WorldWideScience

Sample records for early earth evolution

  1. Accretion and early evolution of Earth

    DEFF Research Database (Denmark)

    Saji, Nikitha Susan

    in solar system materials is found to be related to selective thermal processing of dust in the early nebula given the correlation observed for these eects with Fe-peak neutron-rich isotope anomalies, whose origin is attributed to distinct nucleosnythetic sites other than classical s-, r- or p......-sized dust, of which the early protoplanetary disk is initially composed of, coalesce over the course of several millions of years to form the precursors to planets that make up the solar system today. The final assembly of Earth-like planets is complete only after a protracted latestage evolution...... that extends over at least 100 Myr, characterized by violent collisions between Mars- to Moon-sized planetary embryos. Evidence for the many details of solar system evolution - such as the diverse stellar sources that contributed material to solar system bodies to what role disk processes and late...

  2. Earth's earliest biosphere: Its origin and evolution

    International Nuclear Information System (INIS)

    Schopf, J.W.

    1983-01-01

    Some of the subjects discussed are related to the early biogeologic history, the nature of the earth prior to the oldest known rock record, the early earth and the Archean rock record, the prebiotic organic syntheses and the origin of life, Precambrian organic geochemistry, the biochemical evolution of anaerobic energy conversion, the isotopic inferences of ancient biochemistries, Archean stromatolites providing evidence of the earth's earliest benthos, Archean microfossils, the geologic evolution of the Archean-Early Proterozoic earth, and the environmental evolution of the Archean-Early Proterozoic earth. Other topics examined are concerned with geochemical evidence bearing on the origin of aerobiosis, biological and biochemical effects of the development of an aerobic environment, Early Proterozoic microfossils, the evolution of earth's earliest ecosystems, and geographic and geologic data for processed rock samples. Attention is given to a processing procedure for abiotic samples and calculation of model atmospheric compositions, and procedures of organic geochemical analysis

  3. Origin and evolution of the atmospheres of early Venus, Earth and Mars

    Science.gov (United States)

    Lammer, Helmut; Zerkle, Aubrey L.; Gebauer, Stefanie; Tosi, Nicola; Noack, Lena; Scherf, Manuel; Pilat-Lohinger, Elke; Güdel, Manuel; Grenfell, John Lee; Godolt, Mareike; Nikolaou, Athanasia

    2018-05-01

    We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥ 0.5 M_Earth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H_2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun's more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N_2 atmospheres. The buildup of atmospheric N_2, O_2, and the role of greenhouse gases such as CO_2 and CH_4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth's geophysical and related atmospheric evolution in relation

  4. Geohistory. Global evolution of the earth

    Energy Technology Data Exchange (ETDEWEB)

    Ozima, Minoru

    1987-01-01

    A full understanding of the earth's evolution can be achieved only by considering it as a continuous process starting with the birth of the solar system. This book traces the evolution of the earth, mainly on the basis of radiogenic isotopes from long half-life parent elements, and discusses it in terms of the latest developments in astrophysical theory, which impose unique constraints on the earth's origin and early evolution. By its 'historical' nature, geohistorical study also offers a unique approach to forecasting the future of the earth, yielding useful clues for the understanding of environmental problems, such as radioactive waste disposal. This book aims to provide an outline of global evolution of the planet earth for students of general science and for earth scientists.

  5. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    Science.gov (United States)

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  6. Isotopes and the early evolution of the earth

    International Nuclear Information System (INIS)

    Russell, R.D.

    1980-01-01

    The observed isotopic ratios of lead, strontium, neodymium, helium, and argon contain information about the chemical abundances of selected parent and daughter elements in the outer parts of the Earth. By necessity, we observe these isotopic ratios at the Earth's surface, which is a small, highly evolved part of the Earth. The studies of such isotopic ratios permit inferences to be made about interactions between this crust and the upper mantle. Helium has been especially valuable for demonstrating that primordial materials are still being outgassed from the earth. Models based on the observed argon isotopic ratios have lead to contradictory conclusions about the existence of an early period of extensive outgassing of the Earth. Lead has been a particularly interesting element because the ratio of the parents, 235 U/ 238 U, was very different in the Earth's early history than it is now. Therefore there is the potential for determining constraints on the early history of the Earth. A number of recently published papers offering lead isotope interpretations that reflect on the Earth's early history are reviewed, with special reference to models that are based upon uni-directional and bi-directional exchange between a protocrust and a residual mantle. Geochemical parameters for uranium, thorium and lead can be inferred for two evolving systems, as well as rate constants for differentiation. The principal conclusions are that the differentiation process extended beyond the first quarter of the Earth's history, and that it is possible to reproduce exactly the apparent oceanic basalt isochron by a simple two-reservoir model. In particular, such a model can explain quantitatively the observed lead-207 deficiency in the oceanic basalts

  7. Geohistory: Global evolution of the earth

    International Nuclear Information System (INIS)

    Ozima, M.

    1987-01-01

    This book traces the evolution of the Earth, mainly on the basis of radiogenic isotopes from half-life parent elements, and discusses it in terms of the latest developments in astrophysical theory, which impose unique constraints on the origin and early evolution of the earth. Owing to its historical nature, this geohistorical study offers an approach to forecasting the future of the Earth yielding clues for the understanding of environmental problems, such as radioactive waste to disposal and climate changes due to CO/sub 2/ increase

  8. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  9. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    Science.gov (United States)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  10. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    Science.gov (United States)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  11. Solar Radiation as Driving Force In Early Evolution

    Science.gov (United States)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  12. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S.; Sasselov, D. [Harvard Smithsonian Center for Astrophysics, 60 Garden st., 02138 MA Cambridge (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Kaltenegger, L., E-mail: srugheimer@cfa.harvard.edu [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States)

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  13. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    International Nuclear Information System (INIS)

    Rugheimer, S.; Sasselov, D.; Segura, A.; Kaltenegger, L.

    2015-01-01

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments

  14. Early evolution and dynamics of Earth from a molten initial stage

    Science.gov (United States)

    Louro Lourenço, Diogo; Tackley, Paul J.

    2016-04-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower

  15. Archean komatiite volcanism controlled by the evolution of early continents.

    Science.gov (United States)

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  16. Hybrid Differential Evolution Optimisation for Earth Observation Satellite Scheduling with Time-Dependent Earliness-Tardiness Penalties

    Directory of Open Access Journals (Sweden)

    Guoliang Li

    2017-01-01

    Full Text Available We study the order acceptance and scheduling (OAS problem with time-dependent earliness-tardiness penalties in a single agile earth observation satellite environment where orders are defined by their release dates, available processing time windows ranging from earliest start date to deadline, processing times, due dates, sequence-dependent setup times, and revenues. The objective is to maximise total revenue, where the revenue from an order is a piecewise linear function of its earliness and tardiness with reference to its due date. We formulate this problem as a mixed integer linear programming model and develop a novel hybrid differential evolution (DE algorithm under self-adaptation framework to solve this problem. Compared with classical DE, hybrid DE employs two mutation operations, scaling factor adaptation and crossover probability adaptation. Computational tests indicate that the proposed algorithm outperforms classical DE in addition to two other variants of DE.

  17. Effects of primitive photosynthesis on Earth's early climate system

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  18. Organic chemistry in a CO2 rich early Earth atmosphere

    Science.gov (United States)

    Fleury, Benjamin; Carrasco, Nathalie; Millan, Maëva; Vettier, Ludovic; Szopa, Cyril

    2017-12-01

    The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibly complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.

  19. Isotope composition and volume of Earth's early oceans.

    Science.gov (United States)

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  20. Earth evolution as a thermal system

    Science.gov (United States)

    Tang, C.

    2014-12-01

    After fifty years of plate-tectonic theory, the reasons why earth sometime freezed as a snowball or sometime became lethally hot resulting in mass extinction remain enigmatic. This article proposes a new hypothesis on Earth evolution. The unbalance of heat between the input and output is considered as the driving force for the Earth evolution, the lithospheric expansion and associated uplift are the triggers, the self-organized progressive failure leading to collapse of the Earth are the amplifier, and the global scale response in terms of volcanism and magmatism is the globalizer. This shallow process of lithosphere may reach a critical state with a positive feedback loop, and result in the formation of no-plume original Large Igneous Provinces (NPOLIP) in a top-down pattern. Endothermic phase changes during de-compressive melting remove heat from and cool their surroundings, including the upper parts of the lithosphere. The huge loss of Earth's heat during eruption of LIPs, together with the endothermic cooling, may put the thermal cycle to an end and a new start of the cycle initiates. In summary, Earth drives itself to evolve in terms of thermal cycles. Global cooling and warming are the two stages of the many cycles during the Earth evolution. Glaciations are the extreme result of global cooling, whereas the LIPs, sometime accompanied with remarkable sea level dropping, are the extreme result of global warming, with a long recovering age, the interglacialstage, between them. They come and go as thermal cycle evolves, with climate warming, being caused by Earth itself rather than by external forces or human activities, as the most attractive prediction.

  1. Peroxy defects in Rocks and H2O2 formation on the early Earth

    Science.gov (United States)

    Gray, A.; Balk, M.; Mason, P.; Freund, F.; Rothschild, L.

    2013-12-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex life to evolve on Earth and possibly elsewhere in the Universe. The question is still shrouded in uncertainty how free oxygen became available on the early Earth. Here we study processes of peroxy defects in silicate minerals which, upon weathering, generate mobilized electronic charge carriers resulting in oxygen formation in an initially anoxic subsurface environment. Reactive Oxygen Species (ROS) are precursors to molecular oxygen during this process. Due to their toxicity they may have strongly influenced the evolution of life. ROS are generated during hydrolysis of peroxy defects, which consist of pairs of oxygen anions. A second pathway for formation occurs during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, microorganisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defenses against the potentially dangerous, even lethal effects of ROS and oxygen. We have investigated how oxygen might be released through weathering and test microorganisms in contact with rock surfaces. Our results show how early Life might have adapted to oxygen. Early microorganisms must have "trained" to detoxify ROS prior to the evolution of aerobic metabolism and oxygenic photosynthesis. A possible way out of this dilemma comes from a study of igneous and high-grade metamorphic rocks, whose minerals contain a small but significant fraction of oxygen anions in the valence state 1- , forming peroxy links of the type O3Si-OO-SiO3 [1, 2]. As water hydrolyzes the peroxy links hydrogen peroxide, H2O2, forms. Continued experimental discovery of H2O2 formation at rock

  2. Early Earth(s) Across Time and Space

    Science.gov (United States)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  3. Symbiosis in cell evolution: Life and its environment on the early earth

    Science.gov (United States)

    Margulis, L.

    1981-01-01

    The book treats cell evolution from the viewpoint of the serial endosymbiosis theory of the origin of organelles. Following a brief outline of the symbiotic theory, which holds that eukaryotes evolved by the association of free-living bacteria with a host prokaryote, the diversity of life is considered, and five kingdoms of organisms are distinguished: the prokaryotic Monera and the eukaryotic Protoctista, Animalia, Fungi and Plantae. Symbiotic and traditional direct filiation theories of cell evolution are compared. Recent observations of cell structure and biochemistry are reviewed in relation to early cell evolution, with attention given to the geological context for the origin of eukaryotic cells, the origin of major bacterial anaerobic pathways, the relationship between aerobic metabolism and atmospheric oxygen, criteria for distinguishing symbiotic organelles from those that originated by differentiation, and the major classes of eukaryotic organelles: mitochondria, cilia, microtubules, the mitotic and meiotic apparatuses, and pastids. Cell evolution during the Phanerozoic is also discussed with emphasis on the effects of life on the biosphere

  4. Possible role of radon in prebiotic chemistry and in early evolution of life on earth

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2010-01-01

    Radon in the environment of early Earth was present in sites, determined by location of deposits of uranium, in very different geological formations. According to the decay of uranium-238, the total production of radon at the beginnings was twice as high as now and was continuously diminishing to the present levels. This nuclide could not play as big a role as do radioactive elements connected with the presence of high concentration of 235 U, which was high enough in some places to give rise to formation of natural nuclear fission reactors (e.g. Oklo phenomenon in Africa). The main role of ionizing radiation in prebiotic chemistry and biological evolution was played by low LET (linear energy transfer) radiations, as deep penetrating sources of external energy. High LET radiations are of low penetration and could act only superficially. Radon is an exception, due to its easy transfer in the air. Therefore, it could play a role already in the cases of these early organisms which exhibited the gaseous exchange of chemical compounds with the surrounding atmosphere. The action was destructive, but, on the other hand, was also mutagenic. Nevertheless, the general quantitative effect of radon on the global scale could not be larger than of other radioactive nuclides. Presented considerations are part of the chapter by the present author on the role of nuclear and radiation chemistry in astrobiology, in the monograph published by American Scientific Publishers. (author)

  5. Evolution and dynamics of Earth from a molten initial stage

    Science.gov (United States)

    Louro Lourenço, D. J.; Tackley, P.

    2016-12-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007; Labrosse et al., The Early Earth 2015). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the

  6. Evolution of the Earth and Origin of Life: The Role of Gas/Fluid Interactions with Rocks

    Science.gov (United States)

    Freund, Friedemann

    2001-01-01

    The work under the Cooperative Agreement will be centered on questions of the evolution of Life on the early Earth and possibly on Mars. It is still hotly debated whether the essential organic molecules were delivered to the early Earth from space (by comets, meteorites or interplanetary dust particles) or were generated in situ on Earth. Prior work that has shown that the matrix of igneous minerals is a medium in which progenitors of organic molecules assemble from H2O, C02 and N2 incorporated as minority "impurities" in minerals of igneous rocks during crystallization from H2O/CO2/N2-laden magmas. The underlying processes involve a redox. conversion whereby C, H, and N become chemically reduced, while 0 becomes oxidized to the peroxy state. During Year 02 the work will be divided into three tasks. Task 1: After carboxylic (fatty) acids and N-bearing compounds have been identified, other extractable organic molecules including lipids, oily substances and amino acids will be studied. Dedicated lipid analysis will be combined with gas chromatographic-mass spectroscopic (GCMS) analysis of organic compounds extracted from minerals and rocks. Task 2: Using infrared (IR) spectroscopy, C-H entities that are indicators for the organic progenitors in mineral matrices will be studied. A preliminary heating experiment with MgO single crystals has shown that the C-H entities can be pyrolyzed, causing the IR bands to disappear, but at room temperature the IR bands reappear in a matter of days to weeks. This work will be expanded, both by studying synthetic MgO crystals and olivine crystals from the Earth's upper mantle. The C-H bands will be compared to the published "organic" IR feature of dust in the interstellar medium (ISM) and interplanetary dust particles (IDP). Task 3: A paradox marks the evolution of early Life: Oxygen is highly toxic to primitive life, yet early organisms "learned" to detoxify reactive oxygen species, to utilize oxygen, and even produce it. Why would

  7. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  8. Carbon dioxide warming of the early Earth

    Science.gov (United States)

    Arrhenius, G.

    1997-01-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  9. Petrochronology in constraining early Archean Earth processes and environments: Barberton greenstone belt, South Africa

    Science.gov (United States)

    Grosch, Eugene

    2017-04-01

    Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.

  10. Environment and Climate of Early Human Evolution

    Science.gov (United States)

    Levin, Naomi E.

    2015-05-01

    Evaluating the relationships between climate, the environment, and human traits is a key part of human origins research because changes in Earth's atmosphere, oceans, landscapes, and ecosystems over the past 10 Myr shaped the selection pressures experienced by early humans. In Africa, these relationships have been influenced by a combination of high-latitude ice distributions, sea surface temperatures, and low-latitude orbital forcing that resulted in large oscillations in vegetation and moisture availability that were modulated by local basin dynamics. The importance of both climate and tectonics in shaping African landscapes means that integrated views of the ecological, environmental, and tectonic histories of a region are necessary in order to understand the relationships between climate and human evolution.

  11. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.

    Science.gov (United States)

    Matthewman, Richard; Court, Richard W; Crawford, Ian A; Jones, Adrian P; Joy, Katherine H; Sephton, Mark A

    2015-02-01

    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.

  12. Cyanobacterial evolution during the Precambrian

    Science.gov (United States)

    Schirrmeister, Bettina E.; Sanchez-Baracaldo, Patricia; Wacey, David

    2016-07-01

    Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth's biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth's atmosphere and hydrosphere, triggered the evolution of plants -being ancestral to chloroplasts- and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history. However, very little is known about the early evolution of this phylum and ongoing debates about cyanobacterial fossils, biomarkers and molecular clock analyses highlight the difficulties in this field of research. Although phylogenomic analyses have provided promising glimpses into the early evolution of cyanobacteria, estimated divergence ages are often very uncertain, because of vague and insufficient tree-calibrations. Results of molecular clock analyses are intrinsically tied to these prior calibration points, hence improving calibrations will enable more precise divergence time estimations. Here we provide a review of previously described Precambrian microfossils, biomarkers and geochemical markers that inform upon the early evolution of cyanobacteria. Future research in micropalaeontology will require novel analyses and imaging techniques to improve taxonomic affiliation of many Precambrian microfossils. Consequently, a better understanding of early cyanobacterial evolution will not only allow for a more specific calibration of cyanobacterial and eubacterial phylogenies, but also provide new dates for the tree

  13. Potential climatic impact of organic haze on early Earth.

    Science.gov (United States)

    Hasenkopf, Christa A; Freedman, Miriam A; Beaver, Melinda R; Toon, Owen B; Tolbert, Margaret A

    2011-03-01

    We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturn's moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH=80-87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ=0.22 ±0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds. © Mary Ann Liebert, Inc.

  14. Environmental oxygen conditions during the origin and early evolution of life

    Science.gov (United States)

    Towe, Kenneth M.

    The well-known sensitivity of proteins and nucleic acids to UV-radiation requires that some internally consistent protection scenario be envisioned for the origin and early evolution of life on Earth. Although a variety of ozone-surrogates has been proposed, the available biochemical, geochemical and geological evidence best supports the conclusion that free oxygen was available at levels capable of providing at least a moderate ozone screen. Levels of oxygen near 1-2% of the present atmospheric level are consistent with such a screen, and with: (1) the biochemical needs of early procaryotes considered phylogenetically more primitive than the oxygen-producing Cyanobacteria; (2) the rare-earth element data from the oxide facies of the 3.8 Byr-old Isua banded-iron formations; (3) the nature and phylogenetic distribution of superoxide dismutases; (4) the need for aerobic recycling of early photosynthetic productivity dictated by the distribution of ancient sedimentary iron and organic carbon; (5) the incompatibility of dissolved reduced sulfur (to support anoxygenic photosynthesis) and ferrous iron (to support banded iron-formations) in the surface waters of the world oceans; and (6) the comparative oxygen and UV-sensitivities of modern procaryotes.

  15. Mineral evolution and Earth history

    Science.gov (United States)

    Bradley, Dwight C.

    2015-01-01

    The field of mineral evolution—a merger of mineralogy and Earth history—coalesced in 2008 with the first of several global syntheses by Robert Hazen and coworkers in the American Mineralogist. They showed that the cumulative abundance of mineral species has a stepwise trend with first appearances tied to various transitions in Earth history such as the end of planetary accretion at ca. 4.55 Ga and the onset of bio-mediated mineralogy at ca. >2.5 Ga. A global age distribution is best established for zircon. Observed abundance of zircon fluctuates through more than an order of magnitude during successive supercontinent cycles. The pulse of the Earth is also recorded, albeit imperfectly, by the 87Sr/86Sr composition of marine biogenic calcite; the Sr-isotopic ratio of this mineral reflects the balance of inputs of primitive strontium at mid-ocean ridges and evolved strontium that drains off the continents. A global mineral evolution database, currently in the works, will greatly facilitate the compilation and analysis of extant data and the expansion of research in mineralogy outside its traditional bounds and into more interdisciplinary realms.

  16. Reactive Oxygen Species on the Early Earth and Survival of Bacteria

    Science.gov (United States)

    Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

    2011-01-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

  17. Biological modulation of planetary atmospheres: The early Earth scenario

    Science.gov (United States)

    Schidlowski, M.

    1985-01-01

    The establishment and subsequent evolution of life on Earth had a profound impact on the chemical regime at the planet's surface and its atmosphere. A thermodynamic gradient was imposed on near-surface environments that served as the driving force for a number on important geochemical transformations. An example is the redox imbalance between the modern atmosphere and the material of the Earth's crust. Current photochemical models predict extremely low partial pressures of oxygen in the Earth's prebiological atmosphere. There is widespread consensus that any large-scale oxygenation of the primitive atmosphere was contingent on the advent of biological (autotrophic) carbon fixation. It is suggested that photoautotrophy existed both as a biochemical process and as a geochemical agent since at least 3.8 Ga ago. Combining the stoichiometry of the photosynthesis reaction with a carbon isotope mass balance and current concepts for the evolution of the stationary sedimentary mass as a funion of time, it is possible to quantify, the accumulation of oxygen and its photosynthetic oxidation equivalents through Earth history.

  18. What is the Emerging Knowledge of the Early Earth from the Oldest (>3.6 Ga) Rocks?

    Science.gov (United States)

    Bennett, V. C.; Nutman, A. P.

    2016-12-01

    Eoarchean to Hadean rocks are direct samples of early Earth chemistry and conditions and provide the ground-truth for models of early Earth formation, environments and evolution. Intensive investigations by many groups reveal rocks of this age comprise only one millionth of Earth's surface and are found in 9 areas of varying extent distributed worldwide. This record is of variable fidelity however, owing to metamorphic overprinting. The majority of the oldest rocks are high grade gneisses with protoliths from mid-crustal levels; the more rare supracrustal assemblages reflect early Earth's surface conditions and processes. First-order observations from supracrustal sequences at several localities and from 3.6 Ga to ≥3.9 Ga in age provide abundant evidence of liquid water at the Earth's surface with pillow basalts and chemical sedimentary rocks in the form of cherts, banded Fe formations and carbonates. Trace element patterns of these sedimentary rocks strongly resemble modern seawater compositions, except for the absence of redox sensitive Ce anomalies. Evidence for early life remains controversial and is mainly in the form of stable isotopic signatures of C and Fe. Our recent work from newly-discovered, exceptionally well-preserved 3.7 Ga sedimentary rocks and the deformed unconformity they rest on has provided the first evidence of Eoarchean intense weathering and shallow water sedimentary processes. Whilst the major and trace element compositions of Eoarchean gneisses have analogs in younger rocks in accord with a continuum of crust formation processes, radiogenic isotopic signatures from both long and short half-life decay schemes record an image of the Earth in transition from early differentiation processes, likely associated with planetary accretion and formation, to more modern styles. Most Eoarchean rocks possess extinct nuclide anomalies in the form of 142Nd and 182W isotopic signatures that are absent in modern terrestrial samples, and developed from

  19. Impact bombardmnet and its role in proto-continental growth on the early Earth

    International Nuclear Information System (INIS)

    Grieve, R.A.F.

    1980-01-01

    There is evidence that during 4.6-3.9 Ga the Earth experienced a period of intense bombardment similar to that recorded on the Moon. From cratering mechanics and by comparison with more recent terrestrial impact structures the effects of large impact structures, D >= 100 km, have been modelled for an early terrestrial proto-crust with an assumed thickness of 15 km. The direct effects were analogous to those on the Moon: the formation of multi-ring basins with a topography of approximately 3 km, the uplift of deep-seated material to the surface, the fracturing of the crustal column and the generation of surface impact lithologies. However, unlike the Moon, the highly active nature of the Earth resulted in more long-lived indirect effects: impact-induced volcanism due to distortion of the geothermal gradient by uplift and the addition of post-shock heat, intra-basin sedimentation by volcaniclastics and reworked impact lithologies and ultimately subsidence of the basin due to loading by volcanic and sedimentary products. Very large basins, D > 1000 km, excavated the local lithosphere and produced the equivalent of mantle plumes below the impact sites. These conclusions are incorporated into a model of early crustal evolution of the Earth in which the net effect of large impact events was to localize and accelerate endogenic activity. (Auth.)

  20. Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.

    Science.gov (United States)

    Kleidon, Axel

    2010-01-13

    The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. This journal is © 2010 The Royal Society

  1. Stochastic evolution of cosmological parameters in the early universe

    Indian Academy of Sciences (India)

    We develop a stochastic formulation of cosmology in the early universe, after considering the scatter in the redshift-apparent magnitude diagram in the early epochs as an observational evidence for the non-deterministic evolution of early universe. We consider the stochastic evolution of density parameter in the early ...

  2. Attraction of the opposites: reception of the Theory of Evolution in Young Earth creationists

    Directory of Open Access Journals (Sweden)

    Alexander Khramov

    2018-12-01

    Full Text Available The history of the Young Earth creationism can be divided into two stages, namely the period of Scriptural geology, which lasted from the 1820s to the 1860s mostly in Britain, and the modern period, which began in the USA in the 1920s and continued into the 21st century. During both these periods, some Young-Earth creationists made attempts to employ the notions of evolution in order to bolster a highly literalistic interpretation of the biblical narrative about the Creation and the Flood. In their opinion, the hypothesis of ultra-rapid evolution off ered a plausible explanation of how a small number of species which were in Noah’s Ark could have produced the very diverse modern fauna of terrestrial organisms without supernatural interventions on the part of God. The fact that the elements of the theory of evolution were accepted by some prominent Young Earth creationists demonstrates that it would be an exaggeration to ascribe uncompromised hostility towards the idea of evolution to the Young Earth movement as a whole.

  3. The thermal state and evolution of the earth and terrestrial planets

    International Nuclear Information System (INIS)

    Tozer, D.C.

    1977-01-01

    In considering the problem of planetary evolution it is suggested that a completely fresh look at the working of the heat transfer process has made it possible to give a general interpretation of many of the recent discoveries of the Earth's present dynamism and past development without appealing to any but very general assumptions about the material behaviour. Once again, the flow properties of rock are in the forefront of the understanding of the Earth's internal heat while the temperature has somewhat receded into the background as a determined rather than a determining characteristic of the behaviour of the terrestrial planets (Mercury, Venus, Earth, Mars) and the Moon. Misunderstanding about the nature of material properties has made theorists go too far in seeing planets as aggregates of potential laboratory samples, rather than as systems in their own right whose sheer size brings out behaviour requiring distinct ways of describing in situ planetary material. Study of the way in which the evolution of the terrestrial planets becomes regulated by a degree of creep resistance that is quite impossible to measure in the laboratory underlines the similarity of this situation with that which faced attempts to understand stellar evolution. (U.K.)

  4. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    Science.gov (United States)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  5. Epochs of radioactivity in historical evolution of the earth with reference to evolution of biosphere

    International Nuclear Information System (INIS)

    Neruchev, S.G.

    1976-01-01

    Periodic epochs of intense contamination of the medium by uranium in the course of the Earth's evolution and the biogene mechanism of uranium accumulation in sediments during the lifetime are established. Global differentiation of the radioactivity epochs and essential effect of periodic radiation on the evolution of biosphere are shown. Radiational-mutational mechanism in shown to be extremely nonuniform during the evolution of the organic kingdom. It has been found that the intermittency in radioactive epochs is responsible for peculiarities in the stratigraphic distribution of sedimentary uranium, sapropelic shales, phosphorites, oil-producing rocks and other minerals

  6. NASA's Earth Observing System Data and Information System - Many Mechanisms for On-Going Evolution

    Science.gov (United States)

    Ramapriyan, H. K.

    2012-12-01

    NASA's Earth Observing System Data and Information System has been serving a broad user community since August 1994. As a long-lived multi-mission system serving multiple scientific disciplines and a diverse user community, EOSDIS has been evolving continuously. It has had and continues to have many forms of community input to help with this evolution. Early in its history, it had inputs from the EOSDIS Advisory Panel, benefited from the reviews by various external committees and evolved into the present distributed architecture with discipline-based Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems and a cross-DAAC search and data access capability. EOSDIS evolution has been helped by advances in computer technology, moving from an initially planned supercomputing environment to SGI workstations to Linux Clusters for computation and from near-line archives of robotic silos with tape cassettes to RAID-disk-based on-line archives for storage. The network capacities have increased steadily over the years making delivery of data on media almost obsolete. The advances in information systems technologies have been having an even greater impact on the evolution of EOSDIS. In the early days, the advent of the World Wide Web came as a game-changer in the operation of EOSDIS. The metadata model developed for the EOSDIS Core System for representing metadata from EOS standard data products has had an influence on the Federal Geographic Data Committee's metadata content standard and the ISO metadata standards. The influence works both ways. As ISO 19115 metadata standard has developed in recent years, EOSDIS is reviewing its metadata to ensure compliance with the standard. Improvements have been made in the cross-DAAC search and access of data using the centralized metadata clearing house (EOS Clearing House - ECHO) and the client Reverb. Given the diversity of the Earth science disciplines served by the DAACs, the DAACs have developed a

  7. Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation.

    Science.gov (United States)

    Martin, William F

    2012-03-09

    Life is a persistent, self-specified set of far from equilibrium chemical reactions. In modern microbes, core carbon and energy metabolism are what keep cells alive. In very early chemical evolution, the forerunners of carbon and energy metabolism were the processes of generating reduced carbon compounds from CO(2) and the mechanisms of harnessing energy as compounds capable of doing some chemical work. The process of serpentinization at alkaline hydrothermal vents holds promise as a model for the origin of early reducing power, because Fe(2+) in the Earth's crust reduces water to H(2) and inorganic carbon to methane. The overall geochemical process of serpentinization is similar to the biochemical process of methanogenesis, and methanogenesis is similar to acetogenesis in that both physiologies allow energy conservation from the reduction of CO(2) with electrons from H(2). Electron bifurcation is a newly recognized cytosolic process that anaerobes use generate low potential electrons, it plays an important role in some forms of methanogenesis and, via speculation, possibly in acetogenesis. Electron bifurcation likely figures into the early evolution of biological energy conservation. Copyright © 2011. Published by Elsevier B.V.

  8. Considering bioactivity in modelling continental growth and the Earth's evolution

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2013-09-01

    The complexity of planetary evolution increases with the number of interacting reservoirs. On Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. Through plate tectonics, the surface biosphere can impact deep subduction zone processes and the interior of the Earth. Subducted sediments are particularly important, because they influence the Earth's interior in several ways, and in turn are strongly influenced by the Earth's biosphere. In our model, we use the assumption that a thick sedimentary layer of low permeability on top of the subducting oceanic crust, caused by a biologically enhanced weathering rate, can suppress shallow dewatering. This in turn leads to greater vailability of water in the source region of andesitic partial melt, resulting in an enhanced rate of continental production and regassing rate into the mantle. Our model includes (i) mantle convection, (ii) continental erosion and production, and (iii) mantle water degassing at mid-ocean ridges and regassing at subduction zones. The mantle viscosity of our model depends on (i) the mantle water concentration and (ii) the mantle temperature, whose time dependency is given by radioactive decay of isotopes in the Earth's mantle. Boundary layer theory yields the speed of convection and the water outgassing rate of the Earth's mantle. Our results indicate that present day values of continental surface area and water content of the Earth's mantle represent an attractor in a phase plane spanned by both parameters. We show that the biologic enhancement of the continental erosion rate is important for the system to reach this fixed point. An abiotic Earth tends to reach an alternative stable fixed point with a smaller

  9. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel; Vettier, Ludovic; Määttänen, Anni, E-mail: benjamin.fleury@latmos.ipsl.fr [Université Versailles St-Quentin, Sorbonne Universités, UPMC Univ. Paris 06, CNRS/INSU, LATMOS-IPSL, 11 Boulevard d’Alembert, F-78280 Guyancourt (France)

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Water was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.

  10. Evolution of Electron Transport Chains During the Anaerobic to Aerobic Transition on Early Earth

    Science.gov (United States)

    Sepúlveda, R.; Ortiz, R.; Holmes, D. S.

    2015-12-01

    Sepulveda, R., Ortiz R. and Holmes DS. Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida, and Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.According to several models, life emerged on earth in an anoxic environment where oxygen was not available as a terminal electron acceptor for energy generating reactions. After the Great Oxidation Event (GOE) about 2.4 billion years ago, or perhaps even before the GOE, oxygen became the most widespread and efficient terminal electron acceptor and was accompanied by the evolution of a number of redox proteins that could deliver electrons to reduce oxygen to water. Where did these proteins come from? One hypothesis is that they evolved by the neofunctionalization of previously existing redox proteins that had been used in anaerobic conditions as terminal electron donors to reduce compounds such as perchlorate, nitric oxide or iron. We have used a number of bioinformatic tools to explore a large number of genomes looking for discernable signals of such redeployment of function. A Perl pipeline was designed to detect sequence similarity, conserved gene context, remote homology detection, identification of domains and functional evolution of electron carrier proteins from extreme acidophiles, including the small blue copper protein rusticyanin (involved in FeII oxidation), cytochrome oxidase subunit II and quinol-dependent nitric oxide reductase (qNOR). The protein folds and copper binding sites of rusticyanin are conserved in cytochrome oxidase aa3 subunit II, a protein complex that is responsible for the final passage of electrons to reduce oxygen. Therefore, we hypothesize that rusticyanin, cytochrome oxidase II and qNOR are evolutionarily related. Acknowledgments: Fondecyt 1130683.

  11. Earth Regimes Network Evolution Study (ERNESt): Introducing the Space Mobile Network

    Science.gov (United States)

    Menrad, Bob

    2016-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).

  12. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  13. Bayesian analysis of the astrobiological implications of life's early emergence on Earth.

    Science.gov (United States)

    Spiegel, David S; Turner, Edwin L

    2012-01-10

    Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth's history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe.

  14. Photosynthetic microbial mats today, on early Earth, (and on early Mars?)

    Science.gov (United States)

    Des Marais, D. J.

    2008-05-01

    Marine hypersaline cyanobacterial mats offer insights about their ancient ancestors, whose fossil record is 3.43 billion years old. Studies of mat microbiota have greatly expanded the known diversity of ancient microbial lineages. Their evolution was shaped by mat microenvironments, which can differ substantially from their surroundings. Oxygenic photosynthesis perhaps developed in microbial mats and probably triggered a major evolutionary transformation and diversification of the early biosphere. Gross primary production rates in cyanobacterial mats can rival the most productive ecosystems known. Sunlight changes in intensity and spectral composition as it penetrates mats, and counteracting gradients of O2 and sulfide shape the chemical microenvironment. A combination of benefits and hazards of light, O2 and sulfide promotes the allocation of the various essential mat processes between light and dark periods and to various depths in the mat. Close inspection has revealed surprises, for example: anoxygenic phototrophs inside cyanobacterial sheaths, record- high sulfate reduction rates in O2-saturated conditions, and high H2 fluxes into overlying waters. Diverse organic biomarker compounds have been documented that are amenable to long-term preservation. Such coordinated observations of populations, processes and products are making fundamental questions in ecology accessible. Cyanobacterial mats have robust fossil records in part because they populated stable continental platforms and margins, contributing to sediments having high preservation potential. Proterozoic cyanobacterial fossils and organic biomarkers are well documented. The 3.43 Ga Strelley Pool cherts, W. Australia, reveal diverse stromatolites that populated a partially restricted, low-energy shallow hypersaline basin. Molecular studies of extant bacteria hint that early chlorophyll-utilizing photosynthesizers required geochemical sources of reductants. Did these anoxygenic phototrophs once sustain an

  15. Cell evolution and Earth history: stasis and revolution.

    Science.gov (United States)

    Cavalier-Smith, Thomas

    2006-06-29

    This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane

  16. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution

    KAUST Repository

    Yasumura, Yuki

    2012-10-18

    Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh-water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence-induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land. © 2012 Blackwell Publishing Ltd.

  17. The Pale Orange Dot: Spectral Effects of a Hazy Early Earth

    Science.gov (United States)

    Arney, G. N.; Meadows, V. S.; Domagal-Goldman, S. D.; Claire, M.; Schwieterman, E.

    2014-12-01

    Increasing evidence suggests Archean Earth had a photochemical hydrocarbon haze similar to Titan's (Zerkle et al. 2012), with important climate implications (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Domagal-Goldman et al. 2008, Wolf and Toon 2012). Observations also suggest hazy exoplanets are common (Sing et al. 2011, Kreidberg et al 2014), so hazy planet spectra will be relevant to future exoplanet spectral characterization missions. Here, we consider the implications of hydrocarbon aerosols on the spectrum of Archean Earth, examining the effect of a haze layer on the detectability of spectral features from putative biosignatures and the Rayleigh scattering slope. We also examine haze's impact on the spectral energy distribution at the planetary surface, which may be important to the co-evolution of life with its environment. Because the atmospheric pressure and haze particle composition of the Archean Earth are poorly constrained, we test the impact of atmospheric pressure and particle density on haze formation. Our study uses a modified version of the 1-D photochemical code developed originally by Kasting et al. (1979) to generate a fractal haze in the model Archean atmosphere. The 1-D line-by-line fully multiple scattering Spectral Mapping Atmospheric Radiative Transfer Model (SMART) (Meadows and Crisp 1996) is then used to generate synthetic spectra of early Earth with haze. We find (Fig 1) that haze scattering significantly depletes the radiation at short wavelengths, strongly affecting the spectral region of the Rayleigh slope, a broadband change in spectral shape detectable at low spectral resolution. At the surface, the spectral energy distribution is shifted towards longer wavelengths, which may be important to photosynthetic life. Thus, the haze may have significant effects on biology, which in turn produces the methane that leads to haze formation, creating feedback loops between biology and the planet.

  18. A Model of Volcanic Outgassing for Earth's Early Atmosphere

    Science.gov (United States)

    Dhaliwal, J. K.; Kasting, J. F.; Zhang, Z.

    2017-12-01

    We build on historical paradigms of volcanic degassing [1] to account for non-linear relations among C-O-H-S volatiles, their speciation, solubility and concentrations in magmatic melts, and the resulting contribution to atmospheric volatile inventories. We focus on the build-up of greenhouse-relevant carbon species (CO2 and CH4) and molecular oxygen to better understand the environments of early life and the Great Oxygenation Event [2,3,4]. The mantle is an important reservoir of C-O-H-S volatiles [5], and melt concentrations depend on temperature, pressure and oxygen fugacity. We present a preliminary chemical model that simulates volatile concentrations released into the Earth's atmosphere at 1 bar, or pressures corresponding to the early Earth prior to 2.4 Ga. We maintain redox balance in the system using H+ [2, 6] because the melt oxidation state evolves with volatile melt concentrations [7] and affects the composition of degassed compounds. For example, low fO2 in the melt degasses CO, CH4, H2S and H2 while high fO2 yields CO2, SO2 and H2O [1,8,9]. Our calculations incorporate empirical relations from experimental petrology studies [e.g., 10, 11] to account for inter-dependencies among volatile element solubility trends. This model has implications for exploring planetary atmospheric evolution and potential greenhouse effects on Venus and Mars [12]­, and possibly exoplanets. A future direction of this work would be to link this chemical degassing model with different tectonic regimes [13] to account for degassing and ingassing, such as during subduction. References: [1] Holland, H. D. (1984) The chemical evolution of the atmosphere and oceans [2] Kasting, J. F. (2013) Chem. Geo. 362, 13-25 [3] Kasting, J.F. (1993) Sci. 259, 920-926 [4] Duncan, M.S. & Dasgupta, R. (2017) Nat. Geoscience 10, 387-392. [5] Hier-Majumder, S. & Hirschmann, M.M. (2017) G3, doi: 10.1002/2017GC006937 [6] Gaillard, F. et al. (2003) GCA 67, 2427- 2441 [7] Moussalam, Y. et al. (2014

  19. Silent innovation: corporate strategizing in early nanotechnology evolution

    DEFF Research Database (Denmark)

    Andersen, Maj Munch

    2011-01-01

    Nanotechnology offers a rare opportunity to study the early evolution of a new generic technology in real time. This paper suggests focusing more on the market formation side, rather than technology generation, when seeking to explain technology evolution. Applying an evolutionary capabilities...... perspective, the paper examines how firms organize innovation in the early embryonic stages of a technology and how the market as a selective device undergoes qualitative change as part of economic evolution. The traditional Danish window chain is used as a case. A model of nanotechnology evolution...... is proposed which suggests that nanotechnology commercialization is significantly driven by small and medium-sized firms based on their internal knowhow, with larger firms as important suppliers of know how. These smaller firms are adept at addressing social needs which appear to be key factors in the nano...

  20. 21st century early mission concepts for Mars delivery and earth return

    Science.gov (United States)

    Cruz, Manuel I.; Ilgen, Marc R.

    1990-01-01

    In the 21st century, the early missions to Mars will entail unmanned Rover and Sample Return reconnaissance missions to be followed by manned exploration missions. High performance leverage technologies will be required to reach Mars and return to earth. This paper describes the mission concepts currently identified for these early Mars missions. These concepts include requirements and capabilities for Mars and earth aerocapture, Mars surface operations and ascent, and Mars and earth rendezvous. Although the focus is on the unmanned missions, synergism with the manned missions is also discussed.

  1. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon

    Science.gov (United States)

    Schiller, Martin; Bizzarro, Martin; Fernandes, Vera Assis

    2018-03-01

    Nucleosynthetic isotope variability among Solar System objects is often used to probe the genetic relationship between meteorite groups and the rocky planets (Mercury, Venus, Earth and Mars), which, in turn, may provide insights into the building blocks of the Earth–Moon system. Using this approach, it has been inferred that no primitive meteorite matches the terrestrial composition and the protoplanetary disk material from which Earth and the Moon accreted is therefore largely unconstrained. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability of inner-Solar-System objects predominantly reflects spatial heterogeneity. Here we use the isotopic composition of the refractory element calcium to show that the nucleosynthetic variability in the inner Solar System primarily reflects a rapid change in the mass-independent calcium isotope composition of protoplanetary disk solids associated with early mass accretion to the proto-Sun. We measure the mass-independent 48Ca/44Ca ratios of samples originating from the parent bodies of ureilite and angrite meteorites, as well as from Vesta, Mars and Earth, and find that they are positively correlated with the masses of their parent asteroids and planets, which are a proxy of their accretion timescales. This correlation implies a secular evolution of the bulk calcium isotope composition of the protoplanetary disk in the terrestrial planet-forming region. Individual chondrules from ordinary chondrites formed within one million years of the collapse of the proto-Sun reveal the full range of inner-Solar-System mass-independent 48Ca/44Ca ratios, indicating a rapid change in the composition of the material of the protoplanetary disk. We infer that this secular evolution reflects admixing of pristine outer-Solar-System material into the thermally processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The identical calcium isotope composition of Earth

  2. How did Earth not End up like Venus?

    Science.gov (United States)

    Jellinek, M.; Lenardic, A.; Weller, M. B.

    2017-12-01

    Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).

  3. The early Earth atmosphere and early life catalysts.

    Science.gov (United States)

    Ramírez Jiménez, Sandra Ignacia

    2014-01-01

    Homochirality is a property of living systems on Earth. The time, the place, and the way in which it appeared are uncertain. In a prebiotic scenario two situations are of interest: either an initial small bias for handedness of some biomolecules arouse and progressed with life, or an initial slight excess led to the actual complete dominance of the known chiral molecules. A definitive answer can probably never be given, neither from the fields of physics and chemistry nor biology. Some arguments can be advanced to understand if homochirality is necessary for the initiation of a prebiotic homochiral polymer chemistry, if this homochirality is suggesting a unique origin of life, or if a chiral template such as a mineral surface is always required to result in an enantiomeric excess. A general description of the early Earth scenario will be presented in this chapter, followed by a general description of some clays, and their role as substrates to allow the concentration and amplification of some of the building blocks of life.

  4. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman [Institute of Planetology, Westfaelische Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany); Breuer, Doris, E-mail: Vlada.Stamenkovic@dlr.de, E-mail: Lena.Noack@dlr.de, E-mail: Doris.Breuer@dlr.de, E-mail: Tilman.Spohn@dlr.de [Institute of Planetary Research, German Aerospace Center DLR, Rutherfordstrasse 2, 12489 Berlin (Germany)

    2012-03-20

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary mass even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.

  5. The Role and Evolution of NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  6. Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.

    Science.gov (United States)

    Righter, Kevin

    2015-09-01

    A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.

  7. Theory for the Origin and Evolution of Stars and Planets, Including Earth

    Science.gov (United States)

    Cimorelli, S. A.; Samuels, C.

    2001-05-01

    In this paper we present a novel hypothesis for the formation and evolution of galaxies, stars (including black holes (BHs), giant, mid-size, dwarf, dying and dead stars), planets (including earth), and moons. Present day phenomenon will be used to substantiate the validity of this hypothesis. Every `body' is a multiple type of star, generated from pieces called particle proliferators, of a dislodged/expanded BH which explodes due to a collision with another expanded BH. This includes the sun, and the planet earth, which is a type of dead star. Such that, if we remove layers of the earth, starting with the crust, we will find evidence of each preceding star formation, such as a brown star, a red star, a white star, a blue star, and the remains of the particle proliferator as the innermost core is reached. We intend to show that the hypothesis is consistent with both the available astronomical data regarding stellar evolution and planetary formation; as well as the evolution of the earth itself, by considerations of the available geophysical data. Where data is not available, reasonably simple experiments will be suggested to demonstrate further the consistency and viability of the hypothesis. Theories are presented to help define and explain phenomenon such as how two (or more) BHs expand and collide to form a small `big bang' (it is postulated that there was a small big bang to form each galaxy). This in turn afforded the material/matter to form all the galactic bodies, including the dark matter. The start and development of the planet earth, initially as an emergent piece from the colliding BHs, is given special attention to explain the continuing expansion/growth that takes place in all stars and planets. Also, to explain the formation of the land, the growing/expanding earth (proportional to the ocean bed growth), the division of the continents, and the formation of the ocean beds (possibly long before the oceans existed). Attempts will be made to explain the

  8. Life from the stars?. [extraterrestrial sources contributing to chemical evolution on Earth

    Science.gov (United States)

    Pendleton, Yvonne J.; Cruikshank, Dale P.

    1994-01-01

    Scientists are now seriously considering the possibility that organic matter from interstellar space could have influenced, or even spurred, the origin of life on Earth. Various aspects of chemical evolution are discussed along with possible extraterrestrial sources responsible for contributing to Earth's life-producing, chemical composition. Specific topics covered include the following: interstellar matter, molecular clouds, asteroid dust, organic molecules in our solar system, interplanetary dust and comets, meteoritic composition, and organic-rich solar-system bodies.

  9. Earth Evolution and Dynamics (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    Torsvik, Trond H.

    2016-04-01

    While physicists are fantasizing about a unified theory that can explain just about everything from subatomic particles (quantum mechanics) to the origin of the Universe (general relativity), Darwin already in 1858 elegantly unified the biological sciences with one grand vision. In the Earth Sciences, the description of the movement and deformation of the Earth's outer layer has evolved from Continental Drift (1912) into Sea-Floor Spreading (1962) and then to the paradigm of Plate Tectonics in the mid-to-late 1960s. Plate Tectonics has been extremely successful in providing a framework for understanding deformation and volcanism at plate boundaries, allowed us to understand how continent motions through time are a natural result of heat escaping from Earth's deep interior, and has granted us the means to conduct earthquake and volcanic hazard assessments and hydrocarbon exploration, which have proven indispensable for modern society. Plate Tectonics is as fundamentally unifying to the Earth Sciences as Darwin's Theory of Evolution is to the Life Sciences, but it is an incomplete theory that lacks a clear explanation of how plate tectonics, mantle convection and mantle plumes interact. Over the past decade, however, we have provided compelling evidence that plumes rise from explicit plume generation zones at the margins of two equatorial and antipodal large low shear-wave velocity provinces (Tuzo and Jason). These thermochemical provinces on the core-mantle boundary have been stable for at least the last 300 million years, possibly the last 540 million years, and their edges are the dominant sources of the plumes that generate large igneous provinces, hotspots and kimberlites. Linking surface and lithospheric processes to the mantle is extremely challenging and is only now becoming feasible due to breakthroughs in the estimation of ancient longitudes before the Cretaceous, greatly improved seismic tomography, recent advances in mineral physics, and new developments

  10. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  11. Modern Microbial Ecosystems are a Key to Understanding Our Biosphere's Early Evolution and its Contributions To The Atmosphere and Rock Record

    Science.gov (United States)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The survival of our early biosphere depended upon efficient coordination anion- diverse microbial populations. Microbial mats exhibit a 3.46-billion-year fossil record, thus they are the oldest known ecosystems. Photosynthetic microbial mats were key because, today, sunlight powers more than 99 percent of global primary productivity. Thus photosynthetic ecosystems have affected the atmosphere profoundly and have created the most pervasive, easily-detected fossils. Photosynthetic biospheres elsewhere will be most detectible via telescopes or spacecraft. As a part of the Astrobiology Institute, our Ames Microbial Ecosystems group examines the roles played by ecological processes in the early evolution of our biosphere, as recorded in geologic fossils and in the macromolecules of living cells: (1) We are defining the microbial mat microenvironment, which was an important milieu for early evolution. (2) We are comparing mats in contrasting environments to discern strategies of adaptation and diversification, traits that were key for long-term survival. (3) We have selected sites that mimic key environmental attributes of early Earth and thereby focus upon evolutionary adaptations to long-term changes in the global environment. (4) Our studies of gas exchange contribute to better estimates of biogenic gases in Earth's early atmosphere. This group therefore directly addresses the question: How have the Earth and its biosphere influenced each other over time Our studies strengthen the systematics for interpreting the microbial fossil record and thereby enhance astrobiological studies of martian samples. Our models of biogenic gas emissions will enhance models of atmospheres that might be detected on inhabited extrasolar planets. This work therefore also addresses the question: How can other biospheres be recogniZed" Our choice of field sites helps us explore Earth's evolving early environment. For example, modern mats that occupy thermal springs and certain freshwater

  12. Early resistance change and stress/electromigration evolution in near bamboo interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Dima, G.; Govoreanu, B.; Mitrea, O.; Profirescu, M.

    1997-01-01

    A complete description for early resistance change and mechanical stress evolution in near-bamboo interconnects, related to the electromigration, is given in this paper. The proposed model, for the first time, combines the stress/vacancy concentration evolution with the early resistance change of

  13. Prebiotic Chemistry and Atmospheric Warming of Early Earth by an Active Young Sun

    Science.gov (United States)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hebrard, E.; Danchi, W.

