WorldWideScience

Sample records for early drosophila embryo

  1. Stable, precise, and reproducible patterning of bicoid and hunchback molecules in the early Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Yurie Okabe-Oho

    2009-08-01

    Full Text Available Precise patterning of morphogen molecules and their accurate reading out are of key importance in embryonic development. Recent experiments have visualized distributions of proteins in developing embryos and shown that the gradient of concentration of Bicoid morphogen in Drosophila embryos is established rapidly after fertilization and remains stable through syncytial mitoses. This stable Bicoid gradient is read out in a precise way to distribute Hunchback with small fluctuations in each embryo and in a reproducible way, with small embryo-to-embryo fluctuation. The mechanisms of such stable, precise, and reproducible patterning through noisy cellular processes, however, still remain mysterious. To address these issues, here we develop the one- and three-dimensional stochastic models of the early Drosophila embryo. The simulated results show that the fluctuation in expression of the hunchback gene is dominated by the random arrival of Bicoid at the hunchback enhancer. Slow diffusion of Hunchback protein, however, averages out this intense fluctuation, leading to the precise patterning of distribution of Hunchback without loss of sharpness of the boundary of its distribution. The coordinated rates of diffusion and transport of input Bicoid and output Hunchback play decisive roles in suppressing fluctuations arising from the dynamical structure change in embryos and those arising from the random diffusion of molecules, and give rise to the stable, precise, and reproducible patterning of Bicoid and Hunchback distributions.

  2. Early development of Drosophila embryos requires Smc5/6 function during oogenesis.

    Science.gov (United States)

    Tran, Martin; Tsarouhas, Vasilios; Kegel, Andreas

    2016-07-15

    Mutations in structural maintenance of chromosomes (Smc) proteins are frequently associated with chromosomal abnormalities commonly observed in developmental disorders. However, the role of Smc proteins in development still remains elusive. To investigate Smc5/6 function during early embryogenesis we examined smc5 and smc6 mutants of the fruit fly Drosophila melanogaster using a combination of reverse genetics and microscopy approaches. Smc5/6 exhibited a maternally contributed function in maintaining chromosome stability during early embryo development, which manifested as female subfertility in its absence. Loss of Smc5/6 caused an arrest and a considerable delay in embryo development accompanied by fragmented nuclei and increased anaphase-bridge formation, respectively. Surprisingly, early embryonic arrest was attributable to the absence of Smc5/6 during oogenesis, which resulted in insufficient repair of pre-meiotic and meiotic DNA double-strand breaks. Thus, our findings contribute to the understanding of Smc proteins in higher eukaryotic development by highlighting a maternal function in chromosome maintenance and a link between oogenesis and early embryogenesis.

  3. Early development of Drosophila embryos requires Smc5/6 function during oogenesis

    Directory of Open Access Journals (Sweden)

    Martin Tran

    2016-07-01

    Full Text Available Mutations in structural maintenance of chromosomes (Smc proteins are frequently associated with chromosomal abnormalities commonly observed in developmental disorders. However, the role of Smc proteins in development still remains elusive. To investigate Smc5/6 function during early embryogenesis we examined smc5 and smc6 mutants of the fruit fly Drosophila melanogaster using a combination of reverse genetics and microscopy approaches. Smc5/6 exhibited a maternally contributed function in maintaining chromosome stability during early embryo development, which manifested as female subfertility in its absence. Loss of Smc5/6 caused an arrest and a considerable delay in embryo development accompanied by fragmented nuclei and increased anaphase-bridge formation, respectively. Surprisingly, early embryonic arrest was attributable to the absence of Smc5/6 during oogenesis, which resulted in insufficient repair of pre-meiotic and meiotic DNA double-strand breaks. Thus, our findings contribute to the understanding of Smc proteins in higher eukaryotic development by highlighting a maternal function in chromosome maintenance and a link between oogenesis and early embryogenesis.

  4. Function and dynamics of slam in furrow formation in early Drosophila embryo.

    Science.gov (United States)

    Acharya, Sreemukta; Laupsien, Philip; Wenzl, Christian; Yan, Shuling; Großhans, Jörg

    2014-02-15

    The Drosophila embryo undergoes a developmental transition in the blastoderm stage switching from syncytial to cellular development. The cleavage furrow, which encloses nuclei into cells, is a prominent morphological feature of this transition. It is not clear how the pattern of the furrow array is defined and how zygotic genes trigger the formation and invagination of interphase furrows. A key to these questions is provided by the gene slam, which has been previously implicated in controlling furrow invagination. Here we investigate the null phenotype of slam, the dynamics of Slam protein, and its control by the recycling endosome. We find that slam is essential for furrow invagination during cellularisation and together with nullo, for specification of the furrow. During cellularisation, Slam marks first the furrow, which is derived from the metaphase furrow of the previous mitosis. Slightly later, Slam accumulates at new furrows between daughter cells early in interphase. Slam is stably associated with the furrow canal except for the onset of cellularisation as revealed by FRAP experiments. Restriction of Slam to the furrow canal and Slam mobility during cellularisation is controlled by the recycling endosome and centrosomes. We propose a three step model. The retracting metaphase furrow leaves an initial mark. This mark and the border between corresponding daughter nuclei are refined by vesicular transport away from pericentrosomal recycling endosome towards the margins of the somatic buds. Following the onset of zygotic gene expression, Slam and Nullo together stabilise this mark and Slam triggers invagination of the cleavage furrow.

  5. Preferential genome targeting of the CBP co-activator by Rel and Smad proteins in early Drosophila melanogaster embryos.

    Directory of Open Access Journals (Sweden)

    Per-Henrik Holmqvist

    Full Text Available CBP and the related p300 protein are widely used transcriptional co-activators in metazoans that interact with multiple transcription factors. Whether CBP/p300 occupies the genome equally with all factors or preferentially binds together with some factors is not known. We therefore compared Drosophila melanogaster CBP (nejire ChIP-seq peaks with regions bound by 40 different transcription factors in early embryos, and we found high co-occupancy with the Rel-family protein Dorsal. Dorsal is required for CBP occupancy in the embryo, but only at regions where few other factors are present. CBP peaks in mutant embryos lacking nuclear Dorsal are best correlated with TGF-ß/Dpp-signaling and Smad-protein binding. Differences in CBP occupancy in mutant embryos reflect gene expression changes genome-wide, but CBP also occupies some non-expressed genes. The presence of CBP at silent genes does not result in histone acetylation. We find that Polycomb-repressed H3K27me3 chromatin does not preclude CBP binding, but restricts histone acetylation at CBP-bound genomic sites. We conclude that CBP occupancy in Drosophila embryos preferentially overlaps factors controlling dorso-ventral patterning and that CBP binds silent genes without causing histone hyperacetylation.

  6. Preferential Genome Targeting of the CBP Co-Activator by Rel and Smad Proteins in Early Drosophila melanogaster Embryos

    Science.gov (United States)

    Holmqvist, Per-Henrik; Boija, Ann; Philip, Philge; Crona, Filip; Stenberg, Per; Mannervik, Mattias

    2012-01-01

    CBP and the related p300 protein are widely used transcriptional co-activators in metazoans that interact with multiple transcription factors. Whether CBP/p300 occupies the genome equally with all factors or preferentially binds together with some factors is not known. We therefore compared Drosophila melanogaster CBP (nejire) ChIP–seq peaks with regions bound by 40 different transcription factors in early embryos, and we found high co-occupancy with the Rel-family protein Dorsal. Dorsal is required for CBP occupancy in the embryo, but only at regions where few other factors are present. CBP peaks in mutant embryos lacking nuclear Dorsal are best correlated with TGF-ß/Dpp-signaling and Smad-protein binding. Differences in CBP occupancy in mutant embryos reflect gene expression changes genome-wide, but CBP also occupies some non-expressed genes. The presence of CBP at silent genes does not result in histone acetylation. We find that Polycomb-repressed H3K27me3 chromatin does not preclude CBP binding, but restricts histone acetylation at CBP-bound genomic sites. We conclude that CBP occupancy in Drosophila embryos preferentially overlaps factors controlling dorso-ventral patterning and that CBP binds silent genes without causing histone hyperacetylation. PMID:22737084

  7. A rapid, membrane-dependent pathway directs furrow formation through RalA in the early Drosophila embryo.

    Science.gov (United States)

    Holly, Ryan M; Mavor, Lauren M; Zuo, Zhongyuan; Blankenship, J Todd

    2015-07-01

    Plasma membrane furrow formation is crucial in cell division and cytokinesis. Furrow formation in early syncytial Drosophila embryos is exceptionally rapid, with furrows forming in as little as 3.75 min. Here, we use 4D imaging to identify furrow formation, stabilization, and regression periods, and identify a rapid, membrane-dependent pathway that is essential for plasma membrane furrow formation in vivo. Myosin II function is thought to provide the ingression force for cytokinetic furrows, but the role of membrane trafficking pathways in guiding furrow formation is less clear. We demonstrate that a membrane trafficking pathway centered on Ras-like protein A (RalA) is required for fast furrow ingression in the early fly embryo. RalA function is absolutely required for furrow formation and initiation. In the absence of RalA and furrow function, chromosomal segregation is aberrant and polyploid nuclei are observed. RalA localizes to syncytial furrows, and mediates the movement of exocytic vesicles to the plasma membrane. Sec5, which is an exocyst complex subunit and localizes to ingressing furrows in wild-type embryos, becomes punctate and loses its cortical association in the absence of RalA function. Rab8 also fails to traffic to the plasma membrane and accumulates aberrantly in the cytoplasm in RalA disrupted embryos. RalA localization precedes F-actin recruitment to the furrow tip, suggesting that membrane trafficking might function upstream of cytoskeletal remodeling. These studies identify a pathway, which stretches from Rab8 to RalA and the exocyst complex, that mediates rapid furrow formation in early Drosophila embryos.

  8. In-vivo Centrifugation of Drosophila Embryos

    OpenAIRE

    Tran, Susan L.; Welte, Michael A.

    2010-01-01

    A major strategy for purifying and isolating different types of intracellular organelles is to separate them from each other based on differences in buoyant density. However, when cells are disrupted prior to centrifugation, proteins and organelles in this non-native environment often inappropriately stick to each other. Here we describe a method to separate organelles by density in intact, living Drosophila embryos. Early embryos before cellularization are harvested from population cages, an...

  9. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.

    Science.gov (United States)

    Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica

    2014-02-10

    In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The presence of nuclear cactus in the early Drosophila embryo may extend the dynamic range of the dorsal gradient.

    Directory of Open Access Journals (Sweden)

    Michael D O'Connell

    2015-04-01

    Full Text Available In a developing embryo, the spatial distribution of a signaling molecule, or a morphogen gradient, has been hypothesized to carry positional information to pattern tissues. Recent measurements of morphogen distribution have allowed us to subject this hypothesis to rigorous physical testing. In the early Drosophila embryo, measurements of the morphogen Dorsal, which is a transcription factor responsible for initiating the earliest zygotic patterns along the dorsal-ventral axis, have revealed a gradient that is too narrow to pattern the entire axis. In this study, we use a mathematical model of Dorsal dynamics, fit to experimental data, to determine the ability of the Dorsal gradient to regulate gene expression across the entire dorsal-ventral axis. We found that two assumptions are required for the model to match experimental data in both Dorsal distribution and gene expression patterns. First, we assume that Cactus, an inhibitor that binds to Dorsal and prevents it from entering the nuclei, must itself be present in the nuclei. And second, we assume that fluorescence measurements of Dorsal reflect both free Dorsal and Cactus-bound Dorsal. Our model explains the dynamic behavior of the Dorsal gradient at lateral and dorsal positions of the embryo, the ability of Dorsal to regulate gene expression across the entire dorsal-ventral axis, and the robustness of gene expression to stochastic effects. Our results have a general implication for interpreting fluorescence-based measurements of signaling molecules.

  11. The Presence of Nuclear Cactus in the Early Drosophila Embryo May Extend the Dynamic Range of the Dorsal Gradient

    Science.gov (United States)

    O’Connell, Michael D.; Reeves, Gregory T.

    2015-01-01

    In a developing embryo, the spatial distribution of a signaling molecule, or a morphogen gradient, has been hypothesized to carry positional information to pattern tissues. Recent measurements of morphogen distribution have allowed us to subject this hypothesis to rigorous physical testing. In the early Drosophila embryo, measurements of the morphogen Dorsal, which is a transcription factor responsible for initiating the earliest zygotic patterns along the dorsal-ventral axis, have revealed a gradient that is too narrow to pattern the entire axis. In this study, we use a mathematical model of Dorsal dynamics, fit to experimental data, to determine the ability of the Dorsal gradient to regulate gene expression across the entire dorsal-ventral axis. We found that two assumptions are required for the model to match experimental data in both Dorsal distribution and gene expression patterns. First, we assume that Cactus, an inhibitor that binds to Dorsal and prevents it from entering the nuclei, must itself be present in the nuclei. And second, we assume that fluorescence measurements of Dorsal reflect both free Dorsal and Cactus-bound Dorsal. Our model explains the dynamic behavior of the Dorsal gradient at lateral and dorsal positions of the embryo, the ability of Dorsal to regulate gene expression across the entire dorsal-ventral axis, and the robustness of gene expression to stochastic effects. Our results have a general implication for interpreting fluorescence-based measurements of signaling molecules. PMID:25879657

  12. Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq.

    Directory of Open Access Journals (Sweden)

    Susan E Lott

    Full Text Available When Drosophila melanogaster embryos initiate zygotic transcription around mitotic cycle 10, the dose-sensitive expression of specialized genes on the X chromosome triggers a sex-determination cascade that, among other things, compensates for differences in sex chromosome dose by hypertranscribing the single X chromosome in males. However, there is an approximately 1 hour delay between the onset of zygotic transcription and the establishment of canonical dosage compensation near the end of mitotic cycle 14. During this time, zygotic transcription drives segmentation, cellularization, and other important developmental events. Since many of the genes involved in these processes are on the X chromosome, we wondered whether they are transcribed at higher levels in females and whether this might lead to sex-specific early embryonic patterning. To investigate this possibility, we developed methods to precisely stage, sex, and characterize the transcriptomes of individual embryos. We measured genome-wide mRNA abundance in male and female embryos at eight timepoints, spanning mitotic cycle 10 through late cycle 14, using polymorphisms between parental lines to distinguish maternal and zygotic transcription. We found limited sex-specific zygotic transcription, with a weak tendency for genes on the X to be expressed at higher levels in females. However, transcripts derived from the single X chromosome in males were more abundant that those derived from either X chromosome in females, demonstrating that there is widespread dosage compensation prior to the activation of the canonical MSL-mediated dosage compensation system. Crucially, this new system of early zygotic dosage compensation results in nearly identical transcript levels for key X-linked developmental regulators, including giant (gt, brinker (brk, buttonhead (btd, and short gastrulation (sog, in male and female embryos.

  13. In-vivo centrifugation of Drosophila embryos.

    Science.gov (United States)

    Tran, Susan L; Welte, Michael A

    2010-06-23

    A major strategy for purifying and isolating different types of intracellular organelles is to separate them from each other based on differences in buoyant density. However, when cells are disrupted prior to centrifugation, proteins and organelles in this non-native environment often inappropriately stick to each other. Here we describe a method to separate organelles by density in intact, living Drosophila embryos. Early embryos before cellularization are harvested from population cages, and their outer egg shells are removed by treatment with 50% bleach. Embryos are then transferred to a small agar plate and inserted, posterior end first, into small vertical holes in the agar. The plates containing embedded embryos are centrifuged for 30 min at 3000 g. The agar supports the embryos and keeps them in a defined orientation. Afterwards, the embryos are dug out of the agar with a blunt needle. Centrifugation separates major organelles into distinct layers, a stratification easily visible by bright-field microscopy. A number of fluorescent markers are available to confirm successful stratification in living embryos. Proteins associated with certain organelles will be enriched in a particular layer, demonstrating colocalization. Individual layers can be recovered for biochemical analysis or transplantation into donor eggs. This technique is applicable for organelle separation in other large cells, including the eggs and oocytes of diverse species.

  14. Spatial reorganization of the endoplasmic reticulum during mitosis relies on mitotic kinase cyclin A in the early Drosophila embryo.

    Science.gov (United States)

    Bergman, Zane J; Mclaurin, Justin D; Eritano, Anthony S; Johnson, Brittany M; Sims, Amanda Q; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope.

  15. Depleting Gene Activities in Early Drosophila Embryos with the “Maternal-Gal4–shRNA” System

    Science.gov (United States)

    Staller, Max V.; Yan, Dong; Randklev, Sakara; Bragdon, Meghan D.; Wunderlich, Zeba B.; Tao, Rong; Perkins, Lizabeth A.; DePace, Angela H.; Perrimon, Norbert

    2013-01-01

    In a developing Drosophila melanogaster embryo, mRNAs have a maternal origin, a zygotic origin, or both. During the maternal–zygotic transition, maternal products are degraded and gene expression comes under the control of the zygotic genome. To interrogate the function of mRNAs that are both maternally and zygotically expressed, it is common to examine the embryonic phenotypes derived from female germline mosaics. Recently, the development of RNAi vectors based on short hairpin RNAs (shRNAs) effective during oogenesis has provided an alternative to producing germline clones. Here, we evaluate the efficacies of: (1) maternally loaded shRNAs to knockdown zygotic transcripts and (2) maternally loaded Gal4 protein to drive zygotic shRNA expression. We show that, while Gal4-driven shRNAs in the female germline very effectively generate phenotypes for genes expressed maternally, maternally loaded shRNAs are not very effective at generating phenotypes for early zygotic genes. However, maternally loaded Gal4 protein is very efficient at generating phenotypes for zygotic genes expressed during mid-embryogenesis. We apply this powerful and simple method to unravel the embryonic functions of a number of pleiotropic genes. PMID:23105012

  16. Depleting gene activities in early Drosophila embryos with the "maternal-Gal4-shRNA" system.

    Science.gov (United States)

    Staller, Max V; Yan, Dong; Randklev, Sakara; Bragdon, Meghan D; Wunderlich, Zeba B; Tao, Rong; Perkins, Lizabeth A; Depace, Angela H; Perrimon, Norbert

    2013-01-01

    In a developing Drosophila melanogaster embryo, mRNAs have a maternal origin, a zygotic origin, or both. During the maternal-zygotic transition, maternal products are degraded and gene expression comes under the control of the zygotic genome. To interrogate the function of mRNAs that are both maternally and zygotically expressed, it is common to examine the embryonic phenotypes derived from female germline mosaics. Recently, the development of RNAi vectors based on short hairpin RNAs (shRNAs) effective during oogenesis has provided an alternative to producing germline clones. Here, we evaluate the efficacies of: (1) maternally loaded shRNAs to knockdown zygotic transcripts and (2) maternally loaded Gal4 protein to drive zygotic shRNA expression. We show that, while Gal4-driven shRNAs in the female germline very effectively generate phenotypes for genes expressed maternally, maternally loaded shRNAs are not very effective at generating phenotypes for early zygotic genes. However, maternally loaded Gal4 protein is very efficient at generating phenotypes for zygotic genes expressed during mid-embryogenesis. We apply this powerful and simple method to unravel the embryonic functions of a number of pleiotropic genes.

  17. Spatial Reorganization of the Endoplasmic Reticulum during Mitosis Relies on Mitotic Kinase Cyclin A in the Early Drosophila Embryo

    Science.gov (United States)

    Bergman, Zane J.; Mclaurin, Justin D.; Eritano, Anthony S.; Johnson, Brittany M.; Sims, Amanda Q.; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope. PMID:25689737

  18. A gene expression atlas of a bicoid-depleted Drosophila embryo reveals early canalization of cell fate.

    Science.gov (United States)

    Staller, Max V; Fowlkes, Charless C; Bragdon, Meghan D J; Wunderlich, Zeba; Estrada, Javier; DePace, Angela H

    2015-02-01

    In developing embryos, gene regulatory networks drive cells towards discrete terminal fates, a process called canalization. We studied the behavior of the anterior-posterior segmentation network in Drosophila melanogaster embryos by depleting a key maternal input, bicoid (bcd), and measuring gene expression patterns of the network at cellular resolution. This method results in a gene expression atlas containing the levels of mRNA or protein expression of 13 core patterning genes over six time points for every cell of the blastoderm embryo. This is the first cellular resolution dataset of a genetically perturbed Drosophila embryo that captures all cells in 3D. We describe the technical developments required to build this atlas and how the method can be employed and extended by others. We also analyze this novel dataset to characterize the degree and timing of cell fate canalization in the segmentation network. We find that in two layers of this gene regulatory network, following depletion of bcd, individual cells rapidly canalize towards normal cell fates. This result supports the hypothesis that the segmentation network directly canalizes cell fate, rather than an alternative hypothesis whereby cells are initially mis-specified and later eliminated by apoptosis. Our gene expression atlas provides a high resolution picture of a classic perturbation and will enable further computational modeling of canalization and gene regulation in this transcriptional network. © 2015. Published by The Company of Biologists Ltd.

  19. P-TEFb, the super elongation complex and mediator regulate a subset of non-paused genes during early Drosophila embryo development.

    Directory of Open Access Journals (Sweden)

    Olle Dahlberg

    2015-02-01

    Full Text Available Positive Transcription Elongation Factor b (P-TEFb is a kinase consisting of Cdk9 and Cyclin T that releases RNA Polymerase II (Pol II into active elongation. It can assemble into a larger Super Elongation Complex (SEC consisting of additional elongation factors. Here, we use a miRNA-based approach to knock down the maternal contribution of P-TEFb and SEC components in early Drosophila embryos. P-TEFb or SEC depletion results in loss of cells from the embryo posterior and in cellularization defects. Interestingly, the expression of many patterning genes containing promoter-proximal paused Pol II is relatively normal in P-TEFb embryos. Instead, P-TEFb and SEC are required for expression of some non-paused, rapidly transcribed genes in pre-cellular embryos, including the cellularization gene Serendipity-α. We also demonstrate that another P-TEFb regulated gene, terminus, has an essential function in embryo development. Similar morphological and gene expression phenotypes were observed upon knock down of Mediator subunits, providing in vivo evidence that P-TEFb, the SEC and Mediator collaborate in transcription control. Surprisingly, P-TEFb depletion does not affect the ratio of Pol II at the promoter versus the 3' end, despite affecting global Pol II Ser2 phosphorylation levels. Instead, Pol II occupancy is reduced at P-TEFb down-regulated genes. We conclude that a subset of non-paused, pre-cellular genes are among the most susceptible to reduced P-TEFb, SEC and Mediator levels in Drosophila embryos.

  20. DAPI Staining of Drosophila Embryos.

    Science.gov (United States)

    Rothwell, Wendy F; Sullivan, William

    2007-10-01

    INTRODUCTIONDrosophila embryos can be stained with specific fluorescent probes or antibodies through either direct or indirect immunofluorescence. In particular, several effective probes exist for visualizing DNA. 4',6-diamidino-2-phenylindole (DAPI) is a commonly used DNA-binding dye. Because it is specific for double-stranded DNA, no prior RNase treatment is required. While the embryo staining method described here uses DAPI, other fluorescent DNA probes can be processed similarly.

  1. Lateral gene expression in Drosophila early embryos is supported by Grainyhead-mediated activation and tiers of dorsally-localized repression.

    Directory of Open Access Journals (Sweden)

    Mayra Garcia

    Full Text Available The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind, a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence ("the A-box" present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh, a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator and Cic (repressor may also support a "switch-like" response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo.

  2. Lateral gene expression in Drosophila early embryos is supported by Grainyhead-mediated activation and tiers of dorsally-localized repression.

    Science.gov (United States)

    Garcia, Mayra; Stathopoulos, Angelike

    2011-01-01

    The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence ("the A-box") present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a "switch-like" response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo.

  3. Microfluidic system with integrated microinjector for automated Drosophila embryo injection.

    Science.gov (United States)

    Delubac, Daniel; Highley, Christopher B; Witzberger-Krajcovic, Melissa; Ayoob, Joseph C; Furbee, Emily C; Minden, Jonathan S; Zappe, Stefan

    2012-11-21

    Drosophila is one of the most important model organisms in biology. Knowledge derived from the recently sequenced 12 genomes of various Drosophila species can today be combined with the results of more than 100 years of research to systematically investigate Drosophila biology at the molecular level. In order to enable automated, high-throughput manipulation of Drosophila embryos, we have developed a microfluidic system based on a Pyrex-silicon-Pyrex sandwich structure with integrated, surface-micromachined silicon nitride injector for automated injection of reagents. Our system automatically retrieves embryos from an external reservoir, separates potentially clustered embryos through a sheath flow mechanisms, passively aligns an embryo with the integrated injector through geometric constraints, and pushes the embryo onto the injector through flow drag forces. Automated detection of an embryo at injection position through an external camera triggers injection of reagents and subsequent ejection of the embryo to an external reservoir. Our technology can support automated screens based on Drosophila embryos as well as creation of transgenic Drosophila lines. Apart from Drosophila embryos, the layout of our system can be easily modified to accommodate injection of oocytes, embryos, larvae, or adults of other species and fills an important technological gap with regard to automated manipulation of multicellular organisms.

  4. The embryo as a laboratory: quantifying transcription in Drosophila

    Science.gov (United States)

    Gregor, Thomas; Garcia, Hernan G.; Little, Shawn C.

    2014-01-01

    Transcriptional regulation of gene expression is fundamental to most cellular processes, including determination of cellular fates. Quantitative studies of transcription in cultured cells have led to significant advances in identifying mechanisms underlying transcriptional control. Recent progress allowed implementation of these same quantitative methods in multicellular organisms to ask how transcriptional regulation unfolds both in vivo and at the single molecule level in the context of embryonic development. Here we review some of these advances in early Drosophila development, which bring the embryo on par with its single-celled counterparts. In particular, we discuss progress in methods to measure mRNA and protein distributions in fixed and living embryos, and we highlight some initial applications that lead to fundamental new insights about molecular transcription processes. We end with an outlook on how to further exploit the unique advantages that come with investigating transcriptional control in the developmental context of the embryo. PMID:25005921

  5. The syncytial Drosophila embryo as a mechanically excitable medium

    CERN Document Server

    Idema, Timon; Manning, M Lisa; Nelson, Philip C; Liu, Andrea J

    2013-01-01

    Mitosis in the early syncytial Drosophila embryo is highly correlated in space and time, as manifested in mitotic wavefronts that propagate across the embryo. In this paper we investigate the idea that the embryo can be considered a mechanically-excitable medium, and that mitotic wavefronts can be understood as nonlinear wavefronts that propagate through this medium. We study the wavefronts via both image analysis of confocal microscopy videos and theoretical models. We find that the mitotic wavefront can be resolved into two distinct wavefronts in each cycle, corresponding to metaphase and anaphase, respectively. The two wavefronts have the same speed and are separated by a time interval that is independent of cycle, supporting the idea that they are two different markers for the same process. To understand the wavefronts theoretically we analyze wavefront propagation in excitable media. We study two classes of models, one with biochemical signaling and one with mechanical signaling. We find that the depende...

  6. Embryo-scale tissue mechanics during Drosophila gastrulation movements

    Science.gov (United States)

    Rauzi, Matteo; Krzic, Uros; Saunders, Timothy E.; Krajnc, Matej; Ziherl, Primož; Hufnagel, Lars; Leptin, Maria

    2015-01-01

    Morphogenesis of an organism requires the development of its parts to be coordinated in time and space. While past studies concentrated on defined cell populations, a synthetic view of the coordination of these events in a whole organism is needed for a full understanding. Drosophila gastrulation begins with the embryo forming a ventral furrow, which is eventually internalized. It is not understood how the rest of the embryo participates in this process. Here we use multiview selective plane illumination microscopy coupled with infrared laser manipulation and mutant analysis to dissect embryo-scale cell interactions during early gastrulation. Lateral cells have a denser medial–apical actomyosin network and shift ventrally as a compact cohort, whereas dorsal cells become stretched. We show that the behaviour of these cells affects furrow internalization. A computational model predicts different mechanical properties associated with tissue behaviour: lateral cells are stiff, whereas dorsal cells are soft. Experimental analysis confirms these properties in vivo. PMID:26497898

  7. Drosophila chem mutations disrupt epithelial polarity in Drosophila embryos

    Directory of Open Access Journals (Sweden)

    José M. Zamudio-Arroyo

    2016-12-01

    Full Text Available Drosophila embryogenesis has proven to be an extremely powerful system for developmental gene discovery and characterization. We isolated five new EMS-induced alleles that do not complement the l(3R5G83 lethal line isolated in the Nüsslein-Volhard and Wieschaus screens. We have named this locus chem. Lethality of the new alleles as homozygous zygotic mutants is not completely penetrant, and they have an extended phenocritical period. Like the original allele, a fraction of mutant embryos die with cuticular defects, notably head involution and dorsal closure defects. Embryonic defects are much more extreme in germline clones, where the majority of mutant embryos die during embryogenesis and do not form cuticle, implying a strong chem maternal contribution. chem mutations genetically interact with mutations in cytoskeletal genes (arm and with mutations in the epithelial polarity genes coracle, crumbs, and yurt. chem mutants dorsal open defects are similar to those present in yurt mutants, and, likewise, they have epithelial polarity defects. chem1 and chem3 mutations suppress yurt3, and chem3 mutants suppress crumbs1 mutations. In contrast, chem1 and coracle2 mutations enhance each other. Compared to controls, in chem mutants in embryonic lateral epithelia Crumbs expression is mislocalized and reduced, Coracle is increased and mislocalized basally at embryonic stages 13–14, then reduced at stage 16. Arm expression has a similar pattern but levels are reduced.

  8. Tracking individual nanodiamonds in Drosophila melanogaster embryos

    CERN Document Server

    Simpson, David A; Kowarsky, Mark; Zeeshan, Nida F; Barson, Michael S J; Hall, Liam; Yan, Yan; Kaufmann, Stefan; Johnson, Brett C; Ohshima, Takeshi; Caruso, Frank; Scholten, Robert; Saint, Robert B; Murray, Michael J; Hollenberg, Lloyd C L

    2013-01-01

    Tracking the dynamics of fluorescent nanoparticles during embryonic development allows insights into the physical state of the embryo and, potentially, molecular processes governing developmental mechanisms. In this work, we investigate the motion of individual fluorescent nanodiamonds micro-injected into Drosophila melanogaster embryos prior to cellularisation. Fluorescence correlation spectroscopy and wide-field imaging techniques are applied to individual fluorescent nanodiamonds in blastoderm cells during stage 5 of development to a depth of ~40 \\mu m. The majority of nanodiamonds in the blastoderm cells during cellularisation exhibit free diffusion with an average diffusion coefficient of (6 $\\pm$ 3) x 10$^{-3}$ \\mu m$^2$/s, (mean $\\pm$ SD). Driven motion in the blastoderm cells was also observed with an average velocity of 0.13 $\\pm$ 0.10 \\mu m/s (mean $\\pm$ SD) \\mu m/s and an average applied force of 0.07 $\\pm$ 0.05 pN (mean $\\pm$ SD). Nanodiamonds in the periplasm between the nuclei and yolk were also...

  9. Centrosome splitting during nuclear elongation in the Drosophila embryo.

    Science.gov (United States)

    Callaini, G; Anselmi, F

    1988-10-01

    In the early Drosophila embryo, nuclear elongation occurs during cellularization of the syncytial blastoderm. This process is closely related to the presence of microtubular bundles forming a basket-like structure surrounding the nuclei. In immunofluorescence observations with antibodies against alpha-tubulin, the microtubules appear to radiate from two bright foci widely separated from each other. We used electron microscopy to show that these foci are true centrosomes constituted by daughter and parent centrioles orthogonally disposed and surrounded by pericentriolar electrondense material. The centrosomes may be observed in the apical region of the blastoderm cells from the beginning of cellularization until the reestablishment of the first postblastodermic mitosis, when they organize the spindle poles. Until this time the dimensions of the procentrioles remain unchanged. The significance of these results is discussed in relation to the known behavior of centrioles in the cell cycle.

  10. PS2 integrin requirements in Drosophila embryo and wing morphogenesis.

    Science.gov (United States)

    Brabant, M C; Brower, D L

    1993-05-01

    The Drosophila inflated (if) gene encodes the alpha PS2 subunit of the PS integrins. We describe the generation of new if mutations, their lethal embryonic phenotype, and experiments that examine the spatial and temporal requirements for integrins in adult wing morphogenesis. Embryos hemizygous for either new allele, ifA7 or ifB2, make reduced amounts of alpha PS2. In a variety of genetic tests, these alleles behave similarly to ifk27e, which makes no detectable alpha PS2, and all three alleles display the same embryonic phenotype. We therefore conclude that all of the lethal alleles retain little or no wild-type alpha PS2 function. As seen for strong mutations at the myospheroid (mys) locus, which encodes the beta PS integrin subunit, if mutants show extreme defects in somatic muscle attachments and in midgut morphogenesis. Unlike mys, however, there is no dorsal herniation of the if mutant embryos. With respect to wing morphogenesis, clonal analysis experiments demonstrate that if+ function is required only in cells of the ventral wing surface. We have rescued the wing blister phenotype of double mutants for the hypomorphic mysnj42 and if3 alleles using a heat shock-inducible mys+ transgene. By varying times of transgene induction, we find that integrin function is required from very early in metamorphosis until at least the last 24-48 hr of wing development.

  11. Proteomics of early zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Heisenberg Carl-Philipp

    2006-01-01

    Full Text Available Abstract Background Zebrafish (D. rerio has become a powerful and widely used model system for the analysis of vertebrate embryogenesis and organ development. While genetic methods are readily available in zebrafish, protocols for two dimensional (2D gel electrophoresis and proteomics have yet to be developed. Results As a prerequisite to carry out proteomic experiments with early zebrafish embryos, we developed a method to efficiently remove the yolk from large batches of embryos. This method enabled high resolution 2D gel electrophoresis and improved Western blotting considerably. Here, we provide detailed protocols for proteomics in zebrafish from sample preparation to mass spectrometry (MS, including a comparison of databases for MS identification of zebrafish proteins. Conclusion The provided protocols for proteomic analysis of early embryos enable research to be taken in novel directions in embryogenesis.

  12. Dynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the syncytial Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Richa Rikhy

    2015-02-01

    Full Text Available The successive nuclear division cycles in the syncytial Drosophila embryo are accompanied by ingression and regression of plasma membrane furrows, which surround individual nuclei at the embryo periphery, playing a central role in embryo compartmentalization prior to cellularization. Here, we demonstrate that cell cycle changes in dynamin localization and activity at the plasma membrane (PM regulate metaphase furrow formation and PM organization in the syncytial embryo. Dynamin was localized on short PM furrows during interphase, mediating endocytosis of PM components. Dynamin redistributed off ingressed PM furrows in metaphase, correlating with stabilized PM components and the associated actin regulatory machinery on long furrows. Acute inhibition of dynamin in the temperature sensitive shibire mutant embryo resulted in morphogenetic consequences in the syncytial division cycle. These included inhibition of metaphase furrow ingression, randomization of proteins normally polarized to intercap PM and disruption of the diffusion barrier separating PM domains above nuclei. Based on these findings, we propose that cell cycle changes in dynamin orchestrate recruitment of actin regulatory machinery for PM furrow dynamics during the early mitotic cycles in the Drosophila embryo.

  13. Dynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the syncytial Drosophila embryo

    Science.gov (United States)

    Rikhy, Richa; Mavrakis, Manos; Lippincott-Schwartz, Jennifer

    2015-01-01

    ABSTRACT The successive nuclear division cycles in the syncytial Drosophila embryo are accompanied by ingression and regression of plasma membrane furrows, which surround individual nuclei at the embryo periphery, playing a central role in embryo compartmentalization prior to cellularization. Here, we demonstrate that cell cycle changes in dynamin localization and activity at the plasma membrane (PM) regulate metaphase furrow formation and PM organization in the syncytial embryo. Dynamin was localized on short PM furrows during interphase, mediating endocytosis of PM components. Dynamin redistributed off ingressed PM furrows in metaphase, correlating with stabilized PM components and the associated actin regulatory machinery on long furrows. Acute inhibition of dynamin in the temperature sensitive shibire mutant embryo resulted in morphogenetic consequences in the syncytial division cycle. These included inhibition of metaphase furrow ingression, randomization of proteins normally polarized to intercap PM and disruption of the diffusion barrier separating PM domains above nuclei. Based on these findings, we propose that cell cycle changes in dynamin orchestrate recruitment of actin regulatory machinery for PM furrow dynamics during the early mitotic cycles in the Drosophila embryo. PMID:25661871

  14. Ndae1 expression and regulation in Drosophila embryos.

    Directory of Open Access Journals (Sweden)

    Maria Florencia Tevy

    Full Text Available The construction and prediction of cell fate maps at the whole embryo level require the establishment of an accurate atlas of gene expression patterns throughout development and the identification of the corresponding cis-regulatory sequences. However, while the expression and regulation of genes encoding upstream developmental regulators such as transcription factors or signaling pathway components have been analyzed in detail, up to date the number of cis-regulatory sequences identified for downstream effector genes, like ion channels, pumps and exchangers, is very low. The control and regulation of ion homeostasis in each cell, including at blastoderm stages, are essential for normal embryonic development. In this study, we analyzed in detail the embryonic expression pattern and cis-regulatory modules of the Drosophila Na+-driven anion exchanger 1 (Ndae1 gene, involved in the regulation of pH homeostasis. We show that Ndae1 is expressed in a tight and complex spatial-temporal pattern. In particular, we report that this downstream effector gene is under the control of the canonical dorsal-ventral patterning cascade through dorsal, Toll, twist and snail at early embryogenesis. Moreover, we identify several cis-regulatory modules, some of which control discrete and non-overlapping aspects of endogenous gene expression throughout development.

  15. Parallel imaging of Drosophila embryos for quantitative analysis of genetic perturbations of the Ras pathway

    Directory of Open Access Journals (Sweden)

    Yogesh Goyal

    2017-07-01

    Full Text Available The Ras pathway patterns the poles of the Drosophila embryo by downregulating the levels and activity of a DNA-binding transcriptional repressor Capicua (Cic. We demonstrate that the spatiotemporal pattern of Cic during this signaling event can be harnessed for functional studies of mutations in the Ras pathway in human diseases. Our approach relies on a new microfluidic device that enables parallel imaging of Cic dynamics in dozens of live embryos. We found that although the pattern of Cic in early embryos is complex, it can be accurately approximated by a product of one spatial profile and one time-dependent amplitude. Analysis of these functions of space and time alone reveals the differential effects of mutations within the Ras pathway. Given the highly conserved nature of Ras-dependent control of Cic, our approach provides new opportunities for functional analysis of multiple sequence variants from developmental abnormalities and cancers.

  16. Multiplex detection of RNA expression in Drosophila embryos.

    Science.gov (United States)

    Kosman, Dave; Mizutani, Claudia M; Lemons, Derek; Cox, W Gregory; McGinnis, William; Bier, Ethan

    2004-08-06

    We present a fluorescence-based, multiplex in situ hybridization method that permits the simultaneous detection of five differently labeled antisense RNA probes and up to seven differ-ent transcripts in a single Drosophila embryo. We also show that it should be possible to increase the number of detected transcripts substantially with nascent transcript multiplex fluorescent in situ hybridization. These multiplex methods fill a current technological gap between high-resolution in situ hybridization with one or two fluorescently labeled probes and low-resolution but genome-wide microarray RNA profiling and should be of great utility in establishing gene networks.

  17. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes.

    Science.gov (United States)

    Haralalka, Shruti; Abmayr, Susan M

    2015-01-01

    Myoblast fusion in the Drosophila embryo is a highly elaborate process that is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs). It occurs through an asymmetric event in which actin foci assemble in the FCMs at points of cell-cell contact and direct the formation of membrane protrusions that drive fusion. Herein, we describe the approach that we have used to image in living embryos the highly dynamic actin foci and actin-rich projections that precede myoblast fusion. We discuss resources currently available for imaging actin and myogenesis, and our experience with these resources if available. This technical report is not intended to be comprehensive on providing instruction on standard microscopy practices or software utilization. However, we discuss microscope parameters that we have used in data collection, and our experience with image processing tools in data analysis.

  18. Optical Tweezing Nuclei in the Cellular Blastoderm of Drosophila Embryos

    Science.gov (United States)

    Schoetz, Eva-Maria; Chaikin, Paul M.; Wieschaus, Eric F.

    2004-03-01

    Optical tweezers are used to manipulate nuclei in the syncytial blastoderm of Drosophila embryos. Our aim is to move a nucleus in a living embryo and study the reactions of its nearest neighbors to this displacement. Effects on the surrounding nuclei may allow us to test models in which actin-microtubule networks connect individual nuclei and keep them in place. In our experiments we use video analysis to follow individual nuclei using GFP-labeled histone protein. In a first approach, we were able to move nuclei in embryonic homogenates suspended in oil. Although the squashing destroys the cell, mitotic nuclear divisions continue, implying that the cytoskeleton, which connects the nuclei to the cortex, is still functioning. We will present studies of nuclear interactions in these squashes and in intact syncytial blastoderms.

  19. Drosophila embryos as model systems for monitoring bacterial infection in real time.

    Directory of Open Access Journals (Sweden)

    Isabella Vlisidou

    2009-07-01

    Full Text Available Drosophila embryos are well studied developmental microcosms that have been used extensively as models for early development and more recently wound repair. Here we extend this work by looking at embryos as model systems for following bacterial infection in real time. We examine the behaviour of injected pathogenic (Photorhabdus asymbiotica and non-pathogenic (Escherichia coli bacteria and their interaction with embryonic hemocytes using time-lapse confocal microscopy. We find that embryonic hemocytes both recognise and phagocytose injected wild type, non-pathogenic E. coli in a Dscam independent manner, proving that embryonic hemocytes are phagocytically competent. In contrast, injection of bacterial cells of the insect pathogen Photorhabdus leads to a rapid 'freezing' phenotype of the hemocytes associated with significant rearrangement of the actin cytoskeleton. This freezing phenotype can be phenocopied by either injection of the purified insecticidal toxin Makes Caterpillars Floppy 1 (Mcf1 or by recombinant E. coli expressing the mcf1 gene. Mcf1 mediated hemocyte freezing is shibire dependent, suggesting that endocytosis is required for Mcf1 toxicity and can be modulated by dominant negative or constitutively active Rac expression, suggesting early and unexpected effects of Mcf1 on the actin cytoskeleton. Together these data show how Drosophila embryos can be used to track bacterial infection in real time and how mutant analysis can be used to genetically dissect the effects of specific bacterial virulence factors.

  20. Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT in living organisms.

    Directory of Open Access Journals (Sweden)

    Boyin Liu

    Full Text Available Different toxicity tests for carbon nanotubes (CNT have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nanotubes (MWCNTs become incorporated into cells in early Drosophila embryos, allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections, the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies including drug delivery.

  1. Mid-embryo patterning and precision in Drosophila segmentation: Kruppel dual regulation of hunchback.

    Directory of Open Access Journals (Sweden)

    David M Holloway

    Full Text Available In early development, genes are expressed in spatial patterns which later define cellular identities and tissue locations. The mechanisms of such pattern formation have been studied extensively in early Drosophila (fruit fly embryos. The gap gene hunchback (hb is one of the earliest genes to be expressed in anterior-posterior (AP body segmentation. As a transcriptional regulator for a number of downstream genes, the spatial precision of hb expression can have significant effects in the development of the body plan. To investigate the factors contributing to hb precision, we used fine spatial and temporal resolution data to develop a quantitative model for the regulation of hb expression in the mid-embryo. In particular, modelling hb pattern refinement in mid nuclear cleavage cycle 14 (NC14 reveals some of the regulatory contributions of simultaneously-expressed gap genes. Matching the model to recent data from wild-type (WT embryos and mutants of the gap gene Krüppel (Kr indicates that a mid-embryo Hb concentration peak important in thoracic development (at parasegment 4, PS4 is regulated in a dual manner by Kr, with low Kr concentration activating hb and high Kr concentration repressing hb. The processes of gene expression (transcription, translation, transport are intrinsically random. We used stochastic simulations to characterize the noise generated in hb expression. We find that Kr regulation can limit the positional variability of the Hb mid-embryo border. This has been recently corroborated in experimental comparisons of WT and Kr- mutant embryos. Further, Kr regulation can decrease uncertainty in mid-embryo hb expression (i.e. contribute to a smooth Hb boundary and decrease between-copy transcriptional variability within nuclei. Since many tissue boundaries are first established by interactions between neighbouring gene expression domains, these properties of Hb-Kr dynamics to diminish the effects of intrinsic expression noise may

  2. Procedure for the permeabilization and cryobiological preservation of Drosophila embryos

    Energy Technology Data Exchange (ETDEWEB)

    Cole, K.W. [Oak Ridge National Lab., TN (United States). Biology Div.; Schreuders, P.D. [Univ. of Tennessee-Oak Ridge Graduate School of Biomedical Science, TN (United States); Mahowald, A.P. [Univ. of Chicago, IL (United States). Dept. of Molecular Genetics and Cell Biology; Mazur, P. [Oak Ridge National Lab., TN (United States). Biology Div.]|[Univ. of Tennessee-Oak Ridge Graduate School of Biomedical Science, TN (United States)

    1993-05-06

    The authors describe the detailed protocol developed in their laboratory at Oak Ridge for the permeabilization and cryobiological preservation of embryos of Drosophila melanogaster, Oregon R strain. The protocol is supplemented by notes containing two sorts of information. One category includes references to the appropriate portions of their published papers giving the scientific rationale and experimental basis for important steps. The other category is concerned with the criticality of certain steps and the precision with which they need to be performed. As an aid to investigators, the authors list even ordinary pieces of equipment. Brand names and model numbers are given where it is either important or convenient for readers to know precisely what is used.

  3. Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo.

    Science.gov (United States)

    Staller, Max V; Vincent, Ben J; Bragdon, Meghan D J; Lydiard-Martin, Tara; Wunderlich, Zeba; Estrada, Javier; DePace, Angela H

    2015-01-20

    Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA--it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two "shadow enhancers" use different regulatory logic to create the same pattern.

  4. Ena drives invasive macrophage migration in Drosophila embryos.

    Science.gov (United States)

    Tucker, Philippa K; Evans, Iwan R; Wood, Will

    2011-01-01

    It is seldom the primary tumour that proves fatal in cancer, with metastasis the fundamental pathological process for disease progression. Upregulation of Mena, a member of the evolutionarily conserved Ena/VASP family of actin cytoskeletal regulators, promotes metastasis and invasive motility of breast cancer cells in vivo. To complement in vitro studies of Ena/VASP function in fibroblasts, we manipulated levels of Ena, the Drosophila homologue of Mena, in migrating embryonic macrophages (haemocytes). Consistent with data from fibroblasts in vitro, Ena localises to regions of actin dynamics within migrating haemocytes, stimulates lamellipodial dynamics and positively regulates the number and length of filopodia. However, whereas Ena overexpression in fibroblasts reduces migration speeds, overexpressing Ena in haemocytes leads to a dramatic increase in migration speeds, more closely resembling the increased motility of breast cancer cells that overexpress Mena. We provide evidence that this key difference is due to spatial constraints imposed on cells within the three-dimensional environment of the embryo; this might explain how Mena can be used to promote aggressive migratory behaviour during cancer progression.

  5. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos.

    Science.gov (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim

    2015-11-15

    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome.

  6. ROCK inhibition prevents early mouse embryo development.

    Science.gov (United States)

    Duan, Xing; Chen, Kun-Lin; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2014-08-01

    ROCK is a Rho-GTPase effector that is important for actin assembly and is involved in various cellular functions, including cell contraction, migration, motility, and tumor cell invasion. In this study, we investigated ROCK expression and function during early mouse embryo development. Inhibiting ROCK by Y-27632 treatment at the zygote stage resulted in first cleavage failure, and most embryos failed to develop to the 8-cell stage. When adding Y-27632 at the 8-cell stage, embryos failed to undergo compaction and could not develop into blastocysts. In addition, fluorescence staining intensity analysis indicated that actin expression at blastomere membranes was significantly reduced. After ROCK inhibition, two or more nuclei were observed in a cell, which indicated possible cytokinesis failure. Moreover, after ROCK inhibition with Y-27632, the phosphorylation levels of LIMK1/2, a downstream molecule of ROCK, were decreased at blastomere membranes. Thus, our results showed conserved roles for ROCK in this mammalian embryo model and indicated that a ROCK-LIMK1/2-actin pathway might regulate cleavage and blastocyst formation during early mouse embryo development.

  7. Overlapping functions of argonaute proteins in patterning and morphogenesis of Drosophila embryos.

    Directory of Open Access Journals (Sweden)

    Wibke J Meyer

    2006-08-01

    Full Text Available Argonaute proteins are essential components of the molecular machinery that drives RNA silencing. In Drosophila, different members of the Argonaute family of proteins have been assigned to distinct RNA silencing pathways. While Ago1 is required for microRNA function, Ago2 is a crucial component of the RNA-induced silencing complex in siRNA-triggered RNA interference. Drosophila Ago2 contains an unusual amino-terminus with two types of imperfect glutamine-rich repeats (GRRs of unknown function. Here we show that the GRRs of Ago2 are essential for the normal function of the protein. Alleles with reduced numbers of GRRs cause specific disruptions in two morphogenetic processes associated with the midblastula transition: membrane growth and microtubule-based organelle transport. These defects do not appear to result from disruption of siRNA-dependent processes but rather suggest an interference of the mutant Ago2 proteins in an Ago1-dependent pathway. Using loss-of-function alleles, we further demonstrate that Ago1 and Ago2 act in a partially redundant manner to control the expression of the segment-polarity gene wingless in the early embryo. Our findings argue against a strict separation of Ago1 and Ago2 functions and suggest that these proteins act in concert to control key steps of the midblastula transition and of segmental patterning.

  8. Direct visualization of replication dynamics in early zebrafish embryos.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Okochi, Nanami; Hattori, Kaede; Ogata, Shin; Takebayashi, Shin-Ichiro; Ogata, Masato; Tamaru, Yutaka; Okumura, Katsuzumi

    2016-05-01

    We analyzed DNA replication in early zebrafish embryos. The replicating DNA of whole embryos was labeled with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), and spatial regulation of replication sites was visualized in single embryo-derived cells. The results unveiled uncharacterized replication dynamics during zebrafish early embryogenesis.

  9. Photobiomodulation of early mouse embryo development

    Science.gov (United States)

    Sviridova-Chailakhyan, T. A.; Fakhranurova, L. I.; Simonova, N. B.; Khramov, R. N.; Manokhin, A. A.; Paskevich, S. I.; Chailakhyan, L. M.

    2008-04-01

    The effect of artificial sunlight (AS) from a xenon source and of converted AS with an additional orange-red luminescent (λ MAX=626 nm) component (AS+L) on the development of mouse zygotes was investigated. A plastic screen with a photoluminophore layer was used for production of this orange-red luminescent (L) component. A single short-term (15 min) exposure produced a long-term stable positive effect on early embryo development of mice, which persisted during several days. After exposure to AS+L, a stimulating influence on preimplantation development was observed, in comparison with the control group without AS exposure. The positive effects were as follows: increase in percent of embryos (P <= 0.05) developed to the blastocyst stage (96.2 %) with hatching from the zona pellucida (80.8 %) within 82-96 hours in vitro compared to the control (67.1 % and 28.8 %, respectively).

  10. Fluorescently labeled inhibitors detect localized serine protease activities in Drosophila melanogaster pole cells, embryos, and ovarian egg chambers

    DEFF Research Database (Denmark)

    Jakobsen, Rasmus Kragh; Ono, S.; Powers, J. C.

    2005-01-01

    processes that they mediate. Until only recently, the tools to conveniently address the question of where and when serine proteases are active within complex tissues have been lacking. In order to detect spatially restricted serine protease activities in Drosophila embryos and ovaries we introduce...... activity localized to the oocyte-somatic follicle cell interface of the developing egg chamber. Our results suggest that this technique holds promise to identify new spatially restricted activities in adult Drosophila tissues and developing embryos....

  11. The endo-siRNA pathway is essential for robust development of the Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Elena M Lucchetta

    Full Text Available BACKGROUND: Robustness to natural temperature fluctuations is critical to proper development in embryos and to cellular functions in adult organisms. However, mechanisms and pathways which govern temperature compensation remain largely unknown beyond circadian rhythms. Pathways which ensure robustness against temperature fluctuations may appear to be nonessential under favorable, uniform environmental conditions used in conventional laboratory experiments where there is little variation for which to compensate. The endo-siRNA pathway, which produces small double-stranded RNAs in Drosophila, appears to be nonessential for robust development of the embryo under ambient uniform temperature and to be necessary only for viral defense. Embryos lacking a functional endo-siRNA pathway develop into phenotypically normal adults. However, we hypothesized that small RNAs may regulate the embryo's response to temperature, as a ribonucleoprotein complex has been previously shown to mediate mammalian cell response to heat shock. PRINCIPAL FINDINGS: Here, we show that the genes DICER-2 and ARGONAUTE2, which code for integral protein components of the endo-siRNA pathway, are essential for robust development and temperature compensation in the Drosophila embryo when exposed to temperature perturbations. The regulatory functions of DICER-2 and ARGONAUTE2 were uncovered by using microfluidics to expose developing Drosophila embryos to a temperature step, in which each half of the embryo develops at a different temperature through developmental cycle 14. Under this temperature perturbation, dicer-2 or argonaute2 embryos displayed abnormal segmentation. The abnormalities in segmentation are presumably due to the inability of the embryo to compensate for temperature-induced differences in rate of development and to coordinate developmental timing in the anterior and posterior halves. A deregulation of the length of nuclear division cycles 10-14 is also observed in

  12. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    Directory of Open Access Journals (Sweden)

    Pushpavalli Sreerangam NCVL

    2013-01-01

    Full Text Available Abstract Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using

  13. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  14. On the mechanics of cardiac function of Drosophila embryo.

    Science.gov (United States)

    Wu, Mingming; Sato, Thomas N

    2008-01-01

    The heart is a vital organ that provides essential circulation throughout the body. Malfunction of cardiac pumping, thus, leads to serious and most of the times, to fatal diseases. Mechanics of cardiac pumping is a complex process, and many experimental and theoretical approaches have been undertaken to understand this process. We have taken advantage of the simplicity of the embryonic heart of an invertebrate, Drosophila melanogaster, to understand the fundamental mechanics of the beating heart. We applied a live imaging technique to the beating embryonic heart combined with analytical imaging tools to study the dynamic mechanics of the pumping. Furthermore, we have identified one mutant line that exhibits aberrant pumping mechanics. The Drosophila embryonic heart consists of only 104 cardiac cells forming a simple straight tube that can be easily accessed for real-time imaging. Therefore, combined with the wealth of available genetic tools, the embryonic Drosophila heart may serve as a powerful model system for studies of human heart diseases, such as arrhythmia and congenital heart diseases. We, furthermore, believe our mechanistic data provides important information that is useful for our further understanding of the design of biological structure and function and for engineering the pumps for medical uses.

  15. Maternal effect mutations of the sponge locus affect actin cytoskeletal rearrangements in Drosophila melanogaster embryos

    OpenAIRE

    1992-01-01

    In the syncytial blastoderm stage of Drosophila embryogenesis, dome- shaped actin "caps" are observed above the interphase nuclei. During mitosis, this actin rearranges to participate in the formation of pseudocleavage furrows, transient membranous invaginations between dividing nuclei. Embryos laid by homozygous sponge mothers lack these characteristic actin structures, but retain other actin associated structures and processes. Our results indicate that the sponge product is specifically re...

  16. High resolution mapping of Twist to DNA in Drosophila embryos: Efficient functional analysis and evolutionary conservation

    OpenAIRE

    Ozdemir, Anil; Fisher-Aylor, Katherine I.; Pepke, Shirley; Samanta, Manoj; Dunipace, Leslie; McCue, Kenneth; Zeng, Lucy; Ogawa, Nobuo; Wold, Barbara J; Stathopoulos, Angelike

    2011-01-01

    Cis-regulatory modules (CRMs) function by binding sequence specific transcription factors, but the relationship between in vivo physical binding and the regulatory capacity of factor-bound DNA elements remains uncertain. We investigate this relationship for the well-studied Twist factor in Drosophila melanogaster embryos by analyzing genome-wide factor occupancy and testing the functional significance of Twist occupied regions and motifs within regions. Twist ChIP-seq data efficiently identif...

  17. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    Energy Technology Data Exchange (ETDEWEB)

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.

    2009-04-09

    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  18. Stochastic model for gene transcription on Drosophila melanogaster embryos

    Science.gov (United States)

    Prata, Guilherme N.; Hornos, José Eduardo M.; Ramos, Alexandre F.

    2016-02-01

    We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ˜1 % of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.

  19. An integrated platform for large-scale data collection and precise perturbation of live Drosophila embryos

    Science.gov (United States)

    Levario, Thomas J.; Zhao, Charles; Rouse, Tel; Shvartsman, Stanislav Y.; Lu, Hang

    2016-02-01

    Understanding the fundamental principles governing embryogenesis is a key goal of developmental biology. Direct observation of embryogenesis via in vivo live imaging is vital to understanding embryogenesis; yet, tedious sample preparation makes it difficult to acquire large-scale imaging data that is often required to overcome experimental and biological noises for quantitative studies. Furthermore, it is often difficult, and sometimes impossible, to incorporate environmental perturbation for understanding developmental responses to external stimuli. To address this issue, we have developed a method for high-throughput imaging of live embryos, delivering precise environmental perturbations, and unbiased data extraction. This platform includes an optimized microfluidic device specifically for live embryos and also for precise perturbations in the microenvironment of the developing embryos. In addition, we developed software for simple, yet accurate, automated segmentation of fluorescent images, and automated data extraction. Using a quantitative assessment we find that embryos develop normally within the microfluidic device. Finally, we show an application of the high-throughput assay for monitoring developmental responses to external stimuli: anoxia-induced developmental arrest in Drosophila embryos. With slight modifications, the method developed in this work can be applied to many other models of development and other stimulus-response behaviors during development.

  20. The role of auxin signaling in early embryo pattern formation

    NARCIS (Netherlands)

    Smit, Margot E.; Weijers, Dolf

    2015-01-01

    Pattern formation of the early Arabidopsis embryo generates precursors to all major cell types, and is profoundly controlled by the signaling molecule auxin. Here we discuss recent milestones in our understanding of auxin-dependent embryo patterning. Auxin biosynthesis, transport and response mec

  1. New mechanism for neural stem cell maintenance in early embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Teamning up with co-workers from Japan, UK and US,CAS biochemists have revealed a novel mechanism for maintaining neural stem cells in early embryos. Their work was published on the 6 August issue of Cell Development.

  2. Comprehensive transcriptome analysis of early male and female Bactrocera jarvisi embryos.

    Science.gov (United States)

    Morrow, Jennifer L; Riegler, Markus; Gilchrist, A Stuart; Shearman, Deborah C A; Frommer, Marianne

    2014-01-01

    Developing embryos are provided with maternal RNA transcripts and proteins, but transcription from the zygotic nuclei must be activated to control continuing embryonic development. Transcripts are generated at different stages of early development, and those involved in sex determination and cellularisation are some of the earliest to be activated. The male sex in tephritid fruit flies is determined by the presence of a Y chromosome, and it is believed that a transcript from the Y-chromosome sets in motion a cascade that determines male development, as part of the greater maternal to zygotic transition (MTZ). Here we investigate the poly(A+) transcriptome in early male and female embryos of the horticultural pest Bactrocera jarvisi (Diptera: Tephritidae). Bactrocera jarvisi embryos were collected over two pre-blastoderm time periods, 2-3h and 3-5h after egg laying. Embryos were individually sexed using a Y-chromosome marker, allowing the sex-specific poly(A+) transcriptome of single-sex embryo pools to be deep-sequenced and assembled de novo. Transcripts for sixteen sex-determination and two cellularisation gene homologues of Drosophila melanogaster (Diptera: Drosophilidae) were identified in early embryos of B. jarvisi, including transcripts highly upregulated prior to cellularisation. No strong candidates for transcripts derived solely from the Y chromosome were recovered from the poly(A+) fraction. Bactrocera jarvisi provides an excellent model for embryonic studies due to available Y-chromosome markers and the compact time frame for zygotic transcription and the sex-determined state. Our data contribute fundamental information to sex-determination research, and provide candidates for the sourcing of gene promoters for transgenic pest-management strategies of tephritid fruit flies.

  3. Wnt, Hedgehog and junctional Armadillo/beta-catenin establish planar polarity in the Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Pamela F Colosimo

    Full Text Available To generate specialized structures, cells must obtain positional and directional information. In multi-cellular organisms, cells use the non-canonical Wnt or planar cell polarity (PCP signaling pathway to establish directionality within a cell. In vertebrates, several Wnt molecules have been proposed as permissible polarity signals, but none has been shown to provide a directional cue. While PCP signaling components are conserved from human to fly, no PCP ligands have been reported in Drosophila. Here we report that in the epidermis of the Drosophila embryo two signaling molecules, Hedgehog (Hh and Wingless (Wg or Wnt1, provide directional cues that induce the proper orientation of Actin-rich structures in the larval cuticle. We further find that proper polarity in the late embryo also involves the asymmetric distribution and phosphorylation of Armadillo (Arm or beta-catenin at the membrane and that interference with this Arm phosphorylation leads to polarity defects. Our results suggest new roles for Hh and Wg as instructive polarizing cues that help establish directionality within a cell sheet, and a new polarity-signaling role for the membrane fraction of the oncoprotein Arm.

  4. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo.

    Science.gov (United States)

    Deignan, Lisa; Pinheiro, Marco T; Sutcliffe, Catherine; Saunders, Abbie; Wilcockson, Scott G; Zeef, Leo A H; Donaldson, Ian J; Ashe, Hilary L

    2016-07-01

    The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates.

  5. Waves of Cdk1 Activity in S Phase Synchronize the Cell Cycle in Drosophila Embryos.

    Science.gov (United States)

    Deneke, Victoria E; Melbinger, Anna; Vergassola, Massimo; Di Talia, Stefano

    2016-08-22

    Embryos of most metazoans undergo rapid and synchronous cell cycles following fertilization. While diffusion is too slow for synchronization of mitosis across large spatial scales, waves of Cdk1 activity represent a possible process of synchronization. However, the mechanisms regulating Cdk1 waves during embryonic development remain poorly understood. Using biosensors of Cdk1 and Chk1 activities, we dissect the regulation of Cdk1 waves in the Drosophila syncytial blastoderm. We show that Cdk1 waves are not controlled by the mitotic switch but by a double-negative feedback between Cdk1 and Chk1. Using mathematical modeling and surgical ligations, we demonstrate a fundamental distinction between S phase Cdk1 waves, which propagate as active trigger waves in an excitable medium, and mitotic Cdk1 waves, which propagate as passive phase waves. Our findings show that in Drosophila embryos, Cdk1 positive feedback serves primarily to ensure the rapid onset of mitosis, while wave propagation is regulated by S phase events. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay

    Directory of Open Access Journals (Sweden)

    Merabet Samir

    2011-01-01

    Full Text Available Abstract Background Protein interactions control the regulatory networks underlying developmental processes. The understanding of developmental complexity will, therefore, require the characterization of protein interactions within their proper environment. The bimolecular fluorescence complementation (BiFC technology offers this possibility as it enables the direct visualization of protein interactions in living cells. However, its potential has rarely been applied in embryos of animal model organisms and was only performed under transient protein expression levels. Results Using a Hox protein partnership as a test case, we investigated the suitability of BiFC for the study of protein interactions in the living Drosophila embryo. Importantly, all BiFC parameters were established with constructs that were stably expressed under the control of endogenous promoters. Under these physiological conditions, we showed that BiFC is specific and sensitive enough to analyse dynamic protein interactions. We next used BiFC in a candidate interaction screen, which led to the identification of several Hox protein partners. Conclusion Our results establish the general suitability of BiFC for revealing and studying protein interactions in their physiological context during the rapid course of Drosophila embryonic development.

  7. Presence of Meiotic Spindles Indicates Early Cleavage of Embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To assess whether the detection of the meiotic spindle could anticipate the appearance of early cleavage.Methods Oocytes were obtained from stimulated ovaries of consenting patients undergoing oocytes retrieval for ICSI.Spindles were imaged with the Polscope.After ICSI,oocytes with or without spindles were cultured for examination of early cleavage and embryo development.A total of 328 oocytes from 50 cycles were examined with the Polscope and inseminated by ICSI.Results Spindles were imaged in 81.7% of oocytes.After ICSI,more oocytes with spindles (78.4%) fertilized normally than oocytes without spindles (53.3%)(P<0.001).At 25-27 h post ICSI.more fertilized oocytes developed from oocytes with spindles (81.9%) were detected early cleavage than those from oocytes without spindles(28.1%)(P<0.001).Significantly more embryos with early cleavage (82.2%) developed to high quality embryos at d 3 compared with the embryos without early cleavage(48.3%)(P=0.001).The value of rs related to the relationship between spindles and early cleavage was 0.420(P<0.0001).Conclusion The existing of the early cleavage may have a predictive value on the opportunity of high quality embryos and the existing of the spindle may have a predictive value in the appearance of early cleavage.

