Sample records for early cretaceous geomagnetic

  1. Geomagnetic Reversals of the Late Jurassic and Early Cretaceous Captured in a North China Core (United States)

    Kuhn, T.; Fu, R. R.; Kent, D. V.; Olsen, P. E.


    The Tuchengzi formation in North China nominally spans nearly 20 million years of the Late Jurassic and Early Cretaceous, an interval during which age calibration of the Geomagnetic Polarity Time Scale (GPTS) based on seafloor magnetic anomalies is poorly known. The overlying Yixian formation is of special paleontological interest due to an abundance of spectacularly preserved macrofossils of feathered non-avian dinosaurs, birds, mammals, and insects. Scarce fossils in the Tuchengzi, sparse accurate radiometric dates on both the Tuchengzi and overlying Yixian formation, and scant previous paleomagnetic studies on these formations motivated our application of magnetostratigraphy as a geochronological tool. We constructed a geomagnetic reversal sequence from the upper 142m of a 200m core extracted in Liaoning Province at Huangbanjigou spanning the lower Yixian Formation and the unconformably underlying Tuchengzi Formation. Thermal demagnetization up to 680°C in steps of 25-50°C revealed predominantly normal overprints consistent with the modern day field with unblocking temperatures between 125°C and as high as 550°C, as well as normal and reverse characteristic components with unblocking temperatures between 500°C and 680°C. Going up from the base of the core, there is a reverse polarity magnetozone >6m thick, followed by a 5m normal magnetozone, a 10m reverse magnetozone, a 25m normal magnetozone, and a 6m reverse magnetozone truncated by the Yixian-Tuchengzi unconformity. Above the unconformity, all 81m of core were normal. These results indicate that a meaningful polarity stratigraphy can be recovered from the Tuchengzi and Yixian formations that will be invaluable for correlations across the Tuchengzi and potentially the Yixian formations, which span thousands of square kilometers and vary in thickness by many hundreds of meters. The results also demonstrate that, in combination with accurate and precise radiometric dates, the Tuchengzi Formation has the

  2. High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals. (United States)

    Tarduno, J A; Cottrell, R D; Smirnov, A V


    Recent numerical simulations have yielded the most efficient geodynamo, having the largest dipole intensity when reversal frequency is low. Reliable paleointensity data are limited but heretofore have suggested that reversal frequency and paleointensity are decoupled. We report data from 56 Thellier-Thellier experiments on plagioclase crystals separated from basalts of the Rajmahal Traps (113 to 116 million years old) of India that formed during the Cretaceous Normal Polarity Superchron. These data suggest a time-averaged paleomagnetic dipole moment of 12.5 +/- 1.4 x 10(22) amperes per square meter, three times greater than mean Cenozoic and Early Cretaceous-Late Jurassic dipole moments when geomagnetic reversals were frequent. This result supports a correlation between intervals of low reversal frequency and high geomagnetic field strength.

  3. Low ecological disparity in Early Cretaceous birds (United States)

    Mitchell, Jonathan S.; Makovicky, Peter J.


    Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (= pygostylians) from the Jehol Biota (≈ 125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem. PMID:24870044

  4. Early cretaceous dinosaurs from the sahara. (United States)

    Sereno, P C; Wilson, J A; Larsson, H C; Dutheil, D B; Sues, H D


    A major question in Mesozoic biogeography is how the land-based dinosaurian radiation responded to fragmentation of Pangaea. A rich fossil record has been uncovered on northern continents that spans the Cretaceous, when continental isolation reached its peak. In contrast, dinosaur remains on southern continents are scarce. The discovery of dinosaurian skeletons from Lower Cretaceous beds in the southern Sahara shows that several lineages of tetanuran theropods and broad-toothed sauropods had a cosmopolitan distribution across Pangaea before the onset of continental fragmentation. The distinct dinosaurian faunas of Africa, South America, and Asiamerica arose during the Cretaceous by differential survival of once widespread lineages on land masses that were becoming increasingly isolated from one another.

  5. Rates of morphological evolution are heterogeneous in Early Cretaceous birds (United States)

    Lloyd, Graeme T.