    2016-01-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed Into the Earth's early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun -- so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, C02 and CH, suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  14. The early thermal evolution of Mars

    Science.gov (United States)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  15. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    Science.gov (United States)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet

  16. Biological Evolution and the History of the Earth Are Foundations of Science

    Science.gov (United States)

    2008-01-01

    AGU affirms the central importance of including scientific theories of Earth history and biological evolution in science education. Within the scientific community, the theory of biological evolution is not controversial, nor have ``alternative explanations'' been found. This is why no competing theories are required by the U.S. National Science Education Standards. Explanations of natural phenomena that appeal to the supernatural or are based on religious doctrine-and therefore cannot be tested through scientific inquiry-are not scientific, and have no place in the science classroom.

  17. Early evolution without a tree of life.

    Science.gov (United States)

    Martin, William F

    2011-06-30

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.

  18. Isotope composition and volume of Earth´s early oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hyd...... in Earth´s oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH4 and CO2 concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.......Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs......, but hydrogen´s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as Î...

  19. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-06-01

    A model of Earth's continental coverage and mantle water budget is discussed along with its thermal evolution. The model links a thermal evolution model based on parameterized mantle convection with a model of a generic subduction zone that includes the oceanic crust and a sedimentary layer as carriers of water. Part of the subducted water is used to produce continental crust while the remainder is subducted into the mantle. The total length of the subduction zones is calculated from the total surface area of continental crust assuming randomly distributed continents. The mantle viscosity is dependent of temperature and the water concentration. Sediments are generated by continental crust erosion, and water outgassing at mid-oceanic ridges closes the water cycle. We discuss the strongly coupled, non-linear model using a phase plane defined by the continental coverage and mantle water concentration. Fixed points are found in the phase plane at which the rates of change of both variables are zero. These fixed points evolve with time, but in many cases, three fixed points emerge of which two are stable and an intermediate point is unstable with respect to continental coverage. With initial conditions from a Monte-Carlo scheme we calculate evolution paths in the phase plane and find a large spread of final states that all have a mostly balanced water budget. The present day observed 40% continental surface coverage is found near the unstable fixed point. Our evolution model suggests that Earth's continental coverage formed early and has been stable for at least 1.5 Gyr. The effect of mantle water regassing (and mantle viscosity depending on water concentration) is found to lower the present day mantle temperature by about 120 K, but the present day mantle viscosity is affected little. The water cycle thus complements the well-known thermostat effect of viscosity and mantle temperature. Our results further suggest that the biosphere could impact the feedback cycles by

  20. ON THE SIZE AND COMOVING MASS DENSITY EVOLUTION OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Van der Wel, Arjen; Bell, Eric F.; Van den Bosch, Frank C.; Gallazzi, Anna; Rix, Hans-Walter

    2009-01-01

    We present a simple, empirically motivated model that simultaneously predicts the evolution of the mean size and the comoving mass density of massive (>10 11 M sun ) early-type galaxies from z = 2 to the present. First, we demonstrate that some size evolution of the population can be expected simply due to the continuous emergence of early-type galaxies. The Sloan Digital Sky Survey (SDSS) data reveal that in the present-day universe more compact early-type galaxies with a given dynamical mass have older stellar populations. This implies that with increasing look-back time, the more extended galaxies will be more and more absent from the population. In contrast, at a given stellar velocity dispersion, SDSS data show that there is no relation between size and age, which implies that the velocity dispersion can be used to estimate the epoch at which galaxies stopped forming stars, turning into early-type galaxies. Based on this, we define an empirically motivated, redshift-dependent velocity dispersion threshold above which galaxies do not form stars at a significant rate, which we associate with the transformation into early-type galaxies. Applying this 'formation' criterion to a large sample of nearby early-type galaxies, we predict the redshift evolution in the size distribution and the comoving mass density. The resulting evolution in the mean size is roughly half of the observed evolution. Then we include a prescription for the merger histories of galaxies between the 'formation' redshift and the present, based on cosmological simulations of the assembly of dark matter halos. Such mergers after the transformation into an early-type galaxy are presumably dissipationless ('dry'), where the increase in size is expected to be approximately proportional to the increase in mass. This model successfully reproduces the observed evolution since z ∼ 2 in the mean size and in the comoving mass density of early-type galaxies with mass M > 10 11 M sun . We conclude that

  1. A Geological Model for the Evolution of Early Continents (Invited)

    Science.gov (United States)

    Rey, P. F.; Coltice, N.; Flament, N. E.; Thébaud, N.

    2013-12-01

    Geochemical probing of ancient sediments (REE in black shales, strontium composition of carbonates, oxygen isotopes in zircons...) suggests that continents were a late Archean addition at Earth's surface. Yet, geochemical probing of ancient basalts reveals that they were extracted from a mantle depleted of its crustal elements early in the Archean. Considerations on surface geology, the early Earth hypsometry and the rheology and density structure of Archean continents can help solve this paradox. Surface geology: The surface geology of Archean cratons is characterized by thick continental flood basalts (CFBs, including greenstones) emplaced on felsic crusts dominated by Trondhjemite-Tonalite-Granodiorite (TTG) granitoids. This simple geology is peculiar because i/ most CFBs were emplaced below sea level, ii/ after their emplacement, CFBs were deformed into relatively narrow, curviplanar belts (greenstone basins) wrapping around migmatitic TTG domes, and iii/ Archean greenstone belts are richly endowed with gold and other metals deposits. Flat Earth hypothesis: From considerations on early Earth continental geotherm and density structure, Rey and Coltice (2008) propose that, because of the increased ability of the lithosphere to flow laterally, orogenic processes in the Archean produced only subdued topography (early Earth showing that, until the late Archean, most continents were flooded and Earth was largely a water world. From this, a model consistent with many of the peculiar attributes of Archean geology, can be proposed: 1/ Continents appeared at Earth's surface at an early stage during the Hadean/Archean. However, because they were i/ covered by continental flood basalts, ii/ below sea level, and iii/ deprived of modern-style mountain belts and orogenic plateaux, early felsic

  2. The Origin and Early Evolution of Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  3. Chemical evolution of the early Martian hydrosphere

    International Nuclear Information System (INIS)

    Schaefer, M.W.

    1990-01-01

    The chemical evolution of the early Martian hydrosphere is discussed. The early Martian ocean can be modeled as a body of relatively pure water in equilibrium with a dense carbon dioxide atmosphere. The chemical weathering of lavas, pyroclastic deposits, and impact melt sheets would have the effect of neutralizing the acidity of the juvenile water. As calcium and other cations are added to the water by chemical weathering, they are quickly removed by the precipitation of calcium carbonate and other minerals, forming a deposit of limestone beneath the surface of the ocean. As the atmospheric carbon dioxide pressure and the temperature decrease, the Martian ocean would be completely frozen. Given the scenario for the chemical evolution of the northern lowland plains of Mars, it should be possible to draw a few conclusions about the expected mineralogy and geomorphology of this regions

  4. Chemodynamical deuterium fractionation in the early solar nebula: The origin of water on earth and in asteroids and comets

    Energy Technology Data Exchange (ETDEWEB)

    Albertsson, T.; Semenov, D.; Henning, Th., E-mail: albertsson@mpia.de [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-03-20

    Formation and evolution of water in the solar system and the origin of water on Earth constitute one of the most interesting questions in astronomy. The prevailing hypothesis for the origin of water on Earth is by delivery through water-rich small solar system bodies. In this paper, the isotopic and chemical evolution of water during the early history of the solar nebula, before the onset of planetesimal formation, is studied. A gas-grain chemical model that includes multiply deuterated species and nuclear spin-states is combined with a steady-state solar nebula model. To calculate initial abundances, we simulated 1 Myr of evolution of a cold and dark TMC-1-like prestellar core. Two time-dependent chemical models of the solar nebula are calculated over 1 Myr: (1) a laminar model and (2) a model with two-dimensional (2D) turbulent mixing. We find that the radial outward increase of the H{sub 2}O D/H ratio is shallower in the chemodynamical nebular model than in the laminar model. This is related to more efficient defractionation of HDO via rapid gas-phase processes because the 2D mixing model allows the water ice to be transported either inward and thermally evaporated or upward and photodesorbed. The laminar model shows the Earth water D/H ratio at r ≲ 2.5 AU, whereas for the 2D chemodynamical model this zone is larger, r ≲ 9 AU. Similarly, the water D/H ratios representative of the Oort-family comets, ∼2.5-10 × 10{sup –4}, are achieved within ∼2-6 AU and ∼2-20 AU in the laminar and the 2D model, respectively. We find that with regards to the water isotopic composition and the origin of the comets, the mixing model seems to be favored over the laminar model.

  5. Chemodynamical deuterium fractionation in the early solar nebula: The origin of water on earth and in asteroids and comets

    International Nuclear Information System (INIS)

    Albertsson, T.; Semenov, D.; Henning, Th.

    2014-01-01

    Formation and evolution of water in the solar system and the origin of water on Earth constitute one of the most interesting questions in astronomy. The prevailing hypothesis for the origin of water on Earth is by delivery through water-rich small solar system bodies. In this paper, the isotopic and chemical evolution of water during the early history of the solar nebula, before the onset of planetesimal formation, is studied. A gas-grain chemical model that includes multiply deuterated species and nuclear spin-states is combined with a steady-state solar nebula model. To calculate initial abundances, we simulated 1 Myr of evolution of a cold and dark TMC-1-like prestellar core. Two time-dependent chemical models of the solar nebula are calculated over 1 Myr: (1) a laminar model and (2) a model with two-dimensional (2D) turbulent mixing. We find that the radial outward increase of the H 2 O D/H ratio is shallower in the chemodynamical nebular model than in the laminar model. This is related to more efficient defractionation of HDO via rapid gas-phase processes because the 2D mixing model allows the water ice to be transported either inward and thermally evaporated or upward and photodesorbed. The laminar model shows the Earth water D/H ratio at r ≲ 2.5 AU, whereas for the 2D chemodynamical model this zone is larger, r ≲ 9 AU. Similarly, the water D/H ratios representative of the Oort-family comets, ∼2.5-10 × 10 –4 , are achieved within ∼2-6 AU and ∼2-20 AU in the laminar and the 2D model, respectively. We find that with regards to the water isotopic composition and the origin of the comets, the mixing model seems to be favored over the laminar model.

  6. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds

    Science.gov (United States)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; hide

    2016-01-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  7. Mineral remains of early life on Earth? On Mars?

    Science.gov (United States)

    Iberall, Robbins E.; Iberall, A.S.

    1991-01-01

    The oldest sedimentary rocks on Earth, the 3.8-Ga Isua Iron-Formation in southwestern Greenland, are metamorphosed past the point where organic-walled fossils would remain. Acid residues and thin sections of these rocks reveal ferric microstructures that have filamentous, hollow rod, and spherical shapes not characteristic of crystalline minerals. Instead, they resemble ferric-coated remains of bacteria. Because there are no earlier sedimentary rocks to study on Earth, it may be necessary to expand the search elsewhere in the solar system for clues to any biotic precursors or other types of early life. A study of morphologies of iron oxide minerals collected in the southern highlands during a Mars sample return mission may therefore help to fill in important gaps in the history of Earth's earliest biosphere. -from Authors

  8. Hosting Early Evolution in Heated Pores of Rock

    Science.gov (United States)

    Mast, C. B.; Möller, F.; Lanzmich, S.; Keil, L.; Braun, D.

    2017-07-01

    Recent experiments with non-equilibrium micro­systems suggest that porous rock conditions drive early molecular evolution in many ways, including accumulation, polymerization, replication, length selection and gelation.

  9. The emergence and early evolution of biological carbon-fixation.

    Science.gov (United States)

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more

  10. The emergence and early evolution of biological carbon-fixation.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology

  11. THERMAL EVOLUTION AND LIFETIME OF INTRINSIC MAGNETIC FIELDS OF SUPER-EARTHS IN HABITABLE ZONES

    International Nuclear Information System (INIS)

    Tachinami, C.; Ida, S.; Senshu, H.

    2011-01-01

    We have numerically studied the thermal evolution of different-mass terrestrial planets in habitable zones, focusing on the duration of dynamo activity to generate their intrinsic magnetic fields, which may be one of the key factors in habitability of the planets. In particular, we are concerned with super-Earths, observations of which are rapidly developing. We calculated the evolution of temperature distributions in the planetary interior using Vinet equations of state, the Arrhenius-type formula for mantle viscosity, and the astrophysical mixing-length theory for convective heat transfer modified for mantle convection. After calibrating the model with terrestrial planets in the solar system, we apply it for 0.1-10 M + rocky planets with a surface temperature of 300 K (in habitable zones) and Earth-like compositions. With the criterion of heat flux at the core-mantle boundary (CMB), the lifetime of the magnetic fields is evaluated from the calculated thermal evolution. We found that the lifetime slowly increases with planetary mass (M p ), independent of the initial temperature gap at the CMB (ΔT CMB ), but beyond the critical value M c,p (∼O(1) M + ) it abruptly declines from the mantle viscosity enhancement due to the pressure effect. We derived M c,p as a function of ΔT CMB and a rheological parameter (activation volume, V*). Thus, the magnetic field lifetime of super-Earths with M p >M p,c sensitively depends on ΔT CMB , which reflects planetary accretion, and V*, which has uncertainty at very high pressure. More advanced high-pressure experiments and first-principle simulation, as well as planetary accretion simulation, are needed to discuss the habitability of super-Earths.

  12. Rates of morphological evolution are heterogeneous in Early Cretaceous birds

    Science.gov (United States)

    Lloyd, Graeme T.

    2016-01-01

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. PMID:27053742

  13. Electrical energy sources for organic synthesis on the early earth

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    It is pointed out that much of the contemporary origin-of-life research uses the original estimates of Miller and Urey (1959) for terrestrial energy dissipation by lightning and coronal discharges being equal to 2 x 10 to the 19th J/yr and 6 x 10 to the 19th J/yr, respectively. However, data from experiments that provide analogues to naturally-occurring lightning and coronal discharges indicate that lightning energy yields for organic synthesis (nmole/J) are about one order of magnitude higher than the coronal discharge yields. This suggests that, on early earth, organic production by lightning may have dominated that due to coronal emission. New values are recommended for lightning and coronal discharge dissipation rates on the early earth, 1 x 10 to the 18th J/yr and 5 x 10 to the 17th J/yr, respectively.

  14. Astrobiology: Life on Earth (and Elsewhere?)

    Science.gov (United States)

    Des Marais, David J.

    2016-01-01

    Astrobiology investigates the origins, evolution and distribution of life in the universe. Scientists study how stellar systems and their planets can create planetary environments that sustain biospheres. They search for biosignatures, which are objects, substances and or patterns that indicate the presence of life. Studies of Earth's early biosphere enhance these search strategies and also provide key insights about our own origins.

  15. On the Effects of the Evolution of Microbial Mats and Land Plants on the Earth as a Planet. Photometric and Spectroscopic Light Curves of Paleo-Earths

    Science.gov (United States)

    Sanromá, E.; Pallé, E.; García Munõz, A.

    2013-04-01

    Understanding the spectral and photometric variability of the Earth and the rest of the solar system planets has become of utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and non-uniformly from deserts through microbial mats to land plants, modifying the reflective properties of the ground and most likely the distribution of moisture and cloudiness. Here, we used a radiative transfer model of the Earth, together with geological paleo-records of the continental distribution and a reconstructed cloud distribution, to simulate the visible and near-IR radiation reflected by our planet as a function of Earth's rotation. We found that the evolution from deserts to microbial mats and to land plants produces detectable changes in the globally averaged Earth's reflectance. The variability of each surface type is located in different bands and can induce reflectance changes of up to 40% in period of hours. We conclude that by using photometric observations of an Earth-like planet at different photometric bands it would be possible to discriminate between different surface types. While recent literature proposes the red-edge feature of vegetation near 0.7 μm as a signature for land plants, observations in near-IR bands can be equally or even better suited for this purpose.

  16. ON THE EFFECTS OF THE EVOLUTION OF MICROBIAL MATS AND LAND PLANTS ON THE EARTH AS A PLANET. PHOTOMETRIC AND SPECTROSCOPIC LIGHT CURVES OF PALEO-EARTHS

    International Nuclear Information System (INIS)

    Sanromá, E.; Pallé, E.; García Munõz, A.

    2013-01-01

    Understanding the spectral and photometric variability of the Earth and the rest of the solar system planets has become of utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and non-uniformly from deserts through microbial mats to land plants, modifying the reflective properties of the ground and most likely the distribution of moisture and cloudiness. Here, we used a radiative transfer model of the Earth, together with geological paleo-records of the continental distribution and a reconstructed cloud distribution, to simulate the visible and near-IR radiation reflected by our planet as a function of Earth's rotation. We found that the evolution from deserts to microbial mats and to land plants produces detectable changes in the globally averaged Earth's reflectance. The variability of each surface type is located in different bands and can induce reflectance changes of up to 40% in period of hours. We conclude that by using photometric observations of an Earth-like planet at different photometric bands it would be possible to discriminate between different surface types. While recent literature proposes the red-edge feature of vegetation near 0.7 μm as a signature for land plants, observations in near-IR bands can be equally or even better suited for this purpose.

  17. Evolution of NASA's Earth Science Digital Object Identifier Registration System

    Science.gov (United States)

    Wanchoo, Lalit; James, Nathan

    2017-01-01

    NASA's Earth Science Data and Information System (ESDIS) Project has implemented a fully automated system for assigning Digital Object Identifiers (DOIs) to Earth Science data products being managed by its network of 12 distributed active archive centers (DAACs). A key factor in the successful evolution of the DOI registration system over last 7 years has been the incorporation of community input from three focus groups under the NASA's Earth Science Data System Working Group (ESDSWG). These groups were largely composed of DOI submitters and data curators from the 12 data centers serving the user communities of various science disciplines. The suggestions from these groups were formulated into recommendations for ESDIS consideration and implementation. The ESDIS DOI registration system has evolved to be fully functional with over 5,000 publicly accessible DOIs and over 200 DOIs being held in reserve status until the information required for registration is obtained. The goal is to assign DOIs to the entire 8000+ data collections under ESDIS management via its network of discipline-oriented data centers. DOIs make it easier for researchers to discover and use earth science data and they enable users to provide valid citations for the data they use in research. Also for the researcher wishing to reproduce the results presented in science publications, the DOI can be used to locate the exact data or data products being cited.

  18. Evolution of the earliest mantle caused by the magmatism-mantle upwelling feedback: Implications for the Moon and the Earth

    Science.gov (United States)

    Ogawa, M.

    2017-12-01

    The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.

  19. The naked planet Earth: Most essential pre-requisite for the origin and evolution of life

    Directory of Open Access Journals (Sweden)

    S. Maruyama

    2013-03-01

    To satisfy the tight conditions to make the Earth habitable, the formation mechanism of primordial Earth is an important factor. At first, a ‘dry Earth’ must be made through giant impact, followed by magma ocean to float nutrient-enriched primordial continents (anorthosite + KREEP. Late bombardment from asteroid belt supplied water to make 3–5 km thick ocean, and not from icy meteorites from Kuiper belt beyond cool Jupiter. It was essential to meet the above conditions that enabled the Earth as a habitable planet with evolved life forms. The tight constraints that we evaluate for birth and evolution of life on Earth would provide important guidelines for planetary scientists hunting for life in the exo-solar planets.

  20. Early evolution without a tree of life

    Directory of Open Access Journals (Sweden)

    Martin William F

    2011-06-01

    Full Text Available Abstract Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre.

  1. Earth's inner core: Innermost inner core or hemispherical variations?

    NARCIS (Netherlands)

    Lythgoe, K. H.; Deuss, A.|info:eu-repo/dai/nl/412396610; Rudge, J. F.; Neufeld, J. A.

    2014-01-01

    The structure of Earth's deep inner core has important implications for core evolution, since it is thought to be related to the early stages of core formation. Previous studies have suggested that there exists an innermost inner core with distinct anisotropy relative to the rest of the inner core.

  2. Formation and evolution of plasmoid and flux-rope in the Earth's Magnetotail

    Science.gov (United States)

    Ge, Yasong; Raeder, Joachim

    2015-04-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the "classical" NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. Understanding their formation and evolution during their propagation through the magnetotail shall shred more light on the general energy and flux transport of the Earth's magnetosphere. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that the tilted flux rope forms due to a progressive spreading of reconnection line along the east-west direction, which produces and releases two ends of the flux rope at different times and in different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that inside the small-scale flux ropes.

  3. The role of impacts in the history of the early earth

    Science.gov (United States)

    French, Bevan M.

    1991-01-01

    The significant conclusions of a conference called 'Meteorite Impact and the Early Earth' are reported including data which support the notion that extraterrestrial impacts greatly influenced the development of the earth. The cratering of other planetary surfaces is discussed, and the energy added by meteorite impacts is characterized. The primary effects of large impacts are set forth in terms of atmospheric, oceanic, and biological considerations which suggest that the ramifications would have been significant. Contentious issues include the variation of impact rate with time in the early universe, the interpretation of the record of intense bombardment in the lunar highlands, and the effects related to alternative scenarios. Directions of future study are mentioned including the identification of terrestrial impact structures, conducting searches in the Archean, and assessing ancient impact rates.

  4. Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS)

    Science.gov (United States)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne; Sofinowski, Edwin; Lowe, Dawn; Esfandiari, Mary Ann

    2008-01-01

    One of the strategic goals of the U.S. National Aeronautics and Space Administration (NASA) is to "Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration". An important sub-goal of this goal is to "Study Earth from space to advance scientific understanding and meet societal needs." NASA meets this subgoal in partnership with other U.S. agencies and international organizations through its Earth science program. A major component of NASA s Earth science program is the Earth Observing System (EOS). The EOS program was started in 1990 with the primary purpose of modeling global climate change. This program consists of a set of space-borne instruments, science teams, and a data system. The instruments are designed to obtain highly accurate, frequent and global measurements of geophysical properties of land, oceans and atmosphere. The science teams are responsible for designing the instruments as well as scientific algorithms to derive information from the instrument measurements. The data system, called the EOS Data and Information System (EOSDIS), produces data products using those algorithms as well as archives and distributes such products. The first of the EOS instruments were launched in November 1997 on the Japanese satellite called the Tropical Rainfall Measuring Mission (TRMM) and the last, on the U.S. satellite Aura, were launched in July 2004. The instrument science teams have been active since the inception of the program in 1990 and have participation from Brazil, Canada, France, Japan, Netherlands, United Kingdom and U.S. The development of EOSDIS was initiated in 1990, and this data system has been serving the user community since 1994. The purpose of this chapter is to discuss the history and evolution of EOSDIS since its beginnings to the present and indicate how it continues to evolve into the future. this chapter is organized as follows. Sect

  5. Evolution of the Oxidation State of the Earth's Mantle

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.

  6. A new hypothesis of dinosaur relationships and early dinosaur evolution.

    Science.gov (United States)

    Baron, Matthew G; Norman, David B; Barrett, Paul M

    2017-03-22

    For 130 years, dinosaurs have been divided into two distinct clades-Ornithischia and Saurischia. Here we present a hypothesis for the phylogenetic relationships of the major dinosaurian groups that challenges the current consensus concerning early dinosaur evolution and highlights problematic aspects of current cladistic definitions. Our study has found a sister-group relationship between Ornithischia and Theropoda (united in the new clade Ornithoscelida), with Sauropodomorpha and Herrerasauridae (as the redefined Saurischia) forming its monophyletic outgroup. This new tree topology requires redefinition and rediagnosis of Dinosauria and the subsidiary dinosaurian clades. In addition, it forces re-evaluations of early dinosaur cladogenesis and character evolution, suggests that hypercarnivory was acquired independently in herrerasaurids and theropods, and offers an explanation for many of the anatomical features previously regarded as notable convergences between theropods and early ornithischians.

  7. Role of radon and its progeny in the origin and evolution of life on earth

    International Nuclear Information System (INIS)

    Subba Ramu, M.C.; Vohra, K.G.

    1980-01-01

    The role of natural ionising radiations from radon and its progeny in catalysing certain chemical reactions and aiding certain biological phenomena leading to the formation and evolution of life on earth is explained with illustrations. (M.G.B.)

  8. The (146,147)Sm-(142,143)Nd systematics of early terrestrial differentiation and the lost continents of the early Earth

    Science.gov (United States)

    Harper, Charles L., Jr.; Jacobsen, Stein B.

    1992-01-01

    The very early history of the Earth has been one of the great enduring puzzles in the history of geology. We report evidence which clearly can be described as a vestige of a beginning, because the evidence that we report cannot be interpreted in any other way except as a geochemical signal of processes active in the very early history of the Earth. The evidence itself is a very small anomaly in the abundance of SM-146. The primary aims of this study were to: (1) verify the existence of the 'lost continents' of the Hadean era; and (2) determine their mean age.

  9. Astrophysics and Weak Form of Panspermia Hypothesis and Exogenous Factors in the Evolution of the Earth

    Science.gov (United States)

    Adushkin, V. V.; Vityazev, A. V.; Glazachev, D. O.; Pechernikova, G. V.

    2014-10-01

    The problems of the origin of Earth and life are fundamental in the modern science. We, relying on the data of resent years, contemplate a new course of research in this old problem. On the base of astrophysical data, obtained during the last 30-50 years, and the resent results of the study of small bodies in the Solar System (comets in particular) it is possible to combine the old idea about panspermia in a comprehensive sense and the search of the basis of life on the early Earth grounded on theoretical and laboratory data on the Earth evolution. Most likely, the Sun and a gas-and-dust disk surrounding it were created in a Giant molecular cloud near young giants - blue O-B-stars which ultraviolet radiation provided a weak chirality (to 15% of EEs) in organics of interstellar dust. Further a part of interstellar dust beyond orbits larger than 3-4 a.u. remained cold and then entered into the first planetesimals. The organics, after melting of interiors of the first planetesimals due to the heating by shortliving 26Al and 60Fe, sank, in the form of kerogens, into the core where formation of the first complex organic compounds began. This occurred in the first 3-4 Myr after the CAI. Apparently, it is necessary to look for anaerobic life in comets. In geosciences obtained various data banks, such as data on the endogenous activity of the Earth, mass extinctions of life and changes in biodiversity, impacts of cosmic bodies, inversions of the magnetic field, climate change, etc. The problem of cyclicity and correlation of all these processes is studied for 50 years. Results of spectral, wavelet and correlation analysis of the data series, representing some of these processes are given. We conclude, that most of them are cyclic, some of the periods are present in all the processes. The mechanisms of the influence of the galaxy on the processes occurring on the Earth are discussed.

  10. Aqueous magnesium as an environmental selection pressure in the evolution of phospholipid membranes on early earth

    Science.gov (United States)

    Dalai, Punam; Ustriyana, Putu; Sahai, Nita

    2018-02-01

    Early compartmentalization of simple biomolecules by membrane bilayers was, presumably, a critical step in the emergence of the first cell-like entities, protocells. Their membranes were likely composed of single chain amphiphiles (SCAs), but pure SCA membranes especially those with short-chains are highly unstable towards divalent cations, which are ubiquitous in aqueous environments. The prebiotic synthesis of phospholipids (PLs), even in only trace amounts, may also have been possible. PL membranes are much more stable towards divalent cations. Here, we show the transition of fatty acid membranes to mixed fatty acid-PL and, finally, to PL membranes in the presence of Mg2+, which acts as an environmental selection pressure, and we propose different mechanisms for the observed increased Mg2+-immunity. The "fatal" concentration ([Mg2+]fatal) at which vesicles are disrupted increased dramatically by an order of magnitude from OA to mixed to POPC vesicles. Two mechanisms for the increasing immunity were determined. The negative charge density of the vesicles decreased with increasing POPC content, so more Mg2+ was required for disruption. More interestingly, Mg2+ preferentially bound to and abstracted OA from mixed lipid membranes, resulting in relatively POPC-enriched vesicles compared to the initial ratio. The effect was the most dramatic for the largest initial OA-POPC ratio representing the most primitive protocells. Thus, Mg2+ acted to evolve the mixed membrane composition towards PL enrichment. To the best of our knowledge, this is the first report of selective lipid abstraction from mixed SCA-PL vesicles. These results may hold implications for accommodating prebiotic Mg2+-promoted processes such as non-enzymatic RNA polymerization on early Earth.

  11. Thermal structure of the accreting earth

    International Nuclear Information System (INIS)

    Turcotte, D.L.; Pflugrath, J.C.

    1985-01-01

    The energy associated with the accretion of the earth and the segregation of the core is more than sufficient to melt the entire earth. In order to understand the thermal evolution of the early earth it is necessary to study the relevant heat transfer mechanisms. In this paper we postulate the existence of a global magma ocean and carry out calculations of the heat flux through it in order to determine its depth. In the solid mantle heat is transferred by the upward migration of magma. This magma supplies the magma ocean. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. We find that a magma ocean with a depth of the order of 20 km would have existed as the earth accreted. We conclude that the core segregated and an atmosphere was formed during accretion

  12. Earth's structure and evolution inferred from topography, gravity, and seismicity.

    Science.gov (United States)

    Watkinson, A. J.; Menard, J.; Patton, R. L.

    2016-12-01

    Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long

  13. Spectra of Earth-like Planets through Geological Evolution around FGKM Stars

    Science.gov (United States)

    Rugheimer, S.; Kaltenegger, L.

    2018-02-01

    Future observations of terrestrial exoplanet atmospheres will occur for planets at different stages of geological evolution. We expect to observe a wide variety of atmospheres and planets with alternative evolutionary paths, with some planets resembling Earth at different epochs. For an Earth-like atmospheric time trajectory, we simulate planets from the prebiotic to the current atmosphere based on geological data. We use a stellar grid F0V to M8V ({T}{eff}=7000–2400 K) to model four geological epochs of Earth's history corresponding to a prebiotic world (3.9 Ga), the rise of oxygen at 2.0 Ga and at 0.8 Ga, and the modern Earth. We show the VIS–IR spectral features, with a focus on biosignatures through geological time for this grid of Sun-like host stars and the effect of clouds on their spectra. We find that the observability of biosignature gases reduces with increasing cloud cover and increases with planetary age. The observability of the visible O2 feature for lower concentrations will partly depend on clouds, which, while slightly reducing the feature, increase the overall reflectivity, and thus the detectable flux of a planet. The depth of the IR ozone feature contributes substantially to the opacity at lower oxygen concentrations, especially for the high near-UV stellar environments around F stars. Our results are a grid of model spectra for atmospheres representative of Earth's geological history to inform future observations and instrument design and are available online at http://carlsaganinstitute.org/data/.

  14. A Novel Theory For The Origin And Evolution Of Stars And Planets, Including Earth, Which Asks, 'Was The Earth Once A Small Bright Star?'

    Science.gov (United States)

    Cimorelli, S. A.; Samuels, C.

    2001-12-01

    Improved prediction methods for earthquakes and volcanic activity will naturally follow from our theory, based on new concepts of the earth's interior composition, state and activity. In this paper we present a novel hypothesis for the formation and evolution of galaxies, stars (including black holes (BHs), neutron stars, giant, mid-size, dwarf, dying and dead stars), planets (including earth), and moons. Present day phenomenon will be used to substantiate the validity of this hypothesis. Every `body' is a multiple type of star, generated from modified pieces called particle proliferators, of a dislodged/expanded BH (of category 2 (c-2)) which explodes due to a collision with another expanded BH (or explodes on its own). This includes the sun, and the planet earth, which is a type of dead star. Such that, if we remove layers of the earth, starting with the crust, we will find evidence of each preceding star formation, from brown to blue, and the remains of the particle proliferator as the innermost core is reached. We show that the hypothesis is consistent with both the available astronomical data regarding stellar evolution and planetary formation; as well as the evolution of the earth itself, by considerations of the available geophysical data. Where data is not available, reasonably simple experiments are suggested to demonstrate further the consistency and viability of the hypothesis. Theories are presented to help define and explain phenomenon such as how two (or more) c-2 BHs expand and collide to form a small `big bang' (It is postulated that there was a small big bang to form each galaxy, similar to the big bang from a category 1 BH(s) that may have formed our universe. The Great Attractors would be massive c-2 BHs and act on galaxy clusters similar to the massive c-3 BHs at the center of Galaxies acting on stars.). This in turn afforded the material/matter to form all the galactic bodies, including the dark matter inside the galaxies that we catalogue as

  15. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    International Nuclear Information System (INIS)

    Stamenković, Vlada; Noack, Lena; Spohn, Tilman; Breuer, Doris

    2012-01-01

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths—resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary mass even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution—the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.

  16. Virtual Exploration of Earth's Evolution

    Science.gov (United States)

    Anbar, A. D.; Bruce, G.; Semken, S. C.; Summons, R. E.; Buxner, S.; Horodyskyj, L.; Kotrc, B.; Swann, J.; Klug Boonstra, S. L.; Oliver, C.

    2014-12-01

    Traditional introductory STEM courses often reinforce misconceptions because the large scale of many classes forces a structured, lecture-centric model of teaching that emphasizes delivery of facts rather than exploration, inquiry, and scientific reasoning. This problem is especially acute in teaching about the co-evolution of Earth and life, where classroom learning and textbook teaching are far removed from the immersive and affective aspects of field-based science, and where the challenges of taking large numbers of students into the field make it difficult to expose them to the complex context of the geologic record. We are exploring the potential of digital technologies and online delivery to address this challenge, using immersive and engaging virtual environments that are more like games than like lectures, grounded in active learning, and deliverable at scale via the internet. The goal is to invert the traditional lecture-centric paradigm by placing lectures at the periphery and inquiry-driven, integrative virtual investigations at the center, and to do so at scale. To this end, we are applying a technology platform we devised, supported by NASA and the NSF, that integrates a variety of digital media in a format that we call an immersive virtual field trip (iVFT). In iVFTs, students engage directly with virtual representations of real field sites, with which they interact non-linearly at a variety of scales via game-like exploration while guided by an adaptive tutoring system. This platform has already been used to develop pilot iVFTs useful in teaching anthropology, archeology, ecology, and geoscience. With support the Howard Hughes Medical Institute, we are now developing and evaluating a coherent suite of ~ 12 iVFTs that span the sweep of life's history on Earth, from the 3.8 Ga metasediments of West Greenland to ancient hominid sites in East Africa. These iVFTs will teach fundamental principles of geology and practices of scientific inquiry, and expose

  17. Early Microbial Evolution: The Age of Anaerobes.

    Science.gov (United States)

    Martin, William F; Sousa, Filipa L

    2015-12-18

    In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    Science.gov (United States)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  19. Multiplicity in Early Stellar Evolution

    Science.gov (United States)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  20. Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets.

    Science.gov (United States)

    Nixon, Sophie L; Cockell, Charles S

    2015-03-01

    The delivery of extraterrestrial organics to early Earth provided a potentially important source of carbon and energy for microbial life. Optically active organic compounds of extraterrestrial origin exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. Although D-enantiomers of proteinogenic amino acids are known to inhibit aerobic microorganisms, the role of concentrated nonproteinogenic meteoritic D-amino acids on anaerobic metabolisms relevant to early Earth and other anoxic planets such as Mars is unknown. Here, we test the inhibitory effect of D-enantiomers of two nonproteinogenic amino acids common to carbonaceous chondrites, norvaline and α-aminobutyric acid, on microbial iron reduction. Three pure strains (Geobacter bemidjiensis, Geobacter metallireducens, Geopsychrobacter electrodiphilus) and an iron-reducing enrichment culture were grown in the presence of 10 mM D-enantiomers of both amino acids. Further tests were conducted to assess the inhibitory effect of these D-amino acids at 1 and 0.1 mM. The presence of 10 mM D-norvaline and D-α-aminobutyric acid inhibited microbial iron reduction by all pure strains and the enrichment. G. bemidjiensis was not inhibited by either amino acid at 0.1 mM, but D-α-aminobutyric acid still inhibited at 1 mM. Calculations using published meteorite accumulation rates to the martian surface indicate D-α-aminobutyric acid may have reached inhibitory concentrations in little over 1000 years during peak infall. These data show that, on a young anoxic planet, the use of one enantiomer over another may render the nonbiological enantiomer an environmental toxin. Processes that generate racemic amino acids in the environment, such as meteoritic infall or impact synthesis, would have been toxic processes and could have been a selection pressure for the evolution of early racemases.

  1. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    Science.gov (United States)

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  2. Earth's Coming of Age: Isotopically Tracking the Global Transformation from the Hadean to the Geologically Modern Earth

    Science.gov (United States)

    Bennett, V. C.; Nutman, A. P.

    2017-12-01

    Some of the strongest direct evidence that documents fundamental changes in the chemistry and organisation of Earth's interior derives from radiogenic isotopic compositions that include both long-lived (particularly 176Lu-176Hf and 147Sm-143Nd) and short-lived, i.e., now extinct parent isotope, systems (182Hf-182W, 146Sm-142Nd). Changes in patterns of isotopic evolution are linked to changes in mantle dynamics such that tracking these signatures in geologically well-characterised rocks can be used to discover the the nature and evolution of tectonic processes. Over the past decade, intensive geochemical investigations by various groups focussing on the oldest (> 4.0 Ga to 3.6 Ga) rock record, as preserved in several localities, have revealed isotopic distinctions in the early Earth compared with those in Proterozoic and younger rocks. For example, whilst the major and trace element compositions of Eoarchean gneisses have analogs in younger rocks in accord with a continuum of crust formation processes, radiogenic isotopic signatures from both long and short half-life decay schemes record an image of the Earth in transition from early differentiation processes, likely associated with planetary accretion and formation, to more modern style characterised by plate tectonics. The emerging image is that many Eoarchean rocks possess extinct nuclide anomalies in the form of 142Nd and 182Hf isotopic signatures that are absent in modern terrestrial samples; these signatures are evidence of chemical fractionation processes occuring within the first ca. 10-300 million years of Solar System history. In addition, viewing the global database, patterns of long-half life isotope signatures i.e., 143Nd and 176Hf differ from those seen in younger (modern Earth.

  3. On the Tidal Evolution of the Earth-Moon System: A Cosmological Model

    Directory of Open Access Journals (Sweden)

    Arbab A. I.

    2009-01-01

    Full Text Available We have presented a cosmological model for the tidal evolution of the Earth-Moon system. We have found that the expansion of the universe has immense consequences on our local systems. The model can be compared with the present observational data. The close approach problem inflicting the known tidal theory is averted in this model. We have also shown that the astronomical and geological changes of our local systems are of the order of Hubble constant.

  4. Early evolution of Tubulogenerina during the Paleogene of Europe

    Science.gov (United States)

    Gibson, T.G.; Barbin, V.; Poignant, A.; Sztrakos, K.

    1991-01-01

    The early evolution of Tubulogenerina took place in Europe where eight species occur in lower Eocene to uppermost Oligocene or lower Miocene strata. Species diversity within Tubulogenerina dropped significantly in the early Oligocne; only a single species persisted from the late Eocene, and it became extinct before the end of the early Oligocene. Morphologic changes during the European phylogeny of Tubulogenerina include (1) the development of costate and more complex tubulopore ornamentation, and (2) the change from a single elongated apertural slit with a single toothplate to multiple apertures and toothplates. Three new Tubulogenerina species are described. -from Authors

  5. The twin sister planets Venus and Earth why are they so different?

    CERN Document Server

    Malcuit, Robert J

    2014-01-01

    This book explains how it came to be that Venus and Earth, while very similar in chemical composition, zonation, size and heliocentric distance from the Sun, are very different in surface environmental conditions. It is argued here that these differences can be accounted for by planetoid capture processes and the subsequent evolution of the planet-satellite system. Venus captured a one-half moon-mass planetoid early in its history in the retrograde direction and underwent its "fatal attraction scenario" with its satellite (Adonis). Earth, on the other hand, captured a moon-mass planetoid (Luna) early in its history in prograde orbit and underwent a benign estrangement scenario with its captured satellite.

  6. Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Haack, Henning; Rosing, M.

    2003-01-01

    for the chondrite-forming event. This ¿176 value indicates that Earth's oldest minerals were derived from melts of a mantle source with a time-integrated history of depletion rather than enrichment. The depletion event must have occurred no later than 320 Myr after planetary accretion, consistent with timing......The Lu to Hf decay series has been widely used to understand the nature of Earth's early crust-mantle system. The interpretation, however, of Lu-Hf isotope data requires accurate knowledge of the radioactive decay constant of Lu (¿176), as well as bulk-Earth reference parameters. A recent...

  7. Annual review of earth and planetary sciences. Volume 16

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Albee, A.L.; Stehli, F.G.

    1988-01-01

    Various papers on earth and planetary science topics are presented. The subjects addressed include: role and status of earth science field work; phase relations of prealuminous granitic rocks and their petrogenetic implications; chondritic meteorites and the solar nebula; volcanic winters; mass wasting on continental margins; earthquake ground motions; ore deposits as guides to geologic history of the earth; geology of high-level nuclear waste disposal; and tectonic evolution of the Caribbean. Also discussed are: the earth's rotation; the geophysics of a restless caldera (Long Valley, California); observations of cometary nuclei; geology of Venus; seismic stratigraphy; in situ-produced cosmogenic isotopes in terrestrial rocks; time variations of the earth's magnetic field; deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection; early proterozoic assembly and growth of Laurentia; concepts and methods of high-resolution event stratigraphy

  8. Open Listening: Creative Evolution in Early Childhood Settings

    Science.gov (United States)

    Davies, Bronwyn

    2011-01-01

    This article sketches out a philosophy and practice of open listening, linking open listening to Bergson's (1998) concept of creative evolution. I draw on examples of small children at play from a variety of sources, including Reggio-Emilia-inspired preschools in Sweden. The article offers a challenge to early childhood educators to listen and to…

  9. Insights into recent and ancient trends in the co-evolution of Earth and life as revealed by microbial genomics

    Science.gov (United States)

    Anderson, R. E.; Huber, J. A.; Parsons, C.; Stüeken, E.

    2017-12-01

    Since the origin of life over 4 billion years ago, life has fundamentally altered the habitability of Earth. Similarly, the environment molds the evolutionary trajectory of life itself through natural selection. Microbial genomes retain a "memory" of the co-evolution of life and Earth and can be analyzed to better understand trends and events in both the recent and distant past. To examine evolutionary trends in the more recent past, we have used metagenomics analyses to investigate which environmental factors play the strongest role in driving the evolution of microbes in deep-sea hydrothermal vents, which are thought to have been important habitats in the earliest stages of life's evolution. We have shown that microbial populations in a deep, basalt-hosted system appear to be under stronger purifying selection than populations inhabiting a cooler serpentinizing system less than 20 km away, suggesting that environmental context and geochemistry have an important impact on evolutionary rates and trends. We also found evidence that viruses play an important role in driving evolution in these habitats. Changing environmental conditions may also effect long-term evolutionary trends in Earth's distant past, as revealed by comparative genomics. By reconciling phylogenetic trees for microbial species with trees of metabolic genes, we can determine approximately when crucial metabolic genes began to spread across the tree of life through horizontal gene transfer. Using these methods, we conducted an analysis of the relative timing of the spread of genes related to the nitrogen cycle. Our results indicate that the rate of horizontal gene transfer for important genes related to denitrification increased after the Great Oxidation Event, concurrent with geochemical evidence for increasing availability of nitrate, suggesting that the oxygenation of the atmosphere and surface ocean may have been an important determining factor for the spread of denitrification genes across the

  10. The early evolution of the Archegoniatae: a re-appraisal

    NARCIS (Netherlands)

    Meeuse, A.D.J.

    1966-01-01

    After a re-appraisal of the alternative hypotheses concerning the origin and the early evolution of the archegoniate land plants, the postulation of a thalassiophytic group of precursors with free isomorphic alternating generations by Church, Zimmermann, and several others is rejected. Several

  11. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model.

    Science.gov (United States)

    Krissansen-Totton, Joshua; Arney, Giada N; Catling, David C

    2018-04-17

    The early Earth's environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean-Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO 2 , which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. Copyright © 2018 the Author(s). Published by PNAS.

  12. The evolution of early-type galaxies in distant clusters

    International Nuclear Information System (INIS)

    Stanford, S.A.; Eisenhardt, P.R.; Dickinson, M.

    1998-01-01

    We present results from an optical-infrared photometric study of early-type (E+S0) galaxies in 19 galaxy clusters out to z=0.9. The galaxy sample is selected on the basis of morphologies determined from Hubble Space Telescope (HST) WFPC2 images and is photometrically defined in the K band in order to minimize redshift-dependent selection biases. Using new ground-based photometry in five optical and infrared bands for each cluster, we examine the evolution of the color-magnitude relation for early-type cluster galaxies, considering its slope, intercept, and color scatter around the mean relation. New multiwavelength photometry of galaxies in the Coma Cluster is used to provide a baseline sample at z∼0 with which to compare the distant clusters. The optical - IR colors of the early-type cluster galaxies become bluer with increasing redshift in a manner consistent with the passive evolution of an old stellar population formed at an early cosmic epoch. The degree of color evolution is similar for clusters at similar redshift and does not depend strongly on the optical richness or X-ray luminosity of the cluster, which suggests that the history of early-type galaxies is relatively insensitive to environment, at least above a certain density threshold. The slope of the color-magnitude relationship shows no significant change out to z=0.9, which provides evidence that it arises from a correlation between galaxy mass and metallicity, not age. Finally, the intrinsic scatter in the optical - IR colors of the galaxies is small and nearly constant with redshift, which indicates that the majority of giant, early-type galaxies in clusters share a common star formation history, with little perturbation due to uncorrelated episodes of later star formation. Taken together, our results are consistent with models in which most early-type galaxies in rich clusters are old, formed the majority of their stars at high redshift in a well-synchronized fashion, and evolved quiescently

  13. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    Science.gov (United States)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  14. Amino Acid Stability in the Early Oceans

    Science.gov (United States)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  15. The early evolution of the atmospheres of terrestrial planets

    CERN Document Server

    Raulin, François; Muller, Christian; Nixon, Conor; Astrophysics and Space Science Proceedings : Volume 35

    2013-01-01

    “The Early Evolution of the Atmospheres of Terrestrial Planets” presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth’s transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are ...

  16. Human evolution. Evolution of early Homo: an integrated biological perspective.

    Science.gov (United States)

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-04

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments. Copyright © 2014, American Association for the Advancement of Science.

  17. On the asymmetric evolution of the perihelion distances of near-Earth Jupiter family comets around the discovery time

    Science.gov (United States)

    Sosa, A.; Fernández, J. A.; Pais, P.

    2012-12-01

    We study the dynamical evolution of the near-Earth Jupiter family comets (NEJFCs) that came close to or crossed the Earth's orbit at the epoch of their discovery (perihelion distances qdisc time evolution of the mean perihelion distance bar{q} of the NEJFCs at the discovery time of each comet (taken as t = 0) and a past-future asymmetry of bar{q} in an interval -1000 yr, +1000 yr centred on t = 0, confirming previous results. The asymmetry indicates that there are more comets with greater q in the past than in the future. For comparison purposes, we also analysed the population of near-Earth asteroids in cometary orbits (defined as those with aphelion distances Q > 4.5 AU) and with absolute magnitudes H time a large sample of fictitious comets, cloned from the observed NEJFCs, over a 20 000 yr time interval and started the integration before the comet's discovery time, when it had a perihelion distance q > 2 AU. By assuming that NEJFCs are mostly discovered when they decrease their perihelion distances below a certain threshold qthre = 1.05 AU for the first time during their evolution, we were able to reproduce the main features of the observed bar{q} evolution in the interval [-1000, 1000] yr with respect to the discovery time. Our best fits indicate that 40% of the population of NEJFCs would be composed of young, fresh comets that entered the region q spending at least 3000 yr in the q family comets (JFCs).

  18. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  19. EUV-VUV photochemistry in the upper atmospheres of Titan and the early Earth

    Science.gov (United States)

    Imanaka, H.; Smith, M. A.

    2010-12-01

    Titan, the organic-rich moon of Saturn, possesses a thick atmosphere of nitrogen, globally covered with organic haze layers. The recent Cassini’s INMS and CAPS observations clearly demonstrate the importance of complex organic chemistry in the ionosphere. EUV photon radiation is the major driving energy source there. Our previous laboratory study of the EUV-VUV photolysis of N2/CH4 gas mixtures demonstrates a unique role of nitrogen photoionization in the catalytic formation of complex hydrocarbons in Titan’s upper atmosphere (Imanaka and Smith, 2007, 2009). Such EUV photochemistry could also have played important roles in the formation of complex organic molecules in the ionosphere of the early Earth. It has been suggested that the early Earth atmosphere may have contained significant amount of reduced species (CH4, H2, and CO) (Kasting, 1990, Pavlov et al., 2001, Tian et al., 2005). Recent experimental study, using photon radiation at wavelengths longer than 110 nm, demonstrates that photochemical organic haze could have been generated from N2/CO2 atmospheres with trace amounts of CH4 or H2 (Trainer et al., 2006, Dewitt et al., 2009). However, possible EUV photochemical processes in the ionosphere are not well understood. We have investigated the effect of CO2 in the possible EUV photochemical processes in simulated reduced early Earth atmospheres. The EUV-VUV photochemistry using wavelength-tunable synchrotron light between 50 - 150 nm was investigated for gas mixtures of 13CO2/CH4 (= 96.7/3.3) and N2/13CO2/CH4 (= 90/6.7/3.3). The onsets of unsaturated hydrocarbon formation were observed at wavelengths shorter than the ionization potentials of CO2 and N2, respectively. This correlation indicates that CO2 can play a similar catalytic role to N2 in the formation of heavy organic species, which implies that EUV photochemistry might have significant impact on the photochemical generation of organic haze layers in the upper atmosphere of the early Earth.

  20. Cubic zirconia in >2370 °C impact melt records Earth's hottest crust

    Science.gov (United States)

    Timms, Nicholas E.; Erickson, Timmons M.; Zanetti, Michael R.; Pearce, Mark A.; Cayron, Cyril; Cavosie, Aaron J.; Reddy, Steven M.; Wittmann, Axel; Carpenter, Paul K.