  8. Human BMP sequences can confer normal dorsal-ventral patterning in the Drosophila embryo.

    Science.gov (United States)

    Padgett, R W; Wozney, J M; Gelbart, W M

    1993-04-01

    The type beta transforming growth factor family is composed of a series of processed, secreted growth factors, several of which have been implicated in important regulatory roles in cell determination, inductive interactions, and tissue differentiation. Among these factors, the sequence of the DPP protein from Drosophila is most similar to two of the vertebrate bone morphogenetic proteins, BMP2 and BMP4. Here we report that the human BMP4 ligand sequences can function in lieu of DPP in Drosophila embryos. We introduced the ligand region from human BMP4 into a genomic fragment of the dpp gene in place of the Drosophila ligand sequences and recovered transgenic flies by P-element transformation. We find that this chimeric dpp-BMP4 transgene can completely rescue the embryonic dorsal-ventral patterning defect of null dpp mutant genotypes. We infer that the chimeric DPP-BMP4 protein can be processed properly and, by analogy with the action of other family members, can activate the endogenous DPP receptor to carry out the events necessary for dorsal-ventral patterning. Our evidence suggests that the DPP-BMP4 signal transduction pathway has been functionally conserved for at least 600 million years.

  9. Evolutionary Techniques for Image Processing a Large Dataset of Early Drosophila Gene Expression

    Directory of Open Access Journals (Sweden)

    David M. Holloway

    2003-07-01

    Full Text Available Understanding how genetic networks act in embryonic development requires a detailed and statistically significant dataset integrating diverse observational results. The fruit fly (Drosophila melanogaster is used as a model organism for studying developmental genetics. In recent years, several laboratories have systematically gathered confocal microscopy images of patterns of activity (expression for genes governing early Drosophila development. Due to both the high variability between fruit fly embryos and diverse sources of observational errors, some new nontrivial procedures for processing and integrating the raw observations are required. Here we describe processing techniques based on genetic algorithms and discuss their efficacy in decreasing observational errors and illuminating the natural variability in gene expression patterns. The specific developmental problem studied is anteroposterior specification of the body plan.

  10. Calciumreleasing activity induced by nuclei of mouse fertilized early embryos

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    At fertilization, repetitive transient rises of intracellular calcium concentration occur in all mammals studied so far. It has been shown that calcium rises could be induced when mouse fertilized 1-, 2-cell nuclei were transplanted into unfertilized eggs and that the reconstituted embryo could be activated. However, whether the capability of inducing calcium rises occurs in all stages of mammalian embryos remains unknown. In this study, by using the nuclear transplantation technique and measurement of intracellular calcium rises in living cells, we showed that only the nuclei from mouse fertilized 1-cell and 2-cell embryos, neither the nuclei from 4-, 8-cell and ethanol activated parthenogenetic embryos nor 2 or 3 nuclei of electrofused 4-cell stage syncytium, have calcium-releasing activity when they were transferred into unfertilized mature oocytes. Our results indicate that the calcium-releasing activity in nuclei of 1-, 2-cell embryos is produced during fertilization and exists at the special stage of fertilized early embryos. These suggested that the capacity of inducing calcium release activity in fertilized early embryos is important for normal embryonic development.

  11. Medea SUMOylation restricts the signaling range of the Dpp morphogen in the Drosophila embryo.

    Science.gov (United States)

    Miles, Wayne O; Jaffray, Ellis; Campbell, Susan G; Takeda, Shugaku; Bayston, Laura J; Basu, Sanjay P; Li, Mingfa; Raftery, Laurel A; Ashe, Mark P; Hay, Ronald T; Ashe, Hilary L

    2008-09-15

    Morphogens are secreted signaling molecules that form concentration gradients and control cell fate in developing tissues. During development, it is essential that morphogen range is strictly regulated in order for correct cell type specification to occur. One of the best characterized morphogens is Drosophila Decapentaplegic (Dpp), a BMP signaling molecule that patterns the dorsal ectoderm of the embryo by activating the Mad and Medea (Med) transcription factors. We demonstrate that there is a spatial and temporal expansion of the expression patterns of Dpp target genes in SUMO pathway mutant embryos. We identify Med as the primary SUMOylation target in the Dpp pathway, and show that failure to SUMOylate Med leads to the increased Dpp signaling range observed in the SUMO pathway mutant embryos. Med is SUMO modified in the nucleus, and we provide evidence that SUMOylation triggers Med nuclear export. Hence, Med SUMOylation provides a mechanism by which nuclei can continue to monitor the presence of extracellular Dpp signal to activate target gene expression for an appropriate duration. Overall, our results identify an unusual strategy for regulating morphogen range that, rather than impacting on the morphogen itself, targets an intracellular transducer.

  12. File list: His.Emb.20.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.20.AllAg.Early_embryo ce10 Histone Embryo Early embryo SRX331336,SRX466518,...6537 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/His.Emb.20.AllAg.Early_embryo.bed ...

  13. File list: His.Emb.50.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.50.AllAg.Early_embryo ce10 Histone Embryo Early embryo SRX331336,SRX466518,...6534 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/His.Emb.50.AllAg.Early_embryo.bed ...

  14. File list: His.Emb.10.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.10.AllAg.Early_embryo ce10 Histone Embryo Early embryo SRX466522,SRX466513,...4846 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/His.Emb.10.AllAg.Early_embryo.bed ...

  15. File list: ALL.Emb.05.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Early_embryo ce10 All antigens Embryo Early embryo SRX466530,SRX46...3866,SRX043864,SRX043865,SRX043863 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/ALL.Emb.05.AllAg.Early_embryo.bed ...

  16. File list: InP.Emb.20.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.Early_embryo ce10 Input control Embryo Early embryo SRX1353657,SRX...10,SRX466528,SRX466543,SRX1353661 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/InP.Emb.20.AllAg.Early_embryo.bed ...

  17. File list: ALL.Emb.50.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Early_embryo ce10 All antigens Embryo Early embryo SRX331336,SRX49...37,SRX466546,SRX043866,SRX466550,SRX466506,SRX466533,SRX466534 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/ALL.Emb.50.AllAg.Early_embryo.bed ...

  18. File list: Pol.Emb.05.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Early_embryo ce10 RNA polymerase Embryo Early embryo SRX495119,SRX...495120,SRX043866,SRX043864,SRX043865,SRX043863 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.05.AllAg.Early_embryo.bed ...

  19. File list: InP.Emb.10.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Early_embryo ce10 Input control Embryo Early embryo SRX1353657,SRX...524,SRX466528,SRX466543,SRX466552 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/InP.Emb.10.AllAg.Early_embryo.bed ...

  20. File list: ALL.Emb.20.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Early_embryo ce10 All antigens Embryo Early embryo SRX331336,SRX49...4846,SRX466502,SRX466506,SRX466537 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/ALL.Emb.20.AllAg.Early_embryo.bed ...

  1. File list: Pol.Emb.50.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Early_embryo ce10 RNA polymerase Embryo Early embryo SRX495120,SRX...495119,SRX043864,SRX043863,SRX043865,SRX043866 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.50.AllAg.Early_embryo.bed ...

  2. File list: InP.Emb.05.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Early_embryo ce10 Input control Embryo Early embryo SRX1353657,SRX...560,SRX466524,SRX466543,SRX466552 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/InP.Emb.05.AllAg.Early_embryo.bed ...

  3. File list: InP.Emb.50.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Early_embryo ce10 Input control Embryo Early embryo SRX1353657,SRX...495109,SRX1353658,SRX1353660,SRX1353659,SRX1353662,SRX1353661 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/InP.Emb.50.AllAg.Early_embryo.bed ...

  4. File list: His.Emb.05.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.05.AllAg.Early_embryo ce10 Histone Embryo Early embryo SRX466530,SRX466529,...6541 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/His.Emb.05.AllAg.Early_embryo.bed ...

  5. File list: Pol.Emb.20.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Early_embryo ce10 RNA polymerase Embryo Early embryo SRX495120,SRX...495119,SRX043864,SRX043866,SRX043863,SRX043865 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.20.AllAg.Early_embryo.bed ...

  6. File list: Pol.Emb.10.AllAg.Early_embryo [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Early_embryo ce10 RNA polymerase Embryo Early embryo SRX495119,SRX...495120,SRX043866,SRX043864,SRX043865,SRX043863 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.10.AllAg.Early_embryo.bed ...

  7. Impact of early cleaved zygote morphology on embryo development and in vitro fertilization-embryo transfer outcome: a prospective study.

    Science.gov (United States)

    Hesters, Laëtitia; Prisant, Nadia; Fanchin, Renato; Méndez Lozano, Daniel H; Feyereisen, Estelle; Frydman, René; Tachdjian, Gérard; Frydman, Nelly

    2008-06-01

    To evaluate the impact of the first division morphology on embryo development and IVF-embryo transfer outcome. Prospective study. Teaching hospital, France. All zygotes from 201 couples were checked for early cleavage. We defined as "even," early cleaved (EC) zygotes with 2 cells of even size; as "uneven," EC zygotes with 2 cells of uneven size; and as "fragmented," EC zygotes with more than 20% fragmentation rate. Day 2 embryo quality was assessed as "top" embryo or "non-top," with the evaluation of multinucleated blastomeres. None. Day 2 embryo quality, pregnancy and implantation rates. Among EC zygotes, 59.1% were even, 13.0% were uneven, and 27.9% were fragmented. Even EC yielded more "top" embryos and less multinucleated blastomere embryos than uneven EC (77.0% vs. 46.3%) and fragmented EC (77.0% vs. 13.9%). The 125 double embryo transfers that comprised at least one embryo derived from even EC zygote led to higher pregnancy rate (PR) (64.0% vs. 43.4%) and implantation rate (42.0% vs. 27.6%) compared to the 76 double embryo transfers with embryos derived from breakdown or 2PN zygotes. The morphology of the early cleaved zygote is involved in embryo development. Evaluation of this morphology is an effective and valuable method of assessing the embryo quality.

  8. Dynamics of early embryo development in reference to endosperm and embryo types in angiosperms

    Directory of Open Access Journals (Sweden)

    Olga Erdelska

    2014-01-01

    Full Text Available The mitotic cycle of the endosperm cells is relatively short in the firsit phases of the postfertilization development. The endosperm type does not significantly influence the duration of the mitotic cycle; it might, however, influence the dynamics of zygote and embryo development. The quick development and early end of cellular endosperm proliferation is connected with the fact that it is, in most cases, bound to small, "spare" or "saving" tenuinucellate and unitegmic ovules. Structural differences in the behaviour of the endosperm of different types, in the phase of globular and early heart embryo, might point to differences in the time or way of transition of the embryo from suspensorial to surface nutrition.

  9. Co-Culture of Early Embryo with Human Decidual Stromal Cells in vitro by Improvement of Early Embryo Development

    Institute of Scientific and Technical Information of China (English)

    YAN Jie; ZHU Guijin; LIU Jianxin; AI Jihui

    2000-01-01

    An early embryo co-culture system with human decidual stromal cells was established to study its effect on early embryonic cleavage and growth in vitro. Three hundred and eight 2-cell mouse embryos were co-cultured with human decidual stromal cell monolayer in MEM+0.4%bovine serum albumin (BSA) and 163 embryos cultured in MEM+15 % FCS alone as control. Among the mouse 2-cell embryos co-cultured with human decidual stromal cells, 72.73% developed to the morula stage and 67.21% cavitated to blastocysts with 59.74 % hatching, as compared with 61.34% to morula stage, 48.47% to blastocysts and none hatching in the controls,respectively. Co-cultured embryos cleaved slightly faster than controls and showed no or less fragmentation than those in the control. These results suggested that human decidual stromal cells can support early embryonic development and yield a reasonable number of embryos with good quality up to blastocyst stage.

  10. SWATH-MS dataset of heat-shock treated Drosophila melanogaster embryos.

    Science.gov (United States)

    Fabre, Bertrand; Korona, Dagmara; Nightingale, Daniel J H; Russell, Steven; Lilley, Kathryn S

    2016-12-01

    Data independent acquisition (DIA) has emerged as a promising mass spectrometry based approach, combining the advantages of shotgun and targeted proteomics. Here we applied a DIA approach (termed SWATH) to monitor the dynamics of the Drosophila melanogaster embryonic proteome upon heat-shock treatment. Embryos were incubated for 0.5, 1 or 3 h at 37 °C to induce heat-shock or maintained at 25 °C. The present dataset contains SWATH files acquired on a Sciex Triple-TOF 6600. A spectral library built in-house was used to analyse these data and led to the quantification of more than 2500 proteins at every timepoint. The files presented here are permanent digital maps and can be reanalysed to search for new questions. The data have been deposited with the ProteomeXchange Consortium with the dataset identifier PRIDE: PXD004753.

  11. SWATH-MS dataset of heat-shock treated Drosophila melanogaster embryos

    Directory of Open Access Journals (Sweden)

    Bertrand Fabre

    2016-12-01

    Full Text Available Data independent acquisition (DIA has emerged as a promising mass spectrometry based approach, combining the advantages of shotgun and targeted proteomics. Here we applied a DIA approach (termed SWATH to monitor the dynamics of the Drosophila melanogaster embryonic proteome upon heat-shock treatment. Embryos were incubated for 0.5, 1 or 3 h at 37 °C to induce heat-shock or maintained at 25 °C. The present dataset contains SWATH files acquired on a Sciex Triple-TOF 6600. A spectral library built in-house was used to analyse these data and led to the quantification of more than 2500 proteins at every timepoint. The files presented here are permanent digital maps and can be reanalysed to search for new questions. The data have been deposited with the ProteomeXchange Consortium with the dataset identifier PRIDE: PXD004753.

  12. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo.

    Science.gov (United States)

    Sherlekar, Aparna; Rikhy, Richa

    2016-07-01

    Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division.

  13. The role of auxin signaling in early embryo pattern formation.

    Science.gov (United States)

    Smit, Margot E; Weijers, Dolf

    2015-12-01

    Pattern formation of the early Arabidopsis embryo generates precursors to all major cell types, and is profoundly controlled by the signaling molecule auxin. Here we discuss recent milestones in our understanding of auxin-dependent embryo patterning. Auxin biosynthesis, transport and response mechanisms interact to generate local auxin accumulation in the early embryo. New auxin-dependent reporters help identifying these sites, while atomic structures of transcriptional response mediators help explain the diverse outputs of auxin signaling. Key auxin outputs are control of cell identity and cell division orientation, and progress has been made towards understanding the cellular basis of each. Importantly, a number of studies have combined computational modeling and experiments to analyze the developmental role, genetic circuitry and molecular mechanisms of auxin-dependent cell division control.

  14. Early Embryo Survival and Development in Sows with Lactational Ovulation

    NARCIS (Netherlands)

    Gerritsen, R.; Soede, N.M.; Langendijk, P.; Taverne, M.A.M.; Kemp, B.

    2008-01-01

    During lactation, daily separation of sow and piglets, intermittent suckling (IS), can induce lactational oestrus and ovulation. This study examined effects of IS on subsequent early embryo survival and development. Multiparous Topigs40 sows were separated from their piglets for either 12 consecutiv

  15. Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 µm wavelength range.

    Directory of Open Access Journals (Sweden)

    Delphine Débarre

    Full Text Available Light-induced toxicity is a fundamental bottleneck in microscopic imaging of live embryos. In this article, after a review of photodamage mechanisms in cells and tissues, we assess photo-perturbation under illumination conditions relevant for point-scanning multiphoton imaging of live Drosophila embryos. We use third-harmonic generation (THG imaging of developmental processes in embryos excited by pulsed near-infrared light in the 1.0-1.2 µm range. We study the influence of imaging rate, wavelength, and pulse duration on the short-term and long-term perturbation of development and define criteria for safe imaging. We show that under illumination conditions typical for multiphoton imaging, photodamage in this system arises through 2- and/or 3-photon absorption processes and in a cumulative manner. Based on this analysis, we derive general guidelines for improving the signal-to-damage ratio in two-photon (2PEF/SHG or THG imaging by adjusting the pulse duration and/or the imaging rate. Finally, we report label-free time-lapse 3D THG imaging of gastrulating Drosophila embryos with sampling appropriate for the visualisation of morphogenetic movements in wild-type and mutant embryos, and long-term multiharmonic (THG-SHG imaging of development until hatching.

  16. The Early Stages of Heart Development: Insights from Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Johannes G. Wittig

    2016-04-01

    Full Text Available The heart is the first functioning organ in the developing embryo and a detailed understanding of the molecular and cellular mechanisms involved in its formation provides insights into congenital malformations affecting its function and therefore the survival of the organism. Because many developmental mechanisms are highly conserved, it is possible to extrapolate from observations made in invertebrate and vertebrate model organisms to humans. This review will highlight the contributions made through studying heart development in avian embryos, particularly the chicken. The major advantage of chick embryos is their accessibility for surgical manipulation and functional interference approaches, both gain- and loss-of-function. In addition to experiments performed in ovo, the dissection of tissues for ex vivo culture, genomic, or biochemical approaches is straightforward. Furthermore, embryos can be cultured for time-lapse imaging, which enables tracking of fluorescently labeled cells and detailed analysis of tissue morphogenesis. Owing to these features, investigations in chick embryos have led to important discoveries, often complementing genetic studies in mice and zebrafish. As well as including some historical aspects, we cover here some of the crucial advances made in understanding early heart development using the chicken model.

  17. Assessment of early cleaving in vitro fertilized human embryos at the 2-cell stage before transfer improves embryo selection.

    Science.gov (United States)

    Sakkas, D; Percival, G; D'Arcy, Y; Sharif, K; Afnan, M

    2001-12-01

    To determine the most viable embryos for transfer. Study 1: Preselection of early-cleaving 2-cell embryos for transfer. Study 2: Alternating weeks during which preselection was performed and not performed. ART program, Birmingham Women's Hospital, Birmingham, United Kingdom. Patients undergoing IVF or ICSI cycles with transfer on day 2. Culture of all fertilized embryos. Number of fertilized embryos cleaving to the 2-cell stage on day 1, embryo quality, implantation rates, and pregnancy rates. Patients with early-cleaving 2-cell embryos had significantly higher pregnancy and implantation rates (45 of 100 [45.0%] and 58 of 219 [25.5%], respectively) than did patients without early-cleaving 2-cell embryos (31 of 130 [23.8%] and 43 of 290 [14.8%], respectively). In weeks during which preselection was used, the overall pregnancy and implantation rates of the clinic improved. The presence of early-cleaving 2-cell embryos improves a patient's chance of achieving pregnancy. Use of more stringent embryo selection criteria can improve overall pregnancy rates.

  18. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos

    Directory of Open Access Journals (Sweden)

    Ng Fanny

    2008-12-01

    Full Text Available Abstract Background The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC heterodimers activate their feedback regulators period (per and timeless (tim via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development. Results A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral lateral neurons (s-LNvs, dorsal neurons 2 s (DN2s, and dorsal neuron 1 s (DN1s at embryonic stage (ES 16, and this CLK expression pattern persists through larval development. PER then accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17, consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER expression in cells that co-express PER and CLK is eliminated. Conclusion These data demonstrate that brain oscillator neurons begin development during embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors are not activated until the end of embryogenesis, and suggest that PER functions in a different capacity before oscillator cell development is

  19. Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage

    Science.gov (United States)

    Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino

    2016-01-01

    In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956

  20. Signalling crosstalk at the leading edge controls tissue closure dynamics in the Drosophila embryo

    Science.gov (United States)

    Carballès, Fabrice; Parassol, Nadège; Schaub, Sébastien; Cérézo, Delphine; Noselli, Stéphane

    2017-01-01

    Tissue morphogenesis relies on proper differentiation of morphogenetic domains, adopting specific cell behaviours. Yet, how signalling pathways interact to determine and coordinate these domains remains poorly understood. Dorsal closure (DC) of the Drosophila embryo represents a powerful model to study epithelial cell sheet sealing. In this process, JNK (JUN N-terminal Kinase) signalling controls leading edge (LE) differentiation generating local forces and cell shape changes essential for DC. The LE represents a key morphogenetic domain in which, in addition to JNK, a number of signalling pathways converges and interacts (anterior/posterior -AP- determination; segmentation genes, such as Wnt/Wingless; TGFβ/Decapentaplegic). To better characterize properties of the LE morphogenetic domain, we sought out new JNK target genes through a genomic approach: 25 were identified of which 8 are specifically expressed in the LE, similarly to decapentaplegic or puckered. Quantitative in situ gene profiling of this new set of LE genes reveals complex patterning of the LE along the AP axis, involving a three-way interplay between the JNK pathway, segmentation and HOX genes. Patterning of the LE into discrete domains appears essential for coordination of tissue sealing dynamics. Loss of anterior or posterior HOX gene function leads to strongly delayed and asymmetric DC, due to incorrect zipping in their respective functional domain. Therefore, in addition to significantly increasing the number of JNK target genes identified so far, our results reveal that the LE is a highly heterogeneous morphogenetic organizer, sculpted through crosstalk between JNK, segmental and AP signalling. This fine-tuning regulatory mechanism is essential to coordinate morphogenesis and dynamics of tissue sealing. PMID:28231245

  1. [Progress in proteomics of mammalian oocyte and early embryo].

    Science.gov (United States)

    Chen, Lingsheng; Xu, Ping; Shi, Deshun; Li, Xiangping

    2014-07-01

    The development of female germ cell is the cornerstone for animal reproduction. Mammalian oocyte and early embryo have many distinct phenomena and mechanisms during their growth and development, involving series dynamic changes of protein synthesis/degradation and phosphorylation. Research on the regulatory mechanism of oocyte division, maturation, and developmental principle of pre-implantation embryo is an important topic in the field of animal developmental biology. Proteomics using all of proteins expressed by a cell or tissue as research object, systematically identify, quantify and study the function of all these proteins. With the rapid development of protein separation and identification technology, proteomics provide some new methods and the research contents on fields of oogenesis, differentiation, maturation and quality control, such as protein quantification, modification, location and interaction important information which other omics technology can not provide. These information will contribute to uncover the molecular mechanisms of mammalian oocyte maturation and embryonic development. And it is great significant for improving the culture system of oocyte in vitro maturation, the efficiency of embryo production in vitro, somatic cell clone and transgenic animal production.

  2. Transcriptome analysis of mouse stem cells and early embryos.

    Directory of Open Access Journals (Sweden)

    Alexei A Sharov

    2003-12-01

    Full Text Available Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine.

  3. Transcriptome Analysis of Mouse Stem Cells and Early Embryos

    Science.gov (United States)

    Sharov, Alexei A; Piao, Yulan; Matoba, Ryo; Dudekula, Dawood B; Qian, Yong; VanBuren, Vincent; Falco, Geppino; Martin, Patrick R; Stagg, Carole A; Bassey, Uwem C; Wang, Yuxia; Carter, Mark G; Hamatani, Toshio; Aiba, Kazuhiro; Akutsu, Hidenori; Sharova, Lioudmila; Tanaka, Tetsuya S; Kimber, Wendy L; Yoshikawa, Toshiyuki; Jaradat, Saied A; Pantano, Serafino; Nagaraja, Ramaiah; Boheler, Kenneth R; Taub, Dennis; Hodes, Richard J; Longo, Dan L; Schlessinger, David; Keller, Jonathan; Klotz, Emily; Kelsoe, Garnett; Umezawa, Akihiro; Vescovi, Angelo L; Rossant, Janet; Kunath, Tilo; Hogan, Brigid L. M; Curci, Anna; D'Urso, Michele; Kelso, Janet; Hide, Winston

    2003-01-01

    Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine. PMID:14691545

  4. Dielectrospectroscopic monitoring of early embryogenesis in single frog embryos

    Science.gov (United States)

    Asami, Koji; Irimajiri, Akihiko

    2000-11-01

    Dielectric spectroscopy has been used to monitor the early embryogenesis of frog (Xenopus laevis) eggs. The dielectric spectra of a single egg in suspension over the frequency range 10 Hz to 10 MHz were collected at various stages of its development. The uncleaved egg showed a dielectric dispersion with a narrow distribution of relaxation times. After the first cleavage, the dielectric spectra were mainly composed of two subdispersions. In the cleavage process, up to the morula stage, changes in the spectra were quantitatively simulated by the `cell-aggregate' model in which the embryo is regarded as a concentrated suspension of shell-spheres that correspond to the blastomeres (i.e. the cells within the embryo). In the stages from the morula to the blastula, the changes in the dielectric spectra were explained as due to a reduction in the size of the blastomere accompanied by an expansion of the blastocoel (i.e. the central cavity in the embryo) using the `vesicle-inclusion' model that is a cell aggregate covered with a less conducting shell corresponding to the outermost layer of tightly interconnected cells.

  5. Sex and the single embryo: early deveiopment in the Mediterranean fruit fly, Ceratitis capitata.

    Science.gov (United States)

    Gabrieli, Paolo; Falaguerra, Andrea; Siciliano, Paolo; Gomulski, Ludvik M; Scolari, Francesca; Zacharopoulou, Antigone; Franz, Gerald; Malacrida, Anna R; Gasperi, Giuliano

    2010-01-26

    In embryos the maternal-to-zygotic transition (MTZ) integrates post-transcriptional regulation of maternal transcripts with transcriptional activation of the zygotic genome. Although the molecular mechanisms underlying this event are being clarified in Drosophila melanogaster, little is know about the embryogenic processes in other insect species. The recent publication of expressed sequence tags (ESTs) from embryos of the global pest species Ceratitis capitata (medfly) has enabled the investigation of embryogenesis in this species and has allowed a comparison of the embryogenic processes in these two related dipteran species, C. capitata and D. melanogaster, that shared a common ancestor 80-100 mya. Using a novel PCR-based sexing method, which takes advantage of a putative LTR retrotransposon MITE insertion on the medfly Y chromosome, the transcriptomes of individual early male and female embryos were analysed using RT-PCR. This study is focused on two crucial aspects of the onset of embryonic development: sex determination and cellular blastoderm formation. Together with the three known medfly genes (Cctransformer, Cctransformer2 and Ccdoublesex), the expression patterns of other medfly genes that are similar to the D. melanogaster sex-determination genes (sisterlessA, groucho, deadpan, Sex-lethal, female lethal d, sans fille and intersex) and four cellular blastoderm formation genes (Rho1, spaghetti squash, slow-as-molasses and serendipity-alpha) were analyzed, allowing us to sketch a preliminary outline of the embryonic process in the medfly. Furthermore, a putative homologue of the Zelda gene has been considered, which in D. melanogaster encodes a DNA-binding factor responsible for the maternal-to-zygotic transition. Our novel sexing method facilitates the study of i) when the MTZ transition occurs in males and females of C. capitata, ii) when and how the maternal information of "female-development" is reprogrammed in the embryos and iii) similarities and

  6. Sex and the single embryo: early deveopment in the Mediterranean fruit fly, Ceratitis capitata

    Directory of Open Access Journals (Sweden)

    Zacharopoulou Antigone

    2010-01-01

    Full Text Available Abstract Background In embryos the maternal-to-zygotic transition (MTZ integrates post-transcriptional regulation of maternal transcripts with transcriptional activation of the zygotic genome. Although the molecular mechanisms underlying this event are being clarified in Drosophila melanogaster, little is know about the embryogenic processes in other insect species. The recent publication of expressed sequence tags (ESTs from embryos of the global pest species Ceratitis capitata (medfly has enabled the investigation of embryogenesis in this species and has allowed a comparison of the embryogenic processes in these two related dipteran species, C. capitata and D. melanogaster, that shared a common ancestor 80-100 mya. Results Using a novel PCR-based sexing method, which takes advantage of a putative LTR retrotransposon MITE insertion on the medfly Y chromosome, the transcriptomes of individual early male and female embryos were analysed using RT-PCR. This study is focused on two crucial aspects of the onset of embryonic development: sex determination and cellular blastoderm formation. Together with the three known medfly genes (Cctransformer, Cctransformer2 and Ccdoublesex, the expression patterns of other medfly genes that are similar to the D. melanogaster sex-determination genes (sisterlessA, groucho, deadpan, Sex-lethal, female lethal d, sans fille and intersex and four cellular blastoderm formation genes (Rho1, spaghetti squash, slow-as-molasses and serendipity-α were analyzed, allowing us to sketch a preliminary outline of the embryonic process in the medfly. Furthermore, a putative homologue of the Zelda gene has been considered, which in D. melanogaster encodes a DNA-binding factor responsible for the maternal-to-zygotic transition. Conclusions Our novel sexing method facilitates the study of i when the MTZ transition occurs in males and females of C. capitata, ii when and how the maternal information of "female-development" is

  7. Sex and the single embryo: early deveopment in the Mediterranean fruit fly, Ceratitis capitata

    Science.gov (United States)

    2010-01-01

    Background In embryos the maternal-to-zygotic transition (MTZ) integrates post-transcriptional regulation of maternal transcripts with transcriptional activation of the zygotic genome. Although the molecular mechanisms underlying this event are being clarified in Drosophila melanogaster, little is know about the embryogenic processes in other insect species. The recent publication of expressed sequence tags (ESTs) from embryos of the global pest species Ceratitis capitata (medfly) has enabled the investigation of embryogenesis in this species and has allowed a comparison of the embryogenic processes in these two related dipteran species, C. capitata and D. melanogaster, that shared a common ancestor 80-100 mya. Results Using a novel PCR-based sexing method, which takes advantage of a putative LTR retrotransposon MITE insertion on the medfly Y chromosome, the transcriptomes of individual early male and female embryos were analysed using RT-PCR. This study is focused on two crucial aspects of the onset of embryonic development: sex determination and cellular blastoderm formation. Together with the three known medfly genes (Cctransformer, Cctransformer2 and Ccdoublesex), the expression patterns of other medfly genes that are similar to the D. melanogaster sex-determination genes (sisterlessA, groucho, deadpan, Sex-lethal, female lethal d, sans fille and intersex) and four cellular blastoderm formation genes (Rho1, spaghetti squash, slow-as-molasses and serendipity-α) were analyzed, allowing us to sketch a preliminary outline of the embryonic process in the medfly. Furthermore, a putative homologue of the Zelda gene has been considered, which in D. melanogaster encodes a DNA-binding factor responsible for the maternal-to-zygotic transition. Conclusions Our novel sexing method facilitates the study of i) when the MTZ transition occurs in males and females of C. capitata, ii) when and how the maternal information of "female-development" is reprogrammed in the embryos

  8. Osteoclast-like Cells in Early Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Faiza Sharif

    2014-06-01

    Full Text Available Objective: Genes involved in bone and tissue remodelling in the vertebrates include matrix metalloproteinase-9 (mmp-9, receptor activator of necrosis factor κ-β (rank, cathepsin-k (Ctsk and tartrate-resistant acid phosphatase (TRAcP. We examine whether these markers are expressed in cells of zebrafish embryos of 1-5 days post fertilization. We also examine adult scales, which are known to contain mature osteoclasts, for comparison. Materials and Methods: In this experimental study, in situ hybrdisation, histochemistry and serial plastic and paraffin sectioning were used to analyse marker expression. Results: We found that mmp-9 mRNA, TRAcP enzyme and Ctsk YFP protein were expressed in haematopoietic tissues and in the cells scattered sparsely in the embryo. Ctsk and rank mRNA were both expressed in the branchial skeleton and in the developing pectoral fin. In these skeletal structures, histology showed that the expressing cells were located around the developing cartilage elements, in the parachondral tissue. In a transgenic zebrafish line with YFP coupled to Ctsk promoter, Ctsk expressing cells were found around pharyngeal skeletal elements. To see whether we could activate osteoclasts, we exposed prim-6 zebrafish embryos to a mixture of 1 μM dexamethasone and 1 μM vitaminutes D3. These compounds, which are known to trigger osteoclastogenensis in cell cultures, lead to an increase in intensity of Ctsk YFP expression around the skeletal elements. Conclusion: Our findings show that cells expressing a range of osteoclast markers are present in early larvae and can be activated by the addition of osteoclastogenic compounds.

  9. The Toll pathway is required in the epidermis for muscle development in the Drosophila embryo

    Science.gov (United States)

    Halfon, M. S.; Keshishian, H.

    1998-01-01

    The Toll signaling pathway functions in several Drosophila processes, including dorsal-ventral pattern formation and the immune response. Here, we demonstrate that this pathway is required in the epidermis for proper muscle development. Previously, we showed that the zygotic Toll protein is necessary for normal muscle development; in the absence of zygotic Toll, close to 50% of hemisegments have muscle patterning defects consisting of missing, duplicated and misinserted muscle fibers (Halfon, M.S., Hashimoto, C., and Keshishian, H., Dev. Biol. 169, 151-167, 1995). We have now also analyzed the requirements for easter, spatzle, tube, and pelle, all of which function in the Toll-mediated dorsal-ventral patterning pathway. We find that spatzle, tube, and pelle, but not easter, are necessary for muscle development. Mutations in these genes give a phenotype identical to that seen in Toll mutants, suggesting that elements of the same pathway used for Toll signaling in dorsal-ventral development are used during muscle development. By expressing the Toll cDNA under the control of distinct Toll enhancer elements in Toll mutant flies, we have examined the spatial requirements for Toll expression during muscle development. Expression of Toll in a subset of epidermal cells that includes the epidermal muscle attachment cells, but not Toll expression in the musculature, is necessary for proper muscle development. Our results suggest that signals received by the epidermis early during muscle development are an important part of the muscle patterning process.

  10. Transient effects of microgravity on early embryos of Xenopus laevis

    Science.gov (United States)

    de Mazière, A.; Gonzalez-Jurado, J.; Reijnen, M.; Narraway, J.; Ubbels, G. A.

    In order to study the role of gravity on the early development of the clawed toad Xenopus laevis, we performed an experiment on the Maser-6 sounding rocket launched from Kiruna (Sweden) on 4 Nov 1993. The aim was to find out whether a short period of microgravity (mug) during fertilization and the first few minutes of development does indeed result in abnormal axis formation as was suggested by a pilot experiment on the Maser 3 in 1989. On the Maser 6 we used two new technical additions in the Fokker CIS unit, viz. a 1-g control centrifuge and a video recording unit which both worked successfully. The 1-g control centrifuge was used to discriminate between the influences of flight perturbations and mug. After fertilization shortly before launch, one of the first indications of successful egg activation, the cortical contraction, was registered in mug and on earth. Analysis of the video tapes revealed that the cortical contraction in mug starts earlier than at 1 g on earth. After recovery of the eggs fertilized in mug and culture of the embryos on earth, the morphology of the blastocoel has some consistent differences from blastulae from eggs fertilized in the 1-g centrifuge of the rocket. However from the gastrula stage onward, the mug embryos apparently recover and resume normal development: the XBra gene is normally expressed, and histological examination shows normal axis formation.

  11. Stage-specific proteome signatures in early bovine embryo development.

    Science.gov (United States)

    Deutsch, Daniela R; Fröhlich, Thomas; Otte, Kathrin A; Beck, Andrea; Habermann, Felix A; Wolf, Eckhard; Arnold, Georg J

    2014-10-03

    Development of early embryonic stages before activation of the embryonic genome depends on sufficiently stored products of the maternal genome, adequate recruitment and degradation of mRNAs, as well as activation, deactivation, and relocation of proteins. By application of an isobaric tagging for relative and absolute quantification (iTRAQ)-based approach, the proteomes of bovine embryos at the zygote and 2-cell and 4-cell stage with MII oocytes as a reference were quantitatively analyzed. Of 1072 quantified proteins, 87 differed significantly in abundance between the four stages. The proteomes of 2-cell and 4-cell embryos differed most from the reference MII oocyte, and a considerable fraction of proteins continuously increased in abundance during the stages analyzed, despite a strongly attenuated rate of translation reported for this period. Bioinformatic analysis revealed particularly interesting proteins involved in the p53 pathway, lipid metabolism, and mitosis. Verification of iTRAQ results by targeted SRM (selected reaction monitoring) analysis revealed excellent agreement for all five proteins analyzed. By principal component analysis, SRM quantifications comprising a panel of only five proteins were shown to discriminate between all four developmental stages analyzed here. For future experiments, an expanded SRM protein panel will provide the potential to detect developmental disturbances with high sensitivity and enable first insights into the underlying molecular pathways.

  12. Efficient and rapid isolation of early-stage embryos from Arabidopsis thaliana seeds

    OpenAIRE

    Raissig, Michael T; Gagliardini, Valeria; Jaenisch, Johan; Grossniklaus, Ueli; Baroux, Célia

    2013-01-01

    In flowering plants, the embryo develops within a nourishing tissue - the endosperm - surrounded by the maternal seed integuments (or seed coat). As a consequence, the isolation of plant embryos at early stages (1 cell to globular stage) is technically challenging due to their relative inaccessibility. Efficient manual dissection at early stages is strongly impaired by the small size of young Arabidopsis seeds and the adhesiveness of the embryo to the surrounding tissues. Here, we describe a ...

  13. Extended Culture of Early Stage Embryos in Frozen-thawed Cycles

    Institute of Scientific and Technical Information of China (English)

    Hong-bo WANG; Yan-hui LI

    2009-01-01

    Objective To investigate the impact of extended culture of early stage embryos on pregnancy outcome of frozen embryo transfer (FET).Methods The survival rates of embryos after thawing and pregnancy outcome following FET were compared retrospectively between zygote and cleavage embryos which cultured to cleavage stage or extended cultured to blastocysts. Results A total of 425 zygote embryos in 67 cycles were thawed. After thawing, the survival rate was 94.4% and with an average transfer of 2.8 embryos, the clinical pregnancy rate was 55.2% (37/67). In 222 FET cycles, totally 1 270 cleavage stage embryos were thawed and the overall survival rates were 80.3%. With an average transfer of 2.7 embryos, the clinical pregnancy rate was 55.4% (123/222). A significantly lower percentage of degenerated embryos were found for zygotes (5.6%) than that for cleavage stage embryos (19.7%) (P0.05). Conclusion Although the clinical pregnancy rate was not different between patients with freeze-thaw zygote and cleavage stage embryo transfer, higher survival rate for zygote was shown compared with that for cleavage stage embryo. However, the present studies did not demonstrate that extended culture thawing embryos to blastocyst could achieve favor clinical outcome.

  14. The effect of unilateral ovariectomy on early embryonic survival and embryo development in rabbits

    Directory of Open Access Journals (Sweden)

    R. Peiró

    2014-06-01

    Full Text Available Unilateral ovariectomy can be used to study uterine capacity in rabbits because an overcrowding of the functional uterine horn is produced. Due to the uterus duplex, the rabbit is the ideal model for such studies. However, this technique may affect embryo survival. The aim of this work is to study the effect of unilateral ovariectomy on early embryo survival and development in rabbit. A total of 101 unilateral ovariectomised females and 52 intact females were compared after slaughter at 30 h post-mating. Early embryo survival was estimated as the ratio between number of embryo recovered and ovulation rate. No differences were found between intact and unilaterally ovariectomised females in this trait. Unilateral ovariectomy did not change embryo development, measured as the number of embryo cells. Variability of embryo development was not affected either. At 30 h post-mating, the majority of embryos (86.2% were 4-cell stage. Embryo quality was evaluated according to morphological criteria. No difference in embryo quality between intact and unilaterally ovariectomised females was found. Therefore, unilateral ovariectomy performed before puberty in rabbit does not modify early embryo survival and development.

  15. Cutin fluorescence in early embryos of Pinus and Tsuga

    OpenAIRE

    Ewa Szczuka; Irena Gielwanowska

    2014-01-01

    Embryos of Pinus nigra Arnold and Tsuga canadensis Carr. (Pinaceae) at different stages of development were dissected from fresh, unfixed seeds and examined in a fluorescence microscope with 400 nm excitation light. The embryos of the investigated species showed cutin fluorescence after auramine 0 staining. At first the fluorescing cutin layer was formed on the apical part of the embryo with a well developed secondary suspensor, then it extended over the lateral surface of the embryo; the sus...

  16. Ultrastructural changes in goat interspecies and intraspecies reconstructed early embryos

    DEFF Research Database (Denmark)

    Tao, Yong; Gheng, Lizi; Zhang, Meiling

    2008-01-01

    The low efficiency of somatic cell nuclear transfer may be related to the ultrastructural deviations of reconstructed embryos. The present study investigated ultrastructural differences between in vivo-produced and cloned goat embryos, including intra- and interspecies embryos. Goat ear fibroblast...

  17. Ultrastructural changes in goat interspecies and intraspecies reconstructed early embryos

    DEFF Research Database (Denmark)

    Tao, Yong; Gheng, Lizi; Zhang, Meiling;

    2008-01-01

    and dispered gradually from the 4-cell period. The nucleolus of GC and GG embryos changed from electron dense to a fibrillo-granular meshwork at the 16-cell stage, showing that nucleus function in the reconstructed embryos was activated. The broken nuclear envelope and multiple nucleoli in one blastomere......- and intraspecies reconstructed embryos have a similar pattern of developmental change to that of in vivo-produced embryos for ZP, rough ER, Gi and nucleolus, but differ for mitochondria, LD, vesicles, nucleus and gap junction development. In particular, the interspecies cloned embryos showed more severe...

  18. Early Cambrian pentamerous cubozoan embryos from South China.

    Directory of Open Access Journals (Sweden)

    Jian Han

    Full Text Available BACKGROUND: Extant cubozoans are voracious predators characterized by their square shape, four evenly spaced outstretched tentacles and well-developed eyes. A few cubozoan fossils are known from the Middle Cambrian Marjum Formation of Utah and the well-known Carboniferous Mazon Creek Formation of Illinois. Undisputed cubozoan fossils were previously unknown from the early Cambrian; by that time probably all representatives of the living marine phyla, especially those of basal animals, should have evolved. METHODS: Microscopic fossils were recovered from a phosphatic limestone in the Lower Cambrian Kuanchuanpu Formation of South China using traditional acetic-acid maceration. Seven of the pre-hatched pentamerous cubozoan embryos, each of which bears five pairs of subumbrellar tentacle buds, were analyzed in detail through computed microtomography (Micro-CT and scanning electron microscopy (SEM without coating. RESULTS: The figured microscopic fossils are unequivocal pre-hatching embryos based on their spherical fertilization envelope and the enclosed soft-tissue that has preserved key anatomical features arranged in perfect pentaradial symmetry, allowing detailed comparison with modern cnidarians, especially medusozoans. A combination of features, such as the claustrum, gonad-lamella, suspensorium and velarium suspended by the frenula, occur exclusively in the gastrovascular system of extant cubozoans, indicating a cubozoan affinity for these fossils. Additionally, the interior anatomy of these embryonic cubozoan fossils unprecedentedly exhibits the development of many new septum-derived lamellae and well-partitioned gastric pockets unknown in living cubozoans, implying that ancestral cubozoans had already evolved highly specialized structures displaying unexpected complexity at the dawn of the Cambrian. The well-developed endodermic lamellae and gastric pockets developed in the late embryonic stages of these cubozoan fossils are comparable with

  19. Cutin fluorescence in early embryos of Pinus and Tsuga

    Directory of Open Access Journals (Sweden)

    Ewa Szczuka

    2014-01-01

    Full Text Available Embryos of Pinus nigra Arnold and Tsuga canadensis Carr. (Pinaceae at different stages of development were dissected from fresh, unfixed seeds and examined in a fluorescence microscope with 400 nm excitation light. The embryos of the investigated species showed cutin fluorescence after auramine 0 staining. At first the fluorescing cutin layer was formed on the apical part of the embryo with a well developed secondary suspensor, then it extended over the lateral surface of the embryo; the suspensor remained nonfluorescent. The fluorescing cutin layer occurred on the apical and side surface of the embryo, undergoing differentiation into the shoot axis and root initials. It is assumed that polarization and nutrition of the embryo may be influenced by presence of the cuticle.

  20. Early embryo development in Fucus distichus is auxin sensitive

    Science.gov (United States)

    Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.

    2002-01-01

    Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [(3)H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development.

  1. Identification of the glycerol kinase gene and its role in diapause embryo restart and early embryo development of Artemia sinica.

    Science.gov (United States)

    Cheng, Cheng; Yao, Feng; Chu, Bing; Li, Xuejie; Liu, Yan; Wu, Yang; Mei, Yanli; Wang, Peisheng; Hou, Lin; Zou, Xiangyang

    2014-03-01

    Glycerol kinase (GK) catalyzes the rate-limiting step in glycerol utilization by transferring a phosphate from ATP to glycerol, yielding glycerol 3-phosphate, which is an important intermediate for both energy metabolism and glycerolipid production. Artemia sinica has an unusual diapause process under stress conditions of high salinity, low temperature and lack of food. In the process, diapause embryos of A. sinica (brine shrimp) accumulate high concentrations of glycerol as a cryoprotectant to prevent low temperature damage to embryos. Upon embryo restart, glycerol is converted into glucose and other carbohydrates. Therefore, GK plays an important role in the diapause embryo restart process. However, the role of GK in diapause termination of embryo development in A. sinica remains unknown. In the present study, a 2096 bp full-length cDNA of gk from A. sinica (As-gk) was obtained, encoding putative 551 amino acids, 60.6 kDa protein. As a crucial enzyme in glycerol uptake and metabolism, GK has been conserved structurally and functionally during evolution. The expression pattern of As-gk was investigated by quantitative real-time PCR and Western blotting. Expression locations of As-gk were analyzed using in situ hybridization. As-gk was widely distributed in the early embryo and several main parts of Artemia after differentiation. The expression of As-GK was also induced by stresses such as cold exposure and high salinity. This initial research into the expression pattern and stress response of GK in Artemia provides a sound basis for further understanding of the function and regulation of genes in early embryonic development in A. sinica and the stress response.

  2. Proteome analysis of early lineage specification in bovine embryos.

    Science.gov (United States)

    Demant, Myriam; Deutsch, Daniela R; Fröhlich, Thomas; Wolf, Eckhard; Arnold, Georg J

    2015-02-01

    During mammalian embryo development, the zygote undergoes embryonic cleavage in the oviduct and reaches the uterus at the morula stage, when compaction and early lineage specification take place. To increase knowledge about the associated changes of the embryonic protein repertoire, we performed a comprehensive proteomic analysis of in vitro produced bovine morulae and blastocysts (six biological replicates), using an iTRAQ-based approach. A total of 560 proteins were identified of which 502 were quantified. The abundance of 140 proteins was significantly different between morulae and blastocysts, among them nucleophosmin (NPM1), eukaryotic translation initiation factor 5A-1 (EIF5A), receptor of activated protein kinase C 1 (GNB2L1/RACK1), and annexin A6 (ANXA6) with increased, and glutathione S-transferase mu 3 (GSTM3), peroxiredoxin 2 (PRDX2), and aldo-keto reductase family 1 member B1 (AKR1B1) with decreased abundance in blastocysts. Seventy-three percent of abundance altered proteins increased, reflecting an increase of translation activity in this period. This is further supported by an increase in the abundance of proteins involved in the translation machinery and the synthesis of ATP. Additionally, a complementary 2D saturation DIGE analysis led to the detection of protein isoforms, e.g. of GSTM3 and PRDX2, relevant for this period of mammalian development, and exemplarily verified the results of the iTRAQ approach. In summary, our systematic differential proteome analysis of bovine morulae and blastocysts revealed new molecular correlates of early lineage specification and differentiation events during bovine embryogenesis.

  3. The p66(Shc adaptor protein controls oxidative stress response in early bovine embryos.

    Directory of Open Access Journals (Sweden)

    Dean H Betts

    Full Text Available The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  4. A quantification model for apoptosis in mouse embryos in the early stage of fetation

    Institute of Scientific and Technical Information of China (English)

    WANG PengFei; FU JianHua; MA WanYun; CHEN DieYan; Lü DanYu; BAI WenJia

    2009-01-01

    Apoptosis is the most important inducement and modulator for embryos in the early stage of fetation, i.e. after the 8-cell stage, mostly the morula and blastula stage, to proceed to the stage of nonlinear development. Using a two-photon laser scanning microscopy (TPLSM) system, we obtained 3-dimensional (3D) fluorescent images of preimplantation mouse embryos. A model for quantification was established. The statistical results for the spatial location of apoptosis bodies in embryos was obtained following image processing, as well as investigation of the kinetics of apoptosis. It was found that most (70%) apoptosis occurred in the trophectoderm, and the departure between the centroid and geometric center of embryos had a step transition when embryos developed into the 32-cell stage,which was consistent with the theoretical prediction that the blastocele would induce a symmetry break of the distribution of cells in embryos.

  5. A quantification model for apoptosis in mouse embryos in the early stage of fetation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Apoptosis is the most important inducement and modulator for embryos in the early stage of fetation, i.e. after the 8-cell stage, mostly the morula and blastula stage, to proceed to the stage of nonlinear development. Using a two-photon laser scanning microscopy (TPLSM) system, we obtained 3-dimensional (3D) fluorescent images of preimplantation mouse embryos. A model for quantification was established. The statistical results for the spatial location of apoptosis bodies in embryos was obtained following image processing, as well as investigation of the kinetics of apoptosis. It was found that most (70%) apoptosis occurred in the trophectoderm, and the departure between the centroid and geometric center of embryos had a step transition when embryos developed into the 32-cell stage, which was consistent with the theoretical prediction that the blastocele would induce a symmetry break of the distribution of cells in embryos.

  6. In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos

    OpenAIRE

    Simpson, David A.; Thompson, Amelia J.; Kowarsky, Mark; Zeeshan, Nida F.; Barson, Michael S. J.; Hall, Liam T.; Yan, Yan; Kaufmann, Stefan; Johnson, Brett C.; Ohshima, Takeshi; Caruso, Frank; Scholten, Robert E.; Robert B Saint; Murray, Michael J.; Hollenberg, Lloyd C. L.

    2014-01-01

    In this work, we incorporate and image individual fluorescent nanodiamonds in the powerful genetic model system Drosophila melanogaster. Fluorescence correlation spectroscopy and wide-field imaging techniques are applied to individual fluorescent nanodiamonds in blastoderm cells during stage 5 of development, up to a depth of 40 µm. The majority of nanodiamonds in the blastoderm cells during cellularization exhibit free diffusion with an average diffusion coefficient of (6 ± 3) × 10−3 µm2/s, ...

  7. Oviduct: roles in fertilization and early embryo development.

    Science.gov (United States)

    Li, Shuai; Winuthayanon, Wipawee

    2017-01-01

    Animal oviducts and human Fallopian tubes are a part of the female reproductive tract that hosts fertilization and pre-implantation development of the embryo. With an increasing understanding of roles of the oviduct at the cellular and molecular levels, current research signifies the importance of the oviduct on naturally conceived fertilization and pre-implantation embryo development. This review highlights the physiological conditions within the oviduct during fertilization, environmental regulation, oviductal fluid composition and its role in protecting embryos and supplying nutrients. Finally, the review compares different aspects of naturally occurring fertilization and assisted reproductive technology (ART)-achieved fertilization and embryo development, giving insight into potential areas for improvement in this technology. © 2017 Society for Endocrinology.

  8. Expression of renin–angiotensin system components in the early bovine embryo

    Science.gov (United States)

    Pijacka, Wioletta; Hunter, Morag G; Broughton Pipkin, Fiona; Luck, Martin R

    2012-01-01

    The renin–angiotensin system (RAS), mainly associated with the regulation of blood pressure, has been recently investigated in female reproductive organs and the developing foetus. Angiotensin II (Ang II) influences oviductal gamete movements and foetal development, but there is no information about RAS in the early embryo. The aim of this study was to determine whether RAS components are present in the pre-implantation embryo, to determine how early they are expressed and to investigate their putative role at this stage of development. Bovine embryos produced in vitro were used for analysis of RAS transcripts (RT-PCR) and localisation of the receptors AGTR1 and AGTR2 (immunofluorescent labelling). We also investigated the effects of Ang II, Olmesartan (AGTR1 antagonist) and PD123319 (AGTR2 antagonist) on oocyte cleavage, embryo expansion and hatching. Pre-implanted embryos possessed AGTR1 and AGTR2 but not the other RAS components. Both receptors were present in the trophectoderm and in the inner cell mass of the blastocyst. AGTR1 was mainly localised in granular-like structures in the cytoplasm, suggesting its internalisation into clathrin-coated vesicles, and AGTR2 was found mainly in the nuclear membrane and in the mitotic spindle of dividing trophoblastic cells. Treating embryos with PD123319 increased the proportion of hatched embryos compared with the control. These results, the first on RAS in the early embryo, suggest that the pre-implanted embryo responds to Ang II from the mother rather than from the embryo itself. This may be a route by which the maternal RAS influences blastocyst hatching and early embryonic development. PMID:23781300

  9. Loss of PTB or negative regulation of Notch mRNA reveals distinct zones of Notch and actin protein accumulation in Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Cedric S Wesley

    Full Text Available Polypyrimidine Tract Binding (PTB protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1 the Notch mRNA is a potential target of PTB, (2 PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3 the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions.

  10. SuperFly: a comparative database for quantified spatio-temporal gene expression patterns in early dipteran embryos.

    Science.gov (United States)

    Cicin-Sain, Damjan; Pulido, Antonio Hermoso; Crombach, Anton; Wotton, Karl R; Jiménez-Guri, Eva; Taly, Jean-François; Roma, Guglielmo; Jaeger, Johannes

    2015-01-01

    We present SuperFly (http://superfly.crg.eu), a relational database for quantified spatio-temporal expression data of segmentation genes during early development in different species of dipteran insects (flies, midges and mosquitoes). SuperFly has a special focus on emerging non-drosophilid model systems. The database currently includes data of high spatio-temporal resolution for three species: the vinegar fly Drosophila melanogaster, the scuttle fly Megaselia abdita and the moth midge Clogmia albipunctata. At this point, SuperFly covers up to 9 genes and 16 time points per species, with a total of 1823 individual embryos. It provides an intuitive web interface, enabling the user to query and access original embryo images, quantified expression profiles, extracted positions of expression boundaries and integrated datasets, plus metadata and intermediate processing steps. SuperFly is a valuable new resource for the quantitative comparative study of gene expression patterns across dipteran species. Moreover, it provides an interesting test set for systems biologists interested in fitting mathematical gene network models to data. Both of these aspects are essential ingredients for progress toward a more quantitative and mechanistic understanding of developmental evolution.

  11. PreImplantation Factor (PIF correlates with early mammalian embryo development-bovine and murine models

    Directory of Open Access Journals (Sweden)

    Coulam Carolyn B

    2011-05-01

    Full Text Available Abstract Background PreImplantation Factor (PIF, a novel peptide secreted by viable embryos is essential for pregnancy: PIF modulates local immunity, promotes decidual pro-adhesion molecules and enhances trophoblast invasion. To determine the role of PIF in post-fertilization embryo development, we measured the peptide's concentration in the culture medium and tested endogenous PIF's potential trophic effects and direct interaction with the embryo. Methods Determine PIF levels in culture medium of multiple mouse and single bovine embryos cultured up to the blastocyst stage using PIF-ELISA. Examine the inhibitory effects of anti-PIF-monoclonal antibody (mAb added to medium on cultured mouse embryos development. Test FITC-PIF uptake by cultured bovine blastocysts using fluorescent microscopy. Results PIF levels in mouse embryo culture medium significantly increased from the morula to the blastocyst stage (ANOVA, P = 0.01. In contrast, atretic embryos medium was similar to the medium only control. Detectable - though low - PIF levels were secreted already by 2-cell stage mouse embryos. In single bovine IVF-derived embryos, PIF levels in medium at day 3 of culture were higher than non-cleaving embryos (control (P = 0.01 and at day 7 were higher than day 3 (P = 0.03. In non-cleaving embryos culture medium was similar to medium alone (control. Anti-PIF-mAb added to mouse embryo cultures lowered blastocyst formation rate 3-fold in a dose-dependent manner (2-way contingency table, multiple groups, X2; P = 0.01 as compared with non-specific mouse mAb, and medium alone, control. FITC-PIF was taken-up by cultured bovine blastocysts, but not by scrambled FITC-PIF (control. Conclusions PIF is an early embryo viability marker that has a direct supportive role on embryo development in culture. PIF-ELISA use to assess IVF embryo quality prior to transfer is warranted. Overall, our data supports PIF's endogenous self sustaining role in embryo development and the

  12. Embryogenesis in Polianthes tuberosa L var. Simple: from megasporogenesis to early embryo development.

    Science.gov (United States)

    González-Gutiérrez, Alejandra G; Rodríguez-Garay, Benjamín

    2016-01-01

    The genus Polianthes belongs to the subfamily Agavoideae of the Asparagaceae family formerly known as Agavaceae. The genus is endemic to México and comprises about 15 species, among them is Polianthes tuberosa L. The aim of this work was to study and characterize the embryo sac and early embryo development of this species in order to generate basic knowledge for its use in taxonomy, in vitro fertilization and production of haploid plants and to complement studies already performed in other genera and species belonging to the Agavoideae sub-family. It was found that the normal development of the P. tuberosa var. Simple embryo sac follows a monosporic pattern of the Polygonum type and starts its development from the chalazal megaspore. At maturity, the embryo sac is of a pyriform shape with a chalazal haustorial tube where the antipodals are located, just below the hypostase, which connects the embryo sac with the nucellar tissue of the ovule. The central cell nucleus shows a high polarity, being located at the chalazal extreme of the embryo sac. The position of cells inside the P. tuberosa embryo sac may be useful for in depth studies about the double fertilization. Furthermore, it was possible to make a chronological description of the events that happen from fertilization and early embryo development to the initial development of the endosperm which was classified as of the helobial type.

  13. Efficient and rapid isolation of early-stage embryos from Arabidopsis thaliana seeds.

    Science.gov (United States)

    Raissig, Michael T; Gagliardini, Valeria; Jaenisch, Johan; Grossniklaus, Ueli; Baroux, Célia

    2013-06-07

    In flowering plants, the embryo develops within a nourishing tissue - the endosperm - surrounded by the maternal seed integuments (or seed coat). As a consequence, the isolation of plant embryos at early stages (1 cell to globular stage) is technically challenging due to their relative inaccessibility. Efficient manual dissection at early stages is strongly impaired by the small size of young Arabidopsis seeds and the adhesiveness of the embryo to the surrounding tissues. Here, we describe a method that allows the efficient isolation of young Arabidopsis embryos, yielding up to 40 embryos in 1 hr to 4 hr, depending on the downstream application. Embryos are released into isolation buffer by slightly crushing 250-750 seeds with a plastic pestle in an Eppendorf tube. A glass microcapillary attached to either a standard laboratory pipette (via a rubber tube) or a hydraulically controlled microinjector is used to collect embryos from droplets placed on a multi-well slide on an inverted light microscope. The technical skills required are simple and easily transferable, and the basic setup does not require costly equipment. Collected embryos are suitable for a variety of downstream applications such as RT-PCR, RNA sequencing, DNA methylation analyses, fluorescence in situ hybridization (FISH), immunostaining, and reporter gene assays.

  14. Transcriptomic profiling of bovine IVF embryos revealed candidate genes and pathways involved in early embryonic development

    Directory of Open Access Journals (Sweden)

    Yandell Brian S

    2010-01-01

    Full Text Available Abstract Background Early embryonic loss is a large contributor to infertility in cattle. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. The objective of this study was to identify genes differentially expressed between blastocysts and degenerative embryos at early stages of development. Results Using microarrays, genome-wide RNA expression was profiled and compared for in vitro fertilization (IVF - derived blastocysts and embryos undergoing degenerative development up to the same time point. Surprisingly similar transcriptomic profiles were found in degenerative embryos and blastocysts. Nonetheless, we identified 67 transcripts that significantly differed between these two groups of embryos at a 15% false discovery rate, including 33 transcripts showing at least a two-fold difference. Several signaling and metabolic pathways were found to be associated with the developmental status of embryos, among which were previously known important steroid biosynthesis and cell communication pathways in early embryonic development. Conclusions This study presents the first direct and comprehensive comparison of transcriptomes between IVF blastocysts and degenerative embryos, providing important information for potential genes and pathways associated with early embryonic development.

  15. Recent insights into spindle function in mammalian oocytes and early embryos.

    Science.gov (United States)

    Howe, Katie; FitzHarris, Greg

    2013-09-01

    Errors in chromosome segregation in oocytes and early embryos lead to embryo aneuploidy, which contributes to early pregnancy loss. At the heart of chromosome segregation is the spindle, a dynamic biomechanical machine fashioned from microtubules, which is tasked with gathering and sorting chromosomes and dispatching them to the daughter cells at the time of cell division. Understanding the causes of segregation error in the oocyte and early embryo will undoubtedly hinge on a thorough understanding of the mechanism of spindle assembly and function in these highly specialized cellular environments. The recent advent of live imaging approaches to observe chromosome segregation in real-time in oocytes and embryos, paired with gene-silencing techniques and specific inhibition for assessing the function of a protein of interest, has led to a substantial advance in our understanding of chromosome segregation in early mammalian development. These studies have uncovered numerous mechanistic differences between oocytes, embryos, and traditional model systems. In addition, a flurry of recent studies using naturally aged mice as the model for human aging have begun to shed light on the increased levels of aneuploidy seen in embryos from older mothers. Here we review these recent developments and consider what has been learned about the causes of chromosome missegregation in early development.

  16. Effective embryo production from Holstein cows treated with gonadotropin-releasing hormone during early lactation.

    Science.gov (United States)

    Ogata, Yasuhiro; Yu, Guang-Min; Hidaka, Takemasa; Matzushige, Tadami; Maeda, Teruo

    2016-10-01

    The low efficiency of embryo production in Holstein cows during early lactation presents many challenges for animal production. To improve its efficiency, the outcomes of single GnRH injections 48 hours before each of three cycles of ovum pick up (OPU; weeks 2, 4, and 6) were compared with three cycles of unstimulated OPU (controls; weeks 1, 3, and 5) in 35 Holstein cows during 6 weeks of early lactation (40-80 days postpartum). More total follicle numbers (19.5 vs. 16.0; P controls (15.3 vs. 11.5; P controls (2.8 vs. 1.7 and 5.8 vs. 4.2, respectively; P control cycles (13.7 vs. 9.6; P controls (9.0 vs. 6.2 two-cell embryos; 4.7 vs. 3.0 four-cell embryos; 3.3 vs. 2.0 morulae; and 3.0 vs. 1.7 blastocysts, respectively). Moreover, there was no significant difference in pregnancy rate of the recipient cows after embryo transfer (57.1% vs. 42.1%; P > 0.05) no matter if the embryos came from the GnRH-treated cycles or not. Thus, GnRH-stimulated OPUs improved the efficiency of embryo production in Holstein cows during early lactation. This novel method for in vitro embryo production should benefit the dairy industry.

  17. Dynamic changes in gene expression during human early embryo development: from fundamental aspects to clinical applications.

    Science.gov (United States)

    Assou, Said; Boumela, Imène; Haouzi, Delphine; Anahory, Tal; Dechaud, Hervé; De Vos, John; Hamamah, Samir

    2011-01-01

    The first week of human embryonic development comprises a series of events that change highly specialized germ cells into undifferentiated human embryonic stem cells (hESCs) that display an extraordinarily broad developmental potential. The understanding of these events is crucial to the improvement of the success rate of in vitro fertilization. With the emergence of new technologies such as Omics, the gene expression profiling of human oocytes, embryos and hESCs has been performed and generated a flood of data related to the molecular signature of early embryo development. In order to understand the complex genetic network that controls the first week of embryo development, we performed a systematic review and study of this issue. We performed a literature search using PubMed and EMBASE to identify all relevant studies published as original articles in English up to March 2010 (n = 165). We also analyzed the transcriptome of human oocytes, embryos and hESCs. Distinct sets of genes were revealed by comparing the expression profiles of oocytes, embryos on Day 3 and hESCs, which are associated with totipotency, pluripotency and reprogramming properties, respectively. Known components of two signaling pathways (WNT and transforming growth factor-β) were linked to oocyte maturation and early embryonic development. Omics analysis provides tools for understanding the molecular mechanisms and signaling pathways controlling early embryonic development. Furthermore, we discuss the clinical relevance of using a non-invasive molecular approach to embryo selection for the single-embryo transfer program.

  18. The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosa

    Directory of Open Access Journals (Sweden)

    Heraty Joseph

    2007-03-01

    Full Text Available Abstract Background Inherited bacteria that kill male offspring, male-killers, are known to be common in insects, but little is understood about the mechanisms used by male-killing bacteria to kill males. In this paper we describe the tempo and changes that occur during male-killing by Spiroplasma bacteria in the host Drosophila nebulosa. Results Spiroplasma infected D. nebulosa males were developmentally retarded from 6–8 h into embryonic development at 25°C, and arrested at between stages 12 and 13 of embryogenesis (10–12 h. Dying males were characterized by a failure to form segments, and ultimately disintegration of the normal oval embryonic shape. Prior to death, dying males exhibited widespread apoptosis, as testified by TUNEL staining. Conclusion The Spiroplasma kills male Drosophila in a narrow developmental period, shortly after the formation of the host dosage compensation complex that is required for male-killing. Male death is preceded by widespread apoptosis, but it is uncertain if this is primary or secondary apoptosis.

