov (United States)

    Richland, Lindsey E; Burchinal, Margaret R

    2013-01-01

    Analogical reasoning is a core cognitive skill that distinguishes humans from all other species and contributes to general fluid intelligence, creativity, and adaptive learning capacities. Yet its origins are not well understood. In the study reported here, we analyzed large-scale longitudinal data from the Study of Early Child Care and Youth Development to test predictors of growth in analogical-reasoning skill from third grade to adolescence. Our results suggest an integrative resolution to the theoretical debate regarding contributory factors arising from smaller-scale, cross-sectional experiments on analogy development. Children with greater executive-function skills (both composite and inhibitory control) and vocabulary knowledge in early elementary school displayed higher scores on a verbal analogies task at age 15 years, even after adjusting for key covariates. We posit that knowledge is a prerequisite to analogy performance, but strong executive-functioning resources during early childhood are related to long-term gains in fundamental reasoning skills.

  17. Interrogating a cell signalling network sensitively monitors cell fate transition during early differentiation of mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU; Yi-Hsin; HO; Chih-ming

    2010-01-01

    The different cell types in an animal are often considered to be specified by combinations of transcription factors,and defined by marker gene expression.This paradigm is challenged,however,in stem cell research and application.Using a mouse embryonic stem cell(mESC) culture system,here we show that the expression level of many key stem cell marker genes/transcription factors such as Oct4,Sox2 and Nanog failed to monitor cell status transition during mESC differentiation.On the other hand,the response patterns of cell signalling network to external stimuli,as monitored by the dynamics of protein phosphorylation,changed dramatically.Our results also suggest that an irreversible alternation in the cell signalling network precedes the adjustment of transcription factor levels.This is consistent with the notion that signal transduction events regulate cell fate specification.We propose that interrogating a cell signalling network can assess the cell property more precisely,and provide a sensitive measurement for the early events in cell fate transition.We wish to bring attention to the potential problem of cell identification using a few marker genes,and suggest a novel methodology to address this issue.

  18. Phytic acid mobilization is an early response to chilling of the embryonic axes from dormant oilseed of hazel (Corylus avellana).

    Science.gov (United States)

    Andriotis, Vasilios M E; Smith, Susan B; Ross, James D

    2005-02-01

    Dormancy of hazel (Corylus avellana L.) seeds is alleviated by a chilling treatment during which cytological, hormonal, and biochemical changes occur. Phytic acid and phosphate mobilization have been examined during this treatment. Phytic acid accounted for 0.7% and up to 3.2% of dry weight in axiferous and cotyledonary tissue, respectively. Phytic acid levels in embryonic axes were reduced by 60% within the first 3 weeks of chilling, with little subsequent change, in contrast to warm-imbibed tissue where levels did not change significantly. In cotyledons, phytic acid was mobilized to a lesser extent. Phosphate levels expressed on a fresh weight basis remained almost unaltered suggesting either the operation of a homeostatic mechanism for intracellular concentration or rapid utilization due to active metabolism. Phytase activity increased during stratification in both axiferous and cotyledonary tissue. The initial rise observed was associated with dormancy alleviation, since it occurred before the realization of full germination potential by the seeds and not in warm-imbibed tissue. Protein bodies were isolated from hazel seeds by non-aqueous density gradients. Phytase activity was closely associated with the purified organelles, where phytic acid was located by light microscopy. Overall, these findings suggest that phytic acid mobilization by phytase and previously described processes associated with protein bodies, such as considerable proteolysis, are early participants in the plethora of events leading to seed dormancy relief and germination in hazel.

  19. A Modified Murine Embryonic Stem Cell Test for Evaluating the Teratogenic Effects of Drugs on Early Embryogenesis.

    Science.gov (United States)

    Yu, Ruoxing; Miyamura, Norio; Okamoto-Uchida, Yoshimi; Arima, Norie; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Nishina, Hiroshi

    2015-01-01

    Mammalian fetal development is easily disrupted by exogenous agents, making it essential to test new drug candidates for embryotoxicity and teratogenicity. To standardize the testing of drugs that might be used to treat pregnant women, the U.S. Food and Drug Administration (FDA) formulated special grade categories, labeled A, B, C, D and X, that define the level of risk associated with the use of a specific drug during pregnancy. Drugs in categories (Cat.) D and X are those with embryotoxic and/or teratogenic effects on humans and animals. However, which stages of pregnancy are affected by these agents and their molecular mechanisms are unknown. We describe here an embryonic stem cell test (EST) that classifies FDA pregnancy Cat.D and Cat.X drugs into 4 classes based on their differing effects on primitive streak formation. We show that ~84% of Cat.D and Cat.X drugs target this period of embryogenesis. Our results demonstrate that our modified EST can identify how a drug affects early embryogenesis, when it acts, and its molecular mechanism. Our test may thus be a useful addition to the drug safety testing armamentarium.

  20. A Modified Murine Embryonic Stem Cell Test for Evaluating the Teratogenic Effects of Drugs on Early Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Ruoxing Yu

    Full Text Available Mammalian fetal development is easily disrupted by exogenous agents, making it essential to test new drug candidates for embryotoxicity and teratogenicity. To standardize the testing of drugs that might be used to treat pregnant women, the U.S. Food and Drug Administration (FDA formulated special grade categories, labeled A, B, C, D and X, that define the level of risk associated with the use of a specific drug during pregnancy. Drugs in categories (Cat. D and X are those with embryotoxic and/or teratogenic effects on humans and animals. However, which stages of pregnancy are affected by these agents and their molecular mechanisms are unknown. We describe here an embryonic stem cell test (EST that classifies FDA pregnancy Cat.D and Cat.X drugs into 4 classes based on their differing effects on primitive streak formation. We show that ~84% of Cat.D and Cat.X drugs target this period of embryogenesis. Our results demonstrate that our modified EST can identify how a drug affects early embryogenesis, when it acts, and its molecular mechanism. Our test may thus be a useful addition to the drug safety testing armamentarium.

  1. High periconceptional protein intake modifies uterine and embryonic relationships increasing early pregnancy losses and embryo growth retardation in sheep.

    Science.gov (United States)

    Meza-Herrera, C A; Ross, T T; Hallford, D M; Hawkins, D E; Gonzalez-Bulnes, A

    2010-08-01

    The effects of supplemented protein level (PL) during the periconceptional period and their interaction with body condition were evaluated in sheep. Multiparous Rambouillet ewes (n = 12) received two PL of rumen undegradable protein (UIP) during a 30-day pre-mating and 15-day post-mating period: low [LPL, 24% crude protein (CP), 14 g UIP and 36 g/CP animal/day] and high [HPL, 44% CP, 30 g UIP and 50 g/CP animal/day]. While ovulation rate (OR) did not differ between treatments (1.6 +/- 0.5, mean +/- SEM), a lower fertility rate, a decreased embryo number and a reduced uterine pH (UpH) was observed in the HPL group (p UpH also had lower conceptus weight (Cwt; p < 0.05, r = 0.65) and conceptuses with lower mass tended to secrete less INF-tau and IGF-1, and the correspondent endometrial explants had a higher basal PGF(2alpha) release. Current study indicates that high protein diets during the periconceptional period in sheep modify uterine and embryonic relationships, increasing early pregnancy losses and inducing embryo growth retardation. Surviving embryos were affected by weight reductions, which could compromise later foetal growth and birth weight. Results evidence the key role of a balanced diet in reproductive success and indicate that the quality and nutrient composition of the maternal diet are essential for an adequate establishment of pregnancy, having paramount effects on the interplay of the embryo and the uterus.

  2. Infant Attention and Early Childhood Executive Function

    Science.gov (United States)

    Cuevas, Kimberly; Bell, Martha Ann

    2014-01-01

    Individual differences in infant attention are theorized to reflect the speed of information processing and are related to later cognitive abilities (i.e., memory, language, and intelligence). This study provides the first systematic longitudinal analysis of infant attention and early childhood executive function (EF; e.g., working memory,…

  3. Functionally deficient neuronal differentiation of mouse embryonic neural stem cells in vitro

    NARCIS (Netherlands)

    Balasubramaniyan, [No Value; de Haas, AH; Bakels, R; Koper, A; Boddeke, HWGM; Copray, JM

    Embryonic mouse neural stem cells (NSCs) were isolated from E14 mice, multiplied in medium containing epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) and plated in laminin-coated wells in basic serum-free neurobasal medium. After 7 days in vitro, approximately 20% of the

  4. Human embryonic stem cells : advancing biology and cardiogenesis towards functional applications l

    NARCIS (Netherlands)

    Braam, Stefan Robbert

    2010-01-01

    Human embryonic stem cells (hESC) hold great potential as a model for human development, disease pathology, drug discovery and safety pharmacology. All these applications will depend on comprehensive knowledge of their biology and control of their signaling mechanisms and fate choices. To begin to a

  5. Functionally deficient neuronal differentiation of mouse embryonic neural stem cells in vitro

    NARCIS (Netherlands)

    Balasubramaniyan, [No Value; de Haas, AH; Bakels, R; Koper, A; Boddeke, HWGM; Copray, JM

    2004-01-01

    Embryonic mouse neural stem cells (NSCs) were isolated from E14 mice, multiplied in medium containing epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) and plated in laminin-coated wells in basic serum-free neurobasal medium. After 7 days in vitro, approximately 20% of the embr

  6. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress.

    Science.gov (United States)

    Ou, Xuan; Lee, Man Ryul; Huang, Xinxin; Messina-Graham, Steven; Broxmeyer, Hal E

    2014-05-01

    SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2 O2 (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1-/-, than in WT mESCs. However, addition of 3-methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways.

  7. Pulmonary Function After Treatment for Embryonal Brain Tumors on SJMB03 That Included Craniospinal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Green, Daniel M., E-mail: daniel.green@stjude.org [Department of Epidemiology and Cancer Control, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Billups, Catherine A. [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Stokes, Dennis C. [Department of Pediatrics, University of Tennessee School of Medicine, Memphis, Tennessee (United States); Broniscer, Alberto [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Bartels, Ute [Department of Haematology and Oncology, The Hospital for Sick Children, Toronto, Ontario (Canada); Chintagumpala, Murali [Department of Pediatric Medicine, Texas Children' s Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas (United States); Hassall, Timothy E. [Department of Haematology and Oncology, Royal Children' s Hospital, Brisbane (Australia); Gururangan, Sridharan [Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (United States); McCowage, Geoffrey B. [Department of Pediatrics, Children' s Hospital at Westmead, Sydney (Australia); Heath, John A. [Children' s Cancer Center, Royal Children' s Hospital Melbourne, Melbourne (Australia); Cohn, Richard J. [Department of Clinical Oncology, Sydney Children' s Hospital, Sydney (Australia); Fisher, Michael J. [Department of Pediatrics, Children' s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States); Srinivasan, Ashok [Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Robinson, Giles W.; Gajjar, Amar [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2015-09-01

    Purpose: The treatment of children with embryonal brain tumors (EBT) includes craniospinal irradiation (CSI). There are limited data regarding the effect of CSI on pulmonary function. Methods: Protocol SJMB03 enrolled patients 3 to 21 years of age with EBT. Pulmonary function tests (PFTs) (forced expiratory volume in 1 second [FEV{sub 1}] and forced vital capacity [FVC] by spirometry, total lung capacity [TLC] by nitrogen washout or plethysmography, and diffusing capacity of the lung for carbon monoxide corrected for hemoglobin [DLCO{sub corr}]) were obtained. Differences between PFTs obtained immediately after the completion of CSI and 24 or 60 months after the completion of treatment (ACT) were compared using exact Wilcoxon signed-rank tests and repeated-measures models. Results: Between June 24, 2003, and March 1, 2010, 303 eligible patients (spine dose: ≤2345 cGy, 201; >2345 cGy, 102; proton beam, 20) were enrolled, 260 of whom had at least 1 PFT. The median age at diagnosis was 8.9 years (range, 3.1-20.4 years). The median thoracic spinal radiation dose was 23.4 Gy (interquartile range [IQR], 23.4-36.0 Gy). The median cyclophosphamide dose was 16.0 g/m{sup 2} (IQR, 15.7-16.0 g/m{sup 2}). At 24 and 60 months ACT, DLCO{sub corr} was <75% predicted in 23% (27/118) and 25% (21/84) of patients, FEV{sub 1} was <80% predicted in 20% (34/170) and 29% (32/109) of patients, FVC was <80% predicted in 27% (46/172) and 28% (30/108) of patients, and TLC was <75% predicted in 9% (13/138) and 11% (10/92) of patients. DLCO{sub corr} was significantly decreased 24 months ACT (median difference [MD] in % predicted, 3.00%; P=.028) and 60 months ACT (MD in % predicted, 6.00%; P=.033) compared with the end of radiation therapy. These significant decreases in DLCO{sub corr} were also observed in repeated-measures models (P=.011 and P=.032 at 24 and 60 months ACT, respectively). Conclusions: A significant minority of EBT survivors experience PFT deficits after CSI

  8. Early events in xenograft development from the human embryonic stem cell line HS181--resemblance with an initial multiple epiblast formation.

    Science.gov (United States)

    Gertow, Karin; Cedervall, Jessica; Jamil, Seema; Ali, Rouknuddin; Imreh, Marta P; Gulyas, Miklos; Sandstedt, Bengt; Ahrlund-Richter, Lars

    2011-01-01

    Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart.

  9. Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas.

    Directory of Open Access Journals (Sweden)

    Frédéric Gazeau

    Full Text Available Ocean acidification, due to anthropogenic CO₂ absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas larvae during the first 3 days of development (until shelled D-veliger larvae. Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition. Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.

  10. Depletion of BIRC6 leads to retarded bovine early embryonic development and blastocyst formation in vitro.

    Science.gov (United States)

    Salilew-Wondim, Dessie; Hölker, Micheal; Rings, Franca; Phatsara, Chirawath; Mohammadi-Sangcheshmeh, Abdollah; Tholen, Ernst; Schellander, Karl; Tesfaye, Dawit

    2010-01-01

    Baculoviral inhibitors of apoptosis repeat-containing 6 (BIRC6) is believed to inhibit apoptosis by targeting key cell-death proteins. To understand its involvement during bovine preimplantation embryo development, two consecutive experiments were conducted by targeted knockdown of its mRNA and protein using RNA interference. In Experiment 1, the effect of BIRC6 knockdown during the early stages of preimplantation embryo development was assessed by injecting zygotes with long double-stranded RNA (ldsRNA) and short hairpin RNA (shRNA) against BIRC6 mRNA followed by in vitro culturing until 96 h post insemination (hpi). The results showed that in RNA-injected zygote groups, reduced levels of BIRC6 mRNA and protein were accompanied by an increase (P < 0.05) in the proportion of 2- and 4-cell and uncleaved embryos and a corresponding decrease (P < 0.05) in the number of 8-cell embryos. In Experiment 2, the effect of BIRC6 knockdown on blastocyst formation, blastocyst total cell number and the extent of apoptosis was investigated. Consequently, zygotes injected with ldsRNA and shRNA resulted in lower (P < 0.05) blastocyst formation and total blastocyst cell number. Moreover, the apoptotic cell ratio, CASPASE 3 and 7 activity, BAX to BCL-2 ratio and levels of SMAC and CASPASE 9 were higher in blastocysts derived from the ldsRNA and shRNA groups, suggesting increased apoptosis in those blastocysts. The results of this study reveal the importance of BIRC6 expression for embryo survival during bovine preimplantation embryo development. However, whether BIRC6 is essential for implantation and fetal development during bovine pregnancy needs further research.

  11. Embryonic Cell Grafts in a Culture Model of Spinal Cord Lesion: Neuronal Relay Formation is Essential for Functional Regeneration

    Directory of Open Access Journals (Sweden)

    Anne Tscherter

    2016-09-01

    Full Text Available Presently there exists no cure for spinal cord injury. However, transplantation of embryonic tissue into spinal cord lesions resulted in axon outgrowth across the lesion site and some functional recovery, fostering hope for future stem cell therapies. Although in vivo evidence for functional recovery is given, the exact cellular mechanism of the graft support remains elusive: either the grafted cells provide a permissive environment for the host tissue to regenerate itself or the grafts actually integrate functionally into the host neuronal network reconnecting the separated spinal cord circuits. We tested the two hypotheses in an in vitro spinal cord lesion model that is based on propagation of activity between two rat organotypic spinal cord slices in culture. Transplantation of dissociated cells from E14 rat spinal cord or forebrain re-established the relay of activity over the lesion site and, thus, provoked functional regeneration. Combining patch-clamp recordings from transplanted cells with network activity measurements from the host tissue on multi-electrode arrays we here show that neurons differentiate from the grafted cells and integrate into the host circuits. Optogenetic silencing of neurons developed from transplanted embryonic mouse forebrain cells provides clear evidence that they replace the lost neuronal connections to relay and synchronize activity between the separated spinal cord circuits. In contrast, transplantation of neurospheres induced neither the differentiation of mature neurons from the grafts nor an improvement of functional regeneration. Together these findings suggest, that the formation of neuronal relays from grafted embryonic cells is essential to re-connect segregated spinal cord circuits.

  12. Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Séverine A Degrelle

    Full Text Available Somatic cell nuclear transfer (SCNT is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each; one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular "uncoupling". Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538, we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity and subsequent pregnancy loss. Finally

  13. The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus

    Directory of Open Access Journals (Sweden)

    Roth Siegfried

    2011-01-01

    Full Text Available Abstract Background Most evolutionary developmental biology ("evo-devo" studies of emerging model organisms focus on small numbers of candidate genes cloned individually using degenerate PCR. However, newly available sequencing technologies such as 454 pyrosequencing have recently begun to allow for massive gene discovery in animals without sequenced genomes. Within insects, although large volumes of sequence data are available for holometabolous insects, developmental studies of basally branching hemimetabolous insects typically suffer from low rates of gene discovery. Results We used 454 pyrosequencing to sequence over 500 million bases of cDNA from the ovaries and embryos of the milkweed bug Oncopeltus fasciatus, which lacks a sequenced genome. This indirectly developing insect occupies an important phylogenetic position, branching basal to Diptera (including fruit flies and Hymenoptera (including honeybees, and is an experimentally tractable model for short-germ development. 2,087,410 reads from both normalized and non-normalized cDNA assembled into 21,097 sequences (isotigs and 112,531 singletons. The assembled sequences fell into 16,617 unique gene models, and included predictions of splicing isoforms, which we examined experimentally. Discovery of new genes plateaued after assembly of ~1.5 million reads, suggesting that we have sequenced nearly all transcripts present in the cDNA sampled. Many transcripts have been assembled at close to full length, and there is a net gain of sequence data for over half of the pre-existing O. fasciatus accessions for developmental genes in GenBank. We identified 10,775 unique genes, including members of all major conserved metazoan signaling pathways and genes involved in several major categories of early developmental processes. We also specifically address the effects of cDNA normalization on gene discovery in de novo transcriptome analyses. Conclusions Our sequencing, assembly and annotation framework

  14. The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus.

    Science.gov (United States)

    Ewen-Campen, Ben; Shaner, Nathan; Panfilio, Kristen A; Suzuki, Yuichiro; Roth, Siegfried; Extavour, Cassandra G

    2011-01-25

    Most evolutionary developmental biology ("evo-devo") studies of emerging model organisms focus on small numbers of candidate genes cloned individually using degenerate PCR. However, newly available sequencing technologies such as 454 pyrosequencing have recently begun to allow for massive gene discovery in animals without sequenced genomes. Within insects, although large volumes of sequence data are available for holometabolous insects, developmental studies of basally branching hemimetabolous insects typically suffer from low rates of gene discovery. We used 454 pyrosequencing to sequence over 500 million bases of cDNA from the ovaries and embryos of the milkweed bug Oncopeltus fasciatus, which lacks a sequenced genome. This indirectly developing insect occupies an important phylogenetic position, branching basal to Diptera (including fruit flies) and Hymenoptera (including honeybees), and is an experimentally tractable model for short-germ development. 2,087,410 reads from both normalized and non-normalized cDNA assembled into 21,097 sequences (isotigs) and 112,531 singletons. The assembled sequences fell into 16,617 unique gene models, and included predictions of splicing isoforms, which we examined experimentally. Discovery of new genes plateaued after assembly of ~1.5 million reads, suggesting that we have sequenced nearly all transcripts present in the cDNA sampled. Many transcripts have been assembled at close to full length, and there is a net gain of sequence data for over half of the pre-existing O. fasciatus accessions for developmental genes in GenBank. We identified 10,775 unique genes, including members of all major conserved metazoan signaling pathways and genes involved in several major categories of early developmental processes. We also specifically address the effects of cDNA normalization on gene discovery in de novo transcriptome analyses. Our sequencing, assembly and annotation framework provide a simple and effective way to achieve high

  15. Early embryonic expression patterns of the mouse Flamingo and Prickle orthologues.

    Science.gov (United States)

    Crompton, Lucy A; Du Roure, Camille; Rodriguez, Tristan A

    2007-11-01

    The Drosophila melanogaster proteins Flamingo and Prickle act in the planar cell polarity (PCP) pathway, which is required for acquisition of epithelial polarity in the wing, eye, and epidermis. In mammals, PCP signaling has been shown to regulate cell movements and polarity in a variety of tissues. Here, we show that the murine Flamingo orthologues Celsr1-3 and the Prickle orthologues Prickle1, Prickle2, and Testin have dynamic patterns of expression during pregastrulation and gastrulation stages. Celsr1 is expressed in the anterior visceral endoderm and nascent mesoderm, Celsr2 and Celsr3 mark the prospective neuroectoderm, Prickle1 is expressed in the primitive streak and mesoderm, Prickle2 in the node, and Testin in the anterior visceral endoderm, the extraembryonic ectoderm, primitive streak, and mesoderm. Analysis of a gene-trap mutation in Testin indicates that this gene is not required for embryogenesis; therefore, other Prickle homologues may compensate for its function during development.

  16. John Dewey and early Chicago functionalism.

    Science.gov (United States)

    Backe, A

    2001-11-01

    John Dewey and James Angell are regarded respectively as the founder and systematizer of the Chicago school of functional psychology. The early Chicago school traditionally has been portrayed as a unified theoretical approach based primarily on William James's naturalist theory of mental processes. It is argued in this article that although the psychology systematized by Angell bore a close affinity to James's naturalism, Dewey's own psychology was based primarily on the neo-Hegelian philosophy of Thomas Hill Green. Through a review of a number of Dewey's major writings, Green's neo-Hegelian philosophy is shown to have influenced Dewey's views on psychological concepts such as reaction, emotion, and perception during the formative period of the Chicago school. The interpretation of Dewey's psychology developed in this article leads to the conclusion that early Chicago functionalism should not be regarded as a unified theoretical approach.

  17. Monosynaptic Tracing using Modified Rabies Virus Reveals Early and Extensive Circuit Integration of Human Embryonic Stem Cell-Derived Neurons

    Directory of Open Access Journals (Sweden)

    Shane Grealish

    2015-06-01

    Full Text Available Human embryonic stem cell (hESC-derived dopamine neurons are currently moving toward clinical use for Parkinson’s disease (PD. However, the timing and extent at which stem cell-derived neurons functionally integrate into existing host neural circuitry after transplantation remain largely unknown. In this study, we use modified rabies virus to trace afferent and efferent connectivity of transplanted hESC-derived neurons in a rat model of PD and report that grafted human neurons integrate into the host neural circuitry in an unexpectedly rapid and extensive manner. The pattern of connectivity resembled that of local endogenous neurons, while ectopic connections were not detected. Revealing circuit integration of human dopamine neurons substantiates their potential use in clinical trials. Additionally, our data present rabies-based tracing as a valuable and widely applicable tool for analyzing graft connectivity that can easily be adapted to analyze connectivity of a variety of different neuronal sources and subtypes in different disease models.

  18. Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans.

    Science.gov (United States)

    Arata, Yukinobu; Takagi, Hiroaki; Sako, Yasushi; Sawa, Hitoshi

    2014-01-01

    Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula transition (MBT), the cell cycle duration elongates in a power law relationship with the cell radius squared. This correlation has been explained by the model that cell surface area is a candidate to determine cell cycle duration. However, it remains unknown whether this second power law is conserved in other animal embryos. Here, we found that the relationship between cell cycle duration and cell size in Caenorhabditis elegans embryos exhibited a power law distribution. Interestingly, the powers of the time-size relationship could be grouped into at least three classes: highly size-correlated, moderately size-correlated, and potentially a size-non-correlated class according to C. elegans founder cell lineages (1.2, 0.81, and power law relationship is conserved in Xenopus and C. elegans, while the absolute powers in C. elegans were different from that in Xenopus. Furthermore, we found that the volume ratio between the nucleus and cell exhibited a power law relationship in the size-correlated classes. The power of the volume relationship was closest to that of the time-size relationship in the highly size-correlated class. This correlation raised the possibility that the time-size relationship, at least in the highly size-correlated class, is explained by the volume ratio of nuclear size and cell size. Thus, our quantitative measurements shed a light on the possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size as a result of geometric constraints between intracellular structures.

  19. The DEAD-box RNA helicase Vasa functions in embryonic mitotic progression in the sea urchin.

    Science.gov (United States)

    Yajima, Mamiko; Wessel, Gary M

    2011-06-01

    Vasa is a broadly conserved ATP-dependent RNA helicase that functions in the germ line of organisms from cnidarians to mammals. Curiously, Vasa is also present in the somatic cells of many animals and functions as a regulator of multipotent cells. Here, we report a mitotic function of Vasa revealed in the sea urchin embryo. We found that Vasa protein is present in all blastomeres of the early embryo and that its abundance oscillates with the cell cycle. Vasa associates with the spindle and the separating sister chromatids at metaphase, and then quickly disappears after telophase. Inhibition of Vasa protein synthesis interferes with proper chromosome segregation, arrests cells at M-phase, and delays overall cell cycle progression. Cdk activity is necessary for the proper localization of Vasa, implying that Vasa is involved in the cyclin-dependent cell cycle network, and Vasa is required for the efficient translation of cyclinB mRNA. Our results suggest an evolutionarily conserved role of Vasa that is independent of its function in germ line determination.

  20. Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis

    Science.gov (United States)

    Pozner, Amir; Lotem, Joseph; Xiao, Cuiying; Goldenberg, Dalia; Brenner, Ori; Negreanu, Varda; Levanon, Ditsa; Groner, Yoram

    2007-01-01

    Background Alternative promoters usage is an important paradigm in transcriptional control of mammalian gene expression. However, despite the growing interest in alternative promoters and their role in genome diversification, very little is known about how and on what occasions those promoters are differentially regulated. Runx1 transcription factor is a key regulator of early hematopoiesis and a frequent target of chromosomal translocations in acute leukemias. Mice deficient in Runx1 lack definitive hematopoiesis and die in mid-gestation. Expression of Runx1 is regulated by two functionally distinct promoters designated P1 and P2. Differential usage of these two promoters creates diversity in distribution and protein-coding potential of the mRNA transcripts. While the alternative usage of P1 and P2 likely plays an important role in Runx1 biology, very little is known about the function of the P1/P2 switch in mediating tissue and stage specific expression of Runx1 during development. Results We employed mice bearing a hypomorphic Runx1 allele, with a largely diminished P2 activity, to investigate the biological role of alternative P1/P2 usage. Mice homozygous for the hypomorphic allele developed to term, but died within a few days after birth. During embryogenesis the P1/P2 activity is spatially and temporally modulated. P2 activity is required in early hematopoiesis and when attenuated, development of liver hematopoietic progenitor cells (HPC) was impaired. Early thymus development and thymopoiesis were also abrogated as reflected by thymic hypocellularity and loss of corticomedullary demarcation. Differentiation of CD4/CD8 thymocytes was impaired and their apoptosis was enhanced due to altered expression of T-cell receptors. Conclusion The data delineate the activity of P1 and P2 in embryogenesis and describe previously unknown functions of Runx1. The findings show unequivocally that the role of P1/P2 during development is non redundant and underscore the

  1. Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis

    Directory of Open Access Journals (Sweden)

    Goldenberg Dalia

    2007-07-01

    Full Text Available Abstract Background Alternative promoters usage is an important paradigm in transcriptional control of mammalian gene expression. However, despite the growing interest in alternative promoters and their role in genome diversification, very little is known about how and on what occasions those promoters are differentially regulated. Runx1 transcription factor is a key regulator of early hematopoiesis and a frequent target of chromosomal translocations in acute leukemias. Mice deficient in Runx1 lack definitive hematopoiesis and die in mid-gestation. Expression of Runx1 is regulated by two functionally distinct promoters designated P1 and P2. Differential usage of these two promoters creates diversity in distribution and protein-coding potential of the mRNA transcripts. While the alternative usage of P1 and P2 likely plays an important role in Runx1 biology, very little is known about the function of the P1/P2 switch in mediating tissue and stage specific expression of Runx1 during development. Results We employed mice bearing a hypomorphic Runx1 allele, with a largely diminished P2 activity, to investigate the biological role of alternative P1/P2 usage. Mice homozygous for the hypomorphic allele developed to term, but died within a few days after birth. During embryogenesis the P1/P2 activity is spatially and temporally modulated. P2 activity is required in early hematopoiesis and when attenuated, development of liver hematopoietic progenitor cells (HPC was impaired. Early thymus development and thymopoiesis were also abrogated as reflected by thymic hypocellularity and loss of corticomedullary demarcation. Differentiation of CD4/CD8 thymocytes was impaired and their apoptosis was enhanced due to altered expression of T-cell receptors. Conclusion The data delineate the activity of P1 and P2 in embryogenesis and describe previously unknown functions of Runx1. The findings show unequivocally that the role of P1/P2 during development is non

  2. Pipette-based Method to Study Embryoid Body Formation Derived from Mouse and Human Pluripotent Stem Cells Partially Recapitulating Early Embryonic Development Under Simulated Microgravity Conditions

    Science.gov (United States)

    Shinde, Vaibhav; Brungs, Sonja; Hescheler, Jürgen; Hemmersbach, Ruth; Sachinidis, Agapios

    2016-06-01

    The in vitro differentiation of pluripotent stem cells partially recapitulates early in vivo embryonic development. More recently, embryonic development under the influence of microgravity has become a primary focus of space life sciences. In order to integrate the technique of pluripotent stem cell differentiation with simulated microgravity approaches, the 2-D clinostat compatible pipette-based method was experimentally investigated and adapted for investigating stem cell differentiation processes under simulated microgravity conditions. In order to keep residual accelerations as low as possible during clinorotation, while also guaranteeing enough material for further analysis, stem cells were exposed in 1-mL pipettes with a diameter of 3.5 mm. The differentiation of mouse and human pluripotent stem cells inside the pipettes resulted in the formation of embryoid bodies at normal gravity (1 g) after 24 h and 3 days. Differentiation of the mouse pluripotent stem cells on a 2-D pipette-clinostat for 3 days also resulted in the formation of embryoid bodies. Interestingly, the expression of myosin heavy chain was downregulated when cultivation was continued for an additional 7 days at normal gravity. This paper describes the techniques for culturing and differentiation of pluripotent stem cells and exposure to simulated microgravity during culturing or differentiation on a 2-D pipette clinostat. The implementation of these methodologies along with -omics technologies will contribute to understand the mechanisms regulating how microgravity influences early embryonic development.

  3. Early lung function abnormalities in acromegaly.

    Science.gov (United States)

    Benfante, A; Ciresi, A; Bellia, M; Cannizzaro, F; Bellia, V; Giordano, C; Scichilone, N

    2015-06-01

    Acromegaly is an insidious disorder caused by a pituitary growth hormone (GH)-secreting adenoma resulting in high circulating levels of GH and insulin-like growth factor I (IGF-I). Respiratory disorders are common complications in acromegaly, and can severely impact on quality of life, eventually affecting mortality. The present study aimed to explore structural and functional lung alterations of acromegalic subjects. We enrolled 10 consecutive patients (M/F: 5/5) affected by acromegaly. In all patients, magnetic resonance imaging (MRI) revealed the presence of pituitary tumor. All patients underwent clinical, lung functional, biological, and radiological assessments. Ten healthy age-matched subjects also served as controls. No statistically significant differences in lung function were detected between acromegalic and healthy subjects (p ≥ 0.05 for all analyses). However, the diffusing capacity for CO (TLCO) was significantly lower in the acromegalic group than in healthy subjects (TLCO% predicted: 78.1 ± 16 vs. 90 ± 6 %, respectively, p = 0.04; KCO% predicted: 77 ± 16 vs. 93 ± 5 %, p = 0.02, respectively). None of the lung function parameters correlated with duration of the disease, or with inflammatory marker of the airways. In acromegalics, biological (exhaled NO concentrations) and imaging (total lung volume, TLV, and mean lung density, MLD) evaluations were within normal values. The TLV measured by HRCT was 3540 ± 1555 ml in acromegalics, and the MLD was -711 ± 73 HU. None of the lung functional, radiological, and biological findings correlated with GH or IGF-I levels, and no correlation was found with duration of disease. In the current study, lung function evaluation allowed to detect early involvement of lung parenchyma, as assessed by TLCO and KCO, even in the absence of parenchymal density alterations of the lung by HRCT. These findings suggest to routinely include the carbon monoxide diffusing capacity in the lung function assessment for an

  4. Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts.

    Directory of Open Access Journals (Sweden)

    Nicolas Christoforou

    Full Text Available Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.

  5. Infrared laser-induced gene expression for tracking development and function of single C. elegans embryonic neurons

    Science.gov (United States)

    Singhal, Anupriya; Shaham, Shai

    2017-01-01

    Visualizing neural-circuit assembly in vivo requires tracking growth of optically resolvable neurites. The Caenorhabditis elegans embryonic nervous system, comprising 222 neurons and 56 glia, is attractive for comprehensive studies of development; however, embryonic reporters are broadly expressed, making single-neurite tracking/manipulation challenging. We present a method, using an infrared laser, for reproducible heat-dependent gene expression in small sublineages (one to four cells) without radiation damage. We go beyond proof-of-principle, and use our system to label and track single neurons during early nervous-system assembly. We uncover a retrograde extension mechanism for axon growth, and reveal the aetiology of axon-guidance defects in sax-3/Robo and vab-1/EphR mutants. We also perform cell-specific rescues, determining DAF-6/patched-related site of action during sensory-organ development. Simultaneous ablation and labelling of cells using our system reveals roles for glia in dendrite extension. Our method can be applied to other optically/IR-transparent organisms, and opens the door to high-resolution systematic analyses of C. elegans morphogenesis. PMID:28098184

  6. Organogenesis of heart-vascular system derived from mouse 2 cell stage embryos and from early embryonic stem cells in vitro.

    Science.gov (United States)

    Ishiwata, Isamu; Tamagawa, Tomoharu; Tokieda, Yuko; Iguchi, Megumi; Sato, Kahei; Ishikawa, Hiroshi

    2003-03-01

    Regenerative medical treatment with embryonic stem cells (an ES cell) is a goal for organ transplantation. Structures that are tubular in nature (i.e. blood capillaries) were induced from early embryonic stem (EES) cells in vitro using embryotrophic factor (ETFs). In addition, cardiac muscle cells could be identified as well. However, differentiation of EES cells into a complete cardiovascular system was difficult because 3 germ layer primordial organs are directed embryologically in various ways and it is not possible to guide only cardiovascular organs. Thus, we introduced ETFs after the formation of an embryoid body and were successful in cloning cell clusters that beat, thus deriving only cardiovascular organs. The application of this to the treatment of various cardiovascular diseases is promising.

  7. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia.

    Science.gov (United States)

    Bergmann, Carsten; Fliegauf, Manfred; Brüchle, Nadina Ortiz; Frank, Valeska; Olbrich, Heike; Kirschner, Jan; Schermer, Bernhard; Schmedding, Ingolf; Kispert, Andreas; Kränzlin, Bettina; Nürnberg, Gudrun; Becker, Christian; Grimm, Tiemo; Girschick, Gundula; Lynch, Sally A; Kelehan, Peter; Senderek, Jan; Neuhaus, Thomas J; Stallmach, Thomas; Zentgraf, Hanswalter; Nürnberg, Peter; Gretz, Norbert; Lo, Cecilia; Lienkamp, Soeren; Schäfer, Tobias; Walz, Gerd; Benzing, Thomas; Zerres, Klaus; Omran, Heymut

    2008-04-01

    Many genetic diseases have been linked to the dysfunction of primary cilia, which occur nearly ubiquitously in the body and act as solitary cellular mechanosensory organelles. The list of clinical manifestations and affected tissues in cilia-related disorders (ciliopathies) such as nephronophthisis is broad and has been attributed to the wide expression pattern of ciliary proteins. However, little is known about the molecular mechanisms leading to this dramatic diversity of phenotypes. We recently reported hypomorphic NPHP3 mutations in children and young adults with isolated nephronophthisis and associated hepatic fibrosis or tapetoretinal degeneration. Here, we chose a combinatorial approach in mice and humans to define the phenotypic spectrum of NPHP3/Nphp3 mutations and the role of the nephrocystin-3 protein. We demonstrate that the pcy mutation generates a hypomorphic Nphp3 allele that is responsible for the cystic kidney disease phenotype, whereas complete loss of Nphp3 function results in situs inversus, congenital heart defects, and embryonic lethality in mice. In humans, we show that NPHP3 mutations can cause a broad clinical spectrum of early embryonic patterning defects comprising situs inversus, polydactyly, central nervous system malformations, structural heart defects, preauricular fistulas, and a wide range of congenital anomalies of the kidney and urinary tract (CAKUT). On the functional level, we show that nephrocystin-3 directly interacts with inversin and can inhibit like inversin canonical Wnt signaling, whereas nephrocystin-3 deficiency leads in Xenopus laevis to typical planar cell polarity defects, suggesting a role in the control of canonical and noncanonical (planar cell polarity) Wnt signaling.

  8. Meta-analysis of differentiating mouse embryonic stem cell gene expression kinetics reveals early change of a small gene set.

    Directory of Open Access Journals (Sweden)

    Clive H Glover

    2006-11-01

    Full Text Available Stem cell differentiation involves critical changes in gene expression. Identification of these should provide endpoints useful for optimizing stem cell propagation as well as potential clues about mechanisms governing stem cell maintenance. Here we describe the results of a new meta-analysis methodology applied to multiple gene expression datasets from three mouse embryonic stem cell (ESC lines obtained at specific time points during the course of their differentiation into various lineages. We developed methods to identify genes with expression changes that correlated with the altered frequency of functionally defined, undifferentiated ESC in culture. In each dataset, we computed a novel statistical confidence measure for every gene which captured the certainty that a particular gene exhibited an expression pattern of interest within that dataset. This permitted a joint analysis of the datasets, despite the different experimental designs. Using a ranking scheme that favored genes exhibiting patterns of interest, we focused on the top 88 genes whose expression was consistently changed when ESC were induced to differentiate. Seven of these (103728_at, 8430410A17Rik, Klf2, Nr0b1, Sox2, Tcl1, and Zfp42 showed a rapid decrease in expression concurrent with a decrease in frequency of undifferentiated cells and remained predictive when evaluated in additional maintenance and differentiating protocols. Through a novel meta-analysis, this study identifies a small set of genes whose expression is useful for identifying changes in stem cell frequencies in cultures of mouse ESC. The methods and findings have broader applicability to understanding the regulation of self-renewal of other stem cell types.

  9. Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanjun Kim

    2015-01-01

    Full Text Available Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or neuronal differentiation of ES cells. To investigate this, we examined the expression profiles of Wnt signaling components. Expression levels of Wnts known to induce β-catenin were very low in undifferentiated ES cells. Stable ES cell lines which can monitor endogenous activity of Wnt/β-catenin signaling suggest that Wnt signaling was very low in undifferentiated ES cells, whereas it increased during embryonic body formation or neuronal differentiation. Interestingly, application of small molecules which can positively (BIO, GSK3β inhibitor or negatively (IWR-1-endo, Axin stabilizer control Wnt/β-catenin signaling suggests that activation of that signaling at different time periods had differential effects on neuronal differentiation of 46C ES cells. Further, ChIP analysis suggested that β-catenin/TCF1 complex directly regulated the expression of Sox1 during neuronal differentiation. Overall, our data suggest that Wnt/β-catenin signaling plays differential roles at different time points of neuronal differentiation.

  10. Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter.