    2017-11-01

    Bolide impacts influence primordial evolution of planetary bodies because they can cause instantaneous melting and vaporization of both crust and impactors. Temperatures reached by impact-generated silicate melts are unknown because meteorite impacts are ephemeral, and established mineral and rock thermometers have limited temperature ranges. Consequently, impact melt temperatures in global bombardment models of the early Earth and Moon are poorly constrained, and may not accurately predict the survival, stabilization, geochemical evolution and cooling of early crustal materials. Here we show geological evidence for the transformation of zircon to cubic zirconia plus silica in impact melt from the 28 km diameter Mistastin Lake crater, Canada, which requires super-heating in excess of 2370 °C. This new temperature determination is the highest recorded from any crustal rock. Our phase heritage approach extends the thermometry range for impact melts by several hundred degrees, more closely bridging the gap between nature and theory. Profusion of >2370 °C superheated impact melt during high intensity bombardment of Hadean Earth likely facilitated consumption of early-formed crustal rocks and minerals, widespread volatilization of various species, including hydrates, and formation of dry, rigid, refractory crust.

  1. Nitrogen evolution within the Earth's atmosphere-mantle system assessed by recycling in subduction zones

    Science.gov (United States)

    Mallik, Ananya; Li, Yuan; Wiedenbeck, Michael

    2018-01-01

    Understanding the evolution of nitrogen (N) across Earth's history requires a comprehensive understanding of N's behaviour in the Earth's mantle - a massive reservoir of this volatile element. Investigation of terrestrial N systematics also requires assessment of its evolution in the Earth's atmosphere, especially to constrain the N content of the Archaean atmosphere, which potentially impacted water retention on the post-accretion Earth, potentially causing enough warming of surface temperatures for liquid water to exist. We estimated the proportion of recycled N in the Earth's mantle today, the isotopic composition of the primitive mantle, and the N content of the Archaean atmosphere based on the recycling rates of N in modern-day subduction zones. We have constrained recycling rates in modern-day subduction zones by focusing on the mechanism and efficiency of N transfer from the subducting slab to the sub-arc mantle by both aqueous fluids and slab partial melts. We also address the transfer of N by aqueous fluids as per the model of Li and Keppler (2014). For slab partial melts, we constrained the transfer of N in two ways - firstly, by an experimental study of the solubility limit of N in melt (which provides an upper estimate of N uptake by slab partial melts) and, secondly, by the partitioning of N between the slab and its partial melt. Globally, 45-74% of N introduced into the mantle by subduction enters the deep mantle past the arc magmatism filter, after taking into account the loss of N from the mantle by degassing at mid-ocean ridges, ocean islands and back-arcs. Although the majority of the N in the present-day mantle remains of primordial origin, our results point to a significant, albeit minor proportion of mantle N that is of recycled origin (17 ± 8% or 12 ± 5% of N in the present-day mantle has undergone recycling assuming that modern-style subduction was initiated 4 or 3 billion years ago, respectively). This proportion of recycled N is enough to

  2. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    International Nuclear Information System (INIS)

    Frey, H.

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics

  3. On the effects of the evolution of microbial mats and land plants on the Earth as a planet. Photometric and spectroscopic light curves of paleo-Earths

    OpenAIRE

    Sanromá, E.; Pallé, E.; García-Muñoz, A.

    2013-01-01

    Understanding the spectral and photometric variability of the Earth and the rest of the solar system planets has become of the utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and non- uniformly from des...

  4. The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China

    Science.gov (United States)

    Smith, M.; Kynicky, J.; Xu, Cheng; Song, Wenlei; Spratt, J.; Jeffries, T.; Brtnicky, M.; Kopriva, A.; Cangelosi, D.

    2018-05-01

    The silico‑carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Burbankite was also potentially an early crystallising phase. Monazite-(Ce) was subsequently altered to produce a second generation of apatite, which was in turn replaced and overgrown by britholite-(Ce), accompanied by the formation of allanite-(Ce). Bastnäsite and parisite where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, to more silica-rich conditions during early hydrothermal processes, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate hydrothermal fluids must have contributed HREE to the mineralisation. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid (where a is activity), and breakdown of HREE-enriched calcite may have been the HREE source. Leaching in the presence of strong, LREE-selective ligands (Cl-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during alteration, and hence sulphate complexation may have been important for preferential HREE transport. Alongside HREE-enriched magmatic sources, and enrichment during magmatic processes, late stage alteration with non-LREE-selective ligands may be critical in forming HREE

  5. Hot Spots in the Earth's Crust. Crustal Evolution Education Project. Teacher's Guide [and] Student Investigation.

    Science.gov (United States)

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  6. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  7. Subduction on Venus and Implications for Volatile Cycling, Early Earth and Exoplanets

    Science.gov (United States)

    Smrekar, S. E.; Davaille, A.; Mueller, N. T.; Dyar, M. D.; Helbert, J.; Barnes, H.

    2017-12-01

    Plate tectonics plays a key role in long-term climate evolution by cycling volatiles between the interior, surface and atmosphere. Subduction is a critical process. It is the first step in transitioning between a stagnant and a mobile lid, a means for conveying volatiles into the mantle, and a mechanism for creating felsic crust. Laboratory experiments using realistic rheology illuminate the deformation produced by plume-induced subduction (Davaille abstract). Characteristics include internal rifting and volcanism, external rift branches, with a partial arc of subduction creating a trench on the margins of the plume head, and an exterior flexural bulge with small strain extension perpendicular to the trench. These characteristics, along with a consistent gravity signature, occur at the two largest coronae (quasi-circular volcano-tectonic features) on Venus (Davaille et al. Nature Geos. 2017). This interpretation resolves a long-standing debate about the dual plume and subduction characteristics of these features. Numerous coronae also show signs of plume-induced subduction. At Astkhik Planum, subduction appears to have migrated beyond the margins of Selu Corona to create a 1600 km-long, linear subduction zone, along Vaidilute Rupes. The fractures that define Selu Corona merge with the trench to the north and a rift zone to the east, consistent with plume-induced subduction migrating outward from the corona. The lithosphere and crust are much thinner here than in other potential subduction zones. Subduction appears to have generated massive volcanism which could explain the 400 m elevation of the plateau. Within the plateau there are low-viscosity flow sets nearly 1000 km that may be associated with near infrared low emissivity in VIRTIS data. Unusual lava compositions might be indicative of recycling of CO2 or other volatiles into the lithosphere. Little evidence exists to illustrate how plate tectonics initiated on Earth, but Venus' high surface temperature makes

  8. Evolution of the Moon: the 1974 model

    International Nuclear Information System (INIS)

    Schmitt, H.H.

    1975-01-01

    The interpretive evolution of the Moon can be divided now into seven major stages beginning sometime near the end of the formation of the solar system. These stages and their approximate durations are as follows: 1. The Beginning - 4.6 billion years ago. 2. The Melted Shell-4.6-4.4 billion years ago. 3. The Cratered Highlands -4.4-4.1 billion years ago. 4. The Large Basins-4.1-3.9 billion years ago. 5. The Light-Coloured Plains-3.9-3.8 billion years ago 6. The Basaltic Maria -3.8-3.0 billion years ago. 7. The Quiet Crust-3.0 billion years ago to the present. The Apollo and Luna explorations that permit the study of these stages of evolution have each contributed in progressive and significant ways. Through them the early differentiation of the Earth, the nature of the Earth's protocrust, the influence of the formation of large impact basins in that crust, the effects of early partial melting of the protomantle and possibly the earliest stages of the breakup of the protocrust into continents and ocean basins can now be looked at with new insight. (Auth.)

  9. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    Science.gov (United States)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  10. Autotrophic Ecosystems on the Early Earth

    Science.gov (United States)

    Schulte, M.

    2003-01-01

    Ophiolite sequences, sections of lower oceanic crust and upper mantle that have been thrust onto continental craton, are located in northern and central California and provide easily accessible areas that serve as good analogs for similar, more extensive areas of the early Earth. We have begun investigating and characterizing these sites in order to understand better the processes that may be responsible for the water chemistry, mineralogy and biology of similar environments on the early Earth. The geophysical and geochemical processes in these terranes provide niches for unique communities of extremeophiles and likely provide a good analog to the location that first gave rise to life on Earth. The ophiolites found in northern and central California include the Trinity, Josephine, Coast Range and Point Sal, all of which are approximately 160 million years old. Fluids from serpentinizing springs are generally alkaline with high pH and H2 contents, indicating that the mafic rock compositions control the fluid composition through water-rock reactions during relatively low-grade hydrothermal processes. There are significant amounts of primary mineralogy remaining in the rocks, meaning that substantial alteration processes are still occurring in these terranes. The general reaction for serpentinization of olivine is given by one of the authors. olivine + H2O = serpentine + brucite + magnetite + H2. We have analyzed the mineralogical composition of several rock samples collected from the Coast Range Ophiolite near Clear Lake, CA by electron microprobe. The remnant primary mineralogy is fairly urnform in composition, with an olivine composition of Fo(sub 90), and with pyroxene compositions of En(sub 90) for orthopyroxene and En(sub 49)Wo(sub 48)Fs(sub 03) for the clinopyroxene. Other primary phases observed include chromites and other spinels. Examination of petrographic thin sections reveals that serpentinization reactions have occurred in these locations. The serpentine

  11. Early Stages of the Evolution of Life: a Cybernetic Approach

    Science.gov (United States)

    Melkikh, Alexey V.; Seleznev, Vladimir D.

    2008-08-01

    Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.

  12. Annual review of earth and planetary sciences. Volume 8

    International Nuclear Information System (INIS)

    Donath, F.A.; Stehli, F.G.; Wetherill, G.W.

    1980-01-01

    Papers are presented on the geochemistry of evaporitic lacustrine deposits, the deformation of mantle rocks, the dynamics of sudden stratospheric warmings, the equatorial undercurrent, geomorphological processes on planetary surfaces, and rare earth elements in petrogenetic studies of igneous systems. Consideration is also given to evolutionary patterns in early Cenozoic animals, the origin and evolution of planetary atmospheres, the moons of Mars, and refractory inclusions in the Allende meteorite

  13. Global simulation of formation and evolution of plasmoid and flux-rope in the Earth's Magnetotail

    Science.gov (United States)

    Ge, Y.; Raeder, J.; Du, A.

    2014-12-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the "classical" NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. Understanding their formation and evolution during their propagation through the magnetotail shall shred more light on the general energy and flux transport of the Earth's magnetosphere. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that the tilted flux rope forms due to a progressive spreading of reconnection line along the east-west direction, which produces and releases two ends of the flux rope at different times and in different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that inside the small-scale flux ropes.

  14. THE ROLE OF DUST IN THE EARLY UNIVERSE. I. PROTOGALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Yamasawa, Daisuke; Habe, Asao; Kozasa, Takashi; Nozawa, Takaya; Nomoto, Ken'ichi; Hirashita, Hiroyuki; Umeda, Hideyuki

    2011-01-01

    We develop one-zone galaxy formation models in the early universe, taking into account dust formation and evolution by supernova (SN) explosions. We focus on the time evolution of dust size distribution, because H 2 formation on the dust surface plays a critical role in the star formation process in the early universe. In the model, we assume that star formation rate (SFR) is proportional to the total amount of H 2 . We consistently treat (1) the formation and size evolution of dust, (2) the chemical reaction networks including H 2 formation both on the surface of dust and in gas phase, and (3) the SFR in the model. First, we find that, because of dust destruction due to both reverse and forward shocks driven by SNe, H 2 formation is more suppressed than in situations without such dust destruction. At the galaxy age of ∼0.8 Gyr, for galaxy models with virial mass M vir = 10 9 M sun and formation redshift z vir = 10, the molecular fraction is 2.5 orders of magnitude less in the model with dust destruction by both shocks than that in the model without dust destruction. Second, we show that the H 2 formation rate strongly depends on the interstellar medium (ISM) density around SN progenitors. The SFR in higher ISM density is lower, since dust destruction by reverse shocks is more effective in higher ISM density. We conclude that not only the amount but also the size distribution of dust related to star formation activity strongly affects the evolution of galaxies in the early universe.

  15. Extending Whole-earth Tectonics To The Terrestrial Planets

    Science.gov (United States)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  16. Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    Science.gov (United States)

    Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

    2006-01-01

    orbit, including dedicated science missions and lunar support/cargo vehicles; earth/moon transit; lunar in-situ operations; and other missions within approximately 2 million km of earth (e.g., at the sun/earth libration points). Given that the NER is an evolution of TDRSS, one element of this NASA-wide architecture development activity is a trade study of future NER architecture candidates. The present paper focuses on trade study aspects associated with the NER, highlights study elements, and provides representative interim results.

  17. Mega-geomorphology: Mars vis a vis Earth

    Science.gov (United States)

    Sharp, R. P.

    1985-01-01

    The areas of chaotic terrain, the giant chasma of the Valles Marineris region, the complex linear and circular depressions of Labyrinthus Noctis on Mars all suggest the possibility of large scale collapse of parts of the martian crust within equatorial and sub equatorial latitudes. It seems generally accepted that the above features are fossil, being perhaps, more than a billion years old. It is possible that parts of Earth's crust experienced similar episodes of large scale collapse sometime early in the evolution of the planet.

  18. The radioactive earth

    International Nuclear Information System (INIS)

    Plant, J.A.; Saunders, A.D.

    1996-01-01

    Uranium, thorium and potassium are the main elements contributing to natural terrestrial radioactivity. The isotopes 238 U, 235 U, 232 Th and 40 K decay with half-lives so long that significant amounts remain in the earth, providing a continuing source of heat. The slow decay of these isotopes also provides the basis for radiometric age dating and isotopic modelling of the evolution of the earth and its crust. There is a complex interplay between their heat production and the processes involved in crust formation. Phenomena such as volcanism, earthquakes, and large-scale hydrothermal activity associated with ore deposition reflect the dissipation of heat energy from the earth, much of which is derived from natural radioactivity. The higher levels of radioactive elements during the early history of the earth resulted in higher heat flow. All three of the radioactive elements are strongly partitioned into the continental crust, but within the crust their distribution is determined by their different chemical properties. The behaviour of U, which has two commonly occurring oxidation states, is more complex than that of Th and K. Uranium deposits are diverse, and are mostly associated with granites, acid volcanics, or detrital sedimentary rocks. The most important U deposits economically are unconformity-type ores of Proterozoic age, in which U is enriched by up to 5 x 10 6 with respect to bulk earth values. In some cases natural radioactivity can be of environmental concern. The most significant risk is posed by accumulations of radon, the gaseous daughter product of U. (author)

  19. Rare gas systematics: Formation of the atmosphere, evolution and structure of the Earth's mantle

    International Nuclear Information System (INIS)

    Allegre, C.J.; Staudacher, T.; Sarda, P.; Paris-6 Univ., 75; Paris-7 Univ., 75

    1987-01-01

    To explain the rare gas content and isotopic composition measured in modern terrestrial materials we explore in this paper an Earth model based on four reservoirs: atmosphere, continental crust, upper mantle and lower mantle. This exploration employs three tools: mass balance equations, the concept of mean age of outgassing and the systematic use of all of the rare gases involving both absolute amount and isotopic composition. The results obtained are as follows: half of the Earth's mantle is 99% outgassed. Outgassing occurred in an early very intense stage within the first 50 Ma of Earth history and a slow continuous stage which continues to the present day. The mean age of the atmosphere is 4.4 Ga. Our model with four main reservoirs explains quantitatively both isotopic and chemical ratios, assuming that He migrates from the lower to the upper mantle whereas the heavy rare gases did not. Noble gas fluxes for He, Ar and Xe from different reservoirs have been estimated. The results constrain the K content in the earth to 278 ppm. Several geodynamic consequences are discussed. (orig.)

  20. Line Evolution of the Nova V5587 Sgr from Early to Nebula Phase

    Directory of Open Access Journals (Sweden)

    T. Kajikawa

    2015-02-01

    Full Text Available The spectral evolution of the nova V5587 Sgr has been monitored at Koyama Astronomical Observatory and Higashi-Hiroshima Observatory, Japan, from the early to nebula phase. The nova rebrightened several times. The spectra during the early phase showed emission lines of H α, H β, O I, He I, He II, N II, Fe II. Nova V5587 Sgr is classified into the Fe II type. The helium abundance of the nova is estimated as N(He/N(H = 0.134 ± 0.09. The light curve, the spectral evolution, and the helium abundance in V5587 Sgr are similar to those of the nova PW Vul.

  1. Hf and Nd Isotope Evidence for Production of an Incompatible Trace Element Enriched Crustal Reservoir in Early Earth (Invited)

    Science.gov (United States)

    Brandon, A. D.; Debaille, V.; Lapen, T. J.

    2010-12-01

    The final significant stage of accretion of the Earth was likely a collision between proto-Earth and a Mars sized impactor that formed the Moon. This event is thought to have produced enough thermal energy to melt all or most of the Earth, with a consequent magma ocean (MO). During subsequent cooling, the Earth would have formed its protocrust and corresponding mantle lithosphere, consisting of solidified basalt-komatiitic melt, in combination with buoyant cumulates and late stage residual melts from the MO. Relative to the convecting mantle, portions of this protolithosphere are likely to have been enriched in incompatible trace elements (ITE) in sufficient quantities to contain a significant amount of the bulk Earth’s budget for rare earth elements, U, Th, and Hf. If the protolithosphere was negatively buoyant, it may have overturned at or near the final stages of MO crystallization and a significant portion of that material may have been transported into the deep mantle where it resided and remixed into the convecting mantle over Earth history [1,2]. If the protolithosphere remained positively buoyant, its crust would have likely begun to erode from surface processes, and subsequently recycled back into the mantle over time as sediment and altered crust, once a subduction mechanism arose. The Nd and Hf isotopic compositions of Earth’s earliest rocks support the idea that an early-formed ITE-enriched reservoir was produced. The maxima in 142Nd/144Nd for 3.85 to 3.64 Ga rocks from Isua, Greenland decreases from +20 ppm to +12 ppm relative to the present day mantle value, respectively [3]. This indicates mixing of an early-formed ITE enriched reservoir back into the convecting mantle. In addition, zircons from the 3.1 Ga Jack Hills conglomerate indicate that material with an enriched 176Lu/177Hf of ~0.02 and an age of 4.4 Ga or greater was present at the Earth’s surface over the first 2 Ga of Earth history, supporting the scenario of a positively buoyant

  2. Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns

    OpenAIRE

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-01-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. c...

  3. Water and the Earth System in the Anthropocene: Evolution of Socio-Hydrology

    Science.gov (United States)

    Sivapalan, M.; Bloeschl, G.

    2014-12-01

    Over the past century, hydrological science has evolved through distinct eras as judged by ideas, information sources, technological advances and societal influences: Empirical Era which was data based with little theory, Systems Era that focused on input-output relationships, Process Era with a focus on processes, and the Geosciences Era where hydrology was considered an Earth System science. We argue that as the human footprint on earth becomes increasingly dominant, we are moving into a Co-evolution Era. Co-evolution implies that the components of the Earth system are intimately intertwined at many time scales - fast scales of immediate feedbacks that translate into slow scale interdependencies and trends. These involve feedbacks between the atmosphere, biota, soils and landforms, mediated by water flow and transport processes. The human factor is becoming a key component of this coupled system. While there is a long tradition of considering effects of water on humans, and vice versa, the new thrust on socio-hydrology has a number of defining characteristics that sets it apart from traditional approaches: - Capturing feedbacks of human-natural water system in a dynamic way (slow and fast processes) to go beyond prescribing human factors as mere boundary conditions. These feedbacks will be essential to understand how the system may evolve in the future into new, perhaps previously unobserved, states. - Quantifying system dynamics in a generalizable way. So far, water resources assessment has been context dependent, tied to local conditions. While for immediate decision making this is undoubtedly essential, for more scientific inquiry, a more uniform knowledge base is indispensable. - Not necessarily predictive. The coupled human-nature system is inherently non-linear, which may prohibit predictability in the traditional sense. The socio-hydrologic approach may still be predictive in a statistical sense and, perhaps even more importantly, it may yet reveal

  4. Origin and earliest state of the earth's hydrosphere

    International Nuclear Information System (INIS)

    Cogley, J.G.; Henderson-Sellers, A.

    1984-01-01

    The origin and earliest history of the earth's hydrosphere, the inventory of excess volatiles defined by Rubey in 1951, can be constrained within wide but useful limits by a consideration of empirical and theoretical evidence from astrophysics and geology. Models for the evolution of the solar system from the protoplanetary nebula and for the growth of the earth to its present dimensions suggest quite strongly that the hydrosphere came into being during accretion. Its format, with H 2 O mostly in the oceans, CO 2 mostly in sediments, and a residual atmosphere dominated by N 2 , CO 2 , and H 2 O was established at a very early data and has persisted without large, destabilizing climatic excursions until the present day. Alternative accounts of early history, in which the earth either loses a massive primordial atmosphere or acquires its secondary atmosphere by gradual degassing, seem improbable on the basis of a series of circumstantial but cumulatively persuasive arguments. The difficulty of dissipating a massive atmosphere of solar composition in reasonable times, the likelihood that accretion was a highly energetic process and that it triggered early segregation of the core, and the tendency of the planet to accumulate volatiles preferentially in the later stages of accretion are examples of arguments favoring an early origin for the hydrosphere. Several geological isotope systems which can be sampled today require early separation of the atmosphere and probably the hydrosphere ass a whole; these systems recorrd radiogenic enrichment patterns in the noble gases and stable isotope fractionations which suggest an early origin of the biosphere. Certain geological indicators of atmsopheric composition. and the broadly equable character of the rock record, are also consistent with a hydrosphere established in the earliest stages of history and having an initial neutral or weakly reduced composition

  5. Lead-lead systematics, the 'age of the earth' and the chemical evolution of our planet in a new representation space

    International Nuclear Information System (INIS)

    Manhes, G.; Allegre, C.J.; Dupre, B.; Hamelin, B.

    1979-01-01

    A new way to look at the Pb-Pb isotopic results is proposed. The characteristics are as follows: (1) knowledge of the initial ratios of cogenetic samples is not necessary to discuss the isotopic evolution of parent bodies; and (2) linear representations are permissible thus allowing for a simplified treatment in comparison to the classical 206 Pb/ 204 Pb vs. 207 Pb/ 204 Pb diagram. Using Pb-Pb data of terrestrial samples, either stated in past reasearch or as recently measured by the laboratory, problems such as the Earth's age and its evolution are being dealt with utilising this new formalism. The treatment for a set of mantle whole-rock measurements, assuming only the initial isotopic composition furnishes a value for the Earth's age of 4.49 +- 0.17 b.y. (Auth.)

  6. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history

    Directory of Open Access Journals (Sweden)

    Grant M. Young

    2013-05-01

    Full Text Available In more than 4 Ga of geological evolution, the Earth has twice gone through extreme climatic perturbations, when extensive glaciations occurred, together with alternating warm periods which were accompanied by atmospheric oxygenation. The younger of these two episodes of climatic oscillation preceded the Cambrian “explosion” of metazoan life forms, but similar extreme climatic conditions existed between about 2.4 and 2.2 Ga. Over long time periods, changing solar luminosity and mantle temperatures have played important roles in regulating Earth's climate but both periods of climatic upheaval are associated with supercontinents. Enhanced weathering on the orogenically and thermally buoyed supercontinents would have stripped CO2 from the atmosphere, initiating a cooling trend that resulted in continental glaciation. Ice cover prevented weathering so that CO2 built up once more, causing collapse of the ice sheets and ushering in a warm climatic episode. This negative feedback loop provides a plausible explanation for multiple glaciations of the Early and Late Proterozoic, and their intimate association with sedimentary rocks formed in warm climates. Between each glacial cycle nutrients were flushed into world oceans, stimulating photosynthetic activity and causing oxygenation of the atmosphere. Accommodation for many ancient glacial deposits was provided by rifting but escape from the climatic cycle was predicated on break-up of the supercontinent, when flooded continental margins had a moderating influence on weathering. The geochemistry of Neoproterozoic cap carbonates carries a strong hydrothermal signal, suggesting that they precipitated from deep sea waters, overturned and spilled onto continental shelves at the termination of glaciations. Paleoproterozoic (Huronian carbonates of the Espanola Formation were probably formed as a result of ponding and evaporation in a hydrothermally influenced, restricted rift setting. Why did metazoan

  7. The evolution of organic matter in space.

    Science.gov (United States)

    Ehrenfreund, Pascale; Spaans, Marco; Holm, Nils G

    2011-02-13

    Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds.

  8. Can Halogen Enrichment in Reduced Enstatite Chondrites Provide Clues to Volatile Accretion in the Early Earth?

    Science.gov (United States)

    Clay, P. L.; Burgess, R.; Busemann, H.; Ruzié, L.; Joachim, B.; Ballentine, C.

    2013-12-01

    Understanding how the Earth obtained and ultimately retained its volatiles is important for our overall understanding of large scale planetary evolution. Numerous models exist for the heterogeneous accretion of volatiles to early Earth, but accounting for all elements through accretion of typical planetary building blocks (e.g., CI chondrites) is difficult. Proto-planetary collisions resulting in the accretion of volatile-poor material under reducing conditions followed by accretion of volatile-rich material under oxidizing conditions has been suggested in such models [e.g., 1]. The heavy halogens (Cl, Br and I), a group of moderately volatile elements, are excellent tracers of planetary processing due to their low abundance and incompatible nature. Therefore characterizing halogen abundance and distribution in materials that accreted to form the planets, e.g., primitive meteorites, is crucial. One group of primitive meteorites, the enstatite chondrites (EC's), are amongst the most reduced materials in the solar system as evidenced by their unique mineral assemblage. Yet despite forming under ultra-reducing conditions, they are enriched in the moderately volatile elements, such as the halogens. The ECs are of particular interest owing to their oxygen isotopic composition which plots along the terrestrial fractionation line, linking them isotopically to the Earth-Moon system. These samples can thus potentially provide clues on the accretion of moderately volatile element rich material under reducing conditions, such as it may have existed during the early stages of Earth's accretion. Chlorine, Br and I concentrations in ECs were determined through step-heating small neutron-irradiated samples (0.3 to 3.3 mg) and measured by mass spectrometry using the noble gas proxy isotopes 38ArCl/Cl, 80KrBr/Br and 128XeI/I. The EH chondrites are consistently enriched in the heavy halogens (up to 330 ppm Cl, 2290 ppb Br and 180 ppb I), compared to other ordinary and carbonaceous

  9. Earth's early O2 cycle suppressed by primitive continents

    Science.gov (United States)

    Smit, Matthijs A.; Mezger, Klaus

    2017-10-01

    Free oxygen began to accumulate in Earth's surface environments between 3.0 and 2.4 billion years ago. Links between oxygenation and changes in the composition of continental crust during this time are suspected, but have been difficult to demonstrate. Here we constrain the average composition of the exposed continental crust since 3.7 billion years ago by compiling records of the Cr/U ratio of terrigenous sediments. The resulting record is consistent with a predominantly mafic crust prior to 3.0 billion years ago, followed by a 500- to 700-million-year transition to a crust of modern andesitic composition. Olivine and other Mg-rich minerals in the mafic Archaean crust formed serpentine minerals upon hydration, continuously releasing O2-scavenging agents such as dihydrogen, hydrogen sulfide and methane to the environment. Temporally, the decline in mafic crust capable of such process coincides with the first accumulation of O2 in the oceans, and subsequently the atmosphere. We therefore suggest that Earth's early O2 cycle was ultimately limited by the composition of the exposed upper crust, and remained underdeveloped until modern andesitic continents emerged.

  10. [Transparent evolution of the energy/matter interactions on earth: from gas whirlwind to technogenic civilization].

    Science.gov (United States)

    Pechurkin, N S; Shuvaev, A N

    2015-01-01

    The paper presents the idea of transparent evolution through the long-term reaction of the planet Earth on the external flow of radiant energy from the Sun. Due to limitations of matter on Earth, as well as on any other planet, the continuous pumping flow of radiant energy was shown to lead to cyclization and transport of substance on emerging gradients. The evolution of energy-matter interaction follows the path of capturing and transferring more energy by the fewer matter, i.e., the path of growth of the amount of energy used by each unit mass. For this indicator, the least effective mass transfer is a simple mass transfer as vortices of gases, in the gradients of temperature and pressure, which occurred on the primary surface of the planet. A long-term natural selection related to the accumulation of water on the planet has played a special role in developing the interaction of energy and matter. Phase transformations (ice, water, vapor) and mechanical transfers are the most common energy-matter processes. Based on water cycles, cyclic transports and transformations, chemical transformation of substances became possible developing over time into a biological transformation. This kind of the interaction of energy and matter is most efficient. In particular, during photosynthesis the energy of our star "is captured and utilized" in the most active part of the spectrum of its radiation. In the process of biological evolution of heterotrophs, a rise (by a factor of hundreds) in the coefficient that characterizes the intensity of energy exchange from protozoa to mammals is most illustratory. The development and the current dominance of humans as the most energy-using active species in capturing the energy and meaningful organization of its new flows especially on the basis of organic debris of former biospheres is admirable, but quite natural from the energy positions. In the course of technological evolution of humankind, the measure of the intensity of energy for

  11. A new basal sauropod dinosaur from the middle Jurassic of Niger and the early evolution of sauropoda.

    Directory of Open Access Journals (Sweden)

    Kristian Remes

    2009-09-01

    Full Text Available The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification.A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography.Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification.

  12. Early results from Magsat. [studies of near-earth magnetic fields

    Science.gov (United States)

    Langel, R. A.; Estes, R. H.; Mayhew, M. A.

    1981-01-01

    Papers presented at the May 27, 1981 meeting of the American Geophysical Union concerning early results from the Magsat satellite program, which was designed to study the near-earth magnetic fields originating in the core and lithosphere, are discussed. The satellite was launched on October 30, 1979 into a sun-synchronous (twilight) orbit, and re-entered the atmosphere on June 11, 1980. Instruments carried included a cesium vapor magnetometer to measure field magnitudes, a fluxgate magnetometer to measure field components and an optical system to measure fluxgate magnetometer orientation. Early results concerned spherical harmonic models, fields due to ionospheric and magnetospheric currents, the identification and interpretation of fields from lithospheric sources. The preliminary results confirm the possibility of separating the measured field into core, crustal and external components, and represent significant developments in analytical techniques in main-field modelling and the physics of the field sources.

  13. Jupiter and planet Earth

    International Nuclear Information System (INIS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included

  14. On the paleo-magnetospheres of Earth and Mars

    Science.gov (United States)

    Scherf, Manuel; Khodachenko, Maxim; Alexeev, Igor; Belenkaya, Elena; Blokhina, Marina; Johnstone, Colin; Tarduno, John; Lammer, Helmut; Tu, Lin; Guedel, Manuel

    2017-04-01

    The intrinsic magnetic field of a terrestrial planet is considered to be an important factor for the evolution of terrestrial atmospheres. This is in particular relevant for early stages of the solar system, in which the solar wind as well as the EUV flux from the young Sun were significantly stronger than at present-day. We therefore will present simulations of the paleo-magnetospheres of ancient Earth and Mars, which were performed for ˜4.1 billion years ago, i.e. the Earth's late Hadean eon and Mars' early Noachian. These simulations were performed with specifically adapted versions of the Paraboloid Magnetospheric Model (PMM) of the Skobeltsyn Institute of Nuclear Physics of the Moscow State University, which serves as ISO-standard for the Earth's magnetic field (see e.g. Alexeev et al., 2003). One of the input parameters into our model is the ancient solar wind pressure. This is derived from a newly developed solar/stellar wind evolution model, which is strongly dependent on the initial rotation rate of the early Sun (Johnstone et al., 2015). Another input parameter is the ancient magnetic dipole field. In case of Earth this is derived from measurements of the paleomagnetic field strength by Tarduno et al., 2015. These data from zircons are varying between 0.12 and 1.0 of today's magnetic field strength. For Mars the ancient magnetic field is derived from the remanent magnetization in the Martian crust as measured by the Mars Global Surveyor MAG/ER experiment. These data together with dynamo theory are indicating an ancient Martian dipole field strength in the range of 0.1 to 1.0 of the present-day terrestrial dipole field. For the Earth our simulations show that the paleo-magnetosphere during the late Hadean eon was significantly smaller than today, with a standoff-distance rs ranging from ˜3.4 to 8 Re, depending on the input parameters. These results also have implications for the early terrestrial atmosphere. Due to the significantly higher EUV flux, the

  15. Cometary delivery of organic molecules to the early earth

    Science.gov (United States)

    Chyba, Christopher F.; Thomas, Paul J.; Sagan, Carl; Brookshaw, Leigh

    1990-01-01

    It has long been speculated that earth accreted prebiotic organic molecules important for the origins of life from impacts of carbonaceous asteroids and comets during the period of heavy bombardment 4.5 x 10 to the 9th to 3.8 x 10 to the 9th years ago. A comprehensive treatment of comet-asteroid interaction with the atmosphere, surface impact, and resulting organic pyrolysis demonstrates that organics will not survive impacts at velocities greater than about 10 kilometers per second and that even comets and asteroids as small as 100 meters in radius cannot be aerobraked to below this velocity in 1-bar atmospheres. However, for plausible dense (10-bar carbon dioxide) early atmospheres, it is found that 4.5 x 10 to the 9th years ago earth was accreting intact cometary organics at a rate of at least about 10 to the 6th to 10 to the 7th kilograms per year, a flux that thereafter declined with a half-life of about 10 to the 8th years. These results may be put in context by comparison with terrestrial oceanic and total biomasses, about 3 x 10 to the 12th kilograms and about 6 x 10 to the 14th kilograms, respectively.

  16. The early-stage structural evolution of the Barmer Basin rift, Rajasthan, northwest India

    OpenAIRE

    Bladon, Andrew John

    2015-01-01

    The structural evolution of the Barmer Basin and the context of the rift within the northwest Indian region are poorly understood, despite being a prolific hydrocarbon province. In this work an integrated basin analysis is presented covering the outcrop-, seismic-, and lithosphere-scales. The early-stage structural evolution and the origin of poorly understood structural complications in the Barmer Basin subsurface are assessed. Subsequently, the findings are placed within the wider context o...

  17. Stardust in Laboratory & Evolution of Early Solar System f y S Sy

    Indian Academy of Sciences (India)

    kkmarhas

    2008-09-13

    Sep 13, 2008 ... Picture book of presolar grains! Graphite grains. Silicon carbide. Corundum. 500nm. Spinel grains. Silicate grain. Silicon Nitride. Spinel grains. Silicate grain. Silicon Nitride. Presolar Grains &. Evolution of Early Solar System. Kuljeet K. Marhas. 13th September 2008. Physical Research Laboratory ...

  18. Numerical modeling of hydration process and temperature evolution in early age concrete

    NARCIS (Netherlands)

    Caggiano, A.; Pepe, M.; Koenders, E.A.B.; Martinelli, E.; Etse, G.J.

    2012-01-01

    Heat production induced by the hydration reaction and the resulting temperature evolution in the early phases of setting and hardening processes are critical phenomena, often leading to premature cracking of concrete members. However, the interest for simulating such phenomena is also related to the

  19. Evolution of Information Management at the GSFC Earth Sciences (GES) Data and Information Services Center (DISC): 2006-2007

    Science.gov (United States)

    Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen

    2009-01-01

    Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007

  20. Evolution of the Stability Work from Classic Retaining Walls to Mechanically Stabilized Earth Walls

    Directory of Open Access Journals (Sweden)

    Anghel Stanciu

    2008-01-01

    Full Text Available For the consolidation of soil mass and the construction of the stability works for roads infrastructure it was studied the evolution of these kinds of works from classical retaining walls - common concrete retaining walls, to the utilization in our days of the modern and competitive methods - mechanically stabilized earth walls. Like type of execution the variety of the reinforced soil is given by the utilization of different types of reinforcing inclusions (steel strips, geosynthetics, geogrids or facing (precast concrete panels, dry cast modular blocks, metal sheets and plates, gabions, and wrapped sheets of geosynthetics.

  1. The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies

    Science.gov (United States)

    Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L.

    2018-04-01

    We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size R e , on the ratio v/σ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j ⋆ of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z ∼ 1–2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan

  2. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    Science.gov (United States)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  3. A review of noble gas geochemistry in relation to early Earth history

    Science.gov (United States)

    Kurz, M. D.

    1985-01-01

    One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.

  4. Runaway and moist greenhouse atmospheres and the evolution of earth and Venus

    Science.gov (United States)

    Kasting, James F.

    1988-01-01

    For the case of fully moisture-saturated and cloud-free conditions, the present one-dimensional climate model for the response of an earthlike atmosphere to large solar flux increases notes the critical solar flux at which runaway greenhouse (total evaporation of oceans) occurs to be 1.4 times the present flux at the earth's orbit, almost independently of the CO2 content of the atmophere. The value is, however, sensitive to the H2O absorption coefficient in the 8-12 micron window. Venus oceans may have been lost early on due to rapid water vapor photodissociation, followed by hydrogen escape into space.

  5. False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth.

    Science.gov (United States)

    Reinhard, Christopher T; Olson, Stephanie L; Schwieterman, Edward W; Lyons, Timothy W

    2017-04-01

    Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth-oxygen (O 2 ), ozone (O 3 ), and methane (CH 4 ). We suggest that the canonical O 2 -CH 4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O 2 /O 3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH 4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures-Oxygen-Methane-Ozone-Exoplanets-Planetary habitability. Astrobiology 17, 287-297.

  6. Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland

    DEFF Research Database (Denmark)

    Rizo, Hanika; Boyet, Maud; Blichert-Toft, Janne

    2013-01-01

    of the Greenland samples from a source formed in the Hadean. This mantle source is the oldest yet identified on Earth and therefore provides key information about the nature and evolution of early-differentiated reservoirs. In contrast, modern mantle-derived rocks from around the world do not have Nd-142 anomalies......The composition and evolution of the silicate Earth during Hadean/Eoarchean times are widely debated and largely unknown due to the sparse geological record preserved from Earth's infancy. The short-lived Sm-146-Nd-142 chronometer applied to 3.8-3.7 Ga old mantle-derived amphibolites from the Isua...... Supracrustal Belt (ISB) in southwest Greenland has revealed ubiquitous Nd-142 excesses in these rocks compared to modern samples and terrestrial Nd standards. Because the parent isotope, Sm-146, was extant only during the first few hundred million years of Solar System history, this implies derivation...

  7. THE INFLUENCE OF THERMAL EVOLUTION IN THE MAGNETIC PROTECTION OF TERRESTRIAL PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Zuluaga, Jorge I.; Bustamante, Sebastian; Cuartas, Pablo A. [Instituto de Fisica-FCEN, Universidad de Antioquia, Calle 67 No. 53-108, Medellin (Colombia); Hoyos, Jaime H., E-mail: jzuluaga@fisica.udea.edu.co, E-mail: sbustama@pegasus.udea.edu.co, E-mail: p.cuartas@fisica.udea.edu.co, E-mail: jhhoyos@udem.edu.co [Departamento de Ciencias Basicas, Universidad de Medellin, Carrera 87 No. 30-65, Medellin (Colombia)

    2013-06-10

    Magnetic protection of potentially habitable planets plays a central role in determining their actual habitability and/or the chances of detecting atmospheric biosignatures. Here we develop a thermal evolution model of potentially habitable Earth-like planets and super-Earths (SEs). Using up-to-date dynamo-scaling laws, we predict the properties of core dynamo magnetic fields and study the influence of thermal evolution on their properties. The level of magnetic protection of tidally locked and unlocked planets is estimated by combining simplified models of the planetary magnetosphere and a phenomenological description of the stellar wind. Thermal evolution introduces a strong dependence of magnetic protection on planetary mass and rotation rate. Tidally locked terrestrial planets with an Earth-like composition would have early dayside magnetopause distances between 1.5 and 4.0 R{sub p} , larger than previously estimated. Unlocked planets with periods of rotation {approx}1 day are protected by magnetospheres extending between 3 and 8 R{sub p} . Our results are robust in comparison with variations in planetary bulk composition and uncertainties in other critical model parameters. For illustration purposes, the thermal evolution and magnetic protection of the potentially habitable SEs GL 581d, GJ 667Cc, and HD 40307g were also studied. Assuming an Earth-like composition, we found that the dynamos of these planets are already extinct or close to being shut down. While GL 581d is the best protected, the protection of HD 40307g cannot be reliably estimated. GJ 667Cc, even under optimistic conditions, seems to be severely exposed to the stellar wind, and, under the conditions of our model, has probably suffered massive atmospheric losses.

  8. Formation and evolution of plasmoids and flux-ropes in the Earth's Magnetotail

    Science.gov (United States)

    Ge, Y.; Raeder, J.

    2013-12-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the 'classical' NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. Furthermore, several x-line/plasmoid/flux-rope structures can exist simultaneously. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that tilted flux ropes form due to a progressive spreading of the reconnection line along the east-west direction, which produces and releases the two ends of the flux rope at different times and at different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that found inside the small-scale flux ropes.

  9. Origin and Evolution of Planetary Atmospheres Implications for Habitability

    CERN Document Server

    Lammer, Helmut

    2013-01-01

    Based on the author’s own work and results obtained by international teams he coordinated, this SpringerBrief offers a concise discussion of the origin and early evolution of atmospheres of terrestrial planets during the active phase of their host stars, as well as of the environmental conditions which are necessary in order for planets like the Earth to obtain N_2-rich atmospheres. Possible thermal and non-thermal atmospheric escape processes are discussed in a comparative way between the planets in the Solar System and exoplanets. Lastly, a hypothesis for how to test and study the discussed atmosphere evolution theories using future UV transit observations of terrestrial exoplanets within the orbits of dwarf stars is presented.

  10. The role of biology in planetary evolution: cyanobacterial primary production in low‐oxygen Proterozoic oceans

    Science.gov (United States)

    Bryant, Donald A.; Macalady, Jennifer L.

    2016-01-01

    Summary Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well‐preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane‐derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O 2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co‐occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low‐oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic

  11. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.

    Science.gov (United States)

    Hamilton, Trinity L; Bryant, Donald A; Macalady, Jennifer L

    2016-02-01

    Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis

  12. The early evolution of Jean Piaget's clinical method.

    Science.gov (United States)

    Mayer, Susan Jean

    2005-11-01

    This article analyzes the early evolution of Jean Piaget's renowned "clinical method" in order to investigate the method's strikingly original and generative character. Throughout his 1st decade in the field, Piaget frequently discussed and justified the many different approaches to data collection he used. Analysis of his methodological progression during this period reveals that Piaget's determination to access the genuine convictions of children eventually led him to combine 3 distinct traditions in which he had been trained-naturalistic observation, psychometrics, and the psychiatric clinical examination. It was in this amalgam, first evident in his 4th text, that Piaget discovered the clinical dynamic that would drive the classic experiments for which he is most well known.

  13. Runaway and moist greenhouse atmospheres and the evolution of earth and Venus

    International Nuclear Information System (INIS)

    Kasting, J.F.

    1988-01-01

    For the case of fully moisture-saturated and cloud-free conditions, the present one-dimensional climate model for the response of an earthlike atmosphere to large solar flux increases notes the critical solar flux at which runaway greenhouse (total evaporation of oceans) occurs to be 1.4 times the present flux at the earth's orbit, almost independently of the CO2 content of the atmophere. The value is, however, sensitive to the H2O absorption coefficient in the 8-12 micron window. Venus oceans may have been lost early on due to rapid water vapor photodissociation, followed by hydrogen escape into space. 42 references

  14. Early-stage evolution of particle size distribution with Johnson's SB function due to Brownian coagulation

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2013-01-01

    The moment method can be used to determine the time evolution of particle size distribution due to Brownian coagulation based on the general dynamic equation (GDE). But the function form of the initial particle size distribution must be determined beforehand for the moment method. If the assumed function type of the initial particle size distribution has an obvious deviation from the true particle population, the evolution of particle size distribution may be different from the real evolution tendency. Thus, a simple and general method is proposed based on the moment method. In this method, the Johnson's S B function is chosen as a general distribution function to fit the initial distributions including the log normal (L-N), Rosin–Rammler (R-R), normal (N-N) and gamma distribution functions, respectively. Meanwhile, using the modified beta function to fit the L-N, R-R, N-N and gamma functions is also conducted as a comparison in order to present the advantage of the Johnson's S B function as the general distribution function. And then, the time evolution of particle size distributions using the Johnson's S B function as the initial distribution can be obtained by several lower order moment equations of the Johnson's S B function in conjunction with the GDE during the Brownian coagulation process. Simulation experiments indicate that fairly reasonable results of the time evolution of particle size distribution can be obtained with this proposed method in the free molecule regime, transition regime and continuum plus near continuum regime, respectively, at the early time stage of evolution. The Johnson's S B function has the ability of describing the early time evolution of different initial particle size distributions. (paper)

  15. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth

    International Nuclear Information System (INIS)

    Armstrong, R.L.

    1981-01-01

    The proposition that continental crust is recycled into the mantle and that the Earth is in a near-steady state with essentially constant volumes of oceans and crust through geological time is defended. Constancy of continental freeboard and uniformity of thickness of stable continental crust with age are the only two quantitative measures of crustal volume through time and these imply negligible crustal growth since 2.9 Ga B.P. Planetary analogies, Pb isotopes, atmospheric evolution, and palaeomagnetism also argue for early terrestrial differentiation. Rates of crustal growth and recycling are sufficient to reach a near-steady state over the first 1 Ga of Earth history, before widespread cratonization. Pb, Sr and Nd isotopic compositions of igneous rocks from the mantle are explainable in terms of a near-steady-state model. The recycling process can be observed on the Earth today. The observed escape of primordial 3 He from the mantle is not evidence for continuing continental differentiation or against early differentiation of the Earth. Even if nearly complete equilibrium chemical differentiation occurred at 4.6 Ga B.P., some 3 He would remain dissolved in the interior and would escape as recycling continued. (U.K.)

  16. Spinal cord evolution in early Homo.

    Science.gov (United States)

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Growing and Supporting the Student and Early Career Pipeline in Earth and Space Sciences - A Spotlight on New AGU Initiatives

    Science.gov (United States)

    Hankin, E. R.; Williams, B. M.; Asher, P. M.; Furukawa, H.; Holm Adamec, B.; Lee, M.; Cooper, P.

    2015-12-01

    The American Geophysical Union (AGU) is home to more than 60,000 scientists from 139 countries. Included in this membership are approximately 20,000 (34%) student and early career members. Many well-established programs within AGU provide a dynamic forum for Earth and Space scientists to advance research, collaborate across disciplines, and communicate the importance and impact of science to society regardless of career stage—programs such as AGU publications, scientific meetings and conferences, honors and recognition, and other educational and scientific forums. Additionally, many AGU program initiatives focusing specifically on supporting student and early career scientists and the global talent pool pipeline ones are actively underway. These include both new and long-standing programs. This presentation will describe (1) the overall demographics and needs in Earth and Space sciences, and (2) AGU's coordinated series of programs designed to help attract, retain and support student and early career scientists—with an emphasis on new programmatic activities and initiatives targeting improved diversity. Included in this presentation are a description of the AGU BrightSTaRS Program, the AGU Berkner Program for international students, a newly established AGU Student & Early Career Conference, the AGU Virtual Poster Showcase initiative, the AGU Meeting Mentor program, and GeoLEAD—an umbrella program being jointly built by a coalition of societies to help address Earth and space sciences talent pool needs.

  18. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes

    Science.gov (United States)

    Zhang, Kan; Zhu, Xiangkun; Wood, Rachel A.; Shi, Yao; Gao, Zhaofu; Poulton, Simon W.

    2018-05-01

    The Mesoproterozoic era (1,600-1,000 million years ago (Ma)) has long been considered a period of relative environmental stasis, with persistently low levels of atmospheric oxygen. There remains much uncertainty, however, over the evolution of ocean chemistry during this period, which may have been of profound significance for the early evolution of eukaryotic life. Here we present rare earth element, iron-speciation and inorganic carbon isotope data to investigate the redox evolution of the 1,600-1,550 Ma Yanliao Basin, North China Craton. These data confirm that the ocean at the start of the Mesoproterozoic was dominantly anoxic and ferruginous. Significantly, however, we find evidence for a progressive oxygenation event starting at 1,570 Ma, immediately prior to the occurrence of complex multicellular eukaryotes in shelf areas of the Yanliao Basin. Our study thus demonstrates that oxygenation of the Mesoproterozoic environment was far more dynamic and intense than previously envisaged, and establishes an important link between rising oxygen and the emerging record of diverse, multicellular eukaryotic life in the early Mesoproterozoic.

  19. Abiotic synthesis of porphyrins and other oligopyrroles on the early Earth and Earth-like planets

    Science.gov (United States)

    Fox, S.; Strasdeit, H.

    2013-09-01

    It is generally accepted that abiotically formed amino acids existed on Earth in the late Hadean and early Archean (four billion years ago). They were mainly dissolved in a salty primordial ocean. At that time, volcanic islands were much more abundant than today. It is therefore reasonable to assume that, at hot volcanic coasts, amino acids could have been thermally transformed into other organic molecules. Based on this scenario, we conducted laboratory experiments that simulated the interaction between amino acid-containing sea water and hot lava. In these experiments, a large number of different volatile products were formed, among them pyrroles. It was also possible to obtain porphyrins and other oligopyrroles from pyrroles under simulated conditions of primordial volcanic islands. All experiments were conducted under plausible prebiotic conditions. Our results reveal an abiotic pathway to possible precursors of oligopyrrole-type biomolecules, such as heme and chlorophylls.

  20. Cosmic evolution, life and man

    International Nuclear Information System (INIS)

    Oro, J.