  19. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Martin Veronica

    2008-04-01

    Full Text Available Abstract Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the

  20. MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.

    Science.gov (United States)

    Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel

    2011-02-15

    At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.

  1. Comparative study of Msx-1 expression in early normal and vitamin A-deficient avian embryos.

    Science.gov (United States)

    Chen, Y; Kostetskii, I; Zile, M H; Solursh, M

    1995-07-01

    Homeobox-containing genes may play an important role in establishing embryonic patterns during development of vertebrates. Retinoic acid is able to induce expression of Hox genes in cells in culture and to alter expression patterns in the developing vertebrate embryos. Using wholemount in situ hybridization, we have examined and compared the expression patterns of a homeobox-containing gene, Msx-1, in early normal and vitamin A-deficient quail embryos. At gastrulation stage, Msx-1 is primarily expressed in the posterior half of both normal and vitamin A-deficient embryos. However, the gene is expressed wider and stronger in the vitamin A-deficient embryos. At neurulation stages, Msx-1 is continuously expressed in the posterior region up to Hensen's node and in the edge of the neural fold in both normal and vitamin A-deficient embryos. Notably, in the vitamin A-deficient embryos, Msx-1 is expressed more strongly and is also expressed ectopically in the anterior and precardiac regions. These results provide evidence that endogenous retinoids are involved in the normal expression of Msx-1 in avian embryo and that the expression of Msx-1 is downregulated by endogenous and physiological retinoids in vivo during early avian embryogenesis.

  2. Deep sequencing and expression of microRNAs from early honeybee (Apis mellifera embryos reveals a role in regulating early embryonic patterning

    Directory of Open Access Journals (Sweden)

    Zondag Lisa

    2012-11-01

    Full Text Available Abstract Background Recent evidence supports the proposal that the observed diversity of animal body plans has been produced through alterations to the complexity of the regulatory genome rather than increases in the protein-coding content of a genome. One significant form of gene regulation is the contribution made by the non-coding content of the genome. Non-coding RNAs play roles in embryonic development of animals and these functions might be expected to evolve rapidly. Using next-generation sequencing and in situ hybridization, we have examined the miRNA content of early honeybee embryos. Results Through small RNA sequencing we found that 28% of known miRNAs are expressed in the early embryo. We also identified developmentally expressed microRNAs that are unique to the Apoidea clade. Examination of expression patterns implied these miRNAs have roles in patterning the anterior-posterior and dorso-ventral axes as well as the extraembryonic membranes. Knockdown of Dicer, a key component of miRNA processing, confirmed that miRNAs are likely to have a role in patterning these tissues. Conclusions Examination of the expression patterns of novel miRNAs, some unique to the Apis group, indicated that they are likely to play a role in early honeybee development. Known miRNAs that are deeply conserved in animal phyla display differences in expression pattern between honeybee and Drosophila, particularly at early stages of development. This may indicate miRNAs play a rapidly evolving role in regulating developmental pathways, most likely through changes to the way their expression is regulated.

  3. The early-stage diagnosis of albinic embryos by applying optical coherence tomography

    Science.gov (United States)

    Yang, Bor-Wen; Wang, Shih-Yuan; Wang, Yu-Yen; Cai, Jyun-Jhang; Chang, Chung-Hao

    2013-09-01

    Albinism is a kind of congenital disease of abnormal metabolism. Poecilia reticulata (guppy fish) is chosen as the model to study the development of albinic embryos as it is albinic, ovoviviparous and with short life period. This study proposed an imaging method for penetrative embryo investigation using optical coherence tomography. By imaging through guppy mother’s reproduction purse, we found the embryo’s eyes were the early-developed albinism features. As human’s ocular albinism typically appear at about four weeks old, it is the time to determine if an embryo will grow into an albino.

  4. The Fate of Mitochondria in Ibex-hirus Reconstructed Early Embryos

    Institute of Scientific and Technical Information of China (English)

    Yan JIANG; Shu-Zhen LIU; Yan-Ling ZHANG; Man-Xi JIANG; Qing-Yuan SUN; Da-Yuan CHEN

    2004-01-01

    Inter-species nuclear transfer could be used to preserve North Goat (Capra ibex), an endan-gered species. We established the culture conditions for ibex-hirus reconstructed embryos and optimized themethod for DNA extractions of a single cell and early cloned embryo. By using mitochondria-specific probesof ibex and hirus respectively we found that mitochondria of donor cells can co-exist with recipients in 1-celland 2-cell stages of the reconstructed embryos but not in the following developmental stages.

  5. Embryogenesis in Polianthes tuberosa L var. Simple: from megasporogenesis to early embryo development

    OpenAIRE

    González-Gutiérrez, Alejandra G; Rodríguez-Garay, Benjamín

    2016-01-01

    The genus Polianthes belongs to the subfamily Agavoideae of the Asparagaceae family formerly known as Agavaceae. The genus is endemic to México and comprises about 15 species, among them is Polianthes tuberosa L. The aim of this work was to study and characterize the embryo sac and early embryo development of this species in order to generate basic knowledge for its use in taxonomy, in vitro fertilization and production of haploid plants and to complement studies already performed in other ge...

  6. Effects of cigarette smoke exposure on early stage embryos in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, Norihide; Aoyama, Mitsuko (Nagoya City Univ. Medical School (Japan))

    1989-09-01

    It is well recognized that cigarette smoking in pregnant women exerts many deleterious effects on their progenies; intrauterine growth retardation, and increases in perinatal mortality and premature births. The fetal growth retardation also has been reported in animals exposed to cigarette smoke. The authors previously demonstrated that cigarette smoke exposure in pregnant rats retarded the growth of fetuses from mid to late stages of pregnancy. In addition, the weight of uteri containing embryos in animals inhaling the smoke was smaller, although not significant, than that in the control on day 7 of pregnancy. Based on these findings, it was suggested that the growth of embryos in early stage seemed to be harmfully affected as well as during mid and late stages of pregnancy. However, since the uterine weight in early pregnancy was measured in the previous study instead of the direct observation of early stage embryos, it remained unclear whether the early development of embryos was really influenced by cigarette smoke exposure or not. The present study was designed to observe the effects of cigarette smoke inhalation by pregnant rats on early development of embryos from fertilization to implantation.

  7. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila.

    Science.gov (United States)

    Müller, H A; Wieschaus, E

    1996-07-01

    Cellularization of the Drosophila embryo results in the formation of a cell monolayer with many characteristics of a polarized epithelium. We have used antibodies specific to cellular junctions and nascent plasma membranes to study the formation of the zonula adherens (ZA) in relation to the establishment of basolateral membrane polarity. The same approach was then used as a test system to identify X-linked zygotically active genes required for ZA formation. We show that ZA formation begins during cellularization and that the basolateral membrane domain is established at mid-gastrulation. By creating deficiencies for defined regions of the X chromosome, we have identified genes that are required for the formation of the ZA and the generation of basolateral membrane polarity. We show that embryos mutant for both stardust (sdt) and bazooka (baz) fail to form a ZA. In addition to the failure to establish the ZA, the formation of the monolayered epithelium is disrupted after cellularization, resulting in formation of a multilayered cell sheet by mid-gastrulation. SEM analysis of mutant embryos revealed a conversion of cells exhibiting epithelial characteristics into cells exhibiting mesenchymal characteristics. To investigate how mutations that affect an integral component of the ZA itself influence ZA formation, we examined embryos with reduced maternal and zygotic supply of wild-type Arm protein. These embryos, like embryos mutant for both sdt and baz, exhibit an early disruption of ZA formation. These results suggest that early stages in the assembly of the ZA are critical for the stability of the polarized blastoderm epithelium.

  8. From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila

    Science.gov (United States)

    Marie, Pauline P.; Ronsseray, Stéphane; Boivin, Antoine

    2016-01-01

    In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the “ping-pong” amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development. PMID:27932388

  9. From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila

    Directory of Open Access Journals (Sweden)

    Pauline P. Marie

    2017-02-01

    Full Text Available In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs. Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the “ping-pong” amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development.

  10. The influence of interspecies somatic cell nuclear transfer on epigenetic enzymes transcription in early embryos

    Directory of Open Access Journals (Sweden)

    Martin Morovic

    2016-10-01

    Full Text Available One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a genes in early embryonic stages of interspecies (bovine, porcine nuclear transfer embryos (iSCNT by RT-PCR were analyzed. Coming out from the diverse timing of embryonic genome activation (EGA in porcine and bovine preimplantation embryos, the intense effect of ooplasm on transferred somatic cell nucleus was expected. In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly infl uenced by the ooplasmic environment.

  11. The effect of peritoneal fluid from patients with endometriosis on mitochondrial function and development of early mouse embryos.

    Directory of Open Access Journals (Sweden)

    Jing Shu

    Full Text Available BACKGROUND: Peritoneal fluid (PF from patients with endometriosis can inhibit early embryo development via probable functional changes of embryo mitochondria in the early stage of embryo development. The purpose of this study was to determine the effect of PF from patients with endometriosis on mitochondrial function and development of early mouse embryos. METHODOLOGY/PRINCIPAL FINDINGS: PF was collected from patients with infertility and endometriosis, infertility due to tubal factors, and normal control subjects, and the level of NO was measured. Early murine embryos were then cultured with PF from normal control subjects, those with endometriosis, and with human tubal fluid (HTF, respectively. Cleavage and blastulation rates, mitochondrial DNA (mtDNA copy numbers, adenosine triphosphate (ATP level, and mitochondrial membrane potential (ΔΨm of the different groups were compared. The NO level in the PF of patients with endometriosis was significantly greater than in those without endometriosis and control patients. The embryos cultures with PF from patients with endometriosis had a lower cleavage rate and blastulation rate, and higher ATP and ΔΨm level at the 2- and 4-cell stages. No significant difference was found in mtDNA copies among the 3 groups. CONCLUSIONS/SIGNIFICANCE: PF from patients with endometriosis can inhibit early embryo development via probable functional changes of embryo mitochondria in the early stage of embryo development. Understanding the effects of PF on embryo development may assist in developing new methods of treatment for infertility.

  12. Cellular resolution models for even skipped regulation in the entire Drosophila embryo

    Science.gov (United States)

    Ilsley, Garth R; Fisher, Jasmin; Apweiler, Rolf; DePace, Angela H; Luscombe, Nicholas M

    2013-01-01

    Transcriptional control ensures genes are expressed in the right amounts at the correct times and locations. Understanding quantitatively how regulatory systems convert input signals to appropriate outputs remains a challenge. For the first time, we successfully model even skipped (eve) stripes 2 and 3+7 across the entire fly embryo at cellular resolution. A straightforward statistical relationship explains how transcription factor (TF) concentrations define eve’s complex spatial expression, without the need for pairwise interactions or cross-regulatory dynamics. Simulating thousands of TF combinations, we recover known regulators and suggest new candidates. Finally, we accurately predict the intricate effects of perturbations including TF mutations and misexpression. Our approach imposes minimal assumptions about regulatory function; instead we infer underlying mechanisms from models that best fit the data, like the lack of TF-specific thresholds and the positional value of homotypic interactions. Our study provides a general and quantitative method for elucidating the regulation of diverse biological systems. DOI: http://dx.doi.org/10.7554/eLife.00522.001 PMID:23930223

  13. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster.

    Science.gov (United States)

    Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da

    2017-01-01

    The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Early developing pig embryos mediate their own environment in the maternal tract.

    Directory of Open Access Journals (Sweden)

    Carmen Almiñana

    Full Text Available The maternal tract plays a critical role in the success of early embryonic development providing an optimal environment for establishment and maintenance of pregnancy. Preparation of this environment requires an intimate dialogue between the embryo and her mother. However, many intriguing aspects remain unknown in this unique communication system. To advance our understanding of the process by which a blastocyst is accepted by the endometrium and better address the clinical challenges of infertility and pregnancy failure, it is imperative to decipher this complex molecular dialogue. The objective of the present work is to define the local response of the maternal tract towards the embryo during the earliest stages of pregnancy. We used a novel in vivo experimental model that eliminated genetic variability and individual differences, followed by Affymetrix microarray to identify the signals involved in this embryo-maternal dialogue. Using laparoscopic insemination one oviduct of a sow was inseminated with spermatozoa and the contralateral oviduct was injected with diluent. This model allowed us to obtain samples from the oviduct and the tip of the uterine horn containing either embryos or oocytes from the same sow. Microarray analysis showed that most of the transcripts differentially expressed were down-regulated in the uterine horn in response to blastocysts when compared to oocytes. Many of the transcripts altered in response to the embryo in the uterine horn were related to the immune system. We used an in silico mathematical model to demonstrate the role of the embryo as a modulator of the immune system. This model revealed that relatively modest changes induced by the presence of the embryo could modulate the maternal immune response. These findings suggested that the presence of the embryo might regulate the immune system in the maternal tract to allow the refractory uterus to tolerate the embryo and support its development.

  15. The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos

    DEFF Research Database (Denmark)

    Morovic, Martin; Murin, Matej; Strejcek, Frantisek;

    2016-01-01

    One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription....... In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly...

  16. Global gene expression shift during the transition from early neural development to late neuronal differentiation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Rafael Cantera

    Full Text Available Regulation of transcription is one of the mechanisms involved in animal development, directing changes in patterning and cell fate specification. Large temporal data series, based on microarrays across the life cycle of the fly Drosophila melanogaster, revealed the existence of groups of genes which expression increases or decreases temporally correlated during the life cycle. These groups of genes are enriched in different biological functions. Here, instead of searching for temporal coincidence in gene expression using the entire genome expression data, we searched for temporal coincidence in gene expression only within predefined catalogues of functionally related genes and investigated whether a catalogue's expression profile can be used to generate larger catalogues, enriched in genes necessary for the same function. We analyzed the expression profiles from genes already associated with early neurodevelopment and late neurodifferentiation, at embryonic stages 16 and 17 of Drosophila life cycle. We hypothesized that during this interval we would find global downregulation of genes important for early neuronal development together with global upregulation of genes necessary for the final differentiation of neurons. Our results were consistent with this hypothesis. We then investigated if the expression profile of gene catalogues representing particular processes of neural development matched the temporal sequence along which these processes occur. The profiles of genes involved in patterning, neurogenesis, axogenesis or synaptic transmission matched the prediction, with largest transcript values at the time when the corresponding biological process takes place in the embryo. Furthermore, we obtained catalogues enriched in genes involved in temporally matching functions by performing a genome-wide systematic search for genes with their highest expression levels at the corresponding embryonic intervals. These findings imply the use of gene

  17. Type II cytokeratin gene expression is indicative of early cell differentiation in the chick embryo

    Energy Technology Data Exchange (ETDEWEB)

    Charlebois, T.S.

    1988-01-01

    Embryonic development in vertebrates appears to involve a series of inductive tissue interactions that lead to regional specializations, which eventually become elaborated in the basic body plan of the embryo. The inductive interactions leading to early regionalization of the embryo are often particularly difficult to evaluate because of the absence of available morphological or biochemical evidence that such events have occurred. In the 36 hour chick embryo, the regional subdivision of the early ectoderm is evidence by a marked lens-forming bias in the head ectoderm, which is absent in the presumptive dorsal epidermis of the trunk region. As a strategy for isolating genes whose differential expression might reflect this regional subdivision, a cDNA library from 36 hour embryos was prepared and screened for differential hybridization to ({sup 32}P)cDNA probes synthesized using template RNA isolated from 36 hour head ectoderm and trunk ectoderm. A cDNA clone (T4) was isolated which hybridizes to transcripts present at much higher levels in trunk ectoderm than in head ectoderm. Partial nucleotide and deduced amino acid sequences of this clone indicate that it represents a gene encoding a type II cytokeratin. The distribution of transcripts complementary to the T4 probe was evaluated in early embryos using RNA gel blot analysis and in situ hybridization to tissue sections.

  18. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development.

    Directory of Open Access Journals (Sweden)

    Lisa Shaw

    Full Text Available Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.

  19. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms.

    Science.gov (United States)

    Friis, Else Marie; Crane, Peter R; Pedersen, Kaj Raunsgaard; Stampanoni, Marco; Marone, Federica

    2015-12-24

    The rapid diversification of angiosperms through the Early Cretaceous period, between about 130-100 million years ago, initiated fundamental changes in the composition of terrestrial vegetation and is increasingly well understood on the basis of a wealth of palaeobotanical discoveries over the past four decades and their integration with improved knowledge of living angiosperms. Prevailing hypotheses, based on evidence both from living and from fossil plants, emphasize that the earliest angiosperms were plants of small stature with rapid life cycles that exploited disturbed habitats in open, or perhaps understorey, conditions. However, direct palaeontogical data relevant to understanding the seed biology and germination ecology of Early Cretaceous angiosperms are sparse. Here we report the discovery of embryos and their associated nutrient storage tissues in exceptionally well-preserved angiosperm seeds from the Early Cretaceous. Synchrotron radiation X-ray tomographic microscopy of the fossil embryos from many taxa reveals that all were tiny at the time of dispersal. These results support hypotheses based on extant plants that tiny embryos and seed dormancy are basic for angiosperms as a whole. The minute size of the fossil embryos, and the modest nutrient storage tissues dictated by the overall small seed size, is also consistent with the interpretation that many early angiosperms were opportunistic, early successional colonizers of disturbance-prone habitats.

  20. KIF20A regulates porcine oocyte maturation and early embryo development.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available KIF20A (Kinesin-like family member 20A, also called mitotic kinesin-like proteins 2 (MKLP2, is a mammalian mitotic kinesin-like motor protein of the Kinesin superfamily proteins (KIFs, which was originally involved in Golgi apparatus dynamics and thought to essential for cell cycle regulation during successful cytokinesis. In the present study, we investigated whether KIF20A has roles on porcine oocyte meiotic maturation and subsequent early embryo development. By immunofluorescence staining, KIF20A was found to exhibit a dynamic localization pattern during meiosis. KIF20A was restricted to centromeres after germinal vesicle breakdown (GVBD, transferred to the midbody at telophase I (TI, and again associated with centromeres at metaphase II (MII. Inhibition of endogenous KIF20A via a specific inhibitor, Paprotrain, resulted in failure of polar body extrusion. Further cell cycle analysis showed that the percentage of oocytes that arrested at early metaphase I (MI stage increased after KIF20A activity inhibition; however, the proportion of oocytes at anaphase/telophase I (ATI and MII stages decreased significantly. Our results also showed that KIF20A inhibition did not affect spindle morphology. In addition, KIF20A was localized at the nucleus of early embryos, and KIF20A inhibition resulted in failure of early parthenogenetic embryo development. These results demonstrated that KIF20A is critical for porcine oocyte meiotic maturation and subsequent early embryo development.

  1. Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis

    Science.gov (United States)

    Vera-Rodriguez, Maria; Chavez, Shawn L.; Rubio, Carmen; Pera, Renee A. Reijo; Simon, Carlos

    2015-01-01

    Aneuploidies are prevalent in the human embryo and impair proper development, leading to cell cycle arrest. Recent advances in imaging and molecular and genetic analyses are postulated as promising strategies to unveil the mechanisms involved in aneuploidy generation. Here we combine time-lapse, complete chromosomal assessment and single-cell RT–qPCR to simultaneously obtain information from all cells that compose a human embryo until the approximately eight-cell stage (n=85). Our data indicate that the chromosomal status of aneuploid embryos (n=26), including those that are mosaic (n=3), correlates with significant differences in the duration of the first mitotic phase when compared with euploid embryos (n=28). Moreover, gene expression profiling suggests that a subset of genes is differentially expressed in aneuploid embryos during the first 30 h of development. Thus, we propose that the chromosomal fate of an embryo is likely determined as early as the pronuclear stage and may be predicted by a 12-gene transcriptomic signature. PMID:26151134

  2. Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos.

    Directory of Open Access Journals (Sweden)

    Tony Y-C Tsai

    2014-02-01

    Full Text Available During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min and the subsequent 11 cycles are short (∼30 min and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development.

  3. DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos

    DEFF Research Database (Denmark)

    Tao, Jia; Zhang, Yu; Zuo, Xiaoyuan

    2017-01-01

    -mediated H3K79me2 is a reprogramming barrier to early development of porcine SCNT embryos. qRT-PCR analysis further demonstrated that DOT1L inactivation did not change the expression levels of DOT1L itself but increased the expression levels of POU5F1, LIN28, SOX2, CDX2 and GATA4 associated with pluripotency...

  4. Parental exposure at periconception to environmental adverse factors and early embryo loss in Tianjin, China

    Institute of Scientific and Technical Information of China (English)

    Hou Hai-yan; Wang Dan; Yang Zhen-hua; Zou Xiao-ping; Chen Ya-qiong

    2010-01-01

    Objective: To study the association of environmental adverse factors with early embryo loss, and explore the possible risk factors in daily life. Methods: A questionnaire was administered to 93 new cases of embryo loss (case group) collected in four general hospitals in Tianjin from April 2007 to April 2008 and 93 matched cases of induced abortion (control group) in normal pregnant women who sought the abortion by other reasons. The questionnaire covered information on parental exposure to various environmental factors during and before pregnancy, and the information on daily life. Data were analyzed by single-factor analysis, multiple linear regression and logistic regression analysis. Possible risk factors were identified and odds ratio calculated.Results: Cooking frequently during pregnancy, more daily traffic hours, and decoration history in early pregnancy and paternal exposure to toxic matters three months before pregnancy were associated with early embryo loss, while maternal education was a protective factor. Conclusion: Women exposed to the harmful substances from traffic emissions, cooking and decoration could be at an increased risk of early embryo loss.

  5. A technique for sexing fully developed embryos and early-instar larvae of the gypsy moth

    Science.gov (United States)

    Gilbert Levesque

    1963-01-01

    Because variation in sex ratio is an important factor in the population dynamics of the gypsy moth (Porthetria dispar), it is necessary to have some means of determining the ratio of males to females in a population at the beginning of the larval period as well as in the later stages. For determining the sex of fully developed embryos and early-...

  6. Numerical variations and spontaneous malformations in the early embryos of the Korean salamander, Hynobius leechii, in the farmlands of Korea.

    Science.gov (United States)

    Park, Yong-Uk; Yoon, Chun-Sik; Kim, Jong-Hyang; Park, Joo-Hung; Cheong, Seon-Woo

    2010-12-01

    Embryo sacs of the Korean salamander, Hynobius leechii, were collected from nine farmlands in Gyeongsangnam-Do, Korea, in early spring of 2002 and 2004. The variations in the number of embryos within each embryo sac and the mortality and abnormality rates among the embryos were investigated. We also analyzed the patterns of spontaneous embryonic malformations and the residual chemicals in the soil of the habitats using multiple-residue GC/MS. A total of 79,195 embryos were obtained from 1933 embryo sacs. There were regional variations in the length of individual embryo sacs and the number of embryos in each. The longest embryo sac averaged by region measured 20.67 cm ± 3.51 and was obtained from 2-Banseong in 2002. Of the embryos collected, 13.71% either died or stopped developing, and 3.54% of the hatched embryos developed abnormally; the latter were classified according to the patterns of malformation. External gill dysplasia was the most frequent malformation, and caudal dysplasia, abdominal blisters, and dysplasia of the fin were also observed frequently. Histopathological analysis showed neural tube abnormalities, acrania, curved notochords, thyroid teratoma, and various other kinds of endodermal developmental abnormalities. In the analysis of the residual pesticides in the soil, carbofuran, endosulfan-sulfate, and endosulfan-β were detected in the regions with high mortality and malformation rates. These results indicate that various agricultural chemicals and other unknown factors may cause the aforementioned forms of spontaneous malformations in the embryos of Hynobius leechii.

  7. The influence of early embryo traits on human embryonic stem cell derivation efficiency.

    Science.gov (United States)

    O'Leary, Thomas; Heindryckx, Björn; Lierman, Sylvie; Van der Jeught, Margot; Menten, Björn; Deforce, Dieter; Cornelissen, Ria; de Sousa Lopes, Susana Chuva; De Sutter, Petra

    2011-05-01

    Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.

  8. Coordinated development of muscles and tendon-like structures: early interactions in the Drosophila leg

    Directory of Open Access Journals (Sweden)

    cedric esoler

    2016-02-01

    Full Text Available The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates during the early steps of leg development, we affect the spatial localisation of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes.

  9. Comparison of Hensen's node and retinoic acid in secondary axis induction in the early chick embryo.

    Science.gov (United States)

    Chen, Y; Solursh, M

    1992-10-01

    Retinoic acid (RA) and Hensen's node, the organizer center in the chick embryo, have been shown to have polarizing activity when applied or grafted into the chick limb bud. Here we investigate and compare the effects of RA and grafted Hensen's node on the early chick embryo. Anion exchange beads soaked with RA at concentrations ranging from 5 to 100 ng/ml and implanted on the anterior side or on the left side of the host anteroposterior axis of a stage 4 chick embryo in ovo have the ability to induce secondary axis formation, while beads soaked with RA of the same concentration and implanted on the right side or on the posterior side of the host axis are unable to induce the secondary axis. All of the induced axes contain trunk-tail structures. Hensen's node from quail embryos implanted into the early chick blastoderm could also cause the formation of secondary axes in addition to self-differentiation of the graft into a secondary axis. Both RA and grafted Hensen's node caused the inhibition of forebrain development with an increase in hindbrain development and the host heart to loop in an abnormal direction. The results support the hypothesis that Hensen's node is a source of RA which is involved in early embryogenesis. Alternatively, RA might stimulate the formation of Hensen's nodal properties in adjacent tissue.

  10. Chicken Embryos as a Potential New Model for Early Onset Type I Diabetes

    Directory of Open Access Journals (Sweden)

    Liheng Shi

    2014-01-01

    Full Text Available Diabetic retinopathy (DR is the leading cause of blindness among the American working population. The purpose of this study is to establish a new diabetic animal model using a cone-dominant avian species to address the distorted color vision and altered cone pathway responses in prediabetic and early diabetic patients. Chicken embryos were injected with either streptozotocin (STZ, high concentration of glucose (high-glucose, or vehicle at embryonic day 11. Cataracts occurred in varying degrees in both STZ- and high glucose-induced diabetic chick embryos at E18. Streptozotocin-diabetic chicken embryos had decreased levels of blood insulin, glucose transporter 4 (Glut4, and phosphorylated protein kinase B (pAKT. In STZ-injected E20 embryos, the ERG amplitudes of both a- and b-waves were significantly decreased, the implicit time of the a-wave was delayed, while that of the b-wave was significantly increased. Photoreceptors cultured from STZ-injected E18 embryos had a significant decrease in L-type voltage-gated calcium channel (L-VGCC currents, which was reflected in the decreased level of L-VGCCα1D subunit in the STZ-diabetic retinas. Through these independent lines of evidence, STZ-injection was able to induce pathological conditions in the chicken embryonic retina, and it is promising to use chickens as a potential new animal model for type I diabetes.

  11. Anterior endoderm and head induction in early vertebrate embryos.

    Science.gov (United States)

    de Souza, F S; Niehrs, C

    2000-05-01

    Early work on the formation of the vertebrate body axis indicated the existence of separate head- and trunk-inducing regions in Spemann's organizer of the amphibian gastrula. In mammals some head-organizing activity may be located in anterior visceral (extraembryonic) endoderm (AVE). By analogy, the equivalent structure in the Xenopus laevis gastrula, the anterior endoderm, has been proposed to be the amphibian head organizer. Here we review recent data that challenge this notion and indicate that the involvement of AVE in head induction seems to be an exclusively mammalian characteristic. In X. laevis and chick, it is the prechordal endomesoderm that is the dominant source of head-inducing signals during early gastrulation. Furthermore, head induction in mammals needs a combination of signals from anterior primitive endoderm, prechordal plate, and anterior ectoderm. Thus, despite the homology of vertebrate anterior primitive endoderm, a role in head induction seems not to be conserved.

  12. A concentration gradient of retinoids in the early Xenopus laevis embryo.

    Science.gov (United States)

    Chen, Y; Huang, L; Solursh, M

    1994-01-01

    Previous studies have postulated that Xenopus embryos contain an endogenous retinoic acid (RA) concentration gradient from posterior to anterior during the process of primary axis formation, since RA is able to alter profoundly primary axis formation in Xenopus embryos, to increase the expression of some posterior markers, and to inhibit the expression of some anterior markers, including homeobox-containing genes. Here, we provide direct evidence for this hypothesis. By using a reporter cell system, we demonstrate that the endogenous biologically active retinoid concentration in whole Xenopus embryos increases 3-fold from the two-cell stage to the neurula stage, and that the active retinoid concentration in the dorsal marginal zone, a region wherein the Spemann's organizer is located, increases about 5-fold from the early gastrula to late gastrula stages, suggesting the developmental regulation of the retinoid levels. In the early neurula stage (stage 13-14), endogenous active retinoids are present in a concentration gradient with the highest level at the posterior end, about 10-fold higher than that at the anterior end, of the embryo. This concentration gradient may be established during gastrulation and may provide positional cues for primary axis formation.

  13. DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos.

    Science.gov (United States)

    Encalada, S E; Martin, P R; Phillips, J B; Lyczak, R; Hamill, D R; Swan, K A; Bowerman, B

    2000-12-15

    In early Caenorhabditis elegans embryos, asymmetric cell divisions produce descendants with asynchronous cell cycle times. To investigate the relationship between cell cycle regulation and pattern formation, we have identified a collection of embryonic-lethal mutants in which cell divisions are delayed and cell fate patterns are abnormal. In div (for division delayed) mutant embryos, embryonic cell divisions are delayed but remain asynchronous. Some div mutants produce well-differentiated cell types, but they frequently lack the endodermal and mesodermal cell fates normally specified by a transcriptional activator called SKN-1. We show that mislocalization of PIE-1, a negative regulator of SKN-1, prevents the specification of endoderm and mesoderm in div-1 mutant embryos. In addition to defects in the normally asymmetric distribution of PIE-1, div mutants also exhibit other losses of asymmetry during early embryonic cleavages. The daughters of normally asymmetric divisions are nearly equal in size, and cytoplasmic P-granules are not properly localized to germline precursors in div mutant embryos. Thus the proper timing of cell division appears to be important for multiple aspects of asymmetric cell division. One div gene, div-1, encodes the B subunit of the DNA polymerase alpha-primase complex. Reducing the function of other DNA replication genes also results in a delayed division phenotype and embryonic lethality. Thus the other div genes we have identified are likely to encode additional components of the DNA replication machinery in C. elegans.

  14. Early events in speciation: polymorphism for hybrid male sterility in Drosophila.

    Science.gov (United States)

    Reed, Laura K; Markow, Therese A

    2004-06-15

    Capturing the process of speciation early enough to determine the initial genetic causes of reproductive isolation remains a major challenge in evolutionary biology. We have found, to our knowledge, the first example of substantial intraspecific polymorphism for genetic factors contributing to hybrid male sterility. Specifically, we show that the occurrence of hybrid male sterility in crosses between Drosophila mojavensis and its sister species, Drosophila arizonae, is controlled by factors present at different frequencies in different populations of D. mojavensis. In addition, we show that hybrid male sterility is a complex phenotype; some hybrid males with motile sperm still cannot sire offspring. Because male sterility factors in hybrids between these species are not yet fixed within D. mojavensis, this system provides an invaluable opportunity to characterize the genetics of reproductive isolation at an early stage.

  15. A core transcriptional network for early mesoderm development in Drosophila melanogaster

    OpenAIRE

    Sandmann, Thomas; Girardot, Charles; Brehme, Marc; Tongprasit, Waraporn; Stolc, Viktor; Furlong, Eileen E.M.

    2007-01-01

    Embryogenesis is controlled by large gene-regulatory networks, which generate spatially and temporally refined patterns of gene expression. Here, we report the characteristics of the regulatory network orchestrating early mesodermal development in the fruitfly Drosophila, where the transcription factor Twist is both necessary and sufficient to drive development. Through the integration of chromatin immunoprecipitation followed by microarray analysis (ChIP-on-chip) experiments during discrete ...

  16. Parental exposure to low-dose X-rays in Drosophila melanogaster induces early emergence in offspring, which can be modulated by transplantation of polar cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Kanao, Tomoko; Okamoto, Takehito; Miyachi, Yukihisa; Nohara, Norimasa

    2003-06-19

    In recent years there has been growing concern over the biological effects of low-dose X-rays, but few studies have addressed this issue. Our laboratory had observed flies (Drosophila melanogaster) irradiated with low-dose X-rays tend to emerge earlier than normal flies. This observation led us to quantitatively examine the effects of low-dose X-irradiation on development in the fly. Following exposure of prepupal (day 5) flies to 0.5 Gy X-rays, the time to emergence was slightly shorter than in the sham controls. This tendency was increased when the X-ray exposure came during the pupal stage (day 7). In these flies, the time to eclosion decreased significantly, by an average of 30 h sooner than sham controls. A further experiment examined whether such radiation effects could be observed in the unexposed F1 generation of exposed individuals. Greater radiation effects on early F1 emergence were seen when the time between exposure and mating was 3 days, indicating an effect on early spermatid development. Early F1 emergence was also observed after exposure of female flies to X-rays during late previtellogeny. Furthermore, rapid emergence could be induced in the F1 embryos of unexposed parents by transferring the polar cytoplasm (precursor cells of the germ cell line) from F1 embryos of exposed flies. These results show that radiation-induced effects can be transmitted to the next generation through the germ cell line.

  17. In vitro zygotic embryo culture of Pinus peuce Gris.: Optimization of culture conditions affecting germination and early seedling growth

    Directory of Open Access Journals (Sweden)

    Stojičić Dragana

    2012-01-01

    Full Text Available This study reports a protocol for the germination and early seedling growth of Pinus peuce Gris. using zygotic embryo culture. In order to overcome seed dormancy and optimize organogenesis, the effect of nutritional, plant growth regulatory and physical factors on in vitro germination and growth of isolated mature zygotic embryos of P. peuce were investigated.

  18. Effects of circulating progesterone and insulin on early embryo development in beef heifers.

    Science.gov (United States)

    Mann, G E; Green, M P; Sinclair, K D; Demmers, K J; Fray, M D; Gutierrez, C G; Garnsworthy, P C; Webb, R

    2003-11-20

    The aims of this study were to determine the effect on early embryo development of feeding a diet formulated to enhance circulating insulin concentrations and secondly to investigate the association between early embryo development and maternal progesterone concentrations in beef heifers. The study was carried out in 32 Simmental x Holstein Friesian heifers 22-25 months of age weighing 506+/-7kg and in condition score 3.1+/-0.1. Animals were fed two diets that were isoenergetic and isonitrogenous, but that would encourage either propionate (diet A) or acetate (diet B) production in the rumen. The rationale was that propionate would induce a greater insulin release in response to feeding. Animals were fed a 50:50 mix of the two diets for 14 days at 0.8x maintenance, with straw provided ad libitum. Animals were then fed one of the experimental diets for 3 weeks prior to synchronisation of oestrus and insemination and for a further 16 days following mating. All heifers were blood sampled daily from oestrus synchronisation and eight animals on each diet underwent daily transrectal real-time ultrasonography to determine the day of ovulation. All heifers were slaughtered at Day 16 after mating. While feeding of diet A (propionic) caused a significant (Pbody condition making further increases in insulin difficult to achieve. Diet did not affect size of ovulatory follicle (DIET A: 15.1+/-0.7mm; diet B: 14.6+/-0.7mm), day of ovulation (diet A: 3.5+/-0.2 days; diet B: 3.4+/-0.2 days), mean plasma progesterone concentration (diet A: 4.7+/-0.4ng/ml; diet B: 5.2+/-0.3ng/ml), corpus luteum weight (diet A: 6.0+/-0.2g; diet B: 6.0+/-0.2g) or pregnancy rate (diet A: 81.3%; diet B: 81.3%). However, the proportion of well-elongated (>10cm) embryos on Day 16 was higher in animals fed diet A than in those fed diet B (84.6% versus 38.5%; P10cm) embryos with levels in these animals significantly higher on Days 4 and 5 than in heifers with small (embryos at slaughter. This study

  19. Involvement of insulin in early development of mouse one-cell stage embryos

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent studies have suggested that growth factors and hormones play important roles in cell prolif-eration and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage em-bryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expres-sion, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapa-mycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These re-sults suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.

  20. Involvement of insulin in early development of mouse one-cell stase embryos

    Institute of Scientific and Technical Information of China (English)

    YU BingZhi; YU DaHai; ZHANG Zhe; DENG Xin; XU XiaoYan; FENG Chen; LI YanXiao; CUI Cheng; SU WenHui; ZHAO HongMei

    2008-01-01

    Recent studies have suggested that growth factors and hormones play important roles in cell prolif-eration and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage em-bryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expres-sion, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapa-mycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These re-suits suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.

  1. B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo.

    Directory of Open Access Journals (Sweden)

    Yuichi Okuda

    2010-05-01

    Full Text Available The B1 SOX transcription factors SOX1/2/3/19 have been implicated in various processes of early embryogenesis. However, their regulatory functions in stages from the blastula to early neurula remain largely unknown, primarily because loss-of-function studies have not been informative to date. In our present study, we systematically knocked down the B1 sox genes in zebrafish. Only the quadruple knockdown of the four B1 sox genes sox2/3/19a/19b resulted in very severe developmental abnormalities, confirming that the B1 sox genes are functionally redundant. We characterized the sox2/3/19a/19b quadruple knockdown embryos in detail by examining the changes in gene expression through in situ hybridization, RT-PCR, and microarray analyses. Importantly, these phenotypic analyses revealed that the B1 SOX proteins regulate the following distinct processes: (1 early dorsoventral patterning by controlling bmp2b/7; (2 gastrulation movements via the regulation of pcdh18a/18b and wnt11, a non-canonical Wnt ligand gene; (3 neural differentiation by regulating the Hes-class bHLH gene her3 and the proneural-class bHLH genes neurog1 (positively and ascl1a (negatively, and regional transcription factor genes, e.g., hesx1, zic1, and rx3; and (4 neural patterning by regulating signaling pathway genes, cyp26a1 in RA signaling, oep in Nodal signaling, shh, and mdkb. Chromatin immunoprecipitation analysis of the her3, hesx1, neurog1, pcdh18a, and cyp26a1 genes further suggests a direct regulation of these genes by B1 SOX. We also found an interesting overlap between the early phenotypes of the B1 sox quadruple knockdown embryos and the maternal-zygotic spg embryos that are devoid of pou5f1 activity. These findings indicate that the B1 SOX proteins control a wide range of developmental regulators in the early embryo through partnering in part with Pou5f1 and possibly with other factors, and suggest that the B1 sox functions are central to coordinating cell fate

  2. Maternal Mga is required for Wnt signaling and organizer formation in the early Xenopus embryo

    Institute of Scientific and Technical Information of China (English)

    Fei Gu; Huijuan Shi; Li Gao; Haiyan Zhang; Qinghua Tao

    2012-01-01

    Maternal Wnt11 is both necessary and sufficient for the formation of Spemann organizer in Xenopus embryo.Xnr3 and Siamois have been identified as the direct target genes of maternal Wnt11/β-catenin during organizer induction.The depletion of maternal XTcf3 resulted in the ectopic expression of Xnr3 and Siamois,suggesting the activity of β-catenin/XTcf3 is strictly regulated in the early Xenopus embryos.Here,we show that Xenopus mga (Xmga) is a maternal gene required for dorsal axis formation.Overexpression experiments indicate that mouse Mga potentiates the activity of β-catenin in the induction of organizer-specific genes.Depletion of maternal Xmga results in the dramatic decrease of the expression of organizer genes and ventralization phenotype,indicating that Xmga is required for β-catenin function and organizer formation.Depletion of XTcf3 cannot rescue organizer gene expression and axis formation in Xmga-depleted embryos,suggesting Xmga is downstream of XTcf3 during organizer induction.We conclude that maternal Xmga is critical for the function of β-catenin during organizer formation and dorsal development of Xenopus embryo.To our knowledge,this is a report for the first time to implicate Mga in regulating Wnt signaling.

  3. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development.

    Directory of Open Access Journals (Sweden)

    Jeongwoo Kwon

    Full Text Available ADAM10 (A Disintegrin and Metalloprotease domain-containing protein 10 is a cell surface protein with a unique structure possessing both potential adhesion and protease domains. However, the role of ADAM10 in preimplantation stage embryos is not clear. In this study, we examined the expression patterns and functional roles of ADAM10 in porcine parthenotes during preimplantation development. The transcription level of ADAM10 dramatically increased from the morula stage onward. Immunostaining revealed that ADAM10 was present in both the nucleus and cytoplasm in early cleavage stage embryos, and localized to the apical region of the outer cells in morula and blastocyst embryos. Knockdown (KD of ADAM10 using double strand RNA did not alter preimplantation embryo development until morula stage, but resulted in significantly reduced development to blastocyst stage. Moreover, the KD blastocyst showed a decrease in gene expression of adherens and tight junction (AJ/TJ, and an increase in trophectoderm TJ permeability by disrupting TJ assembly. Treatment with an ADAM10 specific chemical inhibitor, GI254023X, at the morula stage also inhibited blastocyst development and led to disruption of TJ assembly. An in situ proximity ligation assay demonstrated direct interaction of ADAM10 with coxsackie virus and adenovirus receptor (CXADR, supporting the involvement of ADAM10 in TJ assembly. In conclusion, our findings strongly suggest that ADADM10 is important for blastocyst formation rather than compaction, particularly for TJ assembly and stabilization in preimplantation porcine parthenogenetic development.

  4. Effect of ATM and HDAC Inhibition on Etoposide-Induced DNA Damage in Porcine Early Preimplantation Embryos: e0142561

    National Research Council Canada - National Science Library

    HaiYang Wang; YiBo Luo; ZiLi Lin; In-Won Lee; Jeongwoo Kwon; Xiang-Shun Cui; Nam-Hyung Kim

    2015-01-01

      Oocyte maturation and embryonic development are sensitive to DNA damage. Compared with somatic cells or oocytes, little is known about the response to DNA damage in early preimplantation embryos...

  5. Shorter exposures to harder X-rays trigger early apoptotic events in Xenopus laevis embryos.

    Directory of Open Access Journals (Sweden)

    JiaJia Dong

    Full Text Available BACKGROUND: A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. METHODOLOGY/PRINCIPAL FINDINGS: We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. CONCLUSIONS/SIGNIFICANCE: Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and

  6. A spindle checkpoint functions during mitosis in the early Caenorhabditis elegans embryo.

    Science.gov (United States)

    Encalada, Sandra E; Willis, John; Lyczak, Rebecca; Bowerman, Bruce

    2005-03-01

    During mitosis, chromosome segregation is regulated by a spindle checkpoint mechanism. This checkpoint delays anaphase until all kinetochores are captured by microtubules from both spindle poles, chromosomes congress to the metaphase plate, and the tension between kinetochores and their attached microtubules is properly sensed. Although the spindle checkpoint can be activated in many different cell types, the role of this regulatory mechanism in rapidly dividing embryonic animal cells has remained controversial. Here, using time-lapse imaging of live embryonic cells, we show that chemical or mutational disruption of the mitotic spindle in early Caenorhabditis elegans embryos delays progression through mitosis. By reducing the function of conserved checkpoint genes in mutant embryos with defective mitotic spindles, we show that these delays require the spindle checkpoint. In the absence of a functional checkpoint, more severe defects in chromosome segregation are observed in mutants with abnormal mitotic spindles. We also show that the conserved kinesin CeMCAK, the CENP-F-related proteins HCP-1 and HCP-2, and the core kinetochore protein CeCENP-C all are required for this checkpoint. Our analysis indicates that spindle checkpoint mechanisms are functional in the rapidly dividing cells of an early animal embryo and that this checkpoint can prevent chromosome segregation defects during mitosis.

  7. Functional characterization of calliphorid cell death genes and cellularization gene promoters for controlling gene expression and cell viability in early embryos.

    Science.gov (United States)

    Edman, R M; Linger, R J; Belikoff, E J; Li, F; Sze, S-H; Tarone, A M; Scott, M J

    2015-02-01

    The New World screwworm fly, Cochliomyia hominivorax, and the Australian sheep blow fly, Lucilia cuprina, are major pests of livestock. The sterile insect technique was used to eradicate C. hominivorax from North and Central America. This involved area-wide releases of male and female flies that had been sterilized by radiation. Genetic systems have been developed for making 'male-only' strains that would improve the efficiency of genetic control of insect pests. One system involves induction of female lethality in embryos through activation of a pro-apoptotic gene by the tetracycline-dependent transactivator. Sex-specific expression is achieved using an intron from the transformer gene, which we previously isolated from several calliphorids. In the present study, we report the isolation of the promoters from the C. hominivorax slam and Lucilia sericata bnk cellularization genes and show that these promoters can drive expression of a GFP reporter gene in early embryos of transgenic L. cuprina. Additionally, we report the isolation of the L. sericata pro-apoptotic hid and rpr genes, identify conserved motifs in the encoded proteins and determine the relative expression of these genes at different stages of development. We show that widespread expression of the L. sericata pro-apoptotic genes was lethal in Drosophila melanogaster. The isolated gene promoters and pro-apoptotic genes could potentially be used to build transgenic embryonic sexing strains of calliphorid livestock pests.

  8. Are Early Somatic Embryos of the Norway Spruce (Picea abies (L. Karst. Organised?

    Directory of Open Access Journals (Sweden)

    Jiri Petrek

    Full Text Available Somatic embryogenesis in conifer species has great potential for the forestry industry. Hence, a number of methods have been developed for their efficient and rapid propagation through somatic embryogenesis. Although information is available regarding the previous process-mediated generation of embryogenic cells to form somatic embryos, there is a dearth of information in the literature on the detailed structure of these clusters.The main aim of this study was to provide a more detailed structure of the embryogenic tissue clusters obtained through the in vitro propagation of the Norway spruce (Picea abies (L. Karst.. We primarily focused on the growth of early somatic embryos (ESEs. The data on ESE growth suggested that there may be clear distinctions between their inner and outer regions. Therefore, we selected ESEs collected on the 56th day after sub-cultivation to dissect the homogeneity of the ESE clusters. Two colourimetric assays (acetocarmine and fluorescein diacetate/propidium iodide staining and one metabolic assay based on the use of 2,3,5-triphenyltetrazolium chloride uncovered large differences in the metabolic activity inside the cluster. Next, we performed nuclear magnetic resonance measurements. The ESE cluster seemed to be compactly aggregated during the first four weeks of cultivation; thereafter, the difference between the 1H nuclei concentration in the inner and outer clusters was more evident. There were clear differences in the visual appearance of embryos from the outer and inner regions. Finally, a cluster was divided into six parts (three each from the inner and the outer regions of the embryo to determine their growth and viability. The innermost embryos (centripetally towards the cluster centre could grow after sub-cultivation but exhibited the slowest rate and required the longest time to reach the common growth rate. To confirm our hypothesis on the organisation of the ESE cluster, we investigated the effect of

  9. PAR-4/LKB1 regulates DNA replication during asynchronous division of the early C. elegans embryo

    Science.gov (United States)

    Descoteaux, Catherine; Chartier, Nicolas T.; Pintard, Lionel; Labbé, Jean-Claude

    2014-01-01

    Regulation of cell cycle duration is critical during development, yet the underlying molecular mechanisms are still poorly understood. The two-cell stage Caenorhabditis elegans embryo divides asynchronously and thus provides a powerful context in which to study regulation of cell cycle timing during development. Using genetic analysis and high-resolution imaging, we found that deoxyribonucleic acid (DNA) replication is asymmetrically regulated in the two-cell stage embryo and that the PAR-4 and PAR-1 polarity proteins dampen DNA replication dynamics specifically in the posterior blastomere, independently of regulators previously implicated in the control of cell cycle timing. Our results demonstrate that accurate control of DNA replication is crucial during C. elegans early embryonic development and further provide a novel mechanism by which PAR proteins control cell cycle progression during asynchronous cell division. PMID:24841566

  10. Low serum concentration in bovine embryo culture enhances early blastocyst rates on Day-6 with quality traits in the expanded blastocyst stage similar to BSA-cultured embryos.

    Science.gov (United States)

    Murillo, A; Muñoz, M; Martín-González, D; Carrocera, S; Martínez-Nistal, A; Gómez, E

    2017-06-01

    In bovine, single in vitro embryo culture in protein-free medium from Day-6 to Day-7 leads to expanded blastocyst (XB) with improved pregnancy and birth rates after cryopreservation. Under these conditions, early blastocysts (EB) progress to the XB stage at higher rates than morulae (M). However, embryo production with BSA in culture prior to Day-6 leads to low EB rates. We investigated whether a very low FCS concentration (0.1%) in culture from Day-1 to Day-6 would improve EB rates and, subsequently, increase XB rates on Day-7 after single culture in protein-free medium. The quality of embryos produced was evaluated in terms of survival to cryopreservation, apoptosis percentage, lipid accumulation and transfer to recipients. On Day-6, EB rates from embryos cultured with FCS were higher than with BSA (P=0.022). On Day-7, XB rates were higher in embryos from Day-6 EB than from Day-6M, both with and without FCS (Pcultured individually, led to pregnancies after ET. In conclusion, minute FCS concentration improves EB rates on Day-6 leading, after one-day single culture without protein, to more XBs. The quality of XB produced with FCS compares well with XB produced with BSA in terms of apoptosis, lipid accumulation and pregnancy. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    Science.gov (United States)

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  12. Loss of Bmal1 decreases oocyte fertilization, early embryo development and implantation potential in female mice.

    Science.gov (United States)

    Xu, Jian; Li, Yan; Wang, Yizi; Xu, Yanwen; Zhou, Canquan

    2016-10-01

    Biological clock genes expressed in reproductive tissues play important roles in maintaining the normal functions of reproductive system. However, disruption of female circadian rhythm on oocyte fertilization, preimplantation embryo development and blastocyst implantation potential is still unclear. In this study, ovulation, in vivo and in vitro oocyte fertilization, embryo development, implantation and intracellular reactive oxygen species (ROS) levels in ovary and oviduct were studied in female Bmal1+/+ and Bmal1-/- mice. The number of naturally ovulated oocyte in Bmal1-/- mice decreased (5.2 ± 0.8 vs 7.8 ± 0.8, P fertilization rate and obtained blastocyst number were observed in Bmal1-/- female mice either mated with wild-type in vivo or fertilized by sperm from wild-type male mice in vitro (all P fertilization rate of oocytes derived from Bmal1-/- increased significantly compared with in vivo study (P fertilization rate, early embryo development and implantation potential in female mice, and these may be possibly caused by excess ROS levels generated in ovary and oviduct.

  13. MiniCORVET is a Vps8-containing early endosomal tether in Drosophila

    Science.gov (United States)

    Lőrincz, Péter; Lakatos, Zsolt; Varga, Ágnes; Maruzs, Tamás; Simon-Vecsei, Zsófia; Darula, Zsuzsanna; Benkő, Péter; Csordás, Gábor; Lippai, Mónika; Andó, István; Hegedűs, Krisztina; Medzihradszky, Katalin F; Takáts, Szabolcs; Juhász, Gábor

    2016-01-01

    Yeast studies identified two heterohexameric tethering complexes, which consist of 4 shared (Vps11, Vps16, Vps18 and Vps33) and 2 specific subunits: Vps3 and Vps8 (CORVET) versus Vps39 and Vps41 (HOPS). CORVET is an early and HOPS is a late endosomal tether. The function of HOPS is well known in animal cells, while CORVET is poorly characterized. Here we show that Drosophila Vps8 is highly expressed in hemocytes and nephrocytes, and localizes to early endosomes despite the lack of a clear Vps3 homolog. We find that Vps8 forms a complex and acts together with Vps16A, Dor/Vps18 and Car/Vps33A, and loss of any of these proteins leads to fragmentation of endosomes. Surprisingly, Vps11 deletion causes enlargement of endosomes, similar to loss of the HOPS-specific subunits Vps39 and Lt/Vps41. We thus identify a 4 subunit-containing miniCORVET complex as an unconventional early endosomal tether in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.14226.001 PMID:27253064

  14. The early development of the nervous system in staged insectivore and primate embryos.

    Science.gov (United States)

    Müller, F; O'Rahilly, R

    1980-10-01

    The early development of the nervous system was studied in stage embryos of hemicentetes semispinosus, Microcebus murinus, Alouatta seniculus, Cebus appella, Cebus albifrons, macaca mulatta, and Homo sapiens. The specimens were assigned to Carnegie stages 11-13. Serial transverse sections were examined and graphic reconstructions were prepared. The early development of the neural tube is basically similar in all the species investigated but differences in detail are noticeable. The mesencephalic flexure serves in all cases as a landmark for malpighi's tripartite subdivision of the brain. The nonhuman embryos seem to show a little more variation than the human in the closure of the neuropores in relation to somitic count. With the exception of the later-appearing terminal-vomeronasal component, all major portions of the neural crest as classified by O'Rahilly ('65) are represented in both the nonhuman and the human embryos studied. No crest is present at the level of rhombomere 1, nor at rhombomere 3 except in the platyrrhines and some human embryos, nor at rhombomere 5 except in certain human specimens. An indication of the division of the trigeminal ganglion into its primary divisions is rare at stage 11 (C. apella), may be visible at stage 12 (Alouatta, macaca, Homo), and is definite (in Homo) at stage 13. Ganglionic contributions from head ectoderm (epipharyngeal placodes), as previously described in the human and some other vertebrate embryos, were sought and found in Cebus apella. In both nonhuman and human, a tendency is noted whereby the rostral limit of the occipitospinal crest, high at stage 11, seems to descend relatively at stage 12, and ascend again at stage 13 (at least in the human) to become associated with the appearance of the accessory and hypoglossal nerves. In general, the motor components of the nerves are identifiable before the sensory elements, and, in the present study, nerve fibers were first observed in the human at stage 13 in some of

  15. Nanog suppresses the expression of vasa by directly regulating nlk1 in the early zebrafish embryo.

    Science.gov (United States)

    Liu, Yanhua; Xue, Weiwei; Zhu, Lin; Ye, Ding; Zhu, Xiaoqin; Wang, Huannan; Sun, Yonghua; Deng, Fengjiao

    2017-07-28

    Nanog is a homeodomain transcription factor that is essential for maintenance of pluripotency and self-renewal of embryonic stem cells (ESCs). In the present study, we demonstrate that zebrafish Nanog (zNanog) directly binds to the promoter region of zebrafish nlk1 (znlk1) by ChIP-Seq analysis and that it up-regulates the expression of znlk1 in fibroblast-like embryonic cells of Danio rerio (ZEM-2S cells) and in zebrafish embryos at 30% epiboly both at the mRNA and protein levels. In addition, compared with control (MO-C) embryos at 30% epiboly, the mRNA and protein expression of vasa and the numbers of vasa-positive cells were increased in embryos injected with zNanog morpholino (MO-zNanog). Further, injection of znlk1 mRNA into zNanog-depleted embryos restored the expression of vasa and the number of vasa-positive cells. These data indicated that zNanog up-regulates the expression of znlk1 through directly binding to the znlk1 promoter, thereby suppressing the expression of vasa. Vasa is a marker gene for PGCs. Our results suggest that zNanog plays a role in restraint of PGC cell number through regulating the expression of znlk1 in the early embryonic development. The current results provide fundamental information to support further investigation regarding the regulatory mechanism of zNanog during the development of PGCs. Copyright © 2017. Published by Elsevier B.V.

  16. Embryos of an early Jurassic prosauropod dinosaur and their evolutionary significance.

    Science.gov (United States)

    Reisz, Robert R; Scott, Diane; Sues, Hans-Dieter; Evans, David C; Raath, Michael A

    2005-07-29

    Articulated embryos from the Lower Jurassic Elliot Formation of South Africa are referable to the prosauropod Massospondylus carinatus and, together with other material, provide substantial insights into the ontogenetic development in this early dinosaur. The large forelimbs and head and the horizontally held neck indicate that the hatchlings were obligate quadrupeds. In contrast, adult Massospondylus were at least facultatively bipedal. This suggests that the quadrupedal gait of giant sauropods may have evolved by retardation of postnatal negative allometry of the forelimbs. Embryonic body proportions and an absence of well-developed teeth suggest that hatchlings of this dinosaur may have required parental care.

  17. Molecular biology of the stress response in the early embryo and its stem cells.

    Science.gov (United States)

    Puscheck, Elizabeth E; Awonuga, Awoniyi O; Yang, Yu; Jiang, Zhongliang; Rappolee, Daniel A

    2015-01-01

    Stress is normal during early embryogenesis and transient, elevated stress is commonplace. Stress in the milieu of the peri-implantation embryo is a summation of maternal hormones, and other elements of the maternal milieu, that signal preparedness for development and implantation. Examples discussed here are leptin, adrenaline, cortisol, and progesterone. These hormones signal maternal nutritional status and provide energy, but also signal stress that diverts maternal and embryonic energy from an optimal embryonic developmental trajectory. These hormones communicate endocrine maternal effects and local embryonic effects although signaling mechanisms are not well understood. Other in vivo stresses affect the embryo such as local infection and inflammation, hypoxia, environmental toxins such as benzopyrene, dioxin, or metals, heat shock, and hyperosmotic stress due to dehydration or diabetes. In vitro, stresses include shear during handling, improper culture media and oxygen levels, cryopreservation, and manipulations of the embryo to introduce sperm or mitochondria. We define stress as any stimulus that slows stem cell accumulation or diminishes the ability of cells to produce normal and sufficient parenchymal products upon differentiation. Thus stress deflects downwards the normal trajectories of development, growth and differentiation. Typically stress is inversely proportional to embryonic developmental and proliferative rates, but can be proportional to induction of differentiation of stem cells in the peri-implantation embryo. When modeling stress it is most interesting to produce a 'runting model' where stress exposures slow accumulation but do not create excessive apoptosis or morbidity. Windows of stress sensitivity may occur when major new embryonic developmental programs require large amounts of energy and are exacerbated if nutritional flow decreases and removes energy from the normal developmental programs and stress responses. These windows correspond

  18. Functional characterization of mannose-binding lectin in zebrafish: implication for a lectin-dependent complement system in early embryos.

    Science.gov (United States)

    Yang, Lili; Bu, Lingzhen; Sun, Weiwei; Hu, Lili; Zhang, Shicui

    2014-10-01

    The lectin pathway involves recognition of pathogen-associated molecular patterns by mannose-binding lectin (MBL), and the subsequent activation of associated enzymes, termed MBL-associated serine proteases (MASPs). In this study, we demonstrate that the transcript of MBL gene is present in the early embryo of zebrafish, and MBL protein is also present in the embryo. In addition, we show that recombinant zebrafish MBL was able to bind the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Staphylococcus aureus, and rMBL was able to promote the phagocytosis of E. coli and S. aureus by macrophages, indicating that like mammalian MBL, zebrafish MBL performs a dual function in both pattern recognition and opsonization. Importantly, we show that microinjection of anti-MBL antibody into the early developing embryos resulted in a significantly increased mortality in the embryos challenged with Aeromonas hydrophila (pathogenic to zebrafish); and injection of rMBL into the embryos (resulting in increase in MBL in the embryo) markedly promoted their resistance to A. hydrophila; and this promoted bacterial resistance was significantly reduced by the co-injection of anti-MBL antibody with rMBL but not by the injection of anti-actin antibody with rMBL. These suggest that the lectin pathway may be already functional in the early embryos in zebrafish before their immune system is fully matured, protecting the developing embryos from microbial infection. This work provides a new angle to understand the immune role of the lectin pathway in early development of animals.

  19. Parental exposure to low-dose X-rays in Drosophila melanogaster induces early emergence offspring, which can be modulated by transplantation of polar cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Kanao, T.; Okamoto, T.; Miyachi, Y.

    2004-07-01

    In recent years there has been growing concern over the biological effects of low-dose X-rays, but few studies have addressed this issue. Our laboratory had observed files (Drosophila melanogaster) irradiated with low dose X-rays tend to emerge earlier than normal flies. This observation led us to quantitatively examine the effects of low dose X-irradiation on development in the fly Following exposure of prepupal (day 5) flies to 0.5 Gy X-rays, the time to emergence was slightly shorter than in the sham controls. This tendency was increased when the X-ray exposure came during the pupal stage (day 7). In these flies, the time to eclosion decreased significantly, by an average of thirty hours sooner than sham controls. Exposure of pre pupa to 0.5 Gy results in marked changes in the puffing patterns of salivary gland chromosomes. A 0.5 Gy exposure induces puffing at 75B specific loci; this pattern of induced puffs shows little developmental specificity. A further experiment examined whether such radiation effects could be observed in the unexposed F1 generation of exposed individuals Greater radiation effects on early Fi emergence were seen when the time between exposure and mating was 3 days, indicating an effect on early spermatid development. Early F1 emergence was also observed after exposure of female flies to X-rays during late previtellogeny. furthermore, rapid emergence could be induced in the F1 embryos of unexposed parents by transferring the polar cytoplasm (precursor cells of the germ cell line) from F1 embryos of exposed flies. furthermore pumilio mutant arrested the assembly of polar cytoplasm did not induce the early emergency even after 0.5 Gy exposure. These results show that radiation-induced effects can be transmitted to the next generation through the germ cell line. (Author)

  20. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg

    Directory of Open Access Journals (Sweden)

    Claudio Sette

    2011-04-01

    Full Text Available Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology.

  1. Functional characterization of chitinase-3 reveals involvement of chitinases in early embryo immunity in zebrafish.

    Science.gov (United States)

    Teng, Zinan; Sun, Chen; Liu, Shousheng; Wang, Hongmiao; Zhang, Shicui

    2014-10-01

    The function and mechanism of chitinases in early embryonic development remain largely unknown. We show here that recombinant chitinase-3 (rChi3) is able to hydrolyze the artificial chitin substrate, 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside, and to bind to and inhibit the growth of the fungus Candida albicans, implicating that Chi3 plays a dual function in innate immunity and chitin-bearing food digestion in zebrafish. This is further corroborated by the expression profile of Chi3 in the liver and gut, which are both immune- and digestion-relevant organs. Compared with rChi3, rChi3-CD lacking CBD still retains partial capacity to bind to C. albicans, but its enzymatic and antifungal activities are significantly reduced. By contrast, rChi3-E140N with the putative catalytic residue E140 mutated shows little affinity to chitin, and its enzymatic and antifungal activities are nearly completely lost. These suggest that both enzymatic and antifungal activities of Chi3 are dependent on the presence of CBD and E140. We also clearly demonstrate that in zebrafish, both the embryo extract and the developing embryo display antifungal activity against C. albicans, and all the findings point to chitinase-3 (Chi3) being a newly-identified factor involved in the antifungal activity. Taken together, a dual function in both innate immunity and food digestion in embryo is proposed for zebrafish Chi3. It also provides a new angle to understand the immune role of chitinases in early embryonic development of animals.

  2. HNK-1 immunoreactivity during early morphogenesis of the head region in a nonmodel vertebrate, crocodile embryo

    Science.gov (United States)

    Kundrát, Martin

    2008-11-01

    The present study examines HNK-1 immunoidentification of a population of the neural crest (NC) during early head morphogenesis in the nonmodel vertebrate, the crocodile ( Crocodylus niloticus) embryos. Although HNK-1 is not an exclusive NC marker among vertebrates, temporospatial immunoreactive patterns found in the crocodile are almost consistent with NC patterns derived from gene expression studies known in birds (the closest living relatives of crocodiles) and mammals. In contrast to birds, the HNK-1 epitope is immunoreactive in NC cells at the neural fold level in crocodile embryos and therefore provides sufficient base to assess early migratory events of the cephalic NC. I found that crocodile NC forms three classic migratory pathways in the head: mandibular, hyoid, and branchial. Further, I demonstrate that, besides this classic phenotype, there is also a forebrain-derived migratory population, which consolidates into a premandibular stream in the crocodile. In contrast to the closely related chick model, crocodilian premandibular and mandibular NC cells arise from the open neural tube suggesting that species-specific heterochronic behavior of NC may be involved in the formation of different vertebrate facial phenotypes.

  3. Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    Science.gov (United States)

    Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl

    2008-01-01

    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875

  4. Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Joseph Landry

    2008-10-01

    Full Text Available We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor, the largest subunit of NURF (Nucleosome Remodeling Factor in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf(-/- embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf(-/- embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo.