    Science.gov (United States)

    Sartori, R; Sartor-Bergfelt, R; Mertens, S A; Guenther, J N; Parrish, J J; Wiltbank, M C

    2002-11-01

    Two experiments in two seasons evaluated fertilization rate and embryonic development in dairy cattle. Experiment 1 (summer) compared lactating Holstein cows (n = 27; 97.3 +/- 4.1 d postpartum [dppl; 40.0 +/- 1.5 kg milk/d) to nulliparous heifers (n = 28; 11 to 17 mo old). Experiment 2 (winter) compared lactating cows (n = 27; 46.4 +/- 1.6 dpp; 45.9 +/- 1.4 kg milk/d) to dry cows (n = 26). Inseminations based on estrus included combined semen from four high-fertility bulls. Embryos and oocytes recovered 5 d after ovulation were evaluated for fertilization, embryo quality (1 = excellent to 5 = degenerate), nuclei/embryo, and accessory sperm. In experiment 1, 21 embryos and 17 unfertilized oocytes (UFO) were recovered from lactating cows versus 32 embryos and no UFO from heifers (55% vs. 100% fertilization). Embryos from lactating cows had inferior quality scores (3.8 +/- 0.4 vs. 2.2 +/- 0.3), fewer nuclei/embryo (19.3 +/- 3.7 vs. 36.8 +/- 3.0) but more accessory sperm (37.3 +/- 5.8 vs. 22.4 +/- 5.5/embryo) than embryos from heifers. Sperm were attached to 80% of UFO (17.8 +/- 12.1 sperm/UFO). In experiment 2, lactating cows yielded 36 embryos and 5 UFO versus 34 embryos and 4 UFO from dry cows (87.8 vs. 89.5% fertilization). Embryo quality from lactating cows was inferior to dry cows (3.1 +/- 0.3 vs. 2.2 +/- 0.3), but embryos had similar numbers of nuclei (27.2 +/- 2.7 vs. 30.6 +/- 2.1) and accessory sperm (42.0 +/- 9.4 vs. 36.5 +/- 6.3). From 53% of the flushings from lactating cows and 28% from dry cows, only nonviable embryos were collected. Thus, embryos of lactating dairy cows were detectably inferior to embryos from nonlactating females as early as 5 d after ovulation, with a surprisingly high percentage of nonviable embryos. In addition, fertilization rate was reduced only in summer, apparently due to an effect of heat stress on the oocyte.

  11. A spindle checkpoint functions during mitosis in the early Caenorhabditis elegans embryo.

    Science.gov (United States)

    Encalada, Sandra E; Willis, John; Lyczak, Rebecca; Bowerman, Bruce

    2005-03-01

    During mitosis, chromosome segregation is regulated by a spindle checkpoint mechanism. This checkpoint delays anaphase until all kinetochores are captured by microtubules from both spindle poles, chromosomes congress to the metaphase plate, and the tension between kinetochores and their attached microtubules is properly sensed. Although the spindle checkpoint can be activated in many different cell types, the role of this regulatory mechanism in rapidly dividing embryonic animal cells has remained controversial. Here, using time-lapse imaging of live embryonic cells, we show that chemical or mutational disruption of the mitotic spindle in early Caenorhabditis elegans embryos delays progression through mitosis. By reducing the function of conserved checkpoint genes in mutant embryos with defective mitotic spindles, we show that these delays require the spindle checkpoint. In the absence of a functional checkpoint, more severe defects in chromosome segregation are observed in mutants with abnormal mitotic spindles. We also show that the conserved kinesin CeMCAK, the CENP-F-related proteins HCP-1 and HCP-2, and the core kinetochore protein CeCENP-C all are required for this checkpoint. Our analysis indicates that spindle checkpoint mechanisms are functional in the rapidly dividing cells of an early animal embryo and that this checkpoint can prevent chromosome segregation defects during mitosis.

  12. The Cross-talk Between TGF-β1 and Dlk1 Mediates Early Chondrogenesis During Embryonic Endochondral Ossification

    DEFF Research Database (Denmark)

    Taipaleenmaki, Hanna; M, Linda; Chen, Li

    2012-01-01

    Dlkl/Pref-1/FA1 (delta like-1/preadipocyte factor-1/Fetal Antigen-1) is a novel surface marker for embryonic chondroprogenitor cells undergoing lineage progression from proliferation to prehypertrophic stages. However, mechanisms mediating control of its expression during chondrogenesis...

  13. An early embryonic product of the gene shaggy encodes a serine/threonine protein kinase related to the CDC28/cdc2+ subfamily.

    Science.gov (United States)

    Bourouis, M; Moore, P; Ruel, L; Grau, Y; Heitzler, P; Simpson, P

    1990-09-01

    The product(s) of the gene shaggy (sgg) is required for seemingly unrelated events during the development of Drosophila melanogaster. In embryos, maternal and zygotically derived sgg products are required initially to construct a normal syncytial blastoderm and later for normal segmentation. Furthermore, in mutant animals a process of intercellular communication that is required for the segregation of the neural and epidermal lineage during the formation of the central nervous system and the adult peripheral nervous system is disrupted. Here we describe a transcription unit of approximately 40 kb lying within the cloned chromosomal interval 3B1, and provide evidence that it encodes the sgg+ function. Of seven developmentally regulated transcripts that are partially generated by alternative splicing, two seem to be responsible for early sgg activity. Sequence analysis of corresponding cDNA(s) predicts a protein of 514 amino acids with a canonical catalytic domain found in serine/threonine specific protein kinases, linked to an unusual region rich in Gly, Ala and Ser. A search for homologies as well as a comparative study of the kinase catalytic domain with that of other proteins, revealed that the protein kinase domain of sgg is distantly related to the members of the CDC28/cdc2+ subfamily of protein kinases, all of which play cardinal roles in the regulation of the yeast and mammalian cell cycles. Ubiquitous expression of sgg transcripts was found during embryonic stages. A possible role of the sgg protein in a signal transduction pathway necessary for intercellular communication at different stages of development is discussed.

  14. Histology Atlas of the Developing Mouse Hepatobiliary Hemolymphatic Vascular System with Emphasis on Embryonic Days 11.5-18.5 and Early Postnatal Development.

    Science.gov (United States)

    Swartley, Olivia M; Foley, Julie F; Livingston, David P; Cullen, John M; Elmore, Susan A

    2016-07-01

    A critical event in embryo development is the proper formation of the vascular system, of which the hepatobiliary system plays a pivotal role. This has led researchers to use transgenic mice to identify the critical steps involved in developmental disorders associated with the hepatobiliary vascular system. Vascular development is dependent upon normal vasculogenesis, angiogenesis, and the transformation of vessels into their adult counterparts. Any alteration in vascular development has the potential to cause deformities or embryonic death. Numerous publications describe specific stages of vascular development relating to various organs, but a single resource detailing the stage-by-stage development of the vasculature pertaining to the hepatobiliary system has not been available. This comprehensive histology atlas provides hematoxylin & eosin and immunohistochemical-stained sections of the developing mouse blood and lymphatic vasculature with emphasis on the hepatobiliary system between embryonic days (E) 11.5-18.5 and the early postnatal period. Additionally, this atlas includes a 3-dimensional video representation of the E18.5 mouse venous vasculature. One of the most noteworthy findings of this atlas is the identification of the portal sinus within the mouse, which has been erroneously misinterpreted as the ductus venosus in previous publications. Although the primary purpose of this atlas is to identify normal hepatobiliary vascular development, potential embryonic abnormalities are also described. © The Author(s) 2016.

  15. Studies on the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rat

    OpenAIRE

    2011-01-01

    Objective To evaluate the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rats.Methods A total of 100female SD rats were randomly divided into negative control,low-,medium-,high-dose group and intervention group(20each).Rats in low-,medium-and high-dose group were fed daily with the sustained release drug at 1,4,and 8g/kg respectively;those in negative control group were fed daily with distilled water from ...

  16. Early effects of the antineoplastic agent salinomycin on mitochondrial function.

    Science.gov (United States)

    Managò, A; Leanza, L; Carraretto, L; Sassi, N; Grancara, S; Quintana-Cabrera, R; Trimarco, V; Toninello, A; Scorrano, L; Trentin, L; Semenzato, G; Gulbins, E; Zoratti, M; Szabò, I

    2015-10-22

    Salinomycin, isolated from Streptomyces albus, displays antimicrobial activity. Recently, a large-scale screening approach identified salinomycin and nigericin as selective apoptosis inducers of cancer stem cells. Growing evidence suggests that salinomycin is able to kill different types of non-stem tumor cells that usually display resistance to common therapeutic approaches, but the mechanism of action of this molecule is still poorly understood. Since salinomycin has been suggested to act as a K(+) ionophore, we explored its impact on mitochondrial bioenergetic performance at an early time point following drug application. In contrast to the K(+) ionophore valinomycin, salinomycin induced a rapid hyperpolarization. In addition, mitochondrial matrix acidification and a significant decrease of respiration were observed in intact mouse embryonic fibroblasts (MEFs) and in cancer stem cell-like HMLE cells within tens of minutes, while increased production of reactive oxygen species was not detected. By comparing the chemical structures and cellular effects of this drug with those of valinomycin (K(+) ionophore) and nigericin (K(+)/H(+) exchanger), we conclude that salinomycin mediates K(+)/H(+) exchange across the inner mitochondrial membrane. Compatible with its direct modulation of mitochondrial function, salinomycin was able to induce cell death also in Bax/Bak-less double-knockout MEF cells. Since at the concentration range used in most studies (around 10 μM) salinomycin exerts its effect at the level of mitochondria and alters bioenergetic performance, the specificity of its action on pathologic B cells isolated from patients with chronic lymphocytic leukemia (CLL) versus B cells from healthy subjects was investigated. Mesenchymal stromal cells (MSCs), proposed to mimic the tumor environment, attenuated the apoptotic effect of salinomycin on B-CLL cells. Apoptosis occurred to a significant extent in healthy B cells as well as in MSCs and human primary

  17. Functional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles

    Science.gov (United States)

    Liu, Jing; Wang, Liqin; Cao, Jianbo; Huang, Yue; Lin, Yu; Wu, Xiaoyun; Wang, Zhiyong; Zhang, Fan; Xu, Xiuqin; Liu, Gang

    2014-07-01

    Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI correlated well with histological studies. These findings demonstrate that Stearic-LWPEI-SPIO nanoparticles have potential to be clinically translatable MRI probes and may enable non-invasive in vivo tracking of ESCs in experimental and clinical settings during cell-based therapies.Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI

  18. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells

    DEFF Research Database (Denmark)

    Massumi, Mohammad; Pourasgari, Farzaneh; Nalla, Amarnadh

    2016-01-01

    developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems......The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have...... positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux...

  19. New glimpses of caveolin-1 functions in embryonic development and human diseases

    Institute of Scientific and Technical Information of China (English)

    Saijun MO; Shengli YANG; Zongbin CUI

    2011-01-01

    Caveolin-1 (Cav-1) isoforms,including Cav-1α and Cav-1β,were identified as integral membrane proteins and the major components of caveolae.Cav-1 proteins are highly conserved during evolution from Caenorhabditis elegans to human and are capable of interacting with many signaling molecules through their caveolin scaffolding domains to regulate the activities of multiple signaling pathways.Thus,Cav-1 plays crucial roles in the regulation of cellular proliferation,differentiation and apoptosis in a cell-specific and contextual manner.In addition,Cav-1 is essential for embryonic development of vertebrates owing to its regulation of BMP,Wnt,TGF-β and other key signaling molecules.Moreover,Cav-1 is mainly expressed in terminally differentiated cells and its abnormal expression is often associated with human diseases,such as tumor progression,cardiovascular diseases,fibrosis,lung regeneration,and diseases related to virus.In this review,we will further discuss the potential of Cav-1 as a target for disease therapy and multiple drug resistance.

  20. Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells

    Directory of Open Access Journals (Sweden)

    Phillips Stacia L

    2006-04-01

    Full Text Available Abstract Background We have demonstrated that in some human cancer cells both chronic mild heat and ionizing radiation exposures induce a transient block in S and G2 phases of the cell cycle. During this delay, cyclin B1 protein accumulates to supranormal levels, cyclin B1-dependent kinase is activated, and abrogation of the G2/M checkpoint control occurs resulting in mitotic catastrophe (MC. Results Using syngenic mouse embryonic fibroblasts (MEF with wild-type or mutant p53, we now show that, while both cell lines exhibit delays in S/G2 phase post-irradiation, the mutant p53 cells show elevated levels of cyclin B1 followed by MC, while the wild-type p53 cells present both a lower accumulation of cyclin B1 and a lower frequency of MC. Conclusion These results are in line with studies reporting the role of p53 as a post-transcriptional regulator of cyclin B1 protein and confirm that dysregulation of cyclin B1 promote radiation-induced MC. These findings might be exploited to design strategies to augment the yield of MC in tumor cells that are resistant to radiation-induced apoptosis.

  1. Fine mapping and functional activity of the adenosine deaminase origin in murine embryonic fibroblasts.

    Science.gov (United States)

    Sibani, Sahar; Rampakakis, Emmanouil; Di Paola, Domenic; Zannis-Hadjopoulos, Maria

    2008-06-01

    DNA replication initiates at origins within the genome. The late-firing murine adenosine deaminase (mAdA) origin is located within a 2 kb fragment of DNA, making it difficult to examine by realtime technology. In this study, fine mapping of the mAdA region by measuring the abundance of nascent strand DNA identified two origins, mAdA-1 and mAdA-C, located 397 bp apart from each other. Both origins conferred autonomous replication to plasmids transfected in murine embryonic fibroblasts (MEFs), and exhibited similar activities in vivo and in vitro. Furthermore, both were able to recruit the DNA replication initiator proteins Cdc6 and Ku in vitro, similar to other bona fide replication origins. When tested in a murine Ku80(-/-) cell line, both origins exhibited replication activities comparable to those observed in wildtype cells, as did the hypoxanthine-guanine phosphoribosyltransferase (HPRT) and c-myc origins. This contrasts with previously published studies using Ku80-deficient human cells lines and suggests differences in the mechanism of initiation of DNA replication between the murine and human systems.

  2. Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells

    Science.gov (United States)

    Mandegar, Mohammad A.; Moralli, Daniela; Khoja, Suhail; Cowley, Sally; Chan, David Y.L.; Yusuf, Mohammed; Mukherjee, Sayandip; Blundell, Michael P.; Volpi, Emanuela V.; Thrasher, Adrian J.; James, William; Monaco, Zoia L.

    2011-01-01

    We present a novel and efficient non-integrating gene expression system in human embryonic stem cells (hESc) utilizing human artificial chromosomes (HAC), which behave as autonomous endogenous host chromosomes and segregate correctly during cell division. HAC are important vectors for investigating the organization and structure of the kinetochore, and gene complementation. HAC have so far been obtained in immortalized or tumour-derived cell lines, but never in stem cells, thus limiting their potential therapeutic application. In this work, we modified the herpes simplex virus type 1 amplicon system for efficient transfer of HAC DNA into two hESc. The deriving stable clones generated green fluorescent protein gene-expressing HAC at high frequency, which were stably maintained without selection for 3 months. Importantly, no integration of the HAC DNA was observed in the hESc lines, compared with the fibrosarcoma-derived control cells, where the exogenous DNA frequently integrated in the host genome. The hESc retained pluripotency, differentiation and teratoma formation capabilities. This is the first report of successfully generating gene expressing de novo HAC in hESc, and is a significant step towards the genetic manipulation of stem cells and potential therapeutic applications. PMID:21593218

  3. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes.

    Science.gov (United States)

    Iacovides, Demetris; Rizki, Gizem; Lapathitis, Georgios; Strati, Katerina

    2016-07-29

    The insufficient ability of specialized cells such as neurons, cardiac myocytes, and epidermal cells to regenerate after tissue damage poses a great challenge to treat devastating injuries and ailments. Recent studies demonstrated that a diverse array of cell types can be directly derived from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), or somatic cells by combinations of specific factors. The use of iPSCs and direct somatic cell fate conversion, or transdifferentiation, holds great promise for regenerative medicine as these techniques may circumvent obstacles related to immunological rejection and ethical considerations. However, producing iPSC-derived keratinocytes requires a lengthy two-step process of initially generating iPSCs and subsequently differentiating into skin cells, thereby elevating the risk of cellular damage accumulation and tumor formation. In this study, we describe the reprogramming of mouse embryonic fibroblasts into functional keratinocytes via the transient expression of pluripotency factors coupled with directed differentiation. The isolation of an iPSC intermediate is dispensable when using this method. Cells derived with this approach, termed induced keratinocytes (iKCs), morphologically resemble primary keratinocytes. Furthermore they express keratinocyte-specific markers, downregulate mesenchymal markers as well as the pluripotency factors Oct4, Sox2, and Klf4, and they show important functional characteristics of primary keratinocytes. iKCs can be further differentiated by high calcium administration in vitro and are capable of regenerating a fully stratified epidermis in vivo. Efficient conversion of somatic cells into keratinocytes could have important implications for studying genetic skin diseases and designing regenerative therapies to ameliorate devastating skin conditions.

  4. Ascl1 is a required downstream effector of Gsx gene function in the embryonic mouse telencephalon

    Directory of Open Access Journals (Sweden)

    Allen Zegary J

    2009-02-01

    Full Text Available Abstract Background The homeobox gene Gsx2 (formerly Gsh2 is known to regulate patterning in the lateral ganglionic eminence (LGE of the embryonic telencephalon. In its absence, the closely related gene Gsx1 (previously known as Gsh1 can partially compensate in the patterning and differentiation of ventral telencephalic structures, such as the striatum. However, the cellular and molecular mechanisms underlying this compensation remain unclear. Results We show here that in the Gsx2 mutants Gsx1 is expressed in only a subset of the ventral telencephalic progenitors that normally express Gsx2. Based on the similarities in the expression of Gsx1 and Ascl1 (Mash1 within the Gsx2 mutant LGE, we examined whether Ascl1 plays an integral part in the Gsx1-based recovery. Ascl1 mutants show only modest alterations in striatal development; however, in Gsx2;Ascl1 double mutants, striatal development is severely affected, similar to that seen in the Gsx1;Gsx2 double mutants. This is despite the fact that Gsx1 is expressed, and even expands, in the Gsx2;Ascl1 mutant LGE, comparable to that seen in the Gsx2 mutant. Finally, Notch signaling has recently been suggested to be required for normal striatal development. In spite of the fact that Notch signaling is severely disrupted in Ascl1 mutants, it actually appears to be improved in the Gsx2;Ascl1 double mutants. Conclusion These results, therefore, reveal a non-proneural requirement of Ascl1 that together with Gsx1 compensates for the loss of Gsx2 in a subset of LGE progenitors.

  5. Expression of insulin-like growth factor system genes in liver tissue during embryonic and early post-hatch development in duck (Anas platyrhynchos Domestica).

    Science.gov (United States)

    Jianmin, Zou; Jingting, Shu; Yanju, Shan; Yan, Hu; Chi, Song; Wenqi, Zhu

    2014-04-01

    The IGF system is one of the most important endocrine and paracrine growth factor systems that regulate fetal and placental growth, whereas the liver is the principal source of circulation IGF-I. In the present study, expression of IGF-I, IGF type-I receptor (IGF-IR), and IGF binding protein (IGFBP)-3 genes was quantified by RT-PCR in the liver tissue on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days post-hatching (PH) in meat-type Gaoyou ducks and egg-type Jinding ducks. The results showed that IGF-I mRNA could be detected as early as on E 13d, but the expression level was low throughout embryonic development before increasing dramatically by E 27d and 7 days PH in both duck breeds. However, Gaoyou ducks exhibited higher IGF-I mRNA level than Jinding ducks, and the differences were significant on E 13d, E 21d, and at 7 days PH. Expression of IGF-IR in liver increased gradually in the former stages of the embryonic development, reaching its highest point on E 21d, and then declined up until 7 days PH. The expression pattern of IGFBP-3 gene was similar to that of IGF-IR gene, increasing significantly from E 17d. The expression peak appeared on E 25d, then declined significantly just prior to hatching (day 27) and was followed by an increase at 7 days PH. In general, the expression level of IGF-IR and IGFBP-3 genes in Jinding ducks was higher than that in Gaoyou ducks. Inverse relationships were observed for the expression of IGF-I and IGF-IR, and IGF-I and IGFBP-3, whereas a positive relationship was observed for the expression of IGF-IR and IGFBP-3. Our data indicate a differential expression of selected genes that comprise the IGF system in the duck liver tissue during embryonic and early PH growth and development.

  6. Early development of Drosophila embryos requires Smc5/6 function during oogenesis.

    Science.gov (United States)

    Tran, Martin; Tsarouhas, Vasilios; Kegel, Andreas

    2016-07-15

    Mutations in structural maintenance of chromosomes (Smc) proteins are frequently associated with chromosomal abnormalities commonly observed in developmental disorders. However, the role of Smc proteins in development still remains elusive. To investigate Smc5/6 function during early embryogenesis we examined smc5 and smc6 mutants of the fruit fly Drosophila melanogaster using a combination of reverse genetics and microscopy approaches. Smc5/6 exhibited a maternally contributed function in maintaining chromosome stability during early embryo development, which manifested as female subfertility in its absence. Loss of Smc5/6 caused an arrest and a considerable delay in embryo development accompanied by fragmented nuclei and increased anaphase-bridge formation, respectively. Surprisingly, early embryonic arrest was attributable to the absence of Smc5/6 during oogenesis, which resulted in insufficient repair of pre-meiotic and meiotic DNA double-strand breaks. Thus, our findings contribute to the understanding of Smc proteins in higher eukaryotic development by highlighting a maternal function in chromosome maintenance and a link between oogenesis and early embryogenesis.

  7. Early development of Drosophila embryos requires Smc5/6 function during oogenesis

    Directory of Open Access Journals (Sweden)

    Martin Tran

    2016-07-01

    Full Text Available Mutations in structural maintenance of chromosomes (Smc proteins are frequently associated with chromosomal abnormalities commonly observed in developmental disorders. However, the role of Smc proteins in development still remains elusive. To investigate Smc5/6 function during early embryogenesis we examined smc5 and smc6 mutants of the fruit fly Drosophila melanogaster using a combination of reverse genetics and microscopy approaches. Smc5/6 exhibited a maternally contributed function in maintaining chromosome stability during early embryo development, which manifested as female subfertility in its absence. Loss of Smc5/6 caused an arrest and a considerable delay in embryo development accompanied by fragmented nuclei and increased anaphase-bridge formation, respectively. Surprisingly, early embryonic arrest was attributable to the absence of Smc5/6 during oogenesis, which resulted in insufficient repair of pre-meiotic and meiotic DNA double-strand breaks. Thus, our findings contribute to the understanding of Smc proteins in higher eukaryotic development by highlighting a maternal function in chromosome maintenance and a link between oogenesis and early embryogenesis.

  8. A novel mouse model for inhibition of DOHH-mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation.

    Science.gov (United States)

    Sievert, Henning; Pällmann, Nora; Miller, Katharine K; Hermans-Borgmeyer, Irm; Venz, Simone; Sendoel, Ataman; Preukschas, Michael; Schweizer, Michaela; Boettcher, Steffen; Janiesch, P Christoph; Streichert, Thomas; Walther, Reinhard; Hengartner, Michael O; Manz, Markus G; Brümmendorf, Tim H; Bokemeyer, Carsten; Braig, Melanie; Hauber, Joachim; Duncan, Kent E; Balabanov, Stefan

    2014-08-01

    The central importance of translational control by post-translational modification has spurred major interest in regulatory pathways that control translation. One such pathway uniquely adds hypusine to eukaryotic initiation factor 5A (eIF5A), and thereby affects protein synthesis and, subsequently, cellular proliferation through an unknown mechanism. Using a novel conditional knockout mouse model and a Caenorhabditis elegans knockout model, we found an evolutionarily conserved role for the DOHH-mediated second step of hypusine synthesis in early embryonic development. At the cellular level, we observed reduced proliferation and induction of senescence in 3T3 Dohh-/- cells as well as reduced capability for malignant transformation. Furthermore, mass spectrometry showed that deletion of DOHH results in an unexpected complete loss of hypusine modification. Our results provide new biological insight into the physiological roles of the second step of the hypusination of eIF5A. Moreover, the conditional mouse model presented here provides a powerful tool for manipulating hypusine modification in a temporal and spatial manner, to analyse both how this unique modification normally functions in vivo as well as how it contributes to different pathological conditions. © 2014. Published by The Company of Biologists Ltd.

  9. A novel mouse model for inhibition of DOHH-mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation

    Directory of Open Access Journals (Sweden)

    Henning Sievert

    2014-08-01

    Full Text Available The central importance of translational control by post-translational modification has spurred major interest in regulatory pathways that control translation. One such pathway uniquely adds hypusine to eukaryotic initiation factor 5A (eIF5A, and thereby affects protein synthesis and, subsequently, cellular proliferation through an unknown mechanism. Using a novel conditional knockout mouse model and a Caenorhabditis elegans knockout model, we found an evolutionarily conserved role for the DOHH-mediated second step of hypusine synthesis in early embryonic development. At the cellular level, we observed reduced proliferation and induction of senescence in 3T3 Dohh−/− cells as well as reduced capability for malignant transformation. Furthermore, mass spectrometry showed that deletion of DOHH results in an unexpected complete loss of hypusine modification. Our results provide new biological insight into the physiological roles of the second step of the hypusination of eIF5A. Moreover, the conditional mouse model presented here provides a powerful tool for manipulating hypusine modification in a temporal and spatial manner, to analyse both how this unique modification normally functions in vivo as well as how it contributes to different pathological conditions.

  10. Expression of early developmental markers predicts the efficiency of embryonic stem cell differentiation into midbrain dopaminergic neurons.

    Science.gov (United States)

    Salti, Ahmad; Nat, Roxana; Neto, Sonya; Puschban, Zoe; Wenning, Gregor; Dechant, Georg

    2013-02-01

    Dopaminergic neurons derived from pluripotent stem cells are among the best investigated products of in vitro stem cell differentiation owing to their potential use for neurorestorative therapy of Parkinson's disease. However, the classical differentiation protocols for both mouse and human pluripotent stem cells generate a limited percentage of dopaminergic neurons and yield a considerable cellular heterogeneity comprising numerous scarcely characterized cell populations. To improve pluripotent stem cell differentiation protocols for midbrain dopaminergic neurons, we established extensive and strictly quantitative gene expression profiles, including markers for pluripotent cells, neural progenitors, non-neural cells, pan-neuronal and glial cells, neurotransmitter phenotypes, midbrain and nonmidbrain populations, floor plate and basal plate populations, as well as for Hedgehog, Fgf, and Wnt signaling pathways. The profiles were applied to discrete stages of in vitro differentiation of mouse embryonic stem cells toward the dopaminergic lineage and after transplantation into the striatum of 6-hydroxy-dopamine-lesioned rats. The comparison of gene expression in vitro with stages in the developing ventral midbrain between embryonic day 11.5 and 13.5 ex vivo revealed dynamic changes in the expression of transcription factors and signaling molecules. Based on these profiles, we propose quantitative gene expression milestones that predict the efficiency of dopaminergic differentiation achieved at the end point of the protocol, already at earlier stages of differentiation.

  11. Β-amyloid 1-42 oligomers impair function of human embryonic stem cell-derived forebrain cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Linn Wicklund

    Full Text Available Cognitive impairment in Alzheimer's disease (AD patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs. Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES cells with nerve growth factor (NGF as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-µM concentrations and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.

  12. 金线蛙早期胚胎发育的初步观察%Early Embryonic Development in Rana plancyi

    Institute of Scientific and Technical Information of China (English)

    韩曜平; 卢祥云

    2001-01-01

    The early embryonic development in Rana plancyi was studied in constant water (20±0.5)℃ and natural temperature(21.5~ 24℃). The development process, from fertilized egg to spiracular formation can be divided into 26 stages, took 212.94 hours under the water temperature of (20±0.5)℃ and 170.95 hours under the natural temperature(21.5~24℃).The external morphological characteristics in various stages of the embryonic development were similar to those of Rana nigromaculata, but the hatching stage was later than that of Rana nigromaculata and earlier than that of Rana limnocharis.%报道了金线蛙的早期胚胎发育。自受精卵期至鳃盖完成期共分为26个时期,其发育历程及各时期胚胎外形特征与黑斑蛙基本相似,但孵化期比黑斑蛙推迟三个胚期而早于泽蛙,在水温(20±0.5)℃及常温(21.5~24℃)条件下,其胚胎发育的全时程分别为212.94 小时和170.95 小时。

  13. Optogenetics enables functional analysis of human embryonic stem cell–derived grafts in a Parkinson’s disease model

    Science.gov (United States)

    Steinbeck, Julius A; Choi, Se Joon; Mrejeru, Ana; Ganat, Yosif; Deisseroth, Karl; Sulzer, David; Mosharov, Eugene V; Studer, Lorenz

    2016-01-01

    Recent studies have shown evidence of behavioral recovery after transplantation of human pluripotent stem cell (PSC)-derived neural cells in animal models of neurological disease1–4. However, little is known about the mechanisms underlying graft function. Here we use optogenetics to modulate in real time electrophysiological and neurochemical properties of mesencephalic dopaminergic (mesDA) neurons derived from human embryonic stem cells (hESCs). In mice that had recovered from lesion-induced Parkinsonian motor deficits, light-induced selective silencing of graft activity rapidly and reversibly re-introduced the motor deficits. The re-introduction of motor deficits was prevented by the dopamine agonist apomorphine. These results suggest that functionality depends on graft neuronal activity and dopamine release. Combining optogenetics, slice electrophysiology and pharmacological approaches, we further show that mesDA-rich grafts modulate host glutamatergic synaptic transmission onto striatal medium spiny neurons in a manner reminiscent of endogenous mesDA neurons. Thus, application of optogenetics in cell therapy can link transplantation, animal behavior and postmortem analysis to enable the identification of mechanisms that drive recovery. PMID:25580598

  14. Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells.

    Science.gov (United States)

    Cattoglio, Claudia; Zhang, Elisa T; Grubisic, Ivan; Chiba, Kunitoshi; Fong, Yick W; Tjian, Robert

    2015-05-01

    The embryonic stem cell (ESC) state is transcriptionally controlled by OCT4, SOX2, and NANOG with cofactors, chromatin regulators, noncoding RNAs, and other effectors of signaling pathways. Uncovering components of these regulatory circuits and their interplay provides the knowledge base to deploy ESCs and induced pluripotent stem cells. We recently identified the DNA-repair complex xeroderma pigmentosum C (XPC)-RAD23B-CETN2 as a stem cell coactivator (SCC) required for OCT4/SOX2 transcriptional activation. Here we investigate the role of SCC genome-wide in murine ESCs by mapping regions bound by RAD23B and analyzing transcriptional profiles of SCC-depleted ESCs. We establish OCT4 and SOX2 as the primary transcription factors recruiting SCC to regulatory regions of pluripotency genes and identify the XPC subunit as essential for interaction with the two proteins. The present study reveals new mechanistic and functional aspects of SCC transcriptional activity, and thus underscores the diversified functions of this regulatory complex.

  15. A latent pro-survival function for the mir-290-295 cluster in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Grace X Y Zheng

    2011-05-01

    Full Text Available MicroRNAs (miRNAs post-transcriptionally regulate the expression of thousands of distinct mRNAs. While some regulatory interactions help to maintain basal cellular functions, others are likely relevant in more specific settings, such as response to stress. Here we describe such a role for the mir-290-295 cluster, the dominant miRNA cluster in mouse embryonic stem cells (mESCs. Examination of a target list generated from bioinformatic prediction, as well as expression data following miRNA loss, revealed strong enrichment for apoptotic regulators, two of which we validated directly: Caspase 2, the most highly conserved mammalian caspase, and Ei24, a p53 transcriptional target. Consistent with these predictions, mESCs lacking miRNAs were more likely to initiate apoptosis following genotoxic exposure to gamma irradiation or doxorubicin. Knockdown of either candidate partially rescued this pro-apoptotic phenotype, as did transfection of members of the mir-290-295 cluster. These findings were recapitulated in a specific mir-290-295 deletion line, confirming that they reflect miRNA functions at physiological levels. In contrast to the basal regulatory roles previously identified, the pro-survival phenotype shown here may be most relevant to stressful gestations, where pro-oxidant metabolic states induce DNA damage. Similarly, this cluster may mediate chemotherapeutic resistance in a neoplastic context, making it a useful clinical target.

  16. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson's disease model.

    Science.gov (United States)

    Steinbeck, Julius A; Choi, Se Joon; Mrejeru, Ana; Ganat, Yosif; Deisseroth, Karl; Sulzer, David; Mosharov, Eugene V; Studer, Lorenz

    2015-02-01

    Recent studies have shown evidence of behavioral recovery after transplantation of human pluripotent stem cell (PSC)-derived neural cells in animal models of neurological disease. However, little is known about the mechanisms underlying graft function. Here we use optogenetics to modulate in real time electrophysiological and neurochemical properties of mesencephalic dopaminergic (mesDA) neurons derived from human embryonic stem cells (hESCs). In mice that had recovered from lesion-induced Parkinsonian motor deficits, light-induced selective silencing of graft activity rapidly and reversibly re-introduced the motor deficits. The re-introduction of motor deficits was prevented by the dopamine agonist apomorphine. These results suggest that functionality depends on graft neuronal activity and dopamine release. Combining optogenetics, slice electrophysiology and pharmacological approaches, we further show that mesDA-rich grafts modulate host glutamatergic synaptic transmission onto striatal medium spiny neurons in a manner reminiscent of endogenous mesDA neurons. Thus, application of optogenetics in cell therapy can link transplantation, animal behavior and postmortem analysis to enable the identification of mechanisms that drive recovery.

  17. Teeth of embryonic or hatchling sauropods from the Berriasian (Early Cretaceous of Cherves-de-Cognac, France

    Directory of Open Access Journals (Sweden)

    Paul M. Barrett

    2016-08-01

    Full Text Available The Cherves-de-Cognac site (Charente, France has yielded a diverse continental microvertebrate fauna of Berriasian (earliest Cretaceous age. Dinosaur remains are rare, but include three teeth that are referrable to an indeterminate sauropod, which might represent either a titanosauriform, a non-titanosauriform macronarian or a non-neosauropod. The small size of these teeth (with a maximum length of 3 mm, as preserved and the almost complete absence of emanel wrinkling suggests that they pertained to embryonic or hatchling individuals. The Cherves-de-Cognac sauropod represents a rare occurrence of sauropod embryos/hatchlings, a new sauropod record from the poorly-known terrestrial Berriasian and another possible instance of the persistence of non-diplodocoid, non-titanosauriform sauropods into the Cretaceous.

  18. Early embryonic expression of a putative ecdysteroid-phosphate phosphatase in the water flea, Daphnia magna (Cladocera: Daphniidae).

    Science.gov (United States)

    Asada, Miki; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2014-01-01

    Ecdysteroids, known as molting hormones, play central roles in the onset of molting, metamorphosis, and reproduction in arthropods. The ecdysteroids stored in eggs also play an important role in embryogenesis. In insects, ecdysteroids are stored as phosphate esters, which are converted to an active form by ecdysteroid-phosphate phosphatase (EPPase). Although EPPase is believed to be widely conserved in the Ecdysozoa, little is known about its expression in clades other than Insecta. In this study, we cloned a putative EPPase gene from a small fresh water crustacean known as a water flea, Daphnia magna Straus (Cladocera: Daphniidae), and examined its expression during embryogenesis. The amino acid sequence of the putative crustacean EPPase cDNA showed high similarity to insect EPPase and human suppressor of T-cell receptor signaling-1. We also found that the D. magna EPPase was highly expressed during early embryogenesis; its expression rapidly decreased 6 h after oviposition. This timing corresponds to the onset of organogenesis in D. magna. The expression of EPPase could not be detected in diapaused eggs. This is the first report of an EPPase from crustaceans, and the results suggest that the function of EPPase is conserved between insects and crustaceans. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  19. The effect of ciprofloxacin on sperm DNA damage, fertility potential and early embryonic development in NMRI mice

    Directory of Open Access Journals (Sweden)

    Fatemeh Zobeiri

    2012-06-01

    Full Text Available Side effects of ciprofloxacin (CPFX, a widely used broad spectrum antibiotic with fluoroquinolone core, have been reported in different organs. In the present study we sought to elucidate the impact of ciprofloxacin on sperm chromatin integrity and sperm DNA damage using Aniline Blue and Acridine Orange technique, respectively. The fertility potential in male mice was also evaluated. NMRI male mice of 8-week old were included in this study and they were randomly divided into three groups. The first group was received low dose (LD of ciprofloxacin (206 mg kg-1, PO and the second was treated with high dose (HD of ciprofloxacin (412 mg kg-1, PO for 45 consecutive days. The control mice were only treated with oral carboxymethyl cellulose for 45 consecutive days. Sperm cells were removed from cauda epididymis and analyzed for chromatin integrity and DNA damage. In addition, the rate of fertilization, two cell embryos, blastocysts, arrested embryos and their types was examined using zygotes cultured in human tubal fluid - bovine serum albumin (HTF-BSA medium. Concomitant significant increase in DNA damage and protamine deficiency of the sperm cells in ciprofloxacin treated mice were observed (P < 0.05. In addition, the fertilization rate and embryonic development in treated mice were significantly lower than that of control mice, but the embryo arrest rate in treated mice was significantly higher than that of control group (P < 0.001. In conclusion CPFX was able to induce DNA damage and chromatin abnormalities of sperm cells which could be contributed in the observed low fertilization rate and retarded embryonic development.

  20. Changes in diapause related gene expression pattern during early embryonic development in HCl-treated eggs of bivoltine silkworm Bombyx mori (Lepidoptera: Bombycidae

    Directory of Open Access Journals (Sweden)

    Sirigineedi Sasibhushan

    2013-02-01

    Full Text Available Investigation of differential expression of diapause related genes (five metabolic, five heat shock protein and one translational regulatory in HCl-treated (non-diapause and untreated (diapause eggs of B. mori during early embryogenesis (up to 48h following oviposition revealed the up-regulation of sorbitol dehydrogenase upon HCl treatment, indicating increased glycogen synthesis for further embryonic development but, down-regulation of phosphofructo kinase gene expression after 18h of oviposition indicating an arrest of glycerol and sorbitol conversion. The expression of poly A binding protein gene expression was higher upon HCl treatment, revealing the initiation of translation. The expression levels of other genes analyzed did not vary significantly, except for Hsp90 and Hsp40, which were up-regulated on acid treatment until 18h. Thus, Sorbitoldehydrogenase and phosphofructo kinasegenes have a crucial role in diapause termination as evidenced by HCl treatment, while the other genes did not have major roles.

  1. The Early Embryonic Development of Red Crucian Carp Stained With DAPI%用DAPI染色法观察红鲫胚胎发育

    Institute of Scientific and Technical Information of China (English)

    张纯; 刘少军

    2011-01-01

    Using fluorescence stered microscope, the early embryonic development of red crucian carp stained with DA-PI is described in the present study. The results show that this method is convenient and can make the figures of embryo clearer. It is worth mentioning that using this method, the positioning of DNA in nuclei can be observed clearly. For example, the blastocysts cells showing mitosis frequently was observed by this method. The method provides a meaningful way for the study of early embryonic development of fish and relative feature of cell division.%以红鲫为研究材料,采用DAPI荧光染料对脱膜的红鲫胚胎进行染色,在荧光体视显微镜下观察红鲫胚胎早期卵裂到囊胚发育的过程.结果表明,该染色方法操作便捷,能更清晰的观察到胚胎发育的外形.值得一提的是:该方法较光学显微镜观察能清晰的观察到核DNA在细胞中的定位,如囊胚期能观察到早期卵裂细胞正进行频繁的有丝分裂等.该方法的获得为研究鱼类早期胚胎发育及相关细胞分裂特征提供了有意义的途径.

  2. EFFECTS OF SILVER NANOPARTICLES IN SOLUTION AND LIPOSOMAL FORM ON SOME BLOOD PARAMETERS IN FEMALE RABBITS DURING FERTILIZATION AND EARLY EMBRYONIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Vasyl Syrvatka

    2014-02-01

    Full Text Available Silver nanoparticles are the most rapidly growing classes of nanoproducts. In this study, we investigated the influence of subcutaneous injections of silver nanoparticles in solution and in liposomal form on hematological and biochemical parameters of blood of New Zealand White rabbits during hormonal treatment, fertilization and early embryonic development. The females treated by free silver nanoparticles and silver nanoparticles in liposomal form received silver at a dose of 10 µg/kg/day in 5 % glucose solution during 28 days. Blood sampling was done four times: the day before the compounds administration; on day 7 after the compounds administration; in the period after hormonal induction and fertilization and on the 14th day of pregnancy. Our results showed changes in some biochemical (lactate dehydrogenase activities, progesterone and estradiol concentration, malondialdehyde level, etc. and hematological (hematocrit, mean cell volume, mean corpuscular hemoglobin concentration, etc. parameters under the influence of hormonal treatment and pregnancy. The concentration of progesterone showed significantly higher values (P˂0.05 on GDs 1 in S group than in C group. The percentage of neutrophils was significantly higher in SG rabbits after 7 days of silver nanoparticles administration than that in the CG. There were no significant changes in red blood cells parameters, platelets, and activity of some ferments (ALP, AST, ALT, LDH, GGT between control and silver groups during the entire period of experiment. In conclusion, the hematological and biochemical values of blood obtained in the given study showed that free silver nanoparticles and silver nanoparticles in liposomal form in the investigated concentrations had no toxic effect on hormonal treatment, fertilization and early embryonic development in New Zealand White rabbits.