    1995-01-01

    Among the most basic problems confronting science are those regarding the origin of the universe, the origin of life and the origin of man. This general overview starts (1) with a brief introduction addressed primarily to the Cyril Ponnamperuma Memorial. Then, the thesis is presented that the appearance of life and intelligence on our planet can be understood as the result of a number of cosmic and biological evolutionary processes, including (2) the stellar thermonuclear synthesis of the biogenic elements other than hydrogen (C, N, O, P and S), their dispersal into space, and their combination into circumstellar and interstellar molecules. (3) The formation of the Solar System and the Earth-Moon System. (4) The role of comets and carbonaceous chondrites in contributing organic matter to the primitive Earth. (5) The prebiotics synthesis of amino acids, purines, pyrimidines, fatty acids, and other biochemical monomers. (6) The prebiotic condensation reactions leading to the synthesis of oligomers such as oligonucleotides and oligopeptides, with replicative and catalytic activities. (7) The synthesis of amphiphilic lipids, and their self-assembly into liposomes with bi-layered membranes. (8) The formation of protocellular structures. (9) The activation of protocells into a functioning Darwin's ancestral cell. (10) Early evolution of life. (11) The K-T boundary event and the disappearance of dinosaurs. (12) Evolution of hominids leading to Homo sapiens. (13) The rapid development of civilization. (14) The exploration of the Solar System. (15) Life beyond our planetary system. (16) Epilogue. Peace from cosmic evolution? (Abstract only)

  1. Cosmic evolution, life and man

    Energy Technology Data Exchange (ETDEWEB)

    Oro, J [Houston Univ., Houston, TX (United States). Dept. of Biochemical and Biophysical Sciences

    1995-08-01

    Among the most basic problems confronting science are those regarding the origin of the universe, the origin of life and the origin of man. This general overview starts (1) with a brief introduction addressed primarily to the Cyril Ponnamperuma Memorial. Then, the thesis is presented that the appearance of life and intelligence on our planet can be understood as the result of a number of cosmic and biological evolutionary processes, including (2) the stellar thermonuclear synthesis of the biogenic elements other than hydrogen (C, N, O, P and S), their dispersal into space, and their combination into circumstellar and interstellar molecules. (3) The formation of the Solar System and the Earth-Moon System. (4) The role of comets and carbonaceous chondrites in contributing organic matter to the primitive Earth. (5) The prebiotics synthesis of amino acids, purines, pyrimidines, fatty acids, and other biochemical monomers. (6) The prebiotic condensation reactions leading to the synthesis of oligomers such as oligonucleotides and oligopeptides, with replicative and catalytic activities. (7) The synthesis of amphiphilic lipids, and their self-assembly into liposomes with bi-layered membranes. (8) The formation of protocellular structures. (9) The activation of protocells into a functioning Darwin`s ancestral cell. (10) Early evolution of life. (11) The K-T boundary event and the disappearance of dinosaurs. (12) Evolution of hominids leading to Homo sapiens. (13) The rapid development of civilization. (14) The exploration of the Solar System. (15) Life beyond our planetary system. (16) Epilogue. Peace from cosmic evolution? (Abstract only).

  2. Biomarkers as tracers for life on early earth and Mars

    Science.gov (United States)

    Simoneit, B. R.; Summons, R. E.; Jahnke, L. L.

    1998-01-01

    Biomarkers in geological samples are products derived from biochemical (natural product) precursors by reductive and oxidative processes (e.g., cholestanes from cholesterol). Generally, lipids, pigments and biomembranes are preserved best over longer geological times and labile compounds such as amino acids, sugars, etc. are useful biomarkers for recent times. Thus, the detailed characterization of biomarker compositions permits the assessment of the major contributing species of extinct and/or extant life. In the case of the early Earth, work has progressed to elucidate molecular structure and carbon isotropic signals preserved in ancient sedimentary rocks. In addition, the combination of bacterial biochemistry with the organic geochemistry of contemporary and ancient hydrothermal ecosystems permits the modeling of the nature, behavior and preservation potential of primitive microbial communities. This approach uses combined molecular and isotopic analyses to characterize lipids produced by cultured bacteria (representative of ancient strains) and to test a variety of culture conditions which affect their biosynthesis. On considering Mars, the biomarkers from lipids and biopolymers would be expected to be preserved best if life flourished there during its early history (3.5-4 x 10(9) yr ago). Both oxidized and reduced products would be expected. This is based on the inferred occurrence of hydrothermal activity during that time with the concomitant preservation of biochemically-derived organic matter. Both known biomarkers (i.e., as elucidated for early terrestrial samples and for primitive terrestrial microbiota) and novel, potentially unknown compounds should be characterized.

  3. Early non-destructive biofouling detection in spiral wound RO Membranes using a mobile earth's field NMR

    KAUST Repository

    Fridjonsson, E.O.

    2015-04-20

    We demonstrate the use of Earth\\'s field (EF) Nuclear Magnetic Resonance (NMR) to provide early non-destructive detection of active biofouling of a commercial spiral wound reverse osmosis (RO) membrane module. The RO membrane module was actively biofouled to different extents, by the addition of biodegradable nutrients to the feed stream, as revealed by a subtle feed-channel pressure drop increase. Easily accessible EF NMR parameters (signal relaxation parameters T1, T2 and the total NMR signal modified to be sensitive to stagnant fluid only) were measured and analysed in terms of their ability to detect the onset of biofouling. The EF NMR showed that fouling near the membrane module entrance significantly distorted the flow field through the whole membrane module. The total NMR signal is shown to be suitable for non-destructive early biofouling detection of spiral wound membrane modules, it was readily deployed at high (operational) flow rates, was particularly sensitive to flow field changes due to biofouling and could be deployed at any position along the membrane module axis. In addition to providing early fouling detection, the mobile EF NMR apparatus could also be used to (i) evaluate the production process of spiral wound membrane modules, and (ii) provide an in-situ determination of module cleaning process efficiency.

  4. The Early Years: The Earth-Sun System

    Science.gov (United States)

    Ashbrook, Peggy

    2015-01-01

    We all experience firsthand many of the phenomena caused by Earth's Place in the Universe (Next Generation Science Standard 5-ESS1; NGSS Lead States 2013) and the relative motion of the Earth, Sun, and Moon. Young children can investigate phenomena such as changes in times of sunrise and sunset (number of daylight hours), Moon phases, seasonal…

  5. Evolution of a Coronal Mass Ejection from the Sun to Mercury, Venus, Earth and Beyond

    Science.gov (United States)

    Wang, Y.; Shen, C.; Liu, J.; Mengjiao, X.; Guo, J.

    2017-12-01

    A clear magnetic cloud was observed by Messenger at Mercury. By using coronagraph images from SOHO/LASCO and STEREO/COR and the in-situ data from Wind near the Earth, we estimated its propgation velocity and identified the possible CME candidate in the corona and its counterpart recorded by Venus Express near Venus. By applying the CME's DIPS (Deflection in InterPlanetary Space) model, we show that the CME's arrivals at the three different heliocentric distance can be well reproduced. By extending the trajectory of the CME to the orbitor of Mars, we predict the arrival of the CME at Mars, which is in agreement with a significant Forbush decrease observed by MSL. We use uniformly-twisted force-free flux rope model to fit the in-situ measurements at Mercury, Venus and the Earth to study the evolution of the magnetic flux rope, and find that both axial magnetic flux and twist significantly decreased, suggesting that a significant erosion process was on-going and might change the averaged twist of the magnetic flux rope.

  6. The evolution of the Earth-Moon system

    International Nuclear Information System (INIS)

    Finch, D.G.

    1982-01-01

    The tidally-induced couple acting on the Moon, due to friction between the oceans and their beds, is calculated as a function of the Earth-Moon separation. The function is found to be proportional to 1 +d/R 3 , and not the previously used 1/R 6 . By use of this new function it is found that the present rate of lunar recession gives an acceptable history for the system if it is assumed the Moon was initially in a close geo-stationary orbit 4 billion years ago, when perturbed by the condensation of the Earth's core. (Auth.)

  7. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles

    Science.gov (United States)

    Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike

    2018-02-01

    Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below

  8. Earth’s oxygen cycle and the evolution of animal life

    Science.gov (United States)

    Reinhard, Christopher T.; Planavsky, Noah J.; Olson, Stephanie L.; Lyons, Timothy W.; Erwin, Douglas H.

    2016-01-01

    The emergence and expansion of complex eukaryotic life on Earth is linked at a basic level to the secular evolution of surface oxygen levels. However, the role that planetary redox evolution has played in controlling the timing of metazoan (animal) emergence and diversification, if any, has been intensely debated. Discussion has gravitated toward threshold levels of environmental free oxygen (O2) necessary for early evolving animals to survive under controlled conditions. However, defining such thresholds in practice is not straightforward, and environmental O2 levels can potentially constrain animal life in ways distinct from threshold O2 tolerance. Herein, we quantitatively explore one aspect of the evolutionary coupling between animal life and Earth’s oxygen cycle—the influence of spatial and temporal variability in surface ocean O2 levels on the ecology of early metazoan organisms. Through the application of a series of quantitative biogeochemical models, we find that large spatiotemporal variations in surface ocean O2 levels and pervasive benthic anoxia are expected in a world with much lower atmospheric pO2 than at present, resulting in severe ecological constraints and a challenging evolutionary landscape for early metazoan life. We argue that these effects, when considered in the light of synergistic interactions with other environmental parameters and variable O2 demand throughout an organism’s life history, would have resulted in long-term evolutionary and ecological inhibition of animal life on Earth for much of Middle Proterozoic time (∼1.8–0.8 billion years ago). PMID:27457943

  9. Earth observation from the manned low Earth orbit platforms

    Science.gov (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan

    2016-05-01

    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  10. The influence of UV radiation on protistan evolution

    Science.gov (United States)

    Rothschild, L. J.

    1999-01-01

    Ultraviolet radiation has provided an evolutionary challenge to life on Earth. Recent increases in surficial ultraviolet B fluxes have focused attention on the role of UV radiation in protistan ecology, cancer, and DNA damage. Exploiting this new wealth of data, I examine the possibility that ultraviolet radiation may have played a significant role in the evolution of the first eukaryotes, that is, protists. Protists probably arose well before the formation of a significant ozone shield, and thus were probably subjected to substantial ultraviolet A, ultraviolet B, and ultraviolet C fluxes early in their evolution. Evolution consists of the generation of heritable variations and the subsequent selection of these variants. Ultraviolet radiation has played a role both as a mutagen and as a selective agent. In its role as a mutagen, it may have been crucial in the origin of sex and as a driver of molecular evolution. As a selective agent, its influence has been broad. Discussed in this paper are the influence of ultraviolet radiation on biogeography, photosynthesis, and desiccation resistance.

  11. Two-way feedback between biology and deep Earth processes

    DEFF Research Database (Denmark)

    Sleep, Norman; Bird, Dennis K.; Pope, Emily Catherine

    The presence of the metamorphic products of banded iron formation and black shale indicate that the Earth teemed with life by the time of the earliest preserved rocks, ca. 3.85 Ga. Iron and sulfur-based anoxygenic photosynthesis with full carbon cycles was present by this time. The pH of the ocean...... was ~8. The lack of older rock record cloaks pre-biotic evolution and the origin of life. Nascent and early life obtained energy from chemical disequilibria in rocks rather than sunlight. Appraising putative rock pre-biological environments is difficult in that life has modified the composition...... of the atmosphere, the hydrosphere, and sedimentary rocks. It has greatly affected the composition of crystalline crustal rocks and measurably modified the mantle. Conversely, hard crustal rocks and the mantle likely sequester a very ancient record of last resort. Theory provides additional insight. The Earth...

  12. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    Science.gov (United States)

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily

  13. The Biological Potential of Mars, the Early Earth, and Europa

    Science.gov (United States)

    Jakosky, B. M.; Shock, E. L.

    1998-09-01

    The potential biomass that could have existed on Mars is constrained by the total amount of energy available to construct it. From an inventory of the available geochemical sources of energy, we estimate that, from the time of the onset of the visible geologic record 4 b.y. ago to the present, as much as 20 g/cm2 of biota could have been constructed. This is the same amount that could have been constructed from similar sources on the early Earth in only 100 m.y. This indicates that there likely was sufficient energy available to support an origin of life on Mars, but not sufficient energy to create a ubiquitous and lush biosphere. Similar calculations for Europa suggest that even less geochemical energy would have been available there.

  14. The TIM Barrel Architecture Facilitated the Early Evolution of Protein-Mediated Metabolism.

    Science.gov (United States)

    Goldman, Aaron David; Beatty, Joshua T; Landweber, Laura F

    2016-01-01

    The triosephosphate isomerase (TIM) barrel protein fold is a structurally repetitive architecture that is present in approximately 10% of all enzymes. It is generally assumed that this ubiquity in modern proteomes reflects an essential historical role in early protein-mediated metabolism. Here, we provide quantitative and comparative analyses to support several hypotheses about the early importance of the TIM barrel architecture. An information theoretical analysis of protein structures supports the hypothesis that the TIM barrel architecture could arise more easily by duplication and recombination compared to other mixed α/β structures. We show that TIM barrel enzymes corresponding to the most taxonomically broad superfamilies also have the broadest range of functions, often aided by metal and nucleotide-derived cofactors that are thought to reflect an earlier stage of metabolic evolution. By comparison to other putatively ancient protein architectures, we find that the functional diversity of TIM barrel proteins cannot be explained simply by their antiquity. Instead, the breadth of TIM barrel functions can be explained, in part, by the incorporation of a broad range of cofactors, a trend that does not appear to be shared by proteins in general. These results support the hypothesis that the simple and functionally general TIM barrel architecture may have arisen early in the evolution of protein biosynthesis and provided an ideal scaffold to facilitate the metabolic transition from ribozymes, peptides, and geochemical catalysts to modern protein enzymes.

  15. The Landscape Evolution Observatory: a large-scale controllable infrastructure to study coupled Earth-surface processes

    Science.gov (United States)

    Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferré, T.P.A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin

    2015-01-01

    Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.

  16. Origins and Early Evolution of the tRNA Molecule

    Directory of Open Access Journals (Sweden)

    Koji Tamura

    2015-12-01

    Full Text Available Modern transfer RNAs (tRNAs are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs. Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC. The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome.

  17. Body size and premolar evolution in the early-middle eocene euprimates of Wyoming.

    Science.gov (United States)

    Jones, Katrina E; Rose, Kenneth D; Perry, Jonathan M G

    2014-01-01

    The earliest euprimates to arrive in North America were larger-bodied notharctids and smaller-bodied omomyids. Through the Eocene, notharctids generally continued to increase in body size, whereas omomyids generally radiated within small- and increasingly mid-sized niches in the middle Eocene. This study examines the influence of changing body size and diet on the evolution of the lower fourth premolar in Eocene euprimates. The P4 displays considerable morphological variability in these taxa. Despite the fact that most studies of primate dental morphology have focused on the molars, P4 can also provide important paleoecological insights. We analyzed the P4 from 177 euprimate specimens, representing 35 species (11 notharctids and 24 omomyids), in three time bins of approximately equal duration: early Wasatchian, late Wasatchian, and Bridgerian. Two-dimensional surface landmarks were collected from lingual photographs, capturing important variation in cusp position and tooth shape. Disparity metrics were calculated and compared for the three time bins. In the early Eocene, notharctids have a more molarized P4 than omomyids. During the Bridgerian, expanding body size range of omomyids was accompanied by a significant increase in P4 disparity and convergent evolution of the semimolariform condition in the largest omomyines. P4 morphology relates to diet in early euprimates, although patterns vary between families. Copyright © 2013 Wiley Periodicals, Inc.

  18. The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.

    Science.gov (United States)

    Brusatte, Stephen L; Benton, Michael J; Ruta, Marcello; Lloyd, Graeme T

    2008-12-23

    The evolutionary radiation of dinosaurs in the Late Triassic and Early Jurassic was a pivotal event in the Earth's history but is poorly understood, as previous studies have focused on vague driving mechanisms and have not untangled different macroevolutionary components (origination, diversity, abundance and disparity). We calculate the morphological disparity (morphospace occupation) of dinosaurs throughout the Late Triassic and Early Jurassic and present new measures of taxonomic diversity. Crurotarsan archosaurs, the primary dinosaur 'competitors', were significantly more disparate than dinosaurs throughout the Triassic, but underwent a devastating extinction at the Triassic-Jurassic boundary. However, dinosaur disparity showed only a slight non-significant increase after this event, arguing against the hypothesis of ecological release-driven morphospace expansion in the Early Jurassic. Instead, the main jump in dinosaur disparity occurred between the Carnian and Norian stages of the Triassic. Conversely, dinosaur diversity shows a steady increase over this time, and measures of diversification and faunal abundance indicate that the Early Jurassic was a key episode in dinosaur evolution. Thus, different aspects of the dinosaur radiation (diversity, disparity and abundance) were decoupled, and the overall macroevolutionary pattern of the first 50Myr of dinosaur evolution is more complex than often considered.

  19. Space station evolution: Planning for the future

    Science.gov (United States)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-06-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  20. Space station evolution: Planning for the future

    Science.gov (United States)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-01-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  1. Early mantle differentiation: constraint from 146Sm-142Nd systematics

    International Nuclear Information System (INIS)

    Caro, G.

    2005-07-01

    We present new ultra-high precision 142 Nd/ 144 Nd measurements of early Archaean rocks using the new generation thermal ionization mass spectrometer TRITON. Repeated measurements of the Ames Nd standard demonstrate that the 142 Nd/ 144 Nd ratio can be determined with external precision of 2 ppm (2s), allowing confident resolution of anomalies as small as 5 ppm. A major analytical improvement lies in the elimination of the double normalization procedure required to correct our former measurements from a secondary mass fractionation effect. Our new results indicate that metasediments, meta-basalts and orthogneisses from the 3.6 - 3.8 Ga West Greenland craton display positive 142 Nd anomalies ranging from 8 to 15 ppm. Using a simple two-stage model with initial e 143 Nd value of 1.9 ± 0.6 e-units, coupled 147 Sm- 143 Nd and 146 Sm- 142 Nd chronometry constrains mantle differentiation to 50 to 200 Ma after formation of the solar system. This chronological constraint is consistent with differentiation of the Earth's mantle during the late stage of crystallization of a magma ocean. We have developed a two-box model describing 142 Nd and 143 Nd isotopic evolution of depleted mantle during the subsequent evolution of the crust-mantle system. Our results indicate that early terrestrial proto-crust had a lifetime of ca. 500 Ma in order to produce the observed Nd isotope signature of Archaean rocks. In the context of this two box mantle-crust system, we model the evolution of isotopic and chemical heterogeneity of depleted mantle as a function of the mantle stirring time. Using the dispersion of 142 Nd/ 144 Nd and 143 Nd/ 144 Nd ratios observed in early Archaean rocks, we constrain the stirring time of early Earth's mantle to 100 - 150 Ma, a factor of 5 to 10 shorter than stirring time inferred from modern oceanic basalts. (author)

  2. Early galactic evolution and the nature of the first stars

    International Nuclear Information System (INIS)

    Jones, J.E.

    1985-05-01

    In this paper, the observational data relating to the early evolution of the Galaxy are reviewed in order to assess the plausibility of a number of models that have been proposed for the first stars. On the basis of standard fragmentation models, it is argued that primordial stars were very similar to normal stars, but that in some circumstances the formation of low mass primordial stars may be suppressed through the dissociation of molecular hydrogen by UV radiation. The existence of these conditions at the time of formation of the Galaxy could explain the absence of zero-metal stars. (orig./WL)

  3. The early Miocene balaenid Morenocetus parvus from Patagonia (Argentina and the evolution of right whales

    Directory of Open Access Journals (Sweden)

    Mónica R. Buono

    2017-12-01

    Full Text Available Balaenidae (right and bowhead whales are a key group in understanding baleen whale evolution, because they are the oldest surviving lineage of crown Mysticeti, with a fossil record that dates back ∼20 million years. However, this record is mostly Pliocene and younger, with most of the Miocene history of the clade remaining practically unknown. The earliest recognized balaenid is the early Miocene Morenocetus parvus Cabrera, 1926 from Argentina. M. parvus was originally briefly described from two incomplete crania, a mandible and some cervical vertebrae collected from the lower Miocene Gaiman Formation of Patagonia. Since then it has not been revised, thus remaining a frequently cited yet enigmatic fossil cetacean with great potential for shedding light on the early history of crown Mysticeti. Here we provide a detailed morphological description of this taxon and revisit its phylogenetic position. The phylogenetic analysis recovered the middle Miocene Peripolocetus as the earliest diverging balaenid, and Morenocetus as the sister taxon of all other balaenids. The analysis of cranial and periotic morphology of Morenocetus suggest that some of the specialized morphological traits of modern balaenids were acquired by the early Miocene and have remained essentially unchanged up to the present. Throughout balaenid evolution, morphological changes in skull arching and ventral displacement of the orbits appear to be coupled and functionally linked to mitigating a reduction of the field of vision. The body length of Morenocetus and other extinct balaenids was estimated and the evolution of body size in Balaenidae was reconstructed. Optimization of body length on our phylogeny of Balaenidae suggests that the primitive condition was a relatively small body length represented by Morenocetus, and that gigantism has been acquired independently at least twice (in Balaena mysticetus and Eubalaena spp., with the earliest occurrence of this trait in the late

  4. The early Miocene balaenid Morenocetus parvus from Patagonia (Argentina) and the evolution of right whales

    Science.gov (United States)

    Cozzuol, Mario A.; Fitzgerald, Erich M.G.

    2017-01-01

    Balaenidae (right and bowhead whales) are a key group in understanding baleen whale evolution, because they are the oldest surviving lineage of crown Mysticeti, with a fossil record that dates back ∼20 million years. However, this record is mostly Pliocene and younger, with most of the Miocene history of the clade remaining practically unknown. The earliest recognized balaenid is the early Miocene Morenocetus parvus Cabrera, 1926 from Argentina. M. parvus was originally briefly described from two incomplete crania, a mandible and some cervical vertebrae collected from the lower Miocene Gaiman Formation of Patagonia. Since then it has not been revised, thus remaining a frequently cited yet enigmatic fossil cetacean with great potential for shedding light on the early history of crown Mysticeti. Here we provide a detailed morphological description of this taxon and revisit its phylogenetic position. The phylogenetic analysis recovered the middle Miocene Peripolocetus as the earliest diverging balaenid, and Morenocetus as the sister taxon of all other balaenids. The analysis of cranial and periotic morphology of Morenocetus suggest that some of the specialized morphological traits of modern balaenids were acquired by the early Miocene and have remained essentially unchanged up to the present. Throughout balaenid evolution, morphological changes in skull arching and ventral displacement of the orbits appear to be coupled and functionally linked to mitigating a reduction of the field of vision. The body length of Morenocetus and other extinct balaenids was estimated and the evolution of body size in Balaenidae was reconstructed. Optimization of body length on our phylogeny of Balaenidae suggests that the primitive condition was a relatively small body length represented by Morenocetus, and that gigantism has been acquired independently at least twice (in Balaena mysticetus and Eubalaena spp.), with the earliest occurrence of this trait in the late Miocene–early

  5. New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha

    Directory of Open Access Journals (Sweden)

    Wei-Jen eChen

    2014-10-01

    Full Text Available The Acanthomorpha is the largest group of teleost fishes with about one third of extant vertebrate species. In the course of its evolution this lineage experienced several episodes of radiation, leading to a large number of descendant lineages differing profoundly in morphology, ecology, distribution and behavior. Although Acanthomorpha was recognized decades ago, we are only now beginning to decipher its large-scale, time-calibrated phylogeny, a prerequisite to test various evolutionary hypotheses explaining the tremendous diversity of this group. In this study, we provide new insights into the early evolution of the acanthomorphs and the euteleost allies based on the phylogenetic analysis of a newly developed dataset combining nine nuclear and mitochondrial gene markers. Our inferred tree is time-calibrated using 15 fossils, some of which have not been used before. While our phylogeny strongly supports a monophyletic Neoteleostei, Ctenosquamata (i.e., Acanthomorpha plus Myctophiformes, and Acanthopterygii, we find weak support (bootstrap value < 48% for the traditionally defined Acanthomorpha, as well as evidence of non-monophyly for the traditional Paracanthopterygii, Beryciformes, and Percomorpha. We corroborate the new Paracanthopterygii sensu Miya et al. (2005 including Polymixiiformes, Zeiformes, Gadiformes, Percopsiformes, and likely the enigmatic Stylephorus chordatus. Our timetree largely agrees with other recent studies based on nuclear loci in inferring an Early Cretaceous origin for the acanthomorphs followed by a Late Cretaceous/Early Paleogene radiation of major lineages. This is in contrast to mitogenomic studies mostly inferring Jurassic or even Triassic ages for the origin of the acanthomorphs. We compare our results to those of previous studies, and attempt to address some of the issues that may have led to incongruence between the fossil record and the molecular clock studies, as well as between the different molecular

  6. Origin and Evolution of The Early- Silurian Land Vascular Plants: Evidence From Biomarkers

    Science.gov (United States)

    Jin, R.

    2016-12-01

    Origin and early evolution of land vascular plants, is one of the most intriguing hotspots in the life science research. During the 1970s and 1980s,Pinnatiramosus qianensis was found in early-Silurian strata in guizhou of south China.43 years have passed. But so far, the biological characteristics and belonging of the age of this unique plant have been debated again and again, up in the air.Biomarkers have a good stability in the process of organic evolution, no more or less changed, so they have a special `function of mark'. While biomarkers can provide information about organic matter of hydrocarbon source rock (the source), the period of deposition and burial (diagenesis) environmental conditions, and many other aspects of information.This paper obtained the sedimentary environment, source of organic matter input and other relevant information, through extracting and analyzing biomarkers of the 26 samples in the late Ordovician to early Silurian strata in NorthGuizhou areas. According to the results, Pr/Ph of late Ordovician Meitan Fm-early Silurian Hanjiadian Fm is high.It manifests more pristane, characterized by reductive environment. At the bottom of the Hanjiadian Fm, Pr/Ph has a volatility.Some huge environmental changes may have taken place in the corresponding period. N-alkanes do not have parity advantage or has even carbon advantage slightly.The peak carbon is mainly in low carbon number.(C21 + C22)/(C28 + C29) is high.Aquatic organisms is a major source of organic matter during this period,C21-/C22+ is low.This may be caused by the relatively serious loss of light hydrocarbon during the separation of components. In the Hanjiadian Fm,information of C29/C27 sterane ratios and oleanane index showed a trend of rising at the same time, indicating that during this period, there was a gradual increase input in the number of higher plants.The stable carbon isotope of saturated hydrocarbon and aromatic hydrocarbon in the Hanjiadian Fm also gradually become

  7. An Outrageous Geological Hypothesis for the Early Mars Hydro-climatic Conundrum

    Science.gov (United States)

    Baker, V. R.

    2016-12-01

    Nearly a century ago a Science paper by W. M. Davis described the role for an "outrageous geological hypothesis" (OGH) as encouraging, "…a contemplation deliberate enough to seek out what conditions would make the outrage seem permissible and reasonable." Davis even advocated in 1926 that Earth scientists seriously consider "the Wegener outrage of wandering continents"- the OGH that ultimately led to the most important unifying concept for understanding the nature of Earthlike planets. Does this concept of a mobile lithosphere, manifesting itself on Earth as plate tectonics, have relevance for understanding the nature of early Mars? Conceptual arguments have been presented claiming that Mars could never have had an early phase of lithospheric dynamics similar to that associated with Earth's plate tectonics. Nevertheless, a total rejection of this OGH precludes any possibility of considering (1) the conditions that might make such dynamics possible, and (2) connections among the many phenomena that can be collectively accounted for by the OGH. While all scientific arguments are intrinsically fallible, nature presents us with absolute realities. For Mars the latter consist of the numerous anomalies related to planetary evolution that either can be explained piecemeal by ad hoc hypotheses, or, alternatively, might be viewed as part of something to be explained by a unifying, working hypothesis that may seem outrageous in the light of current theory. Briefly stated, the Early Mars OGH envisions a pre-Late Heavy Bombardment (> 4 Ga) phase of lithospheric subduction that helped generate the very powerful core dynamo while also emplacing near the core-mantle boundary a reservoir of volatiles that subsequently influenced the later Mars history of punctuated evolution, involving episodic volcanism and transient states of a denser atmosphere with associated, active hydrological cycling, including the temporary surficial expressions of oceans, lakes, glaciers, and rivers.

  8. Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe

    Science.gov (United States)

    Cote, Benoit; JINA-CEE, NuGrid, ChETEC

    2018-06-01

    Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.

  9. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    Science.gov (United States)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  10. Galactic chemical evolution in hierarchical formation models - I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matías; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  11. Galactic chemical evolution in hierarchical formation models : I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matias; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    2010-01-01

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  12. Water in the Earth's Interior: Distribution and Origin

    Science.gov (United States)

    Peslier, Anne H.; Schönbächler, Maria; Busemann, Henner; Karato, Shun-Ichiro

    2017-10-01

    The concentration and distribution of water in the Earth has influenced its evolution throughout its history. Even at the trace levels contained in the planet's deep interior (mantle and core), water affects Earth's thermal, deformational, melting, electrical and seismic properties, that control differentiation, plate tectonics and volcanism. These in turn influenced the development of Earth's atmosphere, oceans, and life. In addition to the ubiquitous presence of water in the hydrosphere, most of Earth's "water" actually occurs as trace amounts of hydrogen incorporated in the rock-forming silicate minerals that constitute the planet's crust and mantle, and may also be stored in the metallic core. The heterogeneous distribution of water in the Earth is the result of early planetary differentiation into crust, mantle and core, followed by remixing of lithosphere into the mantle after plate-tectonics started. The Earth's total water content is estimated at 18_{-15}^{+81} times the equivalent mass of the oceans (or a concentration of 3900_{-3300}^{+32700} ppm weight H2O). Uncertainties in this estimate arise primarily from the less-well-known concentrations for the lower mantle and core, since samples for water analyses are only available from the crust, the upper mantle and very rarely from the mantle transition zone (410-670 km depth). For the lower mantle (670-2900 km) and core (2900-4500 km), the estimates rely on laboratory experiments and indirect geophysical techniques (electrical conductivity and seismology). The Earth's accretion likely started relatively dry because it mainly acquired material from the inner part of the proto-planetary disk, where temperatures were too high for the formation and accretion of water ice. Combined evidence from several radionuclide systems (Pd-Ag, Mn-Cr, Rb-Sr, U-Pb) suggests that water was not incorporated in the Earth in significant quantities until the planet had grown to ˜60-90% of its current size, while core formation

  13. Overview of NASA's Earth Science Data Systems

    Science.gov (United States)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  14. The computational challenges of Earth-system science.

    Science.gov (United States)

    O'Neill, Alan; Steenman-Clark, Lois

    2002-06-15

    The Earth system--comprising atmosphere, ocean, land, cryosphere and biosphere--is an immensely complex system, involving processes and interactions on a wide range of space- and time-scales. To understand and predict the evolution of the Earth system is one of the greatest challenges of modern science, with success likely to bring enormous societal benefits. High-performance computing, along with the wealth of new observational data, is revolutionizing our ability to simulate the Earth system with computer models that link the different components of the system together. There are, however, considerable scientific and technical challenges to be overcome. This paper will consider four of them: complexity, spatial resolution, inherent uncertainty and time-scales. Meeting these challenges requires a significant increase in the power of high-performance computers. The benefits of being able to make reliable predictions about the evolution of the Earth system should, on their own, amply repay this investment.

  15. Is lithostatic loading important for the slip behavior and evolution of normal faults in the Earth's crust?

    International Nuclear Information System (INIS)

    Kattenhorn, Simon A.; Pollard, David D.

    1999-01-01

    Normal faults growing in the Earth's crust are subject to the effects of an increasing frictional resistance to slip caused by the increasing lithostatic load with depth. We use three-dimensional (3-D) boundary element method numerical models to evaluate these effects on planar normal faults with variable elliptical tip line shapes in an elastic solid. As a result of increasing friction with depth, normal fault slip maxima for a single slip event are skewed away from the fault center toward the upper fault tip. There is a correspondingly greater propagation tendency at the upper tip. However, the tall faults that would result from such a propagation tendency are generally not observed in nature. We show how mechanical interaction between laterally stepping fault segments significantly competes with the lithostatic loading effect in the evolution of a normal fault system, promoting lateral propagation and possibly segment linkage. Resultant composite faults are wider than they are tall, resembling both 3-D seismic data interpretations and previously documented characteristics of normal fault systems. However, this effect may be greatly complemented by the influence of a heterogeneous stratigraphy, which can control fault nucleation depth and inhibit fault propagation across the mechanical layering. Our models demonstrate that although lithostatic loading may be an important control on fault evolution in relatively homogeneous rocks, the contribution of lithologic influences and mechanical interaction between closely spaced, laterally stepping faults may predominate in determining the slip behavior and propagation tendency of normal faults in the Earth's crust. (c) 1999 American Geophysical Union

  16. HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND

    International Nuclear Information System (INIS)

    Lopez, Eric D.; Miller, Neil; Fortney, Jonathan J.

    2012-01-01

    We use models of thermal evolution and extreme ultraviolet (XUV) driven mass loss to explore the composition and history of low-mass, low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that an H/He envelope on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is extremely difficult. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He envelopes to XUV-driven mass loss. Importantly, we find that this mass-loss threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass-loss prescription. Treating the planets' contraction history is essential because the planets have significantly larger radii during the early era of high XUV fluxes. Over time low-mass planets with H/He envelopes can be transformed into water-dominated worlds with steam envelopes or rocky super-Earths. Finally, we use this threshold to provide likely minimum masses and radial-velocity amplitudes for the general population of Kepler candidates. Likewise, we use this threshold to provide constraints on the maximum radii of low-mass planets found by radial-velocity surveys.

  17. Evolution: from cosmogenesis to biogenesis

    International Nuclear Information System (INIS)

    Lukacs, B.; Berczi, Sz.; Molnar, I.; Paal, G.

    1990-11-01

    The volume contains the material of an interdisciplinary evolution symposium. The purpose was to shed some light on possible connections between steps of evolution of matter on different levels of organisation. The topics involved are as follow: cosmogenesis; galactic and stellar evolution; formation and evolution of the solar system; global atmospheric and tectonic changes of Earth; viral evolution; phylogeny and evolution of terrestrial life; evolution of neural system; hominization. The material also includes some discussions of the underlying phenomena and laws of nature. (author)

  18. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    Science.gov (United States)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  19. The Evolution of the Earth's Magnetic Field.

    Science.gov (United States)

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  20. Mass loss in early stages of stellar evolution

    International Nuclear Information System (INIS)

    Dearborn, D.S.P.; Kozlowski, M.; Schramm, D.

    1976-01-01

    It is known that stars lose mass between their birth on the main sequence and their death as white dwarfs, or as neutron stars or black holes for more massive stars. Solar wind considerations indicate that not all of the mass loss occurs in a 'last gasp' to form a planetary nebula. Mass loss has be observed in O-B stars and in red giants, but the mass loss observed in these stages do not appear sufficient to account for all the loss required for stars to become white dwarfs. The problem is at what stages and in what manner the excess mass is lost. Suggestions have tended to favour He flashes for stars with M < 2.25 M. and possibly double shell instability flashes for stars in the range from 2.25 M. to 8 M. Although is is possible that significant mass is lost during these stages, there appears to be no quantitative support for this suggestion, and in particular none for the He flash. It is shown here that there is increasing evidence for substantial mass loss during the immediate post main sequence stages when the star is moving from the main sequence to the giant branch. Mass loss at these early stages of evolution may have implications on the subsequent evolution of the star and the amount of nuclearly processed material that is ejected into the interstellar-medium. The behaviour of Arcturus is discussed in these connections. (U.K.)

  1. COSMIC EVOLUTION OF SIZE AND VELOCITY DISPERSION FOR EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Fan, L.; Lapi, A.; Bressan, A.; De Zotti, G.; Danese, L.; Bernardi, M.

    2010-01-01

    Massive (stellar mass M * ∼> 3 x 10 10 M sun ), passively evolving galaxies at redshifts z ∼> 1 exhibit on average physical sizes smaller, by factors ∼3, than local early-type galaxies (ETGs) endowed with the same stellar mass. Small sizes are in fact expected on theoretical grounds, if dissipative collapse occurs. Recent results show that the size evolution at z ∼ 1, where both compact and already extended galaxies are observed and the scatter in size is remarkably larger than it is locally. The presence at high redshift of a significant number of ETGs with the same size as their local counterparts, as well as ETGs with quite small size (∼ H (z). We demonstrate that the projected mass of compact, high-redshift galaxies and that of local ETGs within the same physical radius, the nominal half-luminosity radius of high-redshift ETGs, differ substantially in that the high-redshift ETGs are on average significantly denser. This result suggests that the physical mechanism responsible for the size increase should also remove mass from central galaxy regions (r ∼ 1, we predict the local velocity dispersion distribution function. On comparing it to the observed one, we show that velocity dispersion evolution of massive ETGs is fully compatible with the observed average evolution in size at constant stellar mass. Less massive ETGs (with stellar masses M * ∼ 10 M sun ) are expected to evolve less both in size and in velocity dispersion, because their evolution is essentially determined by supernova feedback, which cannot yield winds as powerful as those triggered by quasars. The differential evolution is expected to leave imprints in the size versus luminosity/mass, velocity dispersion versus luminosity/mass, and central black hole mass versus velocity dispersion relationships, as observed in local ETGs.

  2. A Mercury-like component of early Earth yields uranium in the core and high mantle (142)Nd.

    Science.gov (United States)

    Wohlers, Anke; Wood, Bernard J

    2015-04-16

    Recent (142)Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a 'hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the 'hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an (142)Nd/(144)Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the 'missing' heat source for the geodynamo.

  3. The geological record of life 3500 Ma ago: Coping with the rigors of a young earth during late accretion

    Science.gov (United States)

    Lowe, Donald R.

    1989-01-01

    Thin cherty sedimentary layers within the volcanic portions of the 3,500 to 3,300 Ma-old Onverwacht and Fig Tree Groups, Barberton Greenstone belt, South Africa, and Warrawoona Group, eastern Pilbara Block, Western Australia, contain an abundant record of early Archean life. Five principal types of organic and probably biogenic remains and or structures can be identifed: stromatolites, stromatolite detritus, carbonaceous laminite or flat stromalite, carbonaceous detrital particles, and microfossils. Early Archean stromatolites were reported from both the Barberton and eastern Pilbara greenstone belts. Systematic studies are lacking, but two main morphological types of stromatolites appear to be represented by these occurrences. Morphology of the stromalites is described. Preserved early Archean stromatolites and carbonaceous matter appear to reflect communities of photosynthetic cyanobacteria inhabiting shallow, probably marine environments developed over the surfaces of low-relief, rapidly subsiding, simatic volcanic platforms. The overall environmental and tectonic conditions were those that probably prevailed at Earth's surface since the simatic crust and oceans formed sometime before 3,800 Ma. Recent studies also suggest that these early Archean sequences contain layers of debris formed by large-body impacts on early Earth. If so, then these early bacterial communities had developed strategies for coping with the disruptive effects of possibly globe-encircling high-temperature impact vapor clouds, dust blankets, and impact-generated tsunamis. It is probable that these early Archean biogenic materials represent organic communities that evolved long before the beginning of the preserved geological record and were well adapted to the rigors of life on a young, volcanically active Earth during late bombardment. These conditions may have had parallels on Mars during its early evolution.

  4. Global gravity and the geodynamic model of the Earth

    International Nuclear Information System (INIS)

    Nedoma, J.

    1988-01-01

    Plate tectonic hypotheses require the formation of a new oceanic lithosphere at mid-oceanic ridges and imply the further modification and continued evolution towards the continental type of lithosphere in the regions of island arcs and orogenic belts. All these phenomena observed on the Earths's surface are results of all geodynamic processes passing through the Earth's interior. Since geodynamic processes change through the geological epochs, the gravity field also changes during the same geological periods. Thus, the paper is concerned with physical relationships between the global gravity field and the geodynamic processes as well as all geophysical fields affected by the geodynamic processes inside the Earth. The aim of this paper is to analyse the inner and outer gravity field of the Earth during the evolution of the Earth in the course of the geological epochs, and to build the generalized theory of the global gravity field of the Earth from the point of view of the global and local geodynamic processes taking place within the Earth's interior. (author)

  5. Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    Science.gov (United States)

    Grandin, Robert John

    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material's operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material's life, and this early-stage damage occurs on length scales at which the material may be considered "granular'' in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and

  6. Energy resources for mankind considered from the earth evolution

    International Nuclear Information System (INIS)

    Ohno, Shin-ich; Shimizu, Saburo

    2005-01-01

    The amount of energy resources contained in Earth and that we mankind can use in future can be estimated on the basis of the information given by astrophysical and geochemical considerations. The kind of resources includes geothermal, nuclear, solar, and fossil energy. We believe that the results of these considerations, especially the method of thinking, may be taken into curriculum in high schools or introductory courses of university education. In school education relating to energy and environmental problems we think that it is more important for the students to learn how to think or estimate and how to solve the problems than to be given any established knowledge itself from the teachers and reference books or journals. Students are easily discouraged by teachers who are talking that petroleum will be exhausted in 40 years or that uranium-235 will be also exhausted unless we develop the nuclear fuel system utilizing uranium-238 breading. They seem afraid of insufficient left when they grow old. In this report we call the readers attention that the amount of energy resources contained in Earth is such that the mankind can never exhaust them and that they are waiting to be exploited or for the time to come when the technology for their utilization is developed. We also pay attention that too much consumption of energy surely affect the earth environment (heat pollution) - the limit will be the consumption rate of about 0.1 W/m 2 of the earth surface which equals to the heat emission rate from the earth surface toward the space. (author)

  7. New hominin fossils from Kanapoi, Kenya, and the mosaic evolution of canine teeth in early hominins

    Directory of Open Access Journals (Sweden)

    J. Michael Plavcan

    2012-03-01

    Full Text Available Whilst reduced size, altered shape and diminished sexual dimorphism of the canine–premolar complex are diagnostic features of the hominin clade, little is known about the rate and timing of changes in canine size and shape in early hominins. The earliest Australopithecus, Australopithecus anamensis, had canine crowns similar in size to those of its descendant Australopithecus afarensis, but a single large root alveolus has suggested that this species may have had larger and more dimorphic canines than previously recognised. Here we present three new associated dentitions attributed to A. anamensis, recently recovered from the type site of Kanapoi, Kenya, that provide evidence of canine evolution in early Australopithecus. These fossils include the largest mandibular canine root in the hominin fossil record. We demonstrate that, although canine crown height did not differ between these species, A. anamensis had larger and more dimorphic roots, more like those of extant great apes and Ardipithecus ramidus, than those of A. afarensis. The canine and premolar occlusal shapes of A. anamensis also resemble those of Ar. ramidus, and are intermediary between extant great apes and A. afarensis. A. afarensis achieved Homo-like maxillary crown basal proportions without a reduction in crown height. Thus, canine crown size and dimorphism remained stable during the early evolution of Australopithecus, but mandibular root dimensions changed only later within the A. anamensis–afarensis lineage, coincident with morphological changes in the canine–premolar complex. These observations suggest that selection on canine tooth crown height, shape and root dimensions was not coupled in early hominin evolution, and was not part of an integrated adaptive package.

  8. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    Science.gov (United States)

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  9. The Formation of Haze During the Rise of Oxygen in the Atmosphere of the Early Earth

    Science.gov (United States)

    Horst, S. M.; Jellinek, M.; Pierrehumbert, R.; Tolbert, M. A.

    2014-12-01

    also provide a wealth of organic material to the surface. Photochemical hazes are abundant in reducing atmospheres, such as the N2/CH4 atmosphere of Titan, but are unlikely to form in oxidizing atmospheres, such as the N2/O2 atmosphere of present day Earth. However, information about haze formation in mildly oxidizing atmospheres is lacking. Understanding haze formation in mildly oxidizing atmospheres is necessary for models that wish to investigate the atmosphere of the Early Earth as O2 first appeared and then increased in abundance. Previous studies of the atmosphere of the Early Earth have focused on haze formation in N2/CO2/CH4 atmospheres. In this work, we experimentally investigate the effect of the addition of O2 on the formation and composition of aerosols. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [1]) we have obtained in situ composition measurements of aerosol particles produced in N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (deuterium lamp, 115-400 nm) for a range of initial CO2/CH4/O2 mixing ratios. In particular, we studied the effect of O2 ranging from 2 ppm to 2%. The particles were also investigated using a Scanning Mobility Particle Sizer (SMPS), which measures particle size, number density and mass loading. A comparison of the composition of the aerosols will be presented. The effect of variation of O2 mixing ratio on aerosol production, size, and composition will also be discussed. [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326.

  10. Radiation chemistry and origins of life on earth

    International Nuclear Information System (INIS)

    Zagorski, Z. P.

    2001-01-01

    The role of radiation chemical processes in prebiotic time of earth history and their influence on arise of organic life on Earth has been discussed. The formation of chiral compounds in prebiotic s oup' and its further evolution for creation of bioorganic molecules was also presented and discussed as an alternative of existing hypothesis of cosmic origin of biologic life in the Earth

  11. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  12. On the chronology of lunar origin and evolution. Implications for Earth, Mars and the Solar System as a whole

    Science.gov (United States)

    Geiss, Johannes; Rossi, Angelo Pio

    2013-11-01

    An origin of the Moon by a Giant Impact is presently the most widely accepted theory of lunar origin. It is consistent with the major lunar observations: its exceptionally large size relative to the host planet, the high angular momentum of the Earth-Moon system, the extreme depletion of volatile elements, and the delayed accretion, quickly followed by the formation of a global crust and mantle. According to this theory, an impact on Earth of a Mars-sized body set the initial conditions for the formation and evolution of the Moon. The impact produced a protolunar cloud. Fast accretion of the Moon from the dense cloud ensured an effective transformation of gravitational energy into heat and widespread melting. A "Magma Ocean" of global dimensions formed, and upon cooling, an anorthositic crust and a mafic mantle were created by gravitational separation. Several 100 million years after lunar accretion, long-lived isotopes of K, U and Th had produced enough additional heat for inducing partial melting in the mantle; lava extruded into large basins and solidified as titanium-rich mare basalt. This delayed era of extrusive rock formation began about 3.9 Ga ago and may have lasted nearly 3 Ga. A relative crater count timescale was established and calibrated by radiometric dating (i.e., dating by use of radioactive decay) of rocks returned from six Apollo landing regions and three Luna landing spots. Fairly well calibrated are the periods ≈4 Ga to ≈3 Ga BP (before present) and ≈0.8 Ga BP to the present. Crater counting and orbital chemistry (derived from remote sensing in spectral domains ranging from γ- and x-rays to the infrared) have identified mare basalt surfaces in the Oceanus Procellarum that appear to be nearly as young as 1 Ga. Samples returned from this area are needed for narrowing the gap of 2 Ga in the calibrated timescale. The lunar timescale is not only used for reconstructing lunar evolution, but it serves also as a standard for chronologies of the

  13. Age of the earth and solar system

    International Nuclear Information System (INIS)

    Manhes, G.

    1977-01-01

    The history of chemical element formation and radiochronology is given. The study of Pb isotope composition evolution enables to estimate the age of the earth. A series of galena of known ages was measured. By means of a model, it is possible to determine the initial isotope composition of Pb on the earth and the age of the earth. On the other hand, the analysis of stony meteorites provides a Pb isotope composition higher than the earth value. A comparison of the data shows a fundamental transition at 4.55 10 9 years [fr

  14. Neon and xenon isotopes in MORB: Implications for the earth-atmosphere evolution

    International Nuclear Information System (INIS)

    Marty, B.

    1989-01-01

    The isotopic composition of neon and xenon measured in MORB glasses confirm significant deviations from atmospheric values. There are 1. 21 Ne excesses with are attributed to nucleogenic reactions in the mantle; 2. 20 Ne/ 22 Ne ratios higher than the air ratio interpreted as an evidence for the occurrence of solar-type Ne at depth; 3. 129 Xe and 131-136 Xe excesses, attributed to both extinct ( 129 I and 244 Pu) and present ( 238 U) radioactivities. Ne and Xe isotopic signatures in the mantle can hardly be explained in the framework of classical models for the atmospheric evolution (which postulate a mantle origin for atmospheric gases) and appeal for at least two sources of gases. Ne isotopic differences between air and MORB appear too large to be accounted for by any reasonable fractionation process in the mantle. They imply either fractionation of neon during hydrodynamic escape of a primary atmosphere or different degrees of mixing between primordial Ne components, which, in turn imply isolation of the surface reservoir (air) and deep reservoir (mantle) from the accretional period (except for mantle outgassing through volcanism, the contribution of which is 41% at best for 20 Ne). 129 I- 129 Xe, 244 Pu- 238 U- 136 Xe systematics for atmospheric and MORB-type xenon suggest that either atmospheric gases derived from a source whose formation was delayed (≥ 17 Ma) with respect to the mean accretion time of the mantle source and/or atmospheric gases and MORB-type gases derived from chemically distinct sources. These features are consistent with heterogeneous accretion models for the Earth. Volatile degassing was probably contemporaneous to accretional events, following impact degassing, and might have been most efficient during the late stages of Earth formation. (orig.)

  15. Microbial Communities: Tracing Growth Processes from Antarctic Lakes to Early Earth to Other Planets

    Science.gov (United States)

    Sumner, D. Y.

    2014-12-01

    Life in the Universe is dominated by microbes: they are numerically the most abundant cells in our bodies and in Earth's biosphere, and they are the only life that might be present elsewhere in our solar system. Life beyond our solar system could include macroscopic organisms, but everything we understand about the origin of life suggests it must start with microbes. Thus, understanding microbial ecosystems, in the absence of macroscopic organisms, is critical to understanding early life on Earth and life elsewhere in the Universe - if it exists. But what are the general principles of microbial ecology in the absence of predation? What happens when each cell is a chemical factory that can swap among metabolic processes in response to environmental and emergent cues? Geobiologists and astrobiologists are addressing these questions in diverse ways using both Earth's modern biosphere and its fossil record. Modern microbial communities in shallow, ice-covered lakes, Antarctica (Fig.), provide a model for high productivity microbial ecosystems with no to low predation. In these lakes, photosynthetic communities create macroscopic pinnacles and domes, sometime lithified into stromatolites. They provide an ecological, geochemical and morphological model for Precambrian microbial communities in low sedimentation, low current environments. Insights from these communities include new growth processes for ancient mats, especially some that grew prior to the oxidation of Earth's atmosphere. The diversity of biosignatures created in these communities also provides context for models of life under ice elsewhere in our solar system such as paleolakes on Mars and on icy moons. Results from the Mars Science Laboratory (MSL) team document formerly habitable fluvial and lacustrine environments. Lacustrine environments, in particular, are favorable for preserving biosignatures, and continued investigations by MSL will provide a deeper understanding of the duration of habitable

  16. Microbiological evidence for Fe(III) reduction on early Earth

    Science.gov (United States)

    Vargas, Madeline; Kashefi, Kazem; Blunt-Harris, Elizabeth L.; Lovley, Derek R.