  5. Search for the genes involved in oocyte maturation and early embryo development in the hen

    Directory of Open Access Journals (Sweden)

    Blesbois Elisabeth

    2008-02-01

    Full Text Available Abstract Background The initial stages of development depend on mRNA and proteins accumulated in the oocyte, and during these stages, certain genes are essential for fertilization, first cleavage and embryonic genome activation. The aim of this study was first to search for avian oocyte-specific genes using an in silico and a microarray approaches, then to investigate the temporal and spatial dynamics of the expression of some of these genes during follicular maturation and early embryogenesis. Results The in silico approach allowed us to identify 18 chicken homologs of mouse potential oocyte genes found by digital differential display. Using the chicken Affymetrix microarray, we identified 461 genes overexpressed in granulosa cells (GCs and 250 genes overexpressed in the germinal disc (GD of the hen oocyte. Six genes were identified using both in silico and microarray approaches. Based on GO annotations, GC and GD genes were differentially involved in biological processes, reflecting different physiological destinations of these two cell layers. Finally we studied the spatial and temporal dynamics of the expression of 21 chicken genes. According to their expression patterns all these genes are involved in different stages of final follicular maturation and/or early embryogenesis in the chicken. Among them, 8 genes (btg4, chkmos, wee, zpA, dazL, cvh, zar1 and ktfn were preferentially expressed in the maturing occyte and cvh, zar1 and ktfn were also highly expressed in the early embryo. Conclusion We showed that in silico and Affymetrix microarray approaches were relevant and complementary in order to find new avian genes potentially involved in oocyte maturation and/or early embryo development, and allowed the discovery of new potential chicken mature oocyte and chicken granulosa cell markers for future studies. Moreover, detailed study of the expression of some of these genes revealed promising candidates for maternal effect genes in the

  6. Dynamic transition of Dnmt3b expression in mouse pre- and early post-implantation embryos.

    Science.gov (United States)

    Hirasawa, Ryutaro; Sasaki, Hiroyuki

    2009-01-01

    The de novo DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns in mouse development. Dnmt3b is more highly expressed in early developmental stages than Dnmt3a, and is thought to have an important role in the epigenetic gene regulation during early embryogenesis. Previous reports suggest that Dnmt3b is expressed preferentially in the embryonic lineage, but less in the extra-embryonic lineage, in early post-implantation embryos. However, it is unclear when this lineage-specific differential expression is established. Here we demonstrate that Dnmt3b shows a dynamic expression change during pre- and early post-implantation development. Contrary to the expectation, Dnmt3b is preferentially expressed in the trophectoderm rather than the inner cell mass at the mid blastocyst stage. Subsequently, the spatial Dnmt3b expression gradually changes during pre- and early post-implantation development, and finally Dnmt3b expression is settled in the embryonic lineage at the epiblast stage. The findings are consistent with the role for Dnmt3b in cell-lineage specification and the creation of lineage-specific DNA methylation patterns.

  7. A functional genomic screen combined with time-lapse microscopy uncovers a novel set of genes involved in dorsal closure of Drosophila embryos.

    Directory of Open Access Journals (Sweden)

    Ferenc Jankovics

    Full Text Available Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl, was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes.

  8. Exploring the caffeine-induced teratogenicity on neurodevelopment using early chick embryo.

    Directory of Open Access Journals (Sweden)

    Zheng-lai Ma

    Full Text Available Caffeine consumption is worldwide. It has been part of our diet for many centuries; indwelled in our foods, drinks, and medicines. It is often perceived as a "legal drug", and though it is known to have detrimental effects on our health, more specifically, disrupt the normal fetal development following excessive maternal intake, much ambiguity still surrounds the precise mechanisms and consequences of caffeine-induced toxicity. Here, we employed early chick embryos as a developmental model to assess the effects of caffeine on the development of the fetal nervous system. We found that administration of caffeine led to defective neural tube closures and expression of several abnormal morphological phenotypes, which included thickening of the cephalic mesenchymal tissues and scattering of somites. Immunocytochemistry of caffeine-treated embryos using neural crest cell markers also demonstrated uncharacteristic features; HNK1 labeled migratory crest cells exhibited an incontinuous dorsal-ventral migration trajectory, though Pax7 positive cells of the caffeine-treated groups were comparatively similar to the control. Furthermore, the number of neurons expressing neurofilament and the degree of neuronal branching were both significantly reduced following caffeine administration. The extent of these effects was dose-dependent. In conclusion, caffeine exposure can result in malformations of the neural tube and induce other teratogenic effects on neurodevelopment, although the exact mechanism of these effects requires further investigation.

  9. Organization of early frog embryos by chemical waves emanating from centrosomes.

    Science.gov (United States)

    Ishihara, Keisuke; Nguyen, Phuong A; Wühr, Martin; Groen, Aaron C; Field, Christine M; Mitchison, Timothy J

    2014-09-05

    The large cells in early vertebrate development face an extreme physical challenge in organizing their cytoplasm. For example, amphibian embryos have to divide cytoplasm that spans hundreds of micrometres every 30 min according to a precise geometry, a remarkable accomplishment given the extreme difference between molecular and cellular scales in this system. How do the biochemical reactions occurring at the molecular scale lead to this emergent behaviour of the cell as a whole? Based on recent findings, we propose that the centrosome plays a crucial role by initiating two autocatalytic reactions that travel across the large cytoplasm as chemical waves. Waves of mitotic entry and exit propagate out from centrosomes using the Cdk1 oscillator to coordinate the timing of cell division. Waves of microtubule-stimulated microtubule nucleation propagate out to assemble large asters that position spindles for the following mitosis and establish cleavage plane geometry. By initiating these chemical waves, the centrosome rapidly organizes the large cytoplasm during the short embryonic cell cycle, which would be impossible using more conventional mechanisms such as diffusion or nucleation by structural templating. Large embryo cells provide valuable insights to how cells control chemical waves, which may be a general principle for cytoplasmic organization.

  10. Multiscale diffusion in the mitotic Drosophila melanogaster syncytial blastoderm

    OpenAIRE

    2012-01-01

    Despite the fundamental importance of diffusion for embryonic morphogen gradient formation in the early Drosophila melanogaster embryo, there remains controversy regarding both the extent and the rate of diffusion of well-characterized morphogens. Furthermore, the recent observation of diffusional “compartmentalization” has suggested that diffusion may in fact be nonideal and mediated by an as-yet-unidentified mechanism. Here, we characterize the effects of the geometry of the early syncytial...

  11. The core planar cell polarity gene prickle interacts with flamingo to promote sensory axon advance in the Drosophila embryo.

    Science.gov (United States)

    Mrkusich, Eli M; Flanagan, Dustin J; Whitington, Paul M

    2011-10-01

    The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point - the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance.

  12. ULTRASTRUCTURAL MODIFICATIONS INDUCED BY DIRECT ACTION OF CU2+ UPON EARLY CHICK EMBRYO

    Directory of Open Access Journals (Sweden)

    Delia Checiu

    2003-01-01

    Full Text Available Teratological testing of sulphonate phtalocyanine (an alimentary blue dye synthetized by the Center of Chemisty, Timisoara, shown a strong malformative effect of this compound upon early chick embryo (48 hours of incubation, (Sandor, Checiu, Prelipceanu, 1985. Dye administration on day 2 of incubation (44-48 hours revealed a high rate of embryo mortality and abnormal modification of caudal segment or even a total absence of caudal tail bud. Living embryos until day 7 of incubation showed a normal development of the anterior body part (head and trunk in contrast with posterior body part which presented an abnormal position of posterior limbs, tail and trunk aplasia. The dye with the some name produced in Germany did not show (in the some experimental conditions a malformative effect. The only difference between the two dyes was the presence of Cu2+ in our compound. It is well known that chemicals and physics factors (X rayes, insuline, hypoxy, D-Actinomycine, sucrose, etc. are noxious, inducing malformations of caudal segment (tail bud, urogenital and anorectal abnormalities associated with cardiac, facial and SNC malformations (Landauer 1953, Shepard 1973. Abnormalities of esophagus, urogenital and anorectal region associated with those of caudal axial skeleton and posterior limb buds are involved in caudal dysplasia syndrome (Duhamel 1961 cited by Roux and Martinet 1962. This syndrome is frequent (1:1000 in children of diabetic mothers (Warkany 1971. Experimental works on mice suggested implication of genetic factors in pathogenesis of this syndrome (Frye et all.1964 cited by Warkany 1971. Previous investigations (Checiu et all. 1966 revealed a caudal malformative syndrome in chick embryos induced by Cu2+. It is well known capacity of some heavy metal ions to affect the formation and desintegration reaction of free radicals. The aim of this paper is to present a morphological study of caudal malformative syndrome (Checiu et all. 1999 and an

  13. Development of a bovine luteal cell in vitro culture system suitable for co-culture with early embryos.

    Science.gov (United States)

    Batista, M; Torres, A; Diniz, P; Mateus, L; Lopes-da-Costa, L

    2012-10-01

    The cross talk between the corpus luteum (CL) and the early embryo, potentially relevant to pregnancy establishment, is difficult to evaluate in the in vivo bovine model. In vitro co-culture of bovine luteal cells and early embryos (days 2-8 post in vitro fertilization) may allow the deciphering of this poorly understood cross talk. However, early embryos and somatic cells require different in vitro culture conditions. The objective of this study was to develop a bovine luteal cell in vitro culture system suitable for co-culture with early embryos in order to evaluate their putative steroidogenic and prostanoid interactions. The corpora lutea of the different stages of the estrous cycle (early, mid, and late) were recovered postmortem and enriched luteal cell populations were obtained. In experiments 1 and 2, the effects of CL stage, culture medium (TCM, DMEM-F12, or SOF), serum concentration (5 or 10%), atmosphere oxygen tension (5 or 20%), and refreshment of the medium on the ability of luteal cells to produce progesterone (P(4)) were evaluated. The production of P(4) was significantly increased in early CL cultures, and luteal cells adapted well to simple media (SOF), low serum concentrations (5%), and oxygen tensions (5%). In experiment 3, previous luteal cell cryopreservation did not affect the production of P(4), PGF(2α), and PGE(2) compared to fresh cell cultures. This enables the use of pools of frozen-thawed cells to decrease the variation in cell function associated with primary cell cultures. In experiment 4, mineral oil overlaying culture wells resulted in a 50-fold decrease of the P(4) quantified in the medium, but had no effect on PGF(2α) and PGE(2) quantification. In conclusion, a luteal cell in vitro culture system suitable for the 5-d-long co-culture with early embryos was developed.

  14. Co-localization of neural cell adhesion molecule and fibroblast growth factor receptor 2 in early embryo development.

    Science.gov (United States)

    Vesterlund, Liselotte; Töhönen, Virpi; Hovatta, Outi; Kere, Juha

    2011-01-01

    During development there is a multitude of signaling events governing the assembly of the developing organism. Receptors for signaling molecules such as fibroblast growth factor receptor 2 (FGFR2) enable the embryo to communicate with the surrounding environment and activate downstream pathways. The neural cell adhesion molecule (NCAM) was first characterized as a cell adhesion molecule highly expressed in the nervous system, but recent studies have shown that it is also a signaling receptor. Using a novel single oocyte adaptation of the proximity ligation assay, we here show a close association between NCAM and FGFR2 in mouse oocytes and 2-cell embryos. Real-time PCR analyses revealed the presence of messenger RNA encoding key proteins in downstream signaling pathways in oocytes and early mouse embryos. In summary these findings show a co-localization of NCAM and FGFR2 in early vertebrate development with intracellular signaling pathways present to enable a cellular response.

  15. Retinoic acid is enriched in Hensen's node and is developmentally regulated in the early chicken embryo.

    Science.gov (United States)

    Chen, Y; Huang, L; Russo, A F; Solursh, M

    1992-11-01

    Retinoic acid (RA) has been considered as a potential morphogen in the chicken limb and has also been suggested to be involved in early embryonic development. On the basis of biological activity, previous reports suggest that Hensen's node, the anatomical equivalent in the chicken of the Spemann's organizer, may contain RA. Here, by using a molecular assay system, we demonstrate that Hensen's node contains retinoids in a concentration approximately 20 times more than that in the neighboring tissues. Furthermore, stage 6 Hensen's node contains approximately 3 times more retinoid than that of stage 4 embryos. These endogenous retinoids may establish a concentration gradient from Hensen's node to adjacent tissues and play a role in establishing the primary embryonic axis in the vertebrate. The results also suggest that the retinoid concentration in Hensen's node is developmentally regulated.

  16. β-Pix directs collective migration of anterior visceral endoderm cells in the early mouse embryo.

    Science.gov (United States)

    Omelchenko, Tatiana; Rabadan, M Angeles; Hernández-Martínez, Rocío; Grego-Bessa, Joaquim; Anderson, Kathryn V; Hall, Alan

    2014-12-15

    Collective epithelial migration is important throughout embryonic development. The underlying mechanisms are poorly understood but likely involve spatially localized activation of Rho GTPases. We previously reported that Rac1 is essential for generating the protrusive activity that drives the collective migration of anterior visceral endoderm (AVE) cells in the early mouse embryo. To identify potential regulators of Rac1, we first performed an RNAi screen of Rho family exchange factors (guanine nucleotide exchange factor [GEF]) in an in vitro collective epithelial migration assay and identified β-Pix. Genetic deletion of β-Pix in mice disrupts collective AVE migration, while high-resolution live imaging revealed that this is associated with randomly directed protrusive activity. We conclude that β-Pix controls the spatial localization of Rac1 activity to drive collective AVE migration at a critical stage in mouse development.

  17. Expression of microRNA and microRNA processing machinery genes during early quail (Coturnix japonica) embryo development.

    Science.gov (United States)

    Kocamis, H; Hossain, M; Cinar, M U; Salilew-Wondim, D; Mohammadi-Sangcheshmeh, A; Tesfaye, D; Hölker, M; Schellander, K

    2013-03-01

    MicroRNA (miRNA) are small regulatory RNA molecules that are implicated in regulating and controlling a wide range of physiological processes including cell division, differentiation, migration, apoptosis, morphogenesis, and organogenesis. The aim of this study was to determine the expression pattern of 32 miRNA and 18 miRNA processing machinery genes during somite formation in quail embryos. The embryos were collected at stages HH (Hamburger and Hamilton) 4, 6, and 9 of embryo development (19, 24, and 30 h of incubation, respectively). Total RNA including miRNA was isolated from 4 groups of embryos (each group consisting of 6 to 8 embryos) were collected at each of the 3 stages (19, 24, and 30 h). The expression pattern of candidate miRNA and miRNA processing machinery genes was performed using quantitative real-time PCR. The results demonstrated that 7 miRNA (let-7a, mir-122, mir-125b, mir-10b, P machinery genes was not significantly increased at 30 h of incubation compared with both 19 and 24 h. Our results suggest that machinery genes for miRNA biogenetic pathways are functional, and hence, miRNA may be involved in the regulation of early quail development. These 7 differentially expressed miRNA are suggested to play critical roles in quail embryo somite formation.

  18. Early embryo mortality in natural human reproduction: What the data say [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Gavin E. Jarvis

    2017-06-01

    Full Text Available How many human embryos die between fertilisation and birth under natural conditions? It is widely accepted that natural human embryo mortality is high, particularly during the first weeks after fertilisation, with total prenatal losses of 70% and higher frequently claimed. However, the first external sign of pregnancy occurs two weeks after fertilisation with a missed menstrual period, and establishing the fate of embryos before this is challenging. Calculations are additionally hampered by a lack of data on the efficiency of fertilisation under natural conditions. Four distinct sources are used to justify quantitative claims regarding embryo loss: (i a hypothesis published by Roberts & Lowe in The Lancet  is widely cited but has no practical quantitative value; (ii life table analyses give consistent assessments of clinical pregnancy loss, but cannot illuminate losses at earlier stages of development; (iii studies that measure human chorionic gonadotrophin (hCG reveal losses in the second week of development and beyond, but not before; and (iv the classic studies of Hertig and Rock offer the only direct insight into the fate of human embryos from fertilisation under natural conditions. Re-examination of Hertig’s data demonstrates that his estimates for fertilisation rate and early embryo loss are highly imprecise and casts doubt on the validity of his numerical analysis. A recent re-analysis of hCG study data concluded that approximately 40-60% of embryos may be lost between fertilisation and birth, although this will vary substantially between individual women. In conclusion, natural human embryo mortality is lower than often claimed and widely accepted. Estimates for total prenatal mortality of 70% or higher are exaggerated and not supported by the available data.

  19. Early embryo mortality in natural human reproduction: What the data say [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Gavin E. Jarvis

    2016-11-01

    Full Text Available It is generally accepted that natural human embryo mortality during pregnancy is high – losses of 70% and higher from fertilisation to birth are frequently claimed. The first external sign of pregnancy occurs two weeks after fertilisation with a missed menstrual period. Establishing the fate of embryos before this is challenging, and hampered by a lack of data on the efficiency of fertilisation under natural conditions. Four distinct sources are cited to justify quantitative claims regarding embryo loss: (i a hypothesis published by Roberts & Lowe in The Lancet  is widely cited but has no quantitative value; (ii life table analyses give consistent assessments of clinical pregnancy loss, but cannot illuminate losses at earlier stages of development; (iii studies that measure human chorionic gonadotrophin (hCG reveal losses in the second week of development and beyond, but not before; and (iv the classic studies of Hertig and Rock offer the only direct insight into the fate of human embryos from fertilisation under natural conditions. Re-examination of Hertig’s data demonstrates that his estimates for fertilisation rate and early embryo loss are highly imprecise and casts doubt on the validity of his numerical analysis. A recent re-analysis of hCG study data suggests that approximately 40-60% of embryos may be lost between fertilisation and birth, although this will vary substantially between individual women. In conclusion, it is clear that some published estimates of natural embryo mortality are exaggerated. Although available data do not provide a precise estimate, natural human embryo mortality is lower than is often claimed.

  20. Roles for two partially redundant alpha-tubulins during mitosis in early Caenorhabditis elegans embryos.

    Science.gov (United States)

    Phillips, Jennifer B; Lyczak, Rebecca; Ellis, Gregory C; Bowerman, Bruce

    2004-06-01

    The Caenorhabditis elegans genome encodes multiple isotypes of alpha-tubulin and beta-tubulin. Roles for a number of these tubulins in neuronal development have been described, but less is known about the isoforms that function during early embryonic development. Microtubules are required for multiple events after fertilization produces a one-cell zygote in C. elegans, including pronuclear migration, mitotic spindle assembly and function, and proper spindle positioning. Here we describe a conditional and dominant mis-sense mutation in the C. elegans alpha-tubulin gene tba-1 that disrupts pronuclear migration and positioning of the first mitotic spindle, and results in a highly penetrant embryonic lethality, at the restrictive temperature of 26 degrees C. Our analysis of the dominant tba-1 (or346ts) allele suggests that TBA-1 assembles into microtubules in early embryonic cells. However, we also show that reduction of tba-1 function using RNA interference results in defects much less severe than those caused by the dominant or346ts mutation, due to partial redundancy of TBA-1 and another alpha-tubulin called TBA-2. Reducing the function of both TBA-1 and TBA-2 results in severe defects in microtubule-dependent processes. We conclude that microtubules in the early C. elegans embryo are composed of both TBA-1 and TBA-2, and that the dominant tba-1(or346ts) mutation disrupts MT assembly or stability. Cell Motil.

  1. Placental development during early pregnancy in sheep: Effects of embryo origin on vascularization

    Science.gov (United States)

    Grazul-Bilska, Anna T.; Johnson, Mary Lynn; Borowicz, Pawel P.; Bilski, Jerzy J.; Cymbaluk, Taylor; Norberg, Spencer; Redmer, Dale A.; Reynolds, Lawrence P.

    2014-01-01

    Utero-placental growth and vascular development are critical for pregnancy establishment that may be altered by various factors including assisted reproductive technologies (ART), nutrition, or others, leading to compromised pregnancy. We hypothesized that placental vascularization and expression of angiogenic factors are altered early in pregnancies after transfer of embryos created using selected ART methods. Pregnancies were achieved through natural mating (NAT), or transfer of embryos from natural mating (NAT-ET), or in vitro fertilization (IVF) or activation (IVA). Placental tissues were collected on day 22 of pregnancy. In maternal caruncles (CAR), vascular cell proliferation was less (P<0.05) for IVA than other groups. Compared to NAT, density of blood vessels was less (P<0.05) for IVF and IVA in fetal membranes (FM), and for NAT-ET, IVF and IVA in CAR. In FM, mRNA expression was decreased (P<0.01–0.08) in NAT-ET, IVF and IVA compared to NAT for vascular endothelial growth factor (VEGF) and its receptor FLT-1, placental growth factor (PGF), neuropilin (NP) 1 and 2, angiopoietin (ANGPT) 1 and 2, endothelial nitric oxide synthase (NOS3), hypoxia inducible factor-1A (HIF1A), fibroblast growth factor (FGF) 2 and its receptor FGFR2. In CAR, mRNA expression was decreased (P<0.01–0.05) in NAT-ET, IVF and IVA compared to NAT for VEGF, FLT-1, PGF, ANGPT1 and TEK. Decreased mRNA expression for 12 of 14 angiogenic factors across FM and CAR in NAT-ET, IVF and IVA pregnancies was associated with reduced placental vascular development, which would lead to poor placental function and compromised fetal and placental growth and development. PMID:24472816

  2. Cyclin CYB-3 controls both S-phase and mitosis and is asymmetrically distributed in the early C. elegans embryo.

    Science.gov (United States)

    Michael, W Matthew

    2016-09-01

    In early C. elegans embryos the timing of cell division is both invariant and developmentally regulated, yet how the cell cycle is controlled in the embryo and how cell cycle timing impacts early development remain important, unanswered questions. Here, I focus on the cyclin B3 ortholog CYB-3, and show that this cyclin has the unusual property of controlling both the timely progression through S-phase and mitotic entry, suggesting that CYB-3 is both an S-phase-promoting and mitosis-promoting factor. Furthermore, I find that CYB-3 is asymmetrically distributed in the two-cell embryo, such that the somatic precursor AB cell contains ∼2.5-fold more CYB-3 than its sister cell, the germline progenitor P1 CYB-3 is not only physically limited in P1 but also functionally limited, and this asymmetry is controlled by the par polarity network. These findings highlight the importance of the CYB-3 B3-type cyclin in cell cycle regulation in the early embryo and suggest that CYB-3 asymmetry helps establish the well-documented cell cycle asynchrony that occurs during cell division within the P-lineage.

  3. Effect of Mitochondrial Transplantation from Cumulus Granular Cells to the Early Embryos of Aged Mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To assess the role of mitochondria in the early embryonic development of ageing mice.Methods Mitochondria isolated from cumulus granular cells of aged mice were microinjected into oocytes or zygotes of aged mice. In the setting of oocyte injection, mitochondria were transferred via intracytoplasmic sperm injection (ICSI+MIT), and ICSI without mitochondrial transfer. In the setting of zygote injection, mitochondria were directly microinjected into fertilized oocytes (MIT), and those injected with buffer alone (mock injection) or not injected (uninjected) served as controls.Results Although the rates of oocyte cleavage between ICSI and ICSI+MIT groups were not statistically different (P>0.05), the rate of blastocyst in the ICSI+MIT group was significantly higher than that in ICSI group (P<0.05). Although both the cleavage and blastocyst rates of mock injection group were significantly lower than those of uninjected group (P<0.05), likely due to mechanical damages of the cells by microinjection, the decrease of these rates was prevented by mitochondrial transfer. After mitochondrial transfer, the rates of both cleavage and blastocyst were significantly improved over the mock-injection group (P<0.05).Conclusion Mitochondrial transplantation can improve the developmental potential of early embryos of aged mice.

  4. Estimation of the {beta}+ dose to the embryo resulting from {sup 18}F-FDG administration during early pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Zanotti-Fregonara, P.; Trebossen, R.; Maroy, R. [CEA, DSV, I2BM, SHFJ, LIME, Orsay (France); Champion, C. [Univ Paul Verlaine Metz, Inst Phys, Lab Phys Mol et Collis, Metz (France); Hindie, E. [Univ Paris 07, IUH, Ecole Doctorale B2T, Paris (France); Hindie, E. [Hop St Louis, AP-HP, Nucl Med Serv, F-75475 Paris 10 (France)

    2008-07-01

    Although {sup 18}F-FDG examinations are widely used, data are lacking on the dose to human embryo tissues in cases of exposure in early pregnancy. Although the photon component can easily be estimated from available data on the pharmacokinetics of {sup 18}F-FDG in female organs and from phantom measurements (considering the uterus as the target organ), the intensity of embryo tissue uptake, which is essential for deriving the {beta}+ dose, is not known. We report the case of a patient who underwent {sup 18}F-FDG PET/CT for tumor surveillance and who was later found to have been pregnant at the time of the examination(embryo age, 8 wk). Methods: The patient received 320 MBq of {sup 18}F-FDG. Imaging started with an unenhanced CT scan 1 h after the injection, followed by PET acquisition. PET images were used to compute the total number of {beta}+ emissions in embryo tissues per unit of injected activity, from standardized uptake value (SUV) measurements corrected for partial-volume effects. A Monte Carlo track structure code was then used to derive the {beta}+ self-dose and the {beta}+ cross-dose from amniotic fluid. The photon and CT doses were added to obtain the final dose received by the embryo. Results: The mean SUV in embryo tissues was 2.7, after correction for the partial-volume effect. The mean corrected SUV of amniotic fluid was 1.1. Monte Carlo simulation showed that the {beta}+ dose to the embryo (self-dose plus cross-dose from amniotic fluid) was 1.8 E-2 mGy per MBq of injected {sup 18}F-FDG. Based on MIRD data for the photon dose to the uterus, the estimated photon dose to the embryo was 1.5 E-2 mGy/MBq. Thus, the specific {sup 18}F-FDG dose to the embryo was 3.3 E-2 mGy/MBq (10.6 mGy in this patient). The CT scan added a further 8.3 mGy. Conclusion: The dose to the embryo is 3.3 E-2 mGy/MBq of {sup 18}F-FDG. The {beta}+ dose contributes 55% of the total dose. This value is higher than previous estimates in late nonhuman-primate pregnancies. (authors)

  5. Early aberrations in chromatin dynamics in embryos produced under In vitro conditions

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Strejcek, Frantisek;

    2012-01-01

    In vitro production of porcine embryos by means of in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) is limited by great inefficienciy. The present study investigated chromatin and nucleolar dynamics in porcine embryos developed in vivo (IV) and compared this physiological...... standard to that of embryos produced by IVF, parthenogenetic activation (PA), or SCNT. In contrast to IV embryos, chromatin spatial and temporal dynamics in PA, IVF, and SCNT embryos were altered; starting with aberrant chromatin-nuclear envelope interactions at the two-cell stage, delayed chromatin...... decondensation and nucleolar development at the four-cell stage, and ultimately culminating in failure of proper first lineage segregation at the blastocyst stage, demonstrated by poorly defined inner cell mass. Interestingly, in vitro produced (IVP) embryos also lacked a heterochromatin halo around nucleolar...

  6. Gene Expression Associated with Early and Late Chronotypes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Mirko ePegoraro

    2015-05-01

    Full Text Available The circadian clock provides the temporal framework for rhythmic behavioural and metabolic functions. In the modern era of industrialization, work and social pressures, the clock function is often jeopardized, resulting in adverse and chronic effects on health. Understanding circadian clock function, particularly individual variation in diurnal phase preference (chronotype, and the molecular mechanisms underlying such chronotypes may lead to interventions that could abrogate clock dysfunction and improve human (and animal health and welfare. Our preliminary studies suggested that fruitflies, like humans, can be classified as early rising ‘larks’ or late rising ‘owls’, providing a convenient model system for these types of studies. We have identified strains of flies showing increased preference for morning emergence (Early or E from the pupal case, or more pronounced preference for evening emergence (Late or L. We have sampled pupae the day before eclosion (4th day after pupariation at 4 h intervals in the E and L strains, and examined differences in gene expression by RNAseq. We have identified differentially expressed transcripts between the E and L strains which provide candidate genes for studies of Drosophila chronotypes and their human orthologues.

  7. Early determination of nasal-temporal retinotopic specificity in the eye anlage of the chick embryo.

    Science.gov (United States)

    Dütting, D; Thanos, S

    1995-01-01

    The retinotectal projection of the chick is established between Embryonic Days 3 and 13 (E3 to E13). Fate mappings of the eye anlage by local injections of the fluorescent dyes DiI and DiA revealed that the anteroposterior axis of the optic vesicle corresponds to the nasotemporal axis of the retina. To investigate possible alterations in retinotopic specificity after ablating parts of the early eye anlage, we resected either most of the presumptive temporal or a large part of the presumptive nasal half of the eye anlage around stage 11 of the Hamburger-Hamilton scale (40-45 hr). After such treatment, the axes are restored in the healed optic vesicle. In the healing process the wound is closed by cells moving in from surrounding areas. After early posterior (i.e., temporal) ablation, the projection from the restored temporal half-retina onto the optic tectum was examined in embryos (E13 to E17) and juvenile chicken (P16) by retrograde and anterograde labeling of ganglion cells and their axons with DiI and DiASP. Normally, only a small fraction of ganglion cells from the temporal retina (between 6.4% on E13 and 0.08% on P16) projects onto the caudal part of the tectum. In experimental embryos and juvenile chicken this fraction is significantly increased (up to 80%). Retrograde double-labeling from the rostral and the caudal tectum reveals that temporal cells project onto either the rostral or the caudal tectum, but not via collaterals upon both areas. The ganglion cells with "displaced nasal" identity within the temporal retina that were backlabeled from the caudal tectum were to a large extent segregated into distinct clusters, indicating their derivation from few or possibly even single progenitor cells. Likewise, ablation of the anterior half of the optic vesicle led to clusters of rostrally projecting cells of "displaced temporal" identity within the restored nasal retina. In these experiments the dorsal-ventral retinotectal relationship remained intact. The

  8. Early expression of hypocretin/orexin in the chick embryo brain.

    Directory of Open Access Journals (Sweden)

    Kyle E Godden

    Full Text Available Hypocretin/Orexin (H/O neuropeptides are released by a discrete group of neurons in the vertebrate hypothalamus which play a pivotal role in the maintenance of waking behavior and brain state control. Previous studies have indicated that the H/O neuronal development differs between mammals and fish; H/O peptide-expressing cells are detectable during the earliest stages of brain morphogenesis in fish, but only towards the end of brain morphogenesis (by ∼ 85% of embryonic development in rats. The developmental emergence of H/O neurons has never been previously described in birds. With the goal of determining whether the chick developmental pattern was more similar to that of mammals or of fish, we investigated the emergence of H/O-expressing cells in the brain of chick embryos of different ages using immunohistochemistry. Post-natal chick brains were included in order to compare the spatial distribution of H/O cells with that of other vertebrates. We found that H/O-expressing cells appear to originate from two separate places in the region of the diencephalic proliferative zone. These developing cells express the H/O neuropeptide at a comparatively early age relative to rodents (already visible at 14% of the way through fetal development, thus bearing a closer resemblance to fish. The H/O-expressing cell population proliferates to a large number of cells by a relatively early embryonic age. As previously suggested, the distribution of H/O neurons is intermediate between that of mammalian and non-mammalian vertebrates. This work suggests that, in addition to its roles in developed brains, the H/O peptide may play an important role in the early embryonic development of non-mammalian vertebrates.

  9. Drosophila CENP-A mutations cause a BubR1-dependent early mitotic delay without normal localization of kinetochore components.

    Directory of Open Access Journals (Sweden)

    Michael D Blower

    2006-07-01

    Full Text Available The centromere/kinetochore complex plays an essential role in cell and organismal viability by ensuring chromosome movements during mitosis and meiosis. The kinetochore also mediates the spindle attachment checkpoint (SAC, which delays anaphase initiation until all chromosomes have achieved bipolar attachment of kinetochores to the mitotic spindle. CENP-A proteins are centromere-specific chromatin components that provide both a structural and a functional foundation for kinetochore formation. Here we show that cells in Drosophila embryos homozygous for null mutations in CENP-A (CID display an early mitotic delay. This mitotic delay is not suppressed by inactivation of the DNA damage checkpoint and is unlikely to be the result of DNA damage. Surprisingly, mutation of the SAC component BUBR1 partially suppresses this mitotic delay. Furthermore, cid mutants retain an intact SAC response to spindle disruption despite the inability of many kinetochore proteins, including SAC components, to target to kinetochores. We propose that SAC components are able to monitor spindle assembly and inhibit cell cycle progression in the absence of sustained kinetochore localization.

  10. Early embryo development in a sequential versus single medium: a randomized study

    Directory of Open Access Journals (Sweden)

    D'Hooghe Thomas M

    2010-07-01

    Full Text Available Abstract Background The success of in vitro fertilization techniques is defined by multiple factors including embryo culture conditions, related to the composition of the culture medium. In view of the lack of solid scientific data and in view of the current general belief that sequential media are superior to single media, the aim of this randomized study was to compare the embryo quality in two types of culture media. Methods In this study, the embryo quality on day 3 was measured as primary outcome. In total, 147 patients younger than 36 years treated with IVF/ICSI during the first or second cycle were included in this study. Embryos were randomly cultured in a sequential (group A or a single medium (group B to compare the embryo quality on day 1, day 2 and day 3. The embryo quality was compared in both groups using a Chi-square test with a significance level of 0.05. Results At day 1, the percentage of embryos with a cytoplasmic halo was higher in group B (46% than in group A (32%. At day 2, number of blastomeres, degree of fragmentation and the percentage of unequally sized blastomeres were higher in group B than in group A. At day 3, a higher percentage of embryos had a higher number of blastomeres and unequally sized blastomeres in group B. The number of good quality embryos (GQE was comparable in both groups. The embryo utilization rate was higher in group B (56% compared to group A (49%. Conclusions Although, no significant difference in the number of GQE was found in both media, the utilization rate was significantly higher when the embryos were cultured in the single medium compared to the sequential medium. The results of this study have a possible positive effect on the cumulative cryo-augmented pregnancy rate. Trial registration number NCT01094314

  11. Early aberrations in chromatin dynamics in embryos produced under In vitro conditions

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Strejcek, Frantisek

    2012-01-01

    In vitro production of porcine embryos by means of in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) is limited by great inefficienciy. The present study investigated chromatin and nucleolar dynamics in porcine embryos developed in vivo (IV) and compared this physiological stan...

  12. Atrazine and malathion shorten the maturation process of Xenopus laevis oocytes and have an adverse effect on early embryo development.

    Science.gov (United States)

    Ji, Qichao; Lee, Jessica; Lin, Yu-Huey; Jing, Guihua; Tsai, L Jillianne; Chen, Andrew; Hetrick, Lindsay; Jocoy, Dylan; Liu, Junjun

    2016-04-01

    The use of pesticides has a negative impact on the environment. Amphibians have long been regarded as indicator species to pollutants due to their permeable skin and sensitivity to the environment. Studies have shown that population declines of some amphibians are directly linked with exposure to agricultural contaminants. In the past, much of the studies have focused on the toxic effect of contaminants on larvae (tadpoles), juvenile and adult frogs. However, due to the nature of their life cycle, amphibian eggs and early embryos are especially susceptible to the contaminants, and any alteration during the early reproductive stages may have a profound effect on the health and population of amphibians. In this study, we analyzed the effect of atrazine and malathion, two commonly used pesticides, on Xenopus laevis oocyte maturation and early embryogenesis. We found that both atrazine and malathion shortened the frog oocyte maturation process and resulted in reduced Emi2 levels at cytostatic factor-mediated metaphase arrest, and a high level of Emi2 is critically important for oocyte maturation. Furthermore, frog embryos fertilized under the influence of atrazine and/or malathion displayed a higher rate of abnormal division that eventually led to embryo death during early embryogenesis.

  13. MRI-Based Visualization of the Relaxation Times of Early Somatic Embryos

    Directory of Open Access Journals (Sweden)

    Mikulka J.

    2016-04-01

    Full Text Available The large set of scientific activities supported by MRI includes, among others, the research of water and mineral compounds transported within a plant, the investigation of cellular processes, and the examination of the growth and development of plants. MRI is a method of major importance for the measurement of early somatic embryos (ESE during cultivation, and in this respect it offers several significant benefits discussed within this paper. We present the following procedures: non-destructive measurement of the volume and content of water during cultivation; exact three-dimensional differentiation between the ESEs and the medium; investigation of the influence of ions and the change of relaxation times during cultivation; and multiparametric segmentation of MR images to differentiate between embryogenic and non-embryogenic cells. An interesting technique consists in two-parameter imaging of the relaxation times of the callus; this method is characterized by tissue changes during cultivation at a microscopic level, which can be monitored non-destructively.

  14. Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios).

    Science.gov (United States)

    Kohn, Yair Y; Symonds, Jane E; Kleffmann, Torsten; Nakagawa, Shinichi; Lagisz, Malgorzata; Lokman, P Mark

    2015-12-01

    In order to develop biomarkers that may help predict the egg quality of captive hapuku (Polyprion oxygeneios) and provide potential avenues for its manipulation, the present study (1) sequenced the proteome of early-stage embryos using isobaric tag for relative and absolute quantification analysis, and (2) aimed to establish the predictive value of the abundance of identified proteins with regard to egg quality through regression analysis. Egg quality was determined for eight different egg batches by blastomere symmetry scores. In total, 121 proteins were identified and assigned to one of nine major groups according to their function/pathway. A mixed-effects model analysis revealed a decrease in relative protein abundance that correlated with (decreasing) egg quality in one major group (heat-shock proteins). No differences were found in the other protein groups. Linear regression analysis, performed for each identified protein separately, revealed seven proteins that showed a significant decrease in relative abundance with reduced blastomere symmetry: two correlates that have been named in other studies (vitellogenin, heat-shock protein-70) and a further five new candidate proteins (78 kDa glucose-regulated protein, elongation factor-2, GTP-binding nuclear protein Ran, iduronate 2-sulfatase and 6-phosphogluconate dehydrogenase). Notwithstanding issues associated with multiple statistical testing, we conclude that these proteins, and especially iduronate 2-sulfatase and the generic heat-shock protein group, could serve as biomarkers of egg quality in hapuku.

  15. Second heart field cardiac progenitor cells in the early mouse embryo.

    Science.gov (United States)

    Francou, Alexandre; Saint-Michel, Edouard; Mesbah, Karim; Théveniau-Ruissy, Magali; Rana, M Sameer; Christoffels, Vincent M; Kelly, Robert G

    2013-04-01

    At the end of the first week of mouse gestation, cardiomyocyte differentiation initiates in the cardiac crescent to give rise to the linear heart tube. The heart tube subsequently elongates by addition of cardiac progenitor cells from adjacent pharyngeal mesoderm to the growing arterial and venous poles. These progenitor cells, termed the second heart field, originate in splanchnic mesoderm medial to cells of the cardiac crescent and are patterned into anterior and posterior domains adjacent to the arterial and venous poles of the heart, respectively. Perturbation of second heart field cell deployment results in a spectrum of congenital heart anomalies including conotruncal and atrial septal defects seen in human patients. Here, we briefly review current knowledge of how the properties of second heart field cells are controlled by a network of transcriptional regulators and intercellular signaling pathways. Focus will be on 1) the regulation of cardiac progenitor cell proliferation in pharyngeal mesoderm, 2) the control of progressive progenitor cell differentiation and 3) the patterning of cardiac progenitor cells in the dorsal pericardial wall. Coordination of these three processes in the early embryo drives progressive heart tube elongation during cardiac morphogenesis. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

  16. The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos.

    Science.gov (United States)

    Eymery, Angeline; Liu, Zichuan; Ozonov, Evgeniy A; Stadler, Michael B; Peters, Antoine H F M

    2016-08-01

    Oocytes develop the competence for meiosis and early embryogenesis during their growth. Setdb1 is a histone H3 lysine 9 (H3K9) methyltransferase required for post-implantation development and has been implicated in the transcriptional silencing of genes and endogenous retroviral elements (ERVs). To address its role in oogenesis and pre-implantation development, we conditionally deleted Setdb1 in growing oocytes. Loss of Setdb1 expression greatly impaired meiosis. It delayed meiotic resumption, altered the dynamics of chromatin condensation, and impaired kinetochore-spindle interactions, bipolar spindle organization and chromosome segregation in more mature oocytes. The observed phenotypes related to changes in abundance of specific transcripts in mutant oocytes. Setdb1 maternally deficient embryos arrested during pre-implantation development and showed comparable defects during cell cycle progression and in chromosome segregation. Finally, transcriptional profiling data indicate that Setdb1 downregulates rather than silences expression of ERVK and ERVL-MaLR retrotransposons and associated chimearic transcripts during oogenesis. Our results identify Setdb1 as a newly discovered meiotic and embryonic competence factor safeguarding genome integrity at the onset of life. © 2016. Published by The Company of Biologists Ltd.

  17. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology.

    Directory of Open Access Journals (Sweden)

    Veerle Van Hoeck

    Full Text Available Elevated concentrations of serum non-esterified fatty acids (NEFA, associated with maternal disorders such as obesity and type II diabetes, alter the ovarian follicular micro-environment and have been associated with subfertility arising from reduced oocyte developmental competence. We have asked whether elevated NEFA concentrations during oocyte maturation affect the development and physiology of zygotes formed from such oocytes, using the cow as a model. The zygotes were grown to blastocysts, which were evaluated for their quality in terms of cell number, apoptosis, expression of key genes, amino acid turnover and oxidative metabolism. Oocyte maturation under elevated NEFA concentrations resulted in blastocysts with significantly lower cell number, increased apoptotic cell ratio and altered mRNA abundance of DNMT3A, IGF2R and SLC2A1. In addition, the blastocysts displayed reduced oxygen, pyruvate and glucose consumption, up-regulated lactate consumption and higher amino acid metabolism. These data indicate that exposure of maturing oocytes to elevated NEFA concentrations has a negative impact on fertility not only through a reduction in oocyte developmental capacity but through compromised early embryo quality, viability and metabolism.

  18. A dynamic stochastic model for DNA replication initiation in early embryos.

    Directory of Open Access Journals (Sweden)

    Arach Goldar

    Full Text Available BACKGROUND: Eukaryotic cells seem unable to monitor replication completion during normal S phase, yet must ensure a reliable replication completion time. This is an acute problem in early Xenopus embryos since DNA replication origins are located and activated stochastically, leading to the random completion problem. DNA combing, kinetic modelling and other studies using Xenopus egg extracts have suggested that potential origins are much more abundant than actual initiation events and that the time-dependent rate of initiation, I(t, markedly increases through S phase to ensure the rapid completion of unreplicated gaps and a narrow distribution of completion times. However, the molecular mechanism that underlies this increase has remained obscure. METHODOLOGY/PRINCIPAL FINDINGS: Using both previous and novel DNA combing data we have confirmed that I(t increases through S phase but have also established that it progressively decreases before the end of S phase. To explore plausible biochemical scenarios that might explain these features, we have performed comparisons between numerical simulations and DNA combing data. Several simple models were tested: i recycling of a limiting replication fork component from completed replicons; ii time-dependent increase in origin efficiency; iii time-dependent increase in availability of an initially limiting factor, e.g. by nuclear import. None of these potential mechanisms could on its own account for the data. We propose a model that combines time-dependent changes in availability of a replication factor and a fork-density dependent affinity of this factor for potential origins. This novel model quantitatively and robustly accounted for the observed changes in initiation rate and fork density. CONCLUSIONS/SIGNIFICANCE: This work provides a refined temporal profile of replication initiation rates and a robust, dynamic model that quantitatively explains replication origin usage during early embryonic S phase

  19. The integrated HIV-1 provirus in patient sperm chromosome and its transfer into the early embryo by fertilization.

    Directory of Open Access Journals (Sweden)

    Dian Wang

    Full Text Available Complete understanding of the route of HIV-1 transmission is an important prerequisite for curbing the HIV/AIDS pandemic. So far, the known routes of HIV-1 transmission include sexual contact, needle sharing, puncture, transfusion and mother-to-child transmission. Whether HIV can be vertically transmitted from human sperm to embryo by fertilization is largely undetermined. Direct research on embryo derived from infected human sperm and healthy human ova have been difficult because of ethical issues and problems in the collection of ova. However, the use of inter-specific in vitro fertilization (IVF between human sperm and hamster ova can avoid both of these problems. Combined with molecular, cytogenetical and immunological techniques such as the preparation of human sperm chromosomes, fluorescent in situ hybridization (FISH, and immunofluorescence assay (IFA, this study mainly explored whether any integrated HIV provirus were present in the chromosomes of infected patients' sperm, and whether that provirus could be transferred into early embryos by fertilization and maintain its function of replication and expression. Evidence showed that HIV-1 nucleic acid was present in the spermatozoa of HIV/AIDS patients, that HIV-1 provirus is present on the patient sperm chromosome, that the integrated provirus could be transferred into early embryo chromosomally integrated by fertilization, and that it could replicate alongside the embryonic genome and subsequently express its protein in the embryo. These findings indicate the possibility of vertical transmission of HIV-1 from the sperm genome to the embryonic genome by fertilization. This study also offers a platform for the research into this new mode of transmission for other viruses, especially sexually transmitted viruses.

  20. Impact of cationic polystyrene nanoparticles (PS-NH2) on early embryo development of Mytilus galloprovincialis: Effects on shell formation.

    Science.gov (United States)

    Balbi, Teresa; Camisassi, Giulia; Montagna, Michele; Fabbri, Rita; Franzellitti, Silvia; Carbone, Cristina; Dawson, Kenneth; Canesi, Laura

    2017-11-01

    The potential release of nanoparticles (NPs) into aquatic environments represents a growing concern for their possible impact on aquatic organisms. In this light, exposure studies during early life stages, which can be highly sensitive to environmental perturbations, would greatly help identifying potential adverse effects of NPs. Although in the marine bivalve Mytilus spp. the effects of different types of NPs have been widely investigated, little is known on the effects of NPs on the developing embryo. In M. galloprovincialis, emerging contaminants were shown to affect gene expression profiles during early embryo development (from trocophorae-24 hpf to D-veligers-48 hpf). In this work, the effects of amino-modified polystyrene NPs (PS-NH2) on mussel embryos were investigated. PS-NH2 affected the development of normal D-shaped larvae at 48 hpf (EC50 = 0.142 mg/L). Higher concentrations (5-20 mg/L) resulted in high embryotoxicity/developmental arrest. At concentrations ≅ EC50, PS-NH2 affected shell formation, as shown by optical and polarized light microscopy. In these conditions, transcription of 12 genes involved in different biological processes were evaluated. PS-NH2 induced dysregulation of transcription of genes involved in early shell formation (Chitin synthase, Carbonic anhydrase, Extrapallial Protein) at both 24 and 48 hpf. Decreased mRNA levels for ABC transporter p-glycoprotein-ABCB and Lysozyme were also observed at 48 hpf. SEM observations confirmed developmental toxicity at higher concentrations (5 mg/L). These data underline the sensitivity of Mytilus early embryos to PS-NH2 and support the hypothesis that calcifying larvae of marine species are particularly vulnerable to abiotic stressors, including exposure to selected types of NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Use of picosecond infrared laser for micromanipulation of early mammalian embryos.

    Science.gov (United States)

    Karmenyan, Artashes V; Shakhbazyan, Avetik K; Sviridova-Chailakhyan, Tatiana A; Krivokharchenko, Alexander S; Chiou, Arthur E; Chailakhyan, Levon M

    2009-10-01

    A high repetition rate (80 MHz) picosecond pulse (approximately 2 psec) infrared laser was used for the inactivation (functional enucleation) of oocytes and two-cell mouse embryos and also for the fusion of blastomeres of two-cell mouse embryos. The laser inactivation of both blastomeres of two-cell mouse embryos by irradiation of nucleoli completely blocked further development of the embryo. The inactivation of one blastomere, however, did not affect the ability of the second intact blastomere to develop into a blastocyst after treatment. Laser inactivation of oocytes at Metaphase II (MII) stage and parthenogenetically activated pronuclear oocytes also completely blocked their ability for further development. Suitable doses of irradiation in cytoplasm region did not affect the ability of embryos and activated oocytes to development. The efficiency of laser induced fusion for blastomeres of two-cell embryos was 66.7% and all the tetraploid embryos developed successfully into blastocysts in culture. Our results demonstrate unique opportunities of the applications of a suitable infrared periodic pulse laser as a universal microsurgery tool for individual living cells.

  2. Possible roles of mmu-miR-141 in the endometrium of mice in early pregnancy following embryo implantation.

    Directory of Open Access Journals (Sweden)

    Xueqing Liu

    Full Text Available OBJECTIVE: Embryo implantation is directly affected by genes related to uterine receptivity. Studies have demonstrated the important roles of miRNAs in the regulation of gene expression. Our early miRNA chip analyses revealed that the mmu-miR-141 expression in endometrial tissue is lower after embryo implantation than before it. However, the possible roles of miR-141 in embryo implantation have not yet been elucidated. Here, mmu-miR-141 was designed to detect the expression and role of miR-141 in the endometria of mice in early pregnancy following embryo implantation. METHODS: Real-time PCR and in-situ hybridization were used to study mmu-miR-141 expression in mouse uterus. Cell proliferation was detected by tetrazolium dye (MTT assay and flow cytometry. Real-time PCR and Western blot analysis were used to confirm the mRNA and protein levels of phosphatase and tensin homolog (PTEN to determine whether it was the target gene of mmu-miR-141. Enhanced green fluorescent protein (EGFP fluorescence reporter vector analysis was also performed. A functional study was performed by injecting mice uteri with mmu-miR-141 inhibitor or mimic vectors. RESULTS: mmu-miR-141 expression was lower on day 6 (D6 than day 4 (D4 and could be increased by progesterone. Reduced mmu-miR-141 could decrease the proliferation activity of stromal cells and promote apoptosis. Upregulation of mmu-miR-141 inhibited PTEN protein expression but downregulation of mmu-miR-141 increased it, while the mRNA level remained unchanged. EGFP fluorescence reporter vector analysis showed that miR-141 targets the 3'-untranslated region of the PTEN mRNA. In addition, when the physiological mmu-miR-141 level was altered on D2 by injecting with inhibitor or mimic, the embryo implantation sites were significantly decreased on D7. CONCLUSIONS: This study demonstrated that mmu-miR-141 might influence cell proliferation and apoptosis in the endometrium by negatively regulating PTEN expression, and

  3. Possible Roles of mmu-miR-141 in the Endometrium of Mice in Early Pregnancy Following Embryo Implantation

    Science.gov (United States)

    Chen, Xuemei; Zhang, Hailing; Zheng, Anshun; Yang, Dehui; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2013-01-01

    Objective Embryo implantation is directly affected by genes related to uterine receptivity. Studies have demonstrated the important roles of miRNAs in the regulation of gene expression. Our early miRNA chip analyses revealed that the mmu-miR-141 expression in endometrial tissue is lower after embryo implantation than before it. However, the possible roles of miR-141 in embryo implantation have not yet been elucidated. Here, mmu-miR-141 was designed to detect the expression and role of miR-141 in the endometria of mice in early pregnancy following embryo implantation. Methods Real-time PCR and in-situ hybridization were used to study mmu-miR-141 expression in mouse uterus. Cell proliferation was detected by tetrazolium dye (MTT) assay and flow cytometry. Real-time PCR and Western blot analysis were used to confirm the mRNA and protein levels of phosphatase and tensin homolog (PTEN) to determine whether it was the target gene of mmu-miR-141. Enhanced green fluorescent protein (EGFP) fluorescence reporter vector analysis was also performed. A functional study was performed by injecting mice uteri with mmu-miR-141 inhibitor or mimic vectors. Results mmu-miR-141 expression was lower on day 6 (D6) than day 4 (D4) and could be increased by progesterone. Reduced mmu-miR-141 could decrease the proliferation activity of stromal cells and promote apoptosis. Upregulation of mmu-miR-141 inhibited PTEN protein expression but downregulation of mmu-miR-141 increased it, while the mRNA level remained unchanged. EGFP fluorescence reporter vector analysis showed that miR-141 targets the 3′-untranslated region of the PTEN mRNA. In addition, when the physiological mmu-miR-141 level was altered on D2 by injecting with inhibitor or mimic, the embryo implantation sites were significantly decreased on D7. Conclusions This study demonstrated that mmu-miR-141 might influence cell proliferation and apoptosis in the endometrium by negatively regulating PTEN expression, and could also

  4. Increased expression of heat shock protein 105 in rat uterus of early pregnancy and its significance in embryo implantation

    Directory of Open Access Journals (Sweden)

    Hu Zhao-Yuan

    2009-03-01

    Full Text Available Abstract Background Heat shock proteins (Hsps are a set of highly conserved proteins, Hsp105, has been suggested to play a role in reproduction. Methods Spatio-temporal expression of Hsp105 in rat uterus during peri-implantation period was examined by immunohistochemistry and Western blot, pseudopregnant uterus was used as control. Injection of antisense oligodeoxynucleotides to Hsp105 into pregnant rat uteri was carried out to look at effect of Hsp105 on embryo implantation. Results Expression of Hsp105 was mainly in the luminal epithelium on day 1 of pregnancy, and reached a peak level on day 5, whereas in stroma cells, adjacent to the implanting embryo, the strongest expression of Hsp105 was observed on day 6. The immunostaining profile in the uterus was consistent with that obtained by Western blot in the early pregnancy. In contrast, no obvious peak level of Hsp105 was observed in the uterus of pseudopregnant rat on day 5 or day 6. Furthermore, injection of antisense oligodeoxynucleotides to Hsp105 into the rat uterine horn on day 3 of pregnancy obviously suppressed the protein expression as expected and reduced number of the implanted embryos as compared with the control. Conclusion Temporal and spatial changes in Hsp105 expression in pregnant rat uterus may play a physiological role in regulating embryo implantation.

  5. The nuclear mitotic apparatus (NuMA) protein: localization and dynamics in human oocytes, fertilization and early embryos.

    Science.gov (United States)

    Alvarez Sedó, Cristian; Schatten, Heide; Combelles, Catherine M; Rawe, Vanesa Y

    2011-06-01

    The oocyte's meiotic spindle is a dynamic structure that relies on microtubule organization and regulation by centrosomes. Disorganization of centrosomal proteins, including the nuclear mitotic apparatus (NuMA) protein and the molecular motor complex dynein/dynactin, can lead to chromosomal instability and developmental abnormalities. The present study reports the distribution and function of these proteins in human oocytes, zygotes and early embryos. A total of 239 oocytes, 90 zygotes and discarded embryos were fixed and analyzed with confocal microscopy for NuMA and dynactin distribution together with microtubules and chromatin. Microtubule-associated dynein-dependent transport functions were explored by inhibiting phosphatase and ATPase activity with sodium-orthovanadate (SOV). At germinal vesicle (GV) stages, NuMA was dispersed across the nucleoplasm. After GV breaks down, NuMA became cytoplasmic before localizing at the spindle poles in metaphase I and II oocytes. Aberrant NuMA localization patterns were found during oocyte in vitro maturation. After fertilization, normal and abnormal pronuclear stage zygotes and embryos displayed translocation of NuMA to interphase nuclei. SOV treatment for up to 2 h induced lower maturation rates with chromosomal scattering and ectopic localization of NuMA. Accurate distribution of NuMA is important for oocyte maturation, zygote and embryo development in humans. Proper assembly of NuMA is likely necessary for bipolar spindle organization and human oocyte developmental competence.

  6. siRNA Specific to Pdx-1 Disturbed the Formation of the Islet in Early Zebrafish Embryos

    Institute of Scientific and Technical Information of China (English)

    CHEN Shen; HUANG Jintao; YUAN Guangnfing; CHEN Qian; HUANG Nannan; XIE Fukang

    2007-01-01

    Pdx-1, an important transcription factor highlighting in the early pancreatic development,islet functions and pancreatic disorders, needs to be more investigated in zebrafish, and siRNA is still seldom applied in zebrafish embryo-related research.Our aim was to explore the role of pdx-1 in pan-creatic development of zebrafish embryos by using siRNA approach. Microinjection, reverse tran-scriptase-PCR (RT-PCR), in situ hybridization and immunofluorescent staining were used in this re-search, and the morphology of the islet in normal zebrafish embryos, and in those treated with the siRNA specific to pdx-1 (siPDX-1) or siGFP was observed and compared. The expression of pdx-1 was detected in the stages of 1-cell, 2-cell, 4-cell, 8-cell, 16-cell, 16-hour by RT-PCT. The in situ hy-bridization and immunofluorescent staining results showed that siPDX-I disturbed the formation of the islet in zebrafish embryos. Pdx-1 played multiple roles in maintaining the phenotype of the islet during embryogenesis in zebrafish.

  7. High periconceptional protein intake modifies uterine and embryonic relationships increasing early pregnancy losses and embryo growth retardation in sheep.

    Science.gov (United States)

    Meza-Herrera, C A; Ross, T T; Hallford, D M; Hawkins, D E; Gonzalez-Bulnes, A

    2010-08-01

    The effects of supplemented protein level (PL) during the periconceptional period and their interaction with body condition were evaluated in sheep. Multiparous Rambouillet ewes (n = 12) received two PL of rumen undegradable protein (UIP) during a 30-day pre-mating and 15-day post-mating period: low [LPL, 24% crude protein (CP), 14 g UIP and 36 g/CP animal/day] and high [HPL, 44% CP, 30 g UIP and 50 g/CP animal/day]. While ovulation rate (OR) did not differ between treatments (1.6 +/- 0.5, mean +/- SEM), a lower fertility rate, a decreased embryo number and a reduced uterine pH (UpH) was observed in the HPL group (p UpH also had lower conceptus weight (Cwt; p < 0.05, r = 0.65) and conceptuses with lower mass tended to secrete less INF-tau and IGF-1, and the correspondent endometrial explants had a higher basal PGF(2alpha) release. Current study indicates that high protein diets during the periconceptional period in sheep modify uterine and embryonic relationships, increasing early pregnancy losses and inducing embryo growth retardation. Surviving embryos were affected by weight reductions, which could compromise later foetal growth and birth weight. Results evidence the key role of a balanced diet in reproductive success and indicate that the quality and nutrient composition of the maternal diet are essential for an adequate establishment of pregnancy, having paramount effects on the interplay of the embryo and the uterus.

  8. Lack of miRNA misregulation at early pathological stages in Drosophila neurodegenerative disease models

    Directory of Open Access Journals (Sweden)

    Anita eReinhardt

    2012-10-01

    Full Text Available Late onset neurodegenerative diseases represent a major public health concern as the population in many countries ages. Both frequent diseases such as Alzheimer disease (AD, 14% incidence for 80-84 year old Europeans or Parkinson disease (PD, 1.4% prevalence for > 55 years old share, with other low-incidence neurodegenerative pathologies such as spinocerebellar ataxias (SCAs, 0.01% prevalence and frontotemporal lobar degeneration (FTLD, 0.02% prevalence, a lack of efficient treatment in spite of important research efforts. Besides significant progress, studies with animal models have revealed unexpected complexities in the degenerative process, emphasizing a need to better understand the underlying pathological mechanisms. Recently, microRNAs, a class of small regulatory non-coding RNAs, have been implicated in some neurodegenerative diseases. The current data supporting a role of miRNAs in PD, tauopathies, dominant ataxias and FTLD will first be discussed to emphasize the different levels of the pathological processes which may be affected by miRNAs. To investigate a potential involvement of miRNA dysregulation in the early stages of these neurodegenerative diseases we have used Drosophila models for 7 diseases (PD, 3 FTLD, 3 dominant ataxias that recapitulate many features of the human diseases. We performed deep sequencing of head small RNAs after 3 days of pathological protein expression in the fly head neurons. We found no evidence for a statistically significant difference in miRNA expression in this early stage of the pathological process. In addition, we could not identify small non coding CAG repeat RNAs (sCAG in polyQ disease models. Thus our data suggest that transcriptional deregulation of miRNAs or sCAG is unlikely to play a significant role in the initial stages of neurodegenerative diseases.

  9. Dynamic Properties of Electrotonic Coupling between Cells of Early Xenopus Embryos.

    Science.gov (United States)

    Dicaprio, R A; French, A S; Sanders, E J

    1974-05-01

    Frequency response functions were measured between the cells of Xenopus laevis embryos during the first two cleavage stages. Linear systems theory was then used to produce electronic models which account for the electrical behavior of the systems. Coupling between the cells may be explained by models which have simple resistive elements joining each cell to its neighbors. The vitelline, or fertilization, membrane which surrounds the embryos has no detectable resistance to the passage of electric current. The electrical properties of the four-cell embryo can only be explained by the existence of individual junctions linking each pair of cells. This arrangement suggests that electrotonic coupling is important in the development of the embryos, at least until the four-cell stage.

  10. Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos

    OpenAIRE

    SAKURAI, Nobuyuki; Takahashi, Kazuki; EMURA, Natsuko; HASHIZUME, Tsutomu; SAWAI, Ken

    2016-01-01

    Transcription factor TEA domain family transcription factor 4 (Tead4) is one of the key factors involved in the differentiation of the trophectoderm (TE) in murine embryos. However, knowledge on the roles of TEAD4 in preimplantation development during bovine embryos is currently limited. This study examined the transcript and protein expression patterns of TEAD4 and attempted to elucidate the functions of TEAD4 during bovine preimplantation development using RNA interference. TEAD4 mRNA was f...

  11. Three-Dimensional High-Frequency Ultrasonography for Early Detection and Characterization of Embryo Implantation Site Development in the Mouse

    Science.gov (United States)

    Peavey, Mary C.; Reynolds, Corey L.; Szwarc, Maria M.; Gibbons, William E.; Valdes, Cecilia T.

    2017-01-01

    Ultrasonography is a powerful tool to non-invasively monitor in real time the development of the human fetus in utero. Although genetically engineered mice have served as valuable in vivo models to study both embryo implantation and pregnancy progression, such studies usually require sacrifice of parous mice for subsequent phenotypic analysis. To address this issue, we used three-dimensional (3-D) reconstruction in silico of high-frequency ultrasound (HFUS) imaging data for early detection and characterization of murine embryo implantation sites and their development in utero. With HFUS imaging followed by 3-D reconstruction, we were able to precisely quantify embryo implantation site number and embryonic developmental progression in pregnant C57BL6J/129S mice from as early as 5.5 days post coitus (d.p.c.) through to 9.5 d.p.c. using a VisualSonics Vevo 2100 (MS550S) transducer. In addition to measurements of implantation site number, location, volume and spacing, embryo viability via cardiac activity monitoring was also achieved. A total of 12 dams were imaged with HFUS with approximately 100 embryos examined per embryonic day. For the post-implantation period (5.5 to 8.5 d.p.c.), 3-D reconstruction of the gravid uterus in mesh or solid overlay format enabled visual representation in silico of implantation site location, number, spacing distances, and site volume within each uterine horn. Therefore, this short technical report describes the feasibility of using 3-D HFUS imaging for early detection and analysis of post-implantation events in the pregnant mouse with the ability to longitudinally monitor the development of these early pregnancy events in a non-invasive manner. As genetically engineered mice continue to be used to characterize female reproductive phenotypes, we believe this reliable and non-invasive method to detect, quantify, and characterize early implantation events will prove to be an invaluable investigative tool for the study of female

  12. Acutely altered hemodynamics following venous obstruction in the early chick embryo.

    Science.gov (United States)

    Stekelenburg-de Vos, Sandra; Ursem, Nicolette T C; Hop, Wim C J; Wladimiroff, Juriy W; Gittenberger-de Groot, Adriana C; Poelmann, Robert E

    2003-03-01

    In the venous clip model specific cardiac malformations are induced in the chick embryo by obstructing the right lateral vitelline vein with a microclip. Clipping alters venous return and intracardiac laminar blood flow patterns, with secondary effects on the mechanical load of the embryonic myocardium. We investigated the instantaneous effects of clipping the right lateral vitelline vein on hemodynamics in the stage-17 chick embryo. 32 chick embryos HH 17 were subdivided into venous clipped (N=16) and matched control embryos (N=16). Dorsal aortic blood flow velocity was measured with a 20 MHz pulsed Doppler meter. A time series of eight successive measurements per embryo was made starting just before clipping and ending 5h after clipping. Heart rate, peak systolic velocity, time-averaged velocity, peak blood flow, mean blood flow, peak acceleration and stroke volume were determined. All hemodynamic parameters decreased acutely after venous clipping and only three out of seven parameters (heart rate, time-averaged velocity and mean blood flow) showed a recovery to baseline values during the 5h study period. We conclude that the experimental alteration of venous return has major acute effects on hemodynamics in the chick embryo. These effects may be responsible for the observed cardiac malformations after clipping.

  13. Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos.

    Science.gov (United States)

    Ghiglione, C; Emily-Fenouil, F; Chang, P; Gache, C

    1996-10-01

    The HE gene is the earliest strictly zygotic gene activated during sea urchin embryogenesis. It is transiently expressed in a radially symmetrical domain covering the animal-most two-thirds of the blastula. The border of this domain, which is orthogonal to the primordial animal-vegetal axis, is shifted towards the animal pole in Li+-treated embryos. Exogenous micromeres implanted at the animal pole of whole embryos, animal or vegetal halves do not modify the extent and localization of the HE expression domain. In grafted embryos or animal halves, the Li+ effect is not affected by the presence of ectopic micromeres at the animal pole. A Li+-induced shift of the border, similar to that seen in whole embryos, occurs in embryoids developing from animal halves isolated from 8-cell stage embryos or dissected from unfertilised eggs. Therefore, the spatial restriction of the HE gene is not controlled by the inductive cascade emanating from the micromeres and the patterning along the AV-axis revealed by Li+ does not require interactions between cells from the animal and vegetal halves. This suggests that maternal primary patterning in the sea urchin embryo is not limited to a small vegetal center but extends along the entire AV axis.