  3. Functional characterization of chitinase-3 reveals involvement of chitinases in early embryo immunity in zebrafish.

    Science.gov (United States)

    Teng, Zinan; Sun, Chen; Liu, Shousheng; Wang, Hongmiao; Zhang, Shicui

    2014-10-01

    The function and mechanism of chitinases in early embryonic development remain largely unknown. We show here that recombinant chitinase-3 (rChi3) is able to hydrolyze the artificial chitin substrate, 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside, and to bind to and inhibit the growth of the fungus Candida albicans, implicating that Chi3 plays a dual function in innate immunity and chitin-bearing food digestion in zebrafish. This is further corroborated by the expression profile of Chi3 in the liver and gut, which are both immune- and digestion-relevant organs. Compared with rChi3, rChi3-CD lacking CBD still retains partial capacity to bind to C. albicans, but its enzymatic and antifungal activities are significantly reduced. By contrast, rChi3-E140N with the putative catalytic residue E140 mutated shows little affinity to chitin, and its enzymatic and antifungal activities are nearly completely lost. These suggest that both enzymatic and antifungal activities of Chi3 are dependent on the presence of CBD and E140. We also clearly demonstrate that in zebrafish, both the embryo extract and the developing embryo display antifungal activity against C. albicans, and all the findings point to chitinase-3 (Chi3) being a newly-identified factor involved in the antifungal activity. Taken together, a dual function in both innate immunity and food digestion in embryo is proposed for zebrafish Chi3. It also provides a new angle to understand the immune role of chitinases in early embryonic development of animals.

  4. Loss of vps54 function leads to vesicle traffic impairment, protein mis-sorting and embryonic lethality.

    Science.gov (United States)

    Karlsson, Páll; Droce, Aida; Moser, Jakob M; Cuhlmann, Simon; Padilla, Carolina Ortiz; Heimann, Peter; Bartsch, Jörg W; Füchtbauer, Annette; Füchtbauer, Ernst-Martin; Schmitt-John, Thomas

    2013-01-01

    The identification of the mutation causing the phenotype of the amyotrophic lateral sclerosis (ALS) model mouse, wobbler, has linked motor neuron degeneration with retrograde vesicle traffic. The wobbler mutation affects protein stability of Vps54, a ubiquitously expressed vesicle-tethering factor and leads to partial loss of Vps54 function. Moreover, the Vps54 null mutation causes embryonic lethality, which is associated with extensive membrane blebbing in the neural tube and is most likely a consequence of impaired vesicle transport. Investigation of cells derived from wobbler and Vps54 null mutant embryos demonstrates impaired retrograde transport of the Cholera-toxin B subunit to the trans-Golgi network and mis-sorting of mannose-6-phosphate receptors and cargo proteins dependent on retrograde vesicle transport. Endocytosis assays demonstrate no difference between wobbler and wild type cells, indicating that the retrograde vesicle traffic to the trans-Golgi network, but not endocytosis, is affected in Vps54 mutant cells. The results obtained on wobbler cells were extended to test the use of cultured skin fibroblasts from human ALS patients to investigate the retrograde vesicle traffic. Analysis of skin fibroblasts of ALS patients will support the investigation of the critical role of the retrograde vesicle transport in ALS pathogenesis and might yield a diagnostic prospect.

  5. BMP Sustains Embryonic Stem Cell Self-Renewal through Distinct Functions of Different Krüppel-like Factors

    Directory of Open Access Journals (Sweden)

    Masato Morikawa

    2016-01-01

    Full Text Available Bone morphogenetic protein (BMP signaling exerts paradoxical roles in pluripotent stem cells (PSCs; it sustains self-renewal of mouse embryonic stem cells (ESCs, while it induces differentiation in other PSCs, including human ESCs. Here, we revisit the roles of BMP-4 using mouse ESCs (mESCs in naive and primed states. SMAD1 and SMAD5, which transduce BMP signals, recognize enhancer regions together with KLF4 and KLF5 in naive mESCs. KLF4 physically interacts with SMAD1 and suppresses its activity. Consistently, a subpopulation of cells with active BMP-SMAD can be ablated without disturbing the naive state of the culture. Moreover, Smad1/5 double-knockout mESCs stay in the naive state, indicating that the BMP-SMAD pathway is dispensable for it. In contrast, the MEK5-ERK5 pathway mediates BMP-4-induced self-renewal of mESCs by inducing Klf2, a critical factor for the ground state pluripotency. Our study illustrates that BMP exerts its self-renewing effect through distinct functions of different Krüppel-like factors.

  6. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture.

    Science.gov (United States)

    Hongisto, Heidi; Vuoristo, Sanna; Mikhailova, Alexandra; Suuronen, Riitta; Virtanen, Ismo; Otonkoski, Timo; Skottman, Heli

    2012-01-01

    Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. POPCORN functions in the auxin pathway to regulate embryonic body plan and meristem organization in Arabidopsis.

    Science.gov (United States)

    Xiang, Daoquan; Yang, Hui; Venglat, Prakash; Cao, Yongguo; Wen, Rui; Ren, Maozhi; Stone, Sandra; Wang, Edwin; Wang, Hong; Xiao, Wei; Weijers, Dolf; Berleth, Thomas; Laux, Thomas; Selvaraj, Gopalan; Datla, Raju

    2011-12-01

    The shoot and root apical meristems (SAM and RAM) formed during embryogenesis are crucial for postembryonic plant development. We report the identification of POPCORN (PCN), a gene required for embryo development and meristem organization in Arabidopsis thaliana. Map-based cloning revealed that PCN encodes a WD-40 protein expressed both during embryo development and postembryonically in the SAM and RAM. The two pcn alleles identified in this study are temperature sensitive, showing defective embryo development when grown at 22°C that is rescued when grown at 29°C. In pcn mutants, meristem-specific expression of WUSCHEL (WUS), CLAVATA3, and WUSCHEL-RELATED HOMEOBOX5 is not maintained; SHOOTMERISTEMLESS, BODENLOS (BDL) and MONOPTEROS (MP) are misexpressed. Several findings link PCN to auxin signaling and meristem function: ectopic expression of DR5(rev):green fluorescent protein (GFP), pBDL:BDL-GFP, and pMP:MP-β-glucuronidase in the meristem; altered polarity and expression of pPIN1:PIN1-GFP in the apical domain of the developing embryo; and resistance to auxin in the pcn mutants. The bdl mutation rescued embryo lethality of pcn, suggesting that improper auxin response is involved in pcn defects. Furthermore, WUS, PINFORMED1, PINOID, and TOPLESS are dosage sensitive in pcn, suggesting functional interaction. Together, our results suggest that PCN functions in the auxin pathway, integrating auxin signaling in the organization and maintenance of the SAM and RAM.

  8. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Lina, E-mail: linasui@vub.ac.be [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Mfopou, Josue K. [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Geens, Mieke; Sermon, Karen [Department of Embryology and Genetics, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Bouwens, Luc [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Deep study the FGF signaling role during DE specification in the context of hESCs. Black-Right-Pointing-Pointer DE differentiation from hESCs has an early dependence on FGF signaling. Black-Right-Pointing-Pointer A serum-free DE protocol is developed based on the findings. Black-Right-Pointing-Pointer The DE cells showed potential to differentiate into pancreatic progenitor cells. -- Abstract: Considering their unlimited proliferation and pluripotency properties, human embryonic stem cells (hESCs) constitute a promising resource applicable for cell replacement therapy. To facilitate this clinical translation, it is critical to study and understand the early stage of hESCs differentiation wherein germ layers are defined. In this study, we examined the role of FGF signaling in Activin A-induced definitive endoderm (DE) differentiation in the absence of supplemented animal serum. We found that activated FGF/MAPK signaling is required at the early time point of Activin A-induced DE formation. In addition, FGF activation increased the number of DE cells compared to Activin A alone. These DE cells could further differentiate into PDX1 and NKX6.1 positive pancreatic progenitors in vitro. We conclude that Activin A combined with FGF/MAPK signaling efficiently induce DE cells in the absence of serum. These findings improve our understanding of human endoderm formation, and constitute a step forward in the generation of clinical grade hESCs progenies for cell therapy.

  9. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  10. Embryonic Caffeine Exposure Acts via A1 Adenosine Receptors to Alter Adult Cardiac Function and DNA Methylation in Mice

    Science.gov (United States)

    Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A.; Wendler, Christopher C.

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2–4 cups of coffee in humans. After dams gave birth, offspring were examined at 8–10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation. PMID:24475304

  11. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model.

    Science.gov (United States)

    Takagi, Yasushi; Takahashi, Jun; Saiki, Hidemoto; Morizane, Asuka; Hayashi, Takuya; Kishi, Yo; Fukuda, Hitoshi; Okamoto, Yo; Koyanagi, Masaomi; Ideguchi, Makoto; Hayashi, Hideki; Imazato, Takayuki; Kawasaki, Hiroshi; Suemori, Hirofumi; Omachi, Shigeki; Iida, Hidehiko; Itoh, Nobuyuki; Nakatsuji, Norio; Sasai, Yoshiki; Hashimoto, Nobuo

    2005-01-01

    Parkinson disease (PD) is a neurodegenerative disorder characterized by loss of midbrain dopaminergic (DA) neurons. ES cells are currently the most promising donor cell source for cell-replacement therapy in PD. We previously described a strong neuralizing activity present on the surface of stromal cells, named stromal cell-derived inducing activity (SDIA). In this study, we generated neurospheres composed of neural progenitors from monkey ES cells, which are capable of producing large numbers of DA neurons. We demonstrated that FGF20, preferentially expressed in the substantia nigra, acts synergistically with FGF2 to increase the number of DA neurons in ES cell-derived neurospheres. We also analyzed the effect of transplantation of DA neurons generated from monkey ES cells into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated (MPTP-treated) monkeys, a primate model for PD. Behavioral studies and functional imaging revealed that the transplanted cells functioned as DA neurons and attenuated MPTP-induced neurological symptoms.

  12. Ubiquitous overexpression of a transgene encoding the extracellular portion of the Drosophila Roughest-Irregular Chiasm C protein induces early embryonic lethality

    Directory of Open Access Journals (Sweden)

    LIVIA MODA

    2000-09-01

    Full Text Available The cell adhesion molecule Rst-irreC is a transmembrane glycoprotein of the immunoglobulin superfamily involved in several important developmental processes in Drosophila, including axonal pathfinding in the optic lobe and programmed cell death and pigment cell differentiation in the pupal retina. As an initial step towards the "in vivo'' functional analysis of this protein we have generated transgenic fly stocks carrying a truncated cDNA construct encoding only the extracellular domain of Rst-IrreC under the transcriptional control of the heat shock inducible promoter hsp70. We show that heat-shocking embryos bearing the transgene during the first 8hs of development lead to a 3-4 fold reduction in their viability compared to wild type controls. The embryonic lethality can already be produced by applying the heat pulse in the first 3hs of embryonic development, does not seem to be suppressed in the absence of wildtype product and is progressively reduced as the heat treatment is applied later in embryogenesis. These results are compatible with the hypothesis of the lethal phenotype being primarily due to heterophilic interactions between Rst-IrreC extracellular domain and an yet unknown ligand.

  13. Embryonic Development: Chicken and Zebrafish

    Directory of Open Access Journals (Sweden)

    Veerle M. Darras

    2011-01-01

    Full Text Available Chicken and zebrafish are two model species regularly used to study the role of thyroid hormones in vertebrate development. Similar to mammals, chickens have one thyroid hormone receptor α (TRα and one TRβ gene, giving rise to three TR isoforms: TRα, TRβ2, and TRβ0, the latter with a very short amino-terminal domain. Zebrafish also have one TRβ gene, providing two TRβ1 variants. The zebrafish TRα gene has been duplicated, and at least three TRα isoforms are expressed: TRαA1-2 and TRαB are very similar, while TRαA1 has a longer carboxy-terminal ligand-binding domain. All these TR isoforms appear to be functional, ligand-binding receptors. As in other vertebrates, the different chicken and zebrafish TR isoforms have a divergent spatiotemporal expression pattern, suggesting that they also have distinct functions. Several isoforms are expressed from the very first stages of embryonic development and early chicken and zebrafish embryos respond to thyroid hormone treatment with changes in gene expression. Future studies in knockdown and mutant animals should allow us to link the different TR isoforms to specific processes in embryonic development.

  14. Micro-arrayed human embryonic stem cells-derived cardiomyocytes for in vitro functional assay.

    Directory of Open Access Journals (Sweden)

    Elena Serena

    Full Text Available INTRODUCTION: The heart is one of the least regenerative organs in the body and any major insult can result in a significant loss of heart cells. The development of an in vitro-based cardiac tissue could be of paramount importance for many aspects of the cardiology research. In this context, we developed an in vitro assay based on human cardiomyocytes (hCMs and ad hoc micro-technologies, suitable for several applications: from pharmacological analysis to physio-phatological studies on transplantable hCMs. We focused on the development of an assay able to analyze not only hCMs viability, but also their functionality. METHODS: hCMs were cultured onto a poly-acrylamide hydrogel with tunable tissue-like mechanical properties and organized through micropatterning in a 20×20 array. Arrayed hCMs were characterized by immunofluorescence, GAP-FRAP analyses and live and dead assay. Their functionality was evaluated monitoring the excitation-contraction coupling. RESULTS: Micropatterned hCMs maintained the expression of the major cardiac markers (cTnT, cTnI, Cx43, Nkx2.5, α-actinin and functional properties. The spontaneous contraction frequency was (0.83±0.2 Hz, while exogenous electrical stimulation lead to an increase up to 2 Hz. As proof of concept that our device can be used for screening the effects of pathological conditions, hCMs were exposed to increasing levels of H(2O(2. Remarkably, hCMs viability was not compromised with exposure to 0.1 mM H(2O(2, but hCMs contractility was dramatically suppressed. As proof of concept, we also developed a microfluidic platform to selectively treat areas of the cell array, in the perspective of performing multi-parametric assay. CONCLUSIONS: Such system could be a useful tool for testing the effects of multiple conditions on an in vitro cell model representative of human heart physiology, thus potentially helping the processes of therapy and drug development.

  15. Oogenesis, fertilisation and early embryonic development in rats. I: Dose-dependent effects of pregnant mare serum gonadotrophins.

    Science.gov (United States)

    Goh, H H; Yang, X F; Tain, C F; Liew, L P; Ratnam, S S

    1992-07-01

    Five hundred and eight mature female Wistar rats divided into 35 different groups were stimulated with pregnant mare serum gonadotrophins (PMSG) (0, 5, 10, 20 & 40 IU) at the late diestrus stage to induce multiple follicular development. No chorionic gonadotrophin (CG) was used for ovulation induction. The quality of oocytes and their in vitro fertilisability, quality of Day 2-embryos, viability of pregnancy and status of fetuses on Day 14 of gestation and status of embryos retrieved on Day 2, 3, 4 and 5 of pregnancy in different subgroups of rats were examined. Results showed that more oocytes and embryos fertilised in in vivo were retrieved from rats supraphysiologically stimulated with 20 IU of PMSG. However, concurrent with the larger number, higher proportions of abnormal oocytes and embryos were found. High doses of PMSG caused lower in vitro fertilisability of oocytes and greater degrees of embryonic degeneration. Although, the number of oocytes and Day 2-embryos were higher in the 20PMGS dose group, the pregnancy rate was significantly reduced to 27%. In the 40PMSG group no viable pregnancy was noted. Most embryo demise occurred by day 3-5 of pregnancy, probably within the oviducts and before the implantation stage. In rats supraphysiologically stimulated with 20 and 40 IU of PMSG, the number of morphologically normal looking embryos was greatly reduced by Day 3-5 of pregnancy. In the 40PMSG group, there were no embryos retrieved by Day 4 and 5.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development

    Directory of Open Access Journals (Sweden)

    Jimann Shin

    2012-11-01

    Neurofibromatosis type 1 (NF1 is a common, dominantly inherited genetic disorder that results from mutations in the neurofibromin 1 (NF1 gene. Affected individuals demonstrate abnormalities in neural-crest-derived tissues that include hyperpigmented skin lesions and benign peripheral nerve sheath tumors. NF1 patients also have a predisposition to malignancies including juvenile myelomonocytic leukemia (JMML, optic glioma, glioblastoma, schwannoma and malignant peripheral nerve sheath tumors (MPNSTs. In an effort to better define the molecular and cellular determinants of NF1 disease pathogenesis in vivo, we employed targeted mutagenesis strategies to generate zebrafish harboring stable germline mutations in nf1a and nf1b, orthologues of NF1. Animals homozygous for loss-of-function alleles of nf1a or nf1b alone are phenotypically normal and viable. Homozygous loss of both alleles in combination generates larval phenotypes that resemble aspects of the human disease and results in larval lethality between 7 and 10 days post fertilization. nf1-null larvae demonstrate significant central and peripheral nervous system defects. These include aberrant proliferation and differentiation of oligodendrocyte progenitor cells (OPCs, dysmorphic myelin sheaths and hyperplasia of Schwann cells. Loss of nf1 contributes to tumorigenesis as demonstrated by an accelerated onset and increased penetrance of high-grade gliomas and MPNSTs in adult nf1a+/−; nf1b−/−; p53e7/e7 animals. nf1-null larvae also demonstrate significant motor and learning defects. Importantly, we identify and quantitatively analyze a novel melanophore phenotype in nf1-null larvae, providing the first animal model of the pathognomonic pigmentation lesions of NF1. Together, these findings support a role for nf1a and nf1b as potent tumor suppressor genes that also function in the development of both central and peripheral glial cells as well as melanophores in zebrafish.

  17. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells

    Science.gov (United States)

    Massumi, Mohammad; Pourasgari, Farzaneh; Nalla, Amarnadh; Batchuluun, Battsetseg; Nagy, Kristina; Neely, Eric; Gull, Rida; Nagy, Andras; Wheeler, Michael B.

    2016-01-01

    The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25–30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25–30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function. PMID:27755557

  18. Comparison of Nutech Functional Score with European Stroke Scale for Patients with Cerebrovascular Accident Treated with Human Embryonic Stem Cells

    Science.gov (United States)

    Shroff, Geeta

    2017-01-01

    Purpose Stem cell therapy is a promising modality for treatment of patients with chronic cerebrovascular accident (CVA) in whom treatment other than physiotherapy or occupational therapy does not address the repair or recovery of the lost function. In this study, the author aimed at evaluating CVA patients treated with human embryonic stem cell (hESC) therapy and comparing their study outcomes with globally accepted European Stroke Scale (ESS) to that with novel scoring system, Nutech functional score (NFS), a 21-point positional and directional scoring system for assessing patients with CVA. Materials and Methods Patients diagnosed with CVA were assessed with NFS and ESS before and after hESC therapy. NFS assessed the patients in the direction of 1–5 (bad to good), where 5 was considered as the highest possible grade (HPG). The findings were obtained for the patients who scored HPG, and had shown improvement by at least one grade. Results Overall, 66.7% of patients scored HPG level on the NFS scale and about 62.5% of the patients scored HPG according to the ESS scale. Approximately, 52.2% patients showed an improvement of 100% (by at least one grade) on NFS scale. None of the patients showed 100% improvement in the alteration of the score by at least one grade when scored with ESS. Conclusion NFS and ESS scores show that a large population of CVA patients was benefitted with hESC therapy. NFS was found to give more convincing results than ESS, and overcomes the shortcomings of ESS. PMID:28702118

  19. Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells.

    Science.gov (United States)

    Su, Min; Hu, Rong; Jin, Jingjun; Yan, Yuan; Song, Yinhong; Sullivan, Ryan; Lai, Laijun

    2015-06-05

    Thymic epithelial cells (TECs) are the major components of the thymic microenvironment for T cell development. TECs are derived from thymic epithelial progenitors (TEPs). It has been reported that human ESCs (hESCs) can be directed to differentiate into TEPs in vitro. However, the efficiency for the differentiation is low. Furthermore, transplantation of hESC-TEPs in mice only resulted in a very low level of human T cell development from co-transplanted human hematopoietic precursors. We show here that we have developed a novel protocol to efficiently induce the differentiation of hESCs into TEPs in vitro. When transplanted into mice, hESC-TEPs develop into TECs and form a thymic architecture. Most importantly, the hESC-TECs support the long-term development of functional mouse T cells or a higher level of human T cell development from co-transplanted human hematopoietic precursors. The hESC-TEPs may provide a new approach to prevent or treat patients with T cell immunodeficiency.

  20. Comparison of epigenetic mediator expression and function in mouse and human embryonic blastomeres.

    Science.gov (United States)

    Chavez, Shawn L; McElroy, Sohyun L; Bossert, Nancy L; De Jonge, Christopher J; Rodriguez, Maria Vera; Leong, Denise E; Behr, Barry; Westphal, Lynn M; Reijo Pera, Renee A

    2014-09-15

    A map of human embryo development that combines imaging, molecular, genetic and epigenetic data for comparisons to other species and across pathologies would be greatly beneficial for basic science and clinical applications. Here, we compared mRNA and protein expression of key mediators of DNA methylation and histone modifications between mouse and human embryos, embryos from fertile/infertile couples, and following growth factor supplementation. We observed that individual mouse and human embryos are characterized by similarities and distinct differences in DNA methylation and histone modification patterns especially at the single-cell level. In particular, while mouse embryos first exhibited sub-compartmentalization of different histone modifications between blastomeres at the morula stage and cell sub-populations in blastocysts, differential histone modification expression was detected between blastomeres earlier in human embryos at the four- to eight-cell stage. Likewise, differences in epigenetic mediator expression were also observed between embryos from fertile and infertile couples, which were largely equalized in response to growth factor supplementation, suggesting that select growth factors might prevent alterations in epigenetic profiles during prolonged embryo culture. Finally, we determined that reduced expression via morpholino technologies of a single histone-modifying enzyme, Rps6ka4/Msk2, resulted in cleavage-stage arrest as assessed by time-lapse imaging and was associated with aneuploidy generation. Taken together, data document differences in epigenetic patterns between species with implications for fertility and suggest functional roles for individual epigenetic factors during pre-implantation development.

  1. Mouse survival motor neuron alleles that mimic SMN2 splicing and are inducible rescue embryonic lethality early in development but not late.

    Directory of Open Access Journals (Sweden)

    Suzan M Hammond

    Full Text Available Spinal muscular atrophy (SMA is caused by low survival motor neuron (SMN levels and patients represent a clinical spectrum due primarily to varying copies of the survival motor neuron-2 (SMN2 gene. Patient and animals studies show that disease severity is abrogated as SMN levels increase. Since therapies currently being pursued target the induction of SMN, it will be important to understand the dosage, timing and cellular requirements of SMN for disease etiology and potential therapeutic intervention. This requires new mouse models that can induce SMN temporally and/or spatially. Here we describe the generation of two hypomorphic Smn alleles, Smn(C-T-Neo and Smn(2B-Neo. These alleles mimic SMN2 exon 7 splicing, titre Smn levels and are inducible. They were specifically designed so that up to three independent lines of mice could be generated, herein we describe two. In a homozygous state each allele results in embryonic lethality. Analysis of these mutants indicates that greater than 5% of Smn protein is required for normal development. The severe hypomorphic nature of these alleles is caused by inclusion of a loxP-flanked neomycin gene selection cassette in Smn intron 7, which can be removed with Cre recombinase. In vitro and in vivo experiments demonstrate these as inducible Smn alleles. When combined with an inducible Cre mouse, embryonic lethality caused by low Smn levels can be rescued early in gestation but not late. This provides direct genetic evidence that a therapeutic window for SMN inductive therapies may exist. Importantly, these lines fill a void for inducible Smn alleles. They also provide a base from which to generate a large repertoire of SMA models of varying disease severities when combined with other Smn alleles or SMN2-containing mice.

  2. STUDY ON EMBRYONIC DEVELOPMENT AND EARLY GROWTH OF TRIPLOID AND GYNOGENETIC DIPLOID LEFT-EYED FLOUNDER, PARALICHTHYS OLIVACEUS(T. et S.)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The early effects of chromosomal manipulation of eggs and sperm on the yields of triploid and gynogenetic diploid larvae of Paralichthys olivaceus were investigated. Triploidy was achieved by cold shocking fertilized eggs at 0-2℃ for 45 minutes duration 5 minutes after fertilization, and the induced triploidy rates were 31.2%-50% and the relative hatching rates were 53.3%-99%. Gynogenetic diploids were obtained when eggs were inseminated with irradiated sperm and cold shocked at 0-2℃ for 45 minutes duration 5 minutes after fertilization. The induced gynogenetic diploid rates and the relative hatching rates were 94%-96% and 48.5%-68.5% respectively. The embryonic development of the triploid experimental group and of the gynogenetic diploid experimental group was delayed at first compared with the control group. But from the gastrula stage, it was not delayed anymore. There were no significant differences in the growth of the triploid experimental group larvae and the control group larvae, and in the growth of the gynogenetic diploid experimental group larvae and the control group larvae according to Student's t-test (α=0.05). The relationship between the early growth of the triploid experimental group larvae and that of gynogenetic diploid experimental group larvae was also studied.

  3. STUDY ON EMBRYONIC DEVELOPMENT AND EARLY GROWTH OF TRIPLOID AND GYNOGENETIC DIPLOID LEFI—EYED FLOUNDER, PARALICHTHYS OLIVACEUS (T. et S. )

    Institute of Scientific and Technical Information of China (English)

    尤锋; 刘静; 王新成; 徐永立; 黄瑞东; 张培军

    2001-01-01

    The early effects of chromosomal manipulation of eggs and sperm on the yields of trip-loid and gynogenefic diploid larvae of Paralichthys olivaceus were investigated. Triploidy was achieved by cold shocking fen.ilized eggs at 0 - 2℃ for 45 minutes duration 5 minutes after fen.ilization, and the in-duced triploidy rates were 31.2% - 50% and the relative hatching rates were 53.3% - 99%. Gynnge-aetic diploids were obtained when eggs were inseminated with irradiated sperm and cold shocked at 0 -2℃ for 45 minutes duration 5 minutes after fertihzation. The induced gynogenetic diploid rates and the relative hatching rates were 94 % - 96 % and 48.5 % - 68.5 % respectively. The embryonic development of the triploid experimental group and of the gynogenetic diploid experimental group was delayed at first compared with the control group. But from the gastrula stage, it was not delayed anymore. There were no significant differences in the growth of the triploid experimental group larvae and the control group larvae, and in the growth of the gynogenetic diploid experimental group larvae and the control group larvae ac-cording to Student's t-test (α = 0.05). The relationship between the early growth of the triploid experi-mental group larvae and that of gynogenetic diploid experimental group larvae was also studied.

  4. Superovulation alters embryonic poly(A)-binding protein (Epab) and poly(A)-binding protein, cytoplasmic 1 (Pabpc1) gene expression in mouse oocytes and early embryos.

    Science.gov (United States)

    Ozturk, Saffet; Yaba-Ucar, Aylin; Sozen, Berna; Mutlu, Derya; Demir, Necdet

    2016-03-01

    Embryonic poly(A)-binding protein (EPAB) and poly(A)-binding protein, cytoplasmic 1 (PABPC1) play critical roles in translational regulation of stored maternal mRNAs required for proper oocyte maturation and early embryo development in mammals. Superovulation is a commonly used technique to obtain a great number of oocytes in the same developmental stages in assisted reproductive technology (ART) and in clinical or experimental animal studies. Previous studies have convincingly indicated that superovulation alone can cause impaired oocyte maturation, delayed embryo development, decreased implantation rate and increased postimplantation loss. Although how superovulation results in these disturbances has not been clearly addressed yet, putative changes in genes related to oocyte and early embryo development seem to be potential risk factors. Thus, the aim of the present study was to determine the effect of superovulation on Epab and Pabpc1 gene expression. To this end, low- (5IU) and high-dose (10IU) pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotrophin (hCG) were administered to female mice to induce superovulation, with naturally cycling female mice serving as controls. Epab and Pabpc1 gene expression in germinal vesicle (GV) stage oocytes, MII oocytes and 1- and 2-cell embryos collected from each group were quantified using quantitative reverse transcription-polymerase chain reaction. Superovulation with low or high doses of gonadotropins significantly altered Epab and Pabpc1 mRNA levels in GV oocytes, MII oocytes and 1- and 2-cell embryos compared with their respective controls (Psuperovulation.

  5. The HOXB4 homeoprotein promotes the ex vivo enrichment of functional human embryonic stem cell-derived NK cells.

    Directory of Open Access Journals (Sweden)

    Aniya Larbi

    Full Text Available Human embryonic stem cells (hESCs can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNγ and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34(+CD45RA(+ precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells.

  6. DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Masaaki Oda

    2013-06-01

    Full Text Available DNA methylation changes dynamically during development and is essential for embryogenesis in mammals. However, how DNA methylation affects developmental gene expression and cell differentiation remains elusive. During embryogenesis, many key transcription factors are used repeatedly, triggering different outcomes depending on the cell type and developmental stage. Here, we report that DNA methylation modulates transcription-factor output in the context of cell differentiation. Using a drug-inducible Gata4 system and a mouse embryonic stem (ES cell model of mesoderm differentiation, we examined the cellular response to Gata4 in ES and mesoderm cells. The activation of Gata4 in ES cells is known to drive their differentiation to endoderm. We show that the differentiation of wild-type ES cells into mesoderm blocks their Gata4-induced endoderm differentiation, while mesoderm cells derived from ES cells that are deficient in the DNA methyltransferases Dnmt3a and Dnmt3b can retain their response to Gata4, allowing lineage conversion from mesoderm cells to endoderm. Transcriptome analysis of the cells' response to Gata4 over time revealed groups of endoderm and mesoderm developmental genes whose expression was induced by Gata4 only when DNA methylation was lost, suggesting that DNA methylation restricts the ability of these genes to respond to Gata4, rather than controlling their transcription per se. Gata4-binding-site profiles and DNA methylation analyses suggested that DNA methylation modulates the Gata4 response through diverse mechanisms. Our data indicate that epigenetic regulation by DNA methylation functions as a heritable safeguard to prevent transcription factors from activating inappropriate downstream genes, thereby contributing to the restriction of the differentiation potential of somatic cells.

  7. Effect of recombinant-LH and hCG in the absence of FSH on in vitro maturation (IVM) fertilization and early embryonic development of mouse germinal vesicle (GV)-stage oocytes.

    Science.gov (United States)

    Dinopoulou, Vasiliki; Drakakis, Peter; Kefala, Stella; Kiapekou, Erasmia; Bletsa, Ritsa; Anagnostou, Elli; Kallianidis, Konstantinos; Loutradis, Dimitrios

    2016-06-01

    During in vitro maturation (IVM), intrinsic and extrinsic factors must co-operate properly in order to ensure cytoplasmic and nuclear maturation. We examined the possible effect of LH/hCG in the process of oocyte maturation in mice with the addition of recombinant LH (r-LH) and hCG in our IVM cultures of mouse germinal vesicle (GV)-stage oocytes. Moreover, the effects of these hormones on fertilization, early embryonic development and the expression of LH/hCG receptor were examined. Nuclear maturation of GV-stage oocytes was evaluated after culture in the presence of r-LH or hCG. Fertilization rates and embryonic development were assessed after 24h. Total RNA was isolated from oocytes of different stages of maturation and from zygotes and embryos of different stages of development in order to examine the expression of LH/hCG receptor, using RT-PCR. The in vitro nuclear maturation rate of GV-stage oocytes that received hCG was significantly higher compared to the control group. Early embryonic development was increased in the hCG and LH cultures of GV oocytes when LH was further added. The LH/hCG receptor was expressed in all stages of in vitro matured mouse oocytes and in every stage of early embryonic development. Addition of hCG in IVM cultures of mouse GV oocytes increased maturation rates significantly. LH, however, was more beneficial to early embryonic development than hCG. This suggests a promising new technique in basic science research or in clinical reproductive medicine. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Early Hormonal Influences on Cognitive Functioning in Congenital Adrenal Hyperplasia.

    Science.gov (United States)

    Resnick, Susan M.; And Others

    1986-01-01

    Reports the results of cognitive test performance and early childhood activities in individuals with congenital adrenal hyperplasia, an autosomal recessive disorder associated with elevated prenatal adrenal androgen levels, demonstrating the effects of early exposure to excess androgenizing hormones on sexually dimorphic cognitive functioning.…

  9. Evolution of the mammalian embryonic pluripotency gene regulatory network

    Science.gov (United States)

    Fernandez-Tresguerres, Beatriz; Cañon, Susana; Rayon, Teresa; Pernaute, Barbara; Crespo, Miguel; Torroja, Carlos; Manzanares, Miguel

    2010-01-01

    Embryonic pluripotency in the mouse is established and maintained by a gene-regulatory network under the control of a core set of transcription factors that include octamer-binding protein 4 (Oct4; official name POU domain, class 5, transcription factor 1, Pou5f1), sex-determining region Y (SRY)-box containing gene 2 (Sox2), and homeobox protein Nanog. Although this network is largely conserved in eutherian mammals, very little information is available regarding its evolutionary conservation in other vertebrates. We have compared the embryonic pluripotency networks in mouse and chick by means of expression analysis in the pregastrulation chicken embryo, genomic comparisons, and functional assays of pluripotency-related regulatory elements in ES cells and blastocysts. We find that multiple components of the network are either novel to mammals or have acquired novel expression domains in early developmental stages of the mouse. We also find that the downstream action of the mouse core pluripotency factors is mediated largely by genomic sequence elements nonconserved with chick. In the case of Sox2 and Fgf4, we find that elements driving expression in embryonic pluripotent cells have evolved by a small number of nucleotide changes that create novel binding sites for core factors. Our results show that the network in charge of embryonic pluripotency is an evolutionary novelty of mammals that is related to the comparatively extended period during which mammalian embryonic cells need to be maintained in an undetermined state before engaging in early differentiation events. PMID:21048080

  10. Human embryonic stem cell-derived hematopoietic cells maintain core epigenetic machinery of the polycomb group/Trithorax Group complexes distinctly from functional adult hematopoietic stem cells.

    Science.gov (United States)

    Schnerch, Angelique; Lee, Jung Bok; Graham, Monica; Guezguez, Borhane; Bhatia, Mickie

    2013-01-01

    Hematopoietic cells derived from human embryonic stem cells (hESCs) have a number of potential utilities, including the modeling of hematological disorders in vitro, whereas the use for cell replacement therapies has proved to be a loftier goal. This is due to the failure of differentiated hematopoietic cells, derived from human pluripotent stem cells (hPSCs), to functionally recapitulate the in vivo properties of bona fide adult hematopoietic stem/progenitor cells (HSPCs). To better understand the limitations of differentiation programming at the molecular level, we have utilized differential gene expression analysis of highly purified cells that are enriched for hematopoietic repopulating activity across embryonic, fetal, and adult human samples, including in vivo explants of human HSPCs 8-weeks post-transplantation. We reveal that hESC-derived hematopoietic progenitor cells (eHPCs) fail to express critical transcription factors which are known to govern self-renewal and myeloid/lymphoid development and instead retain the expression of Polycomb Group (PcG) and Trithorax Group (TrxG) factors which are more prevalent in embryonic cell types that include EZH1 and ASH1L, respectively. These molecular profiles indicate that the differential expression of the core epigenetic machinery comprising PcGs/TrxGs in eHPCs may serve as previously unexplored molecular targets that direct hematopoietic differentiation of PSCs toward functional HSPCs in humans.

  11. miR-125b promotes early germ layer specification through Lin28/let-7d and preferential differentiation of mesoderm in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Sharon S Y Wong

    Full Text Available Unlike other essential organs, the heart does not undergo tissue repair following injury. Human embryonic stem cells (hESCs grow indefinitely in culture while maintaining the ability to differentiate into many tissues of the body. As such, they provide a unique opportunity to explore the mechanisms that control human tissue development, as well as treat diseases characterized by tissue loss, including heart failure. MicroRNAs are small, non-coding RNAs that are known to play critical roles in the regulation of gene expression. We profiled the expression of microRNAs during hESC differentiation into myocardial precursors and cardiomyocytes (CMs, and determined clusters of human microRNAs that are specifically regulated during this process. We determined that miR-125b overexpression results in upregulation of the early cardiac transcription factors, GATA4 and Nkx2-5, and accelerated progression of hESC-derived myocardial precursors to an embryonic CM phenotype. We used an in silico approach to identify Lin28 as a target of miR-125b, and validated this interaction using miR-125b knockdown. Anti-miR-125b inhibitor experiments also showed that miR-125b controls the expression of miRNA let-7d, likely through the negative regulatory effects of Lin28 on let-7. We then determined that miR-125b overexpression inhibits the expression of Nanog and Oct4 and promotes the onset of Brachyury expression, suggesting that miR-125b controls the early events of human CM differentiation by inhibiting hESC pluripotency and promoting mesodermal differentiation. These studies identified miR-125b as an important regulator of hESC differentiation in general, and the development of hESC-derived mesoderm and cardiac muscle in particular. Manipulation of miR-125b-mediated pathways may provide a novel approach to directing the differentiation of hESC-derived CMs for cell therapy applications.

  12. Studies on the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rat

    Directory of Open Access Journals (Sweden)

    Zheng-mou DONG

    2011-01-01

    Full Text Available Objective To evaluate the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rats.Methods A total of 100female SD rats were randomly divided into negative control,low-,medium-,high-dose group and intervention group(20each.Rats in low-,medium-and high-dose group were fed daily with the sustained release drug at 1,4,and 8g/kg respectively;those in negative control group were fed daily with distilled water from the 14th day before mating to the 7th day of pregnancy continuously,and those in intervention group received cyclophosphamide(40mg/kgby intraperitoneal injection for 5successive days.During this period,the general status,mating,pregnancy,coefficient of ovary and uterus,the numbers of corpus luteum,nidation,live births,stillbirths,absorbed embryo,prenidatory and postnidatory mortality,serum testosterone(Tand estradiol(E2were determined respectively.Histopathologic examination of the ovary and uterus,immunohistochemical observation of ovaries for proliferating cell nuclear antigen(PCNAand Bcl-2associated X protein(Baxwere also performed respectively.Results The general status of those rats was good except one in the low-dose group and one in the intervention group died on the 14th day of administration,and one in negative control and one in high dose group died on the 5th day of pregnancy,respectively.The body weight of animals decreased significantly(P 0.05.The serum T level in medium-and high-dose group and the E2level in high-dose group declined compared to that in negative control group(P < 0.05.Conclusions Although the periodontal sustained release drug containing ornidazole and pefloxacin mesylate shows no toxicity to the early embryonic development of SD rats,the high dose drug has certain toxicity to ovary.Declined serum concentrations of T and E2,reduced expression of PCNA,and increased Bax may be the causes of the toxicity.

  13. Atlas-based functional radiosurgery: Early results

    Energy Technology Data Exchange (ETDEWEB)

    Stancanello, J.; Romanelli, P.; Pantelis, E.; Sebastiano, F.; Modugno, N. [Politecnico di Milano, Bioengineering Department and NEARlab, Milano, 20133 (Italy) and Siemens AG, Research and Clinical Collaborations, Erlangen, 91052 (Germany); Functional Neurosurgery Deptartment, Neuromed IRCCS, Pozzilli, 86077 (Italy); CyberKnife Center, Iatropolis, Athens, 15231 (Greece); Functional Neurosurgery Deptartment, Neuromed IRCCS, Pozzilli, 86077 (Italy)

    2009-02-15

    Functional disorders of the brain, such as dystonia and neuropathic pain, may respond poorly to medical therapy. Deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) and the centromedian nucleus of the thalamus (CMN) may alleviate dystonia and neuropathic pain, respectively. A noninvasive alternative to DBS is radiosurgical ablation [internal pallidotomy (IP) and medial thalamotomy (MT)]. The main technical limitation of radiosurgery is that targets are selected only on the basis of MRI anatomy, without electrophysiological confirmation. This means that, to be feasible, image-based targeting must be highly accurate and reproducible. Here, we report on the feasibility of an atlas-based approach to targeting for functional radiosurgery. In this method, masks of the GPi, CMN, and medio-dorsal nucleus were nonrigidly registered to patients' T1-weighted MRI (T1w-MRI) and superimposed on patients' T2-weighted MRI (T2w-MRI). Radiosurgical targets were identified on the T2w-MRI registered to the planning CT by an expert functional neurosurgeon. To assess its feasibility, two patients were treated with the CyberKnife using this method of targeting; a patient with dystonia received an IP (120 Gy prescribed to the 65% isodose) and a patient with neuropathic pain received a MT (120 Gy to the 77% isodose). Six months after treatment, T2w-MRIs and contrast-enhanced T1w-MRIs showed edematous regions around the lesions; target placements were reevaluated by DW-MRIs. At 12 months post-treatment steroids for radiation-induced edema and medications for dystonia and neuropathic pain were suppressed. Both patients experienced significant relief from pain and dystonia-related problems. Fifteen months after treatment edema had disappeared. Thus, this work shows promising feasibility of atlas-based functional radiosurgery to improve patient condition. Further investigations are indicated for optimizing treatment dose.