    1998-09-01

    It is generally considered that sulphur reduction was one of the earliest forms of microbial respiration, because the known microorganisms that are most closely related to the last common ancestor of modern life are primarily anaerobic, sulphur-reducing hyperthermophiles. However, geochemical evidence indicates that Fe(III) is more likely than sulphur to have been the first external electron acceptor of global significance in microbial metabolism. Here we show that Archaea and Bacteria that are most closely related to the last common ancestor can reduce Fe(III) to Fe(II) and conserve energy to support growth from this respiration. Surprisingly, even Thermotoga maritima, previously considered to have only a fermentative metabolism, could grow as a respiratory organism when Fe(III) was provided as an electron acceptor. These results provide microbiological evidence that Fe(III) reduction could have been an important process on early Earth and suggest that microorganisms might contribute to Fe(III) reduction in modern hot biospheres. Furthermore, our discovery that hyperthermophiles that had previously been thought to require sulphur for cultivation can instead be grown without the production of toxic and corrosive sulphide, should aid biochemical investigations of these poorly understood organisms.

  17. Long time-scale fluctuations in the evolution of the Earth

    International Nuclear Information System (INIS)

    McCrea, W.H.

    1981-01-01

    Current knowledge about certain terrestrial phenomena is reviewed: (a) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment and (b) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions etc. are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. Fluctuations of glaciation within an ice-epoch may result from changes of insolation accompanying fluctuations of the Earth's motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun's motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. Impacts of planetesimals may be more important than hitherto recognized. Although the intensity of solar 'activity' is variable, terrestrial effects provide no confirmation that the Sun is a 'variable star'. As for the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed. (U.K.)

  18. Long time-scale fluctuations in the evolution of the Earth

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, W H [Sussex Univ., Brighton (UK). Astronomy Centre

    1981-02-18

    Current knowledge about certain terrestrial phenomena is reviewed: (a) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment and (b) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions etc. are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. Fluctuations of glaciation within an ice-epoch may result from changes of insolation accompanying fluctuations of the Earth's motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun's motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. Impacts of planetesimals may be more important than hitherto recognized. Although the intensity of solar 'activity' is variable, terrestrial effects provide no confirmation that the Sun is a 'variable star'. As for the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed.

  19. 182Hf, an extinct radionuclide of the early solar system and a possibly live supernova remnant on Earth

    International Nuclear Information System (INIS)

    Vockenhuber, C.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P.; Winkler, S.; Ahmad, I.; Bichler, M.

    2002-01-01

    Full text: The neutron-rich isotope 182 Hf has a half-life of 9 ± 2 million years. It can be used to study the early development of the Earth and the Moon through isotopic anomalies of its stable decay product 182 W. The system 182 Hf - 182 W forms a geochronometer, which offers an excellent way to determine the time-scale for the early Solar System's accretion and the core formation of the planets. Many applications in the last few years yielded impressive results, e.g. concerning the origin of the Moon. However, the half-life of 182 Hf was measured 40 years ago, and a reduction of the large uncertainty would be very desirable. We are engaged in a re-measurement of the half-life, and the current status of this effort will be reported. 182 Hf may also complement a few other radionuclides in the million-year half-life range to trace relatively recent stellar events with high neutron fluxes in the vicinity of the Earth. This may be accomplished by finding measurable traces of live 182 Hf in suitable terrestrial archives. Since 182 Hf has no significant natural sources on earth, live 182 Hf is an ideal indicator of a recent, nearby supernova or other explosive stellar events. The AMS detection method of 182 Hf with the upgraded VERA facility, and first results of this new AMS nuclide will be presented. Refs. 2 (author)

  20. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows

    Science.gov (United States)

    Som, Sanjoy M.

    2010-11-01

    The discovery of a habitable Earth-like planet beyond our solar-system will be remembered as one of the major breakthroughs of 21st century science, and of the same magnitude as Copernicus' heliocentric model dating from the mid 16th century. The real astrobiological breakthrough will be the added results from atmospheric remote sensing of such planets to determine habitability. Atmospheres, in both concentration and composition are suggestive of processes occurring at the planetary surface and upper crust. Unfortunately, only the modern Earth's atmosphere is known to be habitable. I investigate the density and pressure of our planet's early atmosphere before the rise of oxygen 2.5 billion years ago, because our planet was very much alive microbially. Such knowledge gives us another example of a habitable atmosphere. I also investigates the atmosphere of early Mars, as geomorphic signatures on its surface are suggestive of a past where liquid water may have present in a warmer climate, conditions suitable for the emergence of life, compared with today's 6 mbar CO2-dominated atmosphere. Using tools of fluvial geomorphology, I find that the largest river-valleys on Mars do not record a signature of a sustained hydrological cycle, in which precipitation onto a drainage basin induces many cycles of water flow, substrate incision, water ponding, and return to the atmosphere via evaporation. Rather, I conclude that while episodes of flow did occur in perhaps warmer environments, those periods were short-lived and overprinted onto a dominantly cold and dry planet. For Earth, I develop a new method of investigating atmospheric density and pressure using the size of raindrop imprints, and find that raindrop imprints preserved in the 2.7 billion year old Ventersdorp Supergroup of South Africa are consistent with precipitation falling in an atmosphere of near-surface density 0.1 kg/m3, compared to a modern value of 1.2 kg/m3, further suggesting a nitrogen level of at most

  1. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, R.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P is less than 4 GPa, Fe3+/TotFe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3+/TotFe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after, but both resulted in a finer grained polyphase texture. Experiments are currently underway to test different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and this technique will be

  2. Novel scenarios of early animal evolution--is it time to rewrite textbooks?

    Science.gov (United States)

    Dohrmann, Martin; Wörheide, Gert

    2013-09-01

    Understanding how important phenotypic, developmental, and genomic features of animals originated and evolved is essential for many fields of biological research, but such understanding depends on robust hypotheses about the phylogenetic interrelationships of the higher taxa to which the studied species belong. Molecular approaches to phylogenetics have proven able to revolutionize our knowledge of organismal evolution. However, with respect to the deepest splits in the metazoan Tree of Life-the relationships between Bilateria and the four non-bilaterian phyla (Porifera, Placozoa, Ctenophora, and Cnidaria)-no consensus has been reached yet, since a number of different, often contradictory, hypotheses with sometimes spectacular implications have been proposed in recent years. Here, we review the recent literature on the topic and contrast it with more classical perceptions based on analyses of morphological characters. We conclude that the time is not yet ripe to rewrite zoological textbooks and advocate a conservative approach when it comes to developing scenarios of the early evolution of animals.

  3. Acceleration Processes in the Earth’s Magnetosphere.

    Science.gov (United States)

    1985-05-17

    Hada, T. and T. Terasawa, Nonlinear evolution of low frequency waves in the foreshock region of earth’s bow shock, American Geophysical Union...low-frequency waves in the earth’s foreshock , American Geophysical Union, San Francisco, December 1984. 14) Ogino, T., R.J. Walker and M. Ashour

  4. Acetylene as fast food: Implications for development of life on anoxic primordial earth and in the outer solar system

    Science.gov (United States)

    Oremland, R.S.; Voytek, M.A.

    2008-01-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem. ?? Mary Ann Liebert, Inc.

  5. Acetylene as fast food: implications for development of life on anoxic primordial Earth and in the outer solar system.

    Science.gov (United States)

    Oremland, Ronald S; Voytek, Mary A

    2008-02-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered approximately 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem.

  6. Thermochemical structure of the Earth's mantle and continental crust

    DEFF Research Database (Denmark)

    Guerri, Mattia

    A detailed knowledge of the Earth's thermal structure and chemical composition is fundamental in order to understand the processes driving the planet ormation and evolution. The inaccessibility of most of the Earth's interior makes the determination of its thermo-chemical conditions a challenging...

  7. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth.

    Science.gov (United States)

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-10-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.

  8. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds.

    Science.gov (United States)

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-03-10

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.

  9. Constrained pattern of viral evolution in acute and early HCV infection limits viral plasticity.

    Directory of Open Access Journals (Sweden)

    Katja Pfafferott

    2011-02-01

    Full Text Available Cellular immune responses during acute Hepatitis C virus (HCV and HIV infection are a known correlate of infection outcome. Viral adaptation to these responses via mutation(s within CD8+ T-cell epitopes allows these viruses to subvert host immune control. This study examined HCV evolution in 21 HCV genotype 1-infected subjects to characterise the level of viral adaptation during acute and early HCV infection. Of the total mutations observed 25% were within described CD8+ T-cell epitopes or at viral adaptation sites. Most mutations were maintained into the chronic phase of HCV infection (75%. The lack of reversion of adaptations and high proportion of silent substitutions suggests that HCV has structural and functional limitations that constrain evolution. These results were compared to the pattern of viral evolution observed in 98 subjects during a similar phase in HIV infection from a previous study. In contrast to HCV, evolution during acute HIV infection is marked by high levels of amino acid change relative to silent substitutions, including a higher proportion of adaptations, likely reflecting strong and continued CD8+ T-cell pressure combined with greater plasticity of the virus. Understanding viral escape dynamics for these two viruses is important for effective T cell vaccine design.

  10. Evolution of an Early Illness Warning System to Monitor Frail Elders in Independent Living

    Directory of Open Access Journals (Sweden)

    Gregory L. Alexander

    2011-01-01

    Full Text Available This paper describes the evolution of an early illness warning system used by an interdisciplinary team composed of clinicians and engineers in an independent living facility. The early illness warning system consists of algorithms which analyze resident activity patterns obtained from sensors embedded in residents' apartments. The engineers designed an automated reasoning system to generate clinically relevant alerts which are sent to clinicians when significant changes occur in the sensor data, for example declining activity levels. During January 2010 through July 2010, clinicians and engineers conducted weekly iterative review cycles of the early illness warning system to discuss concerns about the functionality of the warning system, to recommend solutions for the concerns, and to evaluate the implementation of the solutions. A total of 45 concerns were reviewed during this period. Iterative reviews resulted in greater efficiencies and satisfaction for clinician users who were monitoring elder activity patterns.

  11. A BRIEF NOTE ON MINERAL EVOLUTION AND BIOCHEMISTRY

    Directory of Open Access Journals (Sweden)

    José María Amigó

    2014-12-01

    Full Text Available The natural inorganic materials (minerals and rocks exceed the limits of the Earth.Therefore, the geology, which is the study of the Earth, represents only a small part of thenatural inorganic world. Certain questions about the genesis of the universe are related tothe evolution of our solar system and the evolution of life on our planet. In this paper, recentcontributions from experimental physical natural-sciences to the formation of the universe(about 15 billion BP coupled with the occurrence of minerals (4 million years BP and thebiochemical appearance of life (not more than 3 million years on the Earth are discussed.When Earth was formed, none of the more than 4,400 minerals we know today were existed.Cosmologists estimate that nearly ten billion years after the Big Bang the first elementsproduced by the melting process. The geological history of mineral evolution on the Earthis an interesting tool to study terrestrial and/or extraterrestrial mineralogy in regard toastronomy, biology, chemistry and other experimental natural sciences

  12. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology

    Science.gov (United States)

    Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng

    2018-03-01

    The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a

  13. In search of future earths: assessing the possibility of finding Earth analogues in the later stages of their habitable lifetimes.

    Science.gov (United States)

    O'Malley-James, Jack T; Greaves, Jane S; Raven, John A; Cockell, Charles S

    2015-05-01

    Earth will become uninhabitable within 2-3 Gyr as a result of the increasing luminosity of the Sun changing the boundaries of the habitable zone (HZ). Predictions about the future of habitable conditions on Earth include declining species diversity and habitat extent, ocean loss, and changes to geochemical cycles. Testing these predictions is difficult, but the discovery of a planet that is an analogue to future Earth could provide the means to test them. This planet would need to have an Earth-like biosphere history and to be approaching the inner edge of the HZ at present. Here, we assess the possibility of finding such a planet and discuss the benefits of analyzing older Earths. Finding an old-Earth analogue in nearby star systems would be ideal, because this would allow for atmospheric characterization. Hence, as an illustrative example, G stars within 10 pc of the Sun are assessed as potential old-Earth-analog hosts. Six of these represent good potential hosts. For each system, a hypothetical Earth analogue is placed at locations within the continuously habitable zone (CHZ) that would allow enough time for Earth-like biosphere development. Surface temperature evolution over the host star's main sequence lifetime (assessed by using a simple climate model) is used to determine whether the planet would be in the right stage of its late-habitable lifetime to exhibit detectable biosignatures. The best candidate, in terms of the chances of planet formation in the CHZ and of biosignature detection, is 61 Virginis. However, planet formation studies suggest that only a small fraction (0.36%) of G stars in the solar neighborhood could host an old-Earth analogue. If the development of Earth-like biospheres is rare, requiring a sequence of low-probability events to occur, biosphere evolution models suggest they are rarer still, with only thousands being present in the Galaxy as a whole.

  14. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda.

    Science.gov (United States)

    Yang, Jie; Ortega-Hernández, Javier; Butterfield, Nicholas J; Liu, Yu; Boyan, George S; Hou, Jin-Bo; Lan, Tian; Zhang, Xi-Guang

    2016-03-15

    Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda.

  15. The Earth System Model

    Science.gov (United States)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  16. Spectral evolution of galaxies: current views

    International Nuclear Information System (INIS)

    Bruzual, A.G.

    1985-01-01

    A summary of current views on the interpretation of the various evolutionary tests aimed at detecting spectral evolution in galaxies is presented. It is concluded that the evolution taking place in known galaxy samples is a slow process (perhaps consistent with no evolution at all), and that the early phases of rapid spectral evolution in early-type galaxies have not yet been detected. (author)

  17. Radiation and the evolution of life

    International Nuclear Information System (INIS)

    Gentner, N.E.; Myers, D.K.

    1980-08-01

    A general review is presented of the nature of various forms of radiation; radiant energy which reaches the earth from the sun; the role of this energy in prebiotic chemical evolution; current ideas on the origin of life; the dependence of living organisms upon radiant energy; the mechanisms responsible for the evolution of life, from the viewpoint of modern genetics and molecular biology; the biological consequences of alterations in the genetic material; and the role of ionizing radiation in production of genetic changes and in evolution. In the final analysis, the biosynthetic processes of life are driven by radiant energy from the sun. This overview is necessarily focussed on the infrared, visible and ultraviolet regions of the solar output spectrum since these particular radiations are responsible for most of the radiant energy that reaches the earth's surface. Ionizing radiation appears to have played at best a minor role in biological evolution. Small increments in the amounts of ionizing radiation are therefore unlikely to have a significant effect on life or its evolution. (auth)

  18. Noble gases and the early history of the Earth: Inappropriate paradigms and assumptions inhibit research and communication

    Science.gov (United States)

    Huss, G. R.; Alexander, E. C., Jr.

    1985-01-01

    The development of models as tracers of nobel gases through the Earth's evolution is discussed. A new set of paradigms embodying present knowledge was developed. Several important areas for future research are: (1) measurement of the elemental and isotopic compositions of the five noble gases in a large number of terrestrial materials, thus better defining the composition and distribution of terrestrial noble gases; (2) determinations of relative diffusive behavior, chemical behavior, and the distribution between solid and melt of noble gases under mantle conditions are urgently needed; (3) disequilibrium behavior in the nebula needs investigation, and the behavior of plasmas and possible cryotrapping on cold nebular solids are considered.

  19. Transformation and diversification in early mammal evolution.

    Science.gov (United States)

    Luo, Zhe-Xi

    2007-12-13

    Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.

  20. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds

    OpenAIRE

    Motani, R; Chen, XH; Jiang, DY; Cheng, L; Tintori, A; Rieppel, O

    2015-01-01

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus ...

  1. Conditions on Early Mars Might Have Fostered Rapid and Early Development of Life

    Science.gov (United States)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Wentworth, Susan J.

    2007-01-01

    The exploration of Mars during the past decades has begun to unveil the history of the planet. The combinations of remote sensing, in situ geochemical compositional measurements and photographic observations from both above and on the surface have shown Mars to have a dynamic and active geologic evolution. Mars geologic evolution clearly had conditions that were suitable for supporting life. For a planet to be able to be habitable, it must have water, carbon sources, energy sources and a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water-carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001 well-dated at approx.3.9 Gy., (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, early active volcanism continuing throughout Martian history, and, and continuing impact processes, (iii) Carbon and water from possibly extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) some crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust. The question arises: "Why would life not evolve from these favorable conditions on early Mars in its first 600 My?" During this period, it seems likely that environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would all favor the formation of early life. Even if life developed elsewhere (on Earth, Venus, or on other solar systems) and was transported to Mars, the surface conditions were likely very hospitable for that introduced life to multiply and evolve.

  2. Revalidation of the genus Chiloguembelitria Hofker: Implications for the evolution of early Danian planktonic foraminifera

    Science.gov (United States)

    Arenillas, Ignacio; Arz, José A.; Gilabert, Vicente

    2017-10-01

    Guembelitria is the only planktonic foraminiferal genus whose survival from the mass extinction event of the Cretaceous/Paleogene (K/Pg) boundary has been clearly proven. The evolution of Guembelitria after the K/Pg boundary led to the appearance of two guembelitriid lineages in the early Danian: one biserial, represented by Woodringina and culminating in Chiloguembelina, and the other trochospiral, represented by Trochoguembelitria and culminating in Globoconusa. We have re-examined the genus Chiloguembelitria, another guembelitriid descended from Guembelitria and whose taxonomic validity had been questioned, it being considered a junior synonym of the latter. Nevertheless, Chiloguembelitria differs from Guembelitria mainly in the wall texture (pustulate to rugose vs. pore-mounded) and the position of the aperture (umbilical-extraumbilical to extraumbilical vs. umbilical). Chiloguembelitria shares its wall texture with Trochoguembelitria and some of the earliest specimens of Woodringina, suggesting that it played an important role in the evolution of early Danian guembelitriids, as it seems to be the most immediate ancestor of both trochospiral and biserial lineages. Morphological and morphostatistical analyses of Chiloguembelitria discriminate at least five species: Chg. danica, Chg. irregularis, and three new species: Chg. hofkeri, Chg. trilobata and Chg. biseriata.

  3. Volatile elements - water, carbon, nitrogen, noble gases - on Earth

    Science.gov (United States)

    Marty, B.

    2017-12-01

    Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the

  4. Lunar Science from and for Planet Earth

    Science.gov (United States)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  5. Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation

    Science.gov (United States)

    Choi, Hoseung; Yi, Sukyoung K.; Dubois, Yohan; Kimm, Taysun; Devriendt, Julien. E. G.; Pichon, Christophe

    2018-04-01

    Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z ≃ 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than {10}10 {M}ȯ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, f SR, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of f SR, a weak trend is seen in the mean value of the spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of the central ETGs of halos with {M}vir}> {10}12.5 {M}ȯ , but only 22% of satellite and field ETGs. We find that non-merger-induced tidal perturbations better correlate with the galaxy spin down in satellite ETGs than in mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Abhijit Chakraborty. Articles written in Journal of Earth System Science. Volume 114 Issue 3 June 2005 pp 275-286. Significance of transition between Talchir Formation and Karharbari Formation in Lower Gondwana basin evolution — A study in West Bokaro Coal basin, ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Bibhuti Gogoi. Articles written in Journal of Earth System Science. Volume 123 Issue 5 July 2014 pp 959-987. Geochemical constraints on the evolution of mafic and felsic rocks in the Bathani volcanic and volcano-sedimentary sequence of Chotanagpur Granite Gneiss ...

  8. Enhancement of CO Evolution by Modification of Ga2O3 with Rare-Earth Elements for the Photocatalytic Conversion of CO2 by H2O.

    Science.gov (United States)

    Tatsumi, Hiroyuki; Teramura, Kentaro; Huang, Zeai; Wang, Zheng; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro

    2017-12-12

    Modification of the surface of Ga 2 O 3 with rare-earth elements enhanced the evolution of CO as a reduction product in the photocatalytic conversion of CO 2 using H 2 O as an electron donor under UV irradiation in aqueous NaHCO 3 as a pH buffer, with the rare-earth species functioning as a CO 2 capture and storage material. Isotope experiments using 13 CO 2 as a substrate clearly revealed that CO was generated from the introduced gaseous CO 2 . In the presence of the NaHCO 3 additive, the rare-earth (RE) species on the Ga 2 O 3 surface are transformed into carbonate hydrates (RE 2 (CO 3 ) 3 ·nH 2 O) and/or hydroxycarbonates (RE 2 (OH) 2(3-x) (CO 3 ) x ) which are decomposed upon photoirradiation. Consequently, Ag-loaded Yb-modified Ga 2 O 3 exhibits much higher activity (209 μmol h -1 of CO) than the pristine Ag-loaded Ga 2 O 3 . The further modification of the surface of the Yb-modified Ga 2 O 3 with Zn afforded a selectivity toward CO evolution of 80%. Thus, we successfully achieved an efficient Ag-loaded Yb- and Zn-modified Ga 2 O 3 photocatalyst with high activity and controllable selectivity, suitable for use in artificial photosynthesis.

  9. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    International Nuclear Information System (INIS)

    Ryan, R. E. Jr.; McCarthy, P. J.; Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Bond, H. E.; Bushouse, H.; O'Connell, R. W.; Balick, B.; Calzetti, D.; Crockett, R. M.; Disney, M.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.

    2012-01-01

    We present the size evolution of passively evolving galaxies at z ∼ 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z ∼> 1.5. We identify 30 galaxies in ∼40 arcmin 2 to H obs ∼ * ∼ 10 11 M ☉ ) undergo the strongest evolution from z ∼ 2 to the present. Parameterizing the size evolution as (1 + z) –α , we find a tentative scaling of α ≈ (– 0.6 ± 0.7) + (0.9 ± 0.4)log (M * /10 9 M ☉ ), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M * -R e relation for red galaxies.

  10. RADIAL EVOLUTION OF SOLAR WIND TURBULENCE DURING EARTH AND ULYSSES ALIGNMENT OF 2007 AUGUST

    International Nuclear Information System (INIS)

    D'Amicis, R.; Bruno, R.; Pallocchia, G.; Bavassano, B.; Telloni, D.; Carbone, V.; Balogh, A.

    2010-01-01

    At the end of 2007 August, during the minimum of solar cycle 23, a lineup of Earth and Ulysses occurred, giving the opportunity to analyze, for the first time, the same plasma sample at different observation points, namely at 1 and 1.4 AU. In particular, it allowed us to study the radial evolution of solar wind turbulence typical of fast wind streams as proposed in a Coordinated Investigation Programme for the International Heliophysical Year. This paper describes both the macrostructure and the fluctuations at small scales of this event. We find that soon after detecting the same fast stream, the Advanced Composition Explorer (ACE) observed a change of magnetic polarity being the interplanetary current sheet located between the orbits of the two spacecraft. Moreover, we observe that the compression region formed in front of the fast stream detected at ACE's location evolves in a fast forward shock at Ulysses' orbit. On the other hand, small-scale analysis shows that turbulence is evolving. The presence of a shift of the frequency break separating the injection range from the inertial range toward lower frequencies while distance increases is a clear indication that nonlinear interactions are at work. Moreover, we observe that intermittency, as measured by the flatness factor, increases with distance. This study confirms previous analyses performed using Helios observations of the same fast wind streams at different heliocentric distances, allowing us to relax about the hypothesis of the stationarity of the source regions adopted in previous studies. Consequently, any difference noticed in the solar wind parameters would be ascribed to radial (time) evolution.

  11. THE PRECAMBRIAN HISTORY OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM AND EARTH. PART 1

    Directory of Open Access Journals (Sweden)

    M. I. Kuz’min

    2014-01-01

    Full Text Available The paper provides a review of early stages of development the Solar System and the geological history of Earth with reference to the latest data on the origin of the Solar System and the formation of the first continental rocks and results of studies of zircon, the oldest mineral so far dated on Earth. The formation of the Solar System from a gas-and-dust nebula is estimated to have begun 4.568 billion years ago. Ice was formed 1.5 million years later; it concentrated at the periphery of the system and served as the material for the largest planets, Jupiter and Saturn. In the central areas of the system, asteroids with diameters of about 10 km were formed. Their small bodies were composed of the basic material of the solar nebula, as evidenced by carbonaceous chondrite, CI, which composition is similar to the composition of the Sun, with the exception of hydrogen, helium, and volatile components that served as the main material for peripheral planets of the Solar System. Due to collision and partial merger of such small bodies, the formation of embryos of the terrestrial planets was initiated. Gravity made such embryos to cluster into larger bodies. After 7 million years, large asteroids and planet Mars were formed. It took 11 million years to form Planet Earth with a mass of 63 %, and 30 million years to form 93 % of its mass. Almost from the beginning of the formation of the Earth, short-lived radionuclides, 26Al and 60Fe, caused warming up of the small planetary bodies which led to the formation of their cores. During the initial stages, small magma reservoirs were formed, and molten iron particles gathered in the centres of the planetary bodies. As suggested by the ratio of 182W/184W, the major part of the core was formed within 20 million years, while its full mass accumulated completely within the next 50 million years. In 30–40 million years after the creation of the Solar System, the Earth collided with a cosmic body which mass was

  12. Why did life develop on the surface of the Earth in the Cambrian?

    Directory of Open Access Journals (Sweden)

    Carlo Doglioni

    2016-11-01

    Full Text Available Life was limited for most of Earth's history, remaining at a primitive stage and mostly marine until about 0.55 Ga. In the Paleozoic, life eventually exploded and colonized the continental realm. Why had there been such a long period of delayed evolution of life? Early life was dominated by Archaea and Bacteria, which can survive ionizing radiation better than other organisms. The magnetic field preserves the atmosphere, which is the main shield of UV radiation. We explore the hypothesis that the Cambrian explosion of life could have been enabled by the increase of the magnetic field dipole intensity due to the solidification of the inner core, caused by the cooling of the Earth, and the concomitant decrease with time of the high-energy solar flux since the birth of the solar system. Therefore, the two phenomena could be responsible for the growth and thickening of the atmosphere and the development of land surface life.

  13. EVOLUTIONARY TRACKS OF THE CLIMATE OF EARTH-LIKE PLANETS AROUND DIFFERENT MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Faculty of Science Bldg. 1 #711, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-07-10

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO{sub 2} in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending on the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO{sub 2} degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.

  14. EVOLUTIONARY TRACKS OF THE CLIMATE OF EARTH-LIKE PLANETS AROUND DIFFERENT MASS STARS

    International Nuclear Information System (INIS)

    Kadoya, S.; Tajika, E.

    2016-01-01

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO_2 in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending on the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO_2 degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B S Marh. Articles written in Journal of Earth System Science. Volume 125 Issue 3 April 2016 pp 539-558. Post-glacial landform evolution in the middle Satluj River valley, India: Implications towards understanding the climate tectonic interactions · Shubhra Sharma S K ...

  16. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    Science.gov (United States)

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  17. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    International Nuclear Information System (INIS)

    Shkolnik, Evgenya L.; Barman, Travis S.

    2014-01-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation and evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t –1 . Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.

  18. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: barman@lpl.arizona.edu [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2014-10-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation and evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t {sup –1}. Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.

  19. The origin of the moon and the early history of the earth - a chemical model. Part 2: The earth

    International Nuclear Information System (INIS)

    O'Neill, H.St.C.

    1991-01-01

    The geochemical implications for the earth of a giant impact model for the origin of the earth-moon system are discussed, using a mass balance between three components: the proto-earth, the Impactor, and a late veneer. It is argued that the proto-earth accretes from material resembling a high temperature condensate from the solar nebula. Core formation takes place under very reducing conditions, resulting in the mantle of the proto-earth being completely stripped of all elements more siderophile than Fe, and partly depleted in the barely siderophile elements V, Cr, and perhaps Si. The Impactor then collides with the proto-earth, causing vaporisation of both the Impactor and a substantial portion of the earth's mantle. Most of this material recondenses to the earth, but some forms the moon. The Impactor adds most of the complement of the siderophile elements of the present mantle in an oxidized form. The oxidation state of the mantle is set near to its present, oxidized level. Finally, the addition of a late veneer, of composition similar to that of the H-group ordinary chondrites, accounts for the complement of the highly siderophile elements of the present mantle. The model accounts at least semi-quantitatively for the siderophile element abundances of the present mantle. Implications for the composition of the earth's core are discussed; the model predicts that neither S, O, nor Si should be present in sufficient quantities to provide the required light element in the core, whose identity, therefore, remains enigmatic

  20. A morphogram for silica-witherite biomorphs and its application to microfossil identification in the early earth rock record.

    Science.gov (United States)

    Rouillard, J; García-Ruiz, J-M; Gong, J; van Zuilen, M A

    2018-05-01

    Archean hydrothermal environments formed a likely site for the origin and early evolution of life. These are also the settings, however, were complex abiologic structures can form. Low-temperature serpentinization of ultramafic crust can generate alkaline, silica-saturated fluids in which carbonate-silica crystalline aggregates with life-like morphologies can self-assemble. These "biomorphs" could have adsorbed hydrocarbons from Fischer-Tropsch type synthesis processes, leading to metamorphosed structures that resemble carbonaceous microfossils. Although this abiogenic process has been extensively cited in the literature and has generated important controversy, so far only one specific biomorph type with a filamentous shape has been discussed for the interpretation of Archean microfossils. It is therefore critical to precisely determine the full distribution in morphology and size of these biomorphs, and to study the range of plausible geochemical conditions under which these microstructures can form. Here, a set of witherite-silica biomorph synthesis experiments in silica-saturated solutions is presented, for a range of pH values (from 9 to 11.5) and barium ion concentrations (from 0.6 to 40 mmol/L BaCl 2 ). Under these varying conditions, a wide range of life-like structures is found, from fractal dendrites to complex shapes with continuous curvature. The size, spatial concentration, and morphology of the biomorphs are strongly controlled by environmental parameters, among which pH is the most important. This potentially limits the diversity of environments in which the growth of biomorphs could have occurred on Early Earth. Given the variety of the observed biomorph morphologies, our results show that the morphology of an individual microstructure is a poor criterion for biogenicity. However, biomorphs may be distinguished from actual populations of cellular microfossils by their wide, unimodal size distribution. Biomorphs grown by diffusion in silica gel can

  1. Early anaerobic metabolisms

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity......Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were...... of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ferid Dhahri. Articles written in Journal of Earth System Science. Volume 126 Issue 7 October 2017 pp 104. The role of E–W basement faults in the Mesozoic geodynamic evolution of the Gafsa and Chotts basins, south-central Tunisia · Dorra Tanfous Amri Ferid Dhahri ...

  3. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    Science.gov (United States)

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.

  4. Toward the Darwinian transition: Switching between distributed and speciated states in a simple model of early life.

    Science.gov (United States)

    Arnoldt, Hinrich; Strogatz, Steven H; Timme, Marc

    2015-01-01

    It has been hypothesized that in the era just before the last universal common ancestor emerged, life on earth was fundamentally collective. Ancient life forms shared their genetic material freely through massive horizontal gene transfer (HGT). At a certain point, however, life made a transition to the modern era of individuality and vertical descent. Here we present a minimal model for stochastic processes potentially contributing to this hypothesized "Darwinian transition." The model suggests that HGT-dominated dynamics may have been intermittently interrupted by selection-driven processes during which genotypes became fitter and decreased their inclination toward HGT. Stochastic switching in the population dynamics with three-point (hypernetwork) interactions may have destabilized the HGT-dominated collective state and essentially contributed to the emergence of vertical descent and the first well-defined species in early evolution. A systematic nonlinear analysis of the stochastic model dynamics covering key features of evolutionary processes (such as selection, mutation, drift and HGT) supports this view. Our findings thus suggest a viable direction out of early collective evolution, potentially enabling the start of individuality and vertical Darwinian evolution.

  5. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  6. Looking for the most ``primitive'' organism(s) on Earth today: the state of the art

    Science.gov (United States)

    Forterre, Patrick

    1995-02-01

    Molecular phylogenetic studies have revealed a tripartite division of the living world into two procaryotic groups, Bacteria and Archaea, and one eucaryotic group, Eucarya. Which group is the most "primitive"? Which groups are sister? The answer to these questions would help to delineate the characters of the last common ancestor to all living beings, as a first step to reconstruct the earliest periods of biological evolution on Earth. The current "Procaryotic dogma" claims that procaryotes are primitive. Since the ancestor of Archaea was most probably a hyperthermophile, and since bacteria too might have originated from hyperthermophiles, the procaryotic dogma has been recently connected to the hot origin of life hypothesis. However, the notion that present-day hyperthermophiles are primitive has been challenged by recent findings, in these unique microorganisms, of very elaborate adaptative devices for life at high temperature. Accordingly, I discuss here alternative hypotheses that challenge the procaryotic dogma, such as the idea of a universal ancestor with molecular features in between those of eucaryotes and procaryotes, or the origin of procaryotes via thermophilic adaptation. Clearly, major evolutionary questions about early cellular evolution on Earth remain to be settled before we can speculate with confidence about which kinds of life might have appeared on other planets.

  7. Syndication of the earth system: the future of geoscience?

    International Nuclear Information System (INIS)

    Elliott, Scott M.; Hanson, Howard P.

    2003-01-01

    Current global change policy debate reverberates around the polarized extremes of civilization-level cooperation through treaties as a mitigation tactic, on the one hand, and a wait-and-see approach that may lead to a climatic tragedy of the commons, on the other. Meanwhile, energy technology research is rapidly generating a perception that it will be possible to tune the earth system via carbon sequestration and other types of biogeochemical engineering. The consequences of this potential for planetary management, based on provincial self-interest, include the transition of the earth sciences into a security industry involving proprietary scientific knowledge bases of biogeochemical cycling and the evolution of a climate-design brokerage dominated by military/industrial interests. As the dominant political powers perceive the potential for planetary engineering and consider implementation, the global economy will adjust to exploit new opportunities, perceptions of which will be determined by the quality of system simulations. The growth of a viable international climate-design community will profoundly influence the trajectory of the earth system by providing either the illusion or the reality of predictability. Although this process will be chaotic at first, the probability of stabilization will ultimately be enhanced because the vast resources of the military/industrial sector will become involved. These concepts are disturbingly familiar in that they acknowledge the pervasion of competition and conflict in human technological affairs. However, they are consistent with approaches used in thermodynamics, ecological energetics, behavioral evolution, economics, and interdisciplinary climate science to describe collectively the evolution of the earth system. This paper argues that the perception that the climate can be regulated inexpensively will create an economic driving force for international cartel-style management of the total earth system. That is, the earth

  8. The Mission Accessible Near-Earth Object Survey (MANOS) -- Science Highlights

    Science.gov (United States)

    Moskovitz, Nicholas; Thirouin, Audrey; Binzel, Richard; Burt, Brian; Christensen, Eric; DeMeo, Francesca; Endicott, Thomas; Hinkle, Mary; Mommert, Michael; Person, Michael; Polishook, David; Siu, Hosea; Thomas, Cristina; Trilling, David; Willman, Mark

    2015-08-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of other parts of the Solar System they provide insight to more distant populations. Their small sizes and complex dynamical histories make them ideal laboratories for studying ongoing processes of planetary evolution. Knowledge of their physical properties is essential to impact hazard assessment. And the proximity of NEOs to Earth make them favorable targets for a variety of planetary mission scenarios. However, in spite of their importance, only the largest NEOs are well studied and a representative sample of physical properties for sub-km NEOs does not exist.MANOS is a multi-year physical characterization survey, originally awarded survey status by NOAO. MANOS is targeting several hundred mission-accessible, sub-km NEOs across visible and near-infrared wavelengths to provide a comprehensive catalog of physical properties (astrometry, light curves, spectra). Accessing these targets is enabled through classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in the northern and southern hemispheres. Our observing strategy is designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits.Early progress from MANOS includes: (1) the de-biased taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied NEOs, (3) detection of the fastest known rotation period of any minor planet in the Solar System, (4) an investigation of the influence of planetary encounters on the rotational properties of NEOs, (5) dynamical models for the evolution of the overall NEO population over the past 0.5 Myr, and (6) development of a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data products while

  9. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    Science.gov (United States)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  10. The Formation and Early Evolution of Embedded Massive Star Clusters

    Science.gov (United States)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  11. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    Science.gov (United States)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  12. Early Hydrodynamic Escape Limits Rocky Planets to Less Than or Equal to 1.6 Earth Radii

    Science.gov (United States)

    Lehmer, O. R.; Catling, D. C.

    2017-01-01

    In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by

  13. GEODYNAMICS AND RATE OF VOLCANISM ON MASSIVE EARTH-LIKE PLANETS

    International Nuclear Information System (INIS)

    Kite, E. S.; Manga, M.; Gaidos, E.

    2009-01-01

    We provide estimates of volcanism versus time for planets with Earth-like composition and masses 0.25-25 M + , as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompression mantle melting on planet mass. We show that (1) volcanism is likely to proceed on massive planets with plate tectonics over the main-sequence lifetime of the parent star; (2) crustal thickness (and melting rate normalized to planet mass) is weakly dependent on planet mass; (3) stagnant lid planets live fast (they have higher rates of melting than their plate tectonic counterparts early in their thermal evolution), but die young (melting shuts down after a few Gyr); (4) plate tectonics may not operate on high-mass planets because of the production of buoyant crust which is difficult to subduct; and (5) melting is necessary but insufficient for efficient volcanic degassing-volatiles partition into the earliest, deepest melts, which may be denser than the residue and sink to the base of the mantle on young, massive planets. Magma must also crystallize at or near the surface, and the pressure of overlying volatiles must be fairly low, if volatiles are to reach the surface. If volcanism is detected in the 10 Gyr-old τ Ceti system, and tidal forcing can be shown to be weak, this would be evidence for plate tectonics.

  14. Rare-earth metal prices in the USA ca. 1960 to 1994

    Science.gov (United States)

    Hedrick, James B.

    1997-01-01

    Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass. CA, USA, in 1949, was significant because it led to the production of commercial quantities or rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.

  15. WAVE TECTONICS OF THE EARTH

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova

    2010-01-01

    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  16. Effect of ''outer'' sources and dissipative processes on abundance of inert gases in atmospheres of the Earth group planets

    International Nuclear Information System (INIS)

    Pavlov, A.K.

    1981-01-01

    The problem of abundance of inert gases in atmospheres of the Earth group planets is discussed. It is shown that introduction of He, Ne and 36 Ar into the Mars and Mercury atmospheres with interplanetary dust and from other external sources require the presence of special mechanisms of losses for these gases. For the Mars atmosphere dissipation on atmosphere interaction with solar wind during the periods of anomalously low temperatures is a probable mechanisms of Ne and 36 Ar losses. For the Mercury thermal dissipation for He and polar wind for other inert gases are possible. For all the planets of the Earth group dissipation on interaction with solar wind and introduction with interplanetary dust could play an important role at the early stages of evolution of planets [ru

  17. Evolution of matter and energy on a cosmic and planetary scale

    International Nuclear Information System (INIS)

    Taube, M.

    1985-01-01

    This book covers the following topics: matter and energy; the interplay of elementary particles and elementary forces; the universe; how is it observed here and now; its past and possible future; the origin and nuclear evolution of matter; chemical evolution and the evolution of life; the cosmic phenomena; the eternal cycle of matter on the earth; the flow of energy on the earth; the biosphere; the coupling of matter and the flow of free energy; is the future development of mankind on this planet possible, and the distant future of mankind: terrestrial or cosmic

  18. The neodymium stable isotope composition of the silicate Earth and chondrites

    Science.gov (United States)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd

  19. Early Human Evolution in the Western Palaearctic: Ecological Scenarios

    Science.gov (United States)

    Carrión, José S.; Rose, James; Stringer, Chris

    2011-06-01

    This review presents the themes of a special issue dealing with environmental scenarios of human evolution during the Early Pleistocene (2.6-0.78 Ma; MIS 103-MIS 19) and early Middle Pleistocene (0.78-0.47 Ma; MIS 19-base of MIS 12) within the western Palaearctic. This period is one of dramatic changes in the climates and the distribution of Palaearctic biota. These changes have played their role in generating adaptive and phyletic patterns within the human ancestry, involving several species such as Homo habilis, "Homo georgicus", Homo erectus, Homo antecessor and Homo heidelbergensis. In the archaeological record, these species include the Oldowan (Mode 1) and Acheulian (Mode 2) lithic technologies. Taphonomic considerations of palaeoecological research in hominin-bearing sites are provided and evaluated. Syntheses are provided for north Africa, western Asia, the Mediterranean Basin, Britain, and continental Europe. Palaeoenvironmental reconstructions based on multidisciplinary data are given for Ain Boucherit, Ain Hanech and El-Kherba in Algeria, Dmanisi in Georgia, Atapuerca, Cueva Negra, and the Orce Basin in Spain, Monte Poggiolo and Pirro Nord in Italy, Pont-de-Lavaud in France, and Mauer in Germany. The state of the art with the Out of Africa 1 dispersal model is reviewed. A source-sink dynamics model for Palaeolithic Europe is described to explain the morphological disparity of H. heidelbergensis (we will sometimes use the informal name "Heidelbergs") and early Neanderthals. Other aspects debated here are the selective value of habitat mosaics including reconstructions based on mammal and avian databases, and the role of geological instability combined with topographic complexity. This review is completed by addressing the question of whether the appearance of evolutionary trends within hominins is concentrated in regions of highest worldwide biological diversity (biodiversity hotspots). It is concluded that the keys for the activation of evolutionary

  20. World resources and the development of the earth's surface

    International Nuclear Information System (INIS)

    Sasaki, A.; Ishihara, S.; Seki, Y.

    1985-01-01

    This text is an examination of economic (or ore) geology, and engineering geology. Using case studies of Japan and continental North America, this work presents a geological and geochemical summary of ore-forming processes along with discussions of basic principles and approaches to modern engineering geology. Emphasizes the relationship between fossil fuel resources and the evolution of the Earth's crust. Contents - WORLD RESOURCES. The Geochemistry of Metallogenesis. The Geochemistry of Fossil Fuel Deposit. Global Evolution and the Formation of Mineral Deposits. The Development of Continents and Island Arcs and the Formation of Mineral Deposits. DEVELOPMENT OF THE EARTH'S SURFACE. Development of the Earth's Surface and Engineering Geology. Engineering Geology Methods. Features of the Ground and Bedrock in Japan. Engineering Geology - A Case Study. Geology and the Environment - Case Studies. INDEX. Principal World-Wide Metal Deposits (inside front cover). Principal World-Wide Coal, Petroleum and Uranium Deposits (inside back cover)

  1. The Magnetic Field of Planet Earth

    DEFF Research Database (Denmark)

    Hulot, G.; Finlay, Chris; Constable, C. G.

    2010-01-01

    The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks...... yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole....

  2. Impact on the earth, ocean and atmosphere

    International Nuclear Information System (INIS)

    Ahrens, T.J.; O'Keefe, J.D.

    1987-01-01

    Several hundred impact craters produced historically and at times as early as 1.9 x 10/sup 9/ years ago with diameters in the range 10/sup -2/ to 10/sup 2/ km are observed on the surface of the earth. Earth-based and spacecraft observations of the surfaces of all the terrestrial planets and their satellites, as well as many of the icy satellites of the outer planets, indicated that impact cratering was a dominant process on planetary surfaces during the early history of the solar system. Moreover, the recent observation of a circumstellar disk around the nearby star, β-Pictoris, appears to be similar to the authors' own hypothesized protosolar disk. A disk of material around our sun has been hypothesized to have been the source of the solid planetesimals from which the earth and the other planets accreted by infall and capture. Thus it appears that the earth and the other terrestrial planets formed as a result of infall and impact of planetesimals. Although the present planets grew rapidly via accretion to their present size (in --10/sup 7/ years), meteorite impacts continue to occur on the earth and other planets. Until recently meteorite impact has been considered to be a process that was important on the earth and the other planets only early in the history of the solar system. This is no longer true. The Alvarez hypothesis suggests that the extinction of some 90% of all species, including 17 classes of dinosaurs, is associated with the 1 to 150 cm thick layer of noble-element rich dust which is found all over the earth exactly at the Cretaceous-Tertiary boundary. The enrichment of noble elements in this dust is in meteorite-like proportions. This dust is thought to represent the fine impact ejecta from a --10 km diameter asteroid interacting with the solid earth. The Alvarez hypothesis associates the extinction with the physics of a giant impact on the earth

  3. A journey through Earth climates

    International Nuclear Information System (INIS)

    Ramstein, Gilles; Brunet, Michel

    2015-01-01

    The author proposes a history of climates all along Earth's history, describes how cold and warm periods have been alternating during these billions of years. He also tries to highlight lessons learned from this long evolution of climate in order to better understand the current global warming. He discusses whether this disruption is unique in Earth's history, and how it threatens our environment and therefore our survival. The chapters describe how Earth could escape a global glaciation, the thermal regulation by greenhouse effect gases in a world without oxygen, the empowerment of oxygen and the first thermal accident, a new oxygenated and warm world, the second accident or how Earth entered and escaped from periods of total glaciation, the possible stabilisation, the succession of deregulations, crisis and extinctions, the slow way down to the cold, the various paleo-indicators during the Quaternary, the high frequency oscillations of climate during the last million of years, and the uncertain projections

  4. Origin of the Early Sial Crust and U-Pb Isotope-Geochemical Heterogeneity of the Earth's Mantle

    Science.gov (United States)

    Mishkin, M. A.; Nozhkin, A. D.; Vovna, G. M.; Sakhno, V. G.; Veldemar, A. A.

    2018-02-01

    It is shown that presence of the Early Precambrian sial crust in the Indo-Atlantic segment of the Earth and its absence in the Pacific has been caused by geochemical differences in the mantle underlying these segments. These differences were examined on the basis of Nd-Hf and U-Pb isotopes in modern basalts. The U-Pb isotope system is of particular interest, since uranium is a member of a group of heat-generating radioactive elements providing heat for plumes. It is shown that in the Indo-Atlantic segment, a distribution of areas of the modern HIMU type mantle is typical, while it is almost completely absent in the Pacific segment. In the Archean, in the upper HIMU type paleo-mantle areas, plume generation and formation of the primordial basic crust occurred; this was followed by its remelting resulting in the appearance of an early sial crust forming cratons of the Indo-Atlantic segment.

  5. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    Science.gov (United States)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  6. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    Science.gov (United States)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  7. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates.

    Science.gov (United States)

    Sallan, Lauren Cole; Coates, Michael I

    2010-06-01

    The Devonian marks a critical stage in the early evolution of vertebrates: It opens with an unprecedented diversity of fishes and closes with the earliest evidence of limbed tetrapods. However, the latter part of the Devonian has also been characterized as a period of global biotic crisis marked by two large extinction pulses: a "Big Five" mass extinction event at the Frasnian-Famennian stage boundary (374 Ma) and the less well-documented Hangenberg event some 15 million years later at the Devonian-Carboniferous boundary (359 Ma). Here, we report the results of a wide-ranging analysis of the impact of these events on early vertebrate evolution, which was obtained from a database of vertebrate occurrences sampling over 1,250 taxa from 66 localities spanning Givetian to Serpukhovian stages (391 to 318 Ma). We show that major vertebrate clades suffered acute and systematic effects centered on the Hangenberg extinction involving long-term losses of over 50% of diversity and the restructuring of vertebrate ecosystems worldwide. Marine and nonmarine faunas were equally affected, precluding the existence of environmental refugia. The subsequent recovery of previously diverse groups (including placoderms, sarcopterygian fish, and acanthodians) was minimal. Tetrapods, actinopterygians, and chondrichthyans, all scarce within the Devonian, undergo large diversification events in the aftermath of the extinction, dominating all subsequent faunas. The Hangenberg event represents a previously unrecognized bottleneck in the evolutionary history of vertebrates as a whole and a historical contingency that shaped the roots of modern biodiversity.

  8. NASA's Earth Science Data Systems Standards Endorsement Process

    National Research Council Canada - National Science Library

    Ullman, Richard E; Enloe, Yonsook

    2005-01-01

    Starting in January 2004, NASA instituted a set of internal working groups to develop ongoing recommendations for the continuing broad evolution of Earth Science Data Systems development and management within NASA...

  9. A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales

    OpenAIRE

    Fitzgerald, Erich M.G

    2006-01-01

    Extant baleen whales (Cetacea, Mysticeti) are all large filter-feeding marine mammals that lack teeth as adults, instead possessing baleen, and feed on small marine animals in bulk. The early evolution of these superlative mammals, and their unique feeding method, has hitherto remained enigmatic. Here, I report a new toothed mysticete from the Late Oligocene of Australia that is more archaic than any previously described. Unlike all other mysticetes, this new whale was small, had enormous eye...

  10. Origin and evolution of life on terrestrial planets.

    Science.gov (United States)

    Brack, A; Horneck, G; Cockell, C S; Bérces, A; Belisheva, N K; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Selsis, Franck; Beichman, Charles; Danchi, William; Fridlund, Malcolm; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.

  11. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  12. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  13. The first 800 million years of earth's history

    Science.gov (United States)

    Smith, J. V.

    1981-01-01

    It is pointed out that there is no direct geological information on the first 750 Ma of earth history. Consequently the reported study is based on controversial inferences drawn from the moon, other planets and meteorites, coupled with backward extrapolation from surviving terrestrial rocks, especially those of Archaean age. Aspects of accretion are considered, taking into account cosmochemical and cosmophysical evidence, a new earth model, and convection systems. Attention is given to phase-equilibrium constraints, estimates of heat production, the bombardment history of the moon and implications for the earth, and the nature of the early crust. From a combination of physical, chemical, and petrological arguments, it is concluded that the earth's surface underwent intense volcanism in the pre-Archaean era, and that the rock types were chemically similar to those found in the early Archaean era.