    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. PMID:27053742

  6. Tribosphenic mammal from the North American Early Cretaceous. (United States)

    Cifelli, R L


    The main groups of living mammals, marsupials and eutherians, are presumed to have diverged in the Early Cretaceous, but their early history and biogeography are poorly understood. Dental remains have suggested that the eutherians may have originated in Asia, spreading to North America in the Late Cretaceous, where an endemic radiation of marsupials was already well underway. Here I describe a new tribosphenic mammal (a mammal with lower molar heels that are three-cusped and basined) from the Early Cretaceous of North America, based on an unusually complete specimen. The new taxon bears characteristics (molarized last premolar, reduction to three molars) otherwise known only for Eutheria among the tribosphenic mammals. Morphometric analysis and character comparisons show, however, that its molar structure is primitive (and thus phylogenetically uninformative), emphasizing the need for caution in interpretation of isolated teeth. The new mammal is approximately contemporaneous with the oldest known Eutheria from Asia. If it is a eutherian, as is indicated by the available evidence, then this group was far more widely distributed in the Early Cretaceous than previously appreciated. An early presence of Eutheria in North America offers a potential source for the continent's Late Cretaceous radiations, which have, in part, proven difficult to relate to contemporary taxa in Asia.

  7. Early Cretaceous greenhouse pumped higher taxa diversification in spiders. (United States)

    Shao, Lili; Li, Shuqiang


    The Cretaceous experienced one of the most remarkable greenhouse periods in geological history. During this time, ecosystem reorganizations significantly impacted the diversification of many groups of organisms. The rise of angiosperms marked a major biome turnover. Notwithstanding, relatively little remains known about how the Cretaceous global ecosystem impacted the evolution of spiders, which constitute one of the most abundant groups of predators. Herein, we evaluate the transcriptomes of 91 taxa representing more than half of the spider families. We add 23 newly sequenced taxa to the existing database to obtain a robust phylogenomic assessment. Phylogenetic reconstructions using different datasets and methods obtain novel placements of some groups, especially in the Synspermiata and the group having a retrolateral tibial apophysis (RTA). Molecular analyses indicate an expansion of the RTA clade at the Early Cretaceous with a hunting predatory strategy shift. Fossil analyses show a 7-fold increase of diversification rate at the same period, but this likely owes to the first occurrences spider in amber deposits. Additional analyses of fossil abundance show an accumulation of spider lineages in the Early Cretaceous. We speculate that the establishment of a warm greenhouse climate pumped the diversification of spiders, in particular among webless forms tracking the abundance of insect prey. Our study offers a new pathway for future investigations of spider phylogeny and diversification. Copyright © 2018. Published by Elsevier Inc.

  8. Middle Jurassic - Early Cretaceous rifting of the Danish Central Graben

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, J.J.; Rasmussen, E.S.


    During the Jurassic-early Cretaceous, the Danish Central Graben developed as a N-S to NNW-SSE trending Graben bounded by the Ringkoebing-Fyn High towards the east and the Mid North Sea High towards the west. The Graben consists of a system of half-Grabens and evolved by fault-controlled subsidence; three main rift pulses have been recognized. The first pulse ranged from the Callovian to the early Oxfordian, the second pulse was initiated in the latest Late Kimmeridgian and Early Volgian, and the third and final pulse occurred within the Valanginian in the Early Cretaceous. The first pulse was characterized by subsidence along N-S trending faults. During the second pulse, in early Volgian times, subsidence was concentrated along new NNW-SSE trending faults and the main depocentre shifted westward, being most marked within the Tail End Graben, the Arne-Elin Graben, and the Feda Graben. This tectonic event was accompanied by the accumulation of a relatively thick sediment load resulting in the development of salt diapers, especially within the Salt Dome Province. The third tectonic pulse was essentially a reactivation of the NNW-SSE trending structures. This tectonic pulse also shows clear evidence of combined fault-controlled subsidence and salt movements. (EG) 12 figs.; 45 refs.

  9. Early Cretaceous Archaeamphora is not a carnivorous angiosperm

    Directory of Open Access Journals (Sweden)

    William Oki Wong


    Full Text Available Archaeamphora longicervia H.Q.Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1 an innermost larval chamber with a distinctive outer wall; (2 an intermediate zone of nutritive tissue; and (3 an outermost zone of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the formerly reported gymnosperm Liaoningocladus boii G.Sun et al. from the Yixian Formation.