  14. Early Life Events Predict Adult Testicular Function

    DEFF Research Database (Denmark)

    Hart, Roger J; Doherty, Dorota A; Keelan, Jeffrey A

    2016-01-01

    ; on testicular function in adulthood. DESIGN: Male members of the Western Australian Pregnancy Cohort (Raine) were contacted at 20-22 years of age. Of 913 contacted, 423 (56%) agreed to participate; 404 underwent a testicular ultrasound, 365 provided a semen sample, and reproductive hormones were measured (384......). Consistent height above the 50th percentile for age through childhood was associated with larger adult mean testicular volume (P volume (P = .009) and higher serum inhibin B (P = .010) and T (P...

  15. Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy.

    Science.gov (United States)

    Pillekamp, Frank; Haustein, Moritz; Khalil, Markus; Emmelheinz, Markus; Nazzal, Rewa; Adelmann, Roland; Nguemo, Filomain; Rubenchyk, Olga; Pfannkuche, Kurt; Matzkies, Matthias; Reppel, Michael; Bloch, Wilhelm; Brockmeier, Konrad; Hescheler, Juergen

    2012-08-10

    Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide the unique opportunity to study the very early development of the human heart. The aim of this study was to investigate the effect of calcium and beta-adrenergic stimulation on the contractile properties of early hESC-CMs. Beating clusters containing hESC-CMs were co-cultured in vitro with noncontractile slices of neonatal murine ventricles. After 5-7 days, when beating clusters had integrated morphologically into the damaged tissue, isometric force measurements were performed during spontaneous beating as well as during electrical field stimulation. Spontaneous beating stopped when extracellular calcium ([Ca²⁺](ec)) was removed or after administration of the Ca²⁺ channel blocker nifedipine. During field stimulation at a constant rate, the developed force increased with incremental concentrations of [Ca²⁺](ec). During spontaneous beating, rising [Ca²⁺](ec) increased beating rate and developed force up to a [Ca²⁺](ec) of 2.5 mM. When [Ca²⁺](ec) was increased further, spontaneous beating rate decreased, whereas the developed force continued to increase. The beta-adrenergic agonist isoproterenol induced a dose-dependent increase of the frequency of spontaneous beating; however, it did not significantly change the developed force during spontaneous contractions or during electrical stimulation at a constant rate. Force developed by early hESC-CMs depends on [Ca²⁺](ec) and on the L-type Ca²⁺ channel. The lack of an inotropic reaction despite a pronounced chronotropic response after beta-adrenergic stimulation most likely indicates immaturity of the sarcoplasmic reticulum. For cell-replacement strategies, further maturation of cardiac cells has to be achieved either in vitro before or in vivo after transplantation.

  16. The FHA domain determines Drosophila Chk2/Mnk localization to key mitotic structures and is essential for early embryonic DNA damage responses.

    Science.gov (United States)

    Takada, Saeko; Collins, Eric R; Kurahashi, Kayo

    2015-05-15

    DNA damage responses, including mitotic centrosome inactivation, cell-cycle delay in mitosis, and nuclear dropping from embryo cortex, maintain genome integrity in syncytial Drosophila embryos. A conserved signaling kinase, Chk2, known as Mnk/Loki, is essential for the responses. Here we demonstrate that functional EGFP-Mnk expressed from a transgene localizes to the nucleus, centrosomes, interkinetochore/centromere region, midbody, and pseudocleavage furrows without DNA damage and in addition forms numerous foci/aggregates on mitotic chromosomes upon DNA damage. We expressed EGFP-tagged Mnk deletion or point mutation variants and investigated domain functions of Mnk in vivo. A triple mutation in the phosphopeptide-binding site of the forkhead-associated (FHA) domain disrupted normal Mnk localization except to the nucleus. The mutation also disrupted Mnk foci formation on chromosomes upon DNA damage. FHA mutations and deletion of the SQ/TQ-cluster domain (SCD) abolished Mnk transphosphorylations and autophosphorylations, indicative of kinase activation after DNA damage. A potent NLS was found at the C-terminus, which is required for normal Mnk function. We propose that the FHA domain in Mnk plays essential dual functions in mediating embryonic DNA damage responses by means of its phosphopeptide-binding ability: activating Mnk in the nucleus upon DNA damage and recruiting Mnk to multiple subcellular structures independently of DNA damage.

  17. Essential function of the transcription factor Rax in the early patterning of the mammalian hypothalamus.

    Science.gov (United States)

    Orquera, Daniela P; Nasif, Sofia; Low, Malcolm J; Rubinstein, Marcelo; de Souza, Flávio S J

    2016-08-01

    The hypothalamus is a region of the anterior forebrain that controls basic aspects of vertebrate physiology, but the genes involved in its development are still poorly understood. Here, we investigate the function of the homeobox gene Rax/Rx in early hypothalamic development using a conditional targeted inactivation strategy in the mouse. We found that lack of Rax expression prior to embryonic day 8.5 (E8.5) caused a general underdevelopment of the hypothalamic neuroepithelium, while inactivation at later timepoints had little effect. The early absence of Rax impaired neurogenesis and prevented the expression of molecular markers of the dorsomedial hypothalamus, including neuropeptides Proopiomelanocortin and Somatostatin. Interestingly, the expression domains of genes expressed in the ventromedial hypothalamus and infundibulum invaded dorsal hypothalamic territory, showing that Rax is needed for the proper dorsoventral patterning of the developing medial hypothalamus. The phenotypes caused by the early loss of Rax are similar to those of eliminating the expression of the morphogen Sonic hedgehog (Shh) specifically from the hypothalamus. Consistent with this similarity in phenotypes, we observed that Shh and Rax are coexpressed in the rostral forebrain at late head fold stages and that loss of Rax caused a downregulation of Shh expression in the dorsomedial portion of the hypothalamus. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Transcriptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain.

    Science.gov (United States)

    Hamm, Danielle C; Bondra, Eliana R; Harrison, Melissa M

    2015-02-01

    Delayed transcriptional activation of the zygotic genome is a nearly universal phenomenon in metazoans. Immediately following fertilization, development is controlled by maternally deposited products, and it is not until later stages that widespread activation of the zygotic genome occurs. Although the mechanisms driving this genome activation are currently unknown, the transcriptional activator Zelda (ZLD) has been shown to be instrumental in driving this process in Drosophila melanogaster. Here we define functional domains of ZLD required for both DNA binding and transcriptional activation. We show that the C-terminal cluster of four zinc fingers mediates binding to TAGteam DNA elements in the promoters of early expressed genes. All four zinc fingers are required for this activity, and splice isoforms lacking three of the four zinc fingers fail to activate transcription. These truncated splice isoforms dominantly suppress activation by the full-length, embryonically expressed isoform. We map the transcriptional activation domain of ZLD to a central region characterized by low complexity. Despite relatively little sequence conservation within this domain, ZLD orthologs from Drosophila virilis, Anopheles gambiae, and Nasonia vitripennis activate transcription in D. melanogaster cells. Transcriptional activation by these ZLD orthologs suggests that ZLD functions through conserved interactions with a protein cofactor(s). We have identified distinct DNA-binding and activation domains within the critical transcription factor ZLD that controls the initial activation of the zygotic genome.

  19. Precocious appearance of cardiac troponin T pre-mRNAs during early avian embryonic skeletal muscle development in ovo.

    Science.gov (United States)

    Swiderski, R E; Solursh, M

    1990-07-01

    Cardiac troponin T (cTNT), a component of the muscle contractile apparatus, is transiently expressed in skeletal muscle during avian limb development. While cTNT was first detected immunohistochemically in limb buds undergoing overt myogenic differentiation (Hamburger and Hamilton stage 26, about 5 days in ovo), RNA blot analyses of early, predifferentiated wing buds have revealed the presence of cTNT transcripts in limb buds as early as stage 23 (4 days in ovo). Steady-state cTNT poly(A) RNAs of stage 22 through stage 37 fore- and hindlimbs were compared using both cTNT cDNA and cTNT intron-specific probes. In the predifferentiated state, two incompletely processed RNAs (3.8 and 2.4 kb) were expressed in the absence of the mature cTNT transcript, while a third pre-mRNA (3.5 kb) appeared concomitantly with the mature mRNA as differentiation and development proceeded. In addition, a population of unique cTNT transcripts were expressed in a proximal to distal manner in wing buds which had undergone initial overt myogenic differentiation (stage 26). Some of the cTNT pre-mRNAs observed in premyogenic limbs appeared to accumulate stably in a tissue-specific manner, based on their absence from the cardiac poly(A) RNA population. These results suggest that the appearance of cardiac troponin T mRNA, as well as the polypeptide, may be regulated at multiple levels including RNA processing, stability, and/or translation during early skeletal muscle myogenesis.

  20. Functioning in early and late stages of schizophrenia

    Directory of Open Access Journals (Sweden)

    Leonardo Gazzi Costa

    2014-12-01

    Full Text Available INTRODUCTION: Schizophrenia is frequently associated with a debilitating course and prominent impairment in social and occupational functioning. Although the criteria for classification into stages have not been defined in the literature, illness duration and functioning seem to be good candidates.OBJECTIVE:To compare functioning of patients with schizophrenia at different stages of the disease (early vs. late and healthy sex- and age-matched controls.METHODS: This double-blinded, case-controlled study included 79 individuals: 23 patients with schizophrenia diagnosed up to 5 years earlier; 19 patients with schizophrenia diagnosed at least 20 years earlier; and healthy matched controls. Diagnoses were established using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV Axis I Disorder. Functioning was assessed using the Functioning Assessment Short Test (FAST.RESULTS: Patients in the early stage had significantly higher scores than healthy controls in total FAST and in autonomy, occupational functioning, cognitive functioning and interpersonal relationships. Individuals in the late stage had significantly poorer functioning than controls in all domains. The comparison of functioning between the two groups of patients revealed no significant differences, except in occupational functioning, in which late stage patients had a poorer performance.CONCLUSION: Functioning impairment in schizophrenia tends to remain stable despite illness duration. Therefore, functioning should be effectively assessed at an early stage, as illness duration alone may not be the most reliable criterion to stage patients with schizophrenia.

  1. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    Energy Technology Data Exchange (ETDEWEB)

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda; Ouyang, Honghai; Osaki, Mitsuhiko; Ito, Hisao; Nagasawa, Hatsumi; Little, John B.; Oshimura, Mitsuo; Li, Gloria C.; Chen, David J.

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNEL staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.

  2. Loss of Pnn expression results in mouse early embryonic lethality and cellular apoptosis through SRSF1-mediated alternative expression of Bcl-xS and ICAD.

    Science.gov (United States)

    Leu, Steve; Lin, Yen-Ming; Wu, Chu-Han; Ouyang, Pin

    2012-07-01

    Pinin (Pnn), a serine/arginine-rich (SR)-related protein, has been shown to play multiple roles within eukaryotic cells including cell-cell adhesion, cell migration, regulation of gene transcription, mRNA export and alternative splicing. In this study, an attempt to generate mice homozygously deficient in Pnn failed because of early embryonic lethality. To evaluate the effects of loss of Pnn expression on cell survival, RNA interference experiments were performed in MCF-7 cells. Depletion of Pnn resulted in cellular apoptosis and nuclear condensation. In addition, nuclear speckles were disrupted, and expression levels of SR proteins were diminished. RT-PCR analysis showed that alternative splicing patterns of SRSF1 as well as of apoptosis-related genes Bcl-x and ICAD were altered, and expression levels of Bim isoforms were modulated in Pnn-depleted cells. Cellular apoptosis induced by Pnn depletion was rescued by overexpression of SRSF1, which also restored generation of Bcl-xL and functionless ICAD. Pnn expression is, therefore, essential for survival of mouse embryos and the breast carcinoma cell line MCF-7. Moreover, Pnn depletion, modulated by SRSF1, determines cellular apoptosis through activation of the expression of pro-apoptotic Bcl-xS transcripts.

  3. Functional endothelial cells derived from embryonic stem cells labeled with HIV transactivator peptide-conjugated superparamagnetic nanoparticles

    Institute of Scientific and Technical Information of China (English)

    GAO Bin; FU Wei-guo; DONG Zhi-hui; FANG Zheng-dong; LIU Zhen-jie; SI Yi; ZHANG Xiang-man; WANG Yu-qi

    2011-01-01

    Background The development of regenerative therapies using derivatives of embryonic stem (ES) cells would be facilitated by a non-invasive method to monitor transplanted cells in vivo,for example,magnetic resonance imaging of cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles.Although ES cells have been labeled with SPIO particles,the potential adverse effects of the label have not been fully examined.The objective of this study was to determine whether SPIO labeling affects murine ES cell viability,proliferation,or ability to differentiate into functional endothelial cells (ECs).Methods Cross-linked iron oxide (CLIO,an SPIO) was conjugated with human immunodeficiency virus transactivator of transcription (HIV-Tat) peptides,and murine ES cells were labeled with either CLiO-Tat,CLIO,or HIV-Tat.After labeling,ES cells were cultured for 4 days and FIk-1+ ES cells identified and sorted by immunocytochemistry and fluorescence activated cell sorting (FACS).FIk-1+ cells were raplated on fibronectin-coated dishes,and ECs were obtained by culturing these for 4 weeks in endothelial cell growth medium supplemented with vascular endothelial growth factor (VEGF).ES cell viability was determined using trypan blue exclusion,and the proportion of SPIO+ cells was evaluated using Prussian blue staining and transmission electron microscopy.After differentiation,the behavior and phenotype of ECs were analyzed by reverse transcription-polymerase chain reaction,flow cytometry,immunocytochemistry,Dil-labeled acetylated low-density lipoprotein (AcLDL) uptake,and Matrigel tube formation assay.Results CLIO-Tat was a highly effective label for ES cells,with >96% of cells incorporating the particles,and it did not alter the viability of the labeled cells.ECs derived from CLIO-Tat+ ES cells were very similar to murine aortic ECs in their morphology,expression of endothelial cell markers,ability to form vascular-like channels,and scavenging of AcLDL from the culture medium

  4. Sex and Age Effects of Functional Connectivity in Early Adulthood

    NARCIS (Netherlands)

    Zhang, C. (Chao); Cahill, N.D. (Nathan D.); Arbabshirani, M.R. (Mohammad R.); T.J.H. White (Tonya); Baum, S.A. (Stefi A.); Michael, A.M. (Andrew M.)

    2016-01-01

    textabstractFunctional connectivity (FC) in resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to find coactivating regions in the human brain. Despite its widespread use, the effects of sex and age on resting FC are not well characterized, especially during early adulthood

  5. 斑马鱼胚胎发育的功能染色体组%Functional Genomics of Embryonic Development in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    孟安明

    2003-01-01

    As the genome sequencing of human and other species is complete, a major task in life science is to elucidate biological functions of thousands of genes. Life cycle of human and animals starts from single fertilized eggs that will develop step by step into sophisticated organisms consisting of multiple tissues and organs. During embryogenesis, genes are expressed sequentially according to inherent programs and gene products function coordinately, which determine and actualize the body plan. Functional genomics of embryos can be accelerated if an appropriate model animal is exploited. Zebrafish is an excellent model for such a study. The natural advantages of Zebrafish include high production of eggs, external development of embryos, small size and easy maintenance. In addition, many molecular, cellular, embryonic and genetic operations can be done easily in zebra fish. Two approaches, forward and reverse genetics, have been widely used to study gene functions during development of zebrafish embryos. The forward genetics is to identify genes from mutants created by mutagenesis with chemical mutagens, y-ray and recombinant retrovirus. More than 4,000 mutants with various embryonic defects have been generated and about 500 genes responsible for mutant phenotypes have been identified. The mutagenesis in zebrafish has revealed some important mechanisms controlling development of vertebrate embryos. With respect to reverse genetics approach, over 3,000 tissue-specific genes have been identified through whole-mount in situ hybridization screen. The functions of some of these genes during embryogenesis have been studied in details.

  6. Embryonic staging system for the Black Mastiff Bat, Molossus rufus (Molossidae), correlated with structure-function relationships in the adult.

    Science.gov (United States)

    Nolte, Mark J; Hockman, Dorit; Cretekos, Chris J; Behringer, Richard R; Rasweiler, John J

    2009-02-01

    An embryonic staging system for Molossus rufus (also widely known as Molossus ater) was devised using 17 reference specimens obtained during the postimplantation period of pregnancy from wild-caught, captive-bred females. This was done in part by comparing the embryos to a developmental staging system that had been created for another, relatively unrelated bat, Carollia perspicillata (family Phyllostomidae). Particular attention was paid to the development of species-specific features, such as wing and ear morphology, and these are discussed in light of the adaptive significance of these structures in the adult. M. rufus can be maintained and bred in captivity and is relatively abundant in the wild. This embryonic staging system will facilitate further developmental studies of M. rufus, a model species for one of the largest and most successful chiropteran families, the Molossidae.

  7. Preventing Poor Vocational Functioning in Psychosis Through Early Intervention.

    Science.gov (United States)

    Hegelstad, Wenche Ten Velden; Bronnick, Kolbjorn S; Barder, Helene Eidsmo; Evensen, Julie Horgen; Haahr, Ulrik; Joa, Inge; Johannessen, Jan Olav; Langeveld, Johannes; Larsen, Tor Ketil; Melle, Ingrid; Opjordsmoen, Stein; Rund, Bjørn Rishovd; Rossberg, Jan Ivar; Simonsen, Erik; Vaglum, Per Wiggen; McGlashan, Thomas H; Friis, Svein

    2017-01-01

    This study tested the hypothesis that early detection of psychosis improves long-term vocational functioning through the prevention of negative symptom development. Generalized estimating equations and mediation analysis were conducted to examine the association between employment and negative symptoms over ten years among patients in geographic areas characterized by usual detection (N=140) or early detection (N=141) of psychosis. Improved vocational outcome after ten years among patients in the early-detection area was mediated by lower levels of negative symptoms during the first five years. Regardless of symptoms, rates of full-time employment or study were lower among patients in the usual-detection versus the early-detection area. Patients from an early-detection area attained lower negative symptom levels earlier compared with patients from a usual-detection area, which seemed to have facilitated vocational careers.

  8. A Longitudinal Intergenerational Analysis of Executive Functions During Early Childhood

    OpenAIRE

    Cuevas, Kimberly; Deater-Deckard, Kirby; Kim-Spoon, Jungmeen; Wang, Zhe; Morasch, Katherine C.; Bell, Martha Ann

    2013-01-01

    Despite the importance of executive function (EF) in both clinical and educational contexts, the etiology of individual differences in early childhood EF remains poorly understood. This study provides the first longitudinal intergenerational analysis of mother-child EF associations during early childhood. A group of children and their mothers (n = 62) completed age-appropriate EF tasks. Mother and child EF were modestly correlated by 24 months of age and this association was stable through 48...

  9. Analysis of mtDNA variant segregation during early human embryonic development: a tool for successful NARP preimplantation diagnosis

    Science.gov (United States)

    Steffann, J; Frydman, N; Gigarel, N; Burlet, P; Ray, P F; Fanchin, R; Feyereisen, E; Kerbrat, V; Tachdjian, G; Bonnefont, J‐P; Frydman, R; Munnich, A

    2006-01-01

    Background Diseases arising from mitochondrial DNA (mtDNA) mutations are usually serious pleiotropic disorders with maternal inheritance. Owing to the high recurrence risk in the progeny of carrier females, “at‐risk” couples often ask for prenatal diagnosis. However, reliability of such practices remains under debate. Preimplantation diagnosis (PGD), a theoretical alternative to conventional prenatal diagnosis, requires that the mutant load measured in a single cell from an eight cell embryo accurately reflects the overall heteroplasmy of the whole embryo, but this is not known to be the case. Objective To investigate the segregation of an mtDNA length polymorphism in blastomeres of 15 control embryos from four unrelated couples, the NARP mutation in blastomeres of three embryos from a carrier of this mutation. Results Variability of the mtDNA polymorphism heteroplasmy among blastomeres from each embryo was limited, ranging from zero to 19%, with a mean of 7%. PGD for the neurogenic ataxia retinitis pigmentosa (NARP) mtDNA mutation (8993T→G) was therefore carried out in the carrier mother of an affected child. One of three embryos was shown to carry 100% of mutant mtDNA species while the remaining two were mutation‐free. These two embryos were transferred, resulting in a singleton pregnancy with delivery of a healthy child. Conclusions This PGD, the first reported for a mtDNA mutation, illustrates the skewed meiotic segregation of the NARP mtDNA mutation in early human development. However, discrepancies between the segregation patterns of the NARP mutation and the HV2 polymorphism indicate that a particular mtDNA nucleotide variant might differentially influenced the mtDNA segregation, precluding any assumption on feasibility of PGD for other mtDNA mutations. PMID:16155197

  10. Building the blocks of executive functioning: differentiating early developing processes contributing to executive functioning skills

    NARCIS (Netherlands)

    Mandell, D.J.; Ward, S.E.

    2011-01-01

    The neural processes that underlie executive function begin to develop in infancy. However, it is unclear how the behavior manifested by these processes are related or if they can be differentiated early in development. This study seeks to examine early emerging executive functioning skills in

  11. Building the blocks of executive functioning: differentiating early developing processes contributing to executive functioning skills

    NARCIS (Netherlands)

    Mandell, D.J.; Ward, S.E.

    2011-01-01

    The neural processes that underlie executive function begin to develop in infancy. However, it is unclear how the behavior manifested by these processes are related or if they can be differentiated early in development. This study seeks to examine early emerging executive functioning skills in monke

  12. Myb-binding protein 1A (MYBBP1A is essential for early embryonic development, controls cell cycle and mitosis, and acts as a tumor suppressor.

    Directory of Open Access Journals (Sweden)

    Silvia Mori

    Full Text Available MYBBP1A is a predominantly nucleolar transcriptional regulator involved in rDNA synthesis and p53 activation via acetylation. However little further information is available as to its function. Here we report that MYBBP1A is developmentally essential in the mouse prior to blastocyst formation. In cell culture, down-regulation of MYBBP1A decreases the growth rate of wild type mouse embryonic stem cells, mouse embryo fibroblasts (MEFs and of human HeLa cells, where it also promotes apoptosis. HeLa cells either arrest at G2/M or undergo delayed and anomalous mitosis. At mitosis, MYBBP1A is localized to a parachromosomal region and gene-expression profiling shows that its down-regulation affects genes controlling chromosomal segregation and cell cycle. However, MYBBP1A down-regulation increases the growth rate of the immortalized NIH3T3 cells. Such Mybbp1a down-regulated NIH3T3 cells are more susceptible to Ras-induced transformation and cause more potent Ras-driven tumors. We conclude that MYBBP1A is an essential gene with novel roles at the pre-mitotic level and potential tumor suppressor activity.

  13. Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Yukinobu eArata

    2015-01-01

    Full Text Available Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula transition, the cell cycle duration elongates in a power law relationship with the cell radius squared. This correlation has been explained by the model that cell surface area is a candidate to determine cell cycle duration. However, it remains unknown whether this second power law is conserved in other animal embryos. Here, we found that the relationship between cell cycle duration and cell size in Caenorhabditis elegans embryos exhibited a power law distribution. Interestingly, the powers of the time-size relationship could be grouped into at least three classes: highly size-correlated, moderately size-correlated, and potentially a size-noncorrelated class according to C. elegans founder cell lineages (1.2, 0.81, and Xenopus and C. elegans, while the absolute powers in C. elegans were different from that in Xenopus. Furthermore, we found that the volume ratio between the nucleus and cell exhibited a power law relationship in the size-correlated classes. The power of the volume relationship was closest to that of the time-size relationship in the highly size-correlated class. This correlation raised the possibility that the time-size relationship, at least in the highly size-correlated class, is explained by the volume ratio of nuclear size and cell size. Thus, our quantitative measurements shed a light on the possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size as a result of geometric constraints between intracellular structures.

  14. Embryonic death and the creation of human embryonic stem cells

    OpenAIRE

    Landry, Donald W.; Zucker, Howard A.

    2004-01-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ ...

  15. Embryonic death and the creation of human embryonic stem cells.

    Science.gov (United States)

    Landry, Donald W; Zucker, Howard A

    2004-11-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ donation.

  16. In vivo functional imaging of embryonic chick heart using ultrafast 1310nm-band spectral domain optical coherence tomography

    Science.gov (United States)

    Li, Peng; Yin, Xin; Wang, Ruikang K.

    2013-02-01

    During the cardiac development, the cardiac wall and the blood flow actively interact with each other, and determine the biomechanical environment to which the embryonic heart exposes. Employing an ultrafast 1310nm-band dual-camera spectral domain optical coherence tomography (SDOCT), the radial strain rate of the myocardial wall can be extracted with high signal-to-noise ratio, at the same time the Doppler velocity of the blood flow can also be displayed. The ability to simultaneously characterize these two cardiac tissues provides a powerful approach to better understand the interaction between the cardiac wall and the blood flow, which is important to the investigation of cardiac development.

  17. The development and arithmetic foundations of early functional thinking

    OpenAIRE

    Xolocotzin, Ulises; Rojano, Teresa

    2015-01-01

    International audience; Functional reasoning is a key strand of early algebrai-zation. This paper presents a cross-sectional study that analysed functional thinking in a sample of 94 elementary school students. Aspects such as following and identifying covariation rules showed dramatic differences between Grade 2, Grade 4, and Grade 6, whereas increases in the abilities to command verbal and symbolic representations were much smaller. After controlling for the influence of nonverbal reasoning...

  18. ETS transcription factors in embryonic vascular development.

    Science.gov (United States)

    Craig, Michael P; Sumanas, Saulius

    2016-07-01

    At least thirteen ETS-domain transcription factors are expressed during embryonic hematopoietic or vascular development and potentially function in the formation and maintenance of the embryonic vasculature or blood lineages. This review summarizes our current understanding of the specific roles played by ETS factors in vasculogenesis and angiogenesis and the implications of functional redundancies between them.

  19. Links between executive functions and early literacy and numeracy

    NARCIS (Netherlands)

    Davidse, Neeltje Joanne

    2014-01-01

    The current study extended research on working memory, attention shifting, and inhibitory control problems –indicated as executive functions (EF) – that may play a role in acquiring early literacy and numeracy skills. Four research questions were targeted: 1. Do EF skills interfere with benefiting

  20. The Initial Mass Function of Early-Type Galaxies

    NARCIS (Netherlands)

    Treu, Tommaso; Auger, Matthew W.; Koopmans, Léon V. E.; Gavazzi, Raphaël; Marshall, Philip J.; Bolton, Adam S.

    2010-01-01

    We determine an absolute calibration of the initial mass function (IMF) of early-type galaxies, by studying a sample of 56 gravitational lenses identified by the Sloan Lenses ACS Survey. Under the assumption of standard Navarro, Frenk, and White dark matter halos, a combination of lensing, dynamical

  1. Reflective Self Function in Early Attachment and Borderline States.

    Science.gov (United States)

    Fonagy, Peter

    Work in developmental psychiatry and psychology has increasingly focused on how internal representations of early experiences with primary figures of childhood affect relationship formation in later childhood and adulthood. Investigations of the reflective self function, which involves mental states in which individuals become the subject of their…

  2. Preschool executive functioning abilities predict early mathematics achievement.

    Science.gov (United States)

    Clark, Caron A C; Pritchard, Verena E; Woodward, Lianne J

    2010-09-01

    Impairments in executive function have been documented in school-age children with mathematical learning difficulties. However, the utility and specificity of preschool executive function abilities in predicting later mathematical achievement are poorly understood. This study examined linkages between children's developing executive function abilities at age 4 and children's subsequent achievement in mathematics at age 6, 1 year after school entry. The study sample consisted of a regionally representative cohort of 104 children followed prospectively from ages 2 to 6 years. At age 4, children completed a battery of executive function tasks that assessed planning, set shifting, and inhibitory control. Teachers completed the preschool version of the Behavior Rating Inventory of Executive Function. Clinical and classroom measures of children's mathematical achievement were collected at age 6. Results showed that children's performance on set shifting, inhibitory control, and general executive behavior measures during the preschool period accounted for substantial variability in children's early mathematical achievement at school. These associations persisted even after individual differences in general cognitive ability and reading achievement were taken into account. Findings suggest that early measures of executive function may be useful in identifying children who may experience difficulties learning mathematical skills and concepts. They also suggest that the scaffolding of these executive skills could potentially be a useful additional component in early mathematics education.

  3. Regulation and functions of the lms homeobox gene during development of embryonic lateral transverse muscles and direct flight muscles in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dominik Müller

    Full Text Available BACKGROUND: Patterning and differentiation of developing musculatures require elaborate networks of transcriptional regulation. In Drosophila, significant progress has been made into identifying the regulators of muscle development and defining their interactive networks. One major family of transcription factors involved in these processes consists of homeodomain proteins. In flies, several members of this family serve as muscle identity genes to specify the fates of individual muscles, or groups thereof, during embryonic and/or adult muscle development. Herein, we report on the expression and function of a new Drosophila homeobox gene during both embryonic and adult muscle development. METHODOLOGY/PRINCIPAL FINDINGS: The newly described homeobox gene, termed lateral muscles scarcer (lms, which has yet uncharacterized orthologs in other invertebrates and primitive chordates but not in vertebrates, is expressed exclusively in subsets of developing muscle tissues. In embryos, lms is expressed specifically in the four lateral transverse (LT muscles and their founder cells in each hemisegment, whereas in larval wing imaginal discs, it is expressed in myoblasts that develop into direct flight muscles (DFMs, which are important for proper wing positioning. We have analyzed the regulatory inputs of various other muscle identity genes with overlapping or complementary expression patterns towards the cell type specific regulation of lms expression. Further we demonstrate that lms null mutants exhibit reduced numbers of embryonic LT muscles, and null mutant adults feature held-out-wing phenotypes. We provide a detailed description of the pattern and morphology of the direct flight muscles in the wild type and lms mutant flies by using the recently-developed ultramicroscopy and show that, in the mutants, all DFMs are present and present normal morphologies. CONCLUSIONS/SIGNIFICANCE: We have identified the homeobox gene lms as a new muscle identity gene

  4. Surface functionalization of inorganic nano-crystals with fibronectin and E-cadherin chimera synergistically accelerates trans-gene delivery into embryonic stem cells.

    Science.gov (United States)

    Kutsuzawa, K; Chowdhury, E H; Nagaoka, M; Maruyama, K; Akiyama, Y; Akaike, T

    2006-11-24

    Stem cells holding great promises in regenerative medicine have the potential to be differentiated to a specific cell type through genetic manipulation. However, conventional ways of gene transfer to such progenitor cells suffer from a number of disadvantages particularly involving safety and efficacy issues. Here, we report on the development of a bio-functionalized inorganic nano-carrier of DNA by embedding fibronectin and E-cadherin chimera on the carrier, leading to its high affinity interactions with embryonic stem cell surface and accelerated trans-gene delivery for subsequent expression. While only apatite nano-particles were very inefficient in transfecting embryonic stem cells, fibronectin-anchored particles and to a more significant extent, fibronectin and E-cadherin-Fc-associated particles dramatically enhanced trans-gene delivery with a value notably higher than that of commercially available lipofection system. The involvement of both cell surface integrin and E-cadherin in mediating intracellular localization of the hybrid carrier was verified by blocking integrin binding site with excess free fibronectin and up-regulating both integrin and E-cadherin through PKC activation. Thus, the new establishment of a bio-functional hybrid gene-carrier would promote and facilitate development of stem cell-based therapy in regenerative medicine.

  5. In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography

    Science.gov (United States)

    Li, Peng; Yin, Xin; Shi, Liang; Rugonyi, Sandra; Wang, Ruikang K.

    2012-09-01

    During cardiac development, the cardiac wall and flowing blood are two important cardiac tissues that constantly interact with each other. This dynamic interaction defines appropriate biomechanical environment to which the embryonic heart is exposed. Quantitative assessment of the dynamic parameters of wall tissues and blood flow is required to further our understanding of cardiac development. We report the use of an ultrafast 1310-nm dual-camera spectral domain optical coherence tomography (SDOCT) system to characterize/image, in parallel, the dynamic radial strain rate of the myocardial wall and the Doppler velocity of the underlying flowing blood within an in vivo beating chick embryo. The OCT system operates at 184-kHz line scan rate, providing the flexibility of imaging the fast blood flow and the slow tissue deformation within one scan. The ability to simultaneously characterize tissue motion and blood flow provides a useful approach to better understand cardiac dynamics during early developmental stages.

  6. Genomic and Functional Analysis of the Toxic Effect of Tachyplesin I on the Embryonic Development of Zebrafish

    Directory of Open Access Journals (Sweden)

    Hongya Zhao

    2014-01-01

    Full Text Available Tachyplesin I (TP I is an antimicrobial peptide isolated from the hemocytes of the horseshoe crab. With the developments of DNA microarray technology, the genetic analysis of the toxic effect of TP I on embryo was originally considered in our recent study. Based on our microarray data of the embryonic samples of zebrafish treated with the different doses of TP I, we performed a series of statistical data analyses to explore the toxic effect of TP I at the genomic level. In this paper, we first employed the hexaMplot to illustrate the continuous variation of the gene expressions of the embryonic cells treated with the different doses of TP I. The probabilistic model-based Hough transform was used to classify these differentially coexpressed genes of TP I on the zebrafish embryos. As a result, three line rays supported with the corresponding 174 genes were detected in our analysis. Some biological processes of the featured genes, such as antigen processing, nuclear chromatin, and structural constituent of eye lens, were significantly filtered with the smaller P values.

  7. Embryonic stem cell factors and pancreatic cancer.

    Science.gov (United States)

    Herreros-Villanueva, Marta; Bujanda, Luis; Billadeau, Daniel D; Zhang, Jin-San

    2014-03-07

    Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic tumor, is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its early- metastasis and lack of response to chemotherapy and radiation. Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells (CSCs), a small and distinct population of cancer cells that mediates tumoregenesis, metastasis and resistance to standard treatments. Thus, CSCs could be a target for more effective treatment options. Interestingly, pancreatic CSCs are subject to regulation by some of key embryonic stem cell (ESC) transctiption factors abberently expressed in PDAC, such as SOX2, OCT4 and NANOG. ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells. The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis. Here we provide an overview of stem cell transcription factors, particularly SOX2, OCT4, and NANOG, on their expression and function in pancreatic cancer. In contrast to embryonic stem cells, in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes, de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal, de-differentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes. Thus, targeting ESC factors, particularly SOX2, could be a worthy strategy for pancreatic cancer therapy.

  8. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Directory of Open Access Journals (Sweden)

    Omer Ziv

    2015-10-01

    Full Text Available Neural stem cells (NSCs are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  9. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Science.gov (United States)

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  10. Early Bifrontal Brain Injury: Disturbances in Cognitive Function Development

    Directory of Open Access Journals (Sweden)

    Christine Bonnier

    2010-01-01

    Full Text Available We describe six psychomotor, language, and neuropsychological sequential developmental evaluations in a boy who sustained a severe bifrontal traumatic brain injury (TBI at 19 months of age. Visuospatial, drawing, and writing skills failed to develop normally. Gradually increasing difficulties were noted in language leading to reading and spontaneous speech difficulties. The last two evaluations showed executive deficits in inhibition, flexibility, and working memory. Those executive abnormalities seemed to be involved in the other impairments. In conclusion, early frontal brain injury disorganizes the development of cognitive functions, and interactions exist between executive function and other cognitive functions during development.

  11. Transient early wheeze and lung function in early childhood associated with chronic obstructive pulmonary disease genes

    NARCIS (Netherlands)

    Kerkhof, Marjan; Boezen, Hendrika; Granell, Raquel; Wijga, Alet H.; Brunekreef, Bert; Smit, Henriette A.; de Jongste, Johan C.; Thijs, Carel; Mommers, Monique; Penders, John; Henderson, John; Koppelman, Gerard H.; Postma, Dirkje S.

    2014-01-01

    Background: It has been hypothesized that a disturbed early lung development underlies the susceptibility to chronic obstructive pulmonary disease (COPD). Little is known about whether subjects genetically predisposed to COPD show their first symptoms or reduced lung function in childhood. Objective

  12. Long-term culture and cryopreservation does not affect the stability and functionality of human embryonic stem cell-derived hepatocyte-like cells.

    Science.gov (United States)

    Mandal, Arundhati; Raju, Sheena; Viswanathan, Chandra

    2016-02-01

    Human embryonic stem cells (hESCs) are predicted to be an unlimited source of hepatocytes which can pave the way for applications such as cell replacement therapies or as a model of human development or even to predict the hepatotoxicity of drug compounds. We have optimized a 23-d differentiation protocol to generate hepatocyte-like cells (HLCs) from hESCs, obtaining a relatively pure population which expresses the major hepatic markers and is functional and mature. The stability of the HLCs in terms of hepato-specific marker expression and functionality was found to be intact even after an extended period of in vitro culture and cryopreservation. The hESC-derived HLCs have shown the capability to display sensitivity and an alteration in the level of CYP enzyme upon drug induction. This illustrates the potential of such assays in predicting the hepatotoxicity of a drug compound leading to advancement of pharmacology.

  13. Loss of ATM kinase activity leads to embryonic lethality in mice

    DEFF Research Database (Denmark)

    Daniel, J.A.; Pellegrini, M.; Filsuf, D.

    2012-01-01

    whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice...

  14. Embryonic and Early Larval Development of Schizothorax wangchiachii%短须裂腹鱼胚胎与仔鱼早期发育特性研究

    Institute of Scientific and Technical Information of China (English)

    左鹏翔; 尹翔; 胡思波; 李光华; 冷云; 张建斌; 缪祥军; 王志飞; 崔丽莉; 梁祥; 钟文武

    2015-01-01

    为积累短须裂腹鱼的基础生物学资料,并对规模化人工繁殖提供理论指导,利用养殖条件下的短须裂腹鱼亲鱼,通过干法授精获得受精卵,对其胚胎发育和仔鱼早期发育全过程进行连续观察。短须裂腹鱼受精卵的平均卵径为2.36 mm,吸水膨胀后为3.68 mm,沉性卵、弱粘性、卵黄丰富。在水温(14±1)℃的条件下,受精后6 h 30 min进入卵裂期,20 h 55 min进入囊胚期,60 h 28 min进入原肠期,70 h 4 min进入原肠中期,77 h 52 min进入神经胚期,142 h肌肉开始收缩,177 h 46 min进入心动期,254 h 40 min开始出膜。孵化全过程所需积温为3565.3℃· h。初孵仔鱼全长8.7 mm。出膜后第2~9天,胸鳍、鳃、口腔、眼色素、体内血管等器官相继发育完全;第10天仔鱼全长达15.15mm,鳔充气,鱼苗开始平游和觅食。孵化过程中应重点防控水霉病。早期仔鱼可以投喂轮虫、蛋黄或者豆浆等,待仔鱼捕食能力变强之后,可以投喂更加适口的枝角类、嫩口丰年虫等。%Schizothorax wangchiachii is one of the primary economic fish in the Jinsha River and its tributaries .The species is also ecologically important and one of the indigenous fish listed in the artificial breeding and release pro -gram for Longkaikou and Ahai hydropower stations on the middle Jinsha River .The potential for large-scale cultu-ring of S.wangchiachii is indicated by high market demand and declining wild populations .However, little is pres-ently known about embryonic and larval development of S.wangchiachii.In this study embryonic and early larval stage S.wangchiachii, maintained under controlled laboratory conditions , were described and illustrated .On March 9, 2014, parental stock was selected from the breeding and release station at Longkaikou hydropower station and a total of 67 860 zygotes were obtained by dry fertilization .The incubation of zygotes and the

  15. Trait Rumination, Depression, and Executive Functions in Early Adolescence

    Science.gov (United States)

    Wagner, Clara A.; Alloy, Lauren B.; Abramson, Lyn Y.