  14. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages

    OpenAIRE

    Karol, Kenneth G; Arumuganathan, Kathiravetpillai; Boore, Jeffrey L; Duffy, Aaron M; Everett, Karin DE; Hall, John D; Hansen, S Kellon; Kuehl, Jennifer V; Mandoli, Dina F; Mishler, Brent D; Olmstead, Richard G; Renzaglia, Karen S; Wolf, Paul G

    2010-01-01

    Abstract Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined...

  15. Toward a better understanding of nearshore meteotsunami evolution, and effective meteotsunami early-warning systems

    Science.gov (United States)

    Sheremet, A.; Li, C.; Shrira, V. I.

    2017-12-01

    We present high-resolution observations collected in 2008 on the Atcahfalaya shelf that capture the shoaling evolution of a meteotsunami (MT), including the disintegration into the train of solitons (solibore). One of the intriguing elements of this process is a spectacular 1.5-m solitary-wave (soliton), that precedes the arrival of the MT solibore by approximately 5 min, reaching the observation site propagating through a background of nearly-calm waters (20-cm height wind waves). Solitons, products of the MT disintegration process, are observed at all experiment sites, covering approx. 200 km shoreline. We interpret observations employing numerical simulations of a simplified hydrodynamic model based on the variable coefficient KdV equation. The analysis shows that observed wide-spread soliton presence and the soliton/solibore formation are the result of a complicated evolution process involving refraction, collision, and nonlinear interaction of multiple meteotsunami waves.Our results highlight the substantial lack of detail of the current picture of the nonlinear transformation of a MT from generation to its shoreline manifestation. A realistic reconstruction of MT evolution is at present almost impossible based on the current poor spatial and temporal resolution MT observations, overwhelmingly confined to the shoreline. Since the MTs tend to disintegrate into very short (down to 10s) pulses, even modern tidal gauges (1 min resolution) fail to capture essential features of its evolution. We also briefly discuss an ongoing field experiment that carries further the effort to collect high-resolution MT measurements, and that will investigate and test methodologies for early warning systems.

  16. Early evolution of an X-ray emitting solar active region

    International Nuclear Information System (INIS)

    Wolfson, C.J.; Acton, L.W.; Leibacher, J.W.; Roethig, D.T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the Lockheed Mapping X-Ray Heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of Hα plage. At that time, a plasma temperature of 4 x 10 6 K in a region having a density of the order of 10 10 cm -3 is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by plasma with a temperature of the order 3 x 10 6 K. If it is assumed that the X-rays result from heating due to dissipation of current systems or magnetic field reconnection, it can be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration. (Auth.)

  17. Three neuropeptide Y receptor genes in the spiny dogfish, Squalus acanthias, support en bloc duplications in early vertebrate evolution.

    Science.gov (United States)

    Salaneck, Erik; Ardell, David H; Larson, Earl T; Larhammar, Dan

    2003-08-01

    It has been debated whether the increase in gene number during early vertebrate evolution was due to multiple independent gene duplications or synchronous duplications of many genes. We describe here the cloning of three neuropeptide Y (NPY) receptor genes belonging to the Y1 subfamily in the spiny dogfish, Squalus acanthias, a cartilaginous fish. The three genes are orthologs of the mammalian subtypes Y1, Y4, and Y6, which are located in paralogous gene regions on different chromosomes in mammals. Thus, these genes arose by duplications of a chromosome region before the radiation of gnathostomes (jawed vertebrates). Estimates of duplication times from linearized trees together with evidence from other gene families supports two rounds of chromosome duplications or tetraploidizations early in vertebrate evolution. The anatomical distribution of mRNA was determined by reverse-transcriptase PCR and was found to differ from mammals, suggesting differential functional diversification of the new gene copies during the radiation of the vertebrate classes.

  18. Early Opportunities Research Partnership Between Howard University, University of Maryland Baltimore County and NASA Goddard for Engaging Underrepresented STEM Students in Earth and Space Sciences

    Science.gov (United States)

    Misra, P.; Venable, D. D.; Hoban, S.; Demoz, B.; Bleacher, L.; Meeson, B. W.; Farrell, W. M.

    2017-12-01

    Howard University, University of Maryland Baltimore County and NASA Goddard Space Flight Center (GSFC) are collaborating to engage underrepresented STEM students and expose them to an early career pathway in NASA-related Earth & Space Science research. The major goal is to instill interest in Earth and Space Science to STEM majors early in their academic careers, so that they become engaged in ongoing NASA-related research, motivated to pursue STEM careers, and perhaps become part of the future NASA workforce. The collaboration builds on a program established by NASA's Dynamic Response of the Environments of Asteroids, the Moon and the moons of Mars (DREAM2) team to engage underrepresented students from Howard in summer internships. Howard leveraged this program to expand via NASA's Minority University Research and Education Project (MUREP) funding. The project pairs Howard students with GSFC mentors and engages them in cutting-edge Earth and Space Science research throughout their undergraduate tenure. The project takes a multi-faceted approach, with each year of the program specifically tailored to each student's strengths and addressing their weaknesses, so that they experience a wide array of enriching research and professional development activities that help them grow both academically and professionally. During the academic year, the students are at Howard taking a full load of courses towards satisfying their degree requirements and engaging in research with their GSFC mentors via regular telecons, e-mail exchanges, video chats & on an average one visit per semester to GSFC for an in-person meeting with their research mentor. The students extend their research with full-time summer internships at GSFC, culminating in a Capstone Project and Senior Thesis. As a result, these Early Opportunities Program students, who have undergone rigorous training in the Earth and Space Sciences, are expected to be well-prepared for graduate school and the NASA workforce.

  19. INTERACTION OF CLOSE-IN PLANETS WITH THE MAGNETOSPHERE OF THEIR HOST STARS. II. SUPER-EARTHS AS UNIPOLAR INDUCTORS AND THEIR ORBITAL EVOLUTION

    International Nuclear Information System (INIS)

    Laine, Randy O.; Lin, Douglas N. C.

    2012-01-01

    Planets with several Earth masses and orbital periods of a few days have been discovered through radial velocity and transit surveys. Regardless of their formation mechanism, an important evolution issue is the efficiency of their retention in the proximity of their host stars. If these 'super-Earths' attained their present-day orbits during or shortly after the T Tauri phase of their host stars, a large fraction of these planets would have encountered an intense stellar magnetic field. These rocky planets have a higher conductivity than the atmosphere of their host stars and, therefore, the magnetic flux tube connecting them would slip though the envelope of the host stars faster than across the planets. The induced electromotive force across the planet's diameter leads to a potential drop which propagates along a flux tube away from the planet with an Alfvén speed. The foot of the flux tube would sweep across the stellar surface and the potential drop across the field lines drives a DC current analogous to that proposed for the electrodynamics of the Io-Jupiter system. The ohmic dissipation of this current produces potentially observable hot spots in the star envelope. It also heats the planet and leads to a torque which drives the planet's orbit to evolve toward both circularization and a state of synchronization with the spin of the star. The net effect is the damping of the planet's orbital eccentricity. Around slowly (or rapidly) spinning stars, this process also causes rocky planets with periods less than a few days to undergo orbital decay (or expansion/stagnation) within a few Myr. In principle, this effect can determine the retention efficiency of short-period hot Earths. We also estimate the ohmic dissipation interior to these planets and show that it can lead to severe structure evolution and potential loss of volatile material in them. However, these effects may be significantly weakened by the reconnection of the induced field.

  20. Early human communication helps in understanding language evolution.

    Science.gov (United States)

    Lenti Boero, Daniela

    2014-12-01

    Building a theory on extant species, as Ackermann et al. do, is a useful contribution to the field of language evolution. Here, I add another living model that might be of interest: human language ontogeny in the first year of life. A better knowledge of this phase might help in understanding two more topics among the "several building blocks of a comprehensive theory of the evolution of spoken language" indicated in their conclusion by Ackermann et al., that is, the foundation of the co-evolution of linguistic motor skills with the auditory skills underlying speech perception, and the possible phylogenetic interactions of protospeech production with referential capabilities.

  1. Early non-destructive biofouling detection in spiral wound RO Membranes using a mobile earth's field NMR

    KAUST Repository

    Fridjonsson, E.O.; Vogt, S.J.; Vrouwenvelder, Johannes S.; Johns, M.L.

    2015-01-01

    We demonstrate the use of Earth's field (EF) Nuclear Magnetic Resonance (NMR) to provide early non-destructive detection of active biofouling of a commercial spiral wound reverse osmosis (RO) membrane module. The RO membrane module was actively biofouled to different extents, by the addition of biodegradable nutrients to the feed stream, as revealed by a subtle feed-channel pressure drop increase. Easily accessible EF NMR parameters (signal relaxation parameters T1, T2 and the total NMR signal modified to be sensitive to stagnant fluid only) were measured and analysed in terms of their ability to detect the onset of biofouling. The EF NMR showed that fouling near the membrane module entrance significantly distorted the flow field through the whole membrane module. The total NMR signal is shown to be suitable for non-destructive early biofouling detection of spiral wound membrane modules, it was readily deployed at high (operational) flow rates, was particularly sensitive to flow field changes due to biofouling and could be deployed at any position along the membrane module axis. In addition to providing early fouling detection, the mobile EF NMR apparatus could also be used to (i) evaluate the production process of spiral wound membrane modules, and (ii) provide an in-situ determination of module cleaning process efficiency.

  2. Symmetry and topology in evolution

    International Nuclear Information System (INIS)

    Lukacs, B.; Berczi, S.; Molnar, I.; Paal, G.

    1991-10-01

    This volume contains papers of an interdisciplinary symposium on evolution. The aim of this symposium, held in Budapest, Hungary, 28-29 May 1991, was to clear the role of symmetry and topology at different levels of the evolutionary processes. 21 papers were presented, their topics included evolution of the Universe, symmetry of elementary particles, asymmetry of the Earth, symmetry and asymmetry of biomolecules, symmetry and topology of lining objects, human asymmetry etc. (R.P.)

  3. Solar Photoelectrochemical Energy Conversion using Earth-Abundant Nanomaterials

    Science.gov (United States)

    Lukowski, Mark A.

    Although the vast majority of energy consumed worldwide is derived from fossil fuels, the growing interest in making cleaner alternative energies more economically viable has motivated recent research efforts aimed to improve photovoltaic, wind, and biomass power generation. Clean power generation also requires clean burning fuels, such as H2 and O2, so that energy can still be provided on demand at all times, despite the intermittent nature inherent to solar or wind power. My research has focused on the rational approach to synthesizing earth-abundant nanomaterials with applications in the generation of clean alternative fuels and understanding the structure-property relationships which directly influence their performance. Herein, we describe the development of low-cost, earth-abundant layered metal chalcogenides as high-performance electrocatalysts for hydrogen evolution, and hematite photoanodes for photoelectrochemical oxygen evolution. This work has revealed a particularly interesting concept where catalytic performance can be enhanced by controlling the phase behavior of the material and taking advantage of previously unexploited properties to overcome the challenges traditionally limiting the performance of these layered materials for hydrogen evolution catalysis.

  4. A revision of Sanpasaurus yaoi Young, 1944 from the Early Jurassic of China, and its relevance to the early evolution of Sauropoda (Dinosauria

    Directory of Open Access Journals (Sweden)

    Blair W. McPhee

    2016-10-01

    Full Text Available The Early Jurassic of China has long been recognized for its diverse array of sauropodomorph dinosaurs. However, the contribution of this record to our understanding of early sauropod evolution is complicated by a dearth of information on important transitional taxa. We present a revision of the poorly known taxon Sanpasaurus yaoi Young, 1944 from the late Early Jurassic Ziliujing Formation of Sichuan Province, southwest China. Initially described as the remains of an ornithopod ornithischian, we demonstrate that the material catalogued as IVPP V156 is unambiguously referable to Sauropoda. Although represented by multiple individuals of equivocal association, Sanpasaurus is nonetheless diagnosable with respect to an autapomorphic feature of the holotypic dorsal vertebral series. Additional material thought to be collected from the type locality is tentatively referred to Sanpasaurus. If correctly attributed, a second autapomorphy is present in a referred humerus. The presence of a dorsoventrally compressed pedal ungual in Sanpasaurus is of particular interest, with taxa possessing this typically ‘vulcanodontid’ character exhibiting a much broader geographic distribution than previously thought. Furthermore, the association of this trait with other features of Sanpasaurus that are broadly characteristic of basal eusauropods underscores the mosaic nature of the early sauropod–eusauropod transition. Our revision of Sanpasaurus has palaeobiogeographic implications for Early Jurassic sauropods, with evidence that the group maintained a cosmopolitan Pangaean distribution.

  5. Atmospheric evolution on inhabited and lifeless worlds

    CERN Document Server

    Catling, David C

    2017-01-01

    As the search for Earth-like exoplanets gathers pace, in order to understand them, we need comprehensive theories for how planetary atmospheres form and evolve. Written by two well-known planetary scientists, this text explains the physical and chemical principles of atmospheric evolution and planetary atmospheres, in the context of how atmospheric composition and climate determine a planet's habitability. The authors survey our current understanding of the atmospheric evolution and climate on Earth, on other rocky planets within our Solar System, and on planets far beyond. Incorporating a rigorous mathematical treatment, they cover the concepts and equations governing a range of topics, including atmospheric chemistry, thermodynamics, radiative transfer, and atmospheric dynamics, and provide an integrated view of planetary atmospheres and their evolution. This interdisciplinary text is an invaluable one-stop resource for graduate-level students and researchers working across the fields of atmospheric science...

  6. THE POTENTIAL IMPORTANCE OF BINARY EVOLUTION IN ULTRAVIOLET-OPTICAL SPECTRAL FITTING OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian; Li, Maocai

    2013-01-01

    Most galaxies possibly contain some binaries, and more than half of Galactic hot subdwarf stars, which are thought to be a possible origin of the UV-upturn of old stellar populations, are found in binaries. However, the effect of binary evolution has not been taken into account in most works on the spectral fitting of galaxies. This paper studies the role of binary evolution in the spectral fitting of early-type galaxies, via a stellar population synthesis model including both single and binary star populations. Spectra from ultraviolet to optical bands are fitted to determine a few galaxy parameters. The results show that the inclusion of binaries in stellar population models may lead to obvious change in the determination of some parameters of early-type galaxies and therefore it is potentially important for spectral studies. In particular, the ages of young components of composite stellar populations become much older when using binary star population models instead of single star population models. This implies that binary star population models will measure significantly different star formation histories for early-type galaxies compared to single star population models. In addition, stellar population models with binary interactions on average measure larger dust extinctions than single star population models. This suggests that when binary star population models are used, negative extinctions are possibly no longer necessary in the spectral fitting of galaxies (see previous works, e.g., Cid Fernandes et al. for comparison). Furthermore, it is shown that optical spectra have strong constraints on stellar age while UV spectra have strong constraints on binary fraction. Finally, our results suggest that binary star population models can provide new insight into the stellar properties of globular clusters

  7. Evolution of Late-type Galaxies in a Cluster Environment: Effects of High-speed Multiple Encounters with Early-type Galaxies

    Science.gov (United States)

    Hwang, Jeong-Sun; Park, Changbom; Banerjee, Arunima; Hwang, Ho Seong

    2018-04-01

    Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way–like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15–65 h ‑1 kpc at the relative velocities of 1500–1600 km s‑1. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy–cluster interactions, we claim that the role of the galaxy–galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy–cluster interactions, depending on the dynamical history.

  8. Models of the Origin of the Moon; Early History of Earth and Venus (The Role of Tidal Friction in the Formation of Structure of the Planets)

    Science.gov (United States)

    Pechernikova, G. V.; Ruskol, E. L.

    2017-05-01

    An analytical review of the two contemporary models of the origin of the Earth-Moon system in the process of solid-body accretion is presented: socalled co-accretion model and as a result of a gigantic collision with a planetarysized body (i.e. a megaimpact model). The co-accretion model may be considered as a universal mechanism of the origin of planetary satellites, that accompanies the growth of planets. We consider the conditions of this process that secure the sufficient mass and angular momentum of the protolunar disk such as macroimpacts (collisions with the bodies of asteroidal size) into the mantle of the growing Earth, the role of an lunar embryo growing on the geocentric lunar orbit, its tidal interaction with the Earth. The most difficult remains the explanation of chemical composition of the Moon. Different scenarios of megaimpact are reviewed, in which the Earth's mantle is destroyed and the protosatellite disk is filled mainly by its fragments. There is evaluated amount of energy transferred to the Earth from the evolution of lunar orbit. It is an order of magnitude lower than three main sources of the Earth's interior heat, i.e. the heat of accretion, the energy of differentiation and the heat of radioactive sources. The tidal heating of the Venus's interiors could reach 1000K by slowing its axial initial rotation, in addition to three sources mentioned above in concern of the Earth.

  9. The size distribution of the earth-approaching asteroids

    Science.gov (United States)

    Rabinowitz, D. L.

    1993-01-01

    The discovery circumstances of the first asteroids ever observed outside the earth's atmosphere but within the neighborhood of the earth-moon system are described. Four natural objects with diameters in the range 5-50 m were detected during a search for earth-approaching asteroids conducted each month at the 0.91-m Spacewatch Telescope at Kitt Peak. An additional 19 earth approachers with sizes in the range 50 m to 5 km were discovered. These obervations determine the cumulative flux of asteroids near earth as a function of absolute magnitude. For asteroids larger than about 100 m, a power-law dependence with exponent of about 0.9 is observed, consistent with their evolution from the main-belt population. At about 10 m, the flux is more than two orders of magnitude greater than this power-law extrapolation.

  10. Genome increase as a clock for the origin and evolution of life

    Directory of Open Access Journals (Sweden)

    Sharov Alexei A

    2006-06-01

    Full Text Available Abstract Background The size of non-redundant functional genome can be an indicator of biological complexity of living organisms. Several positive feedback mechanisms including gene cooperation and duplication with subsequent specialization may result in the exponential growth of biological complexity in macro-evolution. Results I propose a hypothesis that biological complexity increased exponentially during evolution. Regression of the logarithm of functional non-redundant genome size versus time of origin in major groups of organisms showed a 7.8-fold increase per 1 billion years, and hence the increase of complexity can be viewed as a clock of macro-evolution. A strong version of the exponential hypothesis is that the rate of complexity increase in early (pre-prokaryotic evolution of life was at most the same (or even slower than observed in the evolution of prokaryotes and eukaryotes. Conclusion The increase of functional non-redundant genome size in macro-evolution was consistent with the exponential hypothesis. If the strong exponential hypothesis is true, then the origin of life should be dated 10 billion years ago. Thus, the possibility of panspermia as a source of life on earth should be discussed on equal basis with alternative hypotheses of de-novo life origin. Panspermia may be proven if bacteria similar to terrestrial ones are found on other planets or satellites in the solar system. Reviewers This article was reviewed by Eugene V. Koonin, Chris Adami and Arcady Mushegian.

  11. The origin of volatiles in the Earth's mantle

    Science.gov (United States)

    Hier-Majumder, Saswata; Hirschmann, Marc M.

    2017-08-01

    The Earth's deep interior contains significant reservoirs of volatiles such as H, C, and N. Due to the incompatible nature of these volatile species, it has been difficult to reconcile their storage in the residual mantle immediately following crystallization of the terrestrial magma ocean (MO). As the magma ocean freezes, it is commonly assumed that very small amounts of melt are retained in the residual mantle, limiting the trapped volatile concentration in the primordial mantle. In this article, we show that inefficient melt drainage out of the freezing front can retain large amounts of volatiles hosted in the trapped melt in the residual mantle while creating a thick early atmosphere. Using a two-phase flow model, we demonstrate that compaction within the moving freezing front is inefficient over time scales characteristic of magma ocean solidification. We employ a scaling relation between the trapped melt fraction, the rate of compaction, and the rate of freezing in our magma ocean evolution model. For cosmochemically plausible fractions of volatiles delivered during the later stages of accretion, our calculations suggest that up to 77% of total H2O and 12% of CO2 could have been trapped in the mantle during magma ocean crystallization. The assumption of a constant trapped melt fraction underestimates the mass of volatiles in the residual mantle by more than an order of magnitude.Plain Language SummaryThe Earth's deep interior contains substantial amounts of volatile elements like C, H, and N. How these elements got sequestered in the Earth's interior has long been a topic of debate. It is generally assumed that most of these elements escaped the interior of the Earth during the first few hundred thousand years to create a primitive atmosphere, leaving the mantle reservoir nearly empty. In this work, we show that the key to this paradox involves the very early stages of crystallization of the mantle from a global magma ocean. Using numerical models, we show

  12. Delivery of information from earth observation satellites

    International Nuclear Information System (INIS)

    MacDonald, J.S.

    1992-01-01

    Satellite-based systems for measuring the surface of the earth and its atmosphere from space have evolved rapidly in the past decade. The amount of data available in the future promises to be truly staggering. This paper addresses the requirements for handling data from earth observation systems. It begins with the premise that our objective is to acquire an understanding of the state and evolution of our planet, and proceeds from there to argue that earth observation satellite systems are, in reality, systems for delivering information. This view has implications on how we approach the design of such systems, and how we handle the data they produce in order to derive maximum benefit from them. The paper examines these issues and puts forth some of the technical requirements for future satellite-based earth observation systems, based on the concept that earth observation is a quantitative measurement discipline that is driven by requirements for information. (Author). 8 refs., 3 figs

  13. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  14. Identifying early Earth microfossils in unsilicified sediments

    Science.gov (United States)

    Javaux, Emmanuelle J.; Asael, Dan; Bekker, Andrey; Debaille, Vinciane; Derenne, Sylvie; Hofmann, Axel; Mattielli, Nadine; Poulton, Simon

    2013-04-01

    The search for life on the early Earth or beyond Earth requires the definition of biosignatures, or "indices of life". These traditionally include fossil molecules, isotopic fractionations, biosedimentary structures and morphological fossils interpreted as remnants of life preserved in rocks. This research focuses on traces of life preserved in unsilicified siliciclastic sediments. Indeed, these deposits preserve well sedimentary structures indicative of past aqueous environments and organic matter, including the original organic walls of microscopic organisms. They also do not form in hydrothermal conditions which may be source of abiotic organics. At our knowledge, the only reported occurrence of microfossils preserved in unsilicified Archean sediments is a population of large organic-walled vesicles discovered in shales and siltstones of the 3.2 Ga Moodies Group, South Africa. (Javaux et al, Nature 2010). These have been interpreted as microfossils based on petrographic and geochemical evidence for their endogenicity and syngeneity, their carbonaceous composition, cellular morphology and ultrastructure, occurrence in populations, taphonomic features of soft wall deformation, and the geological context plausible for life, as well as lack of abiotic explanation falsifying a biological origin. Demonstrating that carbonaceous objects from Archaean rocks are truly old and truly biological is the subject of considerable debate. Abiotic processes are known to produce organics and isotopic signatures similar to life. Spheroidal pseudofossils may form as self-assembling vesicles from abiotic CM, e.g. in prebiotic chemistry experiments (Shoztak et al, 2001), from meteoritic lipids (Deamer et al, 2006), or hydrothermal fluids (Akashi et al, 1996); by artifact of maceration; by migration of abiotic or biotic CM along microfractures (VanZuilen et al, 2007) or along mineral casts (Brasier et al, 2005), or around silica spheres formed in silica-saturated water (Jones and

  15. Scientists and scientific associations in Catalonia (Spain in the early 20th century: manuscript vs. published research in earth sciences

    Directory of Open Access Journals (Sweden)

    Josep Batlló

    2009-06-01

    Full Text Available


    Culture in Catalonia and, specifically, science had an important rebirth in the second half of the 19th century. But, due to the lack of State support, development of earth physical sciences in Catalonia at the beginning of the 20th century was almost a private enterprise. This situation caused dispersion of the efforts that, in any case, were extensive. The study of the evolution of earth sciences and the recovery and study of the accumulated data in such circumstances requires relying heavily on manuscript information. The present study deals with the problems and possibilities of this situation, shows some study cases and extracts some conclusions of general interest from them.


  16. Late Carboniferous to early Permian sedimentary–tectonic evolution of the north of Alxa, Inner Mongolia, China: Evidence from the Amushan Formation

    Directory of Open Access Journals (Sweden)

    Haiquan Yin

    2016-09-01

    Full Text Available The late Paleozoic evolution of the Wulijishanhen (WSH-Shangdan (SD area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biological associations, detrital materials, sandstone geochemistry and volcanic rocks indicates that the SD area was an epicontinental sea and rift during the late Paleozoic rather than a large-scale ocean undergoing spreading and closure. This study reveals that the actual evolution of the study area is from the late Carboniferous to the early Permian. The fusulinids Triticites sp. and Pseudoschwagerina sp. in the limestones demonstrate that the Amushan Formation develops during the late Carboniferous to the early Permian. The limestones at the base of the SD section indicate that it is a stable carbonate platform environment, the volcanic rocks in the middle of the sequence support a rift tectonic background, and the overlying conglomerates and sandstones are characteristic of an epicontinental sea or marine molasse setting. The rift volcanism made the differences in the fossil content of the SD and WSH sections and led to two sections expose different levels within the Amushan Formation and different process of tectonic evolution. Moreover, the geochemical characteristics and detrital materials of the sandstones show that the provenance and formation of the sandstones were related to the setting of active continental margin. The quartz-feldspar-lithic fragments distribution diagram indicates that the material source for the sandstones was a recycled orogenic belt. Thus, the source area of the sandstones may have been an active continental margin before the late Carboniferous–early Permian. The characteristics of the regional tectonic evolution of the area indicate that the region may form a small part of the Gobi–Tianshan rift of southern Mongolia.

  17. Limits in the evolution of biological form: a theoretical morphologic perspective.

    Science.gov (United States)

    McGhee, George R

    2015-12-06

    Limits in the evolution of biological form can be empirically demonstrated by using theoretical morphospace analyses, and actual analytic examples are given for univalved ammonoid shell form, bivalved brachiopod shell form and helical bryozoan colony form. Limits in the evolution of form in these animal groups can be shown to be due to functional and developmental constraints on possible evolutionary trajectories in morphospace. Future evolutionary-limit research is needed to analyse the possible existence of temporal constraint in the evolution of biological form on Earth, and in the search for the possible existence of functional alien life forms on Titan and Triton that are developmentally impossible for Earth life.

  18. The bottom of the universe: Flat earth science in the Age of Encounter.

    Science.gov (United States)

    Allegro, James J

    2017-03-01

    This essay challenges the dominance of the spherical earth model in fifteenth- and early-sixteenth-century Western European thought. It examines parallel strains of Latin and vernacular writing that cast doubt on the existence of the southern hemisphere. Three factors shaped the alternate accounts of the earth as a plane and disk put forward by these sources: (1) the unsettling effects of maritime expansion on scientific thought; (2) the revival of interest in early Christian criticism of the spherical earth; and (3) a rigid empirical stance toward entities too large to observe in their entirety, including the earth. Criticism of the spherical earth model faded in the decades after Magellan's crew returned from circuiting the earth in 1522.

  19. 12 Ministries Control Rare Earth Exports

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>"It is very natural to reserve rare earth as a strategic resource.Many countries do this,including China."On April 8,Sun Lihui,Vice Director of Metal Section of Chemicals Import & Export Commerce Chamber of China Minmetals Corporation told a reporter that as early as 2006,China has launched a strategic plan for rare earth,"but it was interrupted by the subsequent financial crisis."

  20. Biological evolution: Some genetic considerations

    OpenAIRE

    Salem, Mohammad Saad Zaghloul

    2014-01-01

    Background: The concept of biological evolution has long been accepted as a palatable theory aiming at explaining how life began and how creatures diverged so widely along the life span of the earth. Meticulous analysis and criticism of the different postulations of this concept, however, reveals that evolution is an illogic concept based on theoretical hypotheses that can never be tested. Creation, on the other hand, represents the other side of the coin, and up till now debates confronting ...

  1. New Views on the Early Evolution of Oxygen in the Galaxy

    Science.gov (United States)

    Rebolo, R.; Israelian, G.; García López, R. J.

    We have performed a detailed oxygen abundance analysis of 23 metal-poor (-3.0 Abia & Rebolo 1989; Tomkin et al. 1992; Cavallo, Pilachowski, & Rebolo 1997). Contrary to the previously accepted picture, our oxygen abundances, derived from low-excitation OH lines, agree well with those derived from high-excitation lines of the triplet. For nine stars in common with Tomkin et al. we obtain a mean difference of 0.00 plus or minus 0.11dex with respect to the abundances determined from the triplet using the same stellar parameters and model photospheres. Our new results show a smooth extension of the Edvardsson et al.'s (1993) [O/Fe] versus metallicity curve to much lower abundances. The oxygen abundances of unevolved stars when compared with values in the literature for giants of similar metallicity imply that the latter may have suffered a process of oxygen depletion. It appears that unevolved metal-poor stars are better tracers of the early chemical evolution of the Galaxy. The extrapolation of our results to very low metallicities indicates that the ratio of oxygen to iron emerging from the first Type II SNe in the early Galaxy was indeed close to unity. The higher [O/Fe] ratios we find in dwarfs has an impact on the age determination of globular clusters, and suggest that current age estimates have to be reduced by about 1-2 Gyr.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 109; Issue 1 ... Crustal evolution; granites; Phanerozoic; Sr-Nd isotopes; east-central Asia. ... Department of Geology, Changchun University of Science and Technology, Changchun ...

  3. The effects of heavy meteorite bombardment on the early evolution — The emergence of the three Domains of life

    Science.gov (United States)

    Gogarten-Boekels, Maria; Hilario, Elena; Gogarten, J. Peter

    1995-06-01

    A characteristic of many molecular phylogenies is that the three domains of life (Bacteria, Archaea, Eucarya) are clearly separated from each other. The analyses of ancient duplicated genes suggest that the last common ancestor of all presently known life forms already had been a sophisticated cellular prokaryote. These findings are in conflict with theories that have been proposed to explain the absence of deep branching lineages. In this paper we propose an alternative scenario, namely, a large meteorite impact that wiped out almost all life forms present on the early Earth. Following this nearly complete frustation of life on Earth, two surviving extreme thermophilic species gave rise to the now existing major groups of living organisms, the Bacteria and Archaea. [The latter also contributed the major portion to the nucleo-cytoplasmic component of the Eucarya]. An exact calibration of the molecular record with regard to time is not yet possible. The emergence of Eucarya in fossil and molecular records suggests that the proposed late impact should have occurred before 2100 million years before present (BP). If the 3500 million year old microfossils [Schopf, J. W. 1993: Science 260: 640 646] are interpreted as representatives of present day existing groups of bacteria (i.e., as cyanobacteria), then the impact is dated to around 3700 million years BP. The analysis of molecular sequences suggests that the separation between the Eucarya and the two prokaryotic domains is less deep then the separation between Bacteria and Archaea. The fundamental cell biological differences between Archaea and Eucarya were obtained over a comparatively short evolutionary distance (as measured in number of substitution events in biological macromolecules). Our interpretation of the molecular record suggests that life emerged early in Earth's history even before the time of the heavy bombardment was over. Early life forms already had colonized extreme habitats which allowed at least two

  4. In situ dating of the oldest morphological traces of life on Earth

    Science.gov (United States)

    Fliegel, D.; McLoughlin, N.; Simonetti, A.; de Wit, M.; Furnes, H.

    2008-12-01

    Sea floor pillow basalts contain tubular and granular bioalteration micro textures in their glassy margins1,2 created by microbes etching the rock3,4, hypothetically to get access to nutrients and electrons donors5. The etched pits in the rock can be regarded as trace fossils6 that later become mineralized by titanite (CaTiSiO5). Such trace fossils are known from recent oceanic crust to some of the oldest preserved Archean ocean floor, in the Barberton greenstone belt (BGB), in S-Africa7. However, the antiquity of BGB trace fossils has been questioned by some since only the host rock was dated until now8. Here, we report for the first time in situ U-Pb radiometric dating of titanite mineralizing the BGB trace fossils using LA-MC-ICPMS. An U-Pb date of of approx. 3.15 ± 0.05 Ga (95.4 % confidence) for the titanite demonstrates the antiquity of the BGB trace fossils. This result confirms the BGB trace fossils as the oldest directly dated morphological trace of life on Earth. We will present addition data to reveal the mineralization of trace fossils by titanite, comparing the BGB trace fossils to other similar tubular titanite mineralized textures from different locations and younger ages. Our data confirms that a sub-oceanic biosphere was already established in the early Archean by at least 3.2 Ga. Further the results highlight the importance of the sub-ocean habitats for the development and possibly refuge for life on (early) Earth. 1. Furnes, H. et al. Bioalteration of basaltic glass in the oceanic crust. Geochemistry Geophysics Geosystems 2, (2001). 2. Staudigel, H. et al. 3.5 billion years of glass bioalteration: vulcanic rocks as a basis for microbial life. Earth-Science Reviews 89, 156-176 (2008). 3. Furnes, H. et al. Links Between Geological Processes, Microbial Activeties and Evolution of Life. Dilek, Y., Furnes, H. and Muehlenbachs, K. (eds.), pp. 1-68 (Springer,2008). 4. McLoughlin, N. et al. Current Developments in Bioerosion (Erlangen Earth Conference

  5. Biologist Edwin Grant Conklin and the idea of the religious direction of human evolution in the early 1920s.

    Science.gov (United States)

    Pavuk, Alexander

    2017-01-01

    Edwin Grant Conklin, renowned US embryologist and evolutionary popularizer, publicly advocated a social vision of evolution that intertwined science and modernist Protestant theology in the early 1920s. The moral prestige of professional science in American culture - along with Conklin's own elite scientific status - diverted attention from the frequency with which his work crossed boundaries between natural science, religion and philosophy. Writing for broad audiences, Conklin was one of the most significant of the religious and modernist biological scientists whose rhetoric went well beyond simply claiming that certain kinds of religion were amenable to evolutionary science; he instead incorporated religion itself into evolution's broadest workings. A sampling of Conklin's widely-resonant discourse suggests that there was substantially more to the religion-evolution story in the 1920s US than many creationist-centred narratives of the era imply.

  6. Geomagnetic polarity reversals as a mechanism for the punctuated equilibrium model of biological evolution

    International Nuclear Information System (INIS)

    Welsh, J.S.; Welsh, A.L.; Welsh, W.F.

    2003-01-01

    In contrast to what is predicted by classical Darwinian theory (phyletic gradualism), the fossil record typically displays a pattern of relatively sudden, dramatic changes as detailed by Eldregde and Gould's model of punctuated equilibrium. Evolutionary biologists have been at a loss to explain the ultimate source of the new mutations that drive evolution. One hypothesis holds that the abrupt speciation seen in the punctuated equilibrium model is secondary to an increased mutation rate resulting from periodically increased levels of ionizing radiation on the Earth's surface. Sporadic geomagnetic pole reversals, occurring every few million years on the average, are accompanied by alterations in the strength of the Earth's magnetic field and magnetosphere. This diminution may allow charged cosmic radiation to bombard Earth with less attenuation, thereby resulting in increased mutation rates. This episodic fluctuation in the magnetosphere is an attractive mechanism for the observed fossil record. Selected periods and epochs of geologic history for which data was available were reviewed for both geomagnetic pole reversal history and fossil record. Anomalies in either were scrutinized in greater depth and correlations were made. A 35 million year span (118-83 Ma) was identified during the Early/Middle Cretaceous period that was devoid of geomagnetic polarity reversals(the Cretaceous normal superchron). Examination of the fossil record (including several invertebrate and vertebrate taxons) during the Cretaceous normal superchron does not reveal any significant gap or slowing of speciation. Although increased terrestrial radiation exposure due to a diminution of the Earth's magnetosphere caused by a reversal of geomagnetic polarity is an attractive explanation for the mechanism of punctuated equilibrium, our investigation suggests that such polarity reversals cannot fully provide the driving force behind biological evolution. Further research is required to determine if

  7. Terrestrial xenon isotope constraints on the early history of the earth

    International Nuclear Information System (INIS)

    Ozima, M.; Igarashi, G.; Podosek, F.A.

    1985-01-01

    Comparison between 129 I-radiogenic 129 Xe and 244 Pu-fissiogenic 136 Xe components in terrestrial xenon suggests that the Earth's inner region accreted a few tens of millions of years earlier than the outer region from which the atmosphere evolved. The results also indicate that there has been no substantial mixing of the two regions since the Earth's accretion. (author)

  8. A first-principles model of early evolution: emergence of gene families, species, and preferred protein folds.

    Directory of Open Access Journals (Sweden)

    Konstantin B Zeldovich

    2007-07-01

    Full Text Available In this work we develop a microscopic physical model of early evolution where phenotype--organism life expectancy--is directly related to genotype--the stability of its proteins in their native conformations-which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the "Big Bang" scenario whereby exponential population growth ensues as soon as favorable sequence-structure combinations (precursors of stable proteins are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species--subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution.

  9. Comets as Messengers from the Early Solar System - Emerging Insights on Delivery of Water, Nitriles, and Organics to Earth

    Science.gov (United States)

    Mumma, Michael J.; Charnley, Steven B.

    2012-01-01

    The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth's volatiles, and for assessing the possible existence of exo-planets similar to Earth. Viewed from a cosmic perspective, Earth is a dry planet, yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen and analogous isotopic enrichments in atmospheric nitrogen and noble gases are also seen. Why is this so? What are the implications for Mars? For icy Worlds in our Planetary System? For the existence of Earth-like exoplanets? An exogenous (vs. outgassed) origin for Earth's atmosphere is implied, and intense debate on the relative contributions of comets and asteroids continues - renewed by fresh models for dynamical transport in the protoplanetary disk, by revelations on the nature and diversity of volatile and rocky material within comets, and by the discovery of ocean-like water in a comet from the Kuiper Belt (cf., Mumma & Charnley 2011). Assessing the creation of conditions favorable to the emergence and sustenance of life depends critically on knowledge of the nature of the impacting bodies. Active comets have long been grouped according to their orbital properties, and this has proven useful for identifying the reservoir from which a given comet emerged (OC, KB) (Levison 1996). However, it is now clear that icy bodies were scattered into each reservoir from a range of nebular distances, and the comet populations in today's reservoirs thus share origins that are (in part) common. Comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition, resulting from strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models of early radial transport and mixing with later dispersion of the final cometary nuclei into the long-term storage reservoirs. The inclusion of material from the natal interstellar cloud is probable

  10. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  11. Adaptability and evolution.

    Science.gov (United States)

    Bateson, Patrick

    2017-10-06

    The capacity of organisms to respond in their own lifetimes to new challenges in their environments probably appeared early in biological evolution. At present few studies have shown how such adaptability could influence the inherited characteristics of an organism's descendants. In part, this has been because organisms have been treated as passive in evolution. Nevertheless, their effects on biological evolution are likely to have been important and, when they occurred, accelerated the pace of evolution. Ways in which this might have happened have been suggested many times since the 1870s. I review these proposals and discuss their relevance to modern thought.

  12. Sedimentary manganese metallogenesis in response to the evolution of the Earth system

    Science.gov (United States)

    Roy, Supriya

    2006-08-01

    The concentration of manganese in solution and its precipitation in inorganic systems are primarily redox-controlled, guided by several Earth processes most of which were tectonically induced. The Early Archean atmosphere-hydrosphere system was extremely O 2-deficient. Thus, the very high mantle heat flux producing superplumes, severe outgassing and high-temperature hydrothermal activity introduced substantial Mn 2+ in anoxic oceans but prevented its precipitation. During the Late Archean, centered at ca. 2.75 Ga, the introduction of Photosystem II and decrease of the oxygen sinks led to a limited buildup of surface O 2-content locally, initiating modest deposition of manganese in shallow basin-margin oxygenated niches (e.g., deposits in India and Brazil). Rapid burial of organic matter, decline of reduced gases from a progressively oxygenated mantle and a net increase in photosynthetic oxygen marked the Archean-Proterozoic transition. Concurrently, a massive drawdown of atmospheric CO 2 owing to increased weathering rates on the tectonically expanded freeboard of the assembled supercontinents caused Paleoproterozoic glaciations (2.45-2.22 Ga). The spectacular sedimentary manganese deposits (at ca. 2.4 Ga) of Transvaal Supergroup, South Africa, were formed by oxidation of hydrothermally derived Mn 2+ transferred from a stratified ocean to the continental shelf by transgression. Episodes of increased burial rate of organic matter during ca. 2.4 and 2.06 Ga are correlatable to ocean stratification and further rise of oxygen in the atmosphere. Black shale-hosted Mn carbonate deposits in the Birimian sequence (ca. 2.3-2.0 Ga), West Africa, its equivalents in South America and those in the Francevillian sequence (ca. 2.2-2.1 Ga), Gabon are correlatable to this period. Tectonically forced doming-up, attenuation and substantial increase in freeboard areas prompted increased silicate weathering and atmospheric CO 2 drawdown causing glaciation on the Neoproterozoic Rodinia

  13. Post-early cretaceous landform evolution along the western margin of the banca~nnia trough, western nsw

    Science.gov (United States)

    Gibson, D.L.

    2000-01-01

    Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.

  14. Five-year evolution of reperfusion strategies and early mortality in patients with ST-segment elevation myocardial infarction in France.

    Science.gov (United States)

    El Khoury, Carlos; Bochaton, Thomas; Flocard, Elodie; Serre, Patrice; Tomasevic, Danka; Mewton, Nathan; Bonnefoy-Cudraz, Eric

    2017-10-01

    To assess 5-year evolutions in reperfusion strategies and early mortality in patients with ST-segment elevation myocardial infarction. Using data from the French RESCUe network, we studied patients with ST-segment elevation myocardial infarction treated in mobile intensive care units between 2009 and 2013. Among 2418 patients (median age 62 years; 78.5% male), 2119 (87.6%) underwent primary percutaneous coronary intervention and 299 (12.4%) pre-hospital thrombolysis (94.0% of whom went on to undergo percutaneous coronary intervention). Use of primary percutaneous coronary intervention increased from 78.4% in 2009 to 95.9% in 2013 ( P trend 90 minutes delay group (83.0% in 2009 to 97.7% in 2013; P trend <0.001 versus 34.1% in 2009 to 79.2% in 2013; P trend <0.001). In-hospital (4-6%) and 30-day (6-8%) mortalities remained stable from 2009 to 2013. In the RESCUe network, the use of primary percutaneous coronary intervention increased from 2009 to 2013, in line with guidelines, but there was no evolution in early mortality.

  15. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires.

    Science.gov (United States)

    Bertrand, Ornella C; Amador-Mughal, Farrah; Silcox, Mary T

    2016-01-27

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. © 2016 The Author(s).

  16. The evolution of blood pressure and the rise of mankind.

    Science.gov (United States)

    Schulte, Kevin; Kunter, Uta; Moeller, Marcus J

    2015-05-01

    Why is it that only human beings continuously perform acts of heroism? Looking back at our evolutionary history can offer us some potentially useful insight. This review highlights some of the major steps in our evolution-more specifically, the evolution of high blood pressure. When we were fish, the first kidney was developed to create a standardized internal 'milieu' preserving the primordial sea within us. When we conquered land as amphibians, the evolution of the lung required a low systemic blood pressure, which explains why early land vertebrates (amphibians, reptiles) are such low performers. Gaining independence from water required the evolution of an impermeable skin and a water-retaining kidney. The latter was accomplished twice with two different solutions in the two major branches of vertebrate evolution: mammals excrete nitrogenous waste products as urea, which can be utilized by the kidney as an osmotic agent to produce more concentrated urine. Dinosaurs and birds have a distinct nitrogen metabolism and excrete nitrogen as water-insoluble uric acid-therefore, their kidneys cannot use urea to concentrate as well. Instead, some birds have developed the capability to reabsorb water from their cloacae. The convergent development of a separate small circulation of the lung in mammals and birds allowed for the evolution of 'high blood-pressure animals' with better capillarization of the peripheral tissues allowing high endurance performance. Finally, we investigate why mankind outperforms any other mammal on earth and why, to this day, we continue to perform acts of heroism on our eternal quest for personal bliss. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  17. An Earth-sized exoplanet with a Mercury-like composition

    Science.gov (United States)

    Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.

    2018-05-01

    Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

  18. An Earth-sized exoplanet with a Mercury-like composition

    Science.gov (United States)

    Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.

    2018-03-01

    Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

  19. Geophysical and atmospheric evolution of habitable planets.

    Science.gov (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  20. Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux

    Science.gov (United States)

    Rubincam, David P.

    2015-01-01

    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  1. Revolutions that made the earth

    CERN Document Server

    Lenton, Tim

    2013-01-01

    The Earth that sustains us today was born out of a few remarkable, near-catastrophic revolutions, started by biological innovations and marked by global environmental consequences. The revolutions have certain features in common, such as an increase in the complexity, energy utilization, and information processing capabilities of life. This book describes these revolutions, showing the fundamental interdependence of the evolution of life and its non-living environment. We would not exist unless these upheavals had led eventually to 'successful' outcomes - meaning that after each one, at length, a new stable world emerged. The current planet-reshaping activities of our species may be the start of another great Earth system revolution, but there is no guarantee that this one will be successful. This book explains what a successful transition through it might look like, if we are wise enough to steer such a course. This book places humanity in context as part of the Earth system, using a new scientific synthe...

  2. Northern Eurasia Earth Science Partnership Initiative: evolution of scientific investigations to applicable science

    International Nuclear Information System (INIS)

    Soja, Amber J; Groisman, Pavel Ya

    2012-01-01

    The letters collected in this focus issue of Environmental Research Letters on ‘Environmental, socio-economic and climatic changes in Northern Eurasia and their feedbacks to the global Earth system’ represent the third special issue based on the results of research within the Northern Eurasia Earth Science Partnership Initiative (NEESPI: http://neespi.org) program domain. Through the years, NEESPI researchers have presented a diverse array of articles that represent a variety of spatial scales and demonstrate the degree to which abrupt climatic and socio-economic changes are acting across Northern Eurasia and feed back to the global Earth system. (synthesis and review)

  3. Evolution of allosteric regulation in chorismate mutases from early plants

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Kourtney; Holland, Cynthia K.; Starks, Courtney M.; Jez, Joseph M.

    2017-09-28

    Plants, fungi, and bacteria synthesize the aromatic amino acids: l-phenylalanine, l-tyrosine, and l-tryptophan. Chorismate mutase catalyzes the branch point reaction of phenylalanine and tyrosine biosynthesis to generate prephenate. In Arabidopsis thaliana, there are two plastid-localized chorismate mutases that are allosterically regulated (AtCM1 and AtCM3) and one cytosolic isoform (AtCM2) that is unregulated. Previous analysis of plant chorismate mutases suggested that the enzymes from early plants (i.e. bryophytes/moss, lycophytes, and basal angiosperms) formed a clade distinct from the isoforms found in flowering plants; however, no biochemical information on these enzymes is available. To understand the evolution of allosteric regulation in plant chorismate mutases, we analyzed a basal lineage of plant enzymes homologous to AtCM1 based on sequence similarity. The chorismate mutases from the moss/bryophyte Physcomitrella patens (PpCM1 and PpCM2), the lycophyte Selaginella moellendorffii (SmCM), and the basal angiosperm Amborella trichopoda (AmtCM1 and AmtCM2) were characterized biochemically. Tryptophan was a positive effector for each of the five enzymes examined. Histidine was a weak positive effector for PpCM1 and AmtCM1. Neither tyrosine nor phenylalanine altered the activity of SmCM; however, tyrosine was a negative regulator of the other four enzymes. Phenylalanine down-regulates both moss enzymes and AmtCM2. The 2.0 Å X-ray crystal structure of PpCM1 in complex with the tryptophan identified the allosteric effector site and reveals structural differences between the R- (more active) and T-state (less active) forms of plant chorismate mutases. Molecular insight into the basal plant chorismate mutases guides our understanding of the evolution of allosteric regulation in these enzymes.

  4. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae

    Directory of Open Access Journals (Sweden)

    Neil Brocklehurst

    2016-01-01

    Full Text Available Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact, it is those which experience a size decrease which evolve at higher rates. It is possible the shift in rates of evolution is related to the improved food processing ability of

  5. Collective Landmarks for Deep Time: A New Tool for Evolution Education

    Science.gov (United States)

    Delgado, Cesar

    2014-01-01

    Evolution is a fundamental, organising concept in biology, yet there is widespread resistance to evolution among US students and there are rising creationist challenges in Europe. Resistance to evolution is linked to lack of understanding of the age of the Earth. An understanding of deep time is thus essential for effective biology education.…

  6. Climate evolution on the terrestrial planets

    International Nuclear Information System (INIS)

    Kasting, J.F.; Toon, O.B.

    1989-01-01

    The present comparative evaluation of the long-term evolution of the Venus, earth, and Mars climates suggests that the earth's climate has remained temperate over most of its history despite a secular solar luminosity increase in virtue of a negative-feedback cycle based on atmospheric CO 2 levels and climate. The examination of planetary climate histories suggests that an earth-sized planet should be able to maintain liquid water on its surface at orbital distances in the 0.9-1.5 AU range, comparable to the orbit of Mars; this, in turn, implies that there may be many other habitable planets within the Galaxy

  7. The last stage of Earth's formation: Increasing the pressure

    Science.gov (United States)

    Lock, S. J.; Stewart, S. T.; Mukhopadhyay, S.

    2017-12-01

    A range of high-energy, high-angular momentum (AM) giant impacts have been proposed as a potential trigger for lunar origin. High-energy, high-AM collisions create a previously unrecognized planetary object, called a synestia. Terrestrial synestias exceed the corotation limit for a rocky planet, forming an extended structure with a corotating inner region and disk-like outer region. We demonstrate that the internal pressures of Earth-like planets do not increase monotonically during the giant impact stage, but can vary substantially in response to changes in rotation and thermal state. The internal pressures in an impact-generated synestia are much lower than in condensed, slowly rotating planets of the same mass. For example, the core-mantle boundary (CMB) pressure can be as low as 60 GPa for a synestia with Earth mass and composition, compared to 136 GPa in the present-day Earth. The lower pressures are due to the low density and rapid rotation of the post-impact structure. After a high-AM Moon-forming impact, the internal pressures in the interior of the synestia would have increased to present-day Earth values in two stages: first by vapor condensation and second by removal of AM from the Earth during the tidal evolution of the Moon. The pressure evolution of the Earth has several implications. Metal-silicate equilibration after the impact would have occurred at much lower pressures than has previously been assumed. The observed moderately siderophile element abundances in the mantle may be consistent with equilibration at the bottom of a deep, lower-pressure magma ocean. In addition, the pressure at the CMB during cooling is coincident with, or lower than, the proposed intersection of liquid adiabats with the mantle liquidus. The mantle would hence freeze from the bottom up and there would be no basal magma ocean. The subsequent pressure increase and tidal heating due to the Moon's orbital evolution likely induces melting in the lowermost mantle. Increasing

  8. Magnetic fields in the early solar system

    International Nuclear Information System (INIS)

    Strangway, D.W.