  10. Calibration of the Late Cretaceous to Paleocene geomagnetic polarity and astrochronological time scales: new results from high-precision U-Pb geochronology (United States)

    Ramezani, Jahandar; Clyde, William; Wang, Tiantian; Johnson, Kirk; Bowring, Samuel


    Reversals in the Earth's magnetic polarity are geologically abrupt events of global magnitude that makes them ideal timelines for stratigraphic correlation across a variety of depositional environments, especially where diagnostic marine fossils are absent. Accurate and precise calibration of the Geomagnetic Polarity Timescale (GPTS) is thus essential to the reconstruction of Earth history and to resolving the mode and tempo of biotic and environmental change in deep time. The Late Cretaceous - Paleocene GPTS is of particular interest as it encompasses a critical period of Earth history marked by the Cretaceous greenhouse climate, the peak of dinosaur diversity, the end-Cretaceous mass extinction and its paleoecological aftermaths. Absolute calibration of the GPTS has been traditionally based on sea-floor spreading magnetic anomaly profiles combined with local magnetostratigraphic sequences for which a numerical age model could be established by interpolation between an often limited number of 40Ar/39Ar dates from intercalated volcanic ash deposits. Although the Neogene part of the GPTS has been adequately calibrated using cyclostratigraphy-based, astrochronological schemes, the application of these approaches to pre-Neogene parts of the timescale has been complicated given the uncertainties of the orbital models and the chaotic behavior of the solar system this far back in time. Here we present refined chronostratigraphic frameworks based on high-precision U-Pb geochronology of ash beds from the Western Interior Basin of North America and the Songliao Basin of Northeast China that places tight temporal constraints on the Late Cretaceous to Paleocene GPTS, either directly or by testing their astrochronological underpinnings. Further application of high-precision radioisotope geochronology and calibrated astrochronology promises a complete and robust Cretaceous-Paleogene GPTS, entirely independent of sea-floor magnetic anomaly profiles.

  11. The origin and early evolution of metatherian mammals: the Cretaceous record

    Directory of Open Access Journals (Sweden)

    Thomas E. Williamson


    Full Text Available Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  12. A new genus and species of enantiornithine bird from the Early Cretaceous of Brazil

    Directory of Open Access Journals (Sweden)

    Ismar de Souza Carvalho

    Full Text Available The fossil record of birds in Gondwana is almost restricted to the Late Cretaceous. Herein we describe a new fossil from the Araripe Basin, Cratoavis cearensis nov. gen et sp., composed of an articulated skeleton with feathers attached to the wings and surrounding the body. The present discovery considerably extends the temporal record of the Enantiornithes birds at South America to the Early Cretaceous. For the first time, an almost complete and articulated skeleton of an Early Cretaceous bird from South America is documented.

  13. A new Early Cretaceous eutherian mammal from the Sasayama Group, Hyogo, Japan. (United States)

    Kusuhashi, Nao; Tsutsumi, Yukiyasu; Saegusa, Haruo; Horie, Kenji; Ikeda, Tadahiro; Yokoyama, Kazumi; Shiraishi, Kazuyuki


    We here describe a new Early Cretaceous (early Albian) eutherian mammal, Sasayamamylos kawaii gen. et sp. nov., from the 'Lower Formation' of the Sasayama Group, Hyogo Prefecture, Japan. Sasayamamylos kawaii is characterized by a robust dentary, a distinct angle on the ventral margin of the dentary at the posterior end of the mandibular symphysis, a lower dental formula of 3-4 : 1 : 4 : 3, a robust lower canine, a non-molariform lower ultimate premolar, and a secondarily reduced entoconid on the molars. To date, S. kawaii is the earliest known eutherian mammal possessing only four premolars, which demonstrates that the reduction in the premolar count in eutherians started in the late Early Cretaceous. The occurrence of S. kawaii implies that the relatively rapid diversification of eutherians in the mid-Cretaceous had already started by the early Albian.