    2014-01-01

    Although deficits in executive functions have been linked with both depression and rumination in adulthood, the nature of the relationship between these constructs is not well understood and remains understudied in adolescence. The present study examined the relationship of rumination and depression to deficits in executive functions in early adolescence, a critical developmental period for the emergence of depression and rumination and the development of executive functions. Participants were 486 early adolescents (52.7% female; 47.1% African American, 48.8% Caucasian; 4.2% Biracial/Multiracial/Other; M age = 12.88 years; SD = .62) and their mothers, recruited through local schools. Measures included (a) a semi-structured diagnostic interview of the mother and adolescent, (b) youth self-report forms assessing depressive symptoms and trait rumination, (c) mother-report forms assessing demographic information, and (d) behavioral tests of executive function (sustained, selective and divided attention, attentional set shifting, and working memory). Gender moderated rumination-set shifting associations, such that rumination predicted better set shifting in boys only. The current level of depressive symptoms moderated rumination-sustained attention associations, such that rumination predicted better sustained attention in those with low levels of depressive symptoms and worse sustained attention in those with high levels of depressive symptoms. Rumination did not predict performance on other measures of executive functions. Likewise, depressive symptoms and diagnosis were not associated with executive functions. Implications for future research are discussed. PMID:24839132

  16. Transactional relations between caregiving stress, executive functioning, and problem behavior from early childhood to early adolescence

    Science.gov (United States)

    LaGasse, Linda L.; Conradt, Elisabeth; Karalunas, Sarah L.; Dansereau, Lynne M.; Butner, Jonathan E.; Shankaran, Seetha; Bada, Henrietta; Bauer, Charles R.; Whitaker, Toni M.; Lester, Barry M.

    2016-01-01

    Developmental psychopathologists face the difficult task of identifying the environmental conditions that may contribute to early childhood behavior problems. Highly stressed caregivers can exacerbate behavior problems, while children with behavior problems may make parenting more difficult and increase caregiver stress. Unknown is: (1) how these transactions originate, (2) whether they persist over time to contribute to the development of problem behavior and (3) what role resilience factors, such as child executive functioning, may play in mitigating the development of problem behavior. In the present study, transactional relations between caregiving stress, executive functioning, and behavior problems were examined in a sample of 1,388 children with prenatal drug exposures at three developmental time points: early childhood (birth-age 5), middle childhood (ages 6 to 9), and early adolescence (ages 10 to 13). Transactional relations differed between caregiving stress and internalizing versus externalizing behavior. Targeting executive functioning in evidence-based interventions for children with prenatal substance exposure who present with internalizing problems and treating caregiving psychopathology, depression, and parenting stress in early childhood may be particularly important for children presenting with internalizing behavior. PMID:27427803

  17. Transactional relations between caregiving stress, executive functioning, and problem behavior from early childhood to early adolescence.

    Science.gov (United States)

    Lagasse, Linda L; Conradt, Elisabeth; Karalunas, Sarah L; Dansereau, Lynne M; Butner, Jonathan E; Shankaran, Seetha; Bada, Henrietta; Bauer, Charles R; Whitaker, Toni M; Lester, Barry M

    2016-08-01

    Developmental psychopathologists face the difficult task of identifying the environmental conditions that may contribute to early childhood behavior problems. Highly stressed caregivers can exacerbate behavior problems, while children with behavior problems may make parenting more difficult and increase caregiver stress. Unknown is: (a) how these transactions originate, (b) whether they persist over time to contribute to the development of problem behavior and (c) what role resilience factors, such as child executive functioning, may play in mitigating the development of problem behavior. In the present study, transactional relations between caregiving stress, executive functioning, and behavior problems were examined in a sample of 1,388 children with prenatal drug exposures at three developmental time points: early childhood (birth to age 5), middle childhood (ages 6 to 9), and early adolescence (ages 10 to 13). Transactional relations differed between caregiving stress and internalizing versus externalizing behavior. Targeting executive functioning in evidence-based interventions for children with prenatal substance exposure who present with internalizing problems and treating caregiving psychopathology, depression, and parenting stress in early childhood may be particularly important for children presenting with internalizing behavior.

  18. A function of social institutions of early childhood education

    Directory of Open Access Journals (Sweden)

    Eloisa Acires Candal Rocha

    2003-01-01

    Full Text Available Try to explain this text, in my view, essential aspects of the social function of institutions for children's education. The principles and general guidelines for early childhood education that we presents the results of a discussion process to coordinate with the Municipal Department of Education Florianópolis (Division of Child Education between 2000 and 2001. The aim of the debate was to subsidize the movement of defining guidelines for action for childcare and educational Neise (Centers for Children's Education of the municipal network. As a starting point, were recovered documents previously produced a guidance curriculum. The idea was to get a deeper understanding to help rewrite the curriculum guidelines of the city, both in the light of experience by educators of the network as a function of the definitions given for early childhood education by more current legislation.

  19. carboxypeptidase E-ΔN, a neuroprotein transiently expressed during development protects embryonic neurons against glutamate neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Qin

    Full Text Available Neuroprotective proteins expressed in the fetus play a critical role during early embryonic neurodevelopment, especially during maternal exposure to alcohol and drugs that cause stress, glutamate neuroexcitotoxicity, and damage to the fetal brain, if prolonged. We have identified a novel protein, carboxypeptidase E-ΔN (CPE-ΔN, which is a splice variant of CPE that has neuroprotective effects on embryonic neurons. CPE-ΔN is transiently expressed in mouse embryos from embryonic day 5.5 to postnatal day 1. It is expressed in embryonic neurons, but not in 3 week or older mouse brains, suggesting a function primarily in utero. CPE-ΔN expression was up-regulated in embryonic hippocampal neurons in response to dexamethasone treatment. CPE-ΔN transduced into rat embryonic cortical and hippocampal neurons protected them from glutamate- and H2O2-induced cell death. When transduced into embryonic cortical neurons, CPE-ΔN was found in the nucleus and enhanced the transcription of FGF2 mRNA. Embryonic cortical neurons challenged with glutamate resulted in attenuated FGF2 levels and cell death, but CPE-ΔN transduced neurons treated in the same manner showed increased FGF2 expression and normal viability. This neuroprotective effect of CPE-ΔN was mediated by secreted FGF2. Through receptor signaling, FGF2 activated the AKT and ERK signaling pathways, which in turn increased BCL-2 expression. This led to inhibition of caspase-3 activity and cell survival.

  20. Carboxypeptidase E-ΔN, a Neuroprotein Transiently Expressed during Development Protects Embryonic Neurons against Glutamate Neurotoxicity

    Science.gov (United States)

    Murthy, Saravana R. K.; Selvaraj, Prabhuanand; Loh, Y. Peng

    2014-01-01

    Neuroprotective proteins expressed in the fetus play a critical role during early embryonic neurodevelopment, especially during maternal exposure to alcohol and drugs that cause stress, glutamate neuroexcitotoxicity, and damage to the fetal brain, if prolonged. We have identified a novel protein, carboxypeptidase E-ΔN (CPE-ΔN), which is a splice variant of CPE that has neuroprotective effects on embryonic neurons. CPE-ΔN is transiently expressed in mouse embryos from embryonic day 5.5 to postnatal day 1. It is expressed in embryonic neurons, but not in 3 week or older mouse brains, suggesting a function primarily in utero. CPE-ΔN expression was up-regulated in embryonic hippocampal neurons in response to dexamethasone treatment. CPE-ΔN transduced into rat embryonic cortical and hippocampal neurons protected them from glutamate- and H2O2-induced cell death. When transduced into embryonic cortical neurons, CPE-ΔN was found in the nucleus and enhanced the transcription of FGF2 mRNA. Embryonic cortical neurons challenged with glutamate resulted in attenuated FGF2 levels and cell death, but CPE-ΔN transduced neurons treated in the same manner showed increased FGF2 expression and normal viability. This neuroprotective effect of CPE-ΔN was mediated by secreted FGF2. Through receptor signaling, FGF2 activated the AKT and ERK signaling pathways, which in turn increased BCL-2 expression. This led to inhibition of caspase-3 activity and cell survival. PMID:25426952

  1. Macrophage Function in Early Dissemination and Dormancy of Breast Cancer

    Science.gov (United States)

    2015-09-01

    of Oncological Sciences, The Immunology Institute, Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA 3Department of...cell 13, 58-68. Joyce, J. A., and Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature reviews Cancer 9, 239-252. Kaplan, R. N...AWARD NUMBER: W81XWH-14-1-0365 TITLE: Macrophage Functions in Early Dissemination and Dormancy of Breast Cancer PRINCIPAL INVESTIGATOR: Nina

  2. Gut-Microbiota-Metabolite Axis in Early Renal Function Decline.

    Directory of Open Access Journals (Sweden)

    Clara Barrios

    Full Text Available Several circulating metabolites derived from bacterial protein fermentation have been found to be inversely associated with renal function but the timing and disease severity is unclear. The aim of this study is to explore the relationship between indoxyl-sulfate, p-cresyl-sulfate, phenylacetylglutamine and gut-microbial profiles in early renal function decline.Indoxyl-sulfate (Beta(SE = -2.74(0.24; P = 8.8x10-29, p-cresyl-sulfate (-1.99(0.24, P = 4.6x10-16, and phenylacetylglutamine(-2.73 (0.25, P = 1.2x10-25 were inversely associated with eGFR in a large population base cohort (TwinsUK, n = 4439 with minimal renal function decline. In a sub-sample of 855 individuals, we analysed metabolite associations with 16S gut microbiome profiles (909 profiles, QIIME 1.7.0. Three Operational Taxonomic Units (OTUs were significantly associated with indoxyl-sulfate and 52 with phenylacetylglutamine after multiple testing; while one OTU was nominally associated with p-cresyl sulfate. All 56 microbial members belong to the order Clostridiales and are represented by anaerobic Gram-positive families Christensenellaceae, Ruminococcaceae and Lachnospiraceae. Within these, three microbes were also associated with eGFR.Our data suggest that indoxyl-sulfate, p-cresyl-sulfate and phenylacetylglutamine are early markers of renal function decline. Changes in the intestinal flora associated with these metabolites are detectable in early kidney disease. Future efforts should dissect this relationship to improve early diagnostics and therapeutics strategies.

  3. Early MR abnormality indicating functional recovery from spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fumeya, Hiroshi; Hideshima, Hiroshi (Hideshima Hospital, Musashino, Tokyo (Japan))

    1991-10-01

    Magnetic resonance (MR) imaging as an indicator of recovery from hemiparesis was evaluated in 60 patients with spontaneous intracerebral hemorrhage. T{sub 2}-weighted MR images revealed early MR abnormality (EMA) of the corticospinal tract within 1 week of ictus. Most patients without EMA recovered beyond Brunnstrom's Recovery Stage 3 while only a few patients with EMA did so. Patients with EMA cannot regain motor function because EMA is almost always followed by complete tract degeneration. EMA in the brainstem and poor motor function recovery are closely correlated. (author).

  4. The Cluster Mass Function from Early SDSS Data: Cosmological Implications

    OpenAIRE

    Bahcall, Neta A.; Dong, Feng; Bode, Paul; Kim, Rita; Annis, James; Mckay, Timothy A.; Hansen, Sarah; Gunn, James; Ostriker, Jeremiah P.; Postman, Marc; Nichol, Robert C.; Goto, Tomotsugu; Brinkmann, Jon; Knapp, Gillian R.; Lamb, Don O.

    2002-01-01

    The mass function of clusters of galaxies is determined from 400 deg^2 of early commissioning imaging data of the Sloan Digital Sky Survey; ~300 clusters in the redshift range z = 0.1 - 0.2 are used. Clusters are selected using two independent selection methods: a Matched Filter and a red-sequence color magnitude technique. The two methods yield consistent results. The cluster mass function is compared with large-scale cosmological simulations. We find a best-fit cluster normalization relatio...

  5. The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors

    DEFF Research Database (Denmark)

    Alexopoulou, Annika N; Couchman, John R; Whiteford, James

    2008-01-01

    . RESULTS: CCE mouse embryonic stem cells were differentiated on collagen type IV for 4-5 days, Flk1+ mesodermal cells were sorted and replated either on collagen type IV in the presence of VEGFA to give rise to endothelial cells and smooth muscle cells or in collagen type I gels for the formation...

  6. Early development of executive functions: a differential study

    Directory of Open Access Journals (Sweden)

    Sylvia Sastre-Riba

    2015-05-01

    Full Text Available The ontogeny of executive functions is essential in explaining differential and normative developmental trends. Executive functions must be studied from an early age given their consequential effects on mental flexibility, monitoring information, planning, and cognitive control. We propose a differential study in alternative developmental courses through observing typical babies, Down syndrome babies, and babies with risk-factors at birth (due to low weight or to congenital hypothyroidism. Applymg Systematic Observational Methodology, spontaneous babies' activity was registered. The results indicated that: a Typical babies showed better shifting and action flexibility in order to obtain a goal, thus better results; b Among the higher risk-babies, the lower efficacy in executive functioning was observed in underweight babies. Those with hypothyroidism were more in line with the typical babies; c Underweight babies showed a good level of combining actions but they obtained inferior results; d Down syndrome babies displayed more executive functioning difficulty, lower flexibility, high perseveration and less error detection.

  7. Cardiac specific ATP-sensitive K+ channel (KATP) overexpression results in embryonic lethality.

    Science.gov (United States)

    Toib, Amir; Zhang, Hai Xia; Broekelmann, Thomas J; Hyrc, Krzysztof L; Guo, Qiusha; Chen, Feng; Remedi, Maria S; Nichols, Colin G

    2012-09-01

    Transgenic mice overexpressing SUR1 and gain of function Kir6.2[∆N30, K185Q] K(ATP) channel subunits, under cardiac α-myosin heavy chain (αMHC) promoter control, demonstrate arrhythmia susceptibility and premature death. Pregnant mice, crossed to carry double transgenic progeny, which harbor high levels of both overexpressed subunits, exhibit the most extreme phenotype and do not deliver any double transgenic pups. To explore the fetal lethality and embryonic phenotype that result from K(ATP) overexpression, wild type (WT) and K(ATP) overexpressing embryonic cardiomyocytes were isolated, cultured and voltage-clamped using whole cell and excised patch clamp techniques. Whole mount embryonic imaging, Hematoxylin and Eosin (H&E) and α smooth muscle actin (αSMA) immunostaining were used to assess anatomy, histology and cardiac development in K(ATP) overexpressing and WT embryos. Double transgenic embryos developed in utero heart failure and 100% embryonic lethality by 11.5 days post conception (dpc). K(ATP) currents were detectable in both WT and K(ATP)-overexpressing embryonic cardiomyocytes, starting at early stages of cardiac development (9.5 dpc). In contrast to adult cardiomyocytes, WT and K(ATP)-overexpressing embryonic cardiomyocytes exhibit basal and spontaneous K(ATP) current, implying that these channels may be open and active under physiological conditions. At 9.5 dpc, live double transgenic embryos demonstrated normal looping pattern, although all cardiac structures were collapsed, probably representing failed, non-contractile chambers. In conclusion, K(ATP) channels are present and active in embryonic myocytes, and overexpression causes in utero heart failure and results in embryonic lethality. These results suggest that the K(ATP) channel may have an important physiological role during early cardiac development.

  8. Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Sophie A Hanina

    2010-10-01

    Full Text Available Mouse Embryonic Stem (ES cells express a unique set of microRNAs (miRNAs, the miR-290-295 cluster. To elucidate the role of these miRNAs and how they integrate into the ES cell regulatory network requires identification of their direct regulatory targets. The difficulty, however, arises from the limited complementarity of metazoan miRNAs to their targets, with the interaction requiring as few as six nucleotides of the miRNA seed sequence. To identify miR-294 targets, we used Dicer1-null ES cells, which lack all endogenous mature miRNAs, and introduced just miR-294 into these ES cells. We then employed two approaches to discover miR-294 targets in mouse ES cells: transcriptome profiling using microarrays and a biochemical approach to isolate mRNA targets associated with the Argonaute2 (Ago2 protein of the RISC (RNA Induced Silencing Complex effector, followed by RNA-sequencing. In the absence of Dicer1, the RISC complexes are largely devoid of mature miRNAs and should therefore contain only transfected miR-294 and its base-paired targets. Our data suggest that miR-294 may promote pluripotency by regulating a subset of c-Myc target genes and upregulating pluripotency-associated genes such as Lin28.

  9. Functional high-resolution time-course expression analysis of human embryonic stem cells undergoing cardiac induction

    Directory of Open Access Journals (Sweden)

    Ilaria Piccini

    2016-12-01

    Full Text Available Cardiac induction of human embryonic stem cells (hESCs is a process bearing increasing medical relevance, yet it is poorly understood from a developmental biology perspective. Anticipated technological progress in deriving stably expandable cardiac precursor cells or in advancing cardiac subtype specification protocols will likely require deeper insights into this fascinating system. Recent improvements in controlling hESC differentiation now enable a near-homogeneous induction of the cardiac lineage. This is based on an optimized initial stimulation of mesoderm-inducing signaling pathways such as Activin and/or FGF, BMP, and WNT, followed by WNT inhibition as a secondary requirement. Here, we describe a comprehensive data set based on varying hESC differentiation conditions in a systematic manner and recording high-resolution differentiation time-courses analyzed by genome-wide expression profiling (GEO accession number GSE67154. As a baseline, hESCs were differentiated into cardiomyocytes under optimal conditions. Moreover, in additional time-series, individual signaling factors were withdrawn from the initial stimulation cocktail to reveal their specific roles via comparison to the standard condition. Hence, this data set presents a rich resource for hypothesis generation in studying human cardiac induction, as we reveal numbers of known as well as uncharacterized genes prominently marking distinct intermediate stages in the process. These data will also be useful for identifying putative cardiac master regulators in the human system as well as for characterizing expandable cardiac stem cells.

  10. Embryonic mouse STO cell-derived xenografts express hepatocytic functions in the livers of nonimmunosuppressed adult rats.

    Science.gov (United States)

    Zhang, Mingjun; Joseph, Brigid; Gupta, Sanjeev; Guest, I; Xu, Meng; Sell, Stewart; Son, Kyung-Hwa; Koch, Katherine S; Leffert, Hyam L

    2005-02-01

    Cells derived from embryonic mouse STO cell lines differentiate into hepatocytes when transplanted into the livers of nonimmunosuppressed dipeptidylpeptidase IV (DPPIV)-negative F344 rats. Within 1 day after intrasplenic injection, donor cells moved rapidly into the liver and were found in intravascular and perivascular sites; by 1 month, they were intrasinusoidal and also integrated into hepatic plates with approximately 2% efficiency and formed conjoint bile canaliculi. Neither donor cell proliferation nor host inflammatory responses were observed during this time. Detection of intrahepatic mouse COX1 mitochondrial DNA and mouse albumin mRNA in recipient rats indicated survival and differentiation of donor cells for at least 3 months. Mouse COX1 targets were also detected intrahepatically 4-9 weeks after STO cell injection into nonimmunosuppressed wild-type rats. In contrast to STO-transplanted rats, mouse DNA or RNA was not detectable in untreated or mock-transplanted rats or in rats injected with donor cell DNA. In cultured STO donor cells, DPPIV and glucose-6-phosphatase activities were observed in small clusters; in contrast, mouse major histocompatibility complex class I H-2Kq, H-2Dq, and H-2Lq and class II I-Aq markers were undetectable in vitro before or after interferon gamma treatment. Together with H-2K allele typing, which confirmed the Swiss mouse origin of the donor cells, these observations indicate that mouse-derived STO cell lines can differentiate along hepatocytic lineage and engraft into rat liver across major histocompatibility barriers.

  11. The Early Indicators of Functional Decrease in Mild Cognitive Impairment

    Science.gov (United States)

    Kubicki, Alexandre; Fautrelle, Lilian; Bourrelier, Julien; Rouaud, Olivier; Mourey, France

    2016-01-01

    Objectives: Motor deficiency is associated with cognitive frailty in patients with Mild Cognitive Impairments (MCI). In this study we aimed to test the integrity in muscle synergies involved in an arm-pointing movement in functionally unimpaired MCI patients. We hypothesized that early motor indicators exist in this population at a preclinical level. Methods: Electromyographic signals were collected for 11 muscles in 3 groups: Young Adults (YA), Older Adults (OA), and MCI patients. The OA and MCI groups presented the same functional status. Each subject performed 20 arm-pointing movements from a standing position. Results: The main differences were (1) an earlier activation of the left Obliquus internus in MCI compared with OA group, (2) an earlier activation for the MCI compared with both OA and YA. The temporal differences in muscle synergies between MCI and OA groups were linked with executive functions of MCI patients, assessed by the trail making test. Moreover, the results show a delayed activation of the right Biceps Femoris and the right Erector Spinae at l3 in MCI and OA compared with YA. Interpretation: The motor program changes highlighted in our patient MCI group suggest that discrete modifications of the motor command seem to exist even in the absence of functional impairment. Instead of showing an indication of delayed muscle activation in the MCI patients, our results highlight some early activation of several trunk muscles. PMID:27570509

  12. Intermittent Hypoxia Impairs Endothelial Function in Early Preatherosclerosis.

    Science.gov (United States)

    Tuleta, I; França, C N; Wenzel, D; Fleischmann, B; Nickenig, G; Werner, N; Skowasch, D

    2015-01-01

    Intermittent hypoxia seems to be a major pathomechanism of obstructive sleep apnea-associated progression of atherosclerosis. The goal of the present study was to assess the influence of hypoxia on endothelial function depending on the initial stage of vasculopathy. We used 16 ApoE-/- mice were exposed to a 6-week-intermittent hypoxia either immediately (early preatherosclerosis) or after 5 weeks of high-cholesterol diet (advanced preatherosclerosis). Another 16 ApoE-/- mice under normoxia served as corresponding controls. Endothelial function was measured by an organ bath technique. Blood plasma CD31+/annexin V+ endothelial microparticles as well as sca1/flk1+ endothelial progenitor cells in blood and bone marrow were analyzed by flow cytometry. The findings were that intermittent hypoxia impaired endothelial function (56.6±6.2% of maximal phenylephrine-induced vasoconstriction vs. 35.2±4.1% in control) and integrity (increased percentage of endothelial microparticles: 0.28±0.05% vs. 0.15±0.02% in control) in early preatherosclerosis. Peripheral repair capacity expressed as the number of endothelial progenitor cells in blood was attenuated under hypoxia (2.0±0.5% vs. 5.3±1.9% in control), despite the elevated number of these cells in the bone marrow (2.0±0.4% vs. 1.1±0.2% in control). In contrast, endothelial function, as well as microparticle and endothelial progenitor cell levels were similar under hypoxia vs. control in advanced preatherosclerosis. We conclude that hypoxia aggravates endothelial dysfunction and destruction in early preatherosclerosis.

  13. Left ventricular function in treatment-naive early rheumatoid arthritis

    DEFF Research Database (Denmark)

    Løgstrup, Brian B; Deibjerg, Lone K; Hedemann-Andersen, Agnete;

    2014-01-01

    BACKGROUND: The role of inflammation and anti-cyclic citrullinated peptide antibodies (anti-CCP) in the pathogenesis of cardiovascular disease in early rheumatoid arthritis (RA) remains unclear. Previous studies have suggested that both disease activity and disease duration are associated...... with atherosclerosis and a higher mortality rate caused primarily by coronary artery disease. OBJECTIVE: We investigated how disease activity, anti-CCP status and coronary calcium score in treatment-naive early RA impacts left ventricular (LV) systolic function. METHODS: Fifty-tree patients (30 women) with mean age 58...... by computed tomography by calculating the Agaston score. One experienced senior rheumatologist and one experienced cardiologist performed all the clinical assessments as well as all the transthoracic echocardiography (TTE) and coronary CT analysis. RESULTS: Disease activity scores before treatment at baseline...

  14. Embryonic stem cell research: an ethical problem

    OpenAIRE

    Рамазанова, А.

    2014-01-01

    Embryonic stem cells offer hope for new therapies, but their use and research entail an ethical problem, which does not have a certain solution. Therefore, we can ask: What exactly are the ethical arguments? Why are they so tricky to resolve?Embryonic stem cell research poses a moral dilemma. It forces us to choose between two moral principles: The duty to prevent or alleviate suffering The duty to respect the value of human life To obtain embryonic stem cells, the early embryo has to be dest...

  15. Early Contact Stage of Apoptosis: Its Morphological Features and Function

    Directory of Open Access Journals (Sweden)

    Etheri Mikadze

    2006-01-01

    Full Text Available Apoptosis has been a biological phenomenon of intense interest for 20 years, but the earlier morphological features of apoptosis have not been determined hitherto. Using the methods of semi- and ultrathin sections, the livers of intact embryos and young rats have been studied under the effect of cycloheximide to determine morphological features of an early stage of apoptosis. It is discovered that both in hepatoblasts and hepatocytes, apoptosis, besides the well-known stages, also includes an early contact stage, distinguishing features of which are agglutination of bound ribosomes (breaking of translation, elimination of the nucleolus, reduction of free polysomes (and in hepatocytes, reduction of cisterns of rough endoplasmic reticulum, formation of cytoplasmic excrescences, and cell shape changes. The early stage of apoptosis is characterized by close contact with neighboring cells. At a certain phase of the contact stage of apoptosis, the nucleolus reappears in the nucleus and the number of free polysomes in the cytoplasm increases, which suggests the renewal of synthesis of new RNA and proteins. Close contact of differentiating and mitotic hepatoblasts with apoptotic cells indicates a certain functional relationship between these cells that is realized not only by micropinocytosis, but through gap junctions as well. We assume that the apoptotic cell, besides proteolytic products, can contain newly synthesized, low-molecular substances, the relocation of which from apoptotic to neighboring cells may contribute to both functional activity and proliferation of adjacent hepatoblasts and, therefore, the function of apoptosis may not be limited only to the elimination of harmful, damaged, and unwanted cells.

  16. Qualitative and quantitative analyses of the morphological-dynamics of early cardiac pumping function using video densitometry and optical coherence tomography (OCT)

    DEFF Research Database (Denmark)

    Happel, C.; Männer, J.; Thommes, J.

    Introduction: During the initial phase of its pump action, vertebrate embryonic hearts are seen as valveless tubular pumps. It was traditionally thought that these tubular hearts generate unidirectional blood flow via peristalsis. Recently, however, the pumping mechanism of early embryonic hearts...

  17. Hippocampal functional connectivity and episodic memory in early childhood

    Directory of Open Access Journals (Sweden)

    Tracy Riggins

    2016-06-01

    Full Text Available Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n = 40. Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4 regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability.

  18. Language, bilingualism, and executive functioning in early development.

    Science.gov (United States)

    Morton, J Bruce

    2010-12-01

    Okanda, et al. (2010) reported new evidence concerning associations between language ability, bilingualism, and executive functioning early in development. The paper adds to a growing body of literature suggesting that bilingualism is associated with advantages in executive functioning generally, and the Dimensional Change Card Sort task in particular. However, as with all findings that hinge on between-group comparisons, there is a need to exercise caution before drawing firm conclusions about the effects of bilingualism on the development of executive control. Several lines of recent evidence are outlined that challenge key assumptions underlying the standard account of the bilingual advantage. Okanda, et al.'s findings are discussed in light of this evidence.

  19. The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain; II. Correlation between positron emission tomography and reaching behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, S.B. [Department of Experimental Psychology and MRC Cambridge Centre for Brain Repair, University of Cambridge, Cambridge (United Kingdom); Brooks, D.J.; Ashworth, S.; Opacka-Juffrey, J.; Myers, R.; Hume, S.P. [PET Methodology Group, Cyclotron Unit, MRC Clinical Science Centre, Hammersmith Hospital, London (United Kingdom); Torres, E.M.; Fricker, R.A. [Department of Experimental Psychology and MRC Cambridge Centre for Brain Repair, University of Cambridge, Cambridge (United Kingdom)

    1997-05-26

    Grafts of embryonic striatal primordia are able to elicit behavioural recovery in rats which have received an excitotoxic lesion to the striatum, and it is believed that the P zones or striatal-like tissue within the transplants play a crucial role in these functional effects. We performed this study to compare the effects of different donor stage of embryonic tissue on both the morphology (see accompanying paper) and function of striatal transplants. Both the medial and lateral ganglionic eminence was dissected from rat embryos of either 10 mm, 15 mm, 19 mm, or 23 mm crown-rump length, and implanted as a cell suspension into adult rats which had received an ibotenic acid lesion 10 days prior to transplantation. After four months the animals were tested on the 'staircase task' of skilled forelimb use. At 10-14 months rats from the groups which had received grafts from 10 mm or 15 mm donor embryos were taken for positron emission tomography scanning in a small diameter postiron emission tomography scanner, using ligands to the dopamine D{sub 1} and D{sub 2} receptors, [{sup 11}C]SCH 23390 and [{sup 11}C]raclopride, respectively. A lesion-alone group was also scanned with the same ligands for comparison. Animals which had received transplants from the 10 mm donors showed a significant recovery with their contralateral paw on the 'staircase test'. No other groups showed recovery on this task. Similarly, the animals with grafts from the youngest donors showed a significant increase in D{sub 1} and D{sub 2} receptor binding when compared to the lesion-alone group. No increase in signal was observed with either ligand in the group which had received grafts from 15 mm donors. Success in paw reaching showed a strong correlation to both the positron emission tomography signal obtained and the P zone volume of the grafts.These results suggest that striatal grafts from younger donors (10 mm CRL) give greater behavioural recovery than grafts preparedfrom

  20. In vitro myelin formation using embryonic stem cells

    Science.gov (United States)

    Kerman, Bilal E.; Kim, Hyung Joon; Padmanabhan, Krishnan; Mei, Arianna; Georges, Shereen; Joens, Matthew S.; Fitzpatrick, James A. J.; Jappelli, Roberto; Chandross, Karen J.; August, Paul; Gage, Fred H.

    2015-01-01

    Myelination in the central nervous system is the process by which oligodendrocytes form myelin sheaths around the axons of neurons. Myelination enables neurons to transmit information more quickly and more efficiently and allows for more complex brain functions; yet, remarkably, the underlying mechanism by which myelination occurs is still not fully understood. A reliable in vitro assay is essential to dissect oligodendrocyte and myelin biology. Hence, we developed a protocol to generate myelinating oligodendrocytes from mouse embryonic stem cells and established a myelin formation assay with embryonic stem cell-derived neurons in microfluidic devices. Myelin formation was quantified using a custom semi-automated method that is suitable for larger scale analysis. Finally, early myelination was followed in real time over several days and the results have led us to propose a new model for myelin formation. PMID:26015546

  1. Accessing autonomic function can early screen metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Kan Sun

    Full Text Available BACKGROUND: Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. METHODOLOGY AND PRINCIPAL FINDINGS: The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend <0.0001. Moreover, EZSCAN value was associated with an increase in the number of metabolic syndrome components (p for trend <0.0001. Compared with the no risk group (EZSCAN value 0-24, participants at the high risk group (EZSCAN value: 50-100 had a 2.35 fold increased risk of prevalent metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61-0.64 for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. CONCLUSIONS AND SIGNIFICANCE: In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome.

  2. Amniotic fluid may act as a transporting pathway for signaling molecules and stem cells during the embryonic development of amniotes.

    Science.gov (United States)

    Tong, Xinglong

    2013-11-01

    Amniotic fluid (AF) is formed at the very early stages of pregnancy, and is present throughout embryonic development of amniotes. It is well-known that AF provides a protective sac around the fetus that allows fetal movement and growth, and prevents mechanical and thermal shock. However, a growing body of evidence has shown that AF contains a number of proteins and peptides, including growth factors and cytokines, which potently affect cellular growth and proliferation. In addition, pluripotent stem cells have recently been identified in AF. Herein, this article reviews the biological properties of AF during embryonic development and speculates that AF may act as a transporting pathway for signaling molecules and stem cells during amniote embryonic development. Defining this novel function of AF is potentially significant for further understanding embryonic development and regenerative medicine, preventing genetic diseases, and developing therapeutic options for human malignancies.

  3. Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality.

    Science.gov (United States)

    Ramasamy, Thamil Selvee; Yu, Jason S L; Selden, Clare; Hodgson, Humphery; Cui, Wei

    2013-02-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of human hepatocytes, owing to their indefinite self-renewal and pluripotent properties. Both hESC-/iPSC-derived hepatocytes hold great promise in treating liver diseases as potential candidates for cell replacement therapies or as an in vitro platform to conduct new drug trials. It has been previously demonstrated that the initiation of hESC differentiation in monolayer cultures increases the generation of definitive endoderm (DE) and subsequently of hepatocyte differentiation. However, monolayer culture may hinder the maturation of hESC-derived hepatocytes, since such two-dimensional (2D) conditions do not accurately reflect the complex nature of three-dimensional (3D) hepatocyte specification in vivo. Here, we report the sequential application of 2D and 3D culture systems to differentiate hESCs to hepatocytes. Human ESCs were initially differentiated in a monolayer culture to DE cells, which were then inoculated into Algimatrix scaffolds. Treatments of hESC-DE cells with a ROCK inhibitor before and after inoculation dramatically enhanced their survival and the formation of spheroids, which are distinct from HepG2 carcinoma cells. In comparison with monolayer culture alone, sequential 2D and 3D cultures significantly improved hepatocyte differentiation and function. Our results demonstrate that hESC-DE cells can be incorporated into Algimatrix 3D culture systems to enhance hepatocyte differentiation and function.

  4. Embryonic lethality in mice lacking the nuclear factor of activated T cells 5 protein due to impaired cardiac development and function.

    Directory of Open Access Journals (Sweden)

    Man Chi Mak

    Full Text Available Nuclear factor of activated T cells 5 protein (NFAT5 is thought to be important for cellular adaptation to osmotic stress by regulating the transcription of genes responsible for the synthesis or transport of organic osmolytes. It is also thought to play a role in immune function, myogenesis and cancer invasion. To better understand the function of NFAT5, we developed NFAT5 gene knockout mice. Homozygous NFAT5 null (NFAT5(-/- mouse embryos failed to develop normally and died after 14.5 days of embryonic development (E14.5. The embryos showed peripheral edema, and abnormal heart development as indicated by thinner ventricular wall and reduced cell density at the compact and trabecular areas of myocardium. This is associated with reduced level of proliferating cell nuclear antigen and increased caspase-3 in these tissues. Cardiomyocytes from E14.5 NFAT5(-/- embryos showed a significant reduction of beating rate and abnormal Ca(2+ signaling profile as a consequence of reduced sarco(endoplasmic reticulum Ca(2+-ATPase (SERCA and ryanodine receptor (RyR expressions. Expression of NFAT5 target genes, such as HSP 70 and SMIT were reduced in NFAT5(-/- cardiomyocytes. Our findings demonstrated an essential role of NFAT5 in cardiac development and Ca(2+ signaling. Cardiac failure is most likely responsible for the peripheral edema and death of NFAT5(-/- embryos at E14.5 days.

  5. Vertebrate Embryonic Cleavage Pattern Determination.

    Science.gov (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco

    2017-01-01

    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  6. Early effects of cranial irradiation on hypothalamic-pituitary function

    Energy Technology Data Exchange (ETDEWEB)

    Lam, K.S.; Tse, V.K.; Wang, C.; Yeung, R.T.; Ma, J.T.; Ho, J.H.

    1987-03-01

    Hypothalamic-pituitary function was studied in 31 patients before and after cranial irradiation for nasopharyngeal carcinoma. The estimated radiotherapy (RT) doses to the hypothalamus and pituitary were 3979 +/- 78 (+/- SD) and 6167 +/- 122 centiGrays, respectively. All patients had normal pituitary function before RT. One year after RT, there was a significant decrease in the integrated serum GH response to insulin-induced hypoglycemia. In the male patients, basal serum FSH significantly increased, while basal serum LH and testosterone did not change. Moreover, in response to LHRH, the integrated FSH response was increased while that of LH was decreased. Such discordant changes in FSH and LH may be explained by a defect in LHRH pulsatile release involving predominantly a decrease in pulse frequency. The peak serum TSH response to TRH became delayed in 28 patients, suggesting a defect in TRH release. Twenty-one patients were reassessed 2 yr after RT. Their mean basal serum T4 and plasma cortisol levels had significantly decreased. Hyperprolactinemia associated with oligomenorrhoea was found in 3 women. Further impairment in the secretion of GH, FSH, LH, TSH, and ACTH had occurred, and 4 patients had hypopituitarism. Thus, progressive impairment in hypothalamic-pituitary function occurs after cranial irradiation and can be demonstrated as early as 1 yr after RT.

  7. Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3'-triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura).

    Science.gov (United States)

    Park, Chan Jin; Kang, Han Seung; Gye, Myung Chan

    2010-11-01

    Nonylphenol (NP) is an estrogenic endocrine disruptor in many aquatic species. In an effort to highlight the developmental toxicity of NP in amphibians, we examined the effects of NP on the embryonic survival, tadpole growth, melanophore development and metamorphosis of a native Korean amphibian species, Bombina orientalis (Anura). When treated to fertilized eggs, 1 μM NP significantly decreased embryonic survival at 48 h post fertilization (p.f.), suggesting that 1 μM NP can exert systemic toxicity in B. orientalis embryos. In the surviving embryos, there were no significant differences in malformation rates between NP-treated embryos and controls at 240 h p.f., suggesting no or low teratogenicity of NP in B. orientalis embryos. Below LC(50) NP significantly decreased body growth and development of melanophores at 0.1 μM, suggesting that NP far below the LC(50) targets multiple developmental events in tadpoles of this frog species. In metamorphosis assay using the premetamorphic tadpoles (corresponding to Nieuwkoop Faber stage 53 in Xenopus laevis) exogenous 3,5,3'-triiodothyronine (T3)-induced tail resorption was significantly decreased by 1 μM NP. However, NP (0.1 and 1 μM)-only treatment did not affected total body T3 and T4 levels, suggesting that NP at tested concentrations inhibits thyroid hormones action but not the synthesis of hormones during metamorphosis.

  8. Exploring the function of neural oscillations in early sensory systems

    Directory of Open Access Journals (Sweden)

    Kilian Koepsell

    2010-05-01

    Full Text Available Neuronal oscillations appear throughout the nervous system, in structures as diverse as the cerebral cortex, hippocampus, subcortical nuclei and sense organs. Whether or not neural rhythms contribute to normal function, are merely epiphenomena, or even interfere with physiological processing are topics of vigorous debate. Sensory pathways are ideal for investigation of oscillatory activity because their inputs can be defined. Thus, we will focus on sensory systems as we ask how neural oscillations arise and how they might encode information about the stimulus. We will highlight recent work in the early visual pathway that shows how oscillations can multiplex different types of signals to increase the amount of information that spike trains encode and transmit. Last, we will describe oscillation-based models of visual processing and explore how they might guide further research.

  9. Early intervention to improve hand function in hemiplegic cerebral palsy

    Directory of Open Access Journals (Sweden)

    Anna Purna Basu

    2015-01-01

    Full Text Available Children with hemiplegic cerebral palsy often have marked hand involvement with excessive thumb adduction and flexion and limited active wrist extension from infancy. Post-lesional aberrant plasticity can lead to progressive abnormalities of the developing motor system. Disturbances of somatosensory and visual function and developmental disregard contribute to difficulties with hand use. Progressive soft tissue and bony changes may occur, leading to contractures which further limit function in a vicious cycle. Early intervention might help to break this cycle: however, the precise nature and appropriateness of the intervention must be carefully considered. Traditional approaches to the hemiplegic upper limb include medications and botulinum toxin injections to manage abnormalities of tone, and surgical interventions. Therapist input, including provision of orthoses, remains a mainstay although many therapies have not been well evaluated. There has been a recent increase in interventions for the hemiplegic upper limb, mostly aimed outside the period of infancy. These include trials of constraint-induced movement therapy and bimanual therapy as well as the use of virtual reality and robot-assisted therapy. In future, non-invasive brain stimulation may be combined with therapy. Interventions under investigation in the infant age group include modified constraint-induced movement therapy and action observation therapy. A further approach which may be suited to the infant with thumb-in-palm deformity, but which requires evaluation, is the use of elastic taping. Enhanced cutaneous feedback through mechanical stimulation to the skin provided by the tape during movement has been postulated to modulate ongoing muscle activity. If effective, this would represent a low-cost, safe, widely applicable early intervention.