    1980-01-01

    Most of the terrestrial planets and the meteorites contain records of early magnetic fields. In the Allende meteorite some of the chondrules were magnetized in fields of about 10 Oe. When assembled into the meteorite, they remained randomly oriented but were partially remagnetized in a field of 1 Oe at temperatures of 200-300 0 C. They present dipole moment of Mercury and the weak dipole moment of Mars may be due to the cooling of a crust in the presence of early magnetic fields. The Earth on the other hand, has had an active dynamo for at least 3 Ga and probably longer, although there is no discernible record of earlier fields due to extensive reheating of the magnetic carriers. Venus has no dynamo field and its surface temperature is too high to carry a crustal remanence. The Moon has no dipole, but local islands of magnetization are believed to be the results of breccias cooling in the presence of an early field, possibly in itself a crustal memory. As we learn about the fields of the planets and the magnetic record contained in their samples we may be able to put sharp constraints on the earliest history of planet formation and evolution. (Auth.)

  9. The Montaguto earth flow: nine years of observation and analysis

    Science.gov (United States)

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  10. NASA's Evolution to K(sub a)- Band Space Communications for Near-Earth Spacecraft

    Science.gov (United States)

    McCarthy, Kevin P.; Stocklin, Frank J.; Geldzahler, Barry J.; Friedman, Daniel E.; Celeste, Peter B.

    2010-01-01

    Over the next several years, NASA plans to launch multiple earth-science missions which will send data from low-Earth orbits to ground stations at 1-3 Gbps, to achieve data throughputs of 5-40 terabits per day. These transmission rates exceed the capabilities of S-band and X-band frequency allocations used for science probe downlinks in the past. Accordingly, NASA is exploring enhancements to its space communication capabilities to provide the Agency's first Ka-band architecture solution for next generation missions in the near-earth regime. This paper describes the proposed Ka-band solution's drivers and concept, constraints and analyses which shaped that concept, and expansibility for future needs

  11. RFI and Remote Sensing of the Earth from Space

    Science.gov (United States)

    Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.

    2016-01-01

    Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.

  12. Urban Evolution: the Role of Water

    Science.gov (United States)

    The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth's population grows, infrastructure ages, and sociopolitical values alter them. In order to systematically study changes over time, the concept of "urban evolution...

  13. Contemporary evolution strategies

    CERN Document Server

    Bäck, Thomas; Krause, Peter

    2013-01-01

    Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the a

  14. Early Stages of Microstructure and Texture Evolution during Beta Annealing of Ti-6Al-4V

    Science.gov (United States)

    Pilchak, A. L.; Sargent, G. A.; Semiatin, S. L.

    2018-03-01

    The early stages of microstructure evolution during annealing of Ti-6Al-4V in the beta phase field were established. For this purpose, a series of short-time heat treatments was performed using sheet samples that had a noticeable degree of alpha-phase microtexture in the as-received condition. Reconstruction of the beta-grain structure from electron-backscatter-diffraction measurements of the room-temperature alpha-phase texture revealed that microstructure evolution at short times was controlled not by general grain growth, but rather by nucleation-and-growth events analogous to discontinuous recrystallization. The nuclei comprised a small subset of beta grains that were highly misoriented relative to those comprising the principal texture component of the beta matrix. From a quantitative standpoint, the transformation kinetics were characterized by an Avrami exponent of approximately unity, thus suggestive of metadynamic recrystallization. The recrystallization process led to the weakening and eventual elimination of the initial beta texture through the growth of a population of highly misoriented grains.

  15. Pegylated interferon and ribavirin promote early evolution of nonstructural 5A protein in individuals with hepatitis C who demonstrate a response to treatment.

    Science.gov (United States)

    Jain, Mamta K; Yuan, He-Jun; Adams-Huet, Beverley; Reeck, Amanda; Shelton, Janel; Attar, Nahid; Zhang, Song; Neumann, Avidan U; Carney, David S; Gale, Michael; Lee, William M

    2009-09-15

    Hepatitis C virus (HCV) quasispecies diversity is more likely to affect early viral decline during treatment of hepatitis C than is having human immunodeficiency virus (HIV) infection. We evaluated the influence of HCV therapy on changes in the nonstructural 5A (NS5A) protein. Fifteen patients with HCV genotype 1 infection with or without HIV infection were recruited for the present study, and the decrease in the HCV RNA level was measured at early time points. The evolution of HCV NS5A quasispecies within the first week was analyzed by comparing the clones observed at later times in the study with the baseline consensus sequence of individual patients. The response to therapy was defined as an early response (ER; ie, an HCV RNA level <615 IU/mL at week 4) or a slow response (SR; ie, a detectable HCV RNA level at week 4). HIV infection did not affect early viral kinetics. At baseline, lower diversity was seen in NS5A and in the amino and carboxyl termini of patients with an ER, compared with those with an SR. Rapid evolution of the NS5A genetic region occurred in patients with an ER (P = .01) but not in those with an SR (P = .73). The evolution was the result of an increase in the number of amino acid substitutions in the carboxyl region (P = .02) in patients with an ER. Selective pressure appears to result in more-marked changes in individuals with an ER than in those with an SR. The carboxyl terminus was subject to the most change and may be an important determinant of phenotypic resistance to interferon-based therapy.

  16. Composition of the Earth's interior: the importance of early events.

    Science.gov (United States)

    Carlson, Richard W; Boyet, Maud

    2008-11-28

    The detection of excess 142Nd caused by the decay of 103Ma half-life 146Sm in all terrestrial rocks compared with chondrites shows that the chondrite analogue compositional model cannot be strictly correct, at least for the accessible portion of the Earth. Both the continental crust (CC) and the mantle source of mid-ocean ridge basalts (MORB) originate from the material characterized by superchondritic 142Nd/144Nd. Thus, the mass balance of CC plus mantle depleted by crust extraction (the MORB-source mantle) does not sum back to chondritic compositions, but instead to a composition with Sm/Nd ratio sufficiently high to explain the superchondritic 142Nd/144Nd. This requires that the mass of mantle depleted by CC extraction expand to 75-100 per cent of the mantle depending on the composition assumed for average CC. If the bulk silicate Earth has chondritic relative abundances of the refractory lithophile elements, then there must exist within the Earth's interior an incompatible-element-enriched reservoir that contains roughly 40 per cent of the Earth's 40Ar and heat-producing radioactive elements. The existence of this enriched reservoir is demonstrated by time-varying 142Nd/144Nd in Archaean crustal rocks. Calculations of the mass of the enriched reservoir along with seismically determined properties of the D'' layer at the base of the mantle allow the speculation that this enriched reservoir formed by the sinking of dense melts deep in a terrestrial magma ocean. The enriched reservoir may now be confined to the base of the mantle owing to a combination of compositionally induced high density and low viscosity, both of which allow only minimal entrainment into the overlying convecting mantle.

  17. The divergent fates of primitive hydrospheric water on Earth and Mars.

    Science.gov (United States)

    Wade, Jon; Dyck, Brendan; Palin, Richard M; Moore, James D P; Smye, Andrew J

    2017-12-20

    Despite active transport into Earth's mantle, water has been present on our planet's surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet's magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet's surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth's mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Keqing Zong. Articles written in Journal of Earth System Science. Volume 127 Issue 3 April 2018 pp 43. Early Neoarchaean A-type granitic magmatism by crustal reworking in Singhbhum craton: Evidence from Pala Lahara area, Orissa · Abhishek Topno Sukanta Dey ...

  19. Could the early environment of Mars have supported the development of life?

    Science.gov (United States)

    Mckay, Christopher P.; Stoker, Carol R.

    1990-01-01

    The environment of Mars and its correlation to the origin of life on earth are examined. Evidence of liquid water and nitrogen on early Mars is discussed. The similarities between the early Mars and early earth environments are described.

  20. Moving Closer to EarthScope: A Major New Initiative for the Earth Sciences*

    Science.gov (United States)

    Simpson, D.; Blewitt, G.; Ekstrom, G.; Henyey, T.; Hickman, S.; Prescott, W.; Zoback, M.

    2002-12-01

    EarthScope is a scientific research and infrastructure initiative designed to provide a suite of new observational facilities to address fundamental questions about the evolution of continents and the processes responsible for earthquakes and volcanic eruptions. The integrated observing systems that will comprise EarthScope capitalize on recent developments in sensor technology and communications to provide Earth scientists with synoptic and high-resolution data derived from a variety of geophysical sensors. An array of 400 broadband seismometers will spend more than ten years crossing the contiguous 48 states and Alaska to image features that make up the internal structure of the continent and underlying mantle. Additional seismic and electromagnetic instrumentation will be available for high resolution imaging of geological targets of special interest. A network of continuously recording Global Positioning System (GPS) receivers and sensitive borehole strainmeters will be installed along the western U.S. plate boundary. These sensors will measure how western North America is deforming, what motions occur along faults, how earthquakes start, and how magma flows beneath active volcanoes. A four-kilometer deep observatory bored directly into the San Andreas fault will provide the first opportunity to observe directly the conditions under which earthquakes occur, to collect fault rocks and fluids for laboratory study, and to monitor continuously an active fault zone at depth. All data from the EarthScope facilities will be openly available in real-time to maximize participation from the scientific community and to provide on-going educational outreach to students and the public. EarthScope's sensors will revolutionize observational Earth science in terms of the quantity, quality and spatial extent of the data they provide. Turning these data into exciting scientific discovery will require new modes of experimentation and interdisciplinary cooperation from the Earth

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 8 ... in conformity with their relation to (earthquake induced) shear system evolution in this terrain. ... Sanjoy Mahato1 Arka Ranjan Jana1 P B Maithani3 P V Ramesh Babu3.

  2. Emigrating Beyond Earth Human Adaptation and Space Colonization

    CERN Document Server

    Smith, Cameron M

    2012-01-01

    For four million years humankind has been actively expanding geographically and in doing so has adapted to a wide variety of hostile environments. Now we are looking towards the ultimate adaptation - the colonization of space. Emigrating Beyond Earth illustrates that this is not a technocratic endeavor, but a natural continuation of human evolution; a journey not just for the engineer and rocket scientist, but for everyman. Based on the most current understanding of our universe, human adaptation and evolution, the authors explain why space colonization must be planned as an adaptation to, rather than the conquest of, space. Emigrating Beyond Earth argues that space colonization is an insurance policy for our species, and that it isn't about rockets and robots, it's about humans doing what we've been doing for four million years: finding new places and new ways to live. Applying a unique anthropological approach, the authors outline a framework for continued human space exploration and offer a glimpse of a po...

  3. Studying the Earth from space

    Science.gov (United States)

    ,

    1981-01-01

    Space age technology contains a key to increased knowledge about the Earth's resources; this key is remote sensing detecting the nature or condition of something without actually touching it. An early and still most useful form of remote sensing is photography which records the

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R S Rana. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 289-307. Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early Eocene), Gujarat, western India · M R Rao Ashok Sahni R S Rana Poonam Verma.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    pp 485-498. Determination of rare earth and refractory trace element abundances in early solar system objects by ion microprobe · S Sahijpal K K Marhas J N Goswami · More Details Abstract Fulltext PDF. Experimental and analytical procedures devised for measurement of rare earth element (REE) abundances using a ...

  6. Early mantle differentiation: constraint from {sup 146}Sm-{sup 142}Nd systematics; Radioactivite eteinte du {sup 146}Sm et differenciation precoce du manteau terrestre

    Energy Technology Data Exchange (ETDEWEB)

    Caro, G

    2005-07-15

    We present new ultra-high precision {sup 142}Nd/{sup 144}Nd measurements of early Archaean rocks using the new generation thermal ionization mass spectrometer TRITON. Repeated measurements of the Ames Nd standard demonstrate that the {sup 142}Nd/{sup 144}Nd ratio can be determined with external precision of 2 ppm (2s), allowing confident resolution of anomalies as small as 5 ppm. A major analytical improvement lies in the elimination of the double normalization procedure required to correct our former measurements from a secondary mass fractionation effect. Our new results indicate that metasediments, meta-basalts and orthogneisses from the 3.6 - 3.8 Ga West Greenland craton display positive {sup 142}Nd anomalies ranging from 8 to 15 ppm. Using a simple two-stage model with initial e{sup 143}Nd value of 1.9 {+-} 0.6 e-units, coupled {sup 147}Sm-{sup 143}Nd and {sup 146}Sm-{sup 142}Nd chronometry constrains mantle differentiation to 50 to 200 Ma after formation of the solar system. This chronological constraint is consistent with differentiation of the Earth's mantle during the late stage of crystallization of a magma ocean. We have developed a two-box model describing {sup 142}Nd and {sup 143}Nd isotopic evolution of depleted mantle during the subsequent evolution of the crust-mantle system. Our results indicate that early terrestrial proto-crust had a lifetime of ca. 500 Ma in order to produce the observed Nd isotope signature of Archaean rocks. In the context of this two box mantle-crust system, we model the evolution of isotopic and chemical heterogeneity of depleted mantle as a function of the mantle stirring time. Using the dispersion of {sup 142}Nd/{sup 144}Nd and {sup 143}Nd/{sup 144}Nd ratios observed in early Archaean rocks, we constrain the stirring time of early Earth's mantle to 100 - 150 Ma, a factor of 5 to 10 shorter than stirring time inferred from modern oceanic basalts. (author)

  7. Geohistory

    International Nuclear Information System (INIS)

    Ozima, Minoru

    1987-01-01

    A full understanding of the earth's evolution can be achieved only by considering it as a continuous process starting with the birth of the solar system. This book traces the evolution of the earth, mainly on the basis of radiogenic isotopes from long half-life parent elements, and discusses it in terms of the latest developments in astrophysical theory, which impose unique constraints on the earth's origin and early evolution. By its 'historical' nature, geohistorical study also offers a unique approach to forecasting the future of the earth, yielding useful clues for the understanding of environmental problems, such as radioactive waste disposal. This book aims to provide an outline of global evolution of the planet earth for students of general science and for earth scientists. (orig.)

  8. Foundations for a multiscale collaborative Earth model

    KAUST Repository

    Afanasiev, M.

    2015-11-11

    We present a computational framework for the assimilation of local to global seismic data into a consistent model describing Earth structure on all seismically accessible scales. This Collaborative Seismic Earth Model (CSEM) is designed to meet the following requirements: (i) Flexible geometric parametrization, capable of capturing topography and bathymetry, as well as all aspects of potentially resolvable structure, including small-scale heterogeneities and deformations of internal discontinuities. (ii) Independence of any particular wave equation solver, in order to enable the combination of inversion techniques suitable for different types of seismic data. (iii) Physical parametrization that allows for full anisotropy and for variations in attenuation and density. While not all of these parameters are always resolvable, the assimilation of data that constrain any parameter subset should be possible. (iv) Ability to accommodate successive refinements through the incorporation of updates on any scale as new data or inversion techniques become available. (v) Enable collaborative Earth model construction. The structure of the initial CSEM is represented on a variable-resolution tetrahedral mesh. It is assembled from a long-wavelength 3-D global model into which several regional-scale tomographies are embedded. We illustrate the CSEM workflow of successive updating with two examples from Japan and the Western Mediterranean, where we constrain smaller scale structure using full-waveform inversion. Furthermore, we demonstrate the ability of the CSEM to act as a vehicle for the combination of different tomographic techniques with a joint full-waveform and traveltime ray tomography of Europe. This combination broadens the exploitable frequency range of the individual techniques, thereby improving resolution. We perform two iterations of a whole-Earth full-waveform inversion using a long-period reference data set from 225 globally recorded earthquakes. At this early stage

  9. Large impact events and atmospheric evolution on the terrestrial planets

    International Nuclear Information System (INIS)

    Grinspoon, D.H.

    1989-01-01

    The first task undertaken is the characterization of the impact rates in the inner solar system during the present time, and during the first billion years of Solar System history when the flux was changing rapidly. Once defined, these fluxes are used to model the long term cumulative effect of multiple impacts on planetary atmospheres. The implications of cometary impacts on evolution of the water and deuterium abundances on Venus are examined. The short lifetime of water on Venus suggests that the water abundance is in quasi-steady-state balance between loss by escape and replenishment by infall. In addition, the observed deuterium-to-hydrogen ratio on Venus is consistent with a steady state and does not necessarily imply a past water excess. Results are presented of a model incorporating a stochastic cometary source and nonthermal escape of hydrogen that produces the observed water abundance and D/H ratio. The stochastic variability of each of these quantities is shown to be large. Water on Venus is likely to be in a near steady state mediated by large comet impacts. The early history of water on the planet has been obscured by a history of random impacts. A study of the effects of impact-generated dust clouds on the primitive Earth leads to the conclusion that such clouds were significant perturbers of the early climate. The Earth was shrouded by an optically-thick dust cloud for ∼150-250 m.y.. During this time the surface temperature was equal to the planetary equilibrium temperature unless significant heating by impacts or surface heat flow existed beneath the dust cloud. The epoch of continuous dust shrouding was followed by a period of stochastically intermittent dust clouds occurring at greater intervals as the early intense bombardment subsided towards the present day flux

  10. Secular change of LOD caused by core evolution

    Science.gov (United States)

    Denis, C.; Rybicki, K. R.; Varga, P.

    2003-04-01

    Fossils and tidal deposits suggest that, on the average, the Earth's despinning rate had been five times less in the Proterozoic than in the Phanerozoic. This difference is probably due, for the major part, to the existence of a Proterozoic supercontinent. Nevertheless, core formation and core evolution should have compensated to some extent the effect of tidal friction, by diminishing the Earth's inertia moment. We have investigated quantitatively this contribution of the evolving core to the change of LOD. For the present epoch, we find that the solidification of the inner core causes a relative secular decrease of LOD of approximately 3 μs per century, whereas the macrodiffusion of iron oxides and sulfides from the D" into the outer core across the CMB (inasfar as Majewski's theory holds) leads to a relative secular decrease of LOD by about 15 μs per century. On the other hand, the theory of slow core formation developped by Runcorn in the early 1960s as a by-product of his theory of mantle-wide convection, leads to a relative secular decrease of LOD during most of the Proterozoic of about 0.25 ms per century. Although core formation is now widely assumed to have been a thermal run-away process that occurred shortly after the Earth itself had formed, Runcorn's theory of the growing core would nicely explain the observed palaeo-LOD curve. In any case, formation of the core implies, all in all, a relative decrease of LOD of typically 3 hours.

  11. Corrosion properties and corrosion evolution of as-cast AZ91 alloy with rare earth yttrium

    International Nuclear Information System (INIS)

    Luo, T.J.; Yang, Y.S.

    2011-01-01

    Highlights: → Minor addition of Y will increase the corrosion resistance of AZ91 alloy, and 0.3 wt.% Y is the optimum addition. → A film composed of Mg(OH) 2 , MgCO 3 , Al(OH) 3 and Al 2 O 3 is formed on the surface of AZ91 alloy with rare earth Y free. → The film of AZ91 alloy with 0.3 wt.% Y is mainly composed of Mg(OH) 2 and MgCO 3 without any Al(OH) 3 and Al 2 O 3 . → The relative quantity of MgCO 3 in the surface film of AZ91 + 0.3 wt.% Y is bigger than that of AZ91 alloy with Y free. → Y 2 O 3 phase is found in the surface film of alloy III, which benefits to stabilize the surface film. -- Abstract: The corrosion resistance property and the corrosion evolution of as-cast AZ91 alloy with rare earth Y addition are investigated by using immersion tests, electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). The results show that the proper amount of Y in the alloys can improve the corrosion resistance of AZ91 alloys effectively. With the increment of Y, the corrosion rate of the modified AZ91 alloys by Y addition was markedly less than that of AZ91 alloy. The corrosion rate of AZ91 alloy with 0.3 wt.% Y was the slightest, but further addition of Y content over 0.3 wt.% make the corrosion heavier. The XPS analysis suggests that the compound film of AZ91 alloy with 0.3 wt.% Y is mainly composed of Mg(OH) 2 and MgCO 3 without any Al(OH) 3 and Al 2 O 3 , in addition, Y 2 O 3 phase is found in the compound film of AZ91 alloy with 0.3 wt.% Y, which benefits to stabilize the surface film.

  12. A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds

    Directory of Open Access Journals (Sweden)

    Jiandong Huang

    2016-03-01

    Full Text Available Despite the increasing number of exceptional feathered fossils discovered in the Late Jurassic and Cretaceous of northeastern China, representatives of Ornithurae, a clade that includes comparatively-close relatives of crown clade Aves (extant birds and that clade, are still comparatively rare. Here, we report a new ornithurine species Changzuiornis ahgmi from the Early Cretaceous Jiufotang Formation. The new species shows an extremely elongate rostrum so far unknown in basal ornithurines and changes our understanding of the evolution of aspects of extant avian ecology and cranial evolution. Most of this elongate rostrum in Changzuiornis ahgmi is made up of maxilla, a characteristic not present in the avian crown clade in which most of the rostrum and nearly the entire facial margin is made up by premaxilla. The only other avialans known to exhibit an elongate rostrum with the facial margin comprised primarily of maxilla are derived ornithurines previously placed phylogenetically as among the closest outgroups to the avian crown clade as well as one derived enantiornithine clade. We find that, consistent with a proposed developmental shift in cranial ontogeny late in avialan evolution, this elongate rostrum is achieved through elongation of the maxilla while the premaxilla remains only a small part of rostral length. Thus, only in Late Cretaceous ornithurine taxa does the premaxilla begin to play a larger role. The rostral and postcranial proportions of Changzuiornis suggest an ecology not previously reported in Ornithurae; the only other species with an elongate rostrum are two marine Late Cretacous taxa interpreted as showing a derived picivorous diet.

  13. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R. E. Jr. [Physics Department, University of California, Davis, CA 95616 (United States); McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Hathi, N. P. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Koekemoer, A. M.; Bond, H. E.; Bushouse, H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Crockett, R. M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Disney, M. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Frogel, J. A. [Galaxies Unlimited, Lutherville, MD 21093 (United States); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Holtzman, J. A., E-mail: rryan@physics.ucdavis.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2012-04-10

    We present the size evolution of passively evolving galaxies at z {approx} 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z {approx}> 1.5. We identify 30 galaxies in {approx}40 arcmin{sup 2} to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 {mu}m {approx}< {lambda}{sub obs} {approx}< 1.6 {mu}m with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of {approx}0.033(1 + z). We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M{sub *} {approx} 10{sup 11} M{sub Sun }) undergo the strongest evolution from z {approx} 2 to the present. Parameterizing the size evolution as (1 + z){sup -{alpha}}, we find a tentative scaling of {alpha} Almost-Equal-To (- 0.6 {+-} 0.7) + (0.9 {+-} 0.4)log (M{sub *}/10{sup 9} M{sub Sun }), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M{sub *}-R{sub e} relation for red galaxies.

  14. A Sulfur Dioxide Climate Feedback on Early Mars

    Science.gov (United States)

    Halevy, I.; Pierrehumbert, R. T.; Schrag, D. P.

    2007-12-01

    Reconciling evidence for persistent liquid water during the late Noachian with our understanding of the evolution of the Martian atmosphere and of solar luminosity remains a challenge, despite several decades of research. An optically-thicker atmosphere to supply the necessary radiative forcing would result in the existence of a carbon cycle similar to Earth's, where the release of CO2 from volcanoes is balanced by burial of calcium carbonate through silicate weathering reactions that remove protons and release alkalinity to surface waters. Existence of such a carbon cycle on Mars, even for tens of millions of years, would yield carbonate sediments in far greater abundance than has been observed, as well as residual clay minerals. The high concentration of sulfur in Martian soils and rocks indicates that Martian volcanic emissions contained abundant sulfur volatiles in addition to CO2. However, the atmospheric and aquatic chemistry of SO2 under the reducing conditions of early Mars, in contrast with the presently oxidizing and biologically-catalyzed Earth, has not been thoroughly examined. We argue that these conditions may have allowed atmospheric concentrations of SO2 high enough to augment a thick CO2-H2O greenhouse. Furthermore, early Martian climate may have been stabilized by a feedback mechanism involving SO2 and the solubility of sulfite minerals instead of CO2 and the solubility of carbonates. We present the results of a one-dimensional radiative-convective model, demonstrating the radiative importance of SO2 to the planetary energy budget. We also use a simple geochemical model to show that the presence of SO2 in the early Martian atmosphere would have dominated the aquatic chemistry on the planet's surface, and may provide an explanation for how water could have persisted for millions of years without forming massive carbonate sediments, yet allowing the formation of clay minerals.

  15. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model

    Science.gov (United States)

    Krissansen-Totton, Joshua; Arney, Giada N.; Catling, David C.

    2018-04-01

    The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6‑0.4+0.6 (2σ) at 4.0 Ga to 7.0‑0.5+0.7 (2σ) at the Archean–Proterozoic boundary, and to 7.9‑0.2+0.1 (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.

  16. Coupled evolution of the atmospheres and interiors of planets and satellites

    International Nuclear Information System (INIS)

    Schubert, G.; Turcotte, D.L.; Solomon, S.C.; Sleep, N.H.

    1989-01-01

    The evolution of a planetary atmosphere can be powerfully influenced by the planetary interior's function as both a source and a sink of atmospheric constituents; the interior can in turn be strongly influenced by the atmosphere because the mechanism of interior heat loss depends on a volatile content for which the atmosphere can serve both as sink and source. The dependence of mantle rheology on volatile content could furnish a feedback mechanism tending to keep regassing/degassing in balance, thereby maintaining a relatively constant atmospheric mass. Consideration of the abundances of radiogenic and nonradiogenic noble gases in the earth's atmosphere, and of the fluxes of these gases from the mantle, support a large degassing event early on, followed by a decrease in degassing efficiency with time and relatively inefficient outgassing over most of geologic time

  17. Rare earth element composition of Paleogene vertebrate fossils from Toadstool Geologic Park, Nebraska, USA

    Energy Technology Data Exchange (ETDEWEB)

    Grandstaff, D.E., E-mail: grand@temple.edu [Department of Earth and Environmental Science, Temple University, Philadelphia, PA 19122 (United States); Terry, D.O. [Department of Earth and Environmental Science, Temple University, Philadelphia, PA 19122 (United States)

    2009-04-15

    Fossil bones and teeth from terrestrial environments encode unique rare earth and trace element (REE and TE) signatures as a function of redox conditions, pH, concentrations of complexing ligands, and water-colloid interactions. This signature is set early in the fossilization process and serves as a paleoenvironmental and paleoclimatic proxy. These signatures can also be used to interpret temporal and spatial averaging within vertebrate accumulations, and can help relocate displaced fossil bones back into stratigraphic context. Rare earth elements in vertebrate fossils from upper Eocene and Oligocene strata of Toadstool Geologic Park, northwestern Nebraska, record mixing and evolution of Paleogene vadose or groundwaters and variations in paleoenvironments. REE signatures indicate that HREE-enriched alkaline groundwater reacted with LREE- and MREE-enriched sediments to produce 3-component mixtures. REE signatures become increasingly LREE- and MREE-enriched toward the top of the studied section as the paleoenvironment became cooler and drier, suggesting that REE signatures may be climate proxies. Time series analysis suggests that REE ratios are influenced by cycles of ca. 1050, 800, 570, 440, and 225 ka, similar to some previously determined Milankovitch astronomical and climate periodicities.

  18. Serpentinization and its implications for life on the early Earth and Mars.

    Science.gov (United States)

    Schulte, Mitch; Blake, David; Hoehler, Tori; McCollom, Thomas

    2006-04-01

    Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.

  19. Adiabatic decay of internal solitons due to Earth's rotation within the framework of the Gardner-Ostrovsky equation

    Science.gov (United States)

    Obregon, Maria; Raj, Nawin; Stepanyants, Yury

    2018-03-01

    The adiabatic decay of different types of internal wave solitons caused by the Earth's rotation is studied within the framework of the Gardner-Ostrovsky equation. The governing equation describing such processes includes quadratic and cubic nonlinear terms, as well as the Boussinesq and Coriolis dispersions: (ut + c ux + α u ux + α1 u2 ux + β uxxx)x = γ u. It is shown that at the early stage of evolution solitons gradually decay under the influence of weak Earth's rotation described by the parameter γ. The characteristic decay time is derived for different types of solitons for positive and negative coefficients of cubic nonlinearity α1 (both signs of that parameter may occur in the oceans). The coefficient of quadratic nonlinearity α determines only a polarity of solitary wave when α1 0. It is found that the adiabatic theory describes well the decay of solitons having bell-shaped profiles. In contrast to that, large amplitude table-top solitons, which can exist when α1 is negative, are structurally unstable. Under the influence of Earth's rotation, they transfer first to the bell-shaped solitons, which decay then adiabatically. Estimates of the characteristic decay time of internal solitons are presented for the real oceanographic conditions.

  20. Evolution Inclusions and Variation Inequalities for Earth Data Processing II Differential-operator Inclusions and Evolution Variation Inequalities for Earth Data Processing

    CERN Document Server

    Zgurovsky, Mikhail Z; Kasyanov, Pavlo O

    2011-01-01

    Here, the authors present modern mathematical methods to solve problems of differential-operator inclusions and evolution variation inequalities which may occur in fields such as geophysics, aerohydrodynamics, or fluid dynamics. For the first time, they describe the detailed generalization of various approaches to the analysis of fundamentally nonlinear models and provide a toolbox of mathematical equations. These new mathematical methods can be applied to a broad spectrum of problems. Examples of these are phase changes, diffusion of electromagnetic, acoustic, vibro-, hydro- and seismoacousti

  1. The Far Ultraviolet M-dwarf Evolution Survey (FUMES): Overview and Initial Results

    Science.gov (United States)

    Pineda, J. Sebastian; France, Kevin; Youngblood, Allison

    2018-01-01

    M-dwarf stars are prime targets for exoplanet searches because of their close proximity and favorable properties for both planet detection and characterization, with current searches around these targets having already discovered several Earth-sized planets within their star’s habitable zones. However, the atmospheric characterization and potential habitability of these exoplanetary systems depends critically on the high-energy stellar radiation environment from X-rays to NUV. Strong radiation at these energies can lead to atmospheric mass loss and is a strong driver of photochemistry in planetary atmospheres. Recently, the MUSCLES Treasury Survey provided the first comprehensive assessment of the high-energy radiation field around old, planet hosting M-dwarfs. However, the habitability and potential for such exoplanetary atmospheres to develop life also depends on the evolution of the atmosphere and hence the evolution of the incident radiation field. The strong high-energy spectrum of young M-dwarfs can have devastating consequences for the potential habitability of a given system. We, thus, introduce the Far Ultraviolet M-dwarf Evolution Survey (FUMES), a new HST-STIS observing campaign targeting 10 early-mid M dwarfs with known rotation periods, including 6 targets with known ages, to assess the evolution of the FUV radiation, including Lyα, of M-dwarf stars with stellar rotation period. We present the initial results of our survey characterizing the FUV emission features of our targets and the implications of our measurements for the evolution of the entire high-energy radiation environment around M-dwarfs from youth to old age.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 4. Evolution of the Bhandara-Balaghat granulite belt along the southern margin of the Sausar Mobile Belt of central India. H M Ramachandra Abhinaba Roy. Volume 110 Issue 4 December 2001 pp 351-368 ...

  3. Environmental Consequences of Big Nasty Impacts on the Early Earth

    Science.gov (United States)

    Zahnle, Kevin

    2015-01-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced no more than approximately 10 impacts bigger than Chicxulub between 2.5 billion years and 3.5 2.5 billion years, the biggest of which were approximately30-100 times more energetic, comparable to the Orientale impact on the Moon (1x10 (sup 26) joules). To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid

  4. First simultaneous detection of terrestrial ionospheric molecular ions in the Earth's inner magnetosphere and at the Moon

    Science.gov (United States)

    Dandouras, I.; Poppe, A. R.; Fillingim, M. O.; Kistler, L. M.; Mouikis, C. G.; Rème, H.

    2017-09-01

    First coordinated observation of escaping heavy molecular ions in the Earth's inner magnetosphere and at the Moon. Quantifying the underlying escape mechanisms is important in order to understand the long-term (billion years scale) evolution of the atmospheric composition, and in particular the evolution of the N/O ratio, which is essential for habitability. Terrestrial heavy ions, transported to the Moon, suggest also that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar regolith.

  5. Age of acquisition predicts rate of lexical evolution.

    Science.gov (United States)

    Monaghan, Padraic

    2014-12-01

    The processes taking place during language acquisition are proposed to influence language evolution. However, evidence demonstrating the link between language learning and language evolution is, at best, indirect, constituting studies of laboratory-based artificial language learning studies or computational simulations of diachronic change. In the current study, a direct link between acquisition and evolution is established, showing that for two hundred fundamental vocabulary items, the age at which words are acquired is a predictor of the rate at which they have changed in studies of language evolution. Early-acquired words are more salient and easier to process than late-acquired words, and these early-acquired words are also more stably represented within the community's language. Analysing the properties of these early-acquired words potentially provides insight into the origins of communication, highlighting features of words that have been ultra-conserved in language. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Thunderstorm activity in early Earth: same estimations from point of view a role of electric discharges in formation of prebiotic conditions

    Science.gov (United States)

    Serozhkin, Yu.

    2008-09-01

    numerous theoretical and experimental researches of gas-grain chemistry show that the chemical reactions on boundary gas - ice play a considerable role in changes of evolution of molecular composition of gas-grains mediums [5,6]. Electric discharges in such gas-grain mediums can be not only energy source for synthesis of biochemical compounds. For prebiotic chemistry will have the important consequences that plasma of these discharges will have properties of dusty plasma. First, it is the presence of the charged micron-size particles (0,1…10 μm). These grains can be charged up to values 103-105 elementary charges at sticking of high-energy electrons and ions (≥1eV), which are produced at lightning discharge. In this connection it is expedient at an estimation of efficiency of the electrical discharges to take into account conditions, in which they occur. In the area of the lightning at eruption of volcanoes there is a plenty of ashes, and aerosols. In the area of the usual lightnings there are snowflakes, drops of water and ice crystals. The electrical discharges in mesosphere cannot be considered without an estimation of influence on biochemical processes the submicron ice crystals and aerosols. What is possible to tell about the degree and nature of thunderstorm activity in the early Earth? We can to formulate some questions: - from what moment of time there were conditions for various types of electrical discharges in an atmosphere; - up to what time, and how we can trace existence of lightning. The modern thunderstorm activity is determined by presence of water in an atmosphere and on a surface of the Earth, and also physical properties of the atmosphere (pressure, temperature, gradient of temperature). The chemical structure of an atmosphere plays a role through influence on temperature and gradient of temperatures. For example, the increase of concentration CO2 gives to global warming. On some estimation in modern conditions the climate warms by 3.8 degrees will

  7. THE EVOLUTION OF THE KREBS CYCLE: A PROMISING THEME FOR MEANINGFUL BIOCHEMISTRY LEARNING IN BIOLOGY

    Directory of Open Access Journals (Sweden)

    C. Costa

    2015-08-01

    Full Text Available INTRODUCTION: Evolution has been recognized as a key concept for biologists. In order to motivate biology undergraduates for contents of central energetic metabolism, we addressed the Krebs cycle structure and functions to an evolutionary view. To this end, we created a study guide which contextualizes the emergence of the cyclic pathway, in light of the prokaryotic influence since early Earth anaerobic condition to oxygen rise in atmosphere. OBJECTIVES: The main goal is to highlight the educational potential of the material whose subject is scarcely covered in biochemistry textbooks. MATERIALS AND METHODS: The study guide is composed by three interrelated sections, the problem (Section 1, designed to arouse curiosity, inform and motivate students; an introductory text (Section 2 about life evolution, including early micro-organisms and Krebs cycle emergence, and questions (Section 3 for debate. The activity consisted on a peer discussion session, with instructors tutoring. The questions were designed to foster exchange of ideas in an ever-increasing level of complexity, and cover subjects from early atmospheric conditions to organization of the metabolism along the subsequent geological ages. RESULTS AND DISCUSSION: We noticed that students were engaged and motivated by the task, especially during group discussion. Based on students’ feedbacks and class observations, we learned that the material raised curiosity and stimulated discussion among peers. It brought a historical and purposeful way of dealing with difficult biochemical concepts. CONCLUSIONS: The whole experience suggests that the study guide was a stimulus for broadening comprehension of the Krebs cycle, reinforcing the evolutionary stance as an important theme for biology and biochemistry understanding. On the other hand, we do not underestimate the fact that approaching Krebs cycle from an evolutionary standpoint is a quite complex discussion for the majority of students

  8. A dinosaur missing-link? Chilesaurus and the early evolution of ornithischian dinosaurs.

    Science.gov (United States)

    Baron, Matthew G; Barrett, Paul M

    2017-08-01

    The enigmatic dinosaur taxon Chilesaurus diegosuarezi was originally described as a tetanuran theropod, but this species possesses a highly unusual combination of features that could provide evidence of alternative phylogenetic positions within the clade. In order to test the relationships of Chilesaurus , we added it to a new dataset of early dinosaurs and other dinosauromorphs. Our analyses recover Chilesaurus in a novel position, as the earliest diverging member of Ornithischia, rather than a tetanuran theropod. The basal position of Chilesaurus within the clade and its suite of anatomical characters suggest that it might represent a 'transitional' taxon, bridging the morphological gap between Theropoda and Ornithischia, thereby offering potential insights into the earliest stages of ornithischian evolution, which were previously obscure. For example, our results suggest that pubic retroversion occurred prior to some of the craniodental and postcranial modifications that previously diagnosed the clade (e.g. the presence of a predentary bone and ossified tendons). © 2017 The Author(s).

  9. Early Mars: A Warm Wet Niche for Life

    Science.gov (United States)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.

    2010-01-01

    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution had conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 Ma of Martian history were ripe for life to develop because of the abundance of: (i) Water-as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at approx.3.9 Ga, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic patterns in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 Ma?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve)

  10. Aural exostoses (surfer's ear) provide vital fossil evidence of an aquatic phase in Man's early evolution.

    Science.gov (United States)

    Rhys Evans, P H; Cameron, M

    2017-11-01

    For over a century, otolaryngologists have recognised the condition of aural exostoses, but their significance and aetiology remains obscure, although they tend to be associated with frequent swimming and cold water immersion of the auditory canal. The fact that this condition is usually bilateral is predictable since both ears are immersed in water. However, why do exostoses only grow in swimmers and why do they grow in the deep bony meatus at two or three constant sites? Furthermore, from an evolutionary point of view, what is or was the purpose and function of these rather incongruous protrusions? In recent decades, paleoanthropological evidence has challenged ideas about early hominid evolution. In 1992 the senior author suggested that aural exostoses were evolved in early hominid Man for protection of the delicate tympanic membrane during swimming and diving by narrowing the ear canal in a similar fashion to other semiaquatic species. We now provide evidence for this theory and propose an aetiological explanation for the formation of exostoses.

  11. Investigating the Origin and Evolution of Venus with in Situ Mass Spectrometry

    Science.gov (United States)

    Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.

    2016-01-01

    The exploration of Venus continues to be a top priority of planetary science. The Planetary Decadal Survey goals for inner-planet exploration seek to discern the origin and diversity of terrestrial planets, understand how the evolution of terrestrial planets relates to the evolution of life, and explore the processes that control climate on Earth-like planets. These goals can only be realized through continued and extensive exploration of Venus, the most mysterious of the terrestrial planets, remarkably different from the Earth despite the gross similarities between these "twin planets". It is unknown if this apparent divergence was intrinsic, programmed during accretion from distinct nebular reservoirs, or a consequence of either measured or catastrophic processes during planetary evolution. Even if the atmosphere of Venus is a more "recent" development, its relationship to the resurfacing of the planet's enigmatic surface is not well understood. Resolving such uncertainties directly addresses the hypothesis of a more clement, possibly water-rich era in Venus' past as well as whether Earth could become more Venus-like in the future.

  12. Ion distributions in the Earth's foreshock upstream from the bow shock

    Science.gov (United States)

    Fuselier, S. A.

    1995-01-01

    A variety of suprathermal and energetic ion distributions are found upstream from shocks. Some distributions, such as field-aligned beams, are generated directly at the shock either through reflection processes or through leakage from the hotter downstream region. Other distributions, such as intermediate distributions, evolve from these parent distributions through wave-particle interactions. This paper reviews our current understanding of the creation and evolution of suprathermal distributions at shocks. Examples of suprathermal ion distributions are taken from observations at the Earth's bow shock. Particular emphasis is placed on the creation of field-aligned beams and specularly reflected ion distributions and on the evolution of these distributions in the Earth's ion foreshock. However, the results from this heavily studied region are applicable to interplanetary shocks, bow shocks at other planets, and comets.

  13. Evolution of care indicators after an early discharge intervention in preterm infants.

    Science.gov (United States)

    Toral-López, Isabel; González-Carrión, María Pilar; Rivas-Campos, Antonio; Lafuente-Lorca, Justa; Castillo-Vera, Josefa; de Casas, Carmen; Peña-Caballero, Manuela

    To evaluate the evolution of health outcomes in preterm infants included in an early discharge programme. Controlled, non-randomised trial with an intervention group and a control group children admitted to the Neonatal Intensive Care Unit of the University Hospital Virgen de las Nieves of Granada were included in the study. The intervention group comprised preterm infants admitted to the neonatal unit clinically stable, whose family home was located within 20km. from the hospital. They were discharged two weeks before the established time and a skilled nurse in neonatal care monitored them at home. The control group comprised infants who could not be included in home monitoring due to the distance to the hospital criterion or because their families did not give their consent and who received the usual care until their discharge. The study variables were the outcome indicators of the Nursing Outcomes Classification. Differences were found in the Nursing Outcomes Classification scores in the intervention group compared to the control group. The early discharge of preterm infants followed up at home by an expert nurse in neonatal care is a health service that achieves results in preparating parents for the care of their child, enabling them to learn about the health services, adapt to their new life, and establishbreastfeeding times. It constitutes safe intervention for children and is beneficial to parents. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  14. Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China

    Science.gov (United States)

    Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei

    2018-03-01

    The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.

  15. Early 20th-century research at the interfaces of genetics, development, and evolution: reflections on progress and dead ends.

    Science.gov (United States)

    Deichmann, Ute

    2011-09-01

    Three early 20th-century attempts at unifying separate areas of biology, in particular development, genetics, physiology, and evolution, are compared in regard to their success and fruitfulness for further research: Jacques Loeb's reductionist project of unifying approaches by physico-chemical explanations; Richard Goldschmidt's anti-reductionist attempts to unify by integration; and Sewall Wright's combination of reductionist research and vision of hierarchical genetic systems. Loeb's program, demanding that all aspects of biology, including evolution, be studied by the methods of the experimental sciences, proved highly successful and indispensible for higher level investigations, even though evolutionary change and properties of biological systems up to now cannot be fully explained on the molecular level alone. Goldschmidt has been appraised as pioneer of physiological and developmental genetics and of a new evolutionary synthesis which transcended neo-Darwinism. However, this study concludes that his anti-reductionist attempts to integrate genetics, development and evolution have to be regarded as failures or dead ends. His grand speculations were based on the one hand on concepts and experimental systems that were too vague in order to stimulate further research, and on the other on experiments which in their core parts turned out not to be reproducible. In contrast, Sewall Wright, apart from being one of the architects of the neo-Darwinian synthesis of the 1930s, opened up new paths of testable quantitative developmental genetic investigations. He placed his research within a framework of logical reasoning, which resulted in the farsighted speculation that examinations of biological systems should be related to the regulation of hierarchical genetic subsystems, possibly providing a mechanism for development and evolution. I argue that his suggestion of basing the study of systems on clearly defined properties of the components has proved superior to

  16. The evolution of the manus of early theropod dinosaurs is characterized by high inter- and intraspecific variation.

    Science.gov (United States)

    Barta, Daniel E; Nesbitt, Sterling J; Norell, Mark A

    2018-01-01

    The origin of the avian hand, with its reduced and fused carpals and digits, from the five-fingered hands and complex wrists of early dinosaurs represents one of the major transformations of manus morphology among tetrapods. Much attention has been directed to the later part of this transition, from four- to three-fingered taxa. However, earlier anatomical changes may have influenced these later modifications, possibly paving the way for a later frameshift in digit identities. We investigate the five- to four-fingered transition among early dinosaurs, along with changes in carpus morphology. New three-dimensional reconstructions from computed tomography data of the manus of the Triassic and Early Jurassic theropod dinosaurs Coelophysis bauri and Megapnosaurus rhodesiensis are described and compared intra- and interspecifically. Several novel findings emerge from these reconstructions and comparisons, including the first evidence of an ossified centrale and a free intermedium in some C. bauri specimens, as well as confirmation of the presence of a vestigial fifth metacarpal in this taxon. Additionally, a specimen of C. bauri and an unnamed coelophysoid from the Upper Triassic Hayden Quarry, New Mexico, are to our knowledge the only theropods (other than alvarezsaurs and birds) in which all of the distal carpals are completely fused together into a single unit. Several differences between the manus of C. bauri and M. rhodesiensis are also identified. We review the evolution of the archosauromorph manus more broadly in light of these new data, and caution against incorporating carpal characters in phylogenetic analyses of fine-scale relationships of Archosauromorpha, in light of the high degree of observed polymorphism in taxa for which large sample sizes are available, such as the theropod Coelophysis and the sauropodomorph Plateosaurus. We also find that the reduction of the carpus and ultimate loss of the fourth and fifth digits among early dinosaurs did not

  17. Results of Joint Observations of Jupiter's Atmosphere by Juno and a Network of Earth-Based Observing Stations

    Science.gov (United States)

    Orton, Glenn; Momary, Thomas; Bolton, Scott; Levin, Steven; Hansen, Candice; Janssen, Michael; Adriani, Alberto; Gladstone, G. Randall; Bagenal, Fran; Ingersoll, Andrew

    2017-04-01

    The Juno mission has promoted and coordinated a network of Earth-based observations, including both Earth-proximal and ground-based facilities, to extend and enhance observations made by the Juno mission. The spectral region and timeline of all of these observations are summarized in the web site: https://www.missionjuno.swri.edu/planned-observations. Among the earliest of these were observation of Jovian auroral phenomena at X-ray, ultraviolet and infrared wavelengths and measurements of Jovian synchrotron radiation from the Earth simultaneously with the measurement of properties of the upstream solar wind. Other observations of significance to the magnetosphere measured the mass loading from Io by tracking its observed volcanic activity and the opacity of its torus. Observations of Jupiter's neutral atmosphere included observations of reflected sunlight from the near-ultraviolet through the near-infrared and thermal emission from 5 μm through the radio region. The point of these measurements is to relate properties of the deep atmosphere that are the focus of Juno's mission to the state of the "weather layer" at much higher atmospheric levels. These observations cover spectral regions not included in Juno's instrumentation, provide spatial context for Juno's often spatially limited coverage of Jupiter, and they describe the evolution of atmospheric features in time that are measured only once by Juno. We will summarize the results of measurements during the approach phase of the mission that characterized the state of the atmosphere, as well as observations made by Juno and the supporting campaign during Juno's perijoves 1 (2016 August 27), 3 (2016 December 11), 4 (2017 February 2) and possibly "early" results from 5 (2017 March 27). Besides a global network of professional astronomers, the Juno mission also benefited from the enlistment of a network of dedicated amateur astronomers who provided a quasi-continuous picture of the evolution of features observed by

  18. Preliminary analysis on tectonic movement and uranium metallization in Kang-Dian the earth's axis

    International Nuclear Information System (INIS)

    Luo Yiyue; Wei Mingji; Ma Guangzhong

    1998-01-01

    On the basis of analyzing available data the authors expounds the regional geology, tectonic movement, as well as the relationship between geological evolution and uranium metallization in Kang-Dian the earth's axis and propose that the Jinning Period (960-1006 Ma) is the first metallogenic epoch of uranium in Kang-Dian the earth's axis

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 3. Significance of transition between Talchir Formation and Karharbari Formation in Lower Gondwana basin evolution — A study in West Bokaro Coal basin, Jharkhand, India. H N Bhattacharya Abhijit Chakraborty Biplab Bhattacharya. Volume 114 Issue ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 4 ... Monsoon sensitivity to aerosol direct radiative forcing in the community atmosphere model .... Influences of the boundary layer evolution on surface ozone variations at a .... and its comparison with global geopotential models and GPS-levelling data.

  1. Penguin heat-retention structures evolved in a greenhouse Earth.

    Science.gov (United States)

    Thomas, Daniel B; Ksepka, Daniel T; Fordyce, R Ewan

    2011-06-23

    Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a 'Greenhouse Earth' interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets.

  2. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  3. Climatic Change and Human Evolution.

    Science.gov (United States)

    Garratt, John R.

    1995-01-01

    Traces the history of the Earth over four billion years, and shows how climate has had an important role to play in the evolution of humans. Posits that the world's rapidly growing human population and its increasing use of energy is the cause of present-day changes in the concentrations of greenhouse gases in the atmosphere. (Author/JRH)

  4. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of apobec

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Bhattacharya, Tanmoy [Los Alamos National Laboratory; Giorgi, Elena [Los Alamos National Laboratory; Gaschen, B [Los Alamos National Laboratory; Daniels, M [Los Alamos National Laboratory

    2009-01-01

    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, represent adaptation for rapid growth in a newly infected host, or reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV -I env coding sequences in 81 very early B SUbtype infections previously shown to have resulted from transmission or expansion of single viruses (n=78) or two closely related viruses (n=3). In these cases the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 envand identified a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either (i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or (ii) in a nucleotide context indicative of APOBEC mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was both embedded in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp4l. We also examined the distribution, extent, and sequence context of insertions and deletions and provide evidence that the length

  5. Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism

    Science.gov (United States)

    Boyd, Eric S.; Costas, Amaya M. Garcia; Hamilton, Trinity L.; Mus, Florence

    2015-01-01

    ABSTRACT Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and

  6. Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism.