  14. A complete skull of an early cretaceous sauropod and the evolution of advanced titanosaurians.

    Directory of Open Access Journals (Sweden)

    Hussam Zaher

    Full Text Available Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.

  15. Dinosaur trackways from the early Late Cretaceous of western Cameroon (United States)

    Martin, Jeremy E.; Menkem, Elie Fosso; Djomeni, Adrien; Fowe, Paul Gustave; Ntamak-Nida, Marie-Joseph


    Dinosaur trackways have rarely been reported in Cretaceous strata across the African continent. To the exception of ichnological occurrences in Morocco, Tunisia, Niger and Cameroon, our knowledge on the composition of Cretaceous dinosaur faunas mostly relies on skeletal evidence. For the first time, we document several dinosaur trackways from the Cretaceous of the Mamfe Basin in western Cameroon. Small and medium-size tridactyl footprints as well as numerous large circular footprints are present on a single horizon showing mudcracks and ripple marks. The age of the locality is considered Cenomanian-Turonian and if confirmed, this ichnological assemblage could be younger than the dinosaur footprints reported from northern Cameroon, and coeval with or younger than skeletal remains reported from the Saharan region. These trackways were left in an adjacent subsiding basin along the southern shore of the Benue Trough during a time of high-sea stand when the Trans-Saharan Seaway was already disconnecting West Africa from the rest of the continent. We predict that other similar track sites may be occurring along the margin of the Benue Trough and may eventually permit to test hypotheses related to provincialism among African dinosaur faunas.

  16. Early Cretaceous climate change (Hauterivian - Early Aptian): Learning from the past to prevent modern reefs decline (United States)

    Godet, Alexis; Bodin, Stéphane; Adatte, Thierry; Föllmi, Karl B.


    In the last decades, the anthropogenic increase pCO2atm has been considered as one of the main contributors for the decline of modern coral reefs, and nearly 60% of these marine ecosystems are presently threatened (Bryant et al., 1998). Interactions between anthropogenic change and reef growth can, however, not be reduced to a single factor, and it is essential to look at the Earth's history to understand and counterbalance. During the Early Cretaceous, enhanced pCO2atm may have been responsible, at least in part, for the demise of the carbonate platform along the northern margin of the Tethys through climatic feedback mechanisms. From the Hauterivian to the Early Aptian, increased rainfalls are documented from the clay-mineral association, by a change from a smectite-dominated (most of the Hauterivian), to a kaolinite-dominated assemblage (latest Hauterivian up to the early Late Barremian). This switch is dated to the Pseudothurmannia ohmi ammonozone in the Vocontian Trough of southeastern France (Angles section, Godet et al., 2008). It is immediately followed in time by major nutrient input, as is illustrated by the substantial increase in phosphorus accumulation rates (PAR), not only in this section, but also in the Ultrahelvetic area of Switzerland and in the Umbria-Marche basin of Italy (Bodin et al., 2006). On the other hand, the remainder of the Hauterivian is characterized by PAR mean values characteristic of mesotrophic conditions, whereas the Late Barremian witnesses the return to oligotrophic environments (lower PAR values). Synchronously, these perturbations are mirrored on the platform by changes in the type of carbonate ecosystems. Indeed, a stronger continental runoff, and a subsequent input in the oceanic domain of nutrients (e.g., phosphorus) and clastic material modified marine palaeoenvironmental conditions and triggered changes in ecosystems. A unique archive of the Early Cretaceous carbonate platform is preserved in the Helvetic Alps, where the

  17. A nearly modern amphibious bird from the Early Cretaceous of northwestern China. (United States)

    You, Hai-Lu; Lamanna, Matthew C; Harris, Jerald D; Chiappe, Luis M; O'connor, Jingmai; Ji, Shu-An; Lü, Jun-Chang; Yuan, Chong-Xi; Li, Da-Qing; Zhang, Xing; Lacovara, Kenneth J; Dodson, Peter; Ji, Qiang


    Three-dimensional specimens of the volant fossil bird Gansus yumenensis from the Early Cretaceous Xiagou Formation of northwestern China demonstrate that this taxon possesses advanced anatomical features previously known only in Late Cretaceous and Cenozoic ornithuran birds. Phylogenetic analysis recovers Gansus within the Ornithurae, making it the oldest known member of the clade. The Xiagou Formation preserves the oldest known ornithuromorph-dominated avian assemblage. The anatomy of Gansus, like that of other non-neornithean (nonmodern) ornithuran birds, indicates specialization for an amphibious life-style, supporting the hypothesis that modern birds originated in aquatic or littoral niches.