  10. Functional integration of parietal lobe activity in early Alzheimer disease.

    Science.gov (United States)

    Jacobs, H I L; Van Boxtel, M P J; Heinecke, A; Gronenschild, E H B M; Backes, W H; Ramakers, I H G B; Jolles, J; Verhey, F R J

    2012-01-31

    Parietal lobe dysfunction is an important characteristic of early Alzheimer disease (AD). Functional studies have shown conflicting parietal activation patterns indicative of either compensatory or dysfunctional mechanisms. This study aimed at examining activation differences in early AD using a visuospatial task. We focused on functional characteristics of the parietal lobe and examined compensation or disconnection mechanisms by combining a fMRI task with effective connectivity measures from Granger causality mapping (GCM). Eighteen male patients with amnestic mild cognitive impairment (aMCI) and 18 male cognitively healthy older individuals were given a mental rotation task with different rotation angles. There were no behavioral group differences on the fMRI task. Separate measurements at each angle revealed widespread activation group differences. More temporal and parietal activation in the higher angle condition was observed in patients with aMCI. The parametric modulation, which identifies regions associated with increasing angle, confirmed these results. The GCM showed increased connectivity within the parietal lobe and between parietal and temporal regions in patients with aMCI. Decreased connectivity was found between the inferior parietal lobule and posterior cingulate gyrus. Connectivity patterns correlated with memory performance scores in patients with aMCI. Our results demonstrate increased effective temporoparietal connectivity in patients with aMCI, while maintaining intact behavioral performance. This might be a compensational mechanism to counteract a parietal-posterior cingulate gyrus disconnection. These findings highlight the importance of connectivity changes in the pathophysiology of AD. In addition, effective connectivity may be a promising method for evaluating interventions aimed at the promotion of compensatory mechanisms.

  11. Sex and Age Effects of Functional Connectivity in Early Adulthood.

    Science.gov (United States)

    Zhang, Chao; Cahill, Nathan D; Arbabshirani, Mohammad R; White, Tonya; Baum, Stefi A; Michael, Andrew M

    2016-11-01

    Functional connectivity (FC) in resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to find coactivating regions in the human brain. Despite its widespread use, the effects of sex and age on resting FC are not well characterized, especially during early adulthood. Here we apply regression and graph theoretical analyses to explore the effects of sex and age on FC between the 116 AAL atlas parcellations (a total of 6670 FC measures). rs-fMRI data of 494 healthy subjects (203 males and 291 females; age range: 22-36 years) from the Human Connectome Project were analyzed. We report the following findings. (1) Males exhibited greater FC than females in 1352 FC measures (1025 survived Bonferroni correction; [Formula: see text]). In 641 FC measures, females exhibited greater FC than males but none survived Bonferroni correction. Significant FC differences were mainly present in frontal, parietal, and temporal lobes. Although the average FC values for males and females were significantly different, FC values of males and females exhibited large overlap. (2) Age effects were present only in 29 FC measures and all significant age effects showed higher FC in younger subjects. Age and sex differences of FC remained significant after controlling for cognitive measures. (3) Although sex [Formula: see text] age interaction did not survive multiple comparison correction, FC in females exhibited a faster cross-sectional decline with age. (4) Male brains were more locally clustered in all lobes but the cerebellum; female brains had a higher clustering coefficient at the whole-brain level. Our results indicate that although both male and female brains show small-world network characteristics, male brains were more segregated and female brains were more integrated. Findings of this study further our understanding of FC in early adulthood and provide evidence to support that age and sex should be controlled for in FC studies of young adults.

  12. Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction.

    Science.gov (United States)

    Dolnikov, Katya; Shilkrut, Mark; Zeevi-Levin, Naama; Gerecht-Nir, Sharon; Amit, Michal; Danon, Asaf; Itskovitz-Eldor, Joseph; Binah, Ofer

    2006-02-01

    Since cardiac transplantation is limited by the small availability of donor organs, regeneration of the diseased myocardium by cell transplantation is an attractive therapeutic modality. To determine the compatibility of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) (7 to 55 days old) with the myocardium, we investigated their functional properties regarding intracellular Ca2+ handling and the role of the sarcoplasmic reticulum in the contraction. The functional properties of hESC-CMs were investigated by recording simultaneously [Ca2+]i transients and contractions. Additionally, we performed Western blot analysis of the Ca2+-handling proteins SERCA2, calsequestrin, phospholamban, and Na+/Ca2+ exchanger (NCX). Our major findings are, first, that hESC-CMs displayed temporally related [Ca2+]i transients and contractions, negative force-frequency relations, and lack of post-rest potentiation. Second, ryanodine, thapsigargin, and caffeine did not affect the [Ca2+]i transient and contraction, indicating that at this developmental stage, contraction depends on transsarcolemmal Ca2+ influx rather than on sarcoplasmic reticulum Ca2+ release. Third, in agreement with the notion that a voltage-dependent Ca2+ current is present in hESC-CMs and contributes to the mechanical function, verapamil completely blocked contraction. Fourth, whereas hESC-CMs expressed SERCA2 and NCX at levels comparable to those of the adult porcine myocardium, calsequestrin and phospholamban were not expressed. Our study shows for the first time that functional properties related to intracellular Ca2+ handling of hESC-CMs differ markedly from the adult myocardium, probably due to immature sarcoplasmic reticulum capacity.

  13. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model

    Directory of Open Access Journals (Sweden)

    Alvaro Plaza Reyes

    2016-01-01

    Full Text Available Human embryonic stem cell (hESC-derived retinal pigment epithelial (RPE cells could replace lost tissue in geographic atrophy (GA but efficacy has yet to be demonstrated in a large-eyed model. Also, production of hESC-RPE has not yet been achieved in a xeno-free and defined manner, which is critical for clinical compliance and reduced immunogenicity. Here we describe an effective differentiation methodology using human laminin-521 matrix with xeno-free and defined medium. Differentiated cells exhibited characteristics of native RPE including morphology, pigmentation, marker expression, monolayer integrity, and polarization together with phagocytic activity. Furthermore, we established a large-eyed GA model that allowed in vivo imaging of hESC-RPE and host retina. Cells transplanted in suspension showed long-term integration and formed polarized monolayers exhibiting phagocytic and photoreceptor rescue capacity. We have developed a xeno-free and defined hESC-RPE differentiation method and present evidence of functional integration of clinically compliant hESC-RPE in a large-eyed disease model.

  14. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Arianne van Koppen

    Full Text Available Chronic kidney disease (CKD is a major health care problem, affecting more than 35% of the elderly population worldwide. New interventions to slow or prevent disease progression are urgently needed. Beneficial effects of mesenchymal stem cells (MSC have been described, however it is unclear whether the MSCs themselves or their secretome is required. We hypothesized that MSC-derived conditioned medium (CM reduces progression of CKD and studied functional and structural effects in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX combined with L-NNA and 6% NaCl diet in Lewis rats. Six weeks after SNX, CKD rats received either 50 µg CM or 50 µg non-CM (NCM twice daily intravenously for four consecutive days. Six weeks after treatment CM administration was functionally effective: glomerular filtration rate (inulin clearance and effective renal plasma flow (PAH clearance were significantly higher in CM vs. NCM-treatment. Systolic blood pressure was lower in CM compared to NCM. Proteinuria tended to be lower after CM. Tubular and glomerular damage were reduced and more glomerular endothelial cells were found after CM. DNA damage repair was increased after CM. MSC-CM derived exosomes, tested in the same experimental setting, showed no protective effect on the kidney. In a rat model of established CKD, we demonstrated that administration of MSC-CM has a long-lasting therapeutic rescue function shown by decreased progression of CKD and reduced hypertension and glomerular injury.

  15. Expression and function of anew angiogenic factor AA98 target molecule at the maternal-embryonic boundary ofrhesus monkey

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The target molecule of monoclonal antibody AA98 (AA for short) is a new vascular endothelial cell related factor and plays a role in angiogenesis as indicated by the previous data. To investigate its role in angiogenesis and placentation in primate, we examined its expression in the implantation sites on D17, 19, 28 and 34 of gestation in rhesus monkey by immunohistochemistry and Western immunoblot. Western blot analysis showed that the primary antibody used in this study was specific for its epitope. AA protein was mainly expressed in small blood vessels and in some cytotrophoblast cells. The AA staining was found mainly in the endothelial cells and vascular small muscle.This observation supported the AA's role in angiogenesis. AA was spatio-temporarily expressed in cytotrophoblasts: weak in proliferating trophoblast within cell column and endovascular trophoblast, strong in trophoblastic subpopulation within the basal plate and vascular trophoblast; AA staining within the basal plate was down-regulated during early placentation. The shift of AA98 expression in extravillous trophoblasts suggestes a role of this new factor during the course of cytotrophoblast metastasis and spiral artery remodeling. The spatio-temporarily expression indicats that AA98 could be also used as a trophoblast cellular marker to characterize the acquisition of a vascular endothelial and invasive phenotype.

  16. Longitudinal development of prefrontal function during early childhood.

    Science.gov (United States)

    Moriguchi, Yusuke; Hiraki, Kazuo

    2011-04-01

    This is a longitudinal study on development of prefrontal function in young children. Prefrontal areas have been observed to develop dramatically during early childhood. To elucidate this development, we gave children cognitive shifting tasks related to prefrontal function at 3 years of age (Time 1) and 4 years of age (Time 2). We then monitored developmental changes in behavioral performance and examined prefrontal activation using near infrared spectroscopy. We found that children showed better behavioral performance and significantly stronger inferior prefrontal activation at Time 2 than they did at Time 1. Moreover, we demonstrated individual differences in prefrontal activation for the same behavioral tasks. Children who performed better in tasks at Time 1 showed significant activation of the right inferior prefrontal regions at Time 1 and significant activation of the bilateral inferior prefrontal regions at Time 2. Children who showed poorer performance at Time 1 exhibited no significant inferior prefrontal activation at Time 1 but significant left inferior prefrontal activation at Time 2. These results indicate the importance of the longitudinal method to address the link between cognitive and neural development.

  17. [Early functional disorders of the brain in uncomplicated hypertensive patients].

    Science.gov (United States)

    De Quesada-Martínez, M E; Blanco-García, M; Díaz-De Quesada, L

    To detect the presence of changes in brain electrical activity that might be used as early markers in patients with risk factors for developing vascular encephalopathy. There were studied 84 uncomplicated hypertensive patients, with a normal neurological physical examination and mean age of 49 years compared to 35 functionally healthy subjects. The patients were divided into three groups: slight high blood pressure (SLHBP, n = 24) with diastolic blood pressure (DBP) between 90 and 100 mmHg, moderate high blood pressure (MHBP, n = 40) with DBP between 101 and 114 mmHg, and severe high blood pressure (SHBP, n = 20) with TAD of 115 mmHg or higher. All subjects underwent digital electroencephalogram (dEEG) with quantitative analysis (QEEG). The patients showed focal, especially frontal paroxysms, and diffuse polymorphic theta activity in these areas, mainly those with SLHBP. Posterior alpha rhythm disorganization, inter-hemispheric asymmetries and frontal monomorphic activity were more often found in SHBP patients. In QEEG was observed an increase in absolute and relative power of slow activities, and a decrease in power of alpha and beta activities. All these findings were more frequent in the left hemisphere. The hemodynamic characteristics of the Central Nervous System and the changes caused by HBP alter the functional organization of the brain cortex, especially in frontal and midline regions, irrigated by the anterior cerebral artery.

  18. MicroRNAs in human embryonic and cancer stem cells.

    Science.gov (United States)

    Navarro, Alfons; Monzo, Mariano

    2010-09-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate messenger RNAs at the post-transcriptional level. They play an important role in the control of cell physiological functions, and their alterations have been related to cancer, where they can function as oncogenes or tumor suppressor genes. Recently, they have emerged as key regulators of "stemness", collaborating in the maintenance of pluripotency, control of self-renewal, and differentiation of stem cells. The miRNA pathway has been shown to be crucial in embryonic development and in embryonic stem (ES) cells, as shown by Dicer knockout analysis. Specific patterns of miRNAs have been reported to be expressed only in ES cells and in early phases of embryonic development. Moreover, many cancers present small populations of cells with stem cell characteristics, called cancer stem cells (CSCs). CSCs are responsible for relapse and treatment failure in many cancer patients, and the comparative analysis of expression patterns between ES cells and tumors can lead to the identification of a miRNA signature to define CSCs. Most of the key miRNAs identified to date in ES cells have been shown to play a role in tumor diagnosis or prognosis, and may well prove to be essential in cancer therapy in the foreseeable future.

  19. Effects of embryonic cyclosporine exposures on brain development and behavior.

    Science.gov (United States)

    Clift, Danielle E; Thorn, Robert J; Passarelli, Emily A; Kapoor, Mrinal; LoPiccolo, Mary K; Richendrfer, Holly A; Colwill, Ruth M; Creton, Robbert

    2015-04-01

    Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The birth of embryonic pluripotency

    OpenAIRE

    Boroviak, Thorsten; Nichols, Jennifer

    2014-01-01

    This is the final published version. It first appeared at http://rstb.royalsocietypublishing.org/content/369/1657/20130541. Formation of a eutherian mammal requires concurrent establishment of embryonic and extraembryonic lineages. The functions of the trophectoderm and primitive endoderm are to enable implantation in the maternal uterus, axis specification and delivery of nutrients. The pluripotent epiblast represents the founding cell population of the embryo proper, which is...

  1. Spontaneous cyclic embryonic movements in humans and guinea pigs

    NARCIS (Netherlands)

    Felt, Renee H. M.; Mulder, Eduard J. H.; Luchinger, Annemarie B.; van Kan, Colette M.; Taverne, Marcel A. M.; de Vries, J. I. P.

    2012-01-01

    Motility assessment before birth can be used to evaluate the integrity of the nervous system. Sideways bending (SB) of head and/or rump, the earliest embryonic motility in both humans and guinea pigs, can be visualized sonographically. We know from other species that early embryonic motility is cycl

  2. Sox2 in Embryonic Stem Cells and Lung Development

    NARCIS (Netherlands)

    C.G. Pardo (Cristina Gontan)

    2009-01-01

    markdownabstract__Abstract__ Sox2 is a fascinating transcription factor with multiple roles during embryonic development. In early embryonic development, Sox2 is one of the key transcription factors in the maintenance of the pluripotent status of the cells of the inner cell mass (ICM). Sox2 is also

  3. Characterization of aurora-a in porcine oocytes and early embryos implies its functional roles in the regulation of meiotic maturation, fertilization and cleavage.

    Science.gov (United States)

    Yao, Li-Juan; Sun, Qing-Yuan

    2005-02-01

    Aurora-A is a serine/threonine protein kinase that plays important regulatory roles during mitotic cell cycle progression. In this study, Aurora-A expression, subcellular localization, and possible functions during porcine oocyte meiotic maturation, fertilization and early embryonic cleavage were studied by using Western blot, confocal microscopy and drug treatments. The quantity of Aurora-A protein remained stable during porcine oocyte meiotic maturation. Confocal microscopy revealed that Aurora-A distributed abundantly in the nucleus at the germinal vesicle stage. After germinal vesicle breakdown, Aurora-A concentrated around the condensed chromosomes and the metaphase I spindle, and finally, Aurora-A was associated with spindle poles during the formation of the metaphase II spindle. Aurora-A concentrated in the pronuclei in fertilized eggs. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. In conclusion, Aurora-A may be a multifunctional kinase that plays pivotal regulatory roles in microtubule assembly during porcine oocyte meiotic maturation, fertilization and early embryonic mitosis.

  4. Catechol-O-methyltransferase Val158met Polymorphism Interacts With Early Experience to Predict Executive Functions in Early Childhood

    Science.gov (United States)

    Blair, Clancy; Sulik, Michael; Willoughby, Michael; Mills-Koonce, Roger; Petrill, Stephen; Bartlett, Christopher; Greenberg, Mark

    2017-01-01

    Numerous studies demonstrate that the Methionine variant of the catechol-O-methyltransferase Val158Met polymorphism, which confers less efficient catabolism of catecholamines, is associated with increased focal activation of prefrontal cortex (PFC) and higher levels of executive function abilities. By and large, however, studies of COMT Val158Met have been conducted with adult samples and do not account for the context in which development is occurring. Effects of early adversity on stress response physiology and the inverted U shape relating catecholamine levels to neural activity in PFC indicate the need to take into account early experience when considering relations between genes such as COMT and executive cognitive ability. Consistent with this neurobiology, we find in a prospective longitudinal sample of children and families (N=1292) that COMT Val158Met interacts with early experience to predict executive function abilities in early childhood. Specifically, the Valine variant of the COMT Val158Met polymorphism, which confers more rather than less efficient catabolism of catecholamines is associated with higher executive function abilities at child ages 48 and 60 months and with faster growth of executive function for children experiencing early adversity, as indexed by cumulative risk factors in the home at child ages 7, 15, 24, and 36 months. Findings indicate the importance of the early environment for the relation between catecholamine genes and developmental outcomes and demonstrate that the genetic moderation of environmental risk is detectable in early childhood. PMID:26251232

  5. Embryonic Heart Progenitors and Cardiogenesis

    Science.gov (United States)

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  6. Histamine levels in embryonic chicken livers infected with very virulent infectious bursal disease virus.

    Science.gov (United States)

    Li, Yinju; He, Lei; Cheng, Xiangchao; Li, Jing; Jia, Yanyan; Yang, Danfang

    2015-11-15

    Histamine is an endogenous nitrogenous compound with extensive effects on immunologic cells and involved in many physiological functions. The current aim was to determine histamine levels in embryonic liver and its association with the pathogenicity of a very virulent infectious bursal disease virus (vvIBDV) isolate serially passaged in chicken embryos. A vvIBDV isolate and the passaged viruses were inoculated into SPF embryonated chicken eggs (0.2 ml per egg) via the chorioallantoic membrane. Embryonic livers were collected at 24, 48, 72, 96, and 120 h post-inoculation and histamine contents were quantified by fluorescence spectrophotometry analyses. Results showed that the histamine content in embryonic livers infected with the original vvIBDV isolate and the early passaged viruses significantly increased 48 h post-inoculation, as compared with the adapted IBDV isolate (phistamine content in dead embryos was markedly increased compared with live embryos (phistamine content in embryonic livers and an elevation in histidine decarboxylase activity. Taken together, our results suggest that an excess of histamine correlates with inflammatory responses during vvIBDV infection. This study provides an incremental step in the understanding of the pathogenesis of vvIBDV.

  7. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda: Palinuridae).

    Science.gov (United States)

    Day, Ryan D; McCauley, Robert D; Fitzgibbon, Quinn P; Semmens, Jayson M

    2016-03-07

    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8-12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 μPa(2) · s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages.

  8. Supplementation with spermine during in vitro maturation of porcine oocytes improves early embryonic development after parthenogenetic activation and somatic cell nuclear transfer.

    Science.gov (United States)

    Jin, J X; Lee, S; Khoirinaya, C; Oh, A; Kim, G A; Lee, B C

    2016-03-01

    Spermine plays an important role in protection from reactive oxygen species (ROS) in bacteria, yeast, and mammalian cells, but there are few studies on the effects of spermine on porcine oocyte maturation and subsequent embryo development. The aim of this study was to determine the effects of spermine on in vitro maturation (IVM) of porcine oocytes and their developmental competence after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). We evaluated nuclear maturation, intracellular glutathione (GSH), and ROS levels in oocytes, and their subsequent embryonic development, as well as gene expression in mature oocytes, cumulus cells, and PA blastocysts. After treatment with various concentrations of spermine in IVM culture medium, there was no significant difference in nuclear maturation rate. However, spermine treatment groups (10- 500 µM) showed significantly increased intracellular GSH levels and decreased ROS levels compared to the control ( cells ( < 0.05). was increased in spermine-treated oocytes. Levels of transcription for and were significantly increased in PA blastocysts. In conclusion, 10 µM spermine supplementation during IVM improved the development of porcine PA and SCNT embryos by increasing intracellular GSH, scavenging ROS levels, and regulating gene expression.

  9. Reduced synaptic activity in neuronal networks derived from embryonic stem cells of murine Rett syndrome model.

    Science.gov (United States)

    Barth, Lydia; Sütterlin, Rosmarie; Nenniger, Markus; Vogt, Kaspar E

    2014-01-01

    Neurodevelopmental diseases such as the Rett syndrome (RTT) have received renewed attention, since the mechanisms involved may underlie a broad range of neuropsychiatric disorders such as schizophrenia and autism. In vertebrates early stages in the functional development of neurons and neuronal networks are difficult to study. Embryonic stem cell-derived neurons provide an easily accessible tool to investigate neuronal differentiation and early network formation. We used in vitro cultures of neurons derived from murine embryonic stem cells missing the methyl-CpG-binding protein 2 (MECP2) gene (MeCP2-/y) and from wild type cells of the corresponding background. Cultures were assessed using whole-cell patch-clamp electrophysiology and immunofluorescence. We studied the functional maturation of developing neurons and the activity of the synaptic connections they formed. Neurons exhibited minor differences in the developmental patterns for their intrinsic parameters, such as resting membrane potential and excitability; with the MeCP2-/y cells showing a slightly accelerated development, with shorter action potential half-widths at early stages. There was no difference in the early phase of synapse development, but as the cultures matured, significant deficits became apparent, particularly for inhibitory synaptic activity. MeCP2-/y embryonic stem cell-derived neuronal cultures show clear developmental deficits that match phenotypes observed in slice preparations and thus provide a compelling tool to further investigate the mechanisms behind RTT pathophysiology.

  10. BDNF Pretreatment of Human Embryonic-Derived Neural Stem Cells Improves Cell Survival and Functional Recovery After Transplantation in Hypoxic-Ischemic Stroke.

    Science.gov (United States)

    Rosenblum, Sahar; Smith, Tenille N; Wang, Nancy; Chua, Joshua Y; Westbroek, Erick; Wang, Kendrick; Guzman, Raphael

    2015-01-01

    Intra-arterial neural stem cell (NSC) therapy has the potential to improve long-term outcomes after stroke. Here we evaluate if pretreatment of NSCs with brain-derived neurotrophic factor (BDNF) prior to transplantation improves cell engraftment and functional recovery following hypoxic-ischemic (HI) stroke. Human embryonic-derived NSCs with or without BDNF pretreatment (1 h, 100 ng/ml) were transplanted 3 days after HI stroke. Functional recovery was assessed using the horizontal ladder test. Cell engraftment was evaluated using bioluminescence imaging (BLI) and histological counts of SC121(+) cells. Fluoro-Jade C (FJC) and NeuN stains were used to evaluate neuroprotection. The effect of BDNF on NSCs was analyzed using a migration assay, immunocytochemistry, Luminex proteomic assay, and RT-qPCR.BLI analysis demonstrated significantly higher photon flux in the BDNF-treated NSC group compared to untreated NSC (p = 0.049) and control groups (p = 0.0021) at 1 week after transplantation. Immunohistochemistry confirmed increased transplanted cell survival in the cortex (p = 0.0126) and hippocampus (p = 0.0098) of animals injected with BDNF-treated NSCs compared to untreated NSCs. Behavioral testing revealed that the BDNF-treated NSC group demonstrated increased sensorimotor recovery compared to the untreated NSC and control groups (p < 0.001) over the 1-month period (p < 0.001) following transplantation. A significant improvement in performance was found in the BDNF-treated NSC group compared to the control group at 14, 21, and 28 (p < 0.05) days after transplantation. The cortex and hippocampus of the BDNF-treated NSC group had significantly more SC121(+) NSCs (p = 0.0125, p = 0.0098), fewer FJC(+) neurons (p = 0.0370, p = 0.0285), and a higher percentage of NeuN(+) expression (p = 0.0354) in the cortex compared to the untreated NSC group. BDNF treatment of NSCs resulted in significantly greater migration to SDF-1, secretion of M-CSF, VEGF, and expression of CXCR4

  11. Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Ji-Dong Fu

    Full Text Available BACKGROUND: MicroRNAs (miRs negatively regulate transcription and are important determinants of normal heart development and heart failure pathogenesis. Despite the significant knowledge gained in mouse studies, their functional roles in human (h heart remain elusive. METHODS AND RESULTS: We hypothesized that miRs that figure prominently in cardiac differentiation are differentially expressed in differentiating, developing, and terminally mature human cardiomyocytes (CMs. As a first step, we mapped the miR profiles of human (h embryonic stem cells (ESCs, hESC-derived (hE, fetal (hF and adult (hA ventricular (V CMs. 63 miRs were differentially expressed between hESCs and hE-VCMs. Of these, 29, including the miR-302 and -371/372/373 clusters, were associated with pluripotency and uniquely expressed in hESCs. Of the remaining miRs differentially expressed in hE-VCMs, 23 continued to express highly in hF- and hA-VCMs, with miR-1, -133, and -499 displaying the largest fold differences; others such as miR-let-7a, -let-7b, -26b, -125a and -143 were non-cardiac specific. Functionally, LV-miR-499 transduction of hESC-derived cardiovascular progenitors significantly increased the yield of hE-VCMs (to 72% from 48% of control; p0.05. By contrast, LV-miR-1 transduction did not bias the yield (p>0.05 but decreased APD and hyperpolarized RMP/MDP in hE-VCMs due to increased I(to, I(Ks and I(Kr, and decreased I(f (p<0.05 as signs of functional maturation. Also, LV-miR-1 but not -499 augmented the immature Ca(2+ transient amplitude and kinetics. Molecular pathway analyses were performed for further insights. CONCLUSION: We conclude that miR-1 and -499 play differential roles in cardiac differentiation of hESCs in a context-dependent fashion. While miR-499 promotes ventricular specification of hESCs, miR-1 serves to facilitate electrophysiological maturation.

  12. Effect of passage number on electrophoretic mobility distributions of cultured human embryonic kidney cells

    Science.gov (United States)

    Kunze, M. E.

    1985-01-01

    A systematic investigation was undertaken to characterize population shifts that occur in cultured human embryonic kidney cells as a function of passage number in vitro after original explantation. This approach to cell population shift analysis follows the suggestion of Mehreshi, Klein and Revesz that perturbed cell populations can be characterized by electrophoretic mobility distributions if they contain subpopulations with different electrophoretic mobilities. It was shown that this is the case with early passage cultured human embryo cells.

  13. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction

    NARCIS (Netherlands)

    van Laake, Linda W.; Passier, Robert; Monshouwer-Kloots, Jantine; Verkleij, Arie J.; Lips, Daniel J.; Freund, Christian; den Ouden, Krista; Ward-van Oostwaard, Dorien; Korving, Jeroen; Tertoolen, Leon G.; van Echteld, Cees J.; Doevendans, Pieter A.; Mummery, Christine L.

    2007-01-01

    Regeneration of the myocardium by transplantation of cardiomyocytes is an emerging therapeutic strategy. Human embryonic stem cells (HESC) form cardiomyocytes readily but until recently at low efficiency, so that preclinical studies on transplantation in animals are only just beginning. Here, we sho

  14. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis

    DEFF Research Database (Denmark)

    Geldner, Niko; Richter, Sandra; Vieten, Anne

    2004-01-01

    characterised newly isolated weak gnom alleles as well as trans-heterozygotes of complementing strong alleles. These genotypes form a phenotypic series of GNOM activity in post-embryonic development, with auxin-related defects, especially in the maintenance of primary root meristem activity...

  15. Genomic and proteomic analyses of Prdm5 reveal interactions with insulator binding proteins in embryonic stem cells

    DEFF Research Database (Denmark)

    Galli, Giorgio Giacomo; Carrara, Matteo; Francavilla, Chiara

    2013-01-01

    find that Prdm5 is highly expressed in mouse embryonic stem cells (mES) and exploit this cellular system to characterize molecular functions of Prdm5. By combining proteomics and next generation sequencing technologies we identify Prdm5 interaction partners and genomic occupancy. We demonstrate that......, despite Prdm5 is dispensable for mES cell maintenance, it directly targets genomic regions involved in early embryonic development and affects the expression of a subset of developmental regulators during cell differentiation. Importantly, Prdm5 interacts with Ctcf, Cohesin and TFIIIC and co...

  16. Embryonic Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2012-05-01

    Full Text Available Embryonic stem cell (ESC markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM technique and magnetic cell sorting (MACS are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs, which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.

  17. Culture of mouse embryonic stem cells with serum but without exogenous growth factors is sufficient to generate functional hepatocyte-like cells.

    Science.gov (United States)

    Pauwelyn, Karen; Roelandt, Philip; Notelaers, Tineke; Sancho-Bru, Pau; Fevery, Johan; Verfaillie, Catherine M

    2011-01-01

    Mouse embryonic stem cells (mESC) have been used to study lineage specification in vitro, including towards a hepatocyte-like fate, and such investigations guided lineage differentiation protocols for human (h)ESC. We recently described a four-step protocol to induce hepatocyte-like cells from hESC which also induced hepatocyte-like cell differentiation of mouse induced pluripotent stem cells. As ESC also spontaneously generate hepatocyte-like cells, we here tested whether the growth factors and serum used in this protocol are required to commit mESC and hESC to hepatocyte-like cells. Culture of mESC from two different mouse strains in the absence of serum and growth factors did not induce primitive streak/definitive endoderm genes but induced default differentiation to neuroectoderm on day 6. Although Activin-A and Wnt3 induced primitive streak/definitive endoderm transcripts most robustly in mESC, simple addition of serum also induced these transcripts. Expression of hepatoblast genes occurred earlier when growth factors were used for mESC differentiation. However, further maturation towards functional hepatocyte-like cells was similar in mESC progeny from cultures with serum, irrespective of the addition of growth factors, and irrespective of the mouse strain. This is in contrast to hESC, where growth factors are required for specification towards functional hepatocyte-like cells. Culture of mESC with serum but without growth factors did not induce preferential differentiation towards primitive endoderm or neuroectoderm. Thus, although induction of primitive streak/definitive endoderm specific genes and proteins is more robust when mESC are exposed to a combination of serum and exogenous growth factors, ultimate generation of hepatocyte-like cells from mESC occurs equally well in the presence or absence of exogenous growth factors. The latter is in contrast to what we observed for hESC. These results suggest that differences exist between lineage specific

  18. Culture of mouse embryonic stem cells with serum but without exogenous growth factors is sufficient to generate functional hepatocyte-like cells.

    Directory of Open Access Journals (Sweden)

    Karen Pauwelyn

    Full Text Available Mouse embryonic stem cells (mESC have been used to study lineage specification in vitro, including towards a hepatocyte-like fate, and such investigations guided lineage differentiation protocols for human (hESC. We recently described a four-step protocol to induce hepatocyte-like cells from hESC which also induced hepatocyte-like cell differentiation of mouse induced pluripotent stem cells. As ESC also spontaneously generate hepatocyte-like cells, we here tested whether the growth factors and serum used in this protocol are required to commit mESC and hESC to hepatocyte-like cells. Culture of mESC from two different mouse strains in the absence of serum and growth factors did not induce primitive streak/definitive endoderm genes but induced default differentiation to neuroectoderm on day 6. Although Activin-A and Wnt3 induced primitive streak/definitive endoderm transcripts most robustly in mESC, simple addition of serum also induced these transcripts. Expression of hepatoblast genes occurred earlier when growth factors were used for mESC differentiation. However, further maturation towards functional hepatocyte-like cells was similar in mESC progeny from cultures with serum, irrespective of the addition of growth factors, and irrespective of the mouse strain. This is in contrast to hESC, where growth factors are required for specification towards functional hepatocyte-like cells. Culture of mESC with serum but without growth factors did not induce preferential differentiation towards primitive endoderm or neuroectoderm. Thus, although induction of primitive streak/definitive endoderm specific genes and proteins is more robust when mESC are exposed to a combination of serum and exogenous growth factors, ultimate generation of hepatocyte-like cells from mESC occurs equally well in the presence or absence of exogenous growth factors. The latter is in contrast to what we observed for hESC. These results suggest that differences exist between

  19. Do child's psychosocial functioning, and parent and family characteristics predict early alcohol use? The TRAILS Study

    NARCIS (Netherlands)

    Visser, Leenke; de Winter, Andrea F; Vollebergh, Wilma A M; Verhulst, Frank C; Reijneveld, Sijmen A

    2015-01-01

    BACKGROUND: Given the negative consequences of early alcohol use for health and social functioning, it is essential to detect children at risk of early drinking. The aim of this study is to determine predictors of early alcohol use that can easily be detected in Preventive Child Healthcare (PCH). ME

  20. Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions

    DEFF Research Database (Denmark)

    Morgani, Sophie M; Canham, Maurice A; Nichols, Jennifer

    2013-01-01

    Embryonic stem cells (ESCs) are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i) are thought...... not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants....

  1. The Chick Chorioallantoic Membrane: A Model of Molecular, Structural, and Functional Adaptation to Transepithelial Ion Transport and Barrier Function during Embryonic Development

    Directory of Open Access Journals (Sweden)

    Maria Gabriella Gabrielli

    2010-01-01

    Full Text Available The chick chorioallantoic membrane is a very simple extraembryonic membrane which serves multiple functions during embryo development; it is the site of exchange of respiratory gases, calcium transport from the eggshell, acid-base homeostasis in the embryo, and ion and H2O reabsorption from the allantoic fluid. All these functions are accomplished by its epithelia, the chorionic and the allantoic epithelium, by differentiation of a wide range of structural and molecular peculiarities which make them highly specialized, ion transporting epithelia. Studying the different aspects of such a developmental strategy emphasizes the functional potential of the epithelium and offers an excellent model system to gain insights into questions partly still unresolved.

  2. Autophagy in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thien Tra

    Full Text Available Autophagy (macroautophagy is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  3. Low cognitive ability in early adulthood is associated with reduced lung function in middle age

    DEFF Research Database (Denmark)

    Carroll, Douglas; Batty, G David; Mortensen, Laust Hvas;

    2011-01-01

    Reduced lung function has been linked to poorer cognitive ability later in life. In the present study, the authors examined the converse: whether there was a prospective association between cognitive ability in early adulthood and lung function in middle age....

  4. The Typical Developmental Trajectory of Social and Executive Functions in Late Adolescence and Early Adulthood

    Science.gov (United States)

    Taylor, Sophie Jane; Barker, Lynne Ann; Heavey, Lisa; McHale, Sue

    2013-01-01

    Executive functions and social cognition develop through childhood into adolescence and early adulthood and are important for adaptive goal-oriented behavior (Apperly, Samson, & Humphreys, 2009; Blakemore & Choudhury, 2006). These functions are attributed to frontal networks known to undergo protracted maturation into early adulthood…

  5. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats.

    Science.gov (United States)

    Chang, Da-Jeong; Oh, Seung-Hun; Lee, Nayeon; Choi, Chunggab; Jeon, Iksoo; Kim, Hyun Sook; Shin, Dong Ah; Lee, Seo Eun; Kim, Daehong; Song, Jihwan

    2013-11-15

    The transplantation of neural precursor cells (NPCs) is known to be a promising approach to ameliorating behavioral deficits after stroke in a rodent model of middle cerebral artery occlusion (MCAo). Previous studies have shown that transplanted NPCs migrate toward the infarct region, survive and differentiate into mature neurons to some extent. However, the spatiotemporal dynamics of NPC migration following transplantation into stroke animals have yet to be elucidated. In this study, we investigated the fates of human embryonic stem cell (hESC)-derived NPCs (ENStem-A) for 8 weeks following transplantation into the side contralateral to the infarct region using 7.0T animal magnetic resonance imaging (MRI). T2- and T2*-weighted MRI analyses indicated that the migrating cells were clearly detectable at the infarct boundary zone by 1 week, and the intensity of the MRI signals robustly increased within 4 weeks after transplantation. Afterwards, the signals were slightly increased or unchanged. At 8 weeks, we performed Prussian blue staining and immunohistochemical staining using human-specific markers, and found that high percentages of transplanted cells migrated to the infarct boundary. Most of these cells were CXCR4-positive. We also observed that the migrating cells expressed markers for various stages of neural differentiation, including Nestin, Tuj1, NeuN, TH, DARPP-32 and SV38, indicating that the transplanted cells may partially contribute to the reconstruction of the damaged neural tissues after stroke. Interestingly, we found that the extent of gliosis (glial fibrillary acidic protein-positive cells) and apoptosis (TUNEL-positive cells) were significantly decreased in the cell-transplanted group, suggesting that hESC-NPCs have a positive role in reducing glia scar formation and cell death after stroke. No tumors formed in our study. We also performed various behavioral tests, including rotarod, stepping and modified neurological severity score tests, and

  6. Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Characterization of intrinsic and extrinsic factors regulating the self-renewal/division and differentiation of stem cells is crucial in determining embryonic stem (ES cell fate. ES cells differentiate into multiple hematopoietic lineages during embryoid body (EB formation in vitro, which provides an experimental platform to define the molecular mechanisms controlling germ layer fate determination and tissue formation. METHODS AND FINDINGS: The cannabinoid receptor type 1 (CB1 and cannabinoid receptor type 2 (CB2 are members of the G-protein coupled receptor (GPCR family, that are activated by endogenous ligands, the endocannabinoids. CB1 receptor expression is abundant in brain while CB2 receptors are mostly expressed in hematopoietic cells. However, the expression and the precise roles of CB1 and CB2 and their cognate ligands in ES cells are not known. We observed significant induction of CB1 and CB2 cannabinoid receptors during the hematopoietic differentiation of murine ES (mES-derived embryoid bodies. Furthermore, mES cells as well as ES-derived embryoid bodies at days 7 and 14, expressed endocannabinoids, the ligands for both CB1 and CB2. The CB1 and CB2 antagonists (AM251 and AM630, respectively induced mES cell death, strongly suggesting that endocannabinoids are involved in the survival of mES cells. Treatment of mES cells with the exogenous cannabinoid ligand Delta(9-THC resulted in the increased hematopoietic differentiation of mES cells, while addition of AM251 or AM630 blocked embryoid body formation derived from the mES cells. In addition, cannabinoid agonists induced the chemotaxis of ES-derived embryoid bodies, which was specifically inhibited by the CB1 and CB2 antagonists. CONCLUSIONS: This work has not been addressed previously and yields new information on the function of cannabinoid receptors, CB1 and CB2, as components of a novel pathway regulating murine ES cell differentiation. This study provides insights

  7. Sex-specific changes in thyroid gland function and circulating thyroid hormones in nestling American kestrels (Falco sparverius) following embryonic exposure to polybrominated diphenyl ethers by maternal transfer.

    Science.gov (United States)

    Fernie, Kim J; Marteinson, Sarah C

    2016-08-01

    High concentrations of polybrominated diphenyl ethers (PBDEs) accumulate in predatory birds. Several PBDE congeners are considered thyroid disruptors; however, avian studies are limited. The authors examined circulating thyroid hormones and thyroid gland function of nestling American kestrels (Falco sparverius) at 17 d to 20 d of age, following embryonic exposure by maternal transfer only to environmentally relevant levels of PBDEs (DE-71 technical mixture). Nestlings were exposed to in ovo sum (Σ) PBDE concentrations of 11 301 ± 95 ng/g wet weight (high exposure), 289 ± 33 ng/g wet weight (low exposure), or 3.0 ± 0.5 ng/g wet weight (controls, background exposure). Statistical comparisons are made to controls of the respective sexes and account for the relatedness of siblings within broods. Circulating concentrations of plasma total thyroxine (TT4 ) and total triiodothyronine (TT3 ) in female nestlings were significantly influenced overall by the exposure to DE-71. Following intramuscular administration of thyroid-stimulating hormone, the temporal response of the thyroid gland in producing and/or releasing TT4 was also significantly affected by the females' exposure to DE-71. The altered availability of T4 for conversion to T3 outside of the gland and/or changes in thyroid-related enzymatic activity may explain the lower TT3 concentrations (baseline, overall) and moderately altered temporal TT3 patterns (p = 0.06) of the treatment females. Controlling for the significant effect on TT3 levels of the delayed hatching of treatment females, baseline TT3 levels were significantly and positively correlated with body mass (10 d, 15 d, 20 d), with PBDE-exposed females generally being smaller and having lower TT3 concentrations. Given that exposure concentrations were environmentally relevant, similar thyroidal changes and associated thyroid-mediated processes relating to growth may also occur in wild female nestlings. Environ Toxicol Chem 2016

  8. Changes in the levels, expression, and possible roles of serotonin and dopamine during embryonic development in the giant freshwater prawn, Macrobrachium rosenbergii.