  14. Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis.

    Science.gov (United States)

    Ji, Qianqian; Zhu, Kongju; Liu, Zhiguo; Song, Zhenwei; Huang, Yuankai; Zhao, Haijing; Chen, Yaosheng; He, Zuyong; Mo, Delin; Cong, Peiqing

    2013-03-15

    Trichostain A (TSA), an inhibitor of histone deacetylases, improved developmental competence of SCNT embryos in many species, apparently by improved epigenetic reprogramming. The objective of the present study was to determine the effects of TSA-induced apoptosis in cloned porcine embryos. At various developmental stages, a comet assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining were used to detect apoptosis, and real-time polymerase chain reaction was used to assess expression of genes related to apoptosis and pluripotency. In this study, TSA significantly induced apoptosis (in a dose-dependent manner) at the one-, two-, and four-cell stages. However, in blastocyst stage embryos, TSA decreased the apoptotic index (P < 0.05). Expression levels of Caspase 3 were higher in TSA-treated versus control embryos at the two-cell stage (not statistically significant). The expression ratio of antiapoptotic Bcl-xl gene to proapoptotic Bax gene, an indicator of antiapoptotic potential, was higher in TSA-treated groups at the one-, two-, and four-cell and blastocyst stages. Furthermore, expression levels of pluripotency-related genes, namely, Oct4 and Nanog, were elevated at the morula stage (P < 0.05) in TSA treatment groups. We concluded that inducing apoptosis might be a mechanism by which TSA promotes development of reconstructed embryos. At the initial stage of apoptosis induction, abnormal cells were removed, thereby enhancing proliferation of healthy cells and improving embryo quality.

  15. Immunocytochemical studies of the interactions of cadherins and catenins in the early Xenopus embryo.

    Science.gov (United States)

    Kurth, T; Fesenko, I V; Schneider, S; Münchberg, F E; Joos, T O; Spieker, T P; Hausen, P

    1999-06-01

    Linkage of cadherins to the cytoskeleton is crucial for their adhesive function. Since alpha- and beta-catenin play a key role in this linkage, these proteins are possible targets for processes that control cell-cell adhesion. To achieve a better understanding of the regulation of cell-cell adhesion in embryonic morphogenesis, we used immunohistology to investigate how in Xenopus blastomeres catenins respond to disturbances in the expression of maternal cadherins. Overexpression of myc-tagged maternal cadherin leads to a proportionate increase of the level of beta-catenin. The two proteins colocalize in the endoplasmic reticulum, in cytoplasmic vesicles, and along the cell membrane, indicating that the beta-catenin binds to overexpressed cadherin early in its passage to the plasma membrane. Expression of cadherin is essential for the stable presence of beta-catenin, as depletion from maternal cadherin mRNA leads to a complete loss of beta-catenin from the blastomeres. alpha-Catenin behaves differently. Overexpression of cadherin leaves the amount and localization of alpha-catenin largely unaffected, and additional cadherin inserts itself into the membrane without a proportionate rise in the level of membrane-bound alpha-catenin. However, cadherin mRNA depletion leads to a redistribution of alpha-catenin from the membrane to the cytoplasm. Thus, cadherin is required to localize alpha-catenin to the membrane, but the amount of alpha-catenin along the membrane seems to be restricted to a certain level which cannot be exceeded. The relevance of these observations for the regulation of cadherin-mediated cell adhesion in the Xenopus embryo is discussed. Additionally, we demonstrate that plakoglobin, like beta-catenin an armadillo repeat protein, shows neither accumulation after overexpression nor colocalization with the overexpressed cadherin.

  16. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a "fail-safe" mechanism of early embryogenesis

    Institute of Scientific and Technical Information of China (English)

    MASATAKE KAI; CHIKARA KAITO; HIROSHI FUKAMACHI; TAKAYASU HIGO; EIJI TA-KAYAMA; HIROSHI HARA; YOSHIKAZU OHYA; KAZUEI IGARASHI; KOICHIRO SHIOKAWA

    2003-01-01

    In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due toactivation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animalside blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of theapoptotic reaction. In the injection at 4- and 8-cell stages, a considerable number of embryos developed intotadpoles and in the injection at 16- and 32-cell stages, all the embryos became tadpoles, although tadpolesobtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cellsof the blastomere injected with SAMDC mRNA at 8- to 32-cell stages are confined within the blastocoel atthe early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continueddevelopment of the injected embryos. These results indicate that cells overexpressed with SAMDC undergoapoptotic cell death consistently at the early gastrula stage, irrespective of the timing of the mRNA injection.We assume that apoptosis is executed in Xenopus early gastrulae as a "fail-safe" mechanism to eliminatephysiologically-severely damaged cells to save the rest of the embryo.

  17. Expression of genes involved in the embryo-maternal interaction in the early-pregnant canine uterus.

    Science.gov (United States)

    Kautz, E; Gram, A; Aslan, S; Ay, S S; Selçuk, M; Kanca, H; Koldaş, E; Akal, E; Karakaş, K; Findik, M; Boos, A; Kowalewski, M P

    2014-05-01

    Although there is no acute luteolytic mechanism in the absence of pregnancy in the bitch, a precise and well-timed embryo-maternal interaction seems to be required for the initiation and maintenance of gestation. As only limited information is available about these processes in dogs, in this study, the uterine expression of possible decidualization markers was investigated during the pre-implantation stage (days 10-12) of pregnancy and in the corresponding nonpregnant controls. In addition, the expression of selected genes associated with blastocyst development and/or implantation was investigated in embryos flushed from the uteri of bitches used for this study (unhatched and hatched blastocysts). There was an upregulated expression of prolactin receptor (PRLR) and IGF2 observed pre-implantation. The expression of PRL and of IGF1 was unaffected, and neither was the expression of progesterone- or estrogen receptor β (ESR2). In contrast, (ESR1) levels were elevated during early pregnancy. Prostaglandin (PG)-system revealed upregulated expression of PGE2-synthase and its receptors, PTGER2 and PTGER4, and of the PG-transporter. Elevated levels of AKR1C3 mRNA, but not the protein itself, were noted. Expression of prostaglandin-endoperoxide synthase 2 (PTGS2) remained unaffected. Most of the transcripts were predominantly localized to the uterine epithelial cells, myometrium and, to a lesser extent, to the uterine stroma. PGES (PTGES) mRNA was abundantly expressed in both groups of embryos and appeared higher in the hatched ones. The expression level of IGF2 mRNA appeared higher than that of IGF1 mRNA in hatched embryos. In unhatched embryos IGF1, IGF2, and PTGS2 mRNA levels were below the detection limit.

  18. ABA inhibits embryo cell expansion and early cell division events during coffee (Coffea arabica 'Rubi') seed germination.

    Science.gov (United States)

    Da Silva, E A Amaral; Toorop, Peter E; Van Lammeren, André A M; Hilhorst, Henk W M

    2008-09-01

    Coffee seed germination represents an interplay between the embryo and the surrounding endosperm. A sequence of events in both parts of the seed determines whether germination will be successful or not. Following previous studies, the aim here was to further characterize the morphology of endosperm degradation and embryo growth with respect to morphology and cell cycle, and the influence of abscisic acid on these processes. Growth of cells in a fixed region of the axis was quantified from light micrographs. Cell cycle events were measured by flow cytometry and by immunocytochemistry, using antibodies against beta-tubulin. Aspects of the endosperm were visualized by light and scanning electron microscopy. The embryonic axis cells grew initially by isodiametric expansion. This event coincided with reorientation and increase in abundance of microtubules and with accumulation of beta-tubulin. Radicle protrusion was characterized by a shift from isodiametric expansion to elongation of radicle cells and further accumulation of beta-tubulin. Early cell division events started prior to radicle protrusion. Abscisic acid decreased the abundance of microtubules and inhibited the growth of the embryo cells, the reorganization of the microtubules, DNA replication in the embryonic axis, the formation of a protuberance and the completion of germination. The endosperm cap cells had smaller and thinner cell walls than the rest of the endosperm. Cells in the endosperm cap displayed compression followed by loss of cell integrity and the appearance of a protuberance prior to radicle protrusion. Coffee seed germination is the result of isodiametric growth of the embryo followed by elongation, at the expense of integrity of endosperm cap cells. The cell cycle, including cell division, is initiated prior to radicle protrusion. ABA inhibits expansion of the embryo, and hence subsequent events, including germination.

  19. Early life sensory ability-ventilatory responses of thornback ray embryos (Raja clavata) to predator-type electric fields.

    Science.gov (United States)

    Ball, Rachel Emma; Oliver, Matthew Kenneth; Gill, Andrew Bruce

    2016-07-01

    Predator avoidance is fundamental for survival and it can be particularly challenging for prey animals if physical movement away from a predatory threat is restricted. Many sharks and rays begin life within an egg capsule that is attached to the sea bed. The vulnerability of this sedentary life stage is exacerbated in skates (Rajidae) as the compulsory ventilatory activity of embryos makes them conspicuous to potential predators. Embryos can reduce this risk by mediating ventilatory activity if they detect the presence of a predator using an acute electrosense. To determine how early in embryonic life predator elicited behavioral responses can occur, the reactions of three different age groups (1/3 developed, 2/3 developed, and near hatching) of embryonic thornback rays Raja clavata were tested using predator-type electric field stimuli. Egg capsules were exposed to continuous or intermittent stimuli in order to assess varying predator-type encounter scenarios on the ventilatory behavior of different developmental stages. All embryos reacted with a "freeze response" following initial electric field (E-field) exposure, ceasing ventilatory behavior in response to predator presence, demonstrating electroreceptive functionality for the first time at the earliest possible stage in ontogeny. This ability coincided with the onset of egg ventilatory behavior and may represent an effective means to enhance survival. A continuous application of stimuli over time revealed that embryos can adapt their behavior and resume normal activity, whereas when presented intermittently, the E-field resulted in a significant reduction in overall ventilatory activity across all ages. Recovery from stimuli was significantly quicker in older embryos, potentially indicative of the trade-off between avoiding predation and adequate respiration. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 721-729, 2016. © 2015 Wiley Periodicals, Inc.

  20. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.

    Science.gov (United States)

    Martin, G R

    1981-12-01

    This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.

  1. High-sensitivity Mass Spectrometry for Probing Gene Translation in Single Embryonic Cells in the Early Frog (Xenopus Embryo

    Directory of Open Access Journals (Sweden)

    Camille Lombard-Banek

    2016-10-01

    Full Text Available Direct measurement of protein expression with single-cell resolution promises to deepen the understanding of basic molecular processes during normal and impaired development. High-resolution mass spectrometry provides detailed coverage of the proteomic composition of large numbers of cells. Here we discuss recent mass spectrometry developments based on single-cell capillary electrophoresis that extend discovery proteomics to sufficient sensitivity to enable the measurement of proteins in single cells. The single-cell mass spectrometry system is used to detect a large number of proteins in single embryonic cells in blastomeres in the 16-cell embryo of the South African clawed frog (Xenopus laevis that give rise to distinct tissue types. Single-cell measurements of protein expression provide complementary information on gene transcription during early development of the vertebrate embryo, raising a potential to understand how differential gene expression coordinates normal cell heterogeneity during development.

  2. The potential role of As-sumo-1 in the embryonic diapause process and early embryo development of Artemia sinica.

    Science.gov (United States)

    Chu, Bing; Yao, Feng; Cheng, Cheng; Wu, Yang; Mei, Yanli; Li, Xuejie; Liu, Yan; Wang, Peisheng; Hou, Lin; Zou, Xiangyang

    2014-01-01

    During embryonic development of Artemia sinica, environmental stresses induce the embryo diapause phenomenon, required to resist apoptosis and regulate cell cycle activity. The small ubiquitin-related modifier-1 (SUMO), a reversible post-translational protein modifier, plays an important role in embryo development. SUMO regulates multiple cellular processes, including development and other biological processes. The molecular mechanism of diapause, diapause termination and the role of As-sumo-1 in this processes and in early embryo development of Artemia sinica still remains unknown. In this study, the complete cDNA sequences of the sumo-1 homolog, sumo ligase homolog, caspase-1 homolog and cyclin B homolog from Artemia sinica were cloned. The mRNA expression patterns of As-sumo-1, sumo ligase, caspase-1, cyclin B and the location of As-sumo-1 were investigated. SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E proteins were analyzed during different developmental stages of the embryo of A. sinica. Small interfering RNA (siRNA) was used to verify the function of sumo-1 in A. sinica. The full-length cDNA of As-sumo-1 was 476 bp, encoding a 92 amino acid protein. The As-caspases-1 cDNA was 966 bp, encoding a 245 amino-acid protein. The As-sumo ligase cDNA was 1556 bp encoding, a 343 amino acid protein, and the cyclin B cDNA was 739 bp, encoding a 133 amino acid protein. The expressions of As-sumo-1, As-caspase-1 and As-cyclin B were highest at the 10 h stage of embryonic development, and As-sumo ligase showed its highest expression at 0 h. The expression of As-SUMO-1 showed no tissue or organ specificity. Western blotting showed high expression of As-SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E at the 10 h stage. The siRNA caused abnormal development of the embryo, with increased malformation and mortality. As-SUMO-1 is a crucial regulation and modification protein resumption of embryonic diapause and early embryo development of A. sinica.

  3. Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II.

    Directory of Open Access Journals (Sweden)

    Shrividhya Srinivasan

    2008-10-01

    Full Text Available Polycomb and trithorax group proteins regulate cellular pluripotency and differentiation by maintaining hereditable states of transcription. Many Polycomb and trithorax group proteins have been implicated in the covalent modification or remodeling of chromatin, but how they interact with each other and the general transcription machinery to regulate transcription is not well understood. The trithorax group protein Kismet-L (KIS-L is a member of the CHD subfamily of chromatin-remodeling factors that plays a global role in transcription by RNA polymerase II (Pol II. Mutations in CHD7, the human counterpart of kis, are associated with CHARGE syndrome, a developmental disorder affecting multiple tissues and organs. To clarify how KIS-L activates gene expression and counteracts Polycomb group silencing, we characterized defects resulting from the loss of KIS-L function in Drosophila. These studies revealed that KIS-L acts downstream of P-TEFb recruitment to stimulate elongation by Pol II. The presence of two chromodomains in KIS-L suggested that its recruitment or function might be regulated by the methylation of histone H3 lysine 4 by the trithorax group proteins ASH1 and TRX. Although we observed significant overlap between the distributions of KIS-L, ASH1, and TRX on polytene chromosomes, KIS-L did not bind methylated histone tails in vitro, and loss of TRX or ASH1 function did not alter the association of KIS-L with chromatin. By contrast, loss of kis function led to a dramatic reduction in the levels of TRX and ASH1 associated with chromatin and was accompanied by increased histone H3 lysine 27 methylation-a modification required for Polycomb group repression. A similar increase in H3 lysine 27 methylation was observed in ash1 and trx mutant larvae. Our findings suggest that KIS-L promotes early elongation and counteracts Polycomb group repression by recruiting the ASH1 and TRX histone methyltransferases to chromatin.

  4. Multiscale diffusion in the mitotic Drosophila melanogaster syncytial blastoderm.

    Science.gov (United States)

    Daniels, Brian R; Rikhy, Richa; Renz, Malte; Dobrowsky, Terrence M; Lippincott-Schwartz, Jennifer

    2012-05-29

    Despite the fundamental importance of diffusion for embryonic morphogen gradient formation in the early Drosophila melanogaster embryo, there remains controversy regarding both the extent and the rate of diffusion of well-characterized morphogens. Furthermore, the recent observation of diffusional "compartmentalization" has suggested that diffusion may in fact be nonideal and mediated by an as-yet-unidentified mechanism. Here, we characterize the effects of the geometry of the early syncytial Drosophila embryo on the effective diffusivity of cytoplasmic proteins. Our results demonstrate that the presence of transient mitotic membrane furrows results in a multiscale diffusion effect that has a significant impact on effective diffusion rates across the embryo. Using a combination of live-cell experiments and computational modeling, we characterize these effects and relate effective bulk diffusion rates to instantaneous diffusion coefficients throughout the syncytial blastoderm nuclear cycle phase of the early embryo. This multiscale effect may be related to the effect of interphase nuclei on effective diffusion, and thus we propose that an as-yet-unidentified role of syncytial membrane furrows is to temporally regulate bulk embryonic diffusion rates to balance the multiscale effect of interphase nuclei, which ultimately stabilizes the shapes of various morphogen gradients.

  5. Maternal hCG concentrations in early IVF pregnancies: associations with number of cells in the Day 2 embryo and oocytes retrieved.

    Science.gov (United States)

    Tanbo, T G; Eskild, A

    2015-12-01

    Do number of cells in the transferred cleavage stage embryo and number of oocytes retrieved for IVF influence maternal hCG concentrations in early pregnancies? Compared with transfer of a 2-cell embryo, transfer of a 4-cell embryo results in higher hCG concentrations on Day 12 after transfer, and more than 20 oocytes retrieved were associated with low hCG concentrations. Maternal hCG concentration in very early pregnancy varies considerably among women, but is likely to be an indicator of time since implantation of the embryo into the endometrium, in addition to number and function of trophoblast cells. We followed 1047 pregnancies after IVF/ICSI from oocyte retrieval until Day 12 after embryo transfer. Women were recruited in Norway during the years 2005-2013. Successful pregnancies after transfer of one single embryo that had been cultured for 2 days were included. Maternal hCG was quantified on Day 12 after embryo transfer by chemiluminescence immunoassay, which measures intact hCG and the free β-hCG chain. Information on a successful pregnancy, defined as birth after >16 weeks, was obtained by linkage to the Medical Birth Registry of Norway. Transfer of a 4-cell embryo resulted in higher maternal hCG concentrations compared with transfer of a 2-cell embryo (134.8 versus 87.8 IU/l, P 20) was associated with low hCG concentrations (P hCG concentrations in early pregnancy. Although embryo transfer was performed at the same time after fertilization, we do not know the exact time of implantation. A further limitation to our study is that the number of pregnancies after transfer of a 2-cell embryo was small (27 cases). Number of cells in the transferred embryo and number of oocytes retrieved may influence the conditions and timing for embryo implantation in different ways and thereby influence maternal hCG concentrations. Such knowledge may be important for interpretation of hCG concentrations in early pregnancy. © The Author 2015. Published by Oxford University

  6. Gradual meiosis-to-mitosis transition in the early mouse embryo.

    Science.gov (United States)

    Courtois, Aurélien; Hiiragi, Takashi

    2012-01-01

    The transition from meiosis to mitosis is a fundamental process to guarantee the successful development of the embryo. In the mouse, the transition includes extensive reorganisation of the division machinery, centrosome establishment and changes in spindle proprieties and characteristic. Recent findings indicate that this transition is gradual and lasts until the late blastocyst stage. In-depth knowledge of the mechanisms underlying the transition would provide new insight into de novo centrosome formation and regulation of spindle size and proprieties. Here, we review recent advances in the understanding of acentrosomal spindle formation, centriole establishment and the meiosis-to-mitosis transition in the mouse pre-implantation embryo.

  7. Polarity and cell division orientation in the cleavage embryo: from worm to human

    Science.gov (United States)

    Ajduk, Anna; Zernicka-Goetz, Magdalena

    2016-01-01

    Cleavage is a period after fertilization, when a 1-cell embryo starts developing into a multicellular organism. Due to a series of mitotic divisions, the large volume of a fertilized egg is divided into numerous smaller, nucleated cells—blastomeres. Embryos of different phyla divide according to different patterns, but molecular mechanism of these early divisions remains surprisingly conserved. In the present paper, we describe how polarity cues, cytoskeleton and cell-to-cell communication interact with each other to regulate orientation of the early embryonic division planes in model animals such as Caenorhabditis elegans, Drosophila and mouse. We focus particularly on the Par pathway and the actin-driven cytoplasmic flows that accompany it. We also describe a unique interplay between Par proteins and the Hippo pathway in cleavage mammalian embryos. Moreover, we discuss the potential meaning of polarity, cytoplasmic dynamics and cell-to-cell communication as quality biomarkers of human embryos. PMID:26660321

  8. Acutely altered hemodynamics following venous obstruction in the early chick embryo

    NARCIS (Netherlands)

    S. Stekelenburg-de Vos (Sandra); N.T.C. Ursem (Nicolette); W.C.J. Hop (Wim); J.W. Wladimiroff (Juriy); A.C. Gittenberger-de Groot (Adriana); R.E. Poelmann (Robert)

    2003-01-01

    textabstractIn the venous clip model specific cardiac malformations are induced in the chick embryo by obstructing the right lateral vitelline vein with a microclip. Clipping alters venous return and intracardiac laminar blood flow patterns, with secondary effects on the mechanical

  9. Pathogenic variant in NLRP7 (19q13.42) associated with recurrent gestational trophoblastic disease: Data from early embryo development observed during in vitro fertilization.

    Science.gov (United States)

    Sills, E Scott; Obregon-Tito, Alexandra J; Gao, Harry; McWilliams, Thomas K; Gordon, Anthony T; Adams, Catharine A; Slim, Rima

    2017-03-01

    To describe in vitro development of human embryos derived from an individual with a homozygous pathogenic variant in NLRP7 (19q13.42) and recurrent hydatidiform mole (HM), an autosomal recessive condition thought to occur secondary to an oocyte defect. A patient with five consecutive HM pregnancies was genomically evaluated via next generation sequencing followed by controlled ovarian hyperstimulation, in vitro fertilization (IVF) with intracytoplasmic sperm injection, embryo culture, and preimplantation genetic screening. Findings in NLRP7 were recorded and embryo culture and biopsy data were tabulated as a function of parental origin for any identified ploidy error. The patient was found to have a pathogenic variant in NLRP7 (c.2810+2T>G) in a homozygous state. Fifteen oocytes were retrieved and 10 embryos were available after fertilization via intracytoplasmic sperm injection. Developmental arrest was noted for all 10 embryos after 144 hours in culture, thus no transfer was possible. These non-viable embryos were evaluated by karyomapping and all were diploid biparental; two were euploid and eight had various aneuploidies all of maternal origin. This is the first report of early human embryo development from a patient with any NLRP7 mutation. The pathogenic variant identified here resulted in global developmental arrest at or before blastocyst stage. Standard IVF should therefore be discouraged for such patients, who instead need to consider oocyte (or embryo) donation with IVF as preferred clinical methods to treat infertility.

  10. Contributions to the tooth morphology in early embryos of three species of hammerhead sharks (Elasmobranchii: Sphyrnidae) and their evolutionary implications.

    Science.gov (United States)

    Mello, Waldiney; Brito, Paulo Marques Machado

    2013-09-01

    The tooth types in the embryos of the hammerhead sharks Sphyrna tiburo, Sphyrna tudes and Eusphyra blochii are here described in labial and lingual views, and, in some cases, in additional views. The presence of cusplets was observed in the anterior teeth of S. tiburo and S. tudes, which is secondarily lost after early embryonic stages. Many aligned root foramina were detected in the sphyrnids, which, as the cusplets, are shared by many phylogenetic-related carcharhinids. Other anatomic features, related to the root and central cusp, are presented for the first time. Such characters represent the first step to compare the teeth of extant and fossil species.

  11. Location and expression of neurotrophin-3 and its receptor in the brain of human embryos during early development

    Institute of Scientific and Technical Information of China (English)

    Jian Li; Yongjie Mi; Dajun Ma

    2008-01-01

    BACKGROUND: Cell culture in vitro trials have demonstrated that neurotrophin-3 (NT-3) can enhance the survival of sensory neurons and sympathetic neurons, and can also support embryo-derived motor neurons.This effect is dependent on nerve growth factor on the surface of cells. Understanding the role of NT-3 and its receptor in the early development of human embryonic brains will help to investigate the correlation between early survival of nerve cells and the microenvironment of neural regeneration.OBJECTIVE: To observe the proliferation of cerebral neurons in the development of human embryonic brain, and to investigate the location, expression and distribution of NT-3 and its receptor TrkC during human brain development.DESIGN, TIME AND SETTING: An observation study on cells was performed in the Department of Human Anatomy, Histology and Embryology, Chengdu Medical College in September 2007.MATERIALS: Fifteen specimens of fresh human embryo, aged 6 weeks, were used in this study.METHODS: The proliferation of cerebral neurons was detected using proliferating cell nuclear antigen, and the immunocytochemistry ABC technique was applied to observe the location, expression and distribution of NT-3 and its receptor TrkC in the brain of the human embryo.MAIN OUTCOME MEASURES: Location, expression and distribution of NT-3 and its receptor in the brain of the human embryo.RESULTS: In the early period (aged 6 weeks) of human embryonic development, proliferating cell nuclear antigen-positive reactive substances were mainly observed in the nucleus of the forebrain ventricular zone and subventricular zone, and the intensity was stronger in the subventricular zone than the forebrain ventricle.NT-3 positive reactive substance was mainly distributed in the cytoblastema of the forebrain neuroepithelial layer and nerve cell process, while TrkC was mainly distributed in the cell membrane of the forebrain ventricular zone and subventricular zone. During embryonic development, NT-3 and

  12. Regulation of the expression of proto-oncogenes by autocrine embryotropins in the early mouse embryo.

    Science.gov (United States)

    Jin, Xing Liang; O'Neill, C

    2011-06-01

    Autocrine embryotropins act as survival signals for the preimplantation embryo. In this study we examined the role of Paf in the transcription of the key proto-oncogenes Bcl2 and Fos. Transcripts were detected in oocytes and some cohorts of zygotes but not in cohorts of 2-cell, 8-cell, and blastocyst stage embryos. Immunolocalization of BCL2 and FOS showed little staining in oocytes and zygotes but increased staining in the embryo from the 2-cell to blastocyst stage. Paf (37 nM) treatment of 2-cell embryos caused an alpha-amanitin (26 μM)-sensitive increase in Bcl2 and Fos transcripts 20 min after treatment that subsided by 40 min. This increase was blocked by inhibition of calcium (by BAPTA-AM) or phosphatidylinositol-3-kinase signaling (by LY294002). Paf challenge also caused increased staining of BCL2 and FOS. Increased staining of FOS required new protein synthesis that had a half-life of 2-4 h after Paf challenge. Only a small proportion (∼12%) of individual 2-cell embryos collected from the reproductive tract had detectable Bcl2 and Fos. This dichotomous pattern of transcript expression is consistent with the known periodic actions of Paf (which has a periodicity of ∼90 min) and the relatively short half-life of the resulting transcripts. A BCL2 antagonist (HA14-1) caused a dose-dependent decrease in the capacity of cultured zygotes to develop to morphological blastocysts, which was partially reversed by the simultaneous addition of Paf to medium. The results show that Paf induces periodic transient transcriptions of key proto-oncogenes that result in the persistent presence of the resulting proteins in the preimplantation phase of development.

  13. Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway.

    Science.gov (United States)

    Formstone, Caroline J; Mason, Ivor

    2005-06-15

    The seven-transmembrane protocadherin, Flamingo, functions in a number of processes during Drosophila development, including planar cell polarity (PCP). To assess the role(s) of Flamingo1/Celsr1 (Fmi1) during vertebrate embryogenesis we have exploited the zebrafish system, identifying two Fmi1 orthologues (zFmi1a and zFmi1b) and employing morpholinos to induce mis-splicing of zebrafish fmi1 mRNAs, to both imitate mutations identified in Drosophila flamingo and generate novel aberrant Flamingo proteins. We demonstrate that in the zebrafish gastrula, Fmi1 proteins function in concert with each other and with the vertebrate PCP proteins, Wnt11 and Strabismus, to mediate convergence and extension during gastrulation, without altering early dorso-ventral patterning. We show that zebrafish Fmi1a promotes extension of the entire antero-posterior axis of the zebrafish gastrula including prechordal plate and ventral diencephalic precursors. However, while we show that control over axial extension is autonomous, we find that Fmi1a is not required within lateral cells undergoing dorsal convergence.

  14. Isolation of Drosophila egg chambers for imaging.

    Science.gov (United States)

    Parton, Richard M; Vallés, Ana Maria; Dobbie, Ian M; Davis, Ilan

    2010-04-01

    The fruit fly Drosophila melanogaster is an important model for basic research into the molecular mechanisms underlying cell function and development, as well as a major biomedical research tool. A significant advantage of Drosophila is the ability to apply live cell imaging to a variety of living tissues that can be dissected and imaged in vivo, ex vivo, or in vitro. Drosophila egg chambers, for example, have proven to be a useful model system for studying border cell migration, Golgi unit transport, the rapid movement of mRNA and protein particles, and the role of microtubules in meiosis and oocyte differentiation. A crucial first step before imaging is preparation of the experimental material to ensure physiological relevance and to achieve the best conditions for image quality. Early- to mid-stage egg chambers cannot be mounted in an aqueous-based medium, because this causes a change in microtubule organization and follicle cell morphology. Such egg chambers survive better in Halocarbon oil, which allows free diffusion of oxygen, has low viscosity, and thus prevents dehydration and hypoxia. With a refractive index similar to glycerol, Halocarbon oil also has good optical properties for imaging. It also provides a good environment for injection and is particularly useful for long-term imaging of embryos. However, unlike with aqueous solutions, changes in the medium are not possible. This protocol describes the isolation of Drosophila egg chambers.

  15. Use of Early Ripening Cultivars to Avoid Infestation and Mass Trapping to Manage Drosophila suzukii (Diptera: Drosophilidae) in Vaccinium corymbosum (Ericales: Ericaceae).

    Science.gov (United States)

    Hampton, Emily; Koski, Carissa; Barsoian, Olivia; Faubert, Heather; Cowles, Richard S; Alm, Steven R

    2014-10-01

    Use of early ripening highbush blueberry cultivars to avoid infestation and mass trapping were evaluated for managing spotted wing drosophila, Drosophila suzukii (Matsumura). Fourteen highbush blueberry cultivars were sampled for spotted wing drosophila infestation. Most 'Earliblue', 'Bluetta', and 'Collins' fruit were harvested before spotted wing drosophila oviposition commenced, and so escaped injury. Most fruit from 'Bluejay', 'Blueray', and 'Bluehaven' were also harvested before the first week of August, after which spotted wing drosophila activity led to high levels of blueberry infestation. In a separate experiment, damage to cultivars was related to the week in which fruit were harvested, with greater damage to fruit observed as the season progressed. Attractant traps placed within blueberry bushes increased nearby berry infestation by 5%, irrespective of cultivar and harvest date. The significant linear reduction in infestation with increasing distance from the attractant trap suggests that traps are influencing fly behavior to at least 5.5 m. Insecticides applied to the exterior of traps, compared with untreated traps, revealed that only 10-30% of flies visiting traps enter the traps and drown. Low trap efficiency may jeopardize surrounding fruits by increasing local spotted wing drosophila activity. To protect crops, traps for mass trapping should be placed in a perimeter outside fruit fields and insecticides need to be applied to the surface of traps or on nearby fruit to function as an attract-and-kill strategy. © 2014 Entomological Society of America.

  16. 5Alpha-Reduced Steroids Are Major Metabolites in the Early Equine Embryo Proper and Its Membranes.

    Science.gov (United States)

    Raeside, James I; Christie, Heather L; Betteridge, Keith J

    2015-09-01

    Steroid production and metabolism by early conceptuses are very important for the establishment and maintenance of pregnancy in horses. Our earlier work suggested the possible formation of 5alpha-reduced steroids in equine conceptuses. We have now demonstrated the formation of 5alpha-reduced metabolites of androstenedione, testosterone, and progesterone by the embryo and its membranes. A total of 44 conceptuses were collected from 26 mares between 20 and 31 days of pregnancy. Tissues from the embryo proper and from the separated components of the conceptus (bilaminar and trilaminar trophoblast, allantois) were incubated with tritium-labeled substrates. 5Alpha-reduced metabolites (5alpha-dihydro- and 3beta,5alpha-tetrahydro- steroids) as radiolabeled products were identified from a series of chromatographic steps using four solvent systems for high-performance liquid chromatography. Use of a 5alpha-reductase inhibitor confirmed the metabolites were indeed 5alpha-reduced steroids. For the embryo, the only products from androstenedione were 5alpha-dihydroandrostenedione and 3beta,5alpha-tetrahydroandrostenedione, with no evidence of more polar metabolites; there was some 3beta,5alpha-tetrahydrotestosterone but no 5alpha-dihydrotestosterone from testosterone, and formation of androstenedione was followed by the production of 5alpha-dihydroandrostenedione and 3beta,5alpha-tetrahydroandrostenedione. The major 5alpha-reduced product from progesterone was 3beta,5alpha-tetrahydroprogesterone, with lesser amounts of 5alpha-dihydroprogesterone. For the membranes, reductions to tetrahydro, 5alpha-reduced steroids were prominent in most instances, but also present were considerable amounts of products more polar than the substrates. The well-recognized activity of some 5alpha-reduced steroids--for example, 5alpha-dihydrotestosterone in male sexual differentiation--provokes interest in their even earlier appearance, as seen in this study, and suggests a possible role for them in

  17. Embryos of robertsonian translocation carriers exhibit a mitotic interchromosomal effect that enhances genetic instability during early development.

    Directory of Open Access Journals (Sweden)

    Samer Alfarawati

    Full Text Available Balanced chromosomal rearrangements represent one of the most common forms of genetic abnormality affecting approximately 1 in every 500 (0.2% individuals. Difficulties processing the abnormal chromosomes during meiosis lead to an elevated risk of chromosomally abnormal gametes, resulting in high rates of miscarriage and/or children with congenital abnormalities. It has also been suggested that the presence of chromosome rearrangements may also cause an increase in aneuploidy affecting structurally normal chromosomes, due to disruption of chromosome alignment on the spindle or disturbance of other factors related to meiotic chromosome segregation. The existence of such a phenomenon (an inter-chromosomal effect--ICE remains controversial, with different studies presenting contradictory data. The current investigation aimed to demonstrate conclusively whether an ICE truly exists. For this purpose a comprehensive chromosome screening technique, optimized for analysis of minute amounts of tissue, was applied to a unique collection of samples consisting of 283 oocytes and early embryos derived from 44 patients carrying chromosome rearrangements. A further 5,078 oocytes and embryos, derived from chromosomally normal individuals of identical age, provided a robust control group for comparative analysis. A highly significant (P = 0.0002 increase in the rate of malsegregation affecting structurally normal chromosomes was observed in association with Robertsonian translocations. Surprisingly, the ICE was clearly detected in early embryos from female carriers, but not in oocytes, indicating the possibility of mitotic rather than the previously suggested meiotic origin. These findings have implications for our understanding of genetic stability during preimplantation development and are of clinical relevance for patients carrying a Robertsonian translocation. The results are also pertinent to other situations when cellular mechanisms for maintaining

  18. Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development.

    Science.gov (United States)

    Wang, Lu; Lu, Angeleem; Zhou, Hong-Xia; Sun, Ran; Zhao, Jie; Zhou, Cheng-Jie; Shen, Jiang-Peng; Wu, Sha-Na; Liang, Cheng-Guang

    2013-01-01

    Casein kinase I alpha (CK1α) is a member of serine/threonine protein kinase, generally present in all eukaryotes. In mammals, CK1α regulates the transition from interphase to metaphase in mitosis. However, little is known about its role in meiosis. Here we examined Ck1α mRNA and protein expression, as well as its subcellular localization in mouse oocytes from germinal vesicle to the late 1-cell stage. Our results showed that the expression level of CK1α was increased in metaphase. Immunostaining results showed that CK1α colocalized with condensed chromosomes during oocyte meiotic maturation and early embryo development. We used the loss-of-function approach by employing CK1α specific morpholino injection to block the function of CK1α. This functional blocking leads to failure of polar body 1 (PB1) extrusion, chromosome misalignment and MII plate incrassation. We further found that D4476, a specific and efficient CK1 inhibitor, decreased the rate of PB1 extrusion. Moreover, D4476 resulted in giant polar body extrusion, oocyte pro-MI arrest, chromosome congression failure and impairment of embryo developmental potential. In addition, we employed pyrvinium pamoate (PP), an allosteric activator of CK1α, to enhance CK1α activity in oocytes. Supplementation of PP induced oocyte meiotic maturation failure, severe congression abnormalities and misalignment of chromosomes. Taken together, our study for the first time demonstrates that CK1α is required for chromosome alignment and segregation during oocyte meiotic maturation and early embryo development.

  19. Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development.

    Directory of Open Access Journals (Sweden)

    Lu Wang

    Full Text Available Casein kinase I alpha (CK1α is a member of serine/threonine protein kinase, generally present in all eukaryotes. In mammals, CK1α regulates the transition from interphase to metaphase in mitosis. However, little is known about its role in meiosis. Here we examined Ck1α mRNA and protein expression, as well as its subcellular localization in mouse oocytes from germinal vesicle to the late 1-cell stage. Our results showed that the expression level of CK1α was increased in metaphase. Immunostaining results showed that CK1α colocalized with condensed chromosomes during oocyte meiotic maturation and early embryo development. We used the loss-of-function approach by employing CK1α specific morpholino injection to block the function of CK1α. This functional blocking leads to failure of polar body 1 (PB1 extrusion, chromosome misalignment and MII plate incrassation. We further found that D4476, a specific and efficient CK1 inhibitor, decreased the rate of PB1 extrusion. Moreover, D4476 resulted in giant polar body extrusion, oocyte pro-MI arrest, chromosome congression failure and impairment of embryo developmental potential. In addition, we employed pyrvinium pamoate (PP, an allosteric activator of CK1α, to enhance CK1α activity in oocytes. Supplementation of PP induced oocyte meiotic maturation failure, severe congression abnormalities and misalignment of chromosomes. Taken together, our study for the first time demonstrates that CK1α is required for chromosome alignment and segregation during oocyte meiotic maturation and early embryo development.

  20. Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content.

    Science.gov (United States)

    Sun, Liangliang; Dubiak, Kyle M; Peuchen, Elizabeth H; Zhang, Zhenbin; Zhu, Guijie; Huber, Paul W; Dovichi, Norman J

    2016-07-05

    Single cell analysis is required to understand cellular heterogeneity in biological systems. We propose that single cells (blastomeres) isolated from early stage invertebrate, amphibian, or fish embryos are ideal model systems for the development of technologies for single cell analysis. For these embryos, although cell cleavage is not exactly symmetric, the content per blastomere decreases roughly by half with each cell division, creating a geometric progression in cellular content. This progression forms a ladder of single-cell targets for the development of successively higher sensitivity instruments. In this manuscript, we performed bottom-up proteomics on single blastomeres isolated by microdissection from 2-, 4-, 8-, 16-, 32-, and 50-cell Xenopus laevis (African clawed frog) embryos. Over 1 400 protein groups were identified in single-run reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry from single balstomeres isolated from a 16-cell embryo. When the mass of yolk-free proteins in single blastomeres decreased from ∼0.8 μg (16-cell embryo) to ∼0.2 μg (50-cell embryo), the number of protein group identifications declined from 1 466 to 644. Around 800 protein groups were quantified across four blastomeres isolated from a 16-cell embryo. By comparing the protein expression among different blastomeres, we observed that the blastomere-to-blastomere heterogeneity in 8-, 16-, 32-, and 50-cell embryos increases with development stage, presumably due to cellular differentiation. These results suggest that comprehensive quantitative proteomics on single blastomeres isolated from these early stage embryos can provide valuable insights into cellular differentiation and organ development.

  1. Transgenic quail production by microinjection of lentiviral vector into the early embryo blood vessels.

    Directory of Open Access Journals (Sweden)

    Zifu Zhang

    Full Text Available Several strategies have been used to generate transgenic birds. The most successful method so far has been the injection of lentiviral vectors into the subgerminal cavity of a newly laid egg. We report here a new, easy and effective way to produce transgenic quails through direct injection of a lentiviral vector, containing an enhanced-green fluorescent protein (eGFP transgene, into the blood vessels of quail embryos at Hamburger-Hamilton stage 13-15 (HH13-15. A total of 80 embryos were injected and 48 G0 chimeras (60% were hatched. Most injected embryo organs and tissues of hatched quails were positive for eGFP. In five out of 21 mature G0 male quails, the semen was eGFP-positive, as detected by polymerase chain reaction (PCR, indicating transgenic germ line chimeras. Testcross and genetic analyses revealed that the G0 quail produced transgenic G1 offspring; of 46 G1 hatchlings, 6 were transgenic (6/46, 13.0%. We also compared this new method with the conventional transgenesis using stage X subgerminal cavity injection. Total 240 quail embryos were injected by subgerminal cavity injection, of which 34 (14.1% were hatched, significantly lower than the new method. From these hatched quails semen samples were collected from 19 sexually matured males and tested for the transgene by PCR. The transgene was present in three G0 male quails and only 4/236 G1 offspring (1.7% were transgenic. In conclusion, we developed a novel bird transgenic method by injection of lentiviral vector into embryonic blood vessel at HH 13-15 stage, which result in significant higher transgenic efficiency than the conventional subgerminal cavity injection.

  2. Transgenic quail production by microinjection of lentiviral vector into the early embryo blood vessels.

    Science.gov (United States)

    Zhang, Zifu; Sun, Peng; Yu, Fuxian; Yan, Li; Yuan, Fang; Zhang, Wenxin; Wang, Tao; Wan, Zhiyi; Shao, Qiang; Li, Zandong

    2012-01-01

    Several strategies have been used to generate transgenic birds. The most successful method so far has been the injection of lentiviral vectors into the subgerminal cavity of a newly laid egg. We report here a new, easy and effective way to produce transgenic quails through direct injection of a lentiviral vector, containing an enhanced-green fluorescent protein (eGFP) transgene, into the blood vessels of quail embryos at Hamburger-Hamilton stage 13-15 (HH13-15). A total of 80 embryos were injected and 48 G0 chimeras (60%) were hatched. Most injected embryo organs and tissues of hatched quails were positive for eGFP. In five out of 21 mature G0 male quails, the semen was eGFP-positive, as detected by polymerase chain reaction (PCR), indicating transgenic germ line chimeras. Testcross and genetic analyses revealed that the G0 quail produced transgenic G1 offspring; of 46 G1 hatchlings, 6 were transgenic (6/46, 13.0%). We also compared this new method with the conventional transgenesis using stage X subgerminal cavity injection. Total 240 quail embryos were injected by subgerminal cavity injection, of which 34 (14.1%) were hatched, significantly lower than the new method. From these hatched quails semen samples were collected from 19 sexually matured males and tested for the transgene by PCR. The transgene was present in three G0 male quails and only 4/236 G1 offspring (1.7%) were transgenic. In conclusion, we developed a novel bird transgenic method by injection of lentiviral vector into embryonic blood vessel at HH 13-15 stage, which result in significant higher transgenic efficiency than the conventional subgerminal cavity injection.

  3. Effects of rat cytomegalovirus on the nervous system of the early rat embryo.

    Science.gov (United States)

    Sun, Xiuning; Guan, YingJun; Li, Fengjie; Li, Xutong; Wang, Xiaowen; Guan, Zhiyu; Sheng, Kai; Yu, Li; Liu, Zhijun

    2012-08-01

    The purpose of the study was to investigate the impact of rat cytomegalovirus (RCMV) infection on the development of the nervous system in rat embryos, and to evaluate the involvement of Wnt signaling pathway key molecules and the downstream gene neurogenin 1 (Ngn1) in RCMV infected neural stem cells (NSCs). Infection and control groups were established, each containing 20 pregnant Wistar rats. Rats in the infection group were inoculated with RCMV by intraperitoneal injection on the first day of pregnancy. Rat E20 embryos were taken to evaluate the teratogenic rate. NSCs were isolated from E13 embryos, and maintained in vitro. We found: 1) Poor fetal development was found in the infection group with low survival and high malformation rates. 2) The proliferation and differentiation of NSCs were affected. In the infection group, NSCs proliferated more slowly and had a lower neurosphere formation rate than the control. The differentiation ratio from NSCs to neurons and glial cells was significantly different from that of the control, showed by immunofluorescence staining. 3) Ngn1 mRNA expression and the nuclear β-catenin protein level were significantly lower than the control on day 2 when NSCs differentiated. 4) The Morris water maze test was performed on 4-week pups, and the infected rats were found worse in learning and memory ability. In a summary, RCMV infection caused abnormalities in the rat embryonic nervous system, significantly inhibited NSC proliferation and differentiation, and inhibited the expression of key molecules in the Wnt/β-catenin signaling pathway so as to affect NSCs differentiation. This may be an important mechanism by which RCMV causes embryonic nervous system abnormalities.

  4. Effects of Rat Cytomegalovirus on the Nervous System of the Early Rat Embryo

    Institute of Scientific and Technical Information of China (English)

    Xiuning Sun; YingJun Guan; Fengjie Li; Xutong Li; Xiaowen Wang; Zhiyu Guan; Kai Sheng; Li Yu; Zhijun Liu

    2012-01-01

    The purpose of the study was to investigate the impact of rat cytomegalovirus(RCMV) infection on the development of the nervous system in rat embryos,and to evaluate the involvement of Wnt signaling pathway key molecules and the downstream gene neurogenin 1(Ngn1) In RCMV infected neural stem cells(NSCs).Infection and control groups were established,each containing 20 pregnant Wistar rats.Rats in the infection group were inoculated with RCMV by intraperitoneal injection on the first day of pregnancy.Rat E20 embryos were taken to evaluate the teratogenic rate.NSCs were isolated from E13 embryos,and maintained in vitro.We found:1) Poor fetal development was found in the infection group with low survival and high malformation rates.2) The proliferation and differentiation of NSCs were affected.In the infection group,NSCs proliferated more slowly and had a lower neurosphere formation rate than the control.The differentiation ratio from NSCs to neurons and glial cells was significantly different from that of the control,showed by immunofluorescence staining.3) Ngn1 mRNA expression and the nuclear β-catenin protein level were significantly lower than the control on day 2 when NSCs differentiated.4) The Morris water maze test was performed on 4-week pups,and the infected rats were found worse in learning and memory ability.In a summary,RCMV infection caused abnormalities in the rat embryonic nervous system,significantly inhibited NSC proliferation and differentiation,and inhibited the expression of key molecules in the Wnt/β-catenin signaling pathway so as to affect NSCs differentiation.This may be an important mechanism by which RCMV causes embryonic nervous system abnormalities.

  5. Dynamics of DNA methylation during early development of the preimplantation bovine embryo.

    Directory of Open Access Journals (Sweden)

    Kyle B Dobbs

    Full Text Available There is species divergence in control of DNA methylation during preimplantation development. The exact pattern of methylation in the bovine embryo has not been established nor has its regulation by gender or maternal signals that regulate development such as colony stimulating factor 2 (CSF2. Using immunofluorescent labeling with anti-5-methylcytosine and embryos produced with X-chromosome sorted sperm, it was demonstrated that methylation decreased from the 2-cell stage to the 6-8 cell stage and then increased thereafter up to the blastocyst stage. In a second experiment, embryos of specific genders were produced by fertilization with X- or Y-sorted sperm. The developmental pattern was similar to the first experiment, but there was stage × gender interaction. Methylation was greater for females at the 8-cell stage but greater for males at the blastocyst stage. Treatment with CSF2 had no effect on labeling for DNA methylation in blastocysts. Methylation was lower for inner cell mass cells (i.e., cells that did not label with anti-CDX2 than for trophectoderm (CDX2-positive. The possible role for DNMT3B in developmental changes in methylation was evaluated by determining gene expression and degree of methylation. Steady-state mRNA for DNMT3B decreased from the 2-cell stage to a nadir for D 5 embryos >16 cells and then increased at the blastocyst stage. High resolution melting analysis was used to assess methylation of a CpG rich region in an intronic region of DNMT3B. Methylation percent decreased between the 6-8 cell and the blastocyst stage but there was no difference in methylation between ICM and TE. Results indicate that DNA methylation undergoes dynamic changes during the preimplantation period in a manner that is dependent upon gender and cell lineage. Developmental changes in expression of DNMT3B are indicative of a possible role in changes in methylation. Moreover, DNMT3B itself appears to be under epigenetic control by methylation.

  6. CDK-1 and two B-type cyclins promote PAR-6 stabilization during polarization of the early C. elegans embryo.

    Directory of Open Access Journals (Sweden)

    Alexia Rabilotta

    Full Text Available In the C. elegans embryo, formation of an antero-posterior axis of polarity relies on signaling by the conserved PAR proteins, which localize asymmetrically in two mutually exclusive groups at the embryonic cortex. Depletion of any PAR protein causes a loss of polarity and embryonic lethality. A genome-wide RNAi screen previously identified two B-type cyclins, cyb-2.1 and cyb-2.2, as suppressors of par-2(it5ts lethality. We found that the loss of cyb-2.1 or cyb-2.2 suppressed the lethality and polarity defects of par-2(it5ts mutants and that these cyclins act in cell polarity with their cyclin-dependent kinase partner, CDK-1. Interestingly, cyb-2.1; cyb-2.2 double mutants did not show defects in cell cycle progression or timing of polarity establishment, suggesting that they regulate polarity independently of their typical role in cell cycle progression. Loss of both cyclin genes or of cdk-1 resulted in a decrease in PAR-6 levels in the embryo. Furthermore, the activity of the cullin CUL-2 was required to achieve suppression of par-2 lethality when both cyclins were absent. Our results support a model in which CYB-2.1/2/CDK-1 antagonize CUL-2 activity to promote stabilization of PAR-6 levels during polarization of the early C. elegans embryo. They also suggest that CYB-2.1 and CYB-2.2 contribute to the coupling of cell cycle progression and asymmetric segregation of cell fate determinants.

  7. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus.

    Science.gov (United States)

    Della Torre, C; Bergami, E; Salvati, A; Faleri, C; Cirino, P; Dawson, K A; Corsi, I

    2014-10-21

    Nanoplastic debris, resulted from runoff and weathering breakdown of macro- and microplastics, represents an emerging concern for marine ecosystems. The aim of the present study was to investigate disposition and toxicity of polystyrene nanoparticles (NPs) in early development of sea urchin embryos (Paracentrotus lividus). NPs with two different surface charges where chosen, carboxylated (PS-COOH) and amine (PS-NH2) polystyrene, the latter being a less common variant, known to induce cell death in several in vitro cell systems. NPs stability in natural seawater (NSW) was measured while disposition and embryotoxicity were monitored within 48 h of postfertilization (hpf). Modulation of genes involved in cellular stress response (cas8, 14-3-3ε, p-38 MAPK, Abcb1, Abcc5) was investigated. PS-COOH forms microaggregates (PDI > 0.4) in NSW, whereas PS-NH2 results are better dispersed (89 ± 2 nm) initially, though they also aggregated partially with time. Their respectively anionic and cationic nature was confirmed by ζ-potential measurements. No embryotoxicity was observed for PS-COOH up to 50 μg mL(-1) whereas PS-NH2 caused severe developmental defects (EC50 3.85 μg mL(-1) 24 hpf and EC50 2.61 μg mL(-1) 48 hpf). PS-COOH accumulated inside embryo's digestive tract while PS-NH2 were more dispersed. Abcb1 gene resulted up-regulated at 48 hpf by PS-COOH whereas PS-NH2 induced cas8 gene at 24 hpf, suggesting an apoptotic pathway. In line with the results obtained with the same PS NPs in several human cell lines, also in sea urchin embryos, differences in surface charges and aggregation in seawater strongly affect their embryotoxicity.

  8. Factors affecting spontaneous reduction of corpora lutea and twin embryos during the late embryonic/early fetal period in multiple-ovulating dairy cows.

    Science.gov (United States)

    López-Gatius, F; García-Ispierto, I; Hunter, R H F

    2010-02-01

    Spontaneous reduction of advanced twin embryos has been described in high-producing, Holstein-Fresian (Bos taurus) dairy herds. The first objective of the current study was to determine whether management and cow factors could have an effect on such a reduction in twin pregnancies during the early fetal period. Because loss of a corpus luteum was noted in cows suffering twin reduction, we expanded our study to include multiple-ovulating cows carrying singletons. Pregnancy was diagnosed and confirmed from Days 28 to 34 and 56 to 62 postinsemination. Sixty-nine (23.5%) of 293 pregnant cows with two corpora lutea carrying singletons and 132 (28.4%) of 464 twin pregnancies recorded on first pregnancy diagnosis subsequently lost one of the corpora lutea or one of the embryos, respectively. Thirty-four (25.8%) of the 132 twin pregnancies suffering embryo reduction lost one corpus luteum along with the embryo. Corpus luteum reduction always occurred in the ovary ipsilateral to the gravid horn suffering embryo reduction. Binary logistic regressions were performed considering corpus luteum and embryo reduction as dependent variables in single and twin pregnancies, respectively, and several management- and cow-related factors as independent variables. In cows carrying singletons, the risk of corpus luteum reduction was 14.3 (1/0.07) times lower for a given herd, whereas the interaction season by laterality significantly affected corpus luteum reduction such that in cows with two corpora lutea ipsilateral to the horn of pregnancy, the risk of reduction decreased during the winter period. In cows carrying twins, ipsilateral twin pregnancies were 3.45 (1/0.29) times more likely to undergo the loss of one embryo than bilateral twin pregnancies. As an overall conclusion, both corpora lutea and embryos were vulnerable to the effects of stress factors during the early fetal period in cows maintaining their pregnancies. A strong unilateral relationship between the corpus luteum and

  9. Response of Mouse Zygotes Treated with Mild Hydrogen Peroxide as a Model to Reveal Novel Mechanisms of Oxidative Stress-Induced Injury in Early Embryos

    Science.gov (United States)

    2016-01-01

    Our study aimed to develop embryo models to evaluate the impact of oxidative stress on embryo development. Mouse zygotes, which stayed at G1 phase, were treated with prepared culture medium (containing 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, or 0.1 mM hydrogen peroxide (H2O2)) for 30 min in experiment 1. The dose-effects of H2O2 on embryo development were investigated via comparisons of the formation rate at each stage (2- and 4-cell embryos and blastocysts). Experiment 2 was carried out to compare behaviors of embryos in a mild oxidative-stressed status (0.03 mM H2O2) with those in a control (0 mM H2O2). Reactive oxygen species (ROS) levels, variation of mitochondrial membrane potential (MMP), expression of γH2AX, and cell apoptosis rate of blastocyst were detected. We observed a dose-dependent decrease on cleavage and blastocyst rates. Besides, higher level of ROS, rapid reduction of MMP, and the appearance of γH2AX revealed that embryos are injured early in mild oxidative stress. Additionally, γH2AX may involve during DNA damage response in early embryos. And the apoptotic rate of blastocyst may significantly increase when DNA damage repair is inadequate. Most importantly, our research provides embryo models to study cell cycle regulation and DNA damage response under condition of different levels of oxidative stress.

  10. The First Human Cloned Embryo.

    Science.gov (United States)

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  11. Bovine Oviduct Epithelial Cells Dedifferentiate Partly in Culture, While Maintaining their Ability to Improve Early Embryo Development Rate and Quality.

    Science.gov (United States)

    Schmaltz-Panneau, B; Locatelli, Y; Uzbekova, S; Perreau, C; Mermillod, P

    2015-10-01

    There are convincing arguments to suggest that the success of early reproductive events is reliant on a satisfactory dialogue between gametes-embryo and the oviduct epithelium. The aim of this study was to develop and characterize an in vitro model to study these interactions. Cattle zygotes produced in vitro were cultured in either SOF or TCM-199 in the presence or absence of bovine oviduct cell monolayers (BOEC), under 20% or 5% O2 . The embryonic development rate and its quality (cell numbers, cryosurvival) were evaluated, as were the BOEC contents in 11 candidate transcripts (real-time PCR) at different time points. A BOEC co-culture did indeed increase the rate of development in both media under 5% O2 (41 vs 27% and 28 vs 10% of Day 8 blastocysts in SOF and TCM-199, respectively; p culture, although mRNA levels of OGP, C3, PGR and ESR2 were clearly reduced, suggesting a dedifferentiation of BOEC during culture. However, SSP1 and GPX4 transcripts were slightly increased during culture, this rise becoming significant by the end of the culture period. In conclusion, our co-culture system with bovine oviduct epithelial cells used for the development of bovine zygotes produced in vitro enhanced blastocyst formation and above all the quality of the resulting embryos, which was associated with specific transcriptomic changes. © 2015 Blackwell Verlag GmbH.

  12. The maternal-effect gene cellular island encodes aurora B kinase and is essential for furrow formation in the early zebrafish embryo.

    Directory of Open Access Journals (Sweden)

    Taijiro Yabe

    2009-06-01

    Full Text Available Females homozygous for a mutation in cellular island (cei produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function.

  13. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo.

    Directory of Open Access Journals (Sweden)

    Ioannis Kokkinopoulos

    Full Text Available In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.

  14. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo.

    Science.gov (United States)

    Kokkinopoulos, Ioannis; Ishida, Hidekazu; Saba, Rie; Ruchaya, Prashant; Cabrera, Claudia; Struebig, Monika; Barnes, Michael; Terry, Anna; Kaneko, Masahiro; Shintani, Yasunori; Coppen, Steven; Shiratori, Hidetaka; Ameen, Torath; Mein, Charles; Hamada, Hiroshi; Suzuki, Ken; Yashiro, Kenta

    2015-01-01

    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.

  15. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Greeley Jr, Mark Stephen [ORNL; Elmore, Logan R [ORNL; McCracken, Kitty [ORNL

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the

  16. Detecting cardiac contractile activity in the early mouse embryo using multiple modalities

    Directory of Open Access Journals (Sweden)

    Chiann-mun eChen

    2015-01-01

    Full Text Available The heart is one of the first organs to develop during mammalian embryogenesis. In the mouse, it starts to form shortly after gastrulation, and is derived primarily from embryonic mesoderm. The embryonic heart is unique in having to perform a mechanical contractile function while undergoing complex morphogenetic remodelling. Approaches to imaging the morphogenesis and contractile activity of the developing heart are important in understanding not only how this remodelling is controlled but also the origin of congenital heart defects. Here, we describe approaches for visualising contractile activity in the developing mouse embryo, using brightfield time lapse microscopy and confocal microscopy of calcium transients. We describe an algorithm for enhancing this image data and quantifying contractile activity from it. Finally we describe how atomic force microscopy can be used to record contractile activity prior to it being microscopically visible.

  17. Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo

    Science.gov (United States)

    Kimura, Akatsuki

    2010-01-01

    The centrosome is generally maintained at the center of the cell. In animal cells, centrosome centration is powered by the pulling force of microtubules, which is dependent on cytoplasmic dynein. However, it is unclear how dynein brings the centrosome to the cell center, i.e., which structure inside the cell functions as a substrate to anchor dynein. Here, we provide evidence that a population of dynein, which is located on intracellular organelles and is responsible for organelle transport toward the centrosome, generates the force required for centrosome centration in Caenorhabditis elegans embryos. By using the database of full-genome RNAi in C. elegans, we identified dyrb-1, a dynein light chain subunit, as a potential subunit involved in dynein anchoring for centrosome centration. DYRB-1 is required for organelle movement toward the minus end of the microtubules. The temporal correlation between centrosome centration and the net movement of organelle transport was found to be significant. Centrosome centration was impaired when Rab7 and RILP, which mediate the association between organelles and dynein in mammalian cells, were knocked down. These results indicate that minus end-directed transport of intracellular organelles along the microtubules is required for centrosome centration in C. elegans embryos. On the basis of this finding, we propose a model in which the reaction forces of organelle transport generated along microtubules act as a driving force that pulls the centrosomes toward the cell center. This is the first model, to our knowledge, providing a mechanical basis for cytoplasmic pulling force for centrosome centration. PMID:21173218

  18. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos.

    Directory of Open Access Journals (Sweden)

    Shawna A Foo

    Full Text Available BACKGROUND: Predicting effects of rapid climate change on populations depends on measuring the effects of climate stressors on performance, and potential for adaptation. Adaptation to stressful climatic conditions requires heritable genetic variance for stress tolerance present in populations. METHODOLOGY/PRINCIPAL FINDINGS: We quantified genetic variation in tolerance of early development of the ecologically important sea urchin Centrostephanus rodgersii to near-future (2100 ocean conditions projected for the southeast Australian global change hot spot. Multiple dam-sire crosses were used to quantify the interactive effects of warming (+2-4 °C and acidification (-0.3-0.5 pH units across twenty-seven family lines. Acidification, but not temperature, decreased the percentage of cleavage stage embryos. In contrast, temperature, but not acidification decreased the percentage of gastrulation. Cleavage success in response to both stressors was strongly affected by sire identity. Sire and dam identity significantly affected gastrulation and both interacted with temperature to determine developmental success. Positive genetic correlations for gastrulation indicated that genotypes that did well at lower pH also did well in higher temperatures. CONCLUSIONS/SIGNIFICANCE: Significant genotype (sire by environment interactions for both stressors at gastrulation indicated the presence of heritable variation in thermal tolerance and the ability of embryos to respond to changing environments. The significant influence of dam may be due to maternal provisioning (maternal genotype or environment and/or offspring genotype. It appears that early development in this ecologically important sea urchin is not constrained in adapting to the multiple stressors of ocean warming and acidification. The presence of tolerant genotypes indicates the potential to adapt to concurrent warming and acidification, contributing to the resilience of C. rodgersii in a changing ocean.

  19. Early Onset of Heat-Shock Response in Mouse Embryos Revealed by Quantification of Stress-Inducible hsp70i RNA

    Directory of Open Access Journals (Sweden)

    Lawrence J. Wangh

    2007-01-01

    Full Text Available Heat shock response is fully established in mouse embryos at the blastocyst stage, but it is unclear when this response first arises during development. To shed light on this question, we used a single-tube method to quantify mRNA levels of the heat shock protein genes hsp70.1 and hsp70.3 (hsp70i in individual cleavage-stage embryos that had or had not been heat-shocked. While untreated, healthy embryos contained very low copy numbers of hsp70i RNA, heat shock rapidly induced the synthesis of hundreds of hsp70i transcripts per blastomere at both the 4-cell and the 8-cell stages. In addition, we performed hsp70i measurements in embryos that had not been heat-shocked but had been very slow in developing.Quantification of hsp70i RNA and genomic DNA copy numbers in these slow-growing embryos demonstrated the presence of two distinct populations. Some of the embryos contained considerable levels of hsp70i RNA, a finding consistent with the hypothesis of endogenous metabolic stress accompanied by cell cycle arrest and delayed development. Other slow-growing embryos contained no hsp70i RNA and fewer than expected hsp70i gene copies, suggesting the possibility of ongoing apoptosis. In conclusion, this study demonstrates that mouse embryos can activate hsp70i expression in response to sub-lethal levels of stress as early as at the 4-cell stage. Our results also indicate that quantification of hsp70i DNA and RNA copy numbers may provide a diagnostic tool for embryonic health.

  20. Cases of limb-body wall complex: Early amnion rupture, vascular disruption, or abnormal splitting of the embryo?

    Science.gov (United States)

    Crespo, Frank; Pinar, Halit; Kostadinov, Stefan

    2012-12-01

    We report two cases of limb-body wall complex (LBWC), also known as body stalk anomaly, a rare form of body wall defect incompatible with life. The first case was identified during a level II ultrasound examination performed at 7 wk gestational age. The delivery was by breech extraction at 39 wk and 4 days. The second case was delivered by spontaneous vaginal delivery at 35 wk and 5 days. Karyotype analysis was normal in both fetuses. The phenotype of LBWC is variable, but commonly identified features include: exencephaly, limb defects, and either facial clefts or thoraco-abdominoschisis. The exact etiology remains uncertain, as the disorder has been regarded as sporadic with low recurrence. Vascular disruption during early embryogenesis, early amnion rupture, abnormal splitting of the embryo, and failure of amnion fusion have been implicated in the pathogenesis of LBWC. A role for possible gene mutation and maternal use of alcohol, tobacco, or illicit drugs has also been suggested. Detailed ultrasonography along with biochemical screening may allow for early detection.

  1. Superovulation alters embryonic poly(A)-binding protein (Epab) and poly(A)-binding protein, cytoplasmic 1 (Pabpc1) gene expression in mouse oocytes and early embryos.