  18. Paleomagnetic tests for tectonic reconstructions of the Late Jurassic-Early Cretaceous Woyla Group, Sumatra (United States)

    Advokaat, Eldert; Bongers, Mayke; van Hinsbergen, Douwe; Rudyawan, Alfend; Marshal, Edo


    SE Asia consists of multiple continental blocks, volcanic arcs and suture zones representing remnants of closing ocean basins. The core of this mainland is called Sundaland, and was formed by accretion of continental and arc fragments during the Paleozoic and Mesozoic. The former positions of these blocks are still uncertain but reconstructions based on tectonostratigraphic, palaeobiogeographic, geological and palaeomagnetic studies indicate the continental terranes separated from the eastern margin of Gondwana. During the mid-Cretaceous, more continental and arc fragments accreted to Sundaland, including the intra-oceanic Woyla Arc now exposed on Sumatra. These continental fragments were derived from Australia, but the former position of the Woyla Arc is unconstrained. Interpretations on the former position of the Woyla Arc fall in two end-member groups. The first group interprets the Woyla Arc to be separated from West Sumatra by a small back-arc basin. This back arc basin opened in the Late Jurassic, and closed mid-Cretaceous, when the Woyla Arc collided with West Sumatra. The other group interprets the Woyla Arc to be derived from Gondwana, at a position close to the northern margin of Greater India in the Late Jurassic. Subsequently the Woyla Arc moved northwards and collided with West Sumatra in the mid-Cretaceous. Since these scenarios predict very different plate kinematic evolutions for the Neotethyan realm, we here aim to place paleomagnetic constraints on paleolatitudinal evolution of the Woyla Arc. The Woyla Arc consists mainly of basaltic to andesitic volcanics and dykes, and volcaniclastic shales and sandstones. Associated limestones with volcanic debris are interpreted as fringing reefs. This assemblage is interpreted as remnants of an Early Cretaceous intra-oceanic arc. West Sumatra exposes granites, surrounded by quartz sandstones, shales and volcanic tuffs. These sediments are in part metamorphosed. This assemblage is interpreted as a Jurassic-Early

  19. Rhinochelys amaberti Moret (1935, a protostegid turtle from the Early Cretaceous of France

    Directory of Open Access Journals (Sweden)

    Isaure Scavezzoni


    Full Text Available Modern marine turtles (chelonioids are the remnants of an ancient radiation that roots in the Cretaceous. The oldest members of that radiation are first recorded from the Early Cretaceous and a series of species are known from the Albian-Cenomanian interval, many of which have been allocated to the widespread but poorly defined genus Rhinochelys, possibly concealing the diversity and the evolution of early marine turtles. In order to better understand the radiation of chelonioids, we redescribe the holotype and assess the taxonomy of Rhinochelys amaberti Moret (1935 (UJF-ID.11167 from the Late Albian (Stoliczkaia dispar Zone of the Vallon de la Fauge (Isère, France. We also make preliminary assessments of the phylogenetic relationships of Chelonioidea using two updated datasets that widely sample Cretaceous taxa, especially Rhinochelys. Rhinochelys amaberti is a valid taxon that is supported by eight autapomorphies; an emended diagnosisis proposed. Our phylogenetic analyses suggest that Rhinochelys could be polyphyletic, but constraining it as a monophyletic entity does not produce trees that are significantly less parsimonious. Moreover, support values and stratigraphic congruence indexes are fairly low for the recovered typologies, suggesting that missing data still strongly affect our understanding of the Cretaceous diversification of sea turtles.