    Science.gov (United States)

    Boyd, Eric S; Costas, Amaya M Garcia; Hamilton, Trinity L; Mus, Florence; Peters, John W

    2015-05-01

    Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and later diversified into

  7. The Importance of Lake Overflow Floods for Early Martian Landscape Evolution: Insights From Licus Vallis

    Science.gov (United States)

    Goudge, T. A.; Fassett, C. I.

    2017-01-01

    Open-basin lake outlet valleys are incised when water breaches the basin-confining topography and overflows. Outlet valleys record this flooding event and provide insight into how the lake and surrounding terrain evolved over time. Here we present a study of the paleolake outlet Licus Vallis, a >350 km long, >2 km wide, >100 m deep valley that heads at the outlet breach of an approx.30 km diameter impact crater. Multiple geomorphic features of this valley system suggest it records a more complex evolution than formation from a single lake overflow flood. This provides unique insight into the paleohydrology of lakes on early Mars, as we can make inferences beyond the most recent phase of activity..

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 8. Formation and evolution of yardangs activated by Late Pleistocene tectonic movement in Dunhuang, Gansu Province of China. Yanjie Wang Fadong Wu Xujiao Zhang Peng Zeng Pengfei Ma Yuping Song Hao Chu. Volume 125 Issue 8 December ...

  9. Dynamic Processes of Cross-Tail Current in the Near-Earth Magnetotail

    International Nuclear Information System (INIS)

    Xing-Qiang, Lu; Zhi-Wei, Ma

    2009-01-01

    Current dynamic processes in realistic magnetotail geometry are studied by Hall magnetohydrodynamic (MHD) simulations under various driven conditions and Hall effects. Associated with the external driving force, a thin current sheet with a broad extent is built up in the near-Earth magnetotail. The time evolution for the formation of the current sheet comprises two phases: slow growth and a fast impulsive phase before the near-Earth disruption of the current sheet resulting from the fast magnetic reconnection. The simulation results indicate that as the external driving force increases, the site and the tailward speed of the near-Earth current disruption region are closer to the Earth and faster, respectively. Whether the near-Earth disruption of the current sheet takes place or not is mainly controlled by Hall effects. It is found that there is no sudden disruption of the current sheet in the near-Earth region if the ion inertial length is below d i = 0.04. (geophysics, astronomy, and astrophysics)

  10. The Earth's heterogeneous mantle a geophysical, geodynamical, and geochemical perspective

    CERN Document Server

    Khan, Amir

    2015-01-01

    This book highlights and discusses recent developments that have contributed to an improved understanding of observed mantle heterogeneities and their relation to the thermo-chemical state of Earth's mantle, which ultimately holds the key to unlocking the secrets of the evolution of our planet. This series of topical reviews and original contributions address 4 themes. Theme 1 covers topics in geophysics, including global and regional seismic tomography, electrical conductivity and seismic imaging of mantle discontinuities and heterogeneities in the upper mantle, transition zone and lower mantle. Theme 2 addresses geochemical views of the mantle including lithospheric evolution from analysis of mantle xenoliths, composition of the deep Earth and the effect of water on subduction-zone processes. Theme 3 discusses geodynamical perspectives on the global thermo-chemical structure of the deep mantle. Theme 4 covers application of mineral physics data and phase equilibrium computations to infer the regional-scale ...

  11. Comprehensive Modeling for Off-Earth Mining Optimization and Resource Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The multi-months duration and energy constraints of the Earth-Mars journey are forcing an evolution toward the self-sufficiency of human crews in their readiness to...

  12. The evolution and future of Earth's nitrogen cycle.

    Science.gov (United States)

    Canfield, Donald E; Glazer, Alexander N; Falkowski, Paul G

    2010-10-08

    Atmospheric reactions and slow geological processes controlled Earth's earliest nitrogen cycle, and by ~2.7 billion years ago, a linked suite of microbial processes evolved to form the modern nitrogen cycle with robust natural feedbacks and controls. Over the past century, however, the development of new agricultural practices to satisfy a growing global demand for food has drastically disrupted the nitrogen cycle. This has led to extensive eutrophication of fresh waters and coastal zones as well as increased inventories of the potent greenhouse gas nitrous oxide (N(2)O). Microbial processes will ultimately restore balance to the nitrogen cycle, but the damage done by humans to the nitrogen economy of the planet will persist for decades, possibly centuries, if active intervention and careful management strategies are not initiated.

  13. The Evolution and Future of Earth's Nitrogen Cycle

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Glazer, Alexander N.; Falkowski, Paul G.

    2010-01-01

    , the development of new agricultural practices to satisfy a growing global demand for food has drastically disrupted the nitrogen cycle. This has led to extensive eutrophication of fresh waters and coastal zones as well as increased inventories of the potent greenhouse gas nitrous oxide (N2O). Microbial processes......Atmospheric reactions and slow geological processes controlled Earth's earliest nitrogen cycle, and by similar to 2.7 billion years ago, a linked suite of microbial processes evolved to form the modern nitrogen cycle with robust natural feedbacks and controls. Over the past century, however...... will ultimately restore balance to the nitrogen cycle, but the damage done by humans to the nitrogen economy of the planet will persist for decades, possibly centuries, if active intervention and careful management strategies are not initiated....

  14. Early descriptions of acromegaly and gigantism and their historical evolution as clinical entities.

    Science.gov (United States)

    Mammis, Antonios; Eloy, Jean Anderson; Liu, James K

    2010-10-01

    Giants have been a subject of fascination throughout history. Whereas descriptions of giants have existed in the lay literature for millennia, the first attempt at a medical description was published by Johannes Wier in 1567. However, it was Pierre Marie, in 1886, who established the term "acromegaly" for the first time and established a distinct clinical diagnosis with clear clinical descriptions in 2 patients with the characteristic presentation. Multiple autopsy findings revealed a consistent correlation between acromegaly and pituitary enlargement. In 1909, Harvey Cushing postulated a “hormone of growth" as the underlying pathophysiological trigger involved in pituitary hypersecretion in patients with acromegaly. This theory was supported by his observations of clinical remission in patients with acromegaly in whom he had performed hypophysectomy. In this paper, the authors present some of the early accounts of acromegaly and gigantism, and describe its historical evolution as a medical and surgical entity.

  15. Young Sun, Early Earth and the Origins of Life Lessons for Astrobiology

    CERN Document Server

    Gargaud, Muriel; López-García, Purificación; Montmerle, Thierry; Pascal, Robert

    2012-01-01

    - How did the Sun come into existence? - How was the Earth formed? - How long has Earth been the way it is now, with its combination of oceans and continents? - How do you define “life”? - How did the first life forms emerge? - What conditions made it possible for living things to evolve? All these questions are answered in this colourful textbook addressing undergraduate students in "Origins of Life" courses and the scientifically interested public. The authors take the reader on an amazing voyage through time, beginning five thousand million years ago in a cloud of interstellar dust and ending five hundred million years ago, when the living world that we see today was finally formed. A chapter on exoplanets provides an overview of the search for planets outside the solar system, especially for habitable ones. The appendix closes the book with a glossary, a bibliography of further readings and a summary of the Origins of the Earth and life in fourteen boxes.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 1. A fruit wing of Shorea Roxb. from the Early Miocene ... A new fossil fruit wing of Shorea Roxb. belonging to the family Dipterocarpaceae is described from the Early Miocene sediments of Kachchh, Gujarat. It resembles best the extant species Shorea ...

  17. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon

    DEFF Research Database (Denmark)

    Schiller, Martin; Bizzarro, Martin; Fernandes, Vera Assis

    2018-01-01

    Nucleosynthetic isotope variability among Solar System objects is often used to probe the genetic relationship between meteorite groups and the rocky planets (Mercury, Venus, Earth and Mars), which, in turn, may provide insights into the building blocks of the Earth-Moon system. Using this approach......, it has been inferred that no primitive meteorite matches the terrestrial composition and the protoplanetary disk material from which Earth and the Moon accreted is therefore largely unconstrained. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability of inner...... into the thermally processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The identical calcium isotope composition of Earth and the Moon reported here is a prediction of our model if the Moon-forming impact involved protoplanets or precursors that completed their accretion near...

  18. Neuromuscular study of early branching Diuronotus aspetos (Paucitubulatina) yields insights into the evolution of organs systems in Gastrotricha

    DEFF Research Database (Denmark)

    Bekkouche, Nicolas Tarik; Worsaae, Katrine

    2016-01-01

    BACKGROUND: Diuronotus is one of the most recently described genera of Paucitubulatina, one of the three major clades in Gastrotricha. Its morphology suggests that Diuronotus is an early branch of Paucitubulatina, making it a key taxon for understanding the evolution of this morphologically...... constitute new apomorphies of Paucitubulatina, or even Gastrotricha. In order to test these new evolutionary hypotheses, comparable morphological data from other understudied gastrotrich branches and a better resolution of the basal nodes of the gastrotrich phylogeny are warranted. Nonetheless, the present...

  19. Fire feedbacks over geological time and the evolution of atmospheric oxygen concentration

    Science.gov (United States)

    Mills, B.; Belcher, C.; Lenton, T. M.

    2017-12-01

    During the 4.5 billion year history of the Earth, the concentration of oxygen in the atmosphere has risen from trace levels to today's 21%. Yet over the last 400 million years, O2 concentration appears to have remained within a relatively narrow range (around 15% - 30%), despite dramatic changes in the nature of global biogeochemical cycling. This stability has been crucial for continued animal evolution, and is thought to have arisen through feedbacks between oxygen, wildfire and plant productivity: the strong oxygen- dependence of fire initiation and spread means that global photosynthetic primary productivity is suppressed when oxygen levels are high, and enhanced when levels are low. We present biogeochemical modelling of the long term carbon and oxygen cycles, which aims to capture the operation of the wildfire feedback alongside other key processes. We find that wildfire can effectively stabilize long term oxygen concentrations, but that the nature of this feedback has changed as plant evolution has provided different fuels. Specifically, the evolution of early angiosperms during the Cretaceous period provided new understory fuels that more easily facilitated crown and canopy fires. Adding these dynamics to our model produces a more stable system over long timescales, and the model predicts that oxygen concentration has declined towards the present day - a prediction that is supported by other independent estimates.

  20. Experimental study of heterogeneous organic chemistry induced by far ultraviolet light: Implications for growth of organic aerosols by CH3 addition in the atmospheres of Titan and early Earth

    Science.gov (United States)

    Hong, Peng; Sekine, Yasuhito; Sasamori, Tsutoni; Sugita, Seiji

    2018-06-01

    Formation of organic aerosols driven by photochemical reactions has been observed and suggested in CH4-containing atmospheres, including Titan and early Earth. However, the detailed production and growth mechanisms of organic aerosols driven by solar far ultraviolet (FUV) light remain poorly constrained. We conducted laboratory experiments simulating photochemical reactions in a CH4sbnd CO2 atmosphere driven by the FUV radiations dominated by the Lyman-α line. In the experiments, we analyzed time variations in thickness and infrared spectra of solid organic film formed on an optical window in a reaction cell. Gas species formed by FUV irradiation were also analyzed and compared with photochemical model calculations. Our experimental results show that the growth rate of the organic film decreases as the CH4/CO2 ratio of reactant gas mixture decreases, and that the decrease becomes very steep for CH4/CO2 organic film but that the addition reaction of CH3 radicals onto the organic film with the reaction probability around 10-2 can explain the growth rate. At CH4/CO2 organic film. Our results suggest that organic aerosols would grow through CH3 addition onto the surface during the precipitation of aerosol particles in the middle atmosphere of Titan and early Earth. On Titan, effective CH3 addition would reduce C2H6 production in the atmosphere. On early Earth, growth of aerosol particles would be less efficient than those on Titan, possibly resulting in small-sized monomers and influencing UV shielding.

  1. LCROSS Impact Conditions and Ejecta Evolution: Insight from Experiments

    Science.gov (United States)

    Hermalyn, B.; Schultz, P. H.; Colaprete, A.

    2009-12-01

    The ejecta distribution resulting from an impact event reflects the impact conditions and target material properties. The Lunar CRater Observation and Sensing Satellite (LCROSS) mission will provide a rare look at subsurface materials. The LCROSS impact will excavate regolith from a permanently shadowed crater on the south pole of the moon. The impactor, named the Earth-Departure-Upper-Stage (EDUS), will impact the surface at ~2.5km/s at an angle of greater than 80° from horizontal. The trailing Shepherding Spacecraft (SSc) will record the impact and take measurements of the ejecta in coordination with a comprehensive earth-based observational campaign. Prior studies have explored the predicted ejecta mass/velocity distribution and general ejecta dynamics through computational modeling (Korycansky, et al 2009) and scaling laws(Schultz, 2006, Heldmann et al 2007). At very early times, however, these models and scaling laws break down. It is this high-speed component of the ejected material that will reach the sunlight horizon first and will be recorded by the SSc. Thus to interpret the initial conditions of the impact from the LCROSS ejecta plume, the early-time ejecta distribution must be understood. A suite of impact experiments (performed at the NASA Ames Vertical Gun Range, or AVGR) were designed to interpret LCROSS conditions. These experiments reveal that early in the cratering process, when the projectile is still coupling its energy and momentum to the target surface, ejection velocity is higher than predicted by dimensional scaling laws (Housen, et al 1983). Moreover, the ejection angles of this early-time component are initially lower than predicted, and sweep upward tens of degrees to reach nominal ejection angles (~45° for impacts into sand). Low-density projectiles (such as the EDUS) yield even lower ejection angles throughout much of crater growth, thereby indicating a shallower depth of coupling. An estimate of mass above a given height calculated

  2. Creating a multi-national development platform: Thorium energy and rare earth value chain

    International Nuclear Information System (INIS)

    Kennedy, J.; Kutsch, J.

    2014-01-01

    Rare earths and thorium are linked at the mineralogical level. Changes in thorium regulations and liabilities resulted in the development of excessive market concentrations in the rare earth value chain. High value monazite rare earth resources, a by-product of heavy mineral sands mining, constituted a significant portion of global rare earth supply (and nearly 100% of heavy rare earths) until legislative changes, interpretation and enforcement regarding “source materials” in the early 1980s eliminated these materials from the supply chain.

  3. The early evolution of stars and planets with varying mass

    International Nuclear Information System (INIS)

    Bhattacharjee, S.K.

    1980-09-01

    In this thesis some aspects of stellar and planetary evolution with varying mass are examined. It is divided into two sections. The first section deals with the evolution of stars in the pre-main-sequence phase with mass accretion while in the second section we discuss the spin angular momentum of the planets with mass loss. (author)

  4. Simulation of Prebiotic Processing by Comet and Meteoroid Impact: Implications for Life on Early Earth and Other Planets

    Science.gov (United States)

    Dateo, Christopher E.

    2003-01-01

    We develop a reacting flow model to simulate the shock induced chemistry of comets and meteoroids entering planetary atmospheres. Various atmospheric compositions comprising of simpler molecules (i.e., CH4, CO2, H2O, etc.) are investigated to determine the production efficiency of more complex prebiotic molecules as a function of composition, pressure, and entry velocity. The possible role of comets and meteoroids in creating the inventory of prebiotic material necessary for life on Early Earth is considered. Comets and meteoroids can also introduce new materials from the Interstellar Medium (ISM) to planetary atmospheres. The ablation of water from comets, introducing the element oxygen into Titan's atmosphere will also be considered and its implications for the formation of organic and prebiotic material.

  5. Evidence for ancient atmospheric xenon in Archean rocks and implications for the early evolution of the atmosphere

    Science.gov (United States)

    Pujol, M.; Marty, B.; Burnard, P.; Hofmann, A.

    2012-12-01

    The initial atmospheric xenon isotopic composition has been much debated over the last 4 decades. A Non radiogenic Earth Atmospheric xenon (NEA-Xe) composition has been proposed to be the best estimate of the initial signature ([1]). NEA-Xe consists of modern atmospheric Xe without fission (131-136Xe) or radioactive decay (129Xe) products. However, the isotope composition of such non-radiogenic xenon is very different to that of potential cosmochemical precursors such as solar or meteoritic Xe, as it is mass-fractionated by up to 3-4 % per amu relative to the potential precursors, and it is also elementally depleted relative to other noble gases. Because the Xe isotopic composition of the Archean appears to be intermediate between that of these cosmochemical end-members and that of the modern atmosphere, we argued that isotopic fractionation of atmospheric xenon did not occur early in Earth's history by hydrodynamic escape, as postulated by all other models ([1], [2], [3]), but instead was a continuous, long term process that lasted during at least the Hadean and Archean eons. Taken at face value, the decrease of the Xe isotopic fractionation from 1.6-2.1 % amu-1 3.5 Ga ago ([4]) to 1 % amu-1 3.0 Ga ago (Ar-Ar age in fluid inclusions trapped in quartz from the same Dresser Formation, [5]) could reflect a secular variation of the atmospheric Xe signature. Nevertheless, up until now, all data showing an isotopic mass fractionation have been measured in rocks and fluids from the same formation (Dresser Formation, Western Australia, aged 3.5 Ga), and have yet to be confirmed in rocks from different locations. In order to better constrain xenon isotopic fractionation of the atmosphere through time, we decided to analyze barites from different ages, geological environments and metamorphism grade. We started this study with barite from the Fig Tree Formation (South Africa, aged 3.26 Ga). This barite was sampled in old mines so have negligible modern exposure time. It is

  6. Were Ocean Impacts an Important Mechanism to Deliver Meteoritic Organic Matter to the Early Earth? Some Inferences from Eltanin

    Science.gov (United States)

    Kyte, Frank T.; Gersonde, Rainer; Kuhn. Gerhard

    2002-01-01

    Several workers have addressed the potential for extraterrestrial delivery of volatles, including water and complex organic compounds, to the early Earth. For example, Chyba and Sagan (1992) argued that since impacts would destroy organic matter, most extraterrestrial organics must be delivered in the fine-fractions of interplanetary dust. More recent computer simulations (Pierazzo and Chyba, 1999), however, have shown that substantial amounts of amino acids may survive the impacts of large (km-sized) comets and that this may exceed the amounts derived from IDPs or Miller-Urey synthesis in the atmosphere. Once an ocean developed on the early Earth, impacts of small ,asteroids and comets into deep-ocean basins were potentially common and may have been the most likely events to deliver large amounts of organics. The deposits of the late Pliocene impact of the Eltanin asteroid into the Bellingshausen Sea provide the only record of a deep-ocean (approx. 5 km) impact that can be used to constrain models of these events. This impact was first discovered in 1981 as an Ir anomaly in sediment cores collected by the USNS Eltanin in 1965 (Kyte et al., 1981). In 1995, Polarstem expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5S, 91 W) contained well-preserved impact deposits that include disturbed ocean sediments and meteoritic impact ejecta (Gersonde et al., 1997). The latter is composed of shock- melted asteroidal materials and unmelted meteorites. In 2001, the FS Polarstem returned to the impact area during expedition ANT XVIII/5a. At least 16 cores were recovered that contain ejecta deposits. These cores and geophysical data from the expedition can be used to map the effects of the impact over a large region of the ocean floor.

  7. [Establishment of malaria early warning system in Jiangsu Province II application of digital earth system in malaria epidemic management and surveillance].

    Science.gov (United States)

    Wang, Wei-Ming; Zhou, Hua-Yun; Liu, Yao-Bao; Li, Ju-Lin; Cao, Yuan-Yuan; Cao, Jun

    2013-04-01

    To explore a new mode of malaria elimination through the application of digital earth system in malaria epidemic management and surveillance. While we investigated the malaria cases and deal with the epidemic areas in Jiangsu Province in 2011, we used JISIBAO UniStrong G330 GIS data acquisition unit (GPS) to collect the latitude and longitude of the cases located, and then established a landmark library about early-warning areas and an image management system by using Google Earth Free 6.2 and its image processing software. A total of 374 malaria cases were reported in Jiangsu Province in 2011. Among them, there were 13 local vivax malaria cases, 11 imported vivax malaria cases from other provinces, 20 abroad imported vivax malaria cases, 309 abroad imported falciparum malaria cases, 7 abroad imported quartan malaria cases (Plasmodium malaria infection), and 14 abroad imported ovale malaria cases (P. ovale infection). Through the analysis of Google Earth Mapping system, these malaria cases showed a certain degree of aggregation except the abroad imported quartan malaria cases which were highly sporadic. The local vivax malaria cases mainly concentrated in Sihong County, the imported vivax malaria cases from other provinces mainly concentrated in Suzhou City and Wuxi City, the abroad imported vivax malaria cases concentrated in Nanjing City, the abroad imported falciparum malaria cases clustered in the middle parts of Jiangsu Province, and the abroad imported ovale malaria cases clustered in Liyang City. The operation of Google Earth Free 6.2 is simple, convenient and quick, which could help the public health authority to make the decision of malaria prevention and control, including the use of funds and other health resources.

  8. Early resistance change and stress/electromigrationmodeling in aluminium interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Schoenmaker, W.

    1997-01-01

    A complete description for early resistance change and two dimensional simulation of mechanical stress evolution in confined Al interconnects, related to the electromigration, is given in this paper. The model, combines the stress/ vacancy concentration evolution with the early resistance change of

  9. Rare Earth Element Behaviour in Apatite from the Olympic Dam Cu–U–Au–Ag Deposit, South Australia

    Directory of Open Access Journals (Sweden)

    Sasha Krneta

    2017-08-01

    Full Text Available Apatite is a common magmatic accessory in the intrusive rocks hosting the giant ~1590 Ma Olympic Dam (OD iron-oxide copper gold (IOCG ore system, South Australia. Moreover, hydrothermal apatite is a locally abundant mineral throughout the altered and mineralized rocks within and enclosing the deposit. Based on compositional data for zoned apatite, we evaluate whether changes in the morphology and the rare earth element and Y (REY chemistry of apatite can be used to constrain the fluid evolution from early to late hydrothermal stages at OD. The ~1.6 Ga Roxby Downs granite (RDG, host to the OD deposit, contains apatite as a magmatic accessory, locally in the high concentrations associated with mafic enclaves. Magmatic apatite commonly contains REY-poor cores and REY-enriched margins. The cores display a light rare earth element (LREE-enriched chondrite-normalized fractionation pattern with a strong negative Eu anomaly. In contrast, later hydrothermal apatite, confined to samples where magmatic apatite has been obliterated due to advanced hematite-sericite alteration, displays a conspicuous, convex, middle rare earth element (MREE-enriched pattern with a weak negative Eu anomaly. Such grains contain abundant inclusions of florencite and sericite. Within high-grade bornite ores from the deposit, apatite displays an extremely highly MREE-enriched chondrite-normalized fractionation trend with a positive Eu anomaly. Concentrations of U and Th in apatite mimic the behaviour of ∑REY and are richest in magmatic apatite hosted by RDG and the hydrothermal rims surrounding them. The shift from characteristic LREE-enriched magmatic and early hydrothermal apatite to later hydrothermal apatite displaying marked MREE-enriched trends (with lower U, Th, Pb and ∑REY concentrations reflects the magmatic to hydrothermal transition. Additionally, the strong positive Eu anomaly in the MREE-enriched trends of apatite in high-grade bornite ores are attributable to

  10. Earth's Paleomagnetosphere and Planetary Habitability

    Science.gov (United States)

    Tarduno, J. A.; Blackman, E. G.; Oda, H.; Bono, R. K.; Carroll-Nellenback, J.; Cottrell, R. D.; Nimmo, F.

    2017-12-01

    The geodynamo is thought to play an important role in protecting Earth's hydrosphere, vital for life as we know it, from loss due to the erosive potential of the solar wind. Here we consider the mechanisms and history of this shielding. A larger core dynamo magnetic field strength provides more pressure to abate the solar wind dynamic pressure, increasing the magnetopause radius. However, the larger magnetopause also implies a larger collecting area for solar wind flux during phases of magnetic reconnection. The important variable is not mass capture but energy transfer, which does not scale linearly with magnetosphere size. Moreover, the ordered field provides the magnetic topology for recapturing atmospheric components in the opposite hemisphere such that the net global loss might not be greatly affected. While a net protection role for magnetospheres is suggested, forcing by the solar wind will change with stellar age. Paleomagnetism utilizing the single silicate crystal approach, defines a relatively strong field some 3.45 billion years ago (the Paleoarchean), but with a reduced magnetopause of 5 Earth radii, implying the potential for some atmospheric loss. Terrestrial zircons from the Jack Hills (Western Australia) and other localities host magnetic inclusions, whose magnetization has now been recorded by a new generation of ultra-sensitive 3-component SQUID magnetometer (U. Rochester) and SQUID microscope (GSJ/AIST). Paleointensity data suggest the presence of a terrestrial dynamo and magnetic shielding for Eoarchean to Hadean times, at ages as old as 4.2 billion years ago. However, the magnetic data suggest that for intervals >100,000 years long, magnetopause standoff distances may have reached 3 to 4 Earth radii or less. The early inception of the geodynamo, which probably occurred shortly after the lunar-forming impact, its continuity, and an early robust hydrosphere, appear to be key ingredients for Earth's long-term habitability.

  11. Enstatite chondrites EL3 as building blocks for the Earth: The debate over the 146Sm-142Nd systematics

    Science.gov (United States)

    Boyet, M.; Bouvier, A.; Frossard, P.; Hammouda, T.; Garçon, M.; Gannoun, A.

    2018-04-01

    The 146Sm-142Nd extinct decay scheme (146Sm half-life of 103 My) is a powerful tool to trace early Earth silicate differentiation. Differences in 142Nd abundance measured between different chondrite meteorite groups and the modern Earth challenges the interpretation of the 142Nd isotopic variations found in terrestrial samples because the origin of the Earth and the nature of its building blocks is still an ongoing debate. As bulk meteorites, the enstatite chondrites (EC) have isotope signatures that are the closest to the Earth value with an average small deficit of ∼10 ppm in 142Nd relative to modern terrestrial samples. Here we review all the Nd isotope data measured on EC so far, and present the first measurements on an observed meteorite fall Almahata Sitta containing pristine fragments of an unmetamorphosed enstatite chondrite belonging to the EL3 subgroup. Once 142Nd/144Nd ratios are normalized to a common chondritic evolution, samples from the EC group (both EL and EH) have a deficit in 142Nd but the dispersion is important (μ142 Nd = - 10 ± 12 (2SD) ppm). This scatter reflects their unique mineralogy associated to their formation in reduced conditions (low fO2 or high C/O). Rare-earth elements are mainly carried by the sulfide phase oldhamite (CaS) that is more easily altered than silicates by weathering since most of the EC meteorites are desert finds. The EL6 have fractionated rare-earth element patterns with depletion in the most incompatible elements. Deviations in Nd mass independent stable isotope ratios in enstatite chondrites relative to terrestrial standard are not resolved with the level of analytical precision achieved by modern mass spectrometry techniques. Here we show that enstatite chondrites from the EL3 and EL6 subgroups may come from different parent bodies. Samples from the EL3 subgroup have Nd (μ142 Nd = - 0.8 ± 7.0, 2SD) and Ru isotope ratios undistinguishable from that of the Bulk Silicate Earth. EL3 samples have never been

  12. The chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    1986-01-01

    The chemical evolution of galaxies is reviewed with particular attention to the theoretical interpretation of the distribution and abundances of elements in stars and the interstellar medium. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. The metallicity distribution of the solar vicinity, age metallicity relationship, abundance gradients in the galaxy, external galaxies, star formation and evolution, major sites of nucleosynthesis, yields of chemical elements, chemical models, and the galactic disk, are all discussed. (U.K.)

  13. Second Symposium on Chemical Evolution and the Origin of Life

    International Nuclear Information System (INIS)

    Devincenzi, D.L.; Dufour, P.A.

    1986-05-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI)

  14. Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill

    International Nuclear Information System (INIS)

    Dudina, Dina V.; Lomovsky, Oleg I.; Valeev, Konstantin R.; Tikhov, Serguey F.; Boldyreva, Natalya N.; Salanov, Aleksey N.; Cherepanova, Svetlana V.; Zaikovskii, Vladimir I.; Andreev, Andrey S.; Lapina, Olga B.; Sadykov, Vladislav A.

    2015-01-01

    Highlights: • Phase formation during early stages of Cu–Al mechanical alloying was studied. • The products of mechanical alloying are of highly non-equilibrium character. • X-ray amorphous phases are present in the products of mechanical alloying. • An Al-rich X-ray amorphous phase is distributed between the crystallites. - Abstract: We report the phase and microstructure evolution of the Cu–13 wt.% Al mixture during treatment in a high-energy planetary ball mill with a particular focus on the early stages of mechanical alloying. Several characterization techniques, including X-ray diffraction phase analysis, nuclear magnetic resonance spectroscopy, differential dissolution, thermal analysis, and electron microscopy/elemental analysis, have been combined to study the evolution of the phase composition of the mechanically alloyed powders and describe the microstructure of the multi-phase products of mechanical alloying at different length scales. The following reaction sequence has been confirmed: Cu + Al → CuAl 2 (+Cu) → Cu 9 Al 4 + (Cu) → Cu(Al). The phase evolution was accompanied by the microstructure changes, the layered structure of the powder agglomerates disappearing with milling time. This scheme is further complicated by the processes of copper oxidation, reduction of copper oxides by metallic aluminum, and by variation of the stoichiometry of Cu(Al) solid solutions with milling time. Substantial amounts of X-ray amorphous phases were detected as well. Differential dissolution technique has revealed that a high content of aluminum in the Cu(Al) solid solution-based powders is due to the presence of Al-rich phases distributed between the Cu(Al) crystallites

  15. A model of the microphysical evolution of a cloud

    International Nuclear Information System (INIS)

    Zinn, J.

    1994-01-01

    The earth's weather and climate are influenced strongly by phenomena associated with clouds. Therefore, a general circulation model (GCM) that models the evolution of weather and climate must include an accurate physical model of the clouds. This paper describes efforts to develop a suitable cloud model. It concentrates on the microphysical processes that determine the evolution of droplet and ice crystal size distributions, precipitation rates, total and condensed water content, and radiative extinction coefficients

  16. A contribution to the study of plant development evolution based on gene co-expression networks

    Directory of Open Access Journals (Sweden)

    Francisco J. Romero-Campero

    2013-08-01

    Full Text Available Phototrophic eukaryotes are among the most successful organisms on Earth due to their unparalleled efficiency at capturing light energy and fixing carbon dioxide to produce organic molecules. A conserved and efficient network of light-dependent regulatory modules could be at the bases of this success. This regulatory system conferred early advantages to phototrophic eukaryotes that allowed for specialization, complex developmental processes and modern plant characteristics. We have studied light-dependent gene regulatory modules from algae to plants employing integrative-omics approaches based on gene co-expression networks. Our study reveals some remarkably conserved ways in which eukaryotic phototrophs deal with day length and light signaling. Here we describe how a family of Arabidopsis transcription factors involved in photoperiod response has evolved from a single algal gene according to the innovation, amplification and divergence theory of gene evolution by duplication. These modifications of the gene co-expression networks from the ancient unicellular green algae Chlamydomonas reinhardtii to the modern brassica Arabidopsis thaliana may hint on the evolution and specialization of plants and other organisms.

  17. ON THE PROGENITOR AND EARLY EVOLUTION OF THE TYPE II SUPERNOVA 2009kr

    International Nuclear Information System (INIS)

    Fraser, M.; Takats, K.; Pastorello, A.; Smartt, S. J.; Botticella, M-T.; Valenti, S.; Mattila, S.; Ergon, M.; Sollerman, J.; Arcavi, I.; Gal-Yam, A.; Benetti, S.; Bufano, F.; Crockett, R. M.; Danziger, I. J.; Maund, J. R.; Taubenberger, S.; Turatto, M.

    2010-01-01

    We identify a source coincident with SN 2009kr in Hubble Space Telescope pre-explosion images. The object appears to be a single point source with an intrinsic color V - I = 1.1 ± 0.25 and M V = -7.6 ± 0.6. If this is a single star, it would be a yellow supergiant of log L/L sun ∼ 5.1 and a mass of 15 +5 -4 M sun . The spatial resolution does not allow us yet to definitively determine if the progenitor object is a single star, a binary system, or a compact cluster. We show that the early light curve is similar to a Type IIL SN, but the prominent Hα P-Cygni profiles and the signature of the end of a recombination phase are reminiscent of a Type IIP. The evolution of the expanding ejecta will play an important role in understanding the progenitor object.

  18. A complete skull of an early cretaceous sauropod and the evolution of advanced titanosaurians.

    Directory of Open Access Journals (Sweden)

    Hussam Zaher

    Full Text Available Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.

  19. [Perinatal model of human transition from hypogravity to the earth's gravity based on the electromyogram nonlinear characteristics].

    Science.gov (United States)

    Meĭgal, A Iu; Voroshilov, A S

    2009-01-01

    Interferential electromyogram (iEMG) was analyzed in healthy newborn infants (n=29) during the first 24 hours of life as a model of transition from hypogravity (intrauterine immersion) to the Earth's gravity (postnatal period). Nonlinear instruments of iEMG analysis (correlation dimension, entropy and fractal dimension) reflected the complexity, chaotic character and predictability of signals from the leg and arm antagonistic muscles. Except for m. gastrocnemius, in all other musles iEMG fractal dimension was shown to grow as the postnatal period extended. Low fractal and correlation dimensions and entropy marked flexor muscles, particularly against low iEMG amplitude suggesting a better congenital programming for the flexors as compared to the extensors. It is concluded that the early ontogenesis model can be practicable in studying the evolution and states of antigravity functions.

  20. Evolution of telemedicine in the space program and earth applications

    Science.gov (United States)

    Nicogossian, A. E.; Pober, D. F.; Roy, S. A.

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  1. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution.

    Science.gov (United States)

    Nowicka, Beatrycze; Kruk, Jerzy

    2016-01-01

    Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation

    Science.gov (United States)

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2016-12-01

    NH3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH3 from atmospheric N2 and oceanic H2O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH3. Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.

  3. Paleomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, G.H.M.A.

    2004-01-01

    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally

  4. Composition of LHB Comets and Their Influence on the Early Earth Atmosphere Composition

    Science.gov (United States)

    Tornow, C.; Kupper, S.; Ilgner, M.; Kuehrt, E.; Motschmann, U.

    2011-01-01

    Two main processes were responsible for the composition of this atmosphere: chemical evolution of the volatile fraction of the accretion material forming the planet and the delivery of gasses to the planetary surface by impactors during the late heavy bombardment (LHB). The amount and composition of the volatile fraction influences the outgassing of the Earth mantle during the last planetary formation period. A very weakened form of outgassing activity can still be observed today by examining the composition of volcanic gasses. An enlightenment of the second process is based on the sparse records of the LHB impactors resulting from the composition of meteorites, observed cometary comas, and the impact material found on the Moon. However, for an assessment of the influence of the outgassing on the one hand and the LHB event on the other, one has to supplement the observations with numerical simulations of the formation of volatiles and their incorporation into the accretion material which is the precursors of planetary matter, comets and asteroids. These simulations are performed with a combined hydrodynamic-chemical model of the solar nebula (SN). We calculate the chemical composition of the gas and dust phase of the SN. From these data, we draw conclusions on the upper limits of the water content and the amount of carbon and nitrogen rich volatiles incorporated later into the accretion material. Knowing these limits we determine the portion of major gas compounds delivered during the LHB and compare it with the related quantities of the outgassed species.

  5. NASA's Earth Observing System (EOS): Delivering on the Dream, Today and Tomorrow

    Science.gov (United States)

    Kelly, Angelita C.; Johnson, Patricia; Case, Warren F.

    2010-01-01

    This paper describes the successful operations of NASA's Earth Observing System (EOS) satellites over the past 10 years and the plans for the future. Excellent operations performance has been a key factor in the overall success of EOS. The EOS Program was conceived in the 1980s and began to take shape in the early 1990s. EOS consists of a series of satellites that study the Earth as an interrelated system. It began with the launch of Terra in December 1999, followed by Aqua in May 2002, and Aura in July 2004. A key EOS goal is to provide a long-term continuous data set to enable the science community to develop a better understanding of land, ocean, and atmospheric processes and their interactions. EOS has produced unprecedented amounts of data which are used all over the world free of charge. Mission operations have resulted in data recovery for Terra, Aqua, and Aura that have consistently exceeded mission requirements. The paper describes the ground systems and organizations that control the EOS satellites, capture the raw data, and distribute the processed science data sets. The paper further describes how operations have evolved since 1999. Examples of this evolution include (a) the implementation of new mission safety requirements for orbital debris monitoring; (b) technology upgrades to keep facilities at the state of the art; (c) enhancements to meet changing security requirements; and (d) operations management of the 2 international Earth Observing Constellations of 11 satellites known as the "Morning Constellation" and the "A-Train". The paper concludes with a view into the future based on the latest spacecraft status, lifetime projections, and mission plans.

  6. A Tale of Two Earths: Reconciling the Lunar and Terrestrial Hadean Records

    OpenAIRE

    Boehnke, Patrick

    2016-01-01

    Studying early Earth history is complicated by the fact that the rock record doesn’t extend past 4 Ga and our only record for the Hadean (>4 Ga) comes to us from detrital zircons from the Jack Hills in Western Australia. The Hadean zircon record extends back to almost 4.4 Ga and has revealed that the early Earth may have had liquid water, a felsic crust, plate boundary interactions, and possibly a biosphere. On the other hand, analyses of lunar and meteoritic samples are used to argue for a...

  7. Human impact on the planet: an earth system science perspective and ethical considerations

    Science.gov (United States)

    Williams, Richard S.

    2002-01-01

    The modern Earth Narrative, the scientific story of the 4.5 billion-year natural and human history of the Earth, has emerged from the solid foundation of two factual concepts: Deep (or Geologic) Time and Biological Evolution. spread acceptance of the Earth Narrative is critically important as we begin the third millennium, because it provides a clear understanding of the growing impact of human population growth and associated activities on the Earth System, especially the negative impact on Earth?s biosphere. It is important for humans to realize that we are but one of 4,500 species of mammals that exist on Earth and that we are but one species in the estimated 30 to 100 million species that form the complex biosphere. We also need to recognize that all species exist within the physical limits imposed by the geosphere. We are totally dependent on the biosphere for food, oxygen, and other necessities of life. mans are one of the latest results of biological evolution operating over a long period of Geologic Time. We find ourselves on Earth, after 4.5 billion years of Earth history by chance, not by design. Humans have become so successful at modifying their environment that many of the natural limitations on the expansion of populations of our fellow animals have been overcome by technological and cultural innovations. According to Peter Raven, ?Humans, at a current population of 6 billion [expected to nearly double by 2050], are consuming or wasting about 50 percent of the total net biological productivity on land and 50 percent of the available supply of freshwater. The overwhelming and expanding human presence leaves less and less room in the environment for other biota.? st century will be a pivotal time in the fate of Earth?s biosphere. Whereas human modification of the geosphere will slowly recover over time, human changes to the biosphere are a far more consequential matter? extinction of a species is forever! Will humans effectively use our new knowledge of

  8. Current NASA Earth Remote Sensing Observations

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  9. Deposition and early hydrologic evolution of Westwater Canyon wet alluvial-fan system

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1980-01-01

    The Westwater Canyon Member is one of several large, low-gradient alluvial fans that compose the Morrison Formation in the Four Corners area. Morrison fans were deposited by major laterally migrating streams entering a broad basin bounded by highlands to the west and south. The Westwater Canyon sand framework consists of a downfan succession of 1) proximal braided channel, 2) straight bed-load channel, 3) sinuous mixed-load channel, and 4) distributary mixed-load-channel sand bodies. Regional sand distribution and facies patterns are highly digitate and radiate from a point source located northwest of Gallup, New Mexico. Early ground-water flow evolution within the Westwater Canyon fan aquifer system can be inferred by analogy with Quaternary wet-fan deposits and by the interpreted paragenetic sequence of diagenetic features present. Syndepositional flow was controlled by the downfan hydrodynamic gradient and the high horizontal and vertical transmissivity of the sand-rich fan aquifer. Dissolution and transport of soluble humate would be likely in earliest ground water, which was abundant, fresh, and slightly alkaline. With increasing confinement of the aquifer below less permeable tuffaceous Brushy Basin deposits and release of soluble constituents from volcanic ash, flow patterns stabilized, and relatively more saline, uranium-rich ground water permeated the aquifer. Uranium mineralization occurred during this early postdepositional, semiconfined flow phase. Development of overlying Dakota swamps suggests a shallow water table indicative of regional dischare or stagnation. In either event, only limited downward flux of acidic water is recorded by local, bleached, kaolinized zones where the Westwater Canyon directly underlies the Dakota swamps. Subsequent ground-water flow phases have further obscured primary alteration patterns and caused local oxidation and redistribution of uranium

  10. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Explore the Origin and Evolution of the Early Solar System

    Science.gov (United States)

    Bell, J. F., III; Olkin, C.; Castillo, J. C.

    2015-12-01

    The orbital properties, compositions, and physical properties of the diverse populations of small outer solar system bodies provide a forensic map of how our solar system formed and evolved. Perhaps the most potentially diagnostic, but least explored, of those populations are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. More than 6200 Jupiter Trojans are presently known, but these are predicted to be only a small fraction of the 500,000 to 1 million Trojans >1 km in size. The Trojans are hypothesized to be either former Kuiper Belt Objects (KBOs) that were scattered into the inner solar system by early giant planet migration and then trapped in the 1:1 Jupiter mean motion resonance, or bodies formed near 5 AU in a much more quiescent early solar system, and then trapped at L4 and L5. The 2011 Planetary Science Decadal Survey identified important questions about the origin and evolution of the solar system that can be addressed by studying of the Trojan asteroids, including: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft? The Trojan Tour and Rendezvous (TTR) is a New Frontiers-class mission designed to answer these questions, and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of a large number of these objects,, and orbital characterization of at least one large Trojan, TTR will enable the first-time exploration of this population. Our primary mission goals are to characterize the overall surface geology

  11. Understanding Paleoclimate and Human Evolution Through the Hominin Sites and Paleolakes Drilling Project

    Directory of Open Access Journals (Sweden)

    Kaye Reed

    2009-09-01

    Full Text Available Understanding the evolution of humans and our close relatives is one of the enduring scientific issues of modern times. Since the time of Charles Darwin, scientists have speculated on how and when we evolved and what conditions drove this evolutionary story. The detective work required to address these questions is necessarily interdisciplinary,involving research in anthropology, archaeology, human genetics and genomics, and the earth sciences. In addition to the difficult tasks of finding, describing, and interpreting hominin fossils (the taxonomic tribe which includes Homo sapiens and our close fossil relatives from the last 6 Ma, much of modern geological research associated with paleoanthropology involves understanding the geochronologic and paleoenvironmental context of those fossils. When were they entombed in the sediments? What were the local and regional climatic conditions that early hominins experienced? How did local (watershed scale and regional climate processes combine with regional tectonic boundary conditions to influence hominin food resources, foraging patterns, and demography? How and when did these conditions vary from humid to dry, or cool to warm? Can the history of those conditions (Vrba, 1988; Potts, 1996 be related to the evolution, diversification, stasis, or extinction of hominin species?

  12. Migration and the formation of systems of hot super-Earths and Neptunes

    OpenAIRE

    Terquem, Caroline; Papaloizou, John C. B.

    2006-01-01

    The existence of extrasolar planets with short orbital periods suggests that planetary migration induced by tidal interaction with the protoplanetary disk is important. Cores and terrestrial planets may undergo migration as they form. In this paper we investigate the evolution of a population of cores with initial masses in the range 0.1-1 earth mass embedded in a disk. Mutual interactions lead to orbit crossing and mergers, so that the cores grow during their evolution. Interaction with the ...

  13. Diversification of the rare-earth business in the existing enterprises

    Science.gov (United States)

    Bogdanov, S. V.; Grishaev, S. I.; Yazev, V. A.

    2013-12-01

    The development of the modern rare-earth business is analyzed, and the possibilities of using a mathematical description of the prospects of this business on the basis of nonlinear evolution equations are estimated. The well-known methods of describing the life cycle of the economic activity of a commercial company in the closed multisector model of market economics is used to determine the boundaries of changing the average labor productivity during the diversification of business on operating Russian enterprises that produce a wide range of products and are intended to manufacture new types of high-technology rare-earth metal products.

  14. The evolution of the Krebs cycle: A promising subject for meaningful learning of biochemistry.

    Science.gov (United States)

    da Costa, Caetano; Galembeck, Eduardo

    2016-05-06

    Evolution has been recognized as a key concept for biologists. To enhance comprehension and motivate biology undergraduates for the contents of central energetic metabolism, we addressed the Krebs cycle structure and functions in an evolutionary view. To this end, we created a study guide that contextualizes the emergence of the cyclic pathway, in light of the prokaryotic influence since the early anaerobic condition of the Earth to increase oxygen in the atmosphere. The study guide is composed of three interrelated sections: (1) a problem, designed to arouse curiosity, inform and motivate students, (2) a text about life evolution, including early microorganisms and the emergence of the Krebs cycle, and (3) questions for debate. The activity consisted on individual reading and peer discussion based on this written material, under the guidance of the instructors. The questions were designed to foster debate in an ever-increasing level of complexity and to strengthen the main contextual aspects leading to emergence, evolving, and permanency of a complex metabolic pathway. Based on classroom observation, analysis of student's written responses, and individual interviews, we noticed they were engaged and motivated by the task, especially during group discussion. The whole experience suggests that the study guide was a stimulus to broaden the comprehension of the Krebs cycle, reinforcing the evolutionary approach as an important subject for learning purposes. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:288-296, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses.

    Science.gov (United States)

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.

  16. Atmospheric carbon dioxide and the long-term control of the Earth's climate

    Directory of Open Access Journals (Sweden)

    J. H. Carver

    1995-07-01

    Full Text Available A CO2-weathering model has been used to explore the possible evolution of the Earth's climate as the Sun steadily brightened throughout geologic time. The results of the model calculations can be described in terms of three, qualitatively different, "Megaclimates". Mega-climate 1 resulted from a period of rapid outgassing in the early Archean, with high, but declining, temperatures caused by the small weathering rates on a largely water-covered planet. Mega-climate 2 began about 3 Gyear ago as major continental land masses developed, increasing the weathering rate in the early Proterozoic and thereby depleting the atmospheric CO2 concentration. This process produced the first Precambrian glaciations about 2.3 Gyear ago. During Mega-climate 2, evolutionary biological processes increased the surface weatherability in incremental steps and plate tectonics modulated the CO2 outgassing rate with an estimated period of 150 Myear (approximately one-half the period for the formation and breakup of super continents. Throughout Mega-climate 2 the surface temperature was controlled by variations in the atmospheric CO2 level allowing transitions between glacial and non-glacial conditions. The results of the model for Mega-climate 2 are in agreement with the occurrence (and absence of glaciations in the geologic record. Extending the model to the future suggests that CO2 control of the Earth's temperature will no longer be able to compensate for a solar flux that continues to increase. The present level of atmospheric CO2 is so small that further reduction in CO2 cannot prevent the Earth from experiencing Mega-climate 3 with steadily increasing surface temperatures caused by the continued brightening of the Sun. During Mega-climate 3, the main danger to the biosphere would come not from an increasing temperature but from a decreasing (rather than an increasing CO2 level which could, in time, fall below 0.5 PAL, causing serious damage to the biosphere

  17. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2017-02-28

    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  18. Evolution of the solar 'constant'

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M J

    1980-06-01

    Variations in solar luminosity over geological time are discussed in light of the effect of the solar constant on the evolution of life on earth. Consideration is given to long-term (5 - 7% in a billion years) increases in luminosity due to the conversion of hydrogen into helium in the solar interior, temporary enhancements to solar luminosity due to the accretion of matter from the interstellar medium at intervals on the order of 100 million years, and small-amplitude rapid fluctuations of luminosity due to the stochastic nature of convection on the solar surface. It is noted that encounters with dense interstellar clouds could have had serious consequences for life on earth due to the peaking of the accretion-induced luminosity variation at short wavelengths.

  19. World Wind 3D Earth Viewing

    Science.gov (United States)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom

    2007-01-01

    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.

  20. A multi-wavelength study of the evolution of early-type galaxies in groups: the ultraviolet view

    Science.gov (United States)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Bianchi, L.; Plana, H.; Trinchieri, G.; Uslenghi, M.; Wolter, A.

    2018-04-01

    The ultraviolet-optical colour magnitude diagram of rich galaxy groups is characterised by a well developed Red Sequence, a Blue Cloud and the so-called Green Valley. Loose, less evolved groups of galaxies which are probably not virialised yet may lack a well defined Red Sequence. This is actually explained in the framework of galaxy evolution. We are focussing on understanding galaxy migration towards the Red Sequence, checking for signatures of such a transition in their photometric and morphological properties. We report on the ultraviolet properties of a sample of early-type (ellipticals+S0s) galaxies inhabiting the Red Sequence. The analysis of their structures, as derived by fitting a Sérsic law to their ultraviolet luminosity profiles, suggests the presence of an underlying disk. This is the hallmark of dissipation processes that still must have a role to play in the evolution of this class of galaxies. Smooth particle hydrodynamic simulations with chemo-photometric implementations able to match the global properties of our targets are used to derive their evolutionary paths through ultraviolet-optical colour magnitude diagrams, providing some fundamental information such as the crossing time through the Green Valley, which depends on their luminosity. The transition from the Blue Cloud to the Red Sequence takes several Gyrs, being about 3-5 Gyr for the brightest galaxies and longer for fainter ones, if occurring. The photometric study of nearby galaxy structures in the ultraviolet is seriously hampered by either the limited field of view of the cameras (e.g., in Hubble Space Telescope) or by the low spatial resolution of the images (e.g., in the Galaxy Evolution Explorer). Current missions equipped with telescopes and cameras sensitive to ultraviolet wavelengths, such as Swift- UVOT and Astrosat-UVIT, provide a relatively large field of view and a better resolution than the Galaxy Evolution Explorer. More powerful ultraviolet instruments (size, resolution