    Science.gov (United States)

    Tinikul, Yotsawan; Poljaroen, Jaruwan; Tinikul, Ruchanok; Sobhon, Prasert

    2016-01-01

    We investigated the changes in the levels of serotonin (5-HT) and dopamine (DA), and their possible roles during embryonic development of the freshwater prawn, Macrobrachium rosenbergii. The 5-HT and DA concentrations were quantified using high performance liquid chromatography with electrochemical detection (HPLC-ECD). The levels of 5-HT and DA gradually increased from early developing embryos to late developing embryos. The 5-HT concentrations gradually increased from the pale yellow egg to orange egg stages, and reaching a maximum at the black egg stage. DA concentrations were much lower in the early embryos than those of 5-HT (P<0.05), and gradually increased to reach the highest level at the black egg stage. Immunohistochemically, 5-HT was firstly detected in the early embryonic stages, whereas DA developed later than 5-HT. Functionally, 5-HT-treated female prawns at doses of 2.5×10(-5), 2.5×10(-6) and 2.5×10(-7)mol/prawn, produced embryos with significantly shortened lengths of early embryonic stages, whereas DA-treated prawns at all three doses, exerted its effects by significantly lengthening the period of mid-embryonic stage onwards. These results suggest significant involvement of 5-HT and DA in embryonic developmental processes of this species.

  9. Characterization of microRNAs involved in embryonic stem cell states.

    Science.gov (United States)

    Stadler, Bradford; Ivanovska, Irena; Mehta, Kshama; Song, Sunny; Nelson, Angelique; Tan, Yunbing; Mathieu, Julie; Darby, Christopher; Blau, C Anthony; Ware, Carol; Peters, Garrick; Miller, Daniel G; Shen, Lanlan; Cleary, Michele A; Ruohola-Baker, Hannele

    2010-07-01

    Studies of embryonic stem cells (ESCs) reveal that these cell lines can be derived from differing stages of embryonic development. We analyzed common changes in the expression of microRNAs (miRNAs) and mRNAs in 9 different human ESC (hESC) lines during early commitment and further examined the expression of key ESCenriched miRNAs in earlier developmental states in several species. We show that several previously defined hESC-enriched miRNA groups (the miR-302, -17, and -515 families, and the miR-371-373 cluster) and several other hESC-enriched miRNAs are down-regulated rapidly in response to differentiation. We further found that mRNAs up-regulated upon differentiation are enriched in potential target sites for these hESC-enriched miRNAs. Interestingly, we also observed that the expression of ESC-enriched miRNAs bearing identical seed sequences changed dynamically while the cells transitioned through early embryonic states. In human and monkey ESCs, as well as human-induced pluripotent stem cells (iPSCs), the miR-371-373 cluster was consistently up-regulated, while the miR-302 family was mildly down-regulated when the cells were chemically treated to regress to an earlier developmental state. Similarly, miR-302b, but not mmu-miR-295, was expressed at higher levels in murine epiblast stem cells (mEpiSC) as compared with an earlier developmental state, mouse ESCs. These results raise the possibility that the relative expression of related miRNAs might serve as diagnostic indicators in defining the developmental state of embryonic cells and other stem cell lines, such as iPSCs. These data also raise the possibility that miRNAs bearing identical seed sequences could have specific functions during separable stages of early embryonic development.

  10. Left ventricular function in treatment-naive early rheumatoid arthritis

    DEFF Research Database (Denmark)

    Løgstrup, Brian B; Deibjerg, Lone K; Nielsen, Agnete Desirèe;

    2014-01-01

    BACKGROUND: The role of inflammation and anti-cyclic citrullinated peptide antibodies (anti-CCP) in the pathogenesis of cardiovascular disease in early rheumatoid arthritis (RA) remains unclear. Previous studies have suggested that both disease activity and disease duration are associated...

  11. Anatomical correlates of cognitive functions in early Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Roberta Biundo

    Full Text Available BACKGROUND: Cognitive deficits may occur early in Parkinson's disease (PD but the extent of cortical involvement associated with cognitive dysfunction needs additional investigations. The aim of our study is to identify the anatomical pattern of cortical thickness alterations in patients with early stage PD and its relationship with cognitive disability. METHODS: We recruited 29 PD patients and 21 healthy controls. All PD patients performed an extensive neuropsychological examination and 14 were diagnosed with mild cognitive impairment (PD-MCI. Surface-based cortical thickness analysis was applied to investigate the topographical distribution of cortical and subcortical alterations in early PD compared with controls and to assess the relationship between cognition and regional cortical changes in PD-MCI. RESULTS: Overall PD patients showed focal cortical (occipital-parietal areas, orbito-frontal and olfactory areas and subcortical thinning when compared with controls. PD-MCI showed a wide spectrum of cognitive deficits and related significant regional thickening in the right parietal-frontal as well as in the left temporal-occipital areas. CONCLUSION: Our results confirm the presence of changes in grey matter thickness at relatively early PD stage and support previous studies showing thinning and atrophy in the neocortex and subcortical regions. Relative cortical thickening in PD-MCI may instead express compensatory neuroplasticity. Brain reserve mechanisms might first modulate cognitive decline during the initial stages of PD.

  12. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  13. Functional Recovery in Major Depressive Disorder: Focus on Early Optimized Treatment.

    Science.gov (United States)

    Habert, Jeffrey; Katzman, Martin A; Oluboka, Oloruntoba J; McIntyre, Roger S; McIntosh, Diane; MacQueen, Glenda M; Khullar, Atul; Milev, Roumen V; Kjernisted, Kevin D; Chokka, Pratap R; Kennedy, Sidney H

    2016-09-01

    This article presents the case that a more rapid, individualized approach to treating major depressive disorder (MDD) may increase the likelihood of achieving full symptomatic and functional recovery for individual patients and that studies show it is possible to make earlier decisions about appropriateness of treatment in order to rapidly optimize that treatment. A PubMed search was conducted using terms including major depressive disorder, early improvement, predictor, duration of untreated illness, and function. English-language articles published before September 2015 were included. Additional studies were found within identified research articles and reviews. Thirty antidepressant studies reporting predictor criteria and outcome measures are included in this review. Studies were reviewed to extract definitions of predictors, outcome measures, and results of the predictor analysis. Results were summarized separately for studies reporting effects of early improvement, baseline characteristics, and duration of untreated depression. Shorter duration of the current depressive episode and duration of untreated depression are associated with better symptomatic and functional outcomes in MDD. Early improvement of depressive symptoms predicts positive symptomatic outcomes (response and remission), and early functional improvement predicts an increased likelihood of functional remission. The approach to treatment of depression that exhibits the greatest potential for achieving full symptomatic and functional recovery is early optimized treatment: early diagnosis followed by rapid individualized treatment. Monitoring symptoms and function early in treatment is crucial to ensuring that patients do not remain on ineffective or poorly tolerated treatment, which may delay recovery and heighten the risk of residual functional deficits.

  14. Macrophage Functions in Early Dissemination and Dormancy of Breast Cancer

    Science.gov (United States)

    2016-09-01

    antibodies were left for one hour at room temperature. DAB and 410   Vector Blue substrate kit (Vector Laboratories) were used for enzymatic substrate...enables visualization of high dimensional single-cell 624   data and reveals phenotypic heterogeneity of leukemia. Nature biotechnology 31, 625...Catenin+ early cancer cells ( blue arrows in F) 721     30   were more frequent in ducts containing intra-epithelial macrophages (black arrows in

  15. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell derived retina.

    Science.gov (United States)

    Aparicio, J G; Hopp, H; Choi, A; Mandayam Comar, J; Liao, V C; Harutyunyan, N; Lee, T C

    2016-11-17

    Human retinal ganglion cells (RGCs) derived from pluripotent stem cells (PSCs) have anticipated value for human disease study, drug screening, and therapeutic applications; however, their full potential remains underdeveloped. To characterize RGCs in human embryonic stem cell (hESC) derived retinal organoids we examined RGC markers and surface antigen expression and made comparisons to human fetal retina. RGCs in both tissues exhibited CD184 and CD171 expression and distinct expression patterns of the RGC markers BRN3 and RBPMS. The retinal progenitor cells (RPCs) of retinal organoids expressed CD184, consistent with its expression in the neuroblastic layer in fetal retina. In retinal organoids CD184 expression was enhanced in RGC competent RPCs and high CD184 expression was retained on post-mitotic RGC precursors; CD171 was detected on maturing RGCs. The differential expression timing of CD184 and CD171 permits identification and enrichment of RGCs from retinal organoids at differing maturation states from committed progenitors to differentiating neurons. These observations will facilitate molecular characterization of PSC-derived RGCs during differentiation, critical knowledge for establishing the veracity of these in vitro produced cells. Furthermore, observations made in the retinal organoid model closely parallel those in human fetal retina further validating use of retinal organoid to model early retinal development.

  16. Interaction between asthma and lung function growth in early life

    DEFF Research Database (Denmark)

    Bisgaard, Hans; Jensen, Signe Marie; Bønnelykke, Klaus

    2012-01-01

    The causal direction between asthma and lung function deficit is unknown, but important for the focus of preventive measures and research into the origins of asthma.......The causal direction between asthma and lung function deficit is unknown, but important for the focus of preventive measures and research into the origins of asthma....

  17. Influx mechanisms in the embryonic and adult rat choroid plexus

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and a...

  18. Mastitis and fertility in cattle - possible involvement of inflammation or immune activation in embryonic mortality.

    Science.gov (United States)

    Hansen, Peter J; Soto, Paolete; Natzke, Roger P

    2004-04-01

    Causes for pre-implantation embryo loss, which can be as high as 50% or more of fertilized embryos, are multifactorial and largely undescribed. Studies in cattle using mastitis as a model indicate that one cause of early embryonic loss is infectious disease or activation of immune responses at sites outside the reproductive tract. Infection of the mammary gland in dairy cattle is associated with a reduction in pregnancy rate (proportion of inseminated cows that become pregnant) and an increase in the number of inseminations required to establish pregnancy. Also, intravenous challenge with bacterial peptidoglycan and polysaccharide at approximately days 3-5 after breeding reduced subsequent pregnancy rate in sheep that had been previously immunized against the same material. The mechanism by which extrauterine activation of immune and inflammatory responses leads to embryonic loss is not clear although cytokines probably play a crucial role. Effects could be exerted at the level of the hypothalamic-pituitary axis, ovary, reproductive tract or embryo. Interferon (IFN)-alpha, for example, which can reduce pregnancy rate in cattle when injected around 13-19 days after breeding, increases body temperature, inhibits secretion of luteinizing hormone, and reduces circulating concentrations of progesterone. Other cytokines or products of cytokine activation could cause embryonic loss by causing hyperthermia (as elevated temperature blocks oocyte function and embryonic development), exerting toxic effects on the corpus luteum [for example, IFN-gamma, tumor necrosis factor-alpha (TNF-alpha) and prostaglandin F(2alpha)], stimulating endometrial prostaglandin synthesis [TNF-alpha and interleukin(IL)-1beta], reducing endometrial cell proliferation (IL-1beta), and interfering with oocyte maturation and embryonic development (TNF-alpha, nitric oxide, and prostaglandin F(2alpha)). Although largely neglected by reproductive immunologists, study of the involvement of the immune

  19. Factors affecting spontaneous reduction of corpora lutea and twin embryos during the late embryonic/early fetal period in multiple-ovulating dairy cows.

    Science.gov (United States)

    López-Gatius, F; García-Ispierto, I; Hunter, R H F

    2010-02-01

    Spontaneous reduction of advanced twin embryos has been described in high-producing, Holstein-Fresian (Bos taurus) dairy herds. The first objective of the current study was to determine whether management and cow factors could have an effect on such a reduction in twin pregnancies during the early fetal period. Because loss of a corpus luteum was noted in cows suffering twin reduction, we expanded our study to include multiple-ovulating cows carrying singletons. Pregnancy was diagnosed and confirmed from Days 28 to 34 and 56 to 62 postinsemination. Sixty-nine (23.5%) of 293 pregnant cows with two corpora lutea carrying singletons and 132 (28.4%) of 464 twin pregnancies recorded on first pregnancy diagnosis subsequently lost one of the corpora lutea or one of the embryos, respectively. Thirty-four (25.8%) of the 132 twin pregnancies suffering embryo reduction lost one corpus luteum along with the embryo. Corpus luteum reduction always occurred in the ovary ipsilateral to the gravid horn suffering embryo reduction. Binary logistic regressions were performed considering corpus luteum and embryo reduction as dependent variables in single and twin pregnancies, respectively, and several management- and cow-related factors as independent variables. In cows carrying singletons, the risk of corpus luteum reduction was 14.3 (1/0.07) times lower for a given herd, whereas the interaction season by laterality significantly affected corpus luteum reduction such that in cows with two corpora lutea ipsilateral to the horn of pregnancy, the risk of reduction decreased during the winter period. In cows carrying twins, ipsilateral twin pregnancies were 3.45 (1/0.29) times more likely to undergo the loss of one embryo than bilateral twin pregnancies. As an overall conclusion, both corpora lutea and embryos were vulnerable to the effects of stress factors during the early fetal period in cows maintaining their pregnancies. A strong unilateral relationship between the corpus luteum and

  20. Effect of multiple cysteine substitutions on the functionality of human multidrug resistance protein 1 expressed in human embryonic kidney 293 cells: identification of residues essential for function.

    Science.gov (United States)

    Qin, Lei; Tam, Shui-Pang; Deeley, Roger G

    2012-07-01

    Multidrug resistance protein 1 (MRP1) is a broad-specificity membrane transporter belonging to the C branch of the ATP binding cassette (ABC) superfamily. MRP1 confers resistance to various chemotherapeutic drugs and transports a wide range of conjugated organic anions. Several ABCC proteins, including MRP1, are unusual among ABC transporters in having a third membrane-spanning domain (MSD), MSD0, at their N termini. MRP1 lacking this additional MSD (ΔMRP1) is able to traffic to the plasma membrane of mammalian cells and to transport a number of well characterized substrates. A cysteineless (cysless) ΔMRP1 has been expressed in yeast and reported to be functional. However, we found that trafficking of such a construct in human cells was severely compromised, and, even when expressed in insect Sf21 cells, the protein had extremely low transport activity. Therefore, we have systematically examined the effects of substituting cysteines in the four domains of ΔMRP1, initially with alanine. These studies allowed us to identify five cysteines that cannot be replaced with alanine without inactivating the protein. Substitution of two of these residues with alternative amino acids has allowed us to produce an almost cysless form of ΔMRP1 that traffics to the plasma membrane and transports leukotriene C(4), 17β-estradiol 17-β-D-glucuronide, and estrone-3-sulfate with kinetic characteristics similar to those of the wild-type protein. The distribution of the remaining Cys residues is such that the protein will provide a useful template for a variety of cysteine based mutagenesis studies.

  1. Cortical Plasticity and Olfactory Function in Early Blindness

    Science.gov (United States)

    Araneda, Rodrigo; Renier, Laurent A.; Rombaux, Philippe; Cuevas, Isabel; De Volder, Anne G.

    2016-01-01

    Over the last decade, functional brain imaging has provided insight to the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented “visual” cortex that starts receiving and processing non visual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive mechanisms that help blind persons achieve perceptual tasks, leading to superior olfactory abilities in these subjects. This view receives support from psychophysical testing, volumetric measurements and functional brain imaging studies in humans, which are presented here. PMID:27625596

  2. Cortical Plasticity and Olfactory Function in Early Blindness.

    OpenAIRE

    Rodrigo Araneda; Laurent A Renier; Philippe Rombaux; Isabel Cuevas; De Volder, Anne G.

    2016-01-01

    Over the last decade, functional brain imaging has provided insight in the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented visual cortex that starts receiving and processing nonvisual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive me...

  3. Porcine embryonic stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2008-01-01

    The development of porcine embryonic stem cell lines (pESC) has received renewed interest given the advances being made in the production of immunocompatible transgenic pigs. However, difficulties are evident in the production of pESCs in-vitro. This may largely be attributable to differences...

  4. Stromal cell-derived factor-1/CXCR4 signaling modifies the capillary-like organization of human embryonic stem cell-derived endothelium in vitro.

    Science.gov (United States)

    Chen, Tong; Bai, Hao; Shao, Ying; Arzigian, Melanie; Janzen, Viktor; Attar, Eyal; Xie, Yi; Scadden, David T; Wang, Zack Z

    2007-02-01

    The molecular mechanisms that regulate human blood vessel formation during early development are largely unknown. Here we used human ESCs (hESCs) as an in vitro model to explore early human vasculogenesis. We demonstrated that stromal cell-derived factor-1 (SDF-1) and CXCR4 were expressed concurrently with hESC-derived embryonic endothelial differentiation. Human ESC-derived embryonic endothelial cells underwent dose-dependent chemotaxis to SDF-1, which enhanced vascular network formation in Matrigel. Blocking of CXCR4 signaling abolished capillary-like structures induced by SDF-1. Inhibition of the SDF-1/CXCR4 signaling pathway by AMD3100, a CXCR4 antagonist, disrupted the endothelial sprouting outgrowth from human embryoid bodies, suggesting that the SDF-1/CXCR4 axis plays a critical role in regulating initial vessel formation, and may function as a morphogen during human embryonic vascular development.

  5. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Carolyn M

    2005-02-22

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identified and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.

  6. Locomotor function in the early stage of Parkinson's disease.

    Science.gov (United States)

    Carpinella, Ilaria; Crenna, Paolo; Calabrese, Elena; Rabuffetti, Marco; Mazzoleni, Paolo; Nemni, Raffaello; Ferrarin, Maurizio

    2007-12-01

    The cardinal motor symptoms of Parkinson's disease (PD) have been widely investigated with particular reference to abnormalities of steady-state walking. The great majority of studies, however are related to severe forms of PD patients (phases > = 3 of Hoehn and Yahr scale), where locomotor abnormalities are clearly manifested. Goal of the present study was to quantitatively describe locomotor symptoms in subjects with mild PD. Accordingly, a multitask protocol involving instrumental analysis of steady-state linear walking, initiation of gait, and turning while walking was applied to a group of patients with idiopathic PD in their early clinical stage (phases 1 and 2 of Hoehn and Yahr scale), as well as in age-matched elderly controls. Kinematic, kinetic, and myoelectric measures were obtained by optoelectronic motion analysis, force platform, and telemetric electromyography. Results in PD patients showed a tendency to bradykinetic gait, with reduction of walking speed and cadence. Impairments of gait initiation consisted in reduction of the backward shift of the center of pressure (CoP) and prolongation of the stepping phase. Alterations of the turning task were more consistent and included delayed reorientation of the head toward the new direction, altered head-upper trunk rotational strategy, and adoption of a greater number of steps to complete the turning. It is concluded that patients in the early stage of PD reveal mild alterations of steady-state linear walking and more significant anomalies in the transitional conditions, especially during changes in the travel direction. Quantitative analysis of nonstationary locomotor tasks might be a potentially useful starting point for further studies on the pathophysiology of PD.

  7. Maturation of Executive Functioning Skills in Early Sequential Bilingualism

    Science.gov (United States)

    Kalashnikova, Marina; Mattock, Karen

    2014-01-01

    Previous research has demonstrated that being bilingual from birth is advantageous for the development of skills of social cognition, executive functioning, and metalinguistic awareness due to bilingual children's extensive experience of processing and manipulating two linguistic systems. The present study investigated whether these cognitive…

  8. The Development of Executive Function and Language Skills in the Early School Years

    Science.gov (United States)

    Gooch, Debbie; Thompson, Paul; Nash, Hannah M.; Snowling, Margaret J.; Hulme, Charles

    2016-01-01

    Background: The developmental relationships between executive functions (EF) and early language skills are unclear. This study explores the longitudinal relationships between children's early EF and language skills in a sample of children with a wide range of language abilities including children at risk of dyslexia. In addition, we investigated…

  9. The Development of Executive Function and Language Skills in the Early School Years

    Science.gov (United States)

    Gooch, Debbie; Thompson, Paul; Nash, Hannah M.; Snowling, Margaret J.; Hulme, Charles

    2016-01-01

    Background: The developmental relationships between executive functions (EF) and early language skills are unclear. This study explores the longitudinal relationships between children's early EF and language skills in a sample of children with a wide range of language abilities including children at risk of dyslexia. In addition, we investigated…

  10. Programming of hippocampal structure and function by early-life stress: Opportunities for nutritional intervention

    NARCIS (Netherlands)

    Naninck, E.F.G.

    2015-01-01

    Early-life is a critical developmental phase during which brain structure and function are shaped 'for life'. When early-life is disturbed by stress-exposure, this lastingly programs our brains and is associated with impaired cognition and predisposition to psychopathology in adulthood.

  11. Can Parents' Involvement in Children's Education Offset the Effects of Early Insensitivity on Academic Functioning?

    Science.gov (United States)

    Monti, Jennifer D.; Pomerantz, Eva M.; Roisman, Glenn I.

    2014-01-01

    Data from the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development (N = 1,312) were analyzed to examine whether the adverse effects of early insensitive parenting on children's academic functioning can be offset by parents' later involvement in children's education. Observations of mothers' early…

  12. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Chang, Chan-Jung; Mitra, Koyel; Koya, Mariko; Velho, Michelle; Desprat, Romain; Lenz, Jack; Bouhassira, Eric E

    2011-01-01

    We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.

  13. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Chan-Jung Chang

    Full Text Available We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.

  14. Significance and Therapeutic Value of miRNAs in Embryonal Neural Tumors

    Directory of Open Access Journals (Sweden)

    Tarek Shalaby

    2014-05-01

    Full Text Available Embryonal tumors of the nervous system are the leading cause of childhood cancer-related morbidity and mortality. Medulloblastoma, supratentorial primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumor and neuroblastoma account for more than 20% of childhood malignancies and typify the current neural embryonal tumor model in pediatric oncology. Mechanisms driving the formation of these tumors point towards impaired differentiation of neuronal and neuron-associated cells during the development of the nervous system as an important factor. The importance of microRNAs (miRNAs for proper embryonic cell function has been confirmed and their aberrant expressions have been linked to tumor development. The role of miRNAs in controlling essential regulators of key pathways implicated in tumor development makes their use in diagnostics a powerful tool to be used for early detection of cancer, risk assessment and prognosis, as well as for the design of innovative therapeutic strategies. In this review we focus on the significance of miRNAs involved in the biology of embryonal neural tumors, delineate their clinical significance and discuss their potential as a novel therapeutic target.

  15. Low oxygen levels slow embryonic development of Limulus polyphemus

    DEFF Research Database (Denmark)

    Funch, Peter; Wang, Tobias; Pertoldi, Cino

    2016-01-01

    The American horseshoe crab Limulus polyphemus typically spawns in the upper intertidal zone, where the developing embryos are exposed to large variations in abiotic factors such as temperature, humidity, salinity, and oxygen, which affect the rate of development. It has been shown that embryonic...... development is slowed at both high and low salinities and temperatures, and that late embryos close to hatching tolerate periodic hypoxia. In this study we investigated the influence of hypoxia on both early and late embryonic development in L. polyphemus under controlled laboratory conditions. Embryos were...... pronounced hypoxia in later embryonic developmental stages, but also in earlier, previously unexplored, developmental stages....

  16. Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality

    DEFF Research Database (Denmark)

    Buchou, Thierry; Vernet, Muriel; Blond, Olivier

    2003-01-01

    Protein kinase CK2 is a ubiquitous protein kinase implicated in proliferation and cell survival. Its regulatory beta subunit, CK2beta, which is encoded by a single gene in mammals, has been suspected of regulating other protein kinases. In this work, we show that knockout of the CK2beta gene in m....... Thus, our study demonstrates that in mammals, CK2beta is essential for viability at the cellular level, possibly because it acquired new functions during evolution.......Protein kinase CK2 is a ubiquitous protein kinase implicated in proliferation and cell survival. Its regulatory beta subunit, CK2beta, which is encoded by a single gene in mammals, has been suspected of regulating other protein kinases. In this work, we show that knockout of the CK2beta gene...

  17. Executive Functioning Shows Differential Maturation From Early to Late Adolescence : Longitudinal Findings From a TRAILS Study

    NARCIS (Netherlands)

    Boelema, Sarai R.; Harakeh, Zeena; Ormel, Johan; Hartman, Catharina A.; Vollebergh, Wilma A. M.; van Zandvoort, Martine J. E.

    2014-01-01

    Objective: Maturation of executive functioning (EF) is topical, especially in relation to adolescence, yet longitudinal research covering early and late adolescence is lacking. This, however, is a prerequisite for drawing conclusions on normal cognitive development, and understanding deviant maturat

  18. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors.

    Science.gov (United States)

    Takayama, Naoya; Nishikii, Hidekazu; Usui, Joichi; Tsukui, Hiroko; Sawaguchi, Akira; Hiroyama, Takashi; Eto, Koji; Nakauchi, Hiromitsu

    2008-06-01

    Human embryonic stem cells (hESCs) could potentially represent an alternative source for blood transfusion therapies and a promising tool for studying the ontogeny of hematopoiesis. When we cultured hESCs on either C3H10T1/2 or OP-9 cells to facilitate hematopoiesis, we found that exogenous administration of vascular endothelial growth factor promoted the emergence of sac-like structures, which we named embryonic stem cell-derived sacs (ES-sacs). These ES-sacs consisted of multiple cysts demarcated by cellular monolayers that retained some of the properties of endothelial cells. The spherical cells inside ES-sacs expressed primarily CD34, along with VE-cadherin, CD31, CD41a, and CD45, and were able to form hematopoietic colonies in semisolid culture and to differentiate into mature megakaryocytes by day 24 in the presence of thrombopoietin. Apparently, ES-sacs provide a suitable environment for hematopoietic progenitors. Relatively large numbers of mature megakaryocytes could be induced from the hematopoietic progenitors within ES-sacs, which were then able to release platelets that displayed integrin alpha IIb beta 3 activation and spreading in response to ADP or thrombin. This novel protocol thus provides a means of generating platelets from hESCs, which could serve as the basis for efficient production of platelets for clinical transfusion and studies of thrombopoiesis.

  19. Relationship between macular pigment and visual function in subjects with early age-related macular degeneration

    OpenAIRE

    Akuffo, Kwadwo Owusu; Nolan, John M.; Peto, Tunde; Stack, Jim; Leung, Irene; Corcoran, Laura; Beatty, Stephen

    2016-01-01

    Purpose To investigate the relationship between macular pigment (MP) and visual function in subjects with early age-related macular degeneration (AMD). Methods 121 subjects with early AMD enrolled as part of the Central Retinal Enrichment Supplementation Trial (CREST; ISRCTN13894787) were assessed using a range of psychophysical measures of visual function, including best corrected visual acuity (BCVA), letter contrast sensitivity (CS), mesopic and photopic CS, mesopic and photopic glare disa...

  20. Effects of early psychosocial deprivation on the development of memory and executive function

    Directory of Open Access Journals (Sweden)

    Karen J Bos

    2009-09-01

    Full Text Available This study investigated the effects of early institutional care on memory and executive functioning. Subjects were participants in the Bucharest Early Intervention Project (BEIP and included institutionalized children, children with a history of institutionalization who were assigned to a foster care intervention, and community children in Bucharest, Romania. Memory and executive functioning were assessed at the age of eight years using the Cambridge Neuropsychological Test and Automated Battery (CANTAB. As expected, children with a history of early institutional care performed worse on measures of both visual memory and executive functioning compared to their peers without a history of institutional care. In comparing children randomly assigned to the foster care intervention with their peers who had continued care in the institution, initial comparisons did not show significant differences on any of the memory or executive functioning outcomes. However, for one of the measures of executive functioning, after controlling for birth weight, head circumference, and duration of time spent in early institutional care, the foster care intervention was a significant predictor of scores. These results support and extend previous findings of deficits in memory and executive functioning among school-age children with a history of early deprivation due to institutional care. This study has implications for the millions of children who continue to experience the psychosocial deprivation associated with early institutional care.

  1. THE ANALYSIS OF CHANGES AND INFLUENCING FACTORS OF EARLY POSTTHORACOTOMY PULMONARY FUNCTION

    Institute of Scientific and Technical Information of China (English)

    崔玉尚; 张志庸; 徐协群

    2003-01-01

    Objective. To investigate the changes and influencing factors of early postoperative pulmonary functionof thoracotomy.Methods. Pre-and early postoperative pulmonary function was studied in 64 consecutive cases withoptimal thoracotomy. Pain assessment was done before pulmonary function test, and the chief complaintsof patients were recorded after the procedure. The changing curves of pulmonary function were done andthe differences associated with groups, surgical styles, pain assessment, epidural analgesia, chief com-plaint and preoperative conditions were analyzed.Results. Pulmonary function was severely lowered to about 40% of the base line on the first day,and it was rehabilitated to about 60% of the base line on the eighth day. There was a greater gradienton the recovery curve on the 3rd and 4th days. Epidural analgesia was able to improve pain relaxationand pulmonary function in some degree. Single-factor analysis showed that postoperative pain, postopera-tive day and surgical style were the significant influencing factors for early postoperative pulmonary func-tion. By multiple-factor analysis, preoperative pulmonary function, age and postoperative pain were themain factors, while surgical style had only weak effect on it.Conclusions. Early postoperative pulmonary function is severely impaired by thoracotomy. It rehabili-tate gradually with time. Improvement of preoperative pulmonary function, reducing surgical procedure in-juries, especially injury to respiratory muscle system, and enough postoperative pain relief are the mostimportant means that would reduce pulmonary function impairment and consequently reduce postoperativepulmonary complications.

  2. Qualitative and quantitative proteomic profiling of cripto(-/-) embryonic stem cells by means of accurate mass LC-MS analysis.

    Science.gov (United States)

    Chambery, Angela; Vissers, Johannes P C; Langridge, James I; Lonardo, Enza; Minchiotti, Gabriella; Ruvo, Menotti; Parente, Augusto

    2009-02-01

    Cripto is one of the key regulators of embryonic stem cells (ESCs) differentiation into cardiomyocites vs neuronal fate. Cripto(-/-) murine ESCs have been utilized to investigate the molecular mechanisms underlying early events of mammalian lineage differentiation. 2D/LC-MS/MS and a label-free LC-MS approaches were used to qualitatively and quantitatively profile the cripto(-/-) ESC proteome, providing an integral view of the alterations induced in stem cell functions by deleting the cripto gene.

  3. Functional differences in emotion processing during adolescence and early adulthood.

    Science.gov (United States)

    Vink, Matthijs; Derks, Jolanda M; Hoogendam, Janna Marie; Hillegers, Manon; Kahn, René S

    2014-05-01

    Adolescence is a transitional period between childhood and adulthood and is characterized by emotional instability. Underlying this behavior may be an imbalance between the limbic subcortical areas and the prefrontal cortex. Here, we investigated differences in these regions during adolescence and young adulthood. Fifty subjects aged 10 to 24 viewed and rated neutral, negative, and positive pictures (IAPS: International Affective Picture System), while being scanned with functional MRI. Only those trials in which there was a match between the subject's response and the IAPS rating were included in the analyses. Task performance (matching accuracy, reaction times) did not differ across age. Activity in the amygdala and hippocampus decreased with age when processing emotional salient stimuli versus neutral stimuli. In contrast, activation in the ventrolateral prefrontal cortex increased with age. Importantly, we show for the first time that these age-related changes are paralleled by an increase in functional coupling of the amygdala and hippocampus with the orbitofrontal cortex and ventrolateral prefrontal cortex. These findings are in line with the general notion that brain development from childhood to adulthood is characterized by a gradual increase in frontal control over subcortical regions. Understanding these developmental changes is important as these may underlie typical adolescent behavior.

  4. doublesex functions early and late in gustatory sense organ development.

    Science.gov (United States)

    Mellert, David J; Robinett, Carmen C; Baker, Bruce S

    2012-01-01

    Somatic sexual dimorphisms outside of the nervous system in Drosophila melanogaster are largely controlled by the male- and female-specific Doublesex transcription factors (DSX(M) and DSX(F), respectively). The DSX proteins must act at the right times and places in development to regulate the diverse array of genes that sculpt male and female characteristics across a variety of tissues. To explore how cellular and developmental contexts integrate with doublesex (dsx) gene function, we focused on the sexually dimorphic number of gustatory sense organs (GSOs) in the foreleg. We show that DSX(M) and DSX(F) promote and repress GSO formation, respectively, and that their relative contribution to this dimorphism varies along the proximodistal axis of the foreleg. Our results suggest that the DSX proteins impact specification of the gustatory sensory organ precursors (SOPs). DSX(F) then acts later in the foreleg to regulate gustatory receptor neuron axon guidance. These results suggest that the foreleg provides a unique opportunity for examining the context-dependent functions of DSX.

  5. Physiopathology of human embryonic implantation: clinical incidences.

    Directory of Open Access Journals (Sweden)

    Pauline Demailly

    2010-01-01

    Full Text Available Embryo implantation consists of a series of events promoting the invasion of the endometrium and then the uterine arterial system by the extra-embryonic trophoblast. In order for this semi-heterologous implantation to succeed, the endometrium has to first undergo a number of structural and biochemical changes (decidualization. The decidua's various constituents subsequently play a role in the embryonic implantation. The third step is the transformation of the uterine vascular system and the growth of the placenta, which will provide the foetoplacental unit with nutrients. Several physiopathological aspects will be discussed: 1 the implantation window, regulated by maternal and embryonic hormonal secretions and thus influenced by any defects in the latter: dysharmonic luteal phase, 21-hydroxylase block, abnormal integrin expression, 2 the successive trophoblast invasions of uterine vessels which, when defective, lead to early embryo loss or late-onset vascular pathologies, as preeclampsia, 3 the pregnancy's immunological equilibrium, with a spontaneously tolerated semi-allogeneic implant, 4 the impact of pro-coagulant factors (thrombophilia on the pregnancy's progression, 5 the environment of the uterus, ranging from hydrosalpinx to uterine contractions. In summary, the least anatomical or physiological perturbation can interfere with human embryonic implantation - a very particular phenomenon and a true biological paradox.

  6. Early Childcare, Executive Functioning, and the Moderating Role of Early Stress Physiology

    Science.gov (United States)

    Berry, Daniel; Willoughby, Michael T.; Blair, Clancy; Ursache, Alexandra; Granger, Douglas A.

    2014-01-01

    Intervention studies indicate that children's childcare experiences can be leveraged to support the development of executive functioning (EF). The role of more normative childcare experiences is less clear. Increasingly, theory and empirical work suggest that individual differences in children's physiological stress systems may be associated with…

  7. Embryonic anti-aging niche.

    Science.gov (United States)

    Conboy, Irina M; Yousef, Hanadie; Conboy, Michael J

    2011-05-01

    Although functional organ stem cells persist in the old, tissue damage invariably overwhelms tissue repair, ultimately causing the demise of an organism. The poor performance of stem cells in an aged organ, such as skeletal muscle, is caused by the changes in regulatory pathways such as Notch, MAPK and TGF-β, where old differentiated tissue actually inhibits its own regeneration. This perspective analyzes the current literature on regulation of organ stem cells by their young versus old niches and suggests that determinants of healthy and prolonged life might be under a combinatorial control of cell cycle check point proteins and mitogens, which need to be tightly balanced in order to promote tissue regeneration without tumor formation. While responses of adult stem cells are regulated extrinsically and age-specifically, we put forward experimental evidence suggesting that embryonic cells have an intrinsic youthful barrier to aging and produce soluble pro-regenerative proteins that signal the MAPK pathway for rejuvenating myogenesis. Future identification of this activity will improve our understanding of embryonic versus adult regulation of tissue regeneration suggesting novel strategies for organ rejuvenation. Comprehensively, the current intersection of aging and stem cell science indicates that if the age-imposed decline in the regenerative capacity of stem cells was understood, the debilitating lack of organ maintenance in the old could be ameliorated and perhaps, even reversed.

  8. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Ahmed Kamel El-Sayed

    2014-11-01

    Full Text Available Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1 and Rex-1 (ZFP-42, zinc finger protein 42. Using embryonic stem cells (ESCs conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.

  9. Genotypic and functional properties of early infant HIV-1 envelopes

    Directory of Open Access Journals (Sweden)

    Sullivan John L

    2011-08-01

    Full Text Available Abstract Background Understanding the properties of HIV-1 variants that are transmitted from women to their infants is crucial to improving strategies to prevent transmission. In this study, 162 full-length envelope (env clones were generated from plasma RNA obtained from 5 HIV-1 Clade B infected mother-infant pairs. Following extensive genotypic and phylogenetic analyses, 35 representative clones were selected for functional studies. Results Infant quasispecies were highly homogeneous and generally represented minor maternal variants, consistent with transmission across a selective bottleneck. Infant clones did not differ from the maternal in env length, or glycosylation. All infant variants utilized the CCR5 co-receptor, but were not macrophage tropic. Relatively high levels (IC50 ≥ 100 μg/ml of autologous maternal plasma IgG were required to neutralize maternal and infant viruses; however, all infant viruses were neutralized by pooled sera from HIV-1 infected individuals, implying that they were not inherently neutralization-resistant. All infant viruses were sensitive to the HIV-1 entry inhibitors Enfuvirtide and soluble CD4; none were resistant to Maraviroc. Sensitivity to human monoclonal antibodies 4E10, 2F5, b12 and 2G12 varied. Conclusions This study provides extensive characterization of the genotypic and functional properties of HIV-1 env shortly after transmission. We present the first detailed comparisons of the macrophage tropism of infant and maternal env variants and their sensitivity to Maraviroc, the only CCR5 antagonist approved for therapeutic use. These findings may have implications for improving approaches to prevent mother-to-child HIV-1 transmission.

  10. Early

    Directory of Open Access Journals (Sweden)

    Kamel Abd Elaziz Mohamed

    2014-04-01

    Conclusion: Early PDT is recommended for patients who require prolonged tracheal intubation in the ICU as outcomes like the duration of mechanical ventilation length of ICU stay and hospital stay were significantly shorter in early tracheostomy.

  11. Functional Analysis of CP2-Like Domain and SAM-Like Domain in TFCP2L1, Novel Pluripotency Factor of Embryonic Stem Cells.

    Science.gov (United States)

    Kim, Chang Min; Jang, Tae-Ho; Park, Hyun Ho

    2016-06-01

    TFCP2L1 is a transcription factor that facilitates establishment and maintenance of pluripotency in embryonic stem cells by forming a complex transcriptional network with other transcription factors (OCT4, SOX2, and NANOG). TFCP2L1 contains two distinct domains, the CP2-like domain at the N-terminus and the SAM-like domain at the C-terminus. In this study, we found that TFCP2L1 is hexamerized in solution via the C-terminal SAM-like domain. We also found that homo-oligomerization of SAM-like domain is dependent on the concentration of the proteins. Finally, we found that TFCP2L1 binds directly to DNA via the N-terminal CP2-like domain.

  12. ATAD3B is a human embryonic stem cell specific mitochondrial protein, re-expressed in cancer cells, that functions as dominant negative for the ubiquitous ATAD3A.

    Science.gov (United States)

    Merle, Nicolas; Féraud, Olivier; Gilquin, Benoit; Hubstenberger, Arnaud; Kieffer-Jacquinot, Sylvie; Assard, Nicole; Bennaceur-Griscelli, Annelise; Honnorat, Jérôme; Baudier, Jacques

    2012-07-01

    Here we report on the identification of a human pluripotent embryonic stem cell (hESC) specific mitochondrial protein that is re-expressed in cancer cells, ATAD3B. ATAD3B belongs to the AAA+ ATPase ATAD3 protein family of mitochondrial proteins specific to multicellular eukaryotes. Using loss- and gain-of-function approaches, we show that ATAD3B associates with the ubiquitous ATAD3A species, negatively regulates the interaction of ATAD3A with matrix nucleoid complexes and contributes to a mitochondria fragmentation phenotype. We conclude that ATAD3B is a negative regulator of ATAD3A and may function as an adaptor of mitochondrial homeostasis and metabolism in hESCs and cancer cells.