    Science.gov (United States)

    Ozturk, Saffet; Yaba-Ucar, Aylin; Sozen, Berna; Mutlu, Derya; Demir, Necdet

    2016-03-01

    Embryonic poly(A)-binding protein (EPAB) and poly(A)-binding protein, cytoplasmic 1 (PABPC1) play critical roles in translational regulation of stored maternal mRNAs required for proper oocyte maturation and early embryo development in mammals. Superovulation is a commonly used technique to obtain a great number of oocytes in the same developmental stages in assisted reproductive technology (ART) and in clinical or experimental animal studies. Previous studies have convincingly indicated that superovulation alone can cause impaired oocyte maturation, delayed embryo development, decreased implantation rate and increased postimplantation loss. Although how superovulation results in these disturbances has not been clearly addressed yet, putative changes in genes related to oocyte and early embryo development seem to be potential risk factors. Thus, the aim of the present study was to determine the effect of superovulation on Epab and Pabpc1 gene expression. To this end, low- (5IU) and high-dose (10IU) pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotrophin (hCG) were administered to female mice to induce superovulation, with naturally cycling female mice serving as controls. Epab and Pabpc1 gene expression in germinal vesicle (GV) stage oocytes, MII oocytes and 1- and 2-cell embryos collected from each group were quantified using quantitative reverse transcription-polymerase chain reaction. Superovulation with low or high doses of gonadotropins significantly altered Epab and Pabpc1 mRNA levels in GV oocytes, MII oocytes and 1- and 2-cell embryos compared with their respective controls (Psuperovulation.

  2. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment

    Directory of Open Access Journals (Sweden)

    Vega-Alvarez S

    2014-04-01

    Full Text Available Sasha Vega-Alvarez,1 Adriana Herrera,2 Carlos Rinaldi,2–4 Franklin A Carrero-Martínez1,5 1Department of Biology, 2Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico; 3J Crayton Pruitt Family Department of Biomedical Engineering, 4Department of Chemical Engineering, University of Florida, Gainesville, FL, USA; 5Department of Anatomy and Neuroscience, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico Abstract: Nanomaterials are the subject of intense research, focused on their synthesis, modification, and biomedical applications. Increased nanomaterial production and their wide range of applications imply a higher risk of human and environmental exposure. Unfortunately, neither environmental effects nor toxicity of nanomaterials to organisms are fully understood. Cost-effective, rapid toxicity assays requiring minimal amounts of materials are needed to establish both their biomedical potential and environmental safety standards. Drosophila exemplifies an efficient and cost-effective model organism with a vast repertoire of in vivo tools and techniques, all with high-throughput scalability and screening feasibility throughout its life cycle. Here we report tissue specific nanomaterial assessment through direct microtransfer into target tissues. We tested several nanomaterials with potential biomedical applications such as single-wall carbon nanotubes, multiwall carbon nanotubes, silver, gold, titanium dioxide, and iron oxide nanoparticles. Assessment of nanomaterial toxicity was conducted by evaluating progression through developmental morphological milestones in Drosophila. This cost-effective assessment method is amenable to high-throughput screening. Keywords: nanotoxicity, Drosophila, microtransfer, nanoparticle, iron oxide, silver, gold, titanium dioxide, carbon nanotube

  3. Parental contributions to early embryo development: influences of urinary phthalate and phthalate alternatives among couples undergoing IVF treatment.

    Science.gov (United States)

    Wu, Haotian; Ashcraft, Lisa; Whitcomb, Brian W; Rahil, Tayyab; Tougias, Ellen; Sites, Cynthia K; Pilsner, J Richard

    2017-01-01

    Are preconception urinary concentrations of phthalates and phthalate alternatives associated with diminished early stage embryo quality in couples undergoing IVF? Male, but not female, urinary concentrations of select metabolites of phthalates and phthalate alternatives are associated with diminished blastocyst quality. Although phthalates are endocrine disrupting compounds associated with adverse reproductive health, they are in widespread use across the world. Male and female preconception exposures to select phthalates have been previously associated with adverse reproductive outcomes in both the general population and in those undergoing IVF. This prospective cohort included 50 subfertile couples undergoing IVF in western Massachusetts. This study includes the first 50 couples recruited from the Baystate Medical Center's Fertility Center in Springfield, MA, as part of the Sperm Environmental Epigenetics and Development Study (SEEDS). Relevant data from both partners, including embryo quality at the cleavage (Day 3) and blastocyst (Day 5) stages, were collected by clinic personnel during the normal course of an IVF cycle. A spot urine sample was collected from both male and female partners on the same day as semen sample procurement and oocyte retrieval. Concentrations of 17 urinary metabolite were quantified by liquid chromatography mass spectrometry and normalized via specific gravity. Generalized estimating equations were used to estimate odds ratios (OR) and 95% CI, with urinary phthalates and phthalate alternatives fitted as continuous variables and embryo quality as a binary variable. The 50 couples contributed 761 oocytes, of which 423 progressed to the cleavage stage, 261 were high-quality cleavage stage embryos, 137 were transferrable quality blastocysts and 47 were high-quality blastocysts. At the cleavage stage, male urinary monoethyl phthalate concentrations were positively associated with high-quality cleavage stage embryos (OR = 1.20, 95% CI 1

  4. Early embryo and larval development of inviable intergeneric hybrids derived from Crassostrea angulata and Saccostrea cucullata

    Science.gov (United States)

    Su, Jiaqi; Wang, Zhaoping; Zhang, Yuehuan; Yan, Xiwu; Li, Qiongzhen; Yu, Ruihai

    2016-06-01

    To detect the intergeneric hybridization between the oyster Crassostrea angulata and Saccostrea cucullata coexisting along the southern coast of China, reciprocal crosses were conducted between the two species. Barriers for sperm recognizing, binding, penetrating the egg, and forming the pronucleus were detected by fluorescence staining. From the results, although fertilization success was observed in hybrid crosses, the overall fertilization rate was lower than that of intraspecific crosses. A large number of hybrid larvae died at 6-8 d after hatching, and those survived could not complete metamorphosis. C. angulata ♀× S. cucullata ♂ larvae had a growth rate similar to that of the maternal species, whereas S. cucullata ♀ × C. angulata ♂ larvae grew the slowest among all crosses. Molecular genetics analysis revealed that hybrid progeny were amphimixis hybrids. This study demonstrated that hybrid embryos generated by crossing C. angulata and S. cucullata could develop normally to the larval state, but could not complete metamorphosis and then develop to the spat stage. Thus, there is a post-reproductive isolation between C. angulata and S. cucullata.

  5. De novo assembly and transcriptome analysis of the Mediterranean fruit fly Ceratitis capitata early embryos.

    Directory of Open Access Journals (Sweden)

    Marco Salvemini

    Full Text Available The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing genetic-based pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8-10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae.

  6. De novo assembly and transcriptome analysis of the Mediterranean fruit fly Ceratitis capitata early embryos.

    Science.gov (United States)

    Salvemini, Marco; Arunkumar, Kallare P; Nagaraju, Javaregowda; Sanges, Remo; Petrella, Valeria; Tomar, Archana; Zhang, Hongyu; Zheng, Weiwei; Saccone, Giuseppe

    2014-01-01

    The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing genetic-based pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8-10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae.

  7. MEX-5 enrichment in the C. elegans early embryo mediated by differential diffusion.

    Science.gov (United States)

    Daniels, Brian R; Dobrowsky, Terrence M; Perkins, Edward M; Sun, Sean X; Wirtz, Denis

    2010-08-01

    Specification of germline and somatic cell lineages in C. elegans originates in the polarized single-cell zygote. Several cell-fate determinants are partitioned unequally along the anterior-posterior axis of the zygote, ensuring the daughter cells a unique inheritance upon asymmetric cell division. Recent studies have revealed that partitioning of the germline determinant PIE-1 and the somatic determinant MEX-5 involve protein redistribution accompanied by spatiotemporal changes in protein diffusion rates. Here, we characterize the dynamics of MEX-5 in the zygote and propose a novel reaction/diffusion model to explain both its anterior enrichment and its remarkable intracellular dynamics without requiring asymmetrically distributed binding sites. We propose that asymmetric cortically localized PAR proteins mediate the anterior enrichment of MEX-5 by reversibly changing its diffusion rate at spatially distinct points in the embryo, thus generating a stable concentration gradient along the anterior-posterior axis of the cell. This work extends the scope of reaction/diffusion models to include not only germline morphogens, but also somatic determinants.

  8. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  9. Embryo-endometrial interactions during early development after embryonic diapause in the marsupial tammar wallaby.

    Science.gov (United States)

    Renfree, Marilyn B; Shaw, Geoff

    2014-01-01

    The marsupial tammar wallaby has the longest period of embryonic diapause of any mammal. Reproduction in the tammar is seasonal, regulated by photoperiod and also lactation. Reactivation is triggered by falling daylength after the austral summer solstice in December. Young are born late January and commence a 9-10-month lactation. Females mate immediately after birth. The resulting conceptus develops over 6- 7 days to form a unilaminar blastocyst of 80-100 cells and enters lactationally, and later seasonally, controlled diapause. The proximate endocrine signal for reactivation is an increase in progesterone which alters uterine secretions. Since the diapausing blastocyst is surrounded by the zona and 2 other acellular coats, the mucoid layer and shell coat, the uterine signals that maintain or terminate diapause must involve soluble factors in the secretions rather than any direct cellular interaction between uterus and embryo. Our studies suggest involvement of a number of cytokines in the regulation of diapause in tammars. The endometrium secretes platelet activating factor (PAF) and leukaemia inhibitory factor, which increase after reactivation. Receptors for PAF are low on the blastocyst during diapause but are upregulated at reactivation. Conversely, there is endometrial expression of the muscle segment homeobox gene MSX2 throughout diapause, but it is rapidly downregulated at reactivation. These patterns are consistent with those observed in diapausing mice and mink after reactivation, despite the very different patterns of endocrine control of diapause in these 3 divergent species. These common patterns suggest a similar underlying mechanism for diapause, perhaps common to all mammals, but which is activated in only a few.

  10. Effect of synchronization of donor cells in early G1-phase using shake-off method on developmental potential of somatic cell nuclear transfer embryos in cattle.

    Science.gov (United States)

    Goto, Yuji; Hirayama, Muneyuki; Takeda, Kazuya; Tukamoto, Nobuyuki; Sakata, Osamu; Kaeriyama, Hiroshi; Geshi, Masaya

    2013-08-01

    In this study, we compared the developmental ability of somatic cell nuclear transfer (SCNT) embryos reconstructed with three bovine somatic cells that had been synchronized in G0-phase (G0-SCNT group) or early G1-phase (eG1-SCNT group). Furthermore, we investigated the production efficiency of cloned offspring for NT embryos derived from these donor cells. The G0-phase and eG1-phase cells were synchronized, respectively, using serum starvation and antimitotic reagent treatment combined with shaking of the plate containing the cells (shake-off method). The fusion rate in the G0-SCNT groups (64.2 ± 1.8%) was significantly higher than that of eG1-SCNT groups (39.2 ± 1.9%) (P cells in eG1-phase using the shake-off method improved the overall production efficiency of the clone offspring per transferred embryo.

  11. Mitochondria-targeted DsRed2 protein expression during the early stage of bovine somatic cell nuclear transfer embryo development.

    Science.gov (United States)

    Park, Hyo-Jin; Min, Sung-Hun; Choi, Hoonsung; Park, Junghyung; Kim, Sun-Uk; Lee, Seunghoon; Lee, Sang-Rae; Kong, Il-Keun; Chang, Kyu-Tae; Koo, Deog-Bon; Lee, Dong-Seok

    2016-09-01

    Somatic cell nuclear transfer (SCNT) has been widely used as an efficient tool in biomedical research for the generation of transgenic animals from somatic cells with genetic modifications. Although remarkable advances in SCNT techniques have been reported in a variety of mammals, the cloning efficiency in domestic animals is still low due to the developmental defects of SCNT embryos. In particular, recent evidence has revealed that mitochondrial dysfunction is detected during the early development of SCNT embryos. However, there have been relatively few or no studies regarding the development of a system for evaluating mitochondrial behavior or dynamics. For the first time, in mitochondria of bovine SCNT embryos, we developed a method for the visualization of mitochondria and expression of fluorescence proteins. To express red fluorescence in mitochondria of cloned embryos, bovine ear skin fibroblasts, nuclear donor, were stably transfected with a vector carrying mitochondria-targeting DsRed2 gene tagged with V5 epitope (mito-DsRed2-V5 tag) using lentivirus-mediated gene transfer because of its ability to integrate in the cell genome and the potential for long-term transgene expression in the transduced cells and their dividing cells. From western blotting analysis of V5 tag protein using mitochondrial fraction and confocal microscopy of red fluorescence using SCNT embryos, we found that the mitochondrial expression of the mito-DsRed2 protein was detected until the blastocyst stage. In addition, according to image analysis, it may be suggested possible use of the system for visualization of mitochondrial localization and evaluation of mitochondrial behaviors or dynamics in early development of bovine SCNT embryos.

  12. Effects of lipopolysaccharide (LPS) induced inflammatory response on early embryo survival in ewes

    Science.gov (United States)

    Early pregnant ewes were used to determine the effects of endogenous (through LPS activation) and exogenous TNF-alpha tumor necrosis factor-alpha (TNF-alpha) on embryonic loss. Thirty-eight Dorset x Texel ewes were synchronized for estrus and bred to fertile rams (d0). On d5/6, ewes were assigned t...

  13. Central Cell-Derived Peptides Regulate Early Embryo Patterning in Flowering Plants

    NARCIS (Netherlands)

    Costa, L.M.; Marshall, E.; Tesfaye, M.; Silverstein, K.A.T.; Mori, M.; Umetsu, Y.; Otterbach, S.L.; Papareddy, R.; Dickinson, H.G.; Boutilier, K.A.; VandenBosch, K.A.; Ohki, S.; Gutierrez-Marcos, J.F.

    2014-01-01

    Plant embryogenesis initiates with the establishment of an apical-basal axis; however, the molecular mechanisms accompanying this early event remain unclear. Here, we show that a small cysteine-rich peptide family is required for formation of the zygotic basal cell lineage and proembryo patterning i

  14. Revealing the bovine embryo transcript profiles during early in vivo embryonic development.

    Science.gov (United States)

    Vallée, Maud; Dufort, Isabelle; Desrosiers, Stéphanie; Labbe, Aurélie; Gravel, Catherine; Gilbert, Isabelle; Robert, Claude; Sirard, Marc-André

    2009-07-01

    Gene expression profiling is proving to be a powerful approach for the identification of molecular mechanisms underlying complex cellular functions such as the dynamic early embryonic development. The objective of this study was to perform a transcript abundance profiling analysis of bovine early embryonic development in vivo using a bovine developmental array. The molecular description of the first week of life at the mRNA level is particularly challenging when considering the important fluctuations in RNA content that occur between developmental stages. Accounting for the different intrinsic RNA content between developmental stages was achieved by restricting the reaction time during the global amplification steps and by using spiked controls and reference samples. Analysis based on intensity values revealed that most of the transcripts on the array were present at some point during in vivo bovine early embryonic development, while the varying number of genes detected in each developmental stage confirmed the dynamic profile of gene expression occurring during embryonic development. Pair-wise comparison of gene expression showed a marked difference between oocytes and blastocysts profiles, and principal component analysis revealed that the majority of the transcripts could be regrouped into three main clusters representing distinct RNA abundance profiles. Overall, these data provide a detailed temporal profile of the abundance of mRNAs revealing the richness of signaling processes in early mammalian development. Results presented here provide better knowledge of bovine in vivo embryonic development and contribute to the progression of our current knowledge regarding the first week of life in mammals.

  15. myFX: a turn-key software for laboratory desktops to analyze spatial patterns of gene expression in Drosophila embryos.

    Science.gov (United States)

    Montiel, Ivan; Konikoff, Charlotte; Braun, Bremen; Packard, Mary; Gramates, Sian L; Sun, Qian; Ye, Jieping; Kumar, Sudhir

    2014-05-01

    Spatial patterns of gene expression are of key importance in understanding developmental networks. Using in situ hybridization, many laboratories are generating images to describe these spatial patterns and to test biological hypotheses. To facilitate such analyses, we have developed biologist-centric software (myFX) that contains computational methods to automatically process and analyze images depicting embryonic gene expression in the fruit fly Drosophila melanogaster. It facilitates creating digital descriptions of spatial patterns in images and enables measurements of pattern similarity and visualization of expression across genes and developmental stages. myFX interacts directly with the online FlyExpress database, which allows users to search thousands of existing patterns to find co-expressed genes by image comparison.

  16. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  17. Retinoic acid is enriched in Hensen's node and is developmentally regulated in the early chicken embryo.

    OpenAIRE

    Chen, Y; Huang, L; Russo, A F; Solursh, M

    1992-01-01

    Retinoic acid (RA) has been considered as a potential morphogen in the chicken limb and has also been suggested to be involved in early embryonic development. On the basis of biological activity, previous reports suggest that Hensen's node, the anatomical equivalent in the chicken of the Spemann's organizer, may contain RA. Here, by using a molecular assay system, we demonstrate that Hensen's node contains retinoids in a concentration approximately 20 times more than that in the neighboring t...

  18. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    Science.gov (United States)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-03-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  19. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    Science.gov (United States)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-01-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development. PMID:28266608

  20. Rice bicoid-related cDNA sequence and its expression during early embryogenesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bicoid is one of the important Drosophila maternal genes involved in the control of embryo polarity and larvae segmentation.To clone and characterize the rice bicoid-related genes,one cDNA clone,Rb24 (EMBL accession number: AJ2771380),was isolated by screening of rice unmature seed cDNA library.Sequence analysis indicates that Rb24 contains a putative amino acid sequence,which is homologous to unique 8 amino acids sequence within Drosophila bicoid homeodomain (50% identity,75% similarity) and involves a lys-9 in putative helix 3.Northern blot analysis of rice RNA has shown that this sequence is expressed in a tissue-specific manner.The transcript was detected strongly in young panicles,but less in young leaves and roots.This results are further confirmed with paraffin section in situ hybridization.The signal is intensive in rice globular embryo and located at the apical tip of the embryo,then,along with the development of embryo,the signal is getting reduced and transfers into both sides of embryo.The existence of bicoid-related sequence in rice embryo and the similarity of polar distribution of bicoid and Rb24 mRNA in early embryo development may implicates a conserved maternal regulation mechanism of body axis presents in Drosophila and in rice.

  1. Uterine-embryonic interaction in pit : activin, follistatin, and activin receptor II in uterus and embryo during early gestation

    NARCIS (Netherlands)

    Pavert, van de S.A.; Boerjan, M.L.; Stroband, H.W.J.; Taverne, M.A.M.; Hurk, van der R.

    2001-01-01

    The mRNA expression patterns of activin A and follistatin in the uterus and embryo, the mRNA expression of the activin receptor II in the embryo, and the localization in the uterus of the immunoreactive activin A and the receptor II proteins in the uterus were examined at gestation days 7-12 after o

  2. Ribosomal S6 kinase is activated as an early event in preemergence development of encysted embryos of Artemia salina.

    Science.gov (United States)

    Malarkey, K; Coker, K J; Sturgill, T W

    1998-01-15

    Dormant Artemia salina cysts contain desiccated gastrulae that are metabolically inactive, and physiologically arrested. Following rehydration, embryos resume development via alterations in protein expression, in the complete absence of cell division. In mammals, activation of p70 ribosomal S6 kinase (p70S6k) has been implicated in translational control, in particular the selective up-regulation of translation of mRNAs with polypyrimidine tracts at their 5' start sites. We therefore investigated ribosomal S6 kinase activity in preemergence development. We demonstrate that an S6 kinase activity is rapidly stimulated (within Artemia S6 kinase was inactivated by treatment with protein phosphatase 2A. Activation of S6 kinase activity was shown to be due to an enzymatic step(s), and not simply rehydration of stored, active enzyme. The temporal profile of activation of S6 kinase activity is compatible with a regulatory function for p70S6k in early preemergence development of encysted Artemia. These studies identify activated Artemia cysts as a system for biochemical studies of p70S6k regulation.

  3. The internal structure of Early Cambrian fossil embryo Olivooides revealed in the light of Synchrotron X-ray Tomographic Microscopy

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang; DONG XiPing

    2008-01-01

    Countless fossil embryo Olivooides and the hatched larvae, juveniles and adults (the latter two kinds are Punctatus) are recovered by means of acid maceration from the fine-crystalline to medium-crystalline phosphatic limestone and phosphatic micrite of Early Cambrian Kuanchuanpu Formation at the Shizhonggou section, near Kuanchuanpu Village, Ningqiang County, Shaanxi Province, China. Using the technique of Synchrotron X-ray Tomographic Microscopy, the 3D internal structure of Olivooides and Punctatus is reconstructed. The morphological and statistic analyses are also given to the stellae structure of Olivooides and Punctatus, which indicates that this structure is a result of adaptive evolution to a lifestyle of fast-attaching after hatching, probably with the function of mucilage secretion. The internal structure of Punctatus is described and discussed. The ovum-like structure, a common internal feature of Punctatus, is considered as the taphonomic structure, rather than eggs or other biological structure. This structure is thought to be formed after the burial of the animal and before or during the mineralization. The original internal structure of Punctatus is assumed to be tabulae-filled, with soft body grown on them.

  4. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    Science.gov (United States)

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts.

  5. Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation.

    Science.gov (United States)

    Nishikawa, Yumiko; Hirota, Fumiko; Yano, Masashi; Kitajima, Hiroyuki; Miyazaki, Jun-ichi; Kawamoto, Hiroshi; Mouri, Yasuhiro; Matsumoto, Mitsuru

    2010-05-10

    The roles of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) in the organization of the thymic microenvironment for establishing self-tolerance are enigmatic. We sought to monitor the production and maintenance of Aire-expressing mTECs by a fate-mapping strategy in which bacterial artificial chromosome transgenic (Tg) mice expressing Cre recombinase under the control of the Aire regulatory element were crossed with a GFP reporter strain. We found that, in addition to its well recognized expression within mature mTECs, Aire was expressed in the early embryo before emergence of the three germ cell layers. This observation may help to explain the development of ectodermal dystrophy often seen in patients with AIRE deficiency. With the use of one Tg line in which Cre recombinase expression was confined to mTECs, we found that Aire(+)CD80(high) mTECs further progressed to an Aire(-)CD80(intermediate) stage, suggesting that Aire expression is not constitutive from after its induction until cell death but instead is down-regulated at the beginning of terminal differentiation. We also demonstrated that many mTECs of Aire-expressing lineage are in close contact with thymic dendritic cells. This close proximity may contribute to transfer of tissue-restricted self-antigens expressed by mTECs to professional antigen-presenting cells.

  6. Effects of oocyte quality, incubation time and maturation environment on the number of chromosomal abnormalities in IVF-derived early bovine embryos.

    Science.gov (United States)

    Demyda-Peyrás, Sebastian; Dorado, Jesus; Hidalgo, Manuel; Anter, Jaouad; De Luca, Leonardo; Genero, Enrique; Moreno-Millán, Miguel

    2013-01-01

    Chromosomal aberrations are one of the major causes of embryo developmental failures in mammals. The occurrence of these types of abnormalities is higher in in vitro-produced (IVP) embryos. The aim of the present study was to investigate the effect of oocyte morphology and maturation conditions on the rate of chromosomal abnormalities in bovine preimplantational embryos. To this end, 790 early cattle embryos derived from oocytes with different morphologies and matured under different conditions, including maturation period (24 v. 36h) and maturation media (five different serum supplements in TCM-199), were evaluated cytogenetically in three sequential experiments. The rates of normal diploidy and abnormal haploidy, polyploidy and aneuploidy were determined in each embryo. Throughout all the experiments, the rate of chromosomal abnormalities was significantly (P<0.05) affected by oocyte morphology and maturation conditions (maturation time and culture medium). Lower morphological quality was associated with a high rate of chromosome abnormalities (P<0.05). Moreover, polyploidy was associated with increased maturation time (P<0.01), whereas the maturation medium significantly (P<0.05) affected the rates of haploidy and polyploidy. In general, supplementing the maturation medium with oestrous cow serum or fetal calf serum resulted in higher rates of chromosomal aberrations (P<0.05) compared with the other serum supplements tested (bovine steer serum, anoestroues cow serum, bovine amniotic fluid and bovine serum albumin). On the basis of the results of the present study, we conclude that the morphological quality of oocytes and the maturation conditions affect the rate of chromosomal abnormalities in IVP bovine embryos.

  7. Transcriptome Analysis Reveals New Insights into the Modulation of Endometrial Stromal Cell Receptive Phenotype by Embryo-Derived Signals Interleukin-1 and Human Chorionic Gonadotropin: Possible Involvement in Early Embryo Implantation

    Science.gov (United States)

    Bourdiec, Amélie; Calvo, Ezequiel; Rao, C. V.; Akoum, Ali

    2013-01-01

    The presence of the conceptus in uterine cavity necessitates an elaborate network of interactions between the implanting embryo and a receptive endometrial tissue. We believe that embryo-derived signals play an important role in the remodeling and the extension of endometrial receptivity period. Our previous studies provided original evidence that human Chorionic Gonadotropin (hCG) modulates and potentiates endometrial epithelial as well as stromal cell responsiveness to interleukin 1 (IL1), one of the earliest embryonic signals, which may represent a novel pathway by which the embryo favors its own implantation and growth within the maternal endometrial host. The present study was designed to gain a broader understanding of hCG impact on the modulation of endometrial cell receptivity, and in particular, cell responsiveness to IL1 and the acquisition of growth-promoting phenotype capable of receiving, sustaining, and promoting early and crucial steps of embryonic development. Our results showed significant changes in the expression of genes involved in cell proliferation, immune modulation, tissue remodeling, apoptotic and angiogenic processes. This points to a relevant impact of these embryonic signals on the receptivity of the maternal endometrium, its adaptation to the implanting embryo and the creation of an environment that is favorable for the implantation and the growth of this latter within a new and likely hostile host tissue. Interestingly our data further identified a complex interaction between IL1 and hCG, which, despite a synergistic action on several significant endometrial target genes, may encompass a tight control of endogenous IL1 and extends to other IL1 family members. PMID:23717664

  8. Myocyte enhancer factor 2D regulates ectoderm specification and adhesion properties of animal cap cells in the early Xenopus embryo.

    Science.gov (United States)

    Katz Imberman, Sandra; Kolpakova, Alina; Keren, Aviad; Bengal, Eyal

    2015-08-01

    In Xenopus, animal cap (AC) cells give rise to ectoderm and its derivatives: epidermis and the central nervous system. Ectoderm has long been considered a default pathway of embryonic development, with cells that are not under the influence of vegetal Nodal signaling adopting an ectodermal program of gene expression. In the present study, we describe the involvement of the animally-localized maternal transcription factor myocyte enhancer factor (Mef) 2D in regulating the identity of AC cells. We find that Mef2D is required for the formation of both ectodermal lineages: neural and epidermis. Gain and loss of function experiments indicate that Mef2D regulates early gastrula expression of key ectodermal/epidermal genes in the animal region. Mef2D controls the activity of zygotic bone morphogenetic protein (BMP) signaling known to dictate the epidermal differentiation program. Exogenous expression of Mef2D in vegetal blastomeres was sufficient to induce ectopic expression of ectoderm/epidermal genes in the vegetal half of the embryo, when Nodal signaling was inhibited. Depletion of Mef2D caused a loss of AC cell adhesion that was rescued by the expression of E-cadherin or bone morphogenetic protein 4. In addition, expression of Mef2D in the prospective endoderm caused unusual aggregation of vegetal cells with animal cells in vitro and inappropriate segregation to other germ layers in vivo. Mef2D cooperates with another animally-expressed transcription factor, FoxI1e. Together, they regulate the expression of genes encoding signaling proteins and the transcription factors that control the regional identity of animal cells. Therefore, we describe a new role for the animally-localized Mef2D protein in early ectoderm specification, which is similar to that of the vegetally-localized VegT in endoderm and mesoderm formation. © 2015 FEBS.

  9. Cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus.

    Science.gov (United States)

    Emmons, S; Phan, H; Calley, J; Chen, W; James, B; Manseau, L

    1995-10-15

    We report the molecular isolation of cappuccino (capu), a gene required for localization of molecular determinants within the developing Drosophila oocyte. The carboxy-terminal half of the capu protein is closely related to that of the vertebrate limb deformity locus, which is known to function in polarity determination in the developing vertebrate limb. In addition, capu shares both a proline-rich region and a 70-amino-acid domain with a number of other genes, two of which also function in pattern formation, the Saccharomyes cerevisiae BNI1 gene and the Aspergillus FigA gene. We also show that capu mutant oocytes have abnormal microtubule distributions and premature microtubule-based cytoplasmic streaming within the oocyte, but that neither the speed nor the timing of the cytoplasmic streaming correlates with the strength of the mutant allele. This suggests that the premature cytoplasmic streaming in capu mutant oocytes does not suffice to explain the patterning defects. By inducing cytoplasmic streaming in wild-type oocytes during mid-oogenesis, we show that premature cytoplasmic streaming can displace staufen protein from the posterior pole, but not gurken mRNA from around the oocyte nucleus.

  10. Effects of trichostatin A on histone acetylation and methylation characteristics in early porcine embryos after somatic cell nuclear transfer.

    Science.gov (United States)

    Cong, Peiqing; Zhu, Kongju; Ji, Qianqian; Zhao, Haijing; Chen, Yaosheng

    2013-09-01

    Until now, the efficiency of animal cloning by somatic cell nuclear transfer (SCNT) has remained low. Efforts to improve cloning efficiency have demonstrated a positive role of trichostatin A (TSA), an inhibitor of deacetylases, on the development of nuclear transfer (NT) embryos in many species. Here, we report the effects of TSA on pre-implantation development of porcine NT embryos. Our results showed that treatment of reconstructed porcine embryos with 50 nmol/L TSA for 24 h after activation significantly improved the production of blastocysts (P cells with the same solution resulted in increases in cleavage rates and blastomere numbers (P cells and SCNT embryos did not improve blastocyst production, nor did it increase blastomere numbers. Using indirect immunofluorescence, we found that TSA treatment of NT embryos could improve the reprogramming of histone acetylation at lysine 9 of histone 3 (H3K9) and affect nuclear swelling of transferred nuclei. However, no apparent effect of TSA treatment on H3K9 dimethylation (H3K9me2) was observed. These findings suggest a positive effect of TSA treatment (either treating NT embryos or donor cells) on the development of porcine NT embryos, which is achieved by improving epigenetic reprogramming.

  11. The Hydra FGFR, Kringelchen, partially replaces the Drosophila Heartless FGFR.

    Science.gov (United States)

    Rudolf, Anja; Hübinger, Christine; Hüsken, Katrin; Vogt, Angelika; Rebscher, Nicole; Onel, Susanne-Filiz; Renkawitz-Pohl, Renate; Hassel, Monika

    2013-05-01

    Fibroblast growth factor receptors (FGFR) are highly conserved receptor tyrosine kinases, and evolved early in metazoan evolution. In order to investigate their functional conservation, we asked whether the Kringelchen FGFR in the freshwater polyp Hydra vulgaris, is able to functionally replace FGFR in fly embryos. In Drosophila, two endogenous FGFR, Breathless (Btl) and Heartless (Htl), ensure formation of the tracheal system and mesodermal cell migration as well as formation of the heart. Using UAS-kringelchen-5xmyc transgenic flies and targeted expression, we show that Kringelchen is integrated correctly into the cell membrane of mesodermal and tracheal cells in Drosophila. Nevertheless, Kringelchen expression driven in tracheal cells failed to rescue the btl (LG19) mutant. The Hydra FGFR was able to substitute for Heartless in the htl (AB42) null mutant; however, this occurred only during early mesodermal cell migration. Our data provide evidence for functional conservation of this early-diverged FGFR across these distantly related phyla, but also selectivity for the Htl FGFR in the Drosophila system.

  12. Intra- and interobserver analysis in the morphological assessment of early stage embryos during an IVF procedure: a multicentre study

    Directory of Open Access Journals (Sweden)

    Devroe Johanna

    2011-09-01

    Full Text Available Abstract Background Quality control programs are necessary to maintain good clinical practice. Embryo grading has been described as one of the external quality assurance schemes. Although the evaluation of embryos is based on the assessment of morphological characteristics, considerable intra- and inter-observer variability has been described. In this multicentre study, the variability in the embryo evaluation has been evaluated using morphological characteristics on day 1, day 2 and day 3 of embryo development. Methods Five embryologists of four different IVF centers participated in this study. Multilevel images of embryos were presented on a website at different time points to evaluate intra-and inter-observer agreement in the assessment of embryo morphology. The embryos were evaluated on day 1, day 2 and day 3 of their development and each embryologist had to decide if the embryo had to be transferred, cryopreserved or discarded. Results Both intra-observer agreement and inter-observer agreement were good to excellent for the position of the pronuclei on day 1, the number of blastomeres on day 2 and day 3 and the clinical decision (transfer, cryopreservation, discard. For all other characteristics (size of pronuclei, presence of cytoplasomic halo, degree of fragmentation and size of blastomeres the intra- and inter-observer agreement was moderate to very poor. Conclusions Mono- or multicentre quality control on embryo scoring by morphological assessment can easily be performed through the design of a simple website. In the future the website design can be adapted to generate statistical feedback upon scoring and can even include a training module.

  13. The FHA domain determines Drosophila Chk2/Mnk localization to key mitotic structures and is essential for early embryonic DNA damage responses.

    Science.gov (United States)

    Takada, Saeko; Collins, Eric R; Kurahashi, Kayo

    2015-05-15

    DNA damage responses, including mitotic centrosome inactivation, cell-cycle delay in mitosis, and nuclear dropping from embryo cortex, maintain genome integrity in syncytial Drosophila embryos. A conserved signaling kinase, Chk2, known as Mnk/Loki, is essential for the responses. Here we demonstrate that functional EGFP-Mnk expressed from a transgene localizes to the nucleus, centrosomes, interkinetochore/centromere region, midbody, and pseudocleavage furrows without DNA damage and in addition forms numerous foci/aggregates on mitotic chromosomes upon DNA damage. We expressed EGFP-tagged Mnk deletion or point mutation variants and investigated domain functions of Mnk in vivo. A triple mutation in the phosphopeptide-binding site of the forkhead-associated (FHA) domain disrupted normal Mnk localization except to the nucleus. The mutation also disrupted Mnk foci formation on chromosomes upon DNA damage. FHA mutations and deletion of the SQ/TQ-cluster domain (SCD) abolished Mnk transphosphorylations and autophosphorylations, indicative of kinase activation after DNA damage. A potent NLS was found at the C-terminus, which is required for normal Mnk function. We propose that the FHA domain in Mnk plays essential dual functions in mediating embryonic DNA damage responses by means of its phosphopeptide-binding ability: activating Mnk in the nucleus upon DNA damage and recruiting Mnk to multiple subcellular structures independently of DNA damage.

  14. Organogenesis of the Musculoskeletal System in Horse Embryos and Early Fetuses.

    Science.gov (United States)

    Barreto, Rodrigo da Silva Nunes; Rodrigues, Márcio Nogueira; Carvalho, Rafael Cardoso; De Oliveira E Silva, Fernanda Menezes; Rigoglio, Náthia Nathaly; Jacob, Júlio César Ferraz; Gastal, Eduardo Leite; Miglino, Maria Angélica

    2016-06-01

    Musculoskeletal system development involves heterotypical inductive interactions between tendons, muscles, and cartilage and knowledge on organogenesis is required for clarification of its function. The aim of this study was to describe the organogenesis of horse musculoskeletal system between 21 and 105 days of gestation, using detailed macroscopic and histological analyses focusing on essential developmental steps. At day 21 of gestation the skin was translucid, but epithelial condensation and fibrocartilaginous tissues were observed on day 25 of pregnancy. Smooth muscle was seen in lymphatic and blood vessel walls and the beginning of cartilaginous chondrocranium was detected at day 30 of gestation. At day 45, typical chondroblasts and chondrocytes were observed and at day 55, mandibular processes expanded toward the ventral midline of the pharynx. At day 75, muscles became thicker and muscle fibers were seen developing in carpal and metacarpal joints with the beginning of the ossification process. At day 105, major muscle groups, similar to those seen in an adult equine, were observed. The caudal area of the nasal capsule and trabecular cartilages increased in size and became ossified, developing into the ethmoid bone. The presence of nasal, frontal, parietal, and occipital bones was observed. In conclusion, novel features of equine musculoskeletal system development have been described here and each process was linked with an early musculoskeletal event. Data presented herein will facilitate a better understanding of the equine muscular system organogenesis and aid in the detection of congenital deformities. Anat Rec, 299:722-729, 2016. © 2016 Wiley Periodicals, Inc.

  15. Clinical application of vitrified early human embryos%玻璃化冷冻保存人类早期胚胎的临床应用

    Institute of Scientific and Technical Information of China (English)

    李宜学; 田喜凤; 王晓波; 郭全; 樊桂玲; 刘娜

    2012-01-01

    目的 探讨玻璃化冷冻技术在人类早期胚胎冻存中的临床应用价值.方法 回顾性分析本中心822个冷冻胚胎复苏周期,依据胚胎冷冻方法的不同分为玻璃化冷冻组(490个周期)和程序化冷冻组(332个周期),比较两组胚胎复苏率、复苏胚胎完整率、胚胎种植率、临床妊娠率等数据.结果 玻璃化冷冻复苏组与程序化冷冻复苏组胚胎复苏率分别为98.8%和82.9%,复苏胚胎完整率分别为96.8%和63.1%,胚胎种植率分别为32.0%和18.1%,临床妊娠率分别为53.9%和33.1%,两组数据比较差异均有统计学意义(P<0.05).结论 玻璃化冷冻法比程序化冷冻法更适合于人类早期胚胎的冷冻保存.%Objective To evaluate the clinical application of vitrified human embryos. Methods In the retrospective study, a total of 822 frozen embryos (332 embryos from program freezing and 490 embryos from vitrification freezing) were studied. The rates of embryos survival, blastomere integrity, implantation and clinical pregnancy were compared between the two methods. Results Vitrified embryos had a higher survival rate (98.8% vs 82.9%), blastomere integrity rate (96.8% vs 63.1%), implantation rate (32.0% vs 18.1%) and clinical pregnancy rate (53.9% vs 33.1%) then the program frozen embryos. Conclusion Vitrification is an effective method for cryopreservation of human early embryos.

  16. DNA damage and apoptosis of endometrial cells cause loss of the early embryo in mice exposed to carbon disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingzhen [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China); Shen, Chunzi [Centers for Disease Control and Prevention, Zibo (China); Yang, Liu; Li, Chunhui; Yi, Anji [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China); Wang, Zhiping, E-mail: zhipingw@sdu.edu.cn [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China)

    2013-12-01

    Carbon disulfide (CS{sub 2}) may lead to spontaneous abortion and very early pregnancy loss in women exposed in the workplace, but the mechanism remains unclear. We designed an animal model in which gestating Kunming strain mice were exposed to CS{sub 2} via i.p. on gestational day 4 (GD4). We found that the number of implanted blastocysts on GD8 was significantly reduced by each dose of 0.1 LD{sub 50} (157.85 mg/kg), 0.2 LD{sub 50} (315.7 mg/kg) and 0.4 LD{sub 50} (631.4 mg/kg). In addition, both the level of DNA damage and apoptosis rates of endometrial cells on GD4.5 were increased, showed definite dose–response relationships, and inversely related to the number of implanted blastocysts. The expressions of mRNA and protein for the Bax and caspase-3 genes in the uterine tissues on GD4.5 were up-regulated, while the expressions of mRNA and protein for the Bcl-2 gene were dose-dependently down-regulated. Our results indicated that DNA damage and apoptosis of endometrial cells were important reasons for the loss of implanted blastocysts induced by CS{sub 2}. - Highlights: • We built an animal model of CS2 exposure during blastocyst implantation. • Endometrial cells were used in the comet assay to detect DNA damage. • CS2 exposure caused DNA damage and endometrial cell apoptosis. • DNA damage and endometrial cell apoptosis were responsible for embryo loss.

  17. twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development.

    Science.gov (United States)

    Czerny, T; Halder, G; Kloter, U; Souabni, A; Gehring, W J; Busslinger, M

    1999-03-01

    The Drosophila Pax-6 gene eyeless (ey) plays a key role in eye development. Here we show tht Drosophila contains a second Pax-6 gene, twin of eyeless (toy), due to a duplication during insect evolution. Toy is more similar to vertebrate Pax-6 proteins than Ey with regard to overall sequence conservation, DNA-binding function, and early expression in the embryo, toy and ey share a similar expression pattern in the developing visual system, and targeted expression of Toy, like Ey, induces the formation of ectopic eyes. Genetic and biochemical evidence indicates, however, that Toy functions upstream of ey by directly regulating the eye-specific enhancer of ey. Toy is therefore required for initiation of ey expression in the embryo and acts through Ey to activate the eye developmental program.

  18. Myoblast fusion in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Haralalka, Shruti [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Abmayr, Susan M., E-mail: sma@stowers.org [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160 (United States)

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  19. Morphological and Gene Expression Changes in Cattle Embryos from Hatched Blastocyst to Early Gastrulation Stages after Transfer of In Vitro Produced Embryos.

    Directory of Open Access Journals (Sweden)

    Jessica van Leeuwen

    Full Text Available A detailed morphological staging system for cattle embryos at stages following blastocyst hatching and preceding gastrulation is presented here together with spatiotemporal mapping of gene expression for BMP4, BRACHYURY, CERBERUS1 (CER1, CRIPTO, EOMESODERMIN, FURIN and NODAL. Five stages are defined based on distinct developmental events. The first of these is the differentiation of the visceral hypoblast underlying the epiblast, from the parietal hypoblast underlying the mural trophoblast. The second concerns the formation of an asymmetrically positioned, morphologically recognisable region within the visceral hypoblast that is marked by the presence of CER1 and absence of BMP4 expression. We have termed this the anterior visceral hypoblast or AVH. Intra-epiblast cavity formation and the disappearance of the polar trophoblast overlying the epiblast (Rauber's layer have been mapped in relation to AVH formation. The third chronological event involves the transition of the epiblast into the embryonic ectoderm with concomitant onset of posterior NODAL, EOMES and BRACHYURY expression. Lastly, gastrulation commences as the posterior medial embryonic ectoderm layer thickens to form the primitive streak and cells ingress between the embryonic ectoderm and hypoblast. At this stage a novel domain of CER1 expression is seen whereas the AVH disappears. Comparison with the mouse reveals that while gene expression patterns at the onset of gastrulation are well conserved, asymmetry establishment, which relies on extraembryonic tissues such as the hypoblast and trophoblast, has diverged in terms of both gene expression and morphology.

  20. Embryo-maternal communication

    DEFF Research Database (Denmark)

    Østrup, Esben; Hyttel, Poul; Østrup, Olga

    2011-01-01

    Communication during early pregnancy is essential for successful reproduction. In this review we address the beginning of the communication between mother and developing embryo; including morphological and transcriptional changes in the endometrium as well as epigenetic regulation mechanisms...... directing the placentation. An increasing knowledge of the embryo-maternal communication might not only help to improve the fertility of our farm animals but also our understanding of human health and reproduction....

  1. Quantitative models of the mechanisms that control genome-wide patterns of transcription factor binding during early Drosophila development.

    Directory of Open Access Journals (Sweden)

    Tommy Kaplan

    2011-02-01

    Full Text Available Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6-0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription

  2. TIME-LAPSE MICROSCOPY ROLE IN IMPROVING THE OUTCOME OF IVF/ICSI CYCLES BY MONITORING AND SELECTION OF EARLY EMBRYO

    Directory of Open Access Journals (Sweden)

    Gabriela SIMIONESCU

    2016-12-01

    Full Text Available In vitro fertilization (IVF and intracytoplasmatic sperm injection (ICSI are well-established assisted reproductive biotechnologies used to overcome infertility in couples. Time-lapse monitoring is an imagistic technology which was elaborated to fulfill the need for observing the dynamics of the mammalian embryonic development in a continuous, non-invasive manner, without removing the embryos from the optimal culturing conditions. This technology offers unique information regarding the cleavage process, as well as morphological and structural modifications thus enabling the embryologists to select the embryos with elevated implantation potential. Aim of the study: to identify, evaluate and summarize the available data regarding the role of time-lapse microscopy in improving the outcome of IVF and ICSI by monitoring and selection of early embryos Material and methods: we systematically reviewed the available evidence regarding the assessment of embryo quality through both conventional monitoring and time-lapse microscopy for couples undergoing in vitro fertilization (IVF or intracytoplasmic sperm injection (ICSI. The meta analysis included randomized trials and published data encountered on ISI Web of Knowledge Science, MedLine and Pubmed using the following keywords: time-lapse microscopy, IVF, ICSI, embryo, outcome, pregnancy. As criteria of differentiation, only studies that reported information regarding the implantation rate, aspects regarding clinical pregnancy or live birth were considered for analysis. Results: the info from the studies was extracted and included in the meta-analysis. A part of the retrospective studies conducted after 2010 have highlighted a correlation between time-lapse parameters and embryo viability as defined by the developmental competence and subsequently by the confirmation of clinical pregnancy. Other authors undertook a critical appraisal on potential benefit time-lapse monitoring may bring to ART. Conclusion

  3. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mark Samson

    2014-10-01

    Full Text Available In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs, and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.

  4. 125 INCOMPLETE COMPENSATORY UP-REGULATION OF X-LINKED GENES IN BOVINE GERMLINE, EARLY EMBRYOS, AND SOMATIC TISSUES.

    Science.gov (United States)

    Duan, J; Jue, N K; Jiang, Z; O'Neill, R; Wolf, E; Blomberg, L A; Dong, H; Zheng, X; Chen, J; Tian, X

    2016-01-01

    compensation (or X: A ratio ≥ 1); RXE valuesmeiotic sex chromosome inactivation (MSCI) bring in inactive X chromosomes to the matured oocytes. Subsequently, the activation of the bovine embryonic genome at the 4- to 8-cell stage increased RXE from -0.54 to -0.05. This was followed by a sharp RXE decline from -0.02 at the 16-cell stage, 0.1 at the 32-cell stage to -0.29 at the compact morula stage, which is known as paternal X inactivation stage in the bovine. Finally, RXE was stabilised from blastocysts -0.19 through the Day 19 conceptuses -0.25 to somatic tissue average -0.21 with a pattern of incomplete X compensation. These findings support X expression up-regulation as proposed by Ohno. No significant RXE differences were observed between bovine female and male somatic tissues, further supporting Ohno's hypothesis, which predicts a balance in the expression of X-linked genes to that of autosomes. This study confirms Ohno's hypothesis of X dosage compensation in bovine germ cells, early embryos, and somatic tissues.

  5. Modification of secondary head-forming activity of microinjected ∆β-catenin mRNA by co-injected spermine and spermidine in Xenopus early embryos.

    Science.gov (United States)

    Mishina, Takamichi; Fuchimukai, Kota; Igarashi, Kazuei; Tashiro, Kosuke; Shiokawa, Koichiro

    2012-02-01

    Polyamines are essential for cell growth and differentiation. In Xenopus early embryos, per embryo level of spermine is extremely low as compared with that of spermidine. To disclose the possible function of polyamines in Xenopus early embryos, we tested the effect of co-injection of spermine and spermidine on the functioning of exogenously microinjected in vitro-synthesized, ∆β-catenin mRNA which is known to induce a secondary head after being microinjected into a ventral vegetal blastomere in 8-celled Xenopus embryos. Microinjection of ∆β-catenin mRNA in fact induced a secondary axis with a secondary head, and co-injection of spermine or spermidine suppresses induction of the secondary head and secondary axis without drastic effects like induction of immediate cell death or execution of apoptosis at blastula stage. The inhibitory effects were dosage dependent, and at lower doses the inhibition was mainly on secondary head formation rather than on secondary axis formation. We performed similar experiments using GFP mRNA and confirmed that expression of GFP mRNA was also suppressed by co-injection of spermine. We mixed ∆β-catenin mRNA with different amounts of spermine and performed electrophoresis on agarose gels, with a finding that the prior mixing greatly suppressed mRNA migration. These results suggest that an excess amount of spermine as well as spermidine exerts inhibitory effects on mRNA translation, and that the inhibition may be due to direct binding of polyamines to mRNA and a reduction of negative charges on mRNA molecules that might also induce the formation of cross link-like networks among mRNAs.

  6. Effects of exposure to the xenoestrogen octylphenol and subsequent transfer to clean water on liver and gonad ultrastructure during early development of Zoarces viviparus embryos.

    Science.gov (United States)

    Jespersen, Ase; Rasmussen, Tina H; Hirche, Majken; Sørensen, Kristine J K; Korsgaard, Bodil

    2010-08-01

    Female eelpouts (Zoarces viviparus L.) are exposed during early pregnancy to nominal concentrations of 100 microg/L of 4-tert-octylphenol (OP) or 0.5 microg/L of 17beta-estradiol (E2). Effects on maternal metabolism and on liver and gonad development in embryos were examined and compared with controls (C) during exposure and after transfer to clean water (depuration). In the mother fish, significantly higher concentrations of plasma vitellogenin (vtg) and calcium were found in the two exposed groups, when compared with the C group after exposure and depuration. When compared, however, with the respective values after exposure, vtg had decreased significantly after depuration. The hepatosomatic index was normalized after depuration. In both exposed groups, the hepatocytes were rounded and not distinctly polygonal as in the controls. The amount of glycogen was considerably less while the number of mitochondria increased, and the rER significantly proliferated after exposure as well as after depuration. The gonads of nine of more than 28 embryos in the group treated with OP exhibited a number of abnormalities as compared with the normal gonad development in both sexes. Feminization of the male gonads in the exposed specimens and a number of histopathological features were observed in all the abnormal gonads, whereas reliable male features, such as formation of seminiferous tubules or spermioduct, were not observed. This study showed that 4t-tert-OP and 17beta-estradiol exert estrogenic effects during very early development of the embryos and that depuration had a positive effect on the motherfish and her embryos.

  7. Sox17-dependent gene expression and early heart and gut development in Sox17-deficient mouse embryos.

    Science.gov (United States)

    Pfister, Sabine; Jones, Vanessa J; Power, Melinda; Truisi, Germaine L; Khoo, Poh-Lynn; Steiner, Kirsten A; Kanai-Azuma, Masami; Kanai, Yoshiakira; Tam, Patrick P L; Loebel, David A F

    2011-01-01

    Sox17 is a transcription factor that is required for maintenance of the definitive endoderm in mouse embryos. By expression profiling of wild-type and mutant embryos and Sox17-overexpressing hepatoma cells, we identified genes with Sox17-dependent expression. Among the genes that were up-regulated in Sox17-null embryos and down-regulated by Sox17 expressing HepG2 cells is a set of genes that are expressed in the developing liver, suggesting that one function of Sox17 is the repression of liver gene expression, which is compatible with a role for Sox17 in maintaining the definitive endoderm in a progenitor state. Consistent with these findings, Sox17(-/-) cells display a diminished capacity to contribute to the definitive endoderm when transplanted into wild-type hosts. Analysis of gene ontology further revealed that many genes related to heart development were downregulated in Sox17-null embryos. This is associated with the defective development of the heart in the mutant embryos, which is accompanied by localised loss of Myocd-expressing cardiogenic progenitors and the malformation of the anterior intestinal portal.

  8. Aurora-A is a critical regulator of microtubule assembly and nuclear activity in mouse oocytes, fertilized eggs, and early embryos.

    Science.gov (United States)

    Yao, Li-Juan; Zhong, Zhi-Sheng; Zhang, Li-Sheng; Chen, Da-Yuan; Schatten, Heide; Sun, Qing-Yuan

    2004-05-01

    Aurora-A is a serine/threonine protein kinase that plays a role in cell-cycle regulation. The activity of this kinase has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this study, the changes in aurora-;A expression were revealed in mouse oocytes using Western blotting. The subcellular localization of aurora-A during oocyte meiotic maturation, fertilization, and early cleavages as well as after antibody microinjection or microtubule assembly perturbance was studied with confocal microscopy. The quantity of aurora-A protein was high in the germinal vesicle (GV) and metaphase II (MII) oocytes and remained stable during other meiotic maturation stages. Aurora-A concentrated in the GV before meiosis resumption, in the pronuclei of fertilized eggs, and in the nuclei of early embryo blastomeres. Aurora-A was localized to the spindle poles of the meiotic spindle from the metaphase I (MI) stage to metaphase II stage. During early embryo development, aurora-A was found in association with the mitotic spindle poles. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. Aurora-A antibody microinjection decreased the rate of germinal vesicle breakdown (GVBD) and distorted MI spindle organization. Our results indicate that aurora-A is a critical regulator of cell-cycle progression and microtubule organization during mouse oocyte meiotic maturation, fertilization, and early embryo cleavage.

  9. The type of GnRH analogue used during controlled ovarian stimulation influences early embryo developmental kinetics

    DEFF Research Database (Denmark)

    Muñoz, Manuel; Cruz, María; Humaidan, Peter

    2013-01-01

    OBJECTIVE: To explore if the GnRH analogue used for controlled ovarian stimulation (COS) and the ovulation triggering factor (GnRH agonist+hCG triggering versus GnRH antagonist+GnRH agonist triggering) affect embryo development and kinetics. STUDY DESIGN: In a retrospective cohort study in the In......OBJECTIVE: To explore if the GnRH analogue used for controlled ovarian stimulation (COS) and the ovulation triggering factor (GnRH agonist+hCG triggering versus GnRH antagonist+GnRH agonist triggering) affect embryo development and kinetics. STUDY DESIGN: In a retrospective cohort study...... in the Instituto Valenciano de Infertilidad (IVI) Alicante and the Instituto Universitario-IVI Valencia, Spain, 2817 embryos deriving from 400 couples undergoing oocyte donation were analysed. After controlled ovarian stimulation and IVF/intracytoplamic sperm injection, the timing of embryonic cleavages...

  10. Oriented cell divisions in the extending germband of Drosophila.

    Science.gov (United States)

    da Silva, Sara Morais; Vincent, Jean-Paul

    2007-09-01

    Tissue elongation is a general feature of morphogenesis. One example is the extension of the germband, which occurs during early embryogenesis in Drosophila. In the anterior part of the embryo, elongation follows from a process of cell intercalation. In this study, we follow cell behaviour at the posterior of the extending germband. We find that, in this region, cell divisions are mostly oriented longitudinally during the fast phase of elongation. Inhibiting cell divisions prevents longitudinal deformation of the posterior region and leads to an overall reduction in the rate and extent of elongation. Thus, as in zebrafish embryos, cell intercalation and oriented cell division together contribute to tissue elongation. We also show that the proportion of longitudinal divisions is reduced when segmental patterning is compromised, as, for example, in even skipped (eve) mutants. Because polarised cell intercalation at the anterior germband also requires segmental patterning, a common polarising cue might be used for both processes. Even though, in fish embryos, both mechanisms require the classical planar cell polarity (PCP) pathway, germband extension and oriented cell divisions proceed normally in embryos lacking dishevelled (dsh), a key component of the PCP pathway. An alternative means of planar polarisation must therefore be at work in the embryonic epidermis.

  11. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2

    DEFF Research Database (Denmark)

    Rosenkilde, Carina; Cazzamali, Giuseppe; Williamson, Michael

    2003-01-01

    embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors...

  12. A potential determinant role of adiponectin and receptors for the early embryo development in PCOS patients with obesity hinted by quantitative profiling.

    Science.gov (United States)

    Zhang, Ning; Hao, Cuifang; Liu, Xiaoyan; Zhang, Shouxin; Zhang, Fengrong; Zhuang, Lili; Zhao, Dongmei

    2017-02-01

    To identify the quantitative profiling of adiponectin and its receptors (AdipoR1, AdipoR2, and T-cadherin) in cumulus cells (CCs) and to evaluate their roles in the early embryo development of polycystic ovary syndrome (PCOS) patients, in part, with obesity. Fifty-five subjects were divided into two groups according to the body mass index. Oocytes were further inseminated and only mature and normal fertilized oocytes (2PN) were included in this research. Real-time PCR and western blot were performed to identify adiponectin and its receptors in CCs. Adiponectin and receptors were ubiquitously expressed in CCs of PCOS and non-PCOS patients. The level of AdipoR2 in CCs from the oocytes yielding blastocyst after 5/6 days in vitro culture was markedly higher than in those from oocytes could not develop to blastocyst stage after Day 6, for non-obese or obese PCOS patients (0.1647 ± 0.0161 versus 0.0783 ± 0.0385, 0.1948 ± 0.0307 versus 0.1057 ± 0.0236, respectively, p adiponectin could positively modulate embryo development in humans. Further investigations should be carried out to unlock the crucial role that adiponectin plays in embryo development.

  13. Expression patterns of sex-determination genes in single male and female embryos of two Bactrocera fruit fly species during early development.

    Science.gov (United States)

    Morrow, J L; Riegler, M; Frommer, M; Shearman, D C A

    2014-12-01

    In tephritids, the sex-determination pathway follows the sex-specific splicing of transformer (tra) mRNA, and the cooperation of tra and transformer-2 (tra-2) to effect the sex-specific splicing of doublesex (dsx), the genetic double-switch responsible for male or female somatic development. The Dominant Male Determiner (M) is the primary signal that controls this pathway. M, as yet uncharacterized, is Y-chromosome linked, expressed in the zygote and directly or indirectly diminishes active TRA protein in male embryos. Here we first demonstrated the high conservation of tra, tra-2 and dsx in two Australian tephritids, Bactrocera tryoni and Bactrocera jarvisi. We then used quantitative reverse transcription PCR on single, sexed embryos to examine expression of the key sex-determination genes during early embryogenesis. Individual embryos were sexed using molecular markers located on the B. jarvisi Y-chromosome that was also introgressed into a B. tryoni line. In B. jarvisi, sex-specific expression of tra transcripts occurred between 3 to 6 h after egg laying, and the dsx isoform was established by 7 h. These milestones were delayed in B. tryoni lines. The results provide a time frame for transcriptomic analyses to identify M and its direct targets, plus information on genes that may be targeted for the development of male-only lines for pest management.

  14. Proteomic analysis of the early bovine yolk sac fluid and cells from the day 13 ovoid and elongated preimplatation embryos

    DEFF Research Database (Denmark)

    Jensen, Pernille L.; Beck, Hans Christian; Petersen, Tonny S.

    2014-01-01

    differentiate into the hypoblast and epiblast, which remain surrounded by the trophectoderm. The formation of the hypoblast epithelium is also accompanied by a change in the fluid within the embryo, i.e., the blastocoel fluid gradually alters to become the primitive yolk sac (YS) fluid. Our previous research...

  15. Early embryo invasion as a determinant in pea of the seed transmission of pea seed-borne mosaic virus.

    Science.gov (United States)

    Wang, D; Maule, A J

    1992-07-01

    Seed transmission of an isolate of pea seed-borne mosaic virus (PSbMV) in several pea genotypes has been studied. Cross-pollination experiments showed that pollen transmission of PSbMV did not occur and accordingly, virus was not detected in pollen grains by ELISA or electron microscopy. Comparative studies between two pea cultivars, one with a high incidence of seed transmission and one with none, showed that PSbMV infected the floral tissues (sepals, petals, anther and carpel) of both cultivars, but was not detected in ovules prior to fertilization. Virus was detected equally well in seed coats of the progeny in both cultivars. Analysis of virus incidence and concentration in pea seeds of different developmental stages demonstrated that in the cultivar with a high incidence of seed transmission, PSbMV directly invaded immature embryos, multiplied in the embryonic tissues and persisted during seed maturation. In contrast, the cultivar without seed transmission did not show invasion of immature embryos by the virus; there was no evidence for virus multiplication or persistence during embryo development and seed maturation. Hence seed transmission of PSbMV resulted from direct invasion of immature pea embryos by the virus and the block to seed transmission in the non-permissive cultivar probably occurred at this step.

  16. Transcriptional activity and nuclear localization of Cabut, the Drosophila ortholog of vertebrate TGF-β-inducible early-response gene (TIEG proteins.

    Directory of Open Access Journals (Sweden)

    Yaiza Belacortu

    Full Text Available BACKGROUND: Cabut (Cbt is a C(2H(2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs, which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein. METHODOLOGY/PRINCIPAL FINDINGS: To determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2. CONCLUSIONS/SIGNIFICANCE: Our results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the

  17. Characterization of the proximal region of the goat NANOG promoter that is used for monitoring cell reprogramming and early embryo development.

    Science.gov (United States)

    Guo, Yanjie; Lei, Lei; Ma, Xiaoling; Wang, Huayan

    2014-01-01

    Nanog is a key transcription regulatory molecule that plays an important role in maintaining stem cell pluripotency. However, the molecular features and transcription regulation of the NANOG gene in domestic animals are not well investigated. In this study, the 751-base pairs (bp) fragment of the proximal region of the goat NANOG promoter (GNP), which has a 572-bp promoter sequence retaining multiple transcription binding sites and a 179-bp 5' untranslated region of the goat NANOG gene, was cloned and characterized. The recombinant construct of pGNP-EGFP (enhanced green fluorescent protein) was solely activated in pluripotent cells and could be upregulated by the Oct4/Sox2 complex. The construct was stably transfected into goat fetal fibroblast (GFF) cells that were then used as the recipient cells to generate the induced pluripotent stem (iPS) cells. GNP-directed EGFP expression could be used to monitor the progression of cell reprogramming and the formation of iPS cells. The pGNP-EGFP construct was also delivered into goat oocytes cultured in vitro by microinjection. Interestingly, NANOG expression pattern in early stage goat embryos matured in vitro was asymmetrical. In two-cell embryos, the expression level of NANOG was uneven with one blastomere expressing EGFP and the next blastomere with no expression of EGFP. This was also observed in four-cell embryos. This asymmetrical expression may be due to the heterozygous expression of NANOG because of the quality of embryos and the culture environment. In conclusion, the GNP-EGFP reporter system represents a useful tool to monitor endogenous NANOG activation and for research with goat pluripotent stem cells.

  18. Early embryo achievement through isolated microspore culture in Citrus clementina Hort. ex Tan., cvs. ‘Monreal Rosso’ and ‘Nules’

    Directory of Open Access Journals (Sweden)

    Benedetta eChiancone

    2015-06-01

    Full Text Available Microspore embryogenesis is a method of achieving complete homozygosity from plants. It is particularly useful for woody species, like Citrus, characterized by long juvenility, a high degree of heterozygosity and often self-incompatibility. Anther culture is currently the method of choice for microspore embryogenesis in many crops. However, isolated microspore culture is a better way to investigate the processes at the cellular, physiological, biochemical and molecular levels as it avoids the influence of somatic anther tissue. To exploit the potential of this technique, it is important to separate the key factors affecting the process and, among them, culture medium composition and particularly the plant growth regulators and their concentration, as they can greatly enhance regeneration efficiency. To our knowledge, the ability of meta-Topolin, a naturally occurring aromatic cytokinin, to induce gametic embryogenesis in isolated microspores of Citrus has never been investigated. In this study, the effect of two concentrations of meta-Topolin instead of benzyladenine or zeatin in the culture medium was investigated in isolated microspore culture of two genotypes of Citrus. After eleven months of isolated microspore culture, for both genotypes and for all the four tested media, the microspore reprogramming and their sporophytic development was observed by the presence of multinucleated calli and microspore-derived embryos at different stages. Microsatellite analysis of parental and embryo samples was performed to determine the embryo alleles constitution of early embryos produced in all tested media, confirming their origin from microspores.To our knowledge, this is the first successful report of Citrus microspore embryogenesis with isolated microspore culture in Citrus, and in particular in Citrus clementina Hort. ex Tan, cvs. ‘Monreal Rosso’ and ‘Nules’.

  19. TGF-β/Smad2/3 signaling directly regulates several miRNAs in mouse ES cells and early embryos.

    Directory of Open Access Journals (Sweden)

    Nicholas Redshaw

    Full Text Available The Transforming Growth Factor-β (TGF-β signaling pathway is one of the major pathways essential for normal embryonic development and tissue homeostasis, with anti-tumor but also pro-metastatic properties in cancer. This pathway directly regulates several target genes that mediate its downstream functions, however very few microRNAs (miRNAs have been identified as targets. miRNAs are modulators of gene expression with essential roles in development and a clear association with diseases including cancer. Little is known about the transcriptional regulation of the primary transcripts (pri-miRNA, pri-miR from which several mature miRNAs are often derived. Here we present the identification of miRNAs regulated by TGF-β signaling in mouse embryonic stem (ES cells and early embryos. We used an inducible ES cell system to maintain high levels of the TGF-β activated/phosphorylated Smad2/3 effectors, which are the transcription factors of the pathway, and a specific inhibitor that blocks their activation. By performing short RNA deep-sequencing after 12 hours Smad2/3 activation and after 16 hours inhibition, we generated a database of responsive miRNAs. Promoter/enhancer analysis of a subset of these miRNAs revealed that the transcription of pri-miR-181c/d and the pri-miR-341∼3072 cluster were found to depend on activated Smad2/3. Several of these miRNAs are expressed in early mouse embryos, when the pathway is known to play an essential role. Treatment of embryos with TGF-β inhibitor caused a reduction of their levels confirming that they are targets of this pathway in vivo. Furthermore, we showed that pri-miR-341∼3072 transcription also depends on FoxH1, a known Smad2/3 transcription partner during early development. Together, our data show that miRNAs are regulated directly by the TGF-β/Smad2/3 pathway in ES cells and early embryos. As somatic abnormalities in functions known to be regulated by the TGF-β/Smad2/3 pathway underlie tumor

  20. Ubiquitous overexpression of a transgene encoding the extracellular portion of the Drosophila Roughest-Irregular Chiasm C protein induces early embryonic lethality

    Directory of Open Access Journals (Sweden)

    LIVIA MODA

    2000-09-01

    Full Text Available The cell adhesion molecule Rst-irreC is a transmembrane glycoprotein of the immunoglobulin superfamily involved in several important developmental processes in Drosophila, including axonal pathfinding in the optic lobe and programmed cell death and pigment cell differentiation in the pupal retina. As an initial step towards the "in vivo'' functional analysis of this protein we have generated transgenic fly stocks carrying a truncated cDNA construct encoding only the extracellular domain of Rst-IrreC under the transcriptional control of the heat shock inducible promoter hsp70. We show that heat-shocking embryos bearing the transgene during the first 8hs of development lead to a 3-4 fold reduction in their viability compared to wild type controls. The embryonic lethality can already be produced by applying the heat pulse in the first 3hs of embryonic development, does not seem to be suppressed in the absence of wildtype product and is progressively reduced as the heat treatment is applied later in embryogenesis. These results are compatible with the hypothesis of the lethal phenotype being primarily due to heterophilic interactions between Rst-IrreC extracellular domain and an yet unknown ligand.

  1. Collective synchronization of divisions in Drosophila development

    Science.gov (United States)

    Vergassola, Massimo

    Mitoses in the early development of most metazoans are rapid and synchronized across the entire embryo. While diffusion is too slow, in vitro experiments have shown that waves of the cell-cycle regulator Cdk1 can transfer information rapidly across hundreds of microns. However, the signaling dynamics and the physical properties of chemical waves during embryonic development remain unclear. We develop FRET biosensors for the activity of Cdk1 and the checkpoint kinase Chk1 in Drosophila embryos and exploit them to measure waves in vivo. We demonstrate that Cdk1 chemical waves control mitotic waves and that their speed is regulated by the activity of Cdk1 during the S-phase (and not mitosis). We quantify the progressive slowdown of the waves with developmental cycles and identify its underlying control mechanism by the DNA replication checkpoint through the Chk1/Wee1 pathway. The global dynamics of the mitotic signaling network illustrates a novel control principle: the S-phase activity of Cdk1 regulates the speed of the mitotic wave, while the Cdk1 positive feedback ensures an invariantly rapid onset of mitosis. Mathematical modeling captures the speed of the waves and predicts a fundamental distinction between the S-phase Cdk1 trigger waves and the mitotic phase waves, which is illustrated by embryonic ablation experiments. In collaboration with Victoria Deneke1, Anna Melbinger2, and Stefano Di Talia1 1 Department of Cell Biology, Duke University Medical Center 2 Department of Physics, University of California San Diego.

  2. Early Morphokinetic Monitoring of Embryos after Intracytoplasmic Sperm Injection with Fresh Ejaculate Sperm in Nonmosaic Klinefelter Syndrome: A Different Presentation

    Directory of Open Access Journals (Sweden)

    Ali Sami Gurbuz

    2015-01-01

    Full Text Available The patient was diagnosed with nonmosaic 47, XXY Klinefelter Syndrome with the AZF deletion absent and SRY+. The nonmosaic 47, XXY karyotype was confirmed on a skin biopsy chromosomal analysis. Using only ejaculate motile sperms, 11 oocytes underwent ICSI and were placed rapidly in a time lapse (Embryoscope © with a specific culture dish. Biopsies were performed on six embryos on the 3rd day, and numerical chromosomal abnormalities were observed using the FISH test before transfer. PGS results were normal in only two embryos with normal morphokinetics in the Embryoscope. For clinical confirmation of pregnancy, ultrasonographic examination was performed during the 7th week of pregnancy, and two gestational sacs and fetal heart beat were observed.

  3. Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L

    OpenAIRE

    2014-01-01

    Background: In Quercus suber, cork oak, a Mediterranean forest tree of economic and social interest, rapid production of isogenic lines and clonal propagation of elite genotypes have been achieved by developing in vitro embryogenesis from microspores and zygotic embryos respectively. Despite its high potential in tree breeding strategies, due to their recalcitrancy, the efficiency of embryogenesis in vitro systems in many woody species is still very low since factors responsible for embryogen...

  4. Divergent actions of long noncoding RNAs on X-chromosome remodelling in mammals and Drosophila achieve the same end result: dosage compensation

    Indian Academy of Sciences (India)

    Subhash C. Lakhotia

    2015-12-01

    Organisms with heterochromatic sex chromosomes need to compensate for differences in dosages of the sex chromosome-linked genes that have somatic functions. In-depth cytological and subsequent biochemical and molecular studies on dosage compensation started with Mary F. Lyon’s proposal in early 1960s that the Barr body in female mammalian somatic cells represented one of the randomly inactivated and heterochromatinized X chromosomes. In contrast, Drosophila was soon shown to achieve dosage compensation through hypertranscription of single X in male whose chromatin remains more open. Identification of proteins that remodel chromatin either to cause one of the two X chromosomes in somatic cells of very early female mammalian embryos to become condensed and inactive or to remodel the single X in male Drosophila embryos to a more open state for hypertranscription provided important insights into the underlying cellular epigenetic processes. However, the most striking and unexpected discoveries were the identification of long noncoding RNAs (lncRNAs), X- inactive specific transcript (Xist) in mammals and roX1/2 in Drosophila, which were essential for achieving the contrasting chromatin organizations but leading to similar end result in terms of dosage compensation of X-linked genes in females and males. An overview of the processes of X inactivation or hyperactivation in mammals and Drosophila, respectively, and the roles played by Xist, roX1/2 and other lncRNAs in these events is presented.

  5. Cloning and expression of Xenopus Prickle, an orthologue of a Drosophila planar cell polarity gene.

    Science.gov (United States)

    Wallingford, John B; Goto, Toshiyasu; Keller, Ray; Harland, Richard M

    2002-08-01

    We have cloned Xenopus orthologues of the Drosophila planar cell polarity (PCP) gene Prickle. Xenopus Prickle (XPk) is expressed in tissues at the dorsal midline during gastrulation and early neurulation. XPk is later expressed in a segmental pattern in the presomitic mesoderm and then in recently formed somites. XPk is also expressed in the tailbud, pronephric duct, retina, and the otic vesicle. The complex expression pattern of XPk suggests that PCP signaling is used in a diverse array of developmental processes in vertebrate embryos.

  6. Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis.

    Science.gov (United States)

    Urbano, Jose M; Torgler, Catherine N; Molnar, Cristina; Tepass, Ulrich; López-Varea, Ana; Brown, Nicholas H; de Celis, Jose F; Martín-Bermudo, Maria D

    2009-12-01

    Laminins are heterotrimeric molecules found in all basement membranes. In mammals, they have been involved in diverse developmental processes, from gastrulation to tissue maintenance. The Drosophila genome encodes two laminin alpha chains, one beta and one Gamma, which form two distinct laminin trimers. So far, only mutations affecting one or other trimer have been analysed. In order to study embryonic development in the complete absence of laminins, we mutated the gene encoding the sole laminin beta chain in Drosophila, LanB1, so that no trimers can be made. We show that LanB1 mutant embryos develop until the end of embryogenesis. Electron microscopy analysis of mutant embryos reveals that the basement membranes are absent and the remaining extracellular material appears disorganised and diffuse. Accordingly, abnormal accumulation of major basement membrane components, such as Collagen IV and Perlecan, is observed in mutant tissues. In addition, we show that elimination of LanB1 prevents the normal morphogenesis of most organs and tissues, including the gut, trachea, muscles and nervous system. In spite of the above structural roles for laminins, our results unravel novel functions in cell adhesion, migration and rearrangement. We propose that while an early function of laminins in gastrulation is not conserved in Drosophila and mammals, their function in basement membrane assembly and organogenesis seems to be maintained throughout evolution.

  7. Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development.

    Science.gov (United States)

    Bury, Frédéric J; Moers, Virginie; Yan, Jiekun; Souopgui, Jacob; Quan, Xiao-Jiang; De Geest, Natalie; Kricha, Sadia; Hassan, Bassem A; Bellefroid, Eric J

    2008-11-01

    BBP proteins constitute a subclass of CUL3 interacting BTB proteins whose in vivo function remains unknown. Here, we show that the Xenopus BBP gene BTBD6 and the single Drosophila homologue of mammalian BBP genes lute are strongly expressed in the developing nervous system. In Xenopus, BTBD6 expression responds positively to proneural and negatively to neurogenic gene overexpression. Knockdown of BTBD6 in Xenopus or loss of Drosophila lute result in embryos with strong defects in late neuronal markers and strongly reduced and disorganized axons while early neural development is unaffected. XBTBD6 knockdown in Xenopus also affects muscle development. Together, these data indicate that BTBD6/lute is required for proper embryogenesis and plays an essential evolutionary conserved role during neuronal development.

  8. Drosophila S2 cells are non-permissive for vaccinia virus DNA replication following entry via low pH-dependent endocytosis and early transcription.

    Directory of Open Access Journals (Sweden)

    Zain Bengali

    Full Text Available Vaccinia virus (VACV, a member of the chordopox subfamily of the Poxviridae, abortively infects insect cells. We have investigated VACV infection of Drosophila S2 cells, which are useful for protein expression and genome-wide RNAi screening. Biochemical and electron microscopic analyses indicated that VACV entry into Drosophila S2 cells depended on the VACV multiprotein entry-fusion complex but appeared to occur exclusively by a low pH-dependent endocytic mechanism, in contrast to both neutral and low pH entry pathways used in mammalian cells. Deep RNA sequencing revealed that the entire VACV early transcriptome, comprising 118 open reading frames, was robustly expressed but neither intermediate nor late mRNAs were made. Nor was viral late protein synthesis or inhibition of host protein synthesis detected by pulse-labeling with radioactive amino acids. Some reduction in viral early proteins was noted by Western blotting. Nevertheless, synthesis of the multitude of early proteins needed for intermediate gene expression was demonstrated by transfection of a plasmid containing a reporter gene regulated by an intermediate promoter. In addition, expression of a reporter gene with a late promoter was achieved by cotransfection of intermediate genes encoding the late transcription factors. The requirement for transfection of DNA templates for intermediate and late gene expression indicated a defect in viral genome replication in VACV-infected S2 cells, which was confirmed by direct analysis. Furthermore, VACV-infected S2 cells did not support the replication of a transfected plasmid, which occurs in mammalian cells and is dependent on all known viral replication proteins, indicating a primary restriction of DNA synthesis.

  9. Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila.

    Science.gov (United States)

    Riebli, Nadia; Viktorin, Gudrun; Reichert, Heinrich

    2013-04-23

    The central complex is a multimodal information-processing center in the insect brain composed of thousands of neurons representing more than 50 neural types arranged in a stereotyped modular neuroarchitecture. In Drosophila, the development of the central complex begins in the larval stages when immature structures termed primordia are formed. However, the identity and origin of the neurons that form these primordia and, hence, the fate of these neurons during subsequent metamorphosis and in the adult brain, are unknown. Here, we used two pointed-Gal4 lines to identify the neural cells that form the primordium of the fan-shaped body, a major component of the Drosophila central complex. We found that these early-born primordium neurons are generated by four identified type II neuroblasts that amplify neurogenesis through intermediate progenitors, and we demonstrate that these neurons generate the fan-shaped body primordium during larval development in a highly specific manner. Moreover, we characterize the extensive growth and differentiation that these early-born primordium neurons undergo during metamorphosis in pupal stages and show that these neurons persist in the adult central complex, where they manifest layer-specific innervation of the mature fan-shaped body. Taken together, these findings indicate that early-born neurons from type II neuroblast lineages have dual roles in the development of a complex brain neuropile. During larval stages they contribute to the formation of a specific central complex primordium; during subsequent pupal development they undergo extensive growth and differentiation and integrate into the modular circuitry of the adult brain central complex.

  10. Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene

    OpenAIRE

    Michalko, Jaroslav; Dravecká, Marta; Bollenbach, Tobias; Friml, Jiří

    2015-01-01

    The Auxin Binding Protein1 (ABP1) has been identified based on its ability to bind auxin with high affinity and studied for a long time as a prime candidate for the extracellular auxin receptor responsible for mediating in particular the fast non-transcriptional auxin responses. However, the contradiction between the embryo-lethal phenotypes of the originally described Arabidopsis T-DNA insertional knock-out alleles (abp1-1 and abp1-1s) and the wild type-like phenotypes of other recently desc...

  11. Early antenatal diagnosis of spina bifida presenting with a "step" in the posterior contour of an 8-week embryo.

    Science.gov (United States)

    Lulla, Chander; Hegde, Amogh; Shah, Jatin; Sheth, Jayesh

    2008-01-01

    We report a case of spina bifida in the upper thoracic spine with an accompanying meningocoele suspected at 8 weeks' gestation via transvaginal sonography and confirmed at 13 weeks' gestation via 3-dimensional sonography. The fetal cranial vault and intracranial structures were normal. The only finding in the 8-week sonogram was a subtle angulation or "step" in the posterior contour of the embryo; this may be attributed to kyphosis, which often accompanies this condition. The presence of a "step" in the fetal contour must alert the sonologist to the possibility of spina bifida. To our knowledge, this is the earliest antenatal diagnosis of spina bifida. (c) 2007 Wiley Periodicals, Inc.

  12. Superovulation and Development of Early-Stage Embryo in Rabbits%家兔超数排卵与早期胚胎发育研究

    Institute of Scientific and Technical Information of China (English)

    林峰; 孙克宁; 陈玉霞; 杨婷; 高汉婷; 高腾云

    2011-01-01

    为了提高家兔繁殖力,使用不同剂量的FSH对家兔进行了超数排卵研究,结果表明:采用高剂量FSH处理母兔的平均排卵点数与平均卵泡发育数显著(P<0.05)高于低剂量FSH组,两种处理方法的平均卵泡囊肿数与平均卵泡数则差异不显著(P>0.05).家兔早期胚胎发育观察结果表明:母兔交配后24 h采胚所获取的胚胎大多处于1细胞期,交配后30 h胚胎多处于2细胞期,交配后35 h胚胎多处于4细胞期.采用52IU FSH进行超数排卵处理,对家兔的胚胎发育无影响.%The method of superovulation in rabbits was studied by using different dosages of FSH in order to improve their reproductive ability. The results showed that the average number of the ovulation points and the developed follicles on the ovaries of the does used the high dosage of FSH was obviously higher (F0. 05). The observating results of early-stage embryos' development also indicated that most of the collected embryos were in 1-cell stage during 24 hours after the does were accepted mating, and in 2-cell stage during 30 hours after mating and in 4-cell stage during 35 hours after mating. The dosage of 52IU FSH didn't influence the embryos' development of the rabbits when it was applied to conduct their superovulation treatment.

  13. Subtractive and differential hybridization molecular analyses of Ceratitis capitata XX/XY versus XX embryos to search for male-specific early transcribed genes.

    Science.gov (United States)

    Salvemini, Marco; D'Amato, Rocco; Petrella, Valeria; Ippolito, Domenica; Ventre, Giuseppe; Zhang, Ying; Saccone, Giuseppe

    2014-01-01

    The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, is a fruit crop pest of very high economic relevance in different continents. The strategy to separate Ceratitis males from females (sexing) in mass rearing facilities is a useful step before the sterilization and release of male-only flies in Sterile Insect Technique control programs (SIT). The identification of genes having early embryonic male-specific expression, including Y-linked genes, such as the Maleness factor, could help to design novel and improved methods of sexing in combination with transgenesis, aiming to confer conditional female-specific lethality or female-to-male sexual reversal. We used a combination of Suppression Subtractive Hybrydization (SSH), Mirror Orientation Selection (MOS) anddifferential screening hybridization (DSH) techniques to approach the problem of isolating corresponding mRNAs expressed in XX/XY embryos versus XX-only embryos during a narrow developmental window (8-10 hours after egg laying, AEL ). Here we describe a novel strategy we have conceived to obtain relatively large amounts of XX-only embryos staged at 8-10 h AEL and so to extract few micrograms of polyA+ required to apply the complex technical procedure. The combination of these 3 techniques led to the identification of a Y-linked putative gene, CcGm2, sharing high sequence identity to a paralogous gene, CcGm1, localized either on an autosome or on the X chromosome. We propose that CcGm2 is a first interesting putative Y-linked gene which could play a role in sex determination. The function exterted by this gene should be investigated by novel genetic tools, such as CRISPR-CAS9, which will permit to target only the Y-linked paralogue, avoiding to interfere with the autosomal or X-linked paralogue function.

  14. Qualitative and quantitative characteristic ofthe population of mesenchymal cells in structural components from conotruncal region of the embryo heart on its early hystogenesis

    Directory of Open Access Journals (Sweden)

    Dyagovets K.I.

    2012-01-01

    Full Text Available Character of the distribution of the mesenchymal’s cellspopulation was analysed during the early hystogenesis of the conotruncal region of the mouse embr yo heart. Conotruncalregion is the predecessor of the proximal part of the aorta and pulmonary trunk, of the aortic ruff and conus arteriosus and semilunar valves. Violation of its transformations leading to the formation of congenital heart disease,which named «conotruncal defects». The material was used embryos mice by the C57BL / 6 line, which covers the period of from 10 to 12.5th day, which corresponded to a 16-21 Teilor stages. Quantify the planar and volumetric distribution of a population of mesenchymal stem cells conotruncus’s pillows and ridges by the original method; on the basis of serial pictures of embryo heart with the use of the computer providing Photoshop Cs5, Amira of for microscopy 5.0, 3ds max 8.0, we created the three-dimensional models of structural components of the conotruncus embryonic mouse heart. During this research noted the phased settlement condensed esenchymal stem fraction first and then tapered sections, given the qualitative and quantitative assessment of the distribution of the conotruncus’s mesenchyme embryonic mouse heart.

  15. The antioxidative properties of S-allyl cysteine not only influence somatic cells but also improve early embryo cleavage in pigs

    Directory of Open Access Journals (Sweden)

    Markéta Dvořáková

    2016-08-01

    Full Text Available In vitro cultivation systems for oocytes and embryos are characterised by increased levels of reactive oxygen species (ROS, which can be balanced by the addition of suitable antioxidants. S-allyl cysteine (SAC is a sulfur compound naturally occurring in garlic (Allium sativum, which is responsible for its high antioxidant properties. In this study, we demonstrated the capacity of SAC (0.1, 0.5 and 1.0 mM to reduce levels of ROS in maturing oocytes significantly after 24 (reduced by 90.33, 82.87 and 91.62%, respectively and 48 h (reduced by 86.35, 94.42 and 99.05%, respectively cultivation, without leading to a disturbance of the standard course of meiotic maturation. Oocytes matured in the presence of SAC furthermore maintained reduced levels of ROS even 22 h after parthenogenic activation (reduced by 66.33, 61.64 and 57.80%, respectively. In these oocytes we also demonstrated a growth of early embryo cleavage rate (increased by 33.34, 35.00 and 35.00%, respectively. SAC may be a valuable supplement to cultivation media.

  16. [Temperature control of the crossing-over frequency in Drosophila melanogaster. Effect of infra- and super-optimal shock temperatures in early ontogenesis on the recombination frequency].

    Science.gov (United States)

    Grushko, T A; Korochkina, S E; Klimenko, V V

    1991-10-01

    Effect of temperature shock treatments (0 and 37 degrees C) in early ontogenesis on recombination frequency was studied in two strains of Drosophila X1 and X2. Recombination frequency under treatment with temperature of 0 degrees C and 37 degrees C (shock treatment), as well as at 14 degrees C and 29 degrees C nonshock treatment was found to be dependent on strain genotype, the chromosomal segments under consideration, developmental stage and the age of individuals analysed. Shock treatments usually increase recombination frequency, whereas nonshock treatments lead to unstable and variable recombination frequencies. A concept of ontogenic homeostasis of recombination has been introduced. It is assumed that the effect of temperature treatments on recombination frequency is indirect--i.e. physiologically mediated.

  17. Drosophila X-Linked Genes Have Lower Translation Rates than Autosomal Genes.

    Science.gov (United States)

    Zhang, Zhenguo; Presgraves, Daven C

    2016-02-01

    In Drosophila, X-linked and autosomal genes achieve comparable expression at the mRNA level. Whether comparable X-autosome gene expression is realized at the translational and, ultimately, the protein levels is, however, unknown. Previous studies suggest the possibility of higher translation rates for X-linked genes owing to stronger usage of preferred codons. In this study, we use public ribosome profiling data from Drosophila melanogaster to infer translation rates on the X chromosome versus the autosomes. We find that X-linked genes have consistently lower ribosome densities than autosomal genes in S2 cells, early embryos, eggs, and mature oocytes. Surprisingly, the lower ribosome densities of X-linked genes are not consistent with faster translation elongation but instead imply slower translation initiation. In particular, X-linked genes have sequence features known to slow translation initiation such as stronger mRNA structure near start codons and longer 5'-UTRs. Comparison to outgroup species suggests that stronger mRNA structure is an evolved feature of Drosophila X chromosomes. Finally, we find that the magnitude of the X-autosome difference in ribosome densities is smaller for genes encoding members of protein complexes, suggesting that stoichiometry constrains the evolution of translation rates. In sum, our analyses suggest that Drosophila X-linked genes have evolved lower translation rates than autosomal genes despite stronger usage of preferred codons.

  18. The developmental transcriptome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    . Whereas, 20% of Drosophila genes are annotated as encoding alternatively spliced premRNAs, splice-junction microarray experiments indicate that this number is at least 40% (ref. 7). Determining the diversity of mRNAs generated by alternative promoters, alternative splicing and RNA editing will substantially increase the inferred protein repertoire. Non-coding RNA genes (ncRNAs) including short interfering RNAs (siRNAs) and microRNAS (miRNAs) (reviewed in ref. 10), and longer ncRNAs such as bxd (ref. 11) and rox (ref. 12), have important roles in gene regulation, whereas others such as small nucleolar RNAs (snoRNAs)and small nuclear RNAs (snRNAs) are important components of macromolecular machines such as the ribosome and spliceosome. The transcription and processing of these ncRNAs must also be fully documented and mapped. As part of the modENCODE project to annotate the functional elements of the D. melanogaster and Caenorhabditis elegans genomes, we used RNA-Seq and tiling microarrays to sample the Drosophila transcriptome at unprecedented depth throughout development from early embryo to ageing male and female adults. We report on a high-resolution view of the discovery, structure and dynamic expression of the D. melanogaster transcriptome.

  19. A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data

    Directory of Open Access Journals (Sweden)

    Xinghua Lou

    2014-03-01

    Full Text Available Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses.

  20. The effect of methylmercury exposure on early central nervous system development in the zebrafish (Danio rerio) embryo.

    Science.gov (United States)

    Hassan, S A; Moussa, E A; Abbott, L C

    2012-09-01

    Much attention is focused on environmental contamination by heavy metals. The heavy metal mercury is found worldwide and is ranked number 3 on the Comprehensive Environmental Response, Compensation and Liability Act substance list. We examined the effect of low-level methylmercury exposure on central nervous system development of wild-type zebrafish embryos (ZFEs) of the AB strain because methylmercury is the most common form of mercury to which humans are exposed in the environment. ZFEs were exposed to nine different concentrations of methylmercury [0 (negative control), 5, 10, 50, 80, 100, 200, 500 and 1000 parts per billion (μg l(-1) )] starting at 6 h post-fertilization, which is the time the neural tube is first beginning to form. ZFEs were exposed to 2% ethanol as positive controls (100% embryonic death). ZFEs were assessed at 30, 54, 72 and 96 h post-fertilization for changes in embryonic development, mortality, time of hatching and morphological deformities. No abnormalities were observed in ZFEs exposed to 5 μg l(-1) methylmercury. The time of hatching from the chorion was delayed in ZFEs exposed to methylmercury concentrations of 50 μg l(-1) or higher. Significantly more ZFEs exposed to 0, 5 or 10 μg l(-1) methylmercury successfully completed hatching compared with ZFEs exposed to 50 μg l(-1) or higher methylmercury. ZFEs exposed to more than 200 μg l(-1) methylmercury exhibited 100% embryonic mortality. The rate of cell proliferation within the neural tube was significantly decreased in embryos exposed to 10, 50 and 80 μg l(-1) methylmercury and there were no differences between these doses.

  1. Comparative proteomic analysis of embryos between a maize hybrid and its parental lines during early stages of seed germination.

    Directory of Open Access Journals (Sweden)

    Baojian Guo

    Full Text Available In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. It was observed that maize hybrid Zong3/87-1 exhibited an earlier onset or heterosis in radicle emergence. To get insights into the underlying mechanism of heterosis in radicle emergence, differential proteomic analysis between hybrid and its parental lines was performed. In total, the number of differentially expressed protein spots between hybrid and its parental lines in dry and 24 h imbibed seed embryos were 134 and 191, respectively, among which 47.01% (63/134 and 34.55% (66/191 protein spots displayed nonadditively expressed pattern. Remarkably, 54.55% of nonadditively accumulated proteins in 24 h imbibed seed embryos displayed above or equal to the level of the higher parent patterns. Moreover, 155 differentially expressed protein spots were identified, which were grouped into eight functional classes, including transcription & translation, energy & metabolism, signal transduction, disease & defense, storage protein, transposable element, cell growth & division and unclassified proteins. In addition, one of the upregulated proteins in F1 hybrids was ZmACT2, a homolog of Arabidopsis thaliana ACT7 (AtACT7. Expressing ZmACT2 driven by the AtACT7 promoter partially complemented the low germination phenotype in the Atact7 mutant. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of proteins, and it is concluded that the altered pattern of gene expression at translational level in the hybrid may be responsible for the observed heterosis.

  2. The fate of the mosaic embryo : chromosomal constitution and development of Day 4, 5 and 8 human embryos

    NARCIS (Netherlands)

    Santos, Margarida Avo; Teklenburg, Gijs; Macklon, Nick S.; Van Opstal, Diane; Schuring-Blom, G. Heleen; Krijtenburg, Pieter-Jaap; de Vreeden-Elbertse, Johanna; Fauser, Bart C.; Baart, Esther B.

    2010-01-01

    Post-zygotic chromosome segregation errors are very common in human embryos after in vitro fertilization, resulting in mosaic embryos. However, the significance of mosaicism for the developmental potential of early embryos is unknown. We assessed chromosomal constitution and development of embryos f

  3. A software tool to model genetic regulatory networks. Applications to the modeling of threshold phenomena and of spatial patterning in Drosophila.

    Directory of Open Access Journals (Sweden)

    Rui Dilão

    Full Text Available We present a general methodology in order to build mathematical models of genetic regulatory networks. This approach is based on the mass action law and on the Jacob and Monod operon model. The mathematical models are built symbolically by the Mathematica software package GeneticNetworks. This package accepts as input the interaction graphs of the transcriptional activators and repressors of a biological process and, as output, gives the mathematical model in the form of a system of ordinary differential equations. All the relevant biological parameters are chosen automatically by the software. Within this framework, we show that concentration dependent threshold effects in biology emerge from the catalytic properties of genes and its associated conservation laws. We apply this methodology to the segment patterning in Drosophila early development and we calibrate the genetic transcriptional network responsible for the patterning of the gap gene proteins Hunchback and Knirps, along the antero-posterior axis of the Drosophila embryo. In this approach, the zygotically produced proteins Hunchback and Knirps do not diffuse along the antero-posterior axis of the embryo of Drosophila, developing a spatial pattern due to concentration dependent thresholds. This shows that patterning at the gap genes stage can be explained by the concentration gradients along the embryo of the transcriptional regulators.

  4. Structure and implied functions of truncated B-cell receptor mRNAs in early embryo and adult mesenchymal stem cells: Cdelta replaces Cmu in mu heavy chain-deficient mice.

    Science.gov (United States)

    Lapter, Smadar; Livnat, Idit; Faerman, Alexander; Zipori, Dov

    2007-03-01

    Stem cells exhibit a promiscuous gene expression pattern. We show herein that the early embryo and adult MSCs express B-cell receptor component mRNAs. To examine possible bearings of these genes on the expressing cells, we studied immunoglobulin mu chain-deficient mice. Pregnant mu chain-deficient females were found to produce a higher percentage of defective morulae compared with control females. Structure analysis indicated that the mu mRNA species found in embryos and in mesenchyme consist of the constant region of the mu heavy chain that encodes a recombinant 50-kDa protein. In situ hybridization localized the constant mu gene expression to loose mesenchymal tissues within the day-12.5 embryo proper and the yolk sac. In early embryo and in adult mesenchyme from mu-deficient mice, delta replaced mu chain, implying a possible requirement of these alternative molecules for embryo development and mesenchymal functions. Indeed, overexpression of the mesenchymal-truncated mu heavy chain in 293T cells resulted in specific subcellular localization and in G(1) growth arrest. The lack of such occurrence following overexpression of a complete, rearranged form of mu chain suggests that the mesenchymal version of this mRNA may possess unique functions.

  5. Bruchpilot in ribbon-like axonal agglomerates, behavioral defects, and early death in SRPK79D kinase mutants of Drosophila.

    Directory of Open Access Journals (Sweden)

    Vanessa Nieratschker

    2009-10-01

    Full Text Available Defining the molecular structure and function of synapses is a central theme in brain research. In Drosophila the Bruchpilot (BRP protein is associated with T-shaped ribbons ("T-bars" at presynaptic active zones (AZs. BRP is required for intact AZ structure and normal evoked neurotransmitter release. By screening for mutations that affect the tissue distribution of Bruchpilot, we have identified a P-transposon insertion in gene CG11489 (location 79D which shows high homology to mammalian genes for SR protein kinases (SRPKs. SRPKs phosphorylate serine-arginine rich splicing factors (SR proteins. Since proteins expressed from CG11489 cDNAs phosphorylate a peptide from a human SR protein in vitro, we name CG11489 the Drosophila Srpk79D gene. We have characterized Srpk79D transcripts and generated a null mutant. Mutation of the Srpk79D gene causes conspicuous accumulations of BRP in larval and adult nerves. At the ultrastructural level, these correspond to extensive axonal agglomerates of electron-dense ribbons surrounded by clear vesicles. Basic synaptic structure and function at larval neuromuscular junctions appears normal, whereas life expectancy and locomotor behavior of adult mutants are significantly impaired. All phenotypes of the mutant can be largely or completely rescued by panneural expression of SRPK79D isoforms. Isoform-specific antibodies recognize panneurally overexpressed GFP-tagged SRPK79D-PC isoform co-localized with BRP at presynaptic active zones while the tagged -PB isoform is found in spots within neuronal perikarya. SRPK79D concentrations in wild type apparently are too low to be revealed by these antisera. We propose that the Drosophila Srpk79D gene characterized here may be expressed at low levels throughout the nervous system to prevent the assembly of BRP containing agglomerates in axons and maintain intact brain function. The discovery of an SR protein kinase required for normal BRP distribution calls for the

  6. Distribution of some Glycoconjugates in the Notochord and Developing Gut during Early Morphogenesis in Balb/c Mouse Embryos

    Directory of Open Access Journals (Sweden)

    Mohammad M. Hassanzadeh-Taheri

    2012-03-01

    Full Text Available Background: Embryonic endoderm germinal layer, affected by notochord inductions, forms the primary gut epithelium and parenchyma of its derived organs. This study aims to determine some expressed glycoconjugates and their potential function in notochord and developing gut.Materials and Methods : In this descriptive-analytical study, 9 and 10 embryonic days (ED of Balb/c mouse embryos were fixed in formalin and microscopic sections were prepared from them. These sections were processed for histochemical studies and then they were incubated with 6 different HRP conjugated lectins, including VVA, SBA, and PNA specific to identify terminal sugar (N-acetylgalactosamine (GalNac and lectins of GSA1-B4, LTA and WGA were respectively to identify the terminal sugars of galactose, fructose and sialic acid.Results: The study results showed that the reactions of notochord and developing gut to VVA lectin were moderate on the 9ED and on the 10ED, they showed a significant difference (p < 0.001 from the day before and were severely assessed. Other GalNac specific lectins react severely and almost similarly to notochord and developing gut on the studied days. The other lectins in these two organs did not react similarly.Conclusion: According to the findings of this study, it seems that glycoconjugates with GalNac-terminal sugar probably have played a key role in differentiations of notochord and developing gut and may be involved in the interactions between these two organs.

  7. Initial neurogenesis in Drosophila

    OpenAIRE

    Hartenstein, Volker; Wodarz, Andreas

    2013-01-01

    Early neurogenesis comprises the phase of nervous system development during which neural progenitor cells are born. In early development, the embryonic ectoderm is subdivided by a conserved signaling mechanism into two main domains, the epidermal ectoderm and the neurectoderm. Subsequently, cells of the neurectoderm are internalized and form a cell layer of proliferating neural progenitors. In vertebrates, the entire neurectoderm folds into the embryo to give rise to the neural tube. In Droso...

  8. Expression of the Idefix retrotransposon in early follicle cells in the germarium of Drosophila melanogaster is determined by its LTR sequences and a specific genomic context.

    Science.gov (United States)

    Tcheressiz, S; Calco, V; Arnaud, F; Arthaud, L; Dastugue, B; Vaury, C

    2002-04-01

    Retrotransposons are transcriptionally activated in different tissues and cell types by a variety of genomic and environmental factors. Transcription of LTR retrotransposons is controlled by cis-acting regulatory sequences in the 5' LTR. Mobilization of two LTR retroelements, Idefix and ZAM, occurs in the unstable RevI line of Drosophila melanogaster, in which their copy numbers are high, while they are low in all other stocks tested. Here we show that both a full-length and a subgenomic Idefix transcript that are necessary for its mobilization are present in the Rev1 line, but not in the other lines. Studies on transgenic strains demonstrate that the 5' LTR of Idefix contains sequences that direct the tissue-specific expression of the retroelement in testes and ovaries of adult flies. In ovaries, expression occurs in the early follicle and in other somatic cells of the germarium, and is strictly associated with the unstable genetic context conferred by the RevI line. Control of tissue-specific Idefix expression by interactions between cis-acting sequences of its LTR and trans-acting genomic factors provides an opportunity to use this retroelement as a tool for the study of the early follicle cell lineage in the germarium.

  9. Growth differentiation factor 9 of Megalobrama amblycephala: molecular characterization and expression analysis during the development of early embryos and growing ovaries.

    Science.gov (United States)

    Huang, Chun Xiao; Wei, Xin Lan; Chen, Nan; Zhang, Jie; Chen, Li Ping; Wang, Wei Min; Li, Jun Yan; Wang, Huan Ling

    2014-02-01

    Growth differentiation factor 9 (GDF9) is a member of the transforming growth factorβ superfamily and plays an essential role during follicle maturation in mammals. In the present study, the full-length complementary DNA (cDNA) of gdf9 was obtained from Megalobrama amblycephala. The cDNA sequence is 2,061 bp in length with an open reading frame of 1,287 bp encoding 428 amino acid residues. The deduced amino acid sequence shared identities of about 42-86 % with the homologues of other vertebrates. During the early development of embryos, the gdf9 mRNA was detected in zygote with significantly high level and declined sharply by 47 and 87 % at 4 hours post-fertilization (hpf) and 6 hpf and even to an undetectable level through advancing stages. Expression analysis based on quantitative real-time PCR revealed that gdf9 mRNA was mainly expressed in ovary, but much lower levels were also found in some nonovarian tissues. Within the follicle, gdf9 mRNA was localized both in the oocytes and the follicle layer cells by in situ hybridization. During the ovarian cycle, gdf9 mRNA significantly decreased after the previtellogenic stage and became to increase again after the fully grown stage. The results imply that Gdf9 may play critical physiological functions in M. amblycephala early embryonic development and reproduction.

  10. IGF-1 and IGFBP-1 in peripheral blood and decidua of early miscarriages with euploid embryos: comparison between women with and without PCOS.

    Science.gov (United States)

    Luo, Lu; Wang, Qiong; Chen, Minghui; Yuan, Guangqing; Wang, Zengyan; Zhou, Canquan

    2016-07-01

    This study aims to demonstrate the possible relationship between the insulin-like growth factor (IGF) system and early miscarriage in polycystic ovarian syndrome (PCOS) patients with euploid embryos. 40 pregnant women included. 9 had PCOS and miscarried; 20 had PCOS and a successful ongoing pregnancy; the remaining 11 women did not have PCOS and miscarried. An ultrasound scan was performed to prove clinical pregnancy and a blood sample was taken on day 55 ± 4 of gestation. Serum samples of IGF-1, insulin-like growth factor binding protein-1 (IGFBP-1), total testosterone, serum hormone binding protein (SHBG), leptin and soluble leptin receptor (sOb-R) were obtained. In miscarriages, samples of decidua were obtained during vaccum curettage. Embryonic chromosomes in all miscarriages were proven to be normal. The expression of IGF-1, IGFBP-1, leptin, long-form leptin receptor and androge sOb-R n receptor (AR) were examined in the decidua. We found that miscarried PCOS patients showed significantly increased free androgen index and free IGF index, as well as decreased SHBG and IGFBP-1 than other two groups in peripheral blood. In the decidua, miscarried PCOS patients showed significantly increased expression of IGF-1 and decreased IGFBP-1 when compared with non-PCOS. AR was not expressed in the decidua of either group. Our results suggest that early miscarriage is associated with increased IGF-1 and decreased IGFBP-1 in PCOS patients.

  11. Comparison of Pregnancy Stress Between In Vitro Fertilization/Embryo Transfer and Spontaneous Pregnancy in Women During Early Pregnancy.

    Science.gov (United States)

    Shih, Fen-Fen; Chen, Chung-Hey; Chiao, Chia-Yi; Li, Chi-Rong; Kuo, Pi-Chao; Lai, Te-Jen

    2015-12-01

    Women who undergo in vitro fertilization/embryo transfer (IVF/ET) face complicated psychological stress and negative emotions, which may affect health during pregnancy and the development of the fetus. The current literature does not address the question of whether women who become pregnant spontaneously and women who undergo IVF face similar levels of pregnancy stress. This study investigates the differences in pregnancy stress between women with spontaneous pregnancy and women with IVF/ET pregnancy living in central Taiwan during their first 20 weeks of pregnancy. A prospective, longitudinal design with repeated measures, generalized estimated equations model, Wilks' λ, and Bonferroni test was used. Purposive samples of 163 women who had undergone IVF/ET and of 94 women who had undergone spontaneous pregnancy were enrolled as participants. Pregnancy stress was measured using the Chinese version of the self-administered Pregnancy Stress Scale at the 9th, 12th, and 20th weeks of pregnancy. The psychological stress experienced by IVF participants significantly increased with gestational week during the first 20 weeks of pregnancy (p pregnancy participants. Gestational week was the main factor found to influence stress ratings for "identifying maternal role." "Altering body structure and body function" was the main factor found to influence pregnancy stress (p pregnancy stress during the first 20 weeks of pregnancy (p > .05). The results of this study provide clinical evidence that IVF/ET does not cause more stress for women than spontaneous pregnancy. However, the intensity and trend of stresses differed between these two groups. These findings suggest that nurses should consider method of pregnancy when assessing the risk of stress in expectant mothers for each gestational week and when providing appropriate care and support.

  12. The Drosophila Myc gene, diminutive, is a positive regulator of the Sex-lethal establishment promoter, Sxl-Pe

    Science.gov (United States)

    Kappes, Gretchen; Deshpande, Girish; Mulvey, Brett B.; Horabin, Jamila I.; Schedl, Paul

    2011-01-01

    The binary switch gene Sex-lethal (Sxl) controls sexual identity in Drosophila. When activated, Sxl imposes female identity, whereas male identity ensues by default when the gene is off. The decision to activate Sxl is controlled by an X chromosome counting system that regulates the Sxl establishment promoter, Sxl-Pe. The counting system depends upon the twofold difference in the gene dose of a series of X-linked transcription factors or numerators. Because of this difference in dose, early female embryos express twice the amount of these transcription factors, and the cumulative action of these transcription factors turns on Sxl-Pe. Here we show that the Drosophila Myc gene diminutive is an X-linked numerator. PMID:21220321

  13. Gene expression in Pre-MBT embryos and activation of maternally-inherited program of apoptosis to be executed at around MBT as a fail-safe mechanism in Xenopus early embryogenesis.

    Science.gov (United States)

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Uchiyama, Hiroaki; Kuroyanagi, Shinsaku; Takai, Jun-Ichi; Takahashi, Senji; Kajitani, Masayuki; Kaito, Chikara; Sekimizu, Kazuhisa; Takayama, Eiji; Igarashi, Kazuei; Hara, Hiroshi

    2008-05-29

    S-adenosylmethionine decarboxylase (SAMDC) is an enzyme which converts S-adenosylmethione (SAM), a methyl donor, to decarboxylated SAM (dcSAM), an aminopropyl donor for polyamine biosynthesis. In our studies on gene expression control in Xenopus early embryogenesis, we cloned the mRNA for Xenopus SAMDC, and overexpressed the enzyme by microinjecting its mRNA into Xenopus fertilized eggs. In the mRNA-injected embryos, the level of SAMDC was enormously increased, the SAM was exhausted, and protein synthesis was greatly inhibited, but cellular polyamine content did not change appreciably. SAMDC-overexpressed embryos cleaved and developed normally up to the early blastula stage, but at the midblastula stage, or the stage of midblastula transition (MBT), all the embryos were dissociated into cells, and destroyed due to execution of apoptosis. During cleavage SAMDC-overexpressed embryos transcribed caspase-8 gene, and this was followed by activation of caspase-9. When we overexpressed p53 mRNA in fertilized eggs, similar apoptosis took place at MBT, but in this case, transcription of caspase-8 did not occur, however activation of caspase-9 took place. Apoptosis induced by SAMDC-overexpression was completely suppressed by Bcl-2, whereas apoptosis induced by p53 overexpression or treatments with other toxic agents was only partially rescued. When we injected SAMDC mRNA into only one blastomere of 8- to 32-celled embryos, descendant cells of the mRNA-injected blastomere were segregated into the blastocoel and underwent apoptosis within the blastocoel, although such embryos continued to develop and became tadpoles with various extents of anomaly, reflecting the developmental fate of the eliminated cells. Thus, embryonic cells appear to check themselves at MBT and if physiologically severely-damaged cells occur, they are eliminated from the embryo by activation and execution of the maternally-inherited program of apoptosis. We assume that the apoptosis executed at MBT is a

  14. Oocyte and embryonic cytoskeletal defects caused by mutations in the Drosophila swallow gene.

    Science.gov (United States)

    Meng, Jing; Stephenson, Edwin C

    2002-06-01

    The maternal effect gene swallow ( swa) of Drosophila is required for bicoid and htsN4 mRNA localization during oogenesis. Swallow is also required for additional, poorly understood, functions in early embryogenesis. We have examined the cytoskeleton in swa mutant oocytes and embryos by immunocytochemistry and confocal microscopy. Mid- and late-stage swaoocytes have defective cytoplasmic actin networks. Stage-10 oocytes have solid actin clumps and hollow actin spheres in the subcortical layer, and late-stage oocytes have uniformly distributed hollow actin spheres in the subcortical layer and in deeper cytoplasm. Swa preblastoderm embryos have uneven and irregularly distributed actin at the cortex, and defective subcortical actin networks that contain hollow and solid spheres. In swa syncytial blastoderm embryos, the abnormal actin cytoskeleton is associated with defects in nuclear distribution, migration and cleavage. Actin cytoskeletal defects correlate with spindle defects, suggesting that the abnormal organization of the actin cytoskeleton allows interaction of mitotic spindles, which induces defective nuclear divisions and loss of nuclei from the surface of the embryo.

  15. Researchers Put Embryo Development 'On Hold' in Mice

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_162187.html Researchers Put Embryo Development 'On Hold' in Mice Putting stem cells ... were able to halt development of early mouse embryos for up to a month in the lab ...

  16. Transcriptomic effects of di-(2-ethylhexyl-phthalate in Syrian hamster embryo cells: an important role of early cytoskeleton disturbances in carcinogenesis?

    Directory of Open Access Journals (Sweden)

    Atienzar Franck

    2011-10-01

    Full Text Available Abstract Background Di-(2-ethylhexyl-phthalate (DEHP is a commonly used plasticizer in polyvinylchloride (PVC formulations and a potentially non-genotoxic carcinogen. The aim of this study was to identify genes whose level of expression is altered by DEHP by using a global wide-genome approach in Syrian hamster embryo (SHE cells, a model similar to human cells regarding their responses to this type of carcinogen. With mRNA Differential Display (DD, we analysed the transcriptional regulation of SHE cells exposed to 0, 12.5, 25 and 50 μM of DEHP for 24 hrs, conditions which induced neoplastic transformation of these cells. A real-time quantitative polymerase chain reaction (qPCR was used to confirm differential expression of genes identified by DD. Results Gene expression profiling showed 178 differentially-expressed fragments corresponding to 122 genes after tblastx comparisons, 79 up-regulated and 43 down-regulated. The genes of interest were involved in many biological pathways, including signal transduction, regulation of the cytoskeleton, xenobiotic metabolism, apoptosis, lipidogenesis, protein conformation, transport and cell cycle. We then focused particularly on genes involved in the regulation of the cytoskeleton, one of the processes occurring during carcinogenesis and in the early steps of neoplastic transformation. Twenty one cytoskeleton-related genes were studied by qPCR. The down-regulated genes were involved in focal adhesion or cell junction. The up-regulated genes were involved in the regulation of the actin cytoskeleton and this would suggest a role of cellular plasticity in the mechanism of chemical carcinogenesis. The gene expression changes identified in the present study were PPAR-independent. Conclusion This study identified a set of genes whose expression is altered by DEHP exposure in mammalian embryo cells. This is the first study that elucidates the genomic changes of DEHP involved in the organization of the

  17. Maternal depletion of Piwi, a component of the RNAi system, impacts heterochromatin formation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Tingting Gu

    Full Text Available A persistent question in epigenetics is how heterochromatin is targeted for assembly at specific domains, and how that chromatin state is faithfully transmitted. Stable heterochromatin is necessary to silence transposable elements (TEs and maintain genome integrity. Both the RNAi system and heterochromatin components HP1 (Swi6 and H3K9me2/3 are required for initial establishment of heterochromatin structures in S. pombe. Here we utilize both loss of function alleles and the newly developed Drosophila melanogaster transgenic shRNA lines to deplete proteins of interest at specific development stages to dissect their roles in heterochromatin assembly in early zygotes and in maintenance of the silencing chromatin state during development. Using reporters subject to Position Effect Variegation (PEV, we find that depletion of key proteins in the early embryo can lead to loss of silencing assayed at adult stages. The piRNA component Piwi is required in the early embryo for reporter silencing in non-gonadal somatic cells, but knock-down during larval stages has no impact. This implies that Piwi is involved in targeting HP1a when heterochromatin is established at the late blastoderm stage and possibly also during embryogenesis, but that the silent chromatin state created is transmitted through cell division independent of the piRNA system. In contrast, heterochromatin structural protein HP1a is required for both initial heterochromatin assembly and the following mitotic inheritance. HP1a profiles in piwi mutant animals confirm that Piwi depletion leads to decreased HP1a levels in pericentric heterochromatin, particularly in TEs. The results suggest that the major role of the piRNA system in assembly of heterochromatin in non-gonadal somatic cells occurs in the early embryo during heterochromatin formation, and further demonstrate that failure of heterochromatin formation in the early embryo impacts the phenotype of the adult.

  18. Phaseolus immature embryo rescue technology.

    Science.gov (United States)

    Geerts, Pascal; Toussaint, André; Mergeai, Guy; Baudoin, Jean-Pierre

    2011-01-01

    Predominant among the production constraints of the common bean Phaseolus vulgaris are infestation of Ascochyta blight, Bean Golden Mosaic virus (BGMV), and Bean Fly. Interbreeding with Phaseolus -coccineus L. and/or Phaseolus polyanthus Greenm has been shown to provide P. vulgaris with greater resistance to these diseases. For interspecific crosses to be successful, it is important to use P. coccineus and P. polyanthus as female parents; this prevents rapid reversal to the recurrent parent P. vulgaris. Although incompatibility barriers are post-zygotic, early hybrid embryo abortion limits the success of F1 crosses. While rescue techniques for globular and early heart-shaped embryos have improved in recent years, -success in hybridization remains very low. In this study, we describe six steps that allowed us to rescue 2-day-old P. vulgaris embryos using a pod culture technique. Our methods consisted of (i) pod culture, (ii) extraction and culture of immature embryos, (iii) dehydration of embryos, (iv) germination of embryos, (v) rooting of developed shoots, and (vi) hardening of plantlets.

  19. The type of GnRH analogue used during controlled ovarian stimulation influences early embryo developmental kinetics: a time-lapse study.

    Science.gov (United States)

    Muñoz, Manuel; Cruz, María; Humaidan, Peter; Garrido, Nicolás; Pérez-Cano, Inmaculada; Meseguer, Marcos

    2013-06-01

    To explore if the GnRH analogue used for controlled ovarian stimulation (COS) and the ovulation triggering factor (GnRH agonist + hCG triggering versus GnRH antagonist + GnRH agonist triggering) affect embryo development and kinetics. In a retrospective cohort study in the Instituto Valenciano de Infertilidad (IVI) Alicante and the Instituto Universitario-IVI Valencia, Spain, 2817 embryos deriving from 400 couples undergoing oocyte donation were analysed. After controlled ovarian stimulation and IVF/intracytoplamic sperm injection, the timing of embryonic cleavages was assessed by a video time-lapse system. The results were analysed using Student's t test for comparison of timings (hours) and Chi-squared test for comparison of proportions. A p-value < 0.05 was considered to be statistically significant. Embryos from cycles co-treated with GnRH antagonist + GnRH agonist (n = 2101) cleaved faster than embryos deriving from patients co-treated with GnRH agonist + hCG (n = 716): these differences were significant at the first stages of development but they disappeared as long as the embryo developed. Assessing embryo quality in terms of morphokinetic characteristics, we did not find significant differences between the two groups. By adopting a time-lapse video system, we can suggest that the type of protocol used for controlled ovarian stimulation influences embryo kinetics of development but these variations are not reflected in embryo quality. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Early gene Broad complex plays a key role in regulating the immune response triggered by ecdysone in the Malpighian tubules of Drosophila melanogaster.

    Science.gov (United States)

    Verma, Puja; Tapadia, Madhu G

    2015-08-01

    In insects, humoral response to injury is accomplished by the production of antimicrobial peptides (AMPs) which are secreted in the hemolymph to eliminate the pathogen. Drosophila Malpighian tubules (MTs), however, are unique immune organs that show constitutive expression of AMPs even in unchallenged conditions and the onset of immune response is developmental stage dependent. Earlier reports have shown ecdysone positively regulates immune response after pathogenic challenge however, a robust response requires prior potentiation by the hormone. Here we provide evidence to show that MTs do not require prior potentiation with ecdysone hormone for expression of AMPs and they respond to ecdysone very fast even without immune challenge, although the different AMPs Diptericin, Cecropin, Attacin, Drosocin show differential expression in response to ecdysone. We show that early gene Broad complex (BR-C) could be regulating the IMD pathway by activating Relish and physically interacting with it to activate AMPs expression. BR-C depletion from Malpighian tubules renders the flies susceptible to infection. We also show that in MTs ecdysone signaling is transduced by EcR-B1 and B2. In the absence of ecdysone signaling the IMD pathway associated genes are down regulated and activation and translocation of transcription factor Relish is also affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Early development of circadian rhythmicity in the suprachiamatic nuclei and pineal gland of teleost, flounder (Paralichthys olivaeus), embryos.

    Science.gov (United States)

    Mogi, Makoto; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2015-08-01

    Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24-h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish.

  2. Exposure time to caffeine affects heartbeat and cell damage-related gene expression of zebrafish Danio rerio embryos at early developmental stages.

    Science.gov (United States)

    Abdelkader, Tamer Said; Chang, Seo-Na; Kim, Tae-Hyun; Song, Juha; Kim, Dong Su; Park, Jae-Hak

    2013-11-01

    Caffeine is white crystalline xanthine alkaloid that is naturally found in some plants and can be produced synthetically. It has various biological effects, especially during pregnancy and lactation. We studied the effect of caffeine on heartbeat, survival and the expression of cell damage related genes, including oxidative stress (HSP70), mitochondrial metabolism (Cyclin G1) and apoptosis (Bax and Bcl2), at early developmental stages of zebrafish embryos. We used 100 µm concentration based on the absence of locomotor effects. Neither significant mortality nor morphological changes were detected. We monitored hatching at 48 h post-fertilization (hpf) to 96 hpf. At 60 and 72 hpf, hatching decreased significantly (P caffeine treatment with no significant difference (P > 0.05). Heartbeats per minute were 110, 110 and 112 in control at 48, 72 and 96 hpf, respectively. Caffeine significantly increased heartbeat - 122 and 136 at 72 and 96 hpf, respectively. Quantitative RT-PCR showed significant up-regulation after caffeine exposure in HSP70 at 72 hpf; in Cyclin G1 at 24, 48 and 72 hpf; and in Bax at 48 and 72 hpf. Significant down-regulation was found in Bcl2 at 48 and 72 hpf. The Bax/Bcl2 ratio increased significantly at 48 and 72 hpf. We conclude that increasing exposure time to caffeine stimulates oxidative stress and may trigger apoptosis via a mitochondrial-dependent pathway. Also caffeine increases heartbeat from early phases of development without affecting the morphology and survival but delays hatching. Use of caffeine during pregnancy and lactation may harm the fetus by affecting the expression of cell-damage related genes.

  3. Modulation of Bmp4 signalling in the epithelial-mesenchymal interactions that take place in early thymus and parathyroid development in avian embryos.

    Science.gov (United States)

    Neves, Hélia; Dupin, Elisabeth; Parreira, Leonor; Le Douarin, Nicole M

    2012-01-15

    Epithelial-mesenchymal interactions are crucial for the development of the endoderm of the pharyngeal pouches into the epithelia of thymus and parathyroid glands. Here we investigated the dynamics of epithelial-mesenchymal interactions that take place at the earliest stages of thymic and parathyroid organogenesis using the quail-chick model together with a co-culture system capable of reproducing these early events in vitro. The presumptive territories of thymus and parathyroid epithelia were identified in three-dimensionally preserved pharyngeal endoderm of embryonic day 4.5 chick embryos on the basis of the expression of Foxn1 and Gcm2, respectively: the thymic rudiment is located in the dorsal domain of the third and fourth pouches, while the parathyroid rudiment occupies a more medial/anterior pouch domain. Using in vitro quail-chick tissue associations combined with in ovo transplantations, we show that the somatopleural but not the limb bud mesenchyme, can mimic the role of neural crest-derived pharyngeal mesenchyme to sustain development of these glands up to terminal differentiation. Furthermore, mesenchymal-derived Bmp4 appears to be essential to promote early stages of endoderm development during a short window of time, irrespective of the mesenchymal source. In vivo studies using the quail-chick system and implantation of growth factor soaked-beads further showed that expression of Bmp4 by the mesenchyme is necessary during a 24 h-period of time. After this period however, Bmp4 is no longer required and another signalling factor produced by the mesenchyme, Fgf10, influences later differentiation of the pouch endoderm. These results show that morphological development and cell differentiation of thymus and parathyroid epithelia require a succession of signals emanating from the associated mesenchyme, among which Bmp4 plays a pivotal role for triggering thymic epithelium specification.

  4. Detection of isoform-specific fibroblast growth factor receptors by whole-mount in situ hybridization in early chick embryos.

    Science.gov (United States)

    Nishita, Junko; Ohta, Sho; Bleyl, Steven B; Schoenwolf, Gary C

    2011-06-01

    We have developed "b" and "c" isoform-specific chicken fibroblast growth factor (FGF) receptor 1-3 probes for in situ hybridization. We rigorously demonstrate the specificity of these probes by using both dot blot hybridization and whole-mount in situ hybridization during neurulation and early postneurulation stages, and we compare expression patterns of each of the three isoform-specific probes to one another and to generic probes to each of the three (non-isoform-specific) FGF receptors. We show that the expression pattern of each receptor is represented by the collective expression of each of its two isoforms, with the expression of each FGF receptor being most similar to that of its "c" isoform at two of the three stages studied, and that tissue and stage differences exist in the patterns of expression of the six isoforms. We demonstrate the usefulness of these probes for defining the differential tissue expression of FGF receptor 1-3 isoforms.

  5. Growth attenuation with developmental schedule progression in embryos and early larvae of Sterechinus neumayeri raised under elevated CO2.

    Directory of Open Access Journals (Sweden)

    Pauline C Yu

    Full Text Available The Southern Ocean, a region that will be an ocean acidification hotspot in the near future, is home to a uniquely adapted fauna that includes a diversity of lightly-calcified invertebrates. We exposed the larvae of the echinoid Sterechinus neumayeri to environmental levels of CO(2 in McMurdo Sound (control: 410 µatm, Ω = 1.35 and mildly elevated pCO(2 levels, both near the level of the aragonite saturation horizon (510 µatm pCO(2, Ω = 1.12, and to under-saturating conditions (730 µatm, Ω = 0.82. Early embryological development was normal under these conditions with the exception of the hatching process, which was slightly delayed. Appearance of the initial calcium carbonate (CaCO(3 spicule nuclei among the primary mesenchyme cells of the gastrulae was synchronous between control and elevated pCO(2 treatments. However, by prism (7 days after the initial appearance of the spicule nucleus, elongating arm rod spicules were already significantly shorter in the highest CO(2 treatment. Unfed larvae in the 730 µatm pCO(2 treatment remained significantly smaller than unfed control larvae at days 15-30, and larvae in the 510 µatm treatment were significantly smaller at day 20. At day 30, the arm lengths were more differentiated between 730 µatm and control CO(2 treatments than were body lengths as components of total length. Arm length is the most plastic morphological aspect of the echinopluteus, and appears to exhibit the greatest response to high pCO(2/low pH/low carbonate, even in the absence of food. Thus, while the effects of elevated pCO(2 representative of near future climate scenarios are proportionally minor on these early developmental stages, the longer term effects on these long-lived invertebrates is still unknown.

  6. Multiple transcription factor codes activate epidermal wound-response genes in Drosophila.

    Science.gov (United States)

    Pearson, Joseph C; Juarez, Michelle T; Kim, Myungjin; Drivenes, Øyvind; McGinnis, William

    2009-02-17

    Wounds in Drosophila and mouse embryos induce similar genetic pathways to repair epidermal barriers. However, the transcription factors that transduce wound signals to repair epidermal barriers are largely unknown. We characterize the transcriptional regulatory enhancers of 4 genes-Ddc, ple, msn, and kkv-that are rapidly activated in epidermal cells surrounding wounds in late Drosophila embryos and early larvae. These epidermal wound enhancers all contain evolutionarily conserved sequences matching binding sites for JUN/FOS and GRH transcription factors, but vary widely in trans- and cis-requirements for these inputs and their binding sites. We propose that the combination of GRH and FOS is part of an ancient wound-response pathway still used in vertebrates and invertebrates, but that other mechanisms have evolved that result in similar transcriptional output. A common, but largely untested assumption of bioinformatic analyses of gene regulatory networks is that transcription units activated in the same spatial and temporal patterns will require the same cis-regulatory codes. Our results indicate that this is an overly simplistic view.

  7. PH Domain-Arf G Protein Interactions Localize the Arf-GEF Steppke for Cleavage Furrow Regulation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Donghoon M Lee

    Full Text Available The recruitment of GDP/GTP exchange factors (GEFs to specific subcellular sites dictates where they activate small G proteins for the regulation of various cellular processes. Cytohesins are a conserved family of plasma membrane GEFs for Arf small G proteins that regulate endocytosis. Analyses of mammalian cytohesins have identified a number of recruitment mechanisms for these multi-domain proteins, but the conservation and developmental roles for these mechanisms are unclear. Here, we report how the pleckstrin homology (PH domain of the Drosophila cytohesin Steppke affects its localization and activity at cleavage furrows of the early embryo. We found that the PH domain is necessary for Steppke furrow localization, and for it to regulate furrow structure. However, the PH domain was not sufficient for the localization. Next, we examined the role of conserved PH domain amino acid residues that are required for mammalian cytohesins to bind PIP3 or GTP-bound Arf G proteins. We confirmed that the Steppke PH domain preferentially binds PIP3 in vitro through a conserved mechanism. However, disruption of residues for PIP3 binding had no apparent effect on GFP-Steppke localization and effects. Rather, residues for binding to GTP-bound Arf G proteins made major contributions to this Steppke localization and activity. By analyzing GFP-tagged Arf and Arf-like small G proteins, we found that Arf1-GFP, Arf6-GFP and Arl4-GFP, but not Arf4-GFP, localized to furrows. However, analyses of embryos depleted of Arf1, Arf6 or Arl4 revealed either earlier defects than occur in embryos depleted of Steppke, or no detectable furrow defects, possibly because of redundancies, and thus it was difficult to assess how individual Arf small G proteins affect Steppke. Nonetheless, our data show that the Steppke PH domain and its conserved residues for binding to GTP-bound Arf G proteins have substantial effects on Steppke localization and activity in early Drosophila embryos.

  8. PH Domain-Arf G Protein Interactions Localize the Arf-GEF Steppke for Cleavage Furrow Regulation in Drosophila.

    Science.gov (United States)

    Lee, Donghoon M; Rodrigues, Francisco F; Yu, Cao Guo; Swan, Michael; Harris, Tony J C

    2015-01-01

    The recruitment of GDP/GTP exchange factors (GEFs) to specific subcellular sites dictates where they activate small G proteins for the regulation of various cellular processes. Cytohesins are a conserved family of plasma membrane GEFs for Arf small G proteins that regulate endocytosis. Analyses of mammalian cytohesins have identified a number of recruitment mechanisms for these multi-domain proteins, but the conservation and developmental roles for these mechanisms are unclear. Here, we report how the pleckstrin homology (PH) domain of the Drosophila cytohesin Steppke affects its localization and activity at cleavage furrows of the early embryo. We found that the PH domain is necessary for Steppke furrow localization, and for it to regulate furrow structure. However, the PH domain was not sufficient for the localization. Next, we examined the role of conserved PH domain amino acid residues that are required for mammalian cytohesins to bind PIP3 or GTP-bound Arf G proteins. We confirmed that the Steppke PH domain preferentially binds PIP3 in vitro through a conserved mechanism. However, disruption of residues for PIP3 binding had no apparent effect on GFP-Steppke localization and effects. Rather, residues for binding to GTP-bound Arf G proteins made major contributions to this Steppke localization and activity. By analyzing GFP-tagged Arf and Arf-like small G proteins, we found that Arf1-GFP, Arf6-GFP and Arl4-GFP, but not Arf4-GFP, localized to furrows. However, analyses of embryos depleted of Arf1, Arf6 or Arl4 revealed either earlier defects than occur in embryos depleted of Steppke, or no detectable furrow defects, possibly because of redundancies, and thus it was difficult to assess how individual Arf small G proteins affect Steppke. Nonetheless, our data show that the Steppke PH domain and its conserved residues for binding to GTP-bound Arf G proteins have substantial effects on Steppke localization and activity in early Drosophila embryos.

  9. Cultura de embriões in vitro para o melhoramento de pessegueiros precoces In vitro embryo culture for early ripening peach breeding

    Directory of Open Access Journals (Sweden)

    Wilson Barbosa

    1985-01-01

    Full Text Available Efetuou-se o experimento de germinação das sementes de quinze seleções de pêssegos e nectarinas, a maioria de maturação bem precoce, através do método da cultura in vitro, de embriões imaturos, em confronto com a germinação obtida pelo processo de estratificação prévia das amêndoas a frio úmido, em substrato de algodão. Para a cultura in vitro, utilizaram-se embriões acompanhados de cotilédones, extraídos de frutos semimaduros, que foram "semeados" em meio de cultura, compostos de macro e microelementos de Murashige e Skoog, acrescido de tiamina a 0,1mg/litro, ácido nicotínico a 0,5mg/litro, inositol a 100mg/litro, glicina a 20mg/litro„ácido giberélico a 0,1mg/litro, glicoce a 3% e ágar a 0,7%. Os resultados mostraram que houve excelente desenvolvimento dos embriões in vitro para a maioria das seleções de ciclo bem precoce, e os "seedlings" resultantes tiveram crescimento normal. Ao contrário, o processo de estratificação prévia para as mesmas seleções proporcionou porcentagem de germinação mediana, quando as sementes foram estratificadas logo que extraídas dos frutos, e bastante baixa ou nula quando elas ficaram expostas ao ambiente natural por 96 horas antes da estratificação. Tais resultados indicam que o método de cultura in vitro de embriões imaturos constitui prática indispensável ao programa de melhoramento de pessegueiro, com vista à obtenção de cultivares cada vez mais precoces.This papar compares the results of an embryo culture with those of the usual seed stratification process. One hundred seeds obtained from early ripening peach were stratified either immediately after extraction from fruits (50 seeds or after exposure to room temperature for 96 hours (50 seeds. Embryos from mature fruits were cultured aseptically in vitro on nutrient media containing the macro and microelements of Murashige & Skoog, inusitol, thiamine, nicotinic acid, glycine, GA3, sucrose and agar at 5(0C for 50

  10. Early and efficient induction of antioxidant defense system in Mytilus galloprovincialis embryos exposed to metals and heat stress.