  13. Embryonic senescence and laminopathies in a progeroid zebrafish model.

    Directory of Open Access Journals (Sweden)

    Eriko Koshimizu

    Full Text Available BACKGROUND: Mutations that disrupt the conversion of prelamin A to mature lamin A cause the rare genetic disorder Hutchinson-Gilford progeria syndrome and a group of laminopathies. Our understanding of how A-type lamins function in vivo during early vertebrate development through aging remains limited, and would benefit from a suitable experimental model. The zebrafish has proven to be a tractable model organism for studying both development and aging at the molecular genetic level. Zebrafish show an array of senescence symptoms resembling those in humans, which can be targeted to specific aging pathways conserved in vertebrates. However, no zebrafish models bearing human premature senescence currently exist. PRINCIPAL FINDINGS: We describe the induction of embryonic senescence and laminopathies in zebrafish harboring disturbed expressions of the lamin A gene (LMNA. Impairments in these fish arise in the skin, muscle and adipose tissue, and sometimes in the cartilage. Reduced function of lamin A/C by translational blocking of the LMNA gene induced apoptosis, cell-cycle arrest, and craniofacial abnormalities/cartilage defects. By contrast, induced cryptic splicing of LMNA, which generates the deletion of 8 amino acid residues lamin A (zlamin A-Δ8, showed embryonic senescence and S-phase accumulation/arrest. Interestingly, the abnormal muscle and lipodystrophic phenotypes were common in both cases. Hence, both decrease-of-function of lamin A/C and gain-of-function of aberrant lamin A protein induced laminopathies that are associated with mesenchymal cell lineages during zebrafish early development. Visualization of individual cells expressing zebrafish progerin (zProgerin/zlamin A-Δ37 fused to green fluorescent protein further revealed misshapen nuclear membrane. A farnesyltransferase inhibitor reduced these nuclear abnormalities and significantly prevented embryonic senescence and muscle fiber damage induced by zProgerin. Importantly, the adult

  14. Cognitive functioning in mathematical problem solving during early adolescence

    Science.gov (United States)

    Collis, Kevin F.; Watson, Jane M.; Campbell, K. Jennifer

    1993-12-01

    Problem-solving in school mathematics has traditionally been considered as belonging only to the concrete symbolic mode of thinking, the mode which is concerned with making logical, analytical deductions. Little attention has been given to the place of the intuitive processes of the ikonic mode. The present study was designed to explore the interface between logical and intuitive processes in the context of mathematical problem solving. Sixteen Year 9 and 10 students from advanced mathematics classes were individually assessed while they solved five mathematics problems. Each student's problem-solving path, for each problem, was mapped according to the type of strategies used. Strategies were broadly classified into Ikonic (IK) or Concrete Symbolic (CS) categories. Students were given two types of problems to solve: (i) those most likely to attract a concrete symbolic approach; and (ii) problems with a significant imaging or intuitive component. Students were also assessed as to the vividness and controllability of their imaging ability, and their creativity. Results indicated that the nature of the problem is a basic factor in determining the type of strategy used for its solution. Students consistently applied CS strategies to CS problems, and IK strategies to IK problems. In addition, students tended to change modes significantly more often when solving CS-type problems than when solving IK-type problems. A switch to IK functioning appeared to be particularly helpful in breaking an unproductive set when solving a CS-type problem. Individual differences in strategy use were also found, with students high on vividness of imagery using IK strategies more frequently than students who were low on vividness. No relationship was found between IK strategy use and either students' degree of controllability of imagery or their level of creativity. The instructional implications of the results are discussed.

  15. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency

    DEFF Research Database (Denmark)

    Martin Gonzalez, Javier; Morgani, Sophie M; Bone, Robert A;

    2016-01-01

    Embryonic stem cells (ESCs) are cell lines derived from the mammalian pre-implantation embryo. Here we assess the impact of derivation and culture conditions on both functional potency and ESC transcriptional identity. Individual ESCs cultured in either two small-molecule inhibitors (2i....... Conversely, the transcriptome of serum-cultured ESCs correlated with later stages of development (E4.5), at which point embryonic cells are more restricted in their developmental potential. Thus, ESC culture systems are not equivalent, but support cell types that resemble distinct developmental stages. Cells......) or with knockout serum replacement (KOSR), but not serum, can generate high-level chimeras regardless of how these cells were derived. ESCs cultured in these conditions showed a transcriptional correlation with early pre-implantation embryos (E1.5-E3.5) and contributed to development from the 2-cell stage...

  16. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency

    DEFF Research Database (Denmark)

    Martin Gonzalez, Javier; Morgani, Sophie M; Bone, Robert A

    2016-01-01

    Embryonic stem cells (ESCs) are cell lines derived from the mammalian pre-implantation embryo. Here we assess the impact of derivation and culture conditions on both functional potency and ESC transcriptional identity. Individual ESCs cultured in either two small-molecule inhibitors (2i....... Conversely, the transcriptome of serum-cultured ESCs correlated with later stages of development (E4.5), at which point embryonic cells are more restricted in their developmental potential. Thus, ESC culture systems are not equivalent, but support cell types that resemble distinct developmental stages. Cells......) or with knockout serum replacement (KOSR), but not serum, can generate high-level chimeras regardless of how these cells were derived. ESCs cultured in these conditions showed a transcriptional correlation with early pre-implantation embryos (E1.5-E3.5) and contributed to development from the 2-cell stage...

  17. Nonsense-Mediated RNA Decay Influences Human Embryonic Stem Cell Fate

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lou

    2016-06-01

    Full Text Available Nonsense-mediated RNA decay (NMD is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising the possibility that NMD must be downregulated to permit differentiation. Loss- and gain-of-function experiments in human embryonic stem cells (hESCs demonstrated that, indeed, NMD downregulation is essential for efficient generation of definitive endoderm. RNA-seq analysis identified NMD target transcripts induced when NMD is suppressed in hESCs, including many encoding signaling components. This led us to test the role of TGF-β and BMP signaling, which we found NMD acts through to influence definitive endoderm versus mesoderm fate. Our results suggest that selective RNA decay is critical for specifying the developmental fate of specific human embryonic cell lineages.

  18. Atypical Lexical/Semantic Processing in High-Functioning Autism Spectrum Disorders without Early Language Delay

    Science.gov (United States)

    Kamio, Yoko; Robins, Diana; Kelley, Elizabeth; Swainson, Brook; Fein, Deborah

    2007-01-01

    Although autism is associated with impaired language functions, the nature of semantic processing in high-functioning pervasive developmental disorders (HFPDD) without a history of early language delay has been debated. In this study, we aimed to examine whether the automatic lexical/semantic aspect of language is impaired or intact in these…

  19. Deficient maturation of aspects of attention and executive functions in early onset schizophrenia

    DEFF Research Database (Denmark)

    Jepsen, Jens Richardt M; Fagerlund, Birgitte; Pagsberg, Anne Katrine

    2010-01-01

    -organic, non-affective psychoses (EOP) (N = 11). Speed of processing of executive functions, set shifting, and attention improved significantly in the healthy controls and reflected continuous functional maturation during late adolescence and early adulthood. The developmental progression of attention and set...

  20. Romantic Functioning and Depressive Symptoms among Early Adolescent Girls: The Moderating Role of Parental Emotional Availability

    Science.gov (United States)

    Steinberg, Sara J.; Davila, Joanne

    2008-01-01

    This study tested associations between adolescent romantic functioning and depressive symptoms and predicted that adolescents with emotionally unavailable parents would be most likely to show an association between poor romantic functioning and depressive symptoms. Data collected from 80 early adolescent nonreferred girls (average age of 13.45; SD…

  1. A Longitudinal Study of Forms and Functions of Aggressive Behavior in Early Childhood

    Science.gov (United States)

    Murray-Close, Dianna; Ostrov, Jamie M.

    2009-01-01

    The purpose of this study was to investigate the distinct forms (i.e., physical and relational) and functions (i.e., proactive and reactive) of aggressive behavior during early childhood (n = 101; M age = 45.09 months). Forms, but not functions, of aggressive behavior were stable over time. A number of contributors to aggression were associated…

  2. The Relationship between Media Multitasking and Executive Function in Early Adolescents

    Science.gov (United States)

    Baumgartner, Susanne E.; Weeda, Wouter D.; van der Heijden, Lisa L.; Huizinga, Mariëtte

    2014-01-01

    The increasing prevalence of media multitasking among adolescents is concerning because it may be negatively related to goal-directed behavior. This study investigated the relationship between media multitasking and executive function in 523 early adolescents (aged 11-15; 48% girls). The three central components of executive functions (i.e.,…

  3. Specific early number skills mediate the association between executive functioning skills and mathematics achievement.

    Science.gov (United States)

    Fuhs, Mary Wagner; Hornburg, Caroline Byrd; McNeil, Nicole M

    2016-08-01

    A growing literature reports significant associations between children's executive functioning skills and their mathematics achievement. The purpose of this study was to examine if specific early number skills, such as quantity discrimination, number line estimation, number sets identification, fast counting, and number word comprehension, mediate this association. In 141 kindergarteners, cross-sectional analyses controlling for IQ revealed that number sets identification (but not the other early number skills) mediated the association between executive functioning skills and mathematics achievement. A longitudinal analysis showed that higher executive functioning skills predicted higher number sets identification in kindergarten, which in turn predicted growth in mathematics achievement from kindergarten to second grade. Results suggest that executive functioning skills may help children quickly and accurately identify number sets as wholes instead of getting distracted by the individual components of the sets, and this focus on sets, in turn, may help children learn more advanced mathematics concepts in the early elementary grades. (PsycINFO Database Record

  4. Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis

    Science.gov (United States)

    Wolf, Anja; Aggio, Julian; Campbell, Clyde; Wright, Francis; Marquez, Gabriel; Traver, David; Stachura, David L.

    2017-01-01

    Haematopoiesis is an essential process in early vertebrate development that occurs in different distinct spatial locations in the embryo that shift over time. These different sites have distinct functions: in some anatomical locations specific hematopoietic stem and progenitor cells (HSPCs) are generated de novo. In others, HSPCs expand. HSPCs differentiate and renew in other locations, ensuring homeostatic maintenance. These niches primarily control haematopoiesis through a combination of cell-to-cell signalling and cytokine secretion that elicit unique biological effects in progenitors. To understand the molecular signals generated by these niches, we report the generation of caudal hematopoietic embryonic stromal tissue (CHEST) cells from 72-hours post fertilization (hpf) caudal hematopoietic tissue (CHT), the site of embryonic HSPC expansion in fish. CHEST cells are a primary cell line with perivascular endothelial properties that expand hematopoietic cells in vitro. Morphological and transcript analysis of these cultures indicates lymphoid, myeloid, and erythroid differentiation, indicating that CHEST cells are a useful tool for identifying molecular signals critical for HSPC proliferation and differentiation in the zebrafish. These findings permit comparison with other temporally and spatially distinct haematopoietic-supportive zebrafish niches, as well as with mammalian haematopoietic-supportive cells to further the understanding of the evolution of the vertebrate hematopoietic system. PMID:28300168

  5. Embryonic stem cells: prospects for developmental biology and cell therapy.

    Science.gov (United States)

    Wobus, Anna M; Boheler, Kenneth R

    2005-04-01

    Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.

  6. [Early identification of impaired renal function in obese children with non-alcoholic fatty liver disease].

    Science.gov (United States)

    Lin, Hu; Fu, Junfen; Chen, Xuefeng; Huang, Ke; Wu, Wei; Liang, Li

    2013-07-01

    To early assess the impaired renal function in the obese children with non-alcoholic fatty liver disease (NAFLD) and to identify the relationship between NAFLD and impairment of renal function. Three hundred and eighty-six obese children were enrolled and divided into NAFLD group and simple obesity group (control) according to the diagnostic criteria. Clinical biochemical parameters and early impaired renal functions were evaluated and compared. Among all patients 234 obese children aged over 10 y were subdivided into 3 groups: NAFLD combined with metabolic syndrome (NAFLD+MS) group, NAFLD group and simple obesity group (control), and the above indexes were compared among 3 groups. The urinary microalbumin levels in NAFLD, NAFLD+MS (>10y) and NAFLD groups (>10y) were significantly higher than those in controls. Additionally, the positive correlations of urinary microalbumin with systolic pressure, triglyceride and 2h-postprandial blood glucose were found. There is early renal dysfunction in children with NAFLD and those accompanied with MS, which may be associated with hypertension and glucose-lipid metabolic disorder. The results indicate that NAFLD is not only an early sign of early impaired renal function but also an early stage of chronic kidney disease (CKD) in obese children.

  7. Embryonic stem cells: An alternative approach to developmental toxicity testing

    Directory of Open Access Journals (Sweden)

    S Tandon

    2012-01-01

    Full Text Available Stem cells in the body have a unique ability to renew themselves and give rise to more specialized cell types having functional commitments. Under specified growth conditions, these cell types remain unspecialized but can be triggered to become specific cell type of the body such as heart, nerve, or skin cells. This ability of embryonic stem cells for directed differentiation makes it a prominent candidate as a screening tool in revealing safer and better drugs. In addition, genetic variations and birth defects caused by mutations and teratogens affecting early human development could also be studied on this basis. Moreover, replacement of animal testing is needed because it involves ethical, legal, and cost issues. Thus, there is a strong requirement for validated and reliable, if achievable, human stem cell-based developmental assays for pharmacological and toxicological screening.

  8. Embryonic stem cells: An alternative approach to developmental toxicity testing.

    Science.gov (United States)

    Tandon, S; Jyoti, S

    2012-04-01

    Stem cells in the body have a unique ability to renew themselves and give rise to more specialized cell types having functional commitments. Under specified growth conditions, these cell types remain unspecialized but can be triggered to become specific cell type of the body such as heart, nerve, or skin cells. This ability of embryonic stem cells for directed differentiation makes it a prominent candidate as a screening tool in revealing safer and better drugs. In addition, genetic variations and birth defects caused by mutations and teratogens affecting early human development could also be studied on this basis. Moreover, replacement of animal testing is needed because it involves ethical, legal, and cost issues. Thus, there is a strong requirement for validated and reliable, if achievable, human stem cell-based developmental assays for pharmacological and toxicological screening.

  9. Gene expression heterogeneities in embryonic stem cell populations

    DEFF Research Database (Denmark)

    Martinez Arias, Alfonso; Brickman, Joshua M

    2011-01-01

    Stem and progenitor cells are populations of cells that retain the capacity to populate specific lineages and to transit this capacity through cell division. However, attempts to define markers for stem cells have met with limited success. Here we consider whether this limited success reflects...... an intrinsic requirement for heterogeneity with stem cell populations. We focus on Embryonic Stem (ES) cells, in vitro derived cell lines from the early embryo that are considered both pluripotent (able to generate all the lineages of the future embryo) and indefinitely self renewing. We examine the relevance...... of recently reported heterogeneities in ES cells and whether these heterogeneities themselves are inherent requirements of functional potency and self renewal....

  10. Properties and applications of embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mouse embryonic stem (ES) cells are pluripotent cells derived from the early embryo and can be propagated stably in undifferentiated state in vitro. They retain the ability to differentiate into all cell types found in the embryonic and adult body in vivo, and can be induced to differentiate into many cell types under appropriate culture conditions in vitro. Using these properties, people have set up various differentiated systems of many cell types and tissues in vitro. Through analysis of these systems, one can identify novel bioactive factors and reveal mechanisms of cell differentiation and organogenesis. ES cell-derived differentiated cells can also be applied to cell transplantation therapy. In addition, we summarized the features and potential applications of human ES cells.

  11. OCT guided microinjections for mouse embryonic research

    Science.gov (United States)

    Larin, Kirill V.; Syed, Saba H.; Coughlin, Andrew J.; Wang, Shang; West, Jennifer L.; Dickinson, Mary E.; Larina, Irina V.

    2013-02-01

    Optical coherence tomography (OCT) is gaining popularity as live imaging tool for embryonic research in animal models. Recently we have demonstrated that OCT can be used for live imaging of cultured early mouse embryos (E7.5-E10) as well as later stage mouse embryos in utero (E12.5 to the end of gestation). Targeted delivery of signaling molecules, drugs, and cells is a powerful approach to study normal and abnormal development, and image guidance is highly important for such manipulations. Here we demonstrate that OCT can be used to guide microinjections of gold nanoshell suspensions in live mouse embryos. This approach can potentially be used for variety of applications such as guided injections of contrast agents, signaling molecules, pharmacological agents, cell transplantation and extraction, as well as other image-guided micromanipulations. Our studies also reveal novel potential for gold nanoshells in embryonic research.

  12. Probing Embryonic Stem Cell Autocrine and Paracrine Signaling Using Microfluidics

    Science.gov (United States)

    Przybyla, Laralynne; Voldman, Joel

    2012-07-01

    Although stem cell fate is traditionally manipulated by exogenously altering the cells' extracellular signaling environment, the endogenous autocrine and paracrine signals produced by the cells also contribute to their two essential processes: self-renewal and differentiation. Autocrine and/or paracrine signals are fundamental to both embryonic stem cell self-renewal and early embryonic development, but the nature and contributions of these signals are often difficult to fully define using conventional methods. Microfluidic techniques have been used to explore the effects of cell-secreted signals by controlling cell organization or by providing precise control over the spatial and temporal cellular microenvironment. Here we review how such techniques have begun to be adapted for use with embryonic stem cells, and we illustrate how many remaining questions in embryonic stem cell biology could be addressed using microfluidic technologies.

  13. Technology-aided assessment of sensori-motor function in early infancy

    Directory of Open Access Journals (Sweden)

    Alessandro G Allievi

    2014-10-01

    Full Text Available There is a pressing need for new techniques capable of providing accurate information about sensori-motor function during the first 2 years of childhood. Here we review current clinical methods and challenges for assessing motor function in early infancy, and discuss the potential benefits of applying technology-assisted methods. We also describe how the use of these tools with neuroimaging, and in particular functional magnetic resonance imaging (fMRI, can shed new light on the intra-cerebral processes underlying neurodevelopmental impairment. This knowledge is of particular relevance in the early infant brain which has an increased capacity for compensatory neural plasticity. Such tools could bring a wealth of knowledge about the underlying pathophysiological processes of diseases such as cerebral palsy; act as biomarkers to monitor the effects of possible therapeutic interventions; and provide clinicians with much needed early diagnostic information.

  14. Modified Da Chengqi granules improvement in immune function in early severe acute pancreatitis patients.

    Science.gov (United States)

    Jiang, D-L; Yang, J; Jiang, S-Y; Yuan, F-L; Gu, Y-L; Li, J-P; Pei, Z-J

    2016-01-01

    We investigated the role of modified Da Chengqi granules in improving immune function in early severe acute pancreatitis patients. Early severe acute pancreatitis patients who agreed to receive combined treatment of traditional Chinese and Western medicine were randomly assigned to the experimental or control group. All subjects received conventional therapy to support organ function. The experimental group also received modified Da Chengqi granules. Cytokine (interleukin-6, interleukin-10, and tumor necrosis factor-α) levels, immunological markers (HLA-DR, Treg, and Th1/Th2), urinary lactulose/mannitol ratio, and endotoxin levels were measured at 1, 3, 7, and 14 days after hospital admission. The total mortality rate was 11.69% (9/77), which was significantly lower in the experimental group [4.88% (2/41)] than in the control group [19.44% (7/36); χ(2) = 3.940, P Da Chengqi granules can improve immune function in early severe acute pancreatitis patients.

  15. Preparation of Au-polydopamine functionalized carbon encapsulated Fe₃O₄ magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen.

    Science.gov (United States)

    Ji, Lei; Yan, Tao; Li, Yan; Gao, Jian; Wang, Qi; Hu, Lihua; Wu, Dan; Wei, Qin; Du, Bin

    2016-02-12

    A novel carbon encapsulated Fe3O4 nanoparticles embedded in two-dimensional (2D) porous graphitic carbon nanocomposites (Fe3O4@C@PGC nanocomposites) were synthesized by situ synthesis strategy, which provided a sensor platform owing to a large aspect ratio and porous structure. Polydopamine (PDA) were modified on the surface of Fe3O4@C@PGC nanocomposites through self-polymerization of dopamine, acting as both the reductant and template for one-step synthesis of gold nanoparticles. The prepared Au/PDA/Fe3O4@C@PGC nanocomposites show ferromagnetic features, extremely excellent electron transfer, large specific surface area and excellent dispersing property. These are conducive to the electrochemical signal output and the immobilization of antibody. In this work, a highly label-free sensitive magnetic immunosensor was developed based on Au/PDA/Fe3O4@C@PGC nanocomposites for the detection of carcino-embryonic antigen (CEA). The magnetic glassy carbon electrode was used to fix the Au/PDA/Fe3O4@C@PGC nanocomposites with the help of magnetic force. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.001 ng/mL-20.0 ng/mL), a low detection limit (0.33 pg/mL), good reproducibility, selectivity and acceptable stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers.

  16. Preparation of Au-polydopamine functionalized carbon encapsulated Fe3O4 magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen

    Science.gov (United States)

    Ji, Lei; Yan, Tao; Li, Yan; Gao, Jian; Wang, Qi; Hu, Lihua; Wu, Dan; Wei, Qin; Du, Bin

    2016-01-01

    A novel carbon encapsulated Fe3O4 nanoparticles embedded in two-dimensional (2D) porous graphitic carbon nanocomposites (Fe3O4@C@PGC nanocomposites) were synthesized by situ synthesis strategy, which provided a sensor platform owing to a large aspect ratio and porous structure. Polydopamine (PDA) were modified on the surface of Fe3O4@C@PGC nanocomposites through self-polymerization of dopamine, acting as both the reductant and template for one-step synthesis of gold nanoparticles. The prepared Au/PDA/Fe3O4@C@PGC nanocomposites show ferromagnetic features, extremely excellent electron transfer, large specific surface area and excellent dispersing property. These are conducive to the electrochemical signal output and the immobilization of antibody. In this work, a highly label-free sensitive magnetic immunosensor was developed based on Au/PDA/Fe3O4@C@PGC nanocomposites for the detection of carcino-embryonic antigen (CEA). The magnetic glassy carbon electrode was used to fix the Au/PDA/Fe3O4@C@PGC nanocomposites with the help of magnetic force. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.001 ng/mL–20.0 ng/mL), a low detection limit (0.33 pg/mL), good reproducibility, selectivity and acceptable stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers. PMID:26868035

  17. Cytological observations on fertilization and early embryonic development in sea cucumber Apostichopus japonicus%刺参受精及早期胚胎发育过程的细胞学观察

    Institute of Scientific and Technical Information of China (English)

    谭杰; 孙慧玲; 高菲; 燕敬平; 董迎辉; 叶乃好; 王清印

    2012-01-01

    A series of characteristic cytological events during fertilization and early embryonic development in Apostichopus japonicus were studied by the fluorescence microscope with HOECHST 33258 stained. The results indicated that unfertilized mature eggs of A. japonicus were globular and remained at the metaphase of meiosis I. At water temperature of 22-23 ℃ and salinity 29,sperms quickly attached to the surface of the egg after mixing of sperms and eggs. At 12 min after insemination,the first meiosis is finished,with release of the first polar body. Most of fertilized eggs released the second polar bodies at 20 min after insemination. About 35 min,the male and the female pronuclei associated with each other after their chromosomes formed respectively in the center of egg. The first and second cleavages finished at 80 min and 100 min respectively in fast developing fertilized eggs. Polyspermy phenomena were observed in the fertilization process in A. japonicus.%采用HOECHST 33258染色荧光显微方法,对刺参成熟未受精卵以及受精过程中精子入卵、极体排放、雌雄原核的形成与结合、早期卵裂以及多精入卵等细胞学进行了研究.结果显示,刚产出的刺参成熟未受精卵呈圆形,核相处于第一次成熟分裂中期;在水温22~23℃、盐度29条件下进行受精,受精后12 min,完成第一次成熟分裂,释放第一极体;受精后20 min,大部分受精卵完成第二次成熟分裂,放出第二极体.受精后35 min,雌、雄原核开始在卵中央发生染色体联合;受精后80 min,部分受精卵完成第一次卵裂,受精后100 min,部分受精卵完成第二次卵裂.刺参在受精过程中存在极少数的多精入卵现象.

  18. A continued role for signaling functions in the early evolution of feathers.

    Science.gov (United States)

    Ruxton, Graeme D; Persons Iv, W Scott; Currie, Philip J

    2017-03-01

    Persons and Currie (2015) argued against either flight, thermoregulation, or signaling as a functional benefit driving the earliest evolution of feathers; rather, they favored simple feathers having an initial tactile sensory function, which changed to a thermoregulatory function as density increased. Here, we explore the relative merits of early simple feathers that may have originated as tactile sensors progressing instead toward a signaling, rather than (or in addition to) a thermoregulatory function. We suggest that signaling could act in concert with a sensory function more naturally than could thermoregulation. As such, the dismissal of a possible signaling function and the presumption that an initial sensory function led directly to a thermoregulatory function (implicit in the title "bristles before down") are premature. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Relationships between vocalization forms and functions in infancy: preliminary implications for early communicative assessment and intervention.

    Science.gov (United States)

    Iyer, Suneeti Nathani; Ertmer, David J

    2014-11-01

    This preliminary study explored relationships between form and function in prelinguistic vocalizations to increase our understanding of early communicative development and to provide potential clinical implications for early communicative assessment and intervention. Twenty typically developing infants-5 infants in each of 4 age groups, from 3 to 20 months of age-were included. Vocalizations from these infants had previously been categorized for their form (Nathani, Ertmer, & Stark, 2006) and function (Stark, Bernstein, & Demorest, 1993) characteristics. In the present study, cross-classification tabulations between form and function were conducted to examine relationships between vocalization types and their apparent uses. As anticipated, earlier developing forms were mostly associated with earlier developing functions, and later developing forms were mostly associated with later developing functions. However, there were some exceptions such that some forms were associated with a variety of functions, and vice versa. The results suggest that some forms are more tightly coupled to function than others in the prelinguistic and early linguistic period. Preliminary implications for developmental theory, future research, and clinical applications are discussed. Larger, longitudinal studies with typical and atypical populations and stricter methodological controls are needed to validate these findings.

  20. Executive Function Buffers the Association between Early Math and Later Academic Skills

    Directory of Open Access Journals (Sweden)

    Andrew D. Ribner

    2017-05-01

    Full Text Available Extensive evidence has suggested that early academic skills are a robust indicator of later academic achievement; however, there is mixed evidence of the effectiveness of intervention on academic skills in early years to improve later outcomes. As such, it is clear there are other contributing factors to the development of academic skills. The present study tests the role of executive function (EF (a construct made up of skills complicit in the achievement of goal-directed tasks in predicting 5th grade math and reading ability above and beyond math and reading ability prior to school entry, and net of other cognitive covariates including processing speed, vocabulary, and IQ. Using a longitudinal dataset of N = 1292 participants representative of rural areas in two distinctive geographical parts of the United States, the present investigation finds EF at age 5 strongly predicts 5th grade academic skills, as do cognitive covariates. Additionally, investigation of an interaction between early math ability and EF reveals the magnitude of the association between early math and later math varies as a function of early EF, such that participants who have high levels of EF can “catch up” to peers who perform better on assessments of early math ability. These results suggest EF is pivotal to the development of academic skills throughout elementary school. Implications for further research and practice are discussed.

  1. 胚胎期暴露手机辐射对雄性仔鼠生殖功能影响%Effect of mobile phone radiation during embryonic phase on reproductive function of male newborn mice

    Institute of Scientific and Technical Information of China (English)

    高辉; 裴银辉; 李锋; 孙君侠

    2012-01-01

    目的:探讨胚胎期暴露手机辐射对雄性仔鼠生殖功能影响.方法:建立胚胎期暴露手机辐射动物模型,将雄性仔鼠随机分为3组.饲养2个月后处死各组小鼠,分别测定各组实验动物睾丸体重系数、精子数量、精子存活率和精子活动率.结果:与对照组比较,胚胎期暴露不同制式手机辐射雄鼠体重系数和精子存活率之间差异不具有统计学意义;而精子数量和精子活动率低于对照组,且暴露于两种不同制式手机辐射组间差异不具有统计学意义.结论:胚胎期暴露手机辐射可致仔鼠精子数量减少,精子活动率降低.%Objective: To explore the effect of mobile phone radiation during embryonic phase on reproductive function of male newbom mice. Methods: Animal models exposure to mobile phone radiation during embryonic phase were established, then the male newborn mice were randomly divided into three groups. The male newborn mice were killed after two months, the testis - weight coefficient, sperm count, sperm survival rate, and sperm motility rate in the three groups were detected respectively. Results: There was no statistically significant difference in the testis -weight coefficient and sperm survival rate between control group and experimental group; but the sperm count and sperm motility rate in experimental group were lower than those in control group, and there was no statistically significant difference between two kinds of mobile phones. Conclusion; Exposure to mobile phone radiation during embryonic phase can reduce sperm count and sperm motility rate of newborn mice.

  2. Neonatal Desensitization Supports Long-Term Survival and Functional Integration of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in Rat Joint Cartilage Without Immunosuppression

    Science.gov (United States)

    Zhang, Shufang; Jiang, Yang Zi; Zhang, Wei; Chen, Longkun; Tong, Tong; Liu, Wanlu; Mu, Qin; Liu, Hua; Ji, Junfeng; Ouyang, Hong Wei

    2013-01-01

    Immunological response hampers the investigation of human embryonic stem cells (hESCs) or their derivates for tissue regeneration in vivo. Immunosuppression is often used after surgery, but exhibits side effects of significant weight loss and allows only short-term observation. The purpose of this study was to investigate whether neonatal desensitization supports relative long-term survival of hESC-derived mesenchymal stem cells (hESC-MSCs) and promotes cartilage regeneration. hESC-MSCs were injected on the day of birth in rats. Six weeks after neonatal injection, a full-thickness cylindrical cartilage defect was created and transplanted with a hESC-MSC-seeded collagen bilayer scaffold (group d+s+c) or a collagen bilayer scaffold (group d+s). Rats without neonatal injection were transplanted with the hESC-MSC-seeded collagen bilayer scaffold to serve as controls (group s+c). Cartilage regeneration was evaluated by histological analysis, immunohistochemical staining, and biomechanical test. The role of hESC-MSCs in cartilage regeneration was analyzed by CD4 immunostaining, cell death detection, and visualization of human cells in regenerated tissues. hESC-MSCs expressed CD105, CD73, CD90, CD29, and CD44, but not CD45 and CD34, and possessed trilineage differentiation potential. Group d+s+c exhibited greater International Cartilage Repair Society (ICRS) scores than group d+s or group s+c. Abundant collagen type II and improved mechanical properties were detected in group d+s+c. There were less CD4+ inflammatory cell infiltration and cell death at week 1, and hESC-MSCs were found to survive as long as 8 weeks after transplantation in group d+s+c. Our study suggests that neonatal desensitization before transplantation may be an efficient way to develop a powerful tool for preclinical study of human cell-based therapies in animal models. PMID:22788986

  3. Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD).

    Science.gov (United States)

    Baruth, Joshua M; Casanova, Manuel F; Sears, Lonnie; Sokhadze, Estate

    2010-06-01

    It has been reported that individuals with autism spectrum disorder (ASD) have abnormal responses to the sensory environment. For these individuals sensory overload can impair functioning, raise physiological stress, and adversely affect social interaction. Early-stage (i.e. within 200ms of stimulus onset) auditory processing abnormalities have been widely examined in ASD using event-related potentials (ERP), while ERP studies investigating early-stage visual processing in ASD are less frequent. We wanted to test the hypothesis of early-stage visual processing abnormalities in ASD by investigating ERPs elicited in a visual oddball task using illusory figures. Our results indicate that individuals with ASD have abnormally large cortical responses to task irrelevant stimuli over both parieto-occipital and frontal regions-of-interest (ROI) during early stages of visual processing compared to the control group. Furthermore, ASD patients showed signs of an overall disruption in stimulus discrimination, and had a significantly higher rate of motor response errors.

  4. Predictors of behavioral regulation in kindergarten: Household chaos, parenting, and early executive functions.

    Science.gov (United States)

    Vernon-Feagans, Lynne; Willoughby, Michael; Garrett-Peters, Patricia

    2016-03-01

    Behavioral regulation is an important school readiness skill that has been linked to early executive function (EF) and later success in learning and school achievement. Although poverty and related risks, as well as negative parenting, have been associated with poorer EF and behavioral regulation, chaotic home environments may also play a role in understanding both early EF and later behavioral regulation at school age. To explore these relationships, a unique longitudinal and representative sample was used of 1,292 children born to mothers who lived in low-wealth rural America who were followed from birth into early elementary school. This study examined whether household chaos, which was measured across the first 3 years of life, predicted behavioral regulation in kindergarten above and beyond poverty-related variables. In addition, this study tested whether parent responsivity and acceptance behaviors, measured during the first 3 years of life, as well as EF skills, which were measured when children were 3 to 5 years of age, mediated the relationship between early household chaos and kindergarten behavioral regulation. Results suggested that household chaos disorganization indirectly predicted kindergarten behavioral regulation through intermediate impacts on parenting behaviors and children's early EF skills. These findings suggest the importance of early household chaos disorganization, the parenting environment, and early EF skills in understanding behavioral regulation above and beyond poverty-related risks.

  5. Current Progress with Primate Embryonic Stem Cells

    OpenAIRE

    Byrne, James A.; Mitalipov, Shoukhrat M.; Wolf, Don P

    2006-01-01

    Embryonic stem cells (ESCs) can proliferate indefinitely, maintain an undifferentiated pluripotent state and differentiate into any cell type. Differentiation of ESCs into various specific cell-types may be able to cure or alleviate the symptoms of various degenerative diseases. Unresolved issues regarding maintaining function, possible apoptosis and tumor formation in vivo mean a prudent approach should be taken towards advancing ESCs into human clinical trials. Rhesus macaques provide the i...

  6. Directed hepatic differentiation from embryonic stem cells

    OpenAIRE

    Chen, Xuesong; Zeng, Fanyi

    2011-01-01

    The liver is the largest internal organ in mammals, and is important for the maintenance of normal physiological functions of other tissues and organs. Hepatitis, cirrhosis, liver cancer and other chronic liver diseases are serious threats to human health, and these problems are compounded by a scarcity of liver donors for transplantation therapies. Directed differentiation of embryonic stem cells to liver cells is a promising strategy for obtaining hepatocytes that can be used for cell trans...

  7. Lactulose enhances neuroplasticity to improve cognitive function in early hepatic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Nan Yang; He Liu; Yao Jiang; Ji Zheng; Dong-mei Li; Chao Ji; Yan-yong Liu; Ping-ping Zuo

    2015-01-01

    Lactulose is known to improve cognitive function in patients with early hepatic encephalopa-thy; however, the underlying mechanism remains poorly understood. In the present study, we investigated the behavioral and neurochemical effects of lactulose in a rat model of early hepatic encephalopathy induced by carbon tetrachloride. Immunohistochemistry showed that lactulose treatment promoted neurogenesis and increased the number of neurons and astrocytes in the hippocampus. Moreover, lactulose-treated rats showed shorter escape latencies than model rats in the Morris water maze, indicating that lactulose improved the cognitive impairments caused by hepatic encephalopathy. The present ifndings suggest that lactulose effectively improves cog-nitive function by enhancing neuroplasticity in a rat model of early hepatic encephalopathy.

  8. Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke.

    OpenAIRE

    2016-01-01

    Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were e...

  9. Anatomical and Functional Plasticity in Early Blind Individuals and the Mixture of Experts Architecture

    OpenAIRE

    Bock, Andrew S.; Ione eFine

    2014-01-01

    As described elsewhere in this special issue, recent advances in neuroimaging over the last decade have led to a rapid expansion in our knowledge of anatomical and functional correlations within the normal and abnormal human brain. Here, we review how early blindness has been used as a model system for examining the role of visual experience in the development of anatomical connections and functional responses. We discuss how lack of power in group comparisons may provide a potential explanat...

  10. Effects of early versus delayed excision and grafting on the return of the burned hand function

    OpenAIRE

    Seyed Hamid Salehi; Mohammad Javad Fatemi; Maryam Sedghi; Mitra Niazi

    2016-01-01

    Background: Despite a general consensus regarding the impacts of early excision and grafting (EE and G) of burned hand on the reducing of treatment cost and hospital stay, there are some controversial issues about its effect on the outcome of hand function. This study conducted to compare the results of the EE and G and delayed skin grafting in deep hand burns regarding the hand functional outcome. Materials and Methods: This study was conducted from April 2012 to November 2013 in sixty patie...

  11. The early development of executive function and its relation to social interaction: A brief review

    Directory of Open Access Journals (Sweden)

    Yusuke eMoriguchi

    2014-04-01

    Full Text Available Executive function (EF refers to the ability to execute appropriate actions and to inhibit inappropriate actions for the attainment of a specific goal. Research has shown that this ability develops rapidly during the preschool years. Recently, it has been proposed that research on executive function should consider the importance of social interaction. In this article, recent evidence regarding the early development of executive function and its relation to social interaction has been reviewed. Research consistently showed that social interaction can influence executive function skills in young children. However, the development of executive function may facilitate the cognitive skills that are important for social interaction. Taken together, there might be functional dependency between the development of executive function and social interaction.

  12. The longitudinal development of social and executive functions in late adolescence and early adulthood.

    Science.gov (United States)

    Taylor, Sophie J; Barker, Lynne A; Heavey, Lisa; McHale, Sue

    2015-01-01

    Our earlier work suggests that, executive functions and social cognition show protracted development into late adolescence and early adulthood (Taylor et al., 2013). However, it remains unknown whether these functions develop linearly or non-linearly corresponding to dynamic changes to white matter density at these age ranges. Executive functions are particularly in demand during the transition to independence and autonomy associated with this age range (Ahmed and Miller, 2011). Previous research examining executive function (Romine and Reynolds, 2005) and social cognition (Dumontheil et al., 2010a) in late adolescence has utilized a cross sectional design. The current study employed a longitudinal design with 58 participants aged 17, 18, and 19 years completing social cognition and executive function tasks, Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999), Positive and Negative Affect Schedule (Watson et al., 1988), and Hospital Anxiety and Depression Scale (Zigmond and Snaith, 1983) at Time 1 with follow up testing 12-16 months later. Inhibition, rule detection, strategy generation and planning executive functions and emotion recognition with dynamic stimuli showed longitudinal development between time points. Self-report empathy and emotion recognition functions using visual static and auditory stimuli were stable by age 17 whereas concept formation declined between time points. The protracted development of some functions may reflect continued brain maturation into late adolescence and early adulthood including synaptic pruning (Sowell et al., 2001) and changes to functional connectivity (Stevens et al., 2007) and/or environmental change. Clinical implications, such as assessing the effectiveness of rehabilitation following Head Injury, are discussed.

  13. Social Factors in the Development of Early Executive Functioning: A Closer Look at the Caregiving Environment

    Science.gov (United States)

    Bernier, Annie; Carlson, Stephanie M.; Deschenes, Marie; Matte-Gagne, Celia

    2012-01-01

    This study investigated prospective links between quality of the early caregiving environment and children's subsequent executive functioning (EF). Sixty-two families were met on five occasions, allowing for assessment of maternal interactive behavior, paternal interactive behavior, and child attachment security between 1 and 2 years of age, and…

  14. Emotional Reactivity and Regulation in Infancy Interact to Predict Executive Functioning in Early Childhood

    Science.gov (United States)

    Ursache, Alexandra; Blair, Clancy; Stifter, Cynthia; Voegtline, Kristin

    2013-01-01

    The relation of observed emotional reactivity and regulation in infancy to executive function in early childhood was examined in a prospective longitudinal sample of 1,292 children from predominantly low-income and rural communities. Children participated in a fear eliciting task at ages 7, 15, and 24 months and completed an executive function…

  15. The Contribution of Executive Function to Source Memory Development in Early Childhood

    Science.gov (United States)

    Rajan, Vinaya; Cuevas, Kimberly; Bell, Martha Ann

    2014-01-01

    Age-related differences in episodic memory judgments assessing recall of fact information and the source of this information were examined. The role of executive function (EF) in supporting early episodic memory ability was also explored. Four- and 6-year-old children were taught 10 novel facts from two different sources (experimenter or puppet),…

  16. Asking for Action or Information? Crosslinguistic Comparison of Interrogative Functions in Early Child Cantonese and Mandarin

    Science.gov (United States)

    Li, Hui; Wong, Eileen Chin Mei; Tse, Shek Kam; Leung, Shing On; Ye, Qianling

    2015-01-01

    Request for information (RfI) is believed to be the universally dominant function of young children's questioning, whereas request for action (RfA) has been reported to be the leading interrogative form used in early child Cantonese. The possibility of crosslinguistic variability prompts further research and comparison with additional languages.…

  17. Effect of low dose dopamine on early graft function in living unrelated kidney donors.

    Science.gov (United States)

    Hosseinzadeh, Hamzeh; Golzari, Samad E J; Golzari, Samad; Abravesh, Mohammad; Mahmoodpoor, Ata; Aghamohammadi, Davood; Zomorrodi, Afshar; Hosseinzadeh, Parisa

    2012-01-01

    To evaluate the effect of low-dose dopamine administration on the early function of the kidney in unrelated kidney donors after transplantation. In this double-blinded clinical trial, 60 adult kidney donors and 60 recipients, younger than 50 years old, were studied. Donors and recipients were randomly divided into two groups; group 1 received dopamine 3 µ/kg/min and group 2 received similar regimen of placebo. During the first 3 days postoperatively, serum levels of urea and creatinine as well as urine output and early kidney function were compared between two groups. Serum levels of creatinine and urea and urine output during the first three days after the operation did not diffe