    Science.gov (United States)

    Boukadida, Khouloud; Cachot, Jérôme; Clérandeaux, Christelle; Gourves, Pierre-Yves; Banni, Mohamed

    2017-04-01

    The present study aims to elucidate the stress response of early life stages of Mytilus galloprovincialis to the combine effects of selected metals and elevated temperature. For this purpose, we investigated the response of a large panel of oxidative stress markers such as catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) activities and lipid peroxidation (thiobarbituric acid reactive substrates (TBARS) concentration) and metallothionein accumulation (MT) as well as selected gene transcription level and metal accumulation in mussels larvae exposed to a sub-lethal concentration of Cu (9.54µg/L), Ag (2.55µg/L) and mixture of the two metals (Cu (6.67µg/L)+Ag (1.47µg/L)) along with a temperature gradient (18, 20 and 22°C) for 48h. Cu and Ag applied as single or mixture were differentially accumulated in mussel larvae according to the exposure temperature. Sod, cat, gst and mt-10 gene transcription levels showed an important increase in larvae exposed to Cu, Ag or to the mix compared to the control condition at 18°C. The same pattern but with higher induction levels was recorded in larvae co-exposed to metals at 20°C. At 22°C, a significant decrease in mRNA abundance of cat, gst and sod and a significant up-regulation of mts targets (mt10 and mt20) were observed.

  11. Tris(1,3-dichloro-2-propyl)phosphate Induces Genome-Wide Hypomethylation within Early Zebrafish Embryos

    Science.gov (United States)

    2016-01-01

    Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is a high-production volume organophosphate-based plasticizer and flame retardant widely used within the United States. Using zebrafish as a model, the objectives of this study were to determine whether (1) TDCIPP inhibits DNA methyltransferase (DNMT) within embryonic nuclear extracts; (2) uptake of TDCIPP from 0.75 h postfertilization (hpf, 2-cell) to 2 hpf (64-cell) or 6 hpf (shield stage) leads to impacts on the early embryonic DNA methylome; and (3) TDCIPP-induced impacts on cytosine methylation are localized to CpG islands within intergenic regions. Within this study, 5-azacytidine (5-azaC, a DNMT inhibitor) was used as a positive control. Although 5-azaC significantly inhibited zebrafish DNMT, TDCIPP did not affect DNMT activity in vitro at concentrations as high as 500 μM. However, rapid embryonic uptake of 5-azaC and TDCIPP from 0.75 to 2 hpf resulted in chemical- and chromosome-specific alterations in cytosine methylation at 2 hpf. Moreover, TDCIPP exposure predominantly resulted in hypomethylation of positions outside of CpG islands and within intragenic (exon) regions of the zebrafish genome. Overall, these findings provide the foundation for monitoring DNA methylation dynamics within zebrafish as well as identifying potential associations among TDCIPP exposure, adverse health outcomes, and DNA methylation status within human populations. PMID:27574916

  12. Effects of different states of sheep fetal fibroblasts as donor cells on the early development in vitro of reconstructed sheep embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To investigate the effects of different states of donor cells on the development of reconstructed sheep embryos, we designed five treatments of donor cells, including cell passage, cell size, serum starvation, colchicine treatment and gene transfection. Results are as follows: (Ⅰ) Compared with 16-18 passage cells, the morula/blastocyst rate of 5-7 passage cells as donor nuclei was significantly higher (17.3% vs. 4.9%, P<0.05), suggesting the advantage of short-time cultured cells in supporting the development of reconstructed embryos. (Ⅱ) The morula/blastocyst rate of reconstructed embryos derived from medium cells (15-25μm) as donor nuclei was higher than that from large cells (25-33μm) and small cells (8-15μm)( 20.0% vs. 8.0%, 9.7%), indicating that reconstructed embryos from medium cells had a greater potentiality to develop into morula/blastocysts than those from small or large ones. (Ⅲ) The morula/blastocyst rate of reconstructed embryos from donor cells of SS (serum starvation) was lower than that from donor cells of NSS (non-serum starvation), but no significant difference was detected between SS and NSS(11.8% vs. 18.6%, P>0.05). (Ⅳ) Fetal fibroblasts treated with 0.05μmol/L colchicine exhibited a higher morula/blastocyst rate of reconstructed embryos than those treated with 0.10 μmol/L colchicine and untreated ones (27.5% vs. 12.1%, 17.1%), however, no significant difference among the three treatments was detected (P>0.05). (Ⅴ) The morula/blastocyst rate of reconstructed embryos from fetal fibroblasts transfected with GFP gene only was 3.1%, significantly lower than that from non-transgenic cells (3.1% vs. 20.4%, P<0.05). In conclusion, our results demonstrated that fetal fibroblasts of fewer passages, medium size could ensure a higher morula/blastocyst rate of reconstructed embryos. Serum starvation of donor cells might be unnecessary to the development of reconstructed embryos. Donor cells treated with 0.05μmol/L colchicine could

  13. Effects of different states of sheep fetal fibroblasts as donor cells on the early development in vitro of reconstructed sheep embryos

    Institute of Scientific and Technical Information of China (English)

    WANG Hai; AO Hong; PAN QiuZhen; LI RongQi; ZHAO MengBin; LIAN ZhengXing; LI Ning; WU ChangXin

    2007-01-01

    To investigate the effects of different states of donor cells on the development of reconstructed sheep embryos, we designed five treatments of donor cells, including cell passage, cell size, serum starvation,colchicine treatment and gene transfection. Results are as follows: ( Ⅰ ) Compared with 16-18 passage cells, the morula/blastocyst rate of 5-7 passage cells as donor nuclei was significantly higher (17.3%vs. 4.9%, P<0.05), suggesting the advantage of short-time cultured cells in supporting the development of reconstructed embryos. (Ⅱ) The morula/blastocyst rate of reconstructed embryos derived from medium cells (15-25 μm) as donor nuclei was higher than that from large cells (25-33 μm) and small cells (8-15 μm)( 20.0% vs. 8.0%, 9.7%), indicating that reconstructed embryos from medium cells had a greater potentiality to develop into morula/blastocysts than those from small or large ones. (Ⅲ) The morula/blastocyst rate of reconstructed embryos from donor cells of SS (serum starvation) was lower than that from donor cells of NSS (non-serum starvation), but no significant difference was detected between SS and NSS( 11.8% vs. 18.6%, P>0.05). (Ⅳ) Fetal fibroblasts treated with 0.05 μmol/L colchicine exhibited a higher morula/blastocyst rate of reconstructed embryos than those treated with 0.10 μmol/L colchicine and untreated ones (27.5% vs. 12.1%, 17.1%), however, no significant difference among the three treatments was detected (P>0.05). (Ⅴ) The morula/blastocyst rate of reconstructed embryos from fetal fibroblasts transfected with GFP gene only was 3.1%, significantly lower than that from non-transgenic cells (3.1% vs. 20.4%, P<0.05). In conclusion, our results demonstrated that fetal fibroblasts of fewer passages, medium size could ensure a higher morula/blastocyst rate of reconstructed embryos. Serum starvation of donor cells might be unnecessary to the development of reconstructed embryos. Donor cells treated with 0.05 μmol/L colchicine

  14. Photoperiodic lighting (16 hours of light:8 hours of dark) programs during incubation: 1. Effects on growth and circadian physiological traits of embryos and early stress response of broiler chickens.

    Science.gov (United States)

    Ozkan, S; Yalçin, S; Babacanoglu, E; Kozanoglu, H; Karadas, F; Uysal, S

    2012-11-01

    This study was conducted to evaluate the effect of a 16L:8D photoperiod during incubation, either during the whole incubation period (Inc(0-21d)) or the last week of incubation (Inc(14-21d)), on embryo growth, incubation performance, and light:dark rhythm of plasma melatonin and corticosterone in relation to early stress responses of newly hatched chicks to the posthatching environment. A dark incubation condition (Inc(Dark)) served as control. Three batches of eggs (n = 1,080, 1,320, 720) from Ross 308 broiler breeders were used in the experiment. Embryos from Inc(0-21d) presented a daily rhythm of melatonin at internal pipping and hatching, but Inc(Dark) embryos did not. The Inc(14-21d) group had rhythmic plasma melatonin at hatching only. A L:D rhythm of corticosterone was apparent at hatching. A significant incubation × sampling time interaction suggested that a lower increment in blood corticosterone level in Inc(0-21d) at 8 h posthatching (light period), as compared with hatching (dark period) values, might be associated with probable changes in the hypothalamic-pituitary-adrenal axis in Inc(0-21d) through incubation lighting. This finding may also suggest improved adaptation to the posthatching environment. Incubation lighting did not consistently affect brain malondialdehyde concentration; the only difference between groups was higher concentrations at hatching in Inc(14-21d), whereas incubation groups at the internal pipping stage had similar values. Mean relative asymmetry (RA) did not differ with incubation lighting. The malondialdehyde and RA results indicate that neither lighting nor darkness during the overall incubation exacerbated embryo oxidative and developmental stress. An increased breast muscle weight was observed at hatching only in Inc(14-21d). The Inc(0-21d) group had increased embryo weights relative to egg weight and decreased residual yolk but had no effect on chick weight, relative heart and liver (% of embryo weight), hatchability

  15. Enhance beef cattle improvement by embryo biotechnologies.

    Science.gov (United States)

    Wu, B; Zan, L

    2012-10-01

    Embryo biotechnology has become one of the prominent high businesses worldwide. This technology has evolved through three major changes, that is, traditional embryo transfer (in vivo embryo production by donor superovulation), in vitro embryo production by ovum pick up with in vitro fertilization and notably current cloning technique by somatic cell nuclear transfer and transgenic animal production. Embryo biotechnology has widely been used in dairy and beef cattle industry and commercial bovine embryo transfer has become a large international business. Currently, many developed biotechnologies during the period from early oocyte stage to pre-implantation embryos can be used to create new animal breeds and accelerate genetic progression. Based on recent advances in embryo biotechnologies and authors current studies, this review will focus on a description of the application of this technology to beef cattle improvement and discuss how to use this technology to accelerate beef cattle breeding and production. The main topics of this presentation include the following: (i) how to increase calf production numbers from gametes including sperm and oocyte; (ii) multiple ovulation and embryo transfer breeding schemes; (iii) in vitro fertilization and intracytoplasm sperm injection in bovine; (iv) pronuclear development and transgenic animals; (v) sex selection from sperm and embryos; (vi) cloning and androgenesis; (vii) blastocyst development and embryonic stem cells; (viii) preservation of beef cattle genetic resources; and (ix) conclusions. © 2011 Blackwell Verlag GmbH.

  16. Human embryo twinning with applications in reproductive medicine.

    Science.gov (United States)

    Illmensee, Karl; Levanduski, Mike; Vidali, Andrea; Husami, Nabil; Goudas, Vasilios T

    2010-02-01

    To assess the efficacy of human embryo twinning by blastomere biopsy at different early embryonic stages (splitting efficiency) and to determine the in vitro developmental capacity of twinned human embryos (developmental efficiency). Randomized comparative study. Private IVF centers. Couples undergoing IVF donating triploid embryos. Embryos at the 2- to 5- and 6- to 8-cell stage were split into twin embryos. Half the number of blastomeres from donor embryos were removed and inserted into recipient empty zonae pellucidae. After embryo splitting, donor and recipient embryos were cultured in vitro. Development of twinned embryos to the blastocyst stage. The number of developing embryos obtained after splitting could be increased in comparison with the number of embryos available before splitting at the 6- to 8-cell stage but not at the 2- to 5-cell stage (splitting efficiency). Splitting of 6- to 8-cell embryos yielded superior rates of twin embryos developing to blastocysts (developmental efficiency). Twinning success was related to the superior morphological quality of embryos used for splitting. This is the first report on twinned human embryos developing to blastocysts. This study exhibits the potential for novel applications in human assisted reproduction. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Multi-instrumental Investigation of Affecting of Early Somatic Embryos of Spruce by Cadmium(II and Lead(II Ions

    Directory of Open Access Journals (Sweden)

    René Kizek

    2007-05-01

    Full Text Available The main aim of this work was to use multi-instrumental analytical apparatus toinvestigate the effects of treatment with cadmium(II and/or lead(II ions (50, 250 and 500μM for twelve days on early somatic spruce embryos (ESEs. Primarily we used imageanalysis for estimation of growth and a fluorimetric sensor for enzymatic detection ofviability of the treated ESEs. It follows from the obtained results that Cd caused highertoxicity to ESEs than Pb. Besides this fundamental finding, we observed that ESEs grewand developed better in the presence of 500 μM of the metal ions than in the presence of250 μM. Based on the results obtained using nuclear magnetic resonance this phenomenonwas related to an increase of the area of ESE clusters by intensive uptake of water from thecultivation medium, due to dilution of the heavy metal concentration inside the cluster. Inaddition we studied the glutathione content in treated ESEs by the adsorptive transferstripping technique coupled with the differential pulse voltammetry Brdicka reaction. GSHcontents increased up to 148 ng/mg (clone 2/32 and 158 ng/mg (clone PE 14 after twelve day long treatment with Cd-EDTA ions. The GSH content was about 150 and 160 % higher in comparison with the ESEs treated with Pb-EDTA ions, respectively. The difference between GSH contents determined in ESEs treated with Pb-EDTA and Cd-EDTA ions correlates with the higher toxicity of cadmium(II ions.

  18. Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells.

    Science.gov (United States)

    Morange, M; Diu, A; Bensaude, O; Babinet, C

    1984-04-01

    In a previous paper, we have shown that in the absence of stress, mouse embryonal carcinoma cells, like mouse early embryo multipotent cells, synthesize high levels of 89- and 70-kilodalton heat shock proteins (HSP)(O. Bensaude and M. Morange, EMBO J. 2:173-177, 1983). We report here the pattern of proteins synthesized after a short period of hyperthermia in various mouse embryonal carcinoma cell lines and early mouse embryo cells. Among the various cell lines tested, two of them, PCC4-Aza R1 and PCC7-S-1009, showed an unusual response in that stimulation of HSP synthesis was not observed in these cells after hyperthermia. However, inducibility of 68- and 105-kilodalton HSP can be restored in PCC7-S-1009 cells after in vitro differentiation triggered by retinoic acid. Similarly, in the early mouse embryo, hyperthermia does not induce the synthesis of nonconstitutive HSP at the eight-cell stage, but induction of the 68-kilodalton HSP does occur at the blastocyst stage. Such a transition in the expression of HSP has already been described for Drosophila melanogaster and sea urchin embryos and recently for mouse embryos. It may be a general property of early embryonic cells.

  19. P element excision in drosophila melanogaster and related drosophilids

    Science.gov (United States)

    The frequency of P element excision and the structure of the resulting excision products were determined in three drosophilid species, Drosophila melanogaster, D. virilis, and Chymomyza procnemis. A transient P element mobility assay was conducted in the cells of developing insect embryos, but unlik...

  20. The fate of the mosaic embryo: Chromosomal constitution and development of Day 4, 5 and 8 human embryos

    NARCIS (Netherlands)

    M.A. Santos; G. Teklenburg (Gijs); N.S. Macklon (Nick); D. van Opstal (Diane); G.H. Schuring-Blom (Heleen); P-J. Krijtenburg (Pieter-Jaap); J. de Vreeden-Elbertse (Johanna); B.C.J.M. Fauser (Bart); E.B. Baart (Esther)

    2010-01-01

    textabstractBackground: Post-zygotic chromosome segregation errors are very common in human embryos after in vitro fertilization, resulting in mosaic embryos. However, the significance of mosaicism for the developmental potential of early embryos is unknown. We assessed chromosomal constitution and

  1. The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4.

    Science.gov (United States)

    Hudson, J B; Podos, S D; Keith, K; Simpson, S L; Ferguson, E L

    1998-04-01

    The Transforming Growth Factor-beta superfamily member decapentaplegic (dpp) acts as an extracellular morphogen to pattern the embryonic ectoderm of the Drosophila embryo. To identify components of the dpp signaling pathway, we screened for mutations that act as dominant maternal enhancers of a weak allele of the dpp target gene zerknŁllt. In this screen, we recovered new alleles of the Mothers against dpp (Mad) and Medea genes. Phenotypic analysis of the new Medea mutations indicates that Medea, like Mad, is required for both embryonic and imaginal disc patterning. Genetic analysis suggests that Medea may have two independently mutable functions in patterning the embryonic ectoderm. Complete elimination of maternal and zygotic Medea activity in the early embryo results in a ventralized phenotype identical to that of null dpp mutants, indicating that Medea is required for all dpp-dependent signaling in embryonic dorsal-ventral patterning. Injection of mRNAs encoding DPP or a constitutively activated form of the DPP receptor, Thick veins, into embryos lacking all Medea activity failed to induce formation of any dorsal cell fates, demonstrating that Medea acts downstream of the thick veins receptor. We cloned Medea and found that it encodes a protein with striking sequence similarity to human SMAD4. Moreover, injection of human SMAD4 mRNA into embryos lacking all Medea activity conferred phenotypic rescue of the dorsal-ventral pattern, demonstrating conservation of function between the two gene products.

  2. Requirement for Pak3 in Rac1-induced organization of actin and myosin during Drosophila larval wound healing

    National Research Council Canada - National Science Library

    Baek, Seung Hee; Cho, Hae Weon; Kwon, Young-Chang; Lee, Hyangkyu; Lee, Ji Hyun; Kim, Moon Jong; Choe, Kwang-Min

    2012-01-01

    .... In Drosophila embryos, Cdc42 mediates filopodial projection into the wound leading edge (LE) and is important for suturing of the wound hole, while Rho1 mediates actin cable formation, which is critical during the initial stage of wound contraction [10] . In Drosophila larvae, Rac1, Cdc42, and Rho1 are essential for wound closure and organi...

  3. Cell adhesion in embryo morphogenesis.

    Science.gov (United States)

    Barone, Vanessa; Heisenberg, Carl-Philipp

    2012-02-01

    Visualizing and analyzing shape changes at various scales, ranging from single molecules to whole organisms, are essential for understanding complex morphogenetic processes, such as early embryonic development. Embryo morphogenesis relies on the interplay between different tissues, the properties of which are again determined by the interaction between their constituent cells. Cell interactions, on the other hand, are controlled by various molecules, such as signaling and adhesion molecules, which in order to exert their functions need to be spatiotemporally organized within and between the interacting cells. In this review, we will focus on the role of cell adhesion functioning at different scales to organize cell, tissue and embryo morphogenesis. We will specifically ask how the subcellular distribution of adhesion molecules controls the formation of cell-cell contacts, how cell-cell contacts determine tissue shape, and how tissue interactions regulate embryo morphogenesis.

  4. Effects of cumulative stressful and acute variation episodes of farm climate conditions on late embryo/early fetal loss in high producing dairy cows

    Science.gov (United States)

    Santolaria, Pilar; López-Gatius, Fernando; García-Ispierto, Irina; Bech-Sàbat, Gregori; Angulo, Eduardo; Carretero, Teresa; Sánchez-Nadal, Jóse Antonio; Yániz, Jesus

    2010-01-01

    The aim of this study was to determine possible relationships between farm climate conditions, recorded from day 0 to day 40 post-artificial insemination (AI), and late embryo/early fetal loss in high producing dairy cows. Pregnancy was diagnosed by rectal ultrasonography between 28 and 34 days post-AI. Fetal loss was registered when a further 80- to 86-day diagnosis proved negative. Climate variables such as air temperature and relative humidity (RH) were monitored in the cubicles area for each 30-min period. Temperature-humidity indices (THI); cumulative stressful values and episodes of acute change (defined as the mean daily value 1.2 times higher or lower than the mean daily values of the 10 previous days) of the climate variables were calculated. The data were derived from 759 cows in one herd. A total of 692 pregnancies (91.2%) carried singletons and 67 (8.8%) carried twins. No triplets were recorded. Pregnancy loss was recorded in 6.7% (51/759) of pregnancies: 5.6% (39/692) in single and 17.9% (12/67) in twin pregnancies. Using logistic regression procedures, a one-unit increase in the daily cumulative number of hours for the THI values higher than 85 during days 11-20 of gestation caused a 1.57-fold increase in the pregnancy loss, whereas the likelihood of fetal loss increased by a factor of 1.16 for each additional episode of acute variation for the maximum THI values during gestation days 0-40. THI values higher than 85 and episodes of acute variation for the maximum THI values were only recorded during the warm and cool periods, respectively. The presence of twins led to a 3.98-fold increase in pregnancy loss. In conclusion, our findings show that cumulative stressful and episodes of acute variation of climatic conditions can compromise the success of gestation during both the cool and warm periods of the year. Twin pregnancy was confirmed as a main factor associated with pregnancy loss.

  5. In vitro production of bovine embryos: cumulus/granulosa cell gene expression patterns point to early atresia as beneficial for oocyte competence

    DEFF Research Database (Denmark)

    Mazzoni, Gianluca; Razza, Eduardo; Pedersen, Hanne S.

    2017-01-01

    In vitro production (IW) of bovine embryos has become widespread technology implemented in cattle breeding and production. Here, we review novel data on cumulus/granulosa cell gene expression, as determined by RNAseq on cellular material from pooled follicular fluids at the single animal level...

  6. Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants.

    Science.gov (United States)

    Surkova, Svetlana; Golubkova, Elena; Manu; Panok, Lena; Mamon, Lyudmila; Reinitz, John; Samsonova, Maria

    2013-04-01

    Here we characterize the response of the Drosophila segmentation system to mutations in two gap genes, Kr and kni, in the form of single or double homozygotes and single heterozygotes. Segmentation gene expression in these genotypes was quantitatively monitored with cellular resolution in space and 6.5 to 13min resolution in time. As is the case with wild type, we found that gene expression domains in the posterior portion of the embryo shift to the anterior over time. In certain cases, such as the gt posterior domain in Kr mutants, the shifts are significantly larger than is seen in wild type embryos. We also investigated the effects of Kr and kni on the variability of gene expression. Mutations often produce variable phenotypes, and it is well known that the cuticular phenotype of Kr mutants is variable. We sought to understand the molecular basis of this effect. We find that throughout cycle 14A the relative levels of eve and ftz expression in stripes 2 and 3 are variable among individual embryos. Moreover, in Kr and kni mutants, unlike wild type, the variability in positioning of the posterior Hb domain and eve stripe 7 is not decreased or filtered with time. The posterior Gt domain in Kr mutants is highly variable at early times, but this variability decreases when this domain shifts in the anterior direction to the position of the neighboring Kni domain. In contrast to these findings, positional variability throughout the embryo does not decrease over time in double Kr;kni mutants. In heterozygotes the early expression patterns of segmentation genes resemble patterns seen in homozygous mutants but by the onset of gastrulation they become similar to the wild type patterns. Finally, we note that gene expression levels are reduced in Kr and kni mutant embryos and have a tendency to decrease over time. This is a surprising result in view of the role that mutual repression is thought to play in the gap gene system.

  7. Comparison of clinical outcomes between fresh embryo transfers and frozen-thawed embryo transfers.

    Science.gov (United States)

    Shen, Chunjuan; Shu, Defeng; Zhao, Xiaojie; Gao, Ying

    2014-06-01

    Advances in embryo culture technology and cryopreservation have led to a shift in in vitro fertilization (IVF) from early fresh or frozen-thawed cleavage embryo transfer to fresh or frozen-thawed blastocyst stage transfer. To compare the clinical outcomes of fresh embryo transfers and frozen-thawed embryo transfers. In this retrospective case control study, patients undergoing IVF cycles from January 2012 to December 2012 were enrolled in Assisted Reproduction of Wuhan Union Hospital were enrolled. A total of 1891 cycle contains 1150 fresh embryo transfers and 741 frozen-thawed embryo transfers were studied. All data were transferred directly to SPSS 18 and analyzed. Clinical pregnancy rates of fresh cleavage-stage embryo transfers compared with fresh blastocyst transfers, frozen-thawed cleavage-stage embryo transfers, post thaw cleavage-stage extended blastocyst culture transfers and frozen-thawed blastocyst transfers were 52.7%, 35.88%, 35.29%, 47.75%, 59.8% in patients under 35 years of ages and 41.24%, 26.92%, 11.32%, 46.15%, 55.8% in patients older than 35 years old, respectively. The multiple pregnancy rates, abortion rates and ectopic pregnancy rates did not differ significantly among the five groups. The clinical pregnancy rates were not different significantly between fresh cleavage-stage embryo transfers and fresh blastocyst transfers. But the clinical pregnancy rate of frozen-thawed blastocyst transfer was the highest among fresh/frozen-thawed embryo transfers.

  8. Nucleolar ultrastructure in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Kaňka, Jiří; Smith, Steven Dale; Soloy, Eva

    1999-01-01

    (nonactivated) or S phase (activated) cytoplasts. Control embryos were fixed at the two-, four-, early eight- and late eight-cell stages; nuclear transfer embryos were fixed at 1 and 3 hr post fusion and at the two-, four-, and eight-cell stages. Control embryos possessed a nucleolar precursor body throughout...... at 1 hr after fusion and, by 3 hr after fusion, it was restored again. At this time, the reticulated fibrillo-granular nucleolus had an almost round shape. The nucleolar precursor body seen in the two-cell stage nuclear transfer embryos consisted of intermingled filamentous components and secondary...... time intervals after fusion. In the two-cell stage nuclear transfer embryo, the originally reticulated nucleolus of the donor blastomere had changed into a typical nucleolar precursor body consisting of a homogeneous fibrillar structure. A primary vacuole appeared in the four-cell stage nuclear...

  9. Nucleolar ultrastructure in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Kaňka, Jiří; Smith, Steven Dale; Soloy, Eva

    1999-01-01

    (nonactivated) or S phase (activated) cytoplasts. Control embryos were fixed at the two-, four-, early eight- and late eight-cell stages; nuclear transfer embryos were fixed at 1 and 3 hr post fusion and at the two-, four-, and eight-cell stages. Control embryos possessed a nucleolar precursor body throughout...... at 1 hr after fusion and, by 3 hr after fusion, it was restored again. At this time, the reticulated fibrillo-granular nucleolus had an almost round shape. The nucleolar precursor body seen in the two-cell stage nuclear transfer embryos consisted of intermingled filamentous components and secondary...... time intervals after fusion. In the two-cell stage nuclear transfer embryo, the originally reticulated nucleolus of the donor blastomere had changed into a typical nucleolar precursor body consisting of a homogeneous fibrillar structure. A primary vacuole appeared in the four-cell stage nuclear...

  10. SWATH-MS data of Drosophila melanogaster proteome dynamics during embryogenesis.

    Science.gov (United States)

    Fabre, Bertrand; Korona, Dagmara; Nightingale, Daniel J H; Russell, Steven; Lilley, Kathryn S

    2016-12-01

    Embryogenesis is one of the most important processes in the life of an animal. During this dynamic process, progressive cell division and cellular differentiation are accompanied by significant changes in protein expression at the level of the proteome. However, very few studies to date have described the dynamics of the proteome during the early development of an embryo in any organism. In this dataset, we monitor changes in protein expression across a timecourse of more than 20 h of Drosophila melanogaster embryonic development. Mass-spectrometry data were produced using a SWATH acquisition mode on a Sciex Triple-TOF 6600. A spectral library built in-house was used to analyse these data and more than 1950 proteins were quantified at each embryonic timepoint. The files presented here are a permanent digital map and can be reanalysed to test against new hypotheses. The data have been deposited with the ProteomeXchange Consortium with the dataset identifier PRIDE: PXD0031078.

  11. Rapid and highly accurate detection of Drosophila suzukii, spotted wing Drosophila (Diptera: Drosophilidae) by loop-mediated isothermal amplification assays

    Science.gov (United States)

    Drosophila suzukii, the spotted wing drosophila (SWD), is currently a major pest that causes severe economic losses to thin-skinned, small fruit growers in North America and Europe. The monitoring and early detection of SWD in the field is of the utmost importance for its proper management. Althou...

  12. Sex-linked mitochondrial behavior during early embryo development in Ruditapes philippinarum (Bivalvia Veneridae) a species with the Doubly Uniparental Inheritance (DUI) of mitochondria.

    Science.gov (United States)

    Milani, Liliana; Ghiselli, Fabrizio; Passamonti, Marco

    2012-05-01

    In most metazoans mitochondria are inherited maternally. However, in some bivalve molluscs, two mitochondrial lineages are present: one transmitted through females (F-type), the other through males (M-type). This unique system is called Doubly Uniparental Inheritance (DUI) of mitochondria. In DUI species, M-type mitochondria have to invade the germ line of male embryos during development, otherwise sperm would transmit F-type mtDNA and DUI would fail. The mechanisms by which sperm mitochondria enter the germ line are still unknown. To address this question, we traced the movement of spermatozoon mitochondria (M-type) in embryos of the DUI species Ruditapes philippinarum by fertilizing eggs with sperm stained with the mitochondrial-specific vital dye MitoTracker Green. As in Mytilus DUI species, in R. philippinarum the distribution of sperm mitochondria follows two different patterns: an aggregated one in which these organelles locate near the first cleavage furrow, and a dispersed one in which sperm mitochondria are scattered. The presence of the two mitochondrial patterns in these taxa, together with their absence in species with Strictly Maternal Inheritance (SMI), confirms that their occurrence is related to DUI. Moreover, a Real-Time qPCR analysis showed that neither M-type nor F-type mitochondria undergo replication boosts in the earliest embryo development. This is the first study on sex-linked mtDNA copy number carried out by qPCR analysis on embryos of a DUI species and the first time the segregation patterns of sperm mitochondria are described in a DUI system other than Mytilus.

  13. Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Jaroslav Michalko

    2015-10-01

    Full Text Available The Auxin Binding Protein1 (ABP1 has been identified based on its ability to bind auxin with high affinity and studied for a long time as a prime candidate for the extracellular auxin receptor responsible for mediating in particular the fast non-transcriptional auxin responses. However, the contradiction between the embryo-lethal phenotypes of the originally described Arabidopsis T-DNA insertional knock-out alleles (abp1-1 and abp1-1s and the wild type-like phenotypes of other recently described loss-of-function alleles (abp1-c1 and abp1-TD1 questions the biological importance of ABP1 and relevance of the previous genetic studies. Here we show that there is no hidden copy of the ABP1 gene in the Arabidopsis genome but the embryo-lethal phenotypes of abp1-1 and abp1-1s alleles are very similar to the knock-out phenotypes of the neighboring gene, BELAYA SMERT (BSM. Furthermore, the allelic complementation test between bsm and abp1 alleles shows that the embryo-lethality in the abp1-1 and abp1-1s alleles is caused by the off-target disruption of the BSM locus by the T-DNA insertions. This clarifies the controversy of different phenotypes among published abp1 knock-out alleles and asks for reflections on the developmental role of ABP1.

  14. The alpha, beta, gamma, delta-unsaturated aldehyde 2-trans-4-trans-decadienal disturbs DNA replication and mitotic events in early sea urchin embryos.

    Science.gov (United States)

    Hansen, Espen; Even, Yasmine; Genevière, Anne-Marie

    2004-09-01

    The polyunsaturated aldehydes are highly reactive products of fatty acid peroxidation and combustion of organic materials, and they have been documented to have diverse cyctotoxic and genotoxic effects. The alpha,beta,gamma,delta-unsaturated aldehyde 2-trans-4-trans-decadienal is produced by marine microalgae, and it is known to inhibit cell proliferation and induce apoptosis in several different cell types. However, the molecular basis for the cell cycle arrest is not fully understood. We used sea urchin embryos to examine how some of the key events of the mitotic cell division were influenced by this polyunsaturated aldehyde. We found that cell divisions in embryos of Sphaerechinus granularis were inhibited by 2-trans-4-trans-decadienal in a dose dependent manner with an EC50 of 1.3 microM. Mitotic events in the nondividing eggs were characterized using immunofluorescent staining. DNA labelling revealed that pronuclear migration was inhibited, and a total absence of incorporation of the DNA-base analogue 5-bromo-2-deoxyuridine indicated that no DNA replication had occurred. Staining of alpha-tubulin subunits showed that tubulin-polymerization was disrupted and aberrations were induced in mitotic spindles. Furthermore, we monitored the activity of the G2-M promoting complex cyclin B-Cdk1 in newly fertilized sea urchin eggs, and found that this complex was not activated in embryos treated with 2-trans-4-trans-decadienal despite the accumulation of cyclin B.

  15. Autophagy and ubiquitin-mediated proteolysis may not be involved in the degradation of spermatozoon mitochondria in mouse and porcine early embryos.

    Science.gov (United States)

    Jin, Yong-Xun; Zheng, Zhong; Yu, Xian-Feng; Zhang, Jia-Bao; Namgoong, Suk; Cui, Xiang-Shun; Hyun, Sang-Hwan; Kim, Nam-Hyung

    2016-02-01

    The mitochondrial genome is maternally inherited in animals, despite the fact that paternal mitochondria enter oocytes during fertilization. Autophagy and ubiquitin-mediated degradation are responsible for the elimination of paternal mitochondria in Caenorhabditis elegans; however, the involvement of these two processes in the degradation of paternal mitochondria in mammals is not well understood. We investigated the localization patterns of light chain 3 (LC3) and ubiquitin in mouse and porcine embryos during preimplantation development. We found that LC3 and ubiquitin localized to the spermatozoon midpiece at 3 h post-fertilization, and that both proteins were colocalized with paternal mitochondria and removed upon fertilization during the 4-cell stage in mouse and the zygote stage in porcine embryos. Sporadic paternal mitochondria were present beyond the morula stage in the mouse, and paternal mitochondria were restricted to one blastomere of 4-cell embryos. An autophagy inhibitor, 3-methyladenine (3-MA), did not affect the distribution of paternal mitochondria compared with the positive control, while an autophagy inducer, rapamycin, accelerated the removal of paternal mitochondria compared with the control. After the intracytoplasmic injection of intact spermatozoon into mouse oocytes, LC3 and ubiquitin localized to the spermatozoon midpiece, but remnants of undegraded paternal mitochondria were retained until the blastocyst stage. Our results show that paternal mitochondria colocalize with autophagy receptors and ubiquitin and are removed after in vitro fertilization, but some remnants of sperm mitochondrial sheath may persist up to morula stage after intracytoplasmic spermatozoon injection (ICSI).

  16. Uracil-containing DNA in Drosophila: stability, stage-specific accumulation, and developmental involvement.

    Directory of Open Access Journals (Sweden)

    Villő Muha

    Full Text Available Base-excision repair and control of nucleotide pools safe-guard against permanent uracil accumulation in DNA relying on two key enzymes: uracil-DNA glycosylase and dUTPase. Lack of the major uracil-DNA glycosylase UNG gene from the fruit fly genome and dUTPase from fruit fly larvae prompted the hypotheses that i uracil may accumulate in Drosophila genomic DNA where it may be well tolerated, and ii this accumulation may affect development. Here we show that i Drosophila melanogaster tolerates high levels of uracil in DNA; ii such DNA is correctly interpreted in cell culture and embryo; and iii under physiological spatio-temporal control, DNA from fruit fly larvae, pupae, and imago contain greatly elevated levels of uracil (200-2,000 uracil/million bases, quantified using a novel real-time PCR-based assay. Uracil is accumulated in genomic DNA of larval tissues during larval development, whereas DNA from imaginal tissues contains much less uracil. Upon pupation and metamorphosis, uracil content in DNA is significantly decreased. We propose that the observed developmental pattern of uracil-DNA is due to the lack of the key repair enzyme UNG from the Drosophila genome together with down-regulation of dUTPase in larval tissues. In agreement, we show that dUTPase silencing increases the uracil content in DNA of imaginal tissues and induces strong lethality at the early pupal stages, indicating that tolerance of highly uracil-substituted DNA is also stage-specific. Silencing of dUTPase perturbs the physiological pattern of uracil-DNA accumulation in Drosophila and leads to a strongly lethal phenotype in early pupal stages. These findings suggest a novel role of uracil-containing DNA in Drosophila development and metamorphosis and present a novel example for developmental effects of dUTPase silencing in multicellular eukaryotes. Importantly, we also show lack of the UNG gene in all available genomes of other Holometabola insects, indicating a potentially

  17. Culture systems: embryo density.

    Science.gov (United States)

    Reed, Michael L

    2012-01-01

    Embryo density is defined as the embryo-to-volume ratio achieved during in vitro culture; in other words, it is the number of embryos in a defined volume of culture medium. The same density can be achieved by manipulating either the number of embryos in a given volume of medium, or manipulating the volume of the medium for a given number of embryos: for example, a microdrop with five embryos in a 50 μl volume under oil has the same embryo-to-volume ratio (1:10 μl) as a microdrop with one embryo in a 10 μl volume under oil (1:10 μl). Increased embryo density can improve mammalian embryo development in vitro; however, the mechanism(s) responsible for this effect may be different with respect to which method is used to increase embryo density.Standard, flat sterile plastic petri dishes are the most common, traditional platform for embryo culture. Microdrops under a mineral oil overlay can be prepared to control embryo density, but it is critical that dish preparation is consistent, where appropriate techniques are applied to prevent microdrop dehydration during preparation, and results of any data collection are reliable, and repeatable. There are newer dishes available from several manufacturers that are specifically designed for embryo culture; most are readily available for use with human embryos. The concept behind these newer dishes relies on fabrication of conical and smaller volume wells into the dish design, so that embryos rest at the lowest point in the wells, and where putative embryotrophic factors may concentrate.Embryo density is not usually considered by the embryologist as a technique in and of itself; rather, the decision to culture embryos in groups or individually is protocol-driven, and is based more on convenience or the need to collect data on individual embryos. Embryo density can be controlled, and as such, it can be utilized as a simple, yet effective tool to improve in vitro development of human embryos.

  18. Modeling transcriptional networks in Drosophila development at multiple scales.

    Science.gov (United States)

    Wunderlich, Zeba; DePace, Angela H

    2011-12-01

    Quantitative models of developmental processes can provide insights at multiple scales. Ultimately, models may be particularly informative for key questions about network level behavior during development such as how does the system respond to environmental perturbation, or operate reliably in different genetic backgrounds? The transcriptional networks that pattern the Drosophila embryo have been the subject of numerous quantitative experimental studies coupled to modeling frameworks in recent years. In this review, we describe three studies that consider these networks at different levels of molecular detail and therefore result in different types of insights. We also discuss other developmental transcriptional networks operating in Drosophila, with the goal of highlighting what additional insights they may provide.

  19. Drosophila homolog of the murine Int-1 protooncogene.

    OpenAIRE

    1988-01-01

    We have isolated phage clones from Drosophila melanogaster genomic and cDNA libraries containing a sequence homologous to the murine Int-1 protooncogene. The Drosophila gene is represented by a single locus at position 28A1-2 on chromosome 2. The gene is expressed as a 2.9-kilobase-long polyadenylylated mRNA in embryo, larval, and pupal stages. It is hardly detectable in adult flies. The longest open reading frame of the cDNA clone corresponds to a protein 469 amino acids long. Alignment of t...

  20. CRISPR/Cas9 mediated genome engineering in Drosophila.

    Science.gov (United States)

    Bassett, Andrew; Liu, Ji-Long

    2014-09-01

    Genome engineering has revolutionised genetic analysis in many organisms. Here we describe a simple and efficient technique to generate and detect novel mutations in desired target genes in Drosophila melanogaster. We target double strand breaks to specific sites within the genome by injecting mRNA encoding the Cas9 endonuclease and in vitro transcribed synthetic guide RNA into Drosophila embryos. The small insertion and deletion mutations that result from inefficient non-homologous end joining at this site are detected by high resolution melt analysis of whole flies and individual wings, allowing stable lines to be made within 1 month.

  1. Hepatitis B Virus Expression in Villi from Paternal HBeAg Positive Early Abortion Embryo%父系HBeAg阳性流产胚胎绒毛中HBV-DNA的表达

    Institute of Scientific and Technical Information of China (English)

    林淑仪; 李芳; 陈励和; 崔咏怡; 禤庆山

    2012-01-01

    Objective: To investigate hepatitis B virus (HBV-DNA) expression in villi from paternal HBeAg positive early abortion embryo. Methods: Early abortion embryos, whose paternal serum HBsAg positive and maternal serum HBsAg negative, were collected. They were divided into G1 paternal HBeAg (+)and maternal HBsAb (+), G2 paternal HBeAg (+) and maternal HBsAb (-), G3 paternal HBeAg (-) and maternal HBsAb (+), and G4 maternal HBsAb (-) and paternal HbeAg (-). parents serum HBV antigen and antibody measurement was performed by ELISA, HBV-DNA expression in villi was measured by fluori-metric quantitative PCR. Results: Among 142 villi from paternal HBsAg positive early abortion embryo, 3 of 84 villi from paternal HBeAg positive early abortion embryo were detected for HBV-DNA expression. The positive rate was 3.57%. 2 cases in G2 paternal HBeAg (+) and maternal HBsAb (-), and 1 case in Gl paternal HBeAg (+) and maternal HBsAb (+). In groups whose paternal HBeAg were positive (G1 and G2), there was no significant difference for villi HBV-DNA expressing rate (P>0.05). Conclusion: Hepatitis B virus might more likely transmit vertically to early embryo villi in paternal HBeAg positive cases.%目的:探讨在父系HBeAg阳性的流产胚胎中,乙型肝炎病毒在绒毛中的表达.方法:募集仅父系感染乙型肝炎病毒组合,即母HBsAg(-)且父HBsAg(+)流产胚胎.接以下组合将入选对象分为4组:组1为父HBeAg(+)母HBsAb(+);组2为父HBeAg(+)母HBsAb(-);组3为父HBeAg(-)母HBsAb(+);组4为父HBeAg(-)母HBsAb(-),采用酶联免疫吸附实验(ELISA)对胎儿父、母亲血清进行乙肝抗原、抗体检测,并使用荧光定量PCR法对胚胎绒毛进行HBV DNA检测.结果:父系感染乙型肝炎病毒的142例胚胎中,仅在父系HBeAg阳性组别(1、2组)84例胚胎中发现3例绒毛HBV-DNA升高,阳性率为3.57%.其中父HBeAg(+)母HBsAb(-)组合中2例,父HBeAg(+)母HBsAb(+)组合中1例.父系HBeAg均阳性,母系HBsAb阳性与阴性组间

  2. Undernutrition affects embryo quality of superovulated ewes.

    Science.gov (United States)

    Abecia, J A; Forcada, F; Palacín, I; Sánchez-Prieto, L; Sosa, C; Fernández-Foren, A; Meikle, A

    2015-02-01

    To determine the effect of undernutrition on embryo production and quality in superovulated sheep, 45 ewes were allocated into two groups to be fed diets that provided 1.5 (control, C; n = 20) or 0.5 (low nutrition, L; n = 25) times daily requirements for maintenance, from oestrous synchronization with intravaginal sponges to embryo collection. Embryos were collected 7 days after the onset of oestrus (day 0). Low nutrition resulted in lower live weight and body condition at embryo collection (P < 0.05). Diet (P < 0.01) and day of sampling (P < 0.001) significantly affected plasma non-esterified fatty acid (NEFA) and insulin concentrations. Plasma leptin concentrations decreased on day 7 only in L ewes. A significant effect of dietary treatment (P < 0.05) and day (P < 0.0001) was observed on plasma insulin-like growth factor (IGF)-I concentrations. The number of recovered oocytes and embryos did not differ between the groups (L: 15.4 ± 0.4; C: 12.4 ± 0.4). Recovery rate was lower (P < 0.05) in the L (60%) than in the C group (73%). The total number of embryos and number of viable-transferable embryos (5.0 ± 0.3 and 3.4 ± 0.3 embryos, respectively) of the L group were lower (P < 0.1) when compared with controls (8.4 ± 0.4 and 6.2 ± 0.4 embryos, respectively). Undernutrition during the period of superovulation and early embryonic development reduced total and viable number of embryos. These effects might be mediated by disruption of endocrine homeostasis, oviduct environment and/or oocyte quality.

  3. Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene [version 1; referees: 3 approved

    OpenAIRE

    Jaroslav Michalko; Marta Dravecká; Tobias Bollenbach; Jiří Friml

    2015-01-01

    The Auxin Binding Protein1 (ABP1) has been identified based on its ability to bind auxin with high affinity and studied for a long time as a prime candidate for the extracellular auxin receptor responsible for mediating in particular the fast non-transcriptional auxin responses. However, the contradiction between the embryo-lethal phenotypes of the originally described Arabidopsis T-DNA insertional knock-out alleles ( abp1-1 and abp1-1s) and the wild type-like phenotypes of other recently des...

  4. How complexity increases in development: An analysis of the spatial-temporal dynamics of 1218 genes in Drosophila melanogaster.

    Science.gov (United States)

    Salvador-Martínez, Irepan; Salazar-Ciudad, Isaac

    2015-09-15

    One of the most apparent phenomena in development is that it starts with something apparently simple and leads to something clearly complex with a specific and functional structure. At the level of gene expression it seems also clear that the embryo becomes progressively compartmentalized over time and space. However, there have not been any systematic attempts to quantify how this occurs. Here, we present a quantitative analysis of the compartmentalization and spatial complexity of gene expression in Drosophila melanogaster over developmental time by analyzing thousands of gene expression spatial patterns from FlyExpress database. We use three different mathematical measures of compartmentalization of gene expression in space. All these measures show a similar non-linear increase in compartmentalization over time, with the most dramatic change occurring from the maternal to the early gastrula stage. Transcription factors and growth factors showed an earlier compartmentalization. Finally, we partitioned the embryo space in 257 equally sized regions and clustered them depending on their expression similarity, within and between stages. This provides a global overview about the effective degree of differentiation and compartmentalization between body parts at each developmental stage and when and where in the embryo there are more changes, due to signaling or movement.

  5. Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species.

    Directory of Open Access Journals (Sweden)

    Steven G Kuntz

    2014-04-01

    Full Text Available Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5 °C and 32.5 °C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes [Formula: see text]33 hours at 17.5 °C, and accelerates with increasing temperature to a low of 16 hours at 27.5 °C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5 °C and have drastically slowed development by 30 °C. Despite ranging from 13 hours for D. erecta at 30 °C to 46 hours for D. virilis at 17.5 °C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer

  6. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion.

    Science.gov (United States)

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-15

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed.

  7. Spatial distribution of predicted transcription factor binding sites in Drosophila ChIP peaks.

    Science.gov (United States)

    Pettie, Kade P; Dresch, Jacqueline M; Drewell, Robert A

    2016-08-01

    In the development of the Drosophila embryo, gene expression is directed by the sequence-specific interactions of a large network of protein transcription factors (TFs) and DNA cis-regulatory binding sites. Once the identity of the typically 8-10bp binding sites for any given TF has been determined by one of several experimental procedures, the sequences can be represented in a position weight matrix (PWM) and used to predict the location of additional TF binding sites elsewhere in the genome. Often, alignments of large (>200bp) genomic fragments that have been experimentally determined to bind the TF of interest in Chromatin Immunoprecipitation (ChIP) studies are trimmed under the assumption that the majority of the binding sites are located near the center of all the aligned fragments. In this study, ChIP/chip datasets are analyzed using the corresponding PWMs for the well-studied TFs; CAUDAL, HUNCHBACK, KNIRPS and KRUPPEL, to determine the distribution of predicted binding sites. All four TFs are critical regulators of gene expression along the anterio-posterior axis in early Drosophila development. For all four TFs, the ChIP peaks contain multiple binding sites that are broadly distributed across the genomic region represented by the peak, regardless of the prediction stringency criteria used. This result suggests that ChIP peak trimming may exclude functional binding sites from subsequent analyses.

  8. The Establishment of Method on Early Mouse Embryo Transplantation%小鼠早期胚胎不同移植方法的建立

    Institute of Scientific and Technical Information of China (English)

    邹悦; 张守纯

    2013-01-01

    Objective Establish mouse superovulation and embryo transfer technology,in order to further use the technology to control their offspring,and gradually will these technologies applied to other animals,so as to speed up its breed improvement,improve the utilization rate of good varieties and individual.Method Of 4-week-old C57BL/6 female mouse by intraperitoneal injection 7.5 IU PMSG (pregnant mare serum gonadotropin) 48 hours after intraperitoneal injection of superovulation 7.5 IU HCG (human chorionic gonadotropin) and C57BL/6 male rats mated,see bolt 0.5 days,1.5 days and 3.5 days,remove the corresponding embryo,the resulting embryo screening,elect better quality embryos and embryonic stages (single cells,2 cells capsule fallopian tube or uterus KM pseudopregnant mice mouse embryo) into estrus synchronization see bolt after KM ligation male rats mating stimulus be in production pregnancy after transplantation in mouse.Result Superovulation 88 C57BL/6 mice,see bolt 62,a total of 510 single-cell embryos,400 2-cell stage embryos,blastocysts 35,the ministry of tubal transplantation,tubal notches,uterine transplant transplant pseudopregnant female mice 43,pregnancy producing 39 farrowing 361.Conclusion Tubal fimbria transplantation compared with tubal Jiankou transplant was no significant difference tubal transplantation hurt small animals,but for patients who require a higher; fallopian tube the Jiankou transplant operation is relatively quick,but the larger animal injury; uterine transplant the pregnancy best effect at this stage of embryo easily implantation.%目的 建立小鼠胚胎移植技术,探索小鼠胚胎输卵管伞部移植、输卵管剪口移植和子宫移植技术要点,为进一步将该项技术应用到生物净化等领域提供参考数据.方法 对4周龄C57BL/6雌性小鼠采用腹腔注射7.5 IUPMSG(孕马血清促性腺激素),48 h后腹腔注射7.5 IU HCG(人绒毛膜促性腺激素)进行超数排卵处理,并与C57BL/6

  9. Wolbachia-induced cytoplasmic incompatibility is associated with decreased Hira expression in male Drosophila.

    Directory of Open Access Journals (Sweden)

    Ya Zheng

    Full Text Available BACKGROUND: Wolbachia are obligate endosymbiotic bacteria that infect numerous species of arthropods and nematodes. Wolbachia can induce several reproductive phenotypes in their insect hosts including feminization, male-killing, parthenogenesis and cytoplasmic incompatibility (CI. CI is the most common phenotype and occurs when Wolbachia-infected males mate with uninfected females resulting in no or very low numbers of viable offspring. However, matings between males and females infected with the same strain of Wolbachia result in viable progeny. Despite substantial scientific effort, the molecular mechanisms underlying CI are currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression studies were undertaken in Drosophila melanogaster and D. simulans which display differential levels of CI using quantitative RT-PCR. We show that Hira expression is correlated with the induction of CI and occurs in a sex-specific manner. Hira expression is significantly lower in males which induce strong CI when compared to males inducing no CI or Wolbachia-uninfected males. A reduction in Hira expression is also observed in 1-day-old males that induce stronger CI compared to 5-day-old males that induce weak or no CI. In addition, Hira mutated D. melanogaster males mated to uninfected females result in significantly decreased hatch rates comparing with uninfected crosses. Interestingly, wMel-infected females may rescue the hatch rates. An obvious CI phenotype with chromatin bridges are observed in the early embryo resulting from Hira mutant fertilization, which strongly mimics the defects associated with CI. CONCLUSIONS/SIGNIFICANCE: Our results suggest Wolbachia-induced CI in Drosophila occurs due to a reduction in Hira expression in Wolbachia-infected males leading to detrimental effects on sperm fertility resulting in embryo lethality. These results may help determine the underlying mechanism of CI and provide further insight in to the important role

  10. 肉苁蓉及淫羊藿对小鼠早期胚胎体外发育的影响%Effects of Cistanche and Epimedium on Development of Early Mouse Embryo

    Institute of Scientific and Technical Information of China (English)

    谢安; 厉世伟; 李龙; 况玲

    2011-01-01

    A study on the influence of Cistanche and Epimedium on development of early mouse embryos in vitro was conducted. Early embryos of 6 - 8 week - old KM mice were selected for test. A group of no medicine was taken as the blank control, The others were divided into the following groups, Group Ⅰ: early embryos in medium of M, and M2. Group Ⅱ ;early embryos in the medium of 0. 1% of M, and M2. Group Ⅲ :early embryos in medium of Chinese medicines of different concentrations. Group Ⅳ: early embryos in medium of different combinations of Chinese medicines. The results showed that, ( 1) M2 was better than M,,especially in o-vercoming the block of 2 - cells. (2) Addition 0. 1% Cistanche was better than that of 0. 1% Epimedium in Morula and blastula(P <0. 01) ,the rates of Morula and blastula in the medicine groups were higher than that in the control(P<0.01). (3)High concentration of Chinese medicines had bad effects on viability of embryo,and restrained the rates of developent of Morula and blastula( P<0.01). (4) Compared with the control, there was significant difference betwwen addition of portfolio of high concentration of Chinese medicines and that of low concentration in survival rate,development rate(P <0.05). At the same time, the development rates of Morula and blastula compared with those in the low concentration groups and the control were significantly different (P<0.01). It means with high concentration of Chinese medicine will inhibi the development. Conclusion; medium added with EDTA, taurine, 0. 1% Cistanche can overcome the block of 2 -cells in vitro, and addition of low concentrations or combination of medicines has good effects.%研究肉苁蓉及淫羊藿对小鼠早期胚胎体外发育的影响.试验选取6~8周龄昆明小鼠早期胚胎,以不添加中药培养液组为空白对照,分以下试验组:Ⅰ组:早期胚胎在纯培养液M16+5%FBS( M1)与M16+5%FBS+EDTA+牛磺酸(M2)中的体外发育情况;Ⅱ组:早期胚胎添

  11. Crumbs and stardust act in a genetic pathway that controls the organization of epithelia in Drosophila melanogaster.

    Science.gov (United States)

    Tepass, U; Knust, E

    1993-09-01

    We provide evidence that the genes crumbs (crb) and stardust (sdt) encode critical components of a pathway that acts at the apical pole of epithelial cells to control the cytoarchitecture of ectodermally derived epithelia of the Drosophila embryo. We describe the developmental defects caused by sdt mutations, which are very similar to those associated with mutations in crb. In both mutants the epithelial structure of ectodermal cells breaks down during early organogenesis, leading to the formation of irregular clusters of cells and cell death in some epithelia. Certain cells can, however, compensate for the loss of crb or sdt function in a tissue-specific manner, later reassuming an epithelial cell shape and forming small epithelial vesicles, suggesting that, besides crb and sdt, other tissue-specific components are involved in this process. The crb protein (CRB) is continuously expressed in wild-type embryos in cells of the ectoderm and ectodermally derived epithelia. In sdt mutant embryos CRB is present only during gastrulation, but becomes undetectable during germ band extension; the protein is again visible during early organogenesis, at the time when the sdt mutant phenotype becomes apparent. In sdt mutant embryos, CRB is associated with the apical membrane only in well-differentiated epithelial cells, but it is expressed diffusely in the cytoplasm of cells which have lost epithelial morphology. Our results suggest that time- and tissue-specific control mechanisms exist to establish and maintain epithelial cell structure. Mosaic experiments suggest that sdt is required cell autonomously, in contrast to crb, the requirement of which appears to be non-cell-autonomous. Double mutant combinations of crb and sdt suggest that these genes are part of a common genetic pathway (crb/sdt pathway), in which sdt acts downstream of crb and is activated by the latter.

  12. Steroidal alkaloid toxicity to fish embryos.

    Science.gov (United States)

    Crawford, L; Kocan, R M

    1993-02-01

    Embryos of two species of fish were evaluated for their suitability as model systems for steroidal alkaloid toxicity, the Japanese rice fish, medaka (Oryzius latipes) and the rainbow trout (Oncorhynchus mykiss). Additionally, the equine neurotoxic sesquiterpene lactone repin, was also tested. A PROBIT program was used to evaluate the EC1, EC50 and EC99 as well as the associated confidence limits. The steroidal alkaloids tested were the Solanum potato glycoalkaloids alpha-chaconine, alpha-solanine, the aglyclones solanidine and solasodine and the Veratrum alkaloid, jervine. Embryo mortality, likely due to structural or functional abnormalities in the early development stages of the embryo, were the only response observed in both species. The rainbow trout exhibited a toxic response to chaconine, solasidine, repin and solanine but the medaka embryos were only affected by the compounds, chaconine and solanine. Rainbow trout may indeed serve as a good lower vertebrate model for studying the toxicity of steroidal alkaloids.

  13. Electroporation into Cultured Mammalian Embryos

    Science.gov (United States)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  14. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  15. Characterization of the Drosophila ortholog of the human Usher Syndrome type 1G protein sans.

    Directory of Open Access Journals (Sweden)

    Fabio Demontis

    Full Text Available BACKGROUND: The Usher syndrome (USH is the most frequent deaf-blindness hereditary disease in humans. Deafness is attributed to the disorganization of stereocilia in the inner ear. USH1, the most severe subtype, is associated with mutations in genes encoding myosin VIIa, harmonin, cadherin 23, protocadherin 15, and sans. Myosin VIIa, harmonin, cadherin 23, and protocadherin 15 physically interact in vitro and localize to stereocilia tips in vivo, indicating that they form functional complexes. Sans, in contrast, localizes to vesicle-like structures beneath the apical membrane of stereocilia-displaying hair cells. How mutations in sans result in deafness and blindness is not well understood. Orthologs of myosin VIIa and protocadherin 15 have been identified in Drosophila melanogaster and their genetic analysis has identified essential roles in auditory perception and microvilli morphogenesis, respectively. PRINCIPAL FINDINGS: Here, we have identified and characterized the Drosophila ortholog of human sans. Drosophila Sans is expressed in tubular organs of the embryo, in lens-secreting cone cells of the adult eye, and in microvilli-displaying follicle cells during oogenesis. Sans mutants are viable, fertile, and mutant follicle cells appear to form microvilli, indicating that Sans is dispensable for fly development and microvilli morphogenesis in the follicle epithelium. In follicle cells, Sans protein localizes, similar to its vertebrate ortholog, to intracellular punctate structures, which we have identified as early endosomes associated with the syntaxin Avalanche. CONCLUSIONS: Our work is consistent with an evolutionary conserved function of Sans in vesicle trafficking. Furthermore it provides a significant basis for further understanding of the role of this Usher syndrome ortholog in development and disease.

  16. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Hee Jin Shim

    Full Text Available Ionizing radiation (IR treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  17. Maternal control of the Drosophila dorsal-ventral body axis.

    Science.gov (United States)

    Stein, David S; Stevens, Leslie M

    2014-01-01

    The pathway that generates the dorsal-ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 Wiley Periodicals, Inc.

  18. Maternal control of the Drosophila dorsal–ventral body axis

    Science.gov (United States)

    Stein, David S.; Stevens, Leslie M.

    2016-01-01

    The pathway that generates the dorsal–ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. PMID:25124754

  19. POSH misexpression induces caspase-dependent cell death in Drosophila.

    Science.gov (United States)

    Lennox, Ashley L; Stronach, Beth

    2010-02-01

    POSH (Plenty of SH3 domains) is a scaffold for signaling proteins regulating cell survival. Specifically, POSH promotes assembly of a complex including Rac GTPase, mixed lineage kinase (MLK), MKK7, and Jun kinase (JNK). In Drosophila, genetic analysis implicated POSH in Tak1-dependent innate immune response, in part through regulation of JNK signaling. Homologs of the POSH signaling complex components, MLK and MKK7, are essential in Drosophila embryonic dorsal closure. Using a gain-of-function approach, we tested whether POSH plays a role in this process. Ectopic expression of POSH in the embryo causes dorsal closure defects due to apoptosis of the amnioserosa, but ectodermal JNK signaling is normal. Phenotypic consequences of POSH expression were found to be dependent on Drosophila Nc, the caspase-9 homolog, but only partially on Tak1 and not at all on Slpr and Hep. These results suggest that POSH may use different signaling complexes to promote cell death in distinct contexts.

  20. 鸡与鹌鹑属间杂交早期胚胎性别的DNA分子鉴定%DNA Molecular Sex Identification for Chicken(Gallus gallus)-quail (Coturnix coturnix) Hybrids Early Embryos

    Institute of Scientific and Technical Information of China (English)

    郑炜; 范丽娜; 翟曼君; 赵宗胜; 李青峰; 梁耀伟; 米拉

    2013-01-01

    According to our previous research, there was an obvious relationship between the early death of chicken(Gallus gallus)-quail(Cotumix cotunux) hybrids and sex differentiation. Meanwhile, current widespread adapted methods to indentify sex differentiation stayed at RNA level, experimental steps complicated and easy to make mistakes, and RNA samples, which are needed to be measured, was quite difficult to preserved longer, but could not be simply employed. So it is necessary to find a more simple and accurate way to identify the early embryo's sexing. In this study, there were two sections for CHD (chromobox-helicase-DNA binding) gene DNA level sex determination, at first,a total of 116 chicken-quail hybrid embryos at different incubate stages (2.5~5 d) was treated as experiment group and 10 mg embryonic organs were used to DNA extraction; then the DNA extraction from blood of 60 sex-known quails (male and female were half-and-half) was regarded as control. Wpkci (W-linked protein kinase C inhibitor) for mRNA level was known as a mature method to identify sexing, and then it is used to check the result of embryos' sex determination in our research. The result showed that CHD 2550F/2718R could identify the sex of chicken-quail hybrid embryos accurately. The amplication size of male embryo tissues was 613 bp and two bands in female were 613 and 446 bp, respectively. The experimental results provide basic data for the chicken-quail hybrids sex determination mechanism.%鸡(Gallus gallus)与鹌鹑(Coturnix coturnix)属间杂交胚胎早期死亡与性别分化存在着一定的关系,寻找简单、准确的早期胚胎性别鉴定方法是深入研究其死亡分子机制的前提.本实验室前期使用Wpkci引物从mRNA水平对早期胚胎进行准确的性别鉴定,而RNA提取对样品质量要求较高,鉴定程序较复杂.因此需要建立更加简单快捷的方法,对鸡与鹌鹑属间杂交早期胚胎进行准确性别鉴定.本

  1. Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression.

    Science.gov (United States)

    Akbari, Omar S; Chen, Chun-Hong; Marshall, John M; Huang, Haixia; Antoshechkin, Igor; Hay, Bruce A

    2014-12-19

    Insects act as vectors for diseases of plants, animals, and humans. Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a potentially self-perpetuating method of disease prevention. Population replacement requires a gene drive mechanism in order to spread linked genes mediating disease refractoriness through wild populations. We previously reported the creation of synthetic Medea selfish genetic elements able to drive population replacement in Drosophila. These elements use microRNA-mediated silencing of myd88, a maternally expressed gene required for embryonic dorso-ventral pattern formation, coupled with early zygotic expression of a rescuing transgene, to bring about gene drive. Medea elements that work through additional mechanisms are needed in order to be able to carry out cycles of population replacement and/or remove existing transgenes from the population, using second-generation elements that spread while driving first-generation elements out of the population. Here we report the synthesis and population genetic behavior of two new synthetic Medea elements that drive population replacement through manipulation of signaling pathways involved in cellular blastoderm formation or Notch signaling, demonstrating that in Drosophila Medea elements can be generated through manipulation of diverse signaling pathways. We also describe the mRNA and small RNA changes in ovaries and early embryos associated from Medea-bearing females. Finally, we use modeling to illustrate how Medea elements carrying genes that result in diapause-dependent female lethality could be used to bring about population suppression.

  2. Effects of transgenic sterilization constructs and their repressor compounds on hatch, developmental rate and early survival of electroporated channel catfish embryos and fry.

    Science.gov (United States)

    Su, Baofeng; Shang, Mei; Li, Chao; Perera, Dayan A; Pinkert, Carl A; Irwin, Michael H; Peatman, Eric; Grewe, Peter; Patil, Jawahar G; Dunham, Rex A

    2015-04-01

    Channel catfish (Ictalurus punctatus) embryos were electroporated with sterilization constructs targeting primordial germ cell proteins or with buffer. Some embryos then were treated with repressor compounds, cadmium chloride, copper sulfate, sodium chloride or doxycycline, to prevent expression of the transgene constructs. Promoters included channel catfish nanos and vasa, salmon transferrin (TF), modified yeast Saccharomyces cerevisiae copper transport protein (MCTR) and zebrafish racemase (RM). Knock-down systems were the Tet-off (nanos and vasa constructs), MCTR, RM and TF systems. Knock-down genes included shRNAi targeting 5' nanos (N1), 3' nanos (N2) or dead end (DND), or double-stranded nanos RNA (dsRNA) for overexpression of nanos mRNA. These constructs previously were demonstrated to knock down nanos, vasa and dead end, with the repressors having variable success. Exogenous DNA affected percentage hatch (% hatch), as all 14 constructs, except for the TF dsRNA, TF N1 (T), RM DND (C), vasa DND (C), vasa N1 (C) and vasa N2 (C), had lower % hatch than