  20. Early Cretaceous trypanosomatids associated with fossil sand fly larvae in Burmese amber

    Directory of Open Access Journals (Sweden)

    George Poinar Jr


    Full Text Available Early Cretaceous flagellates with characters typical of trypanosomatids were found in the gut of sand fly larvae, as well as in surrounding debris, in Burmese amber. This discovery supports a hypothesis in which free-living trypanosomatids could have been acquired by sand fly larvae in their feeding environment and then carried transtadially into the adult stage. At some point in time, specific genera were introduced into vertebrates, thus establishing a dixenous life cycle.

  1. Late cretaceous to early eocene foraminiferal biostratigraphy of the Rakhi Nala area, Sulaiman Range, Pakistan

    International Nuclear Information System (INIS)

    Afzal, J.


    Shaly intervals from late cretaceous to early eocene sediments of the Rakhi Nala Section (Sulaiman Range) were analysed for the foraminiferal micro fauna (Planktons, smaller and larger benthics). The faunal record is interpreted for the precise age and paleo environments. These fresh results, in the light of modern bio stratigraphic knowledge, are compared with the previous bio stratigraphic information available about this area. Several discrepancies regarding the litho and biostratigraphy from the previous literature were addressed and tried to remove. (author)

  2. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.


    Jacobs, L L; Winkler, D A; Murry, P A


    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribo...

  3. A New Sail-Backed Styracosternan (Dinosauria: Ornithopoda) from the Early Cretaceous of Morella, Spain. (United States)

    Gasulla, José Miguel; Escaso, Fernando; Narváez, Iván; Ortega, Francisco; Sanz, José Luis


    A new styracosternan ornithopod genus and species is here described based on a partial postcranial skeleton and an associated dentary tooth of a single specimen from the Arcillas de Morella Formation (Early Cretaceous, late Barremian) at the Morella locality, (Castellón, Spain). Morelladon beltrani gen. et sp. nov. is diagnosed by eight autapomorphic features. The set of autapomorphies includes: very elongated and vertical neural spines of the dorsal vertebrae, midline keel on ventral surface of the second to fourth sacral vertebrae restricted to the anterior half of the centrum, a posterodorsally inclined medial ridge on the postacetabular process of the ilium that meets its dorsal margin and distal end of the straight ischial shaft laterally expanded, among others. Phylogenetic analyses reveal that the new Iberian form is more closely related to its synchronic and sympatric contemporary European taxa Iguanodon bernissartensis and Mantellisaurus atherfieldensis, known from Western Europe, than to other Early Cretaceous Iberian styracosternans (Delapparentia turolensis and Proa valdearinnoensis). The recognition of Morelladon beltrani gen. et sp. nov. indicates that the Iberian Peninsula was home to a highly diverse medium to large bodied styracosternan assemblage during the Early Cretaceous.

  4. A Cretaceous eutriconodont and integument evolution in early mammals. (United States)

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D


    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  5. Micropaleontology and palaeoclimate during the early Cretaceous in the Lishu depression, Songliao basin, Northeast China

    Directory of Open Access Journals (Sweden)

    Wei Yan


    Full Text Available Diverse and abundant microfossils, such as palynomorphs, algae and Ostracoda, were collected from lower Cretaceous strata of Lishu depression, located in southeastern Songliao basin, and were identified and classified in order to provide relevant, detailed records for paleoclimate research. The early Cretaceous vegetation and climate of southeastern Songliao basin have been inferred from the analysis of palynomorph genera, algae and Ostracoda of the LS1 and SW110 wells. The lower Cretaceous strata include, in ascending stratigraphic order, the Shahezi, Yingcheng and Denglouku formations. Palynological assemblages for each formation, based on biostratigraphic and statistical analyses, provide an assessment of their longitudinal variations. During deposition of the Shahezi Formation, the climate was mid-subtropical. Vegetation consisted of coniferous forest and herbage. During deposition of the Yingcheng Formation, the climate was south Asian tropical. Vegetation consisted mainly of coniferous forest and herbal shrub. In addition, fresh and saline non-marine water dominated the lacustrine setting during deposition of these formations. Deposition of the Denglouku Formation, however, occurred under a hot and dry tropical climate. The vegetation was mostly coniferous forest and lake waters became saline. Palaeoclimate variation is correlated by the lake level change and the development of sedimentary facies. Palaeoclimate contribute to the formation of hydrocarbon source rocks and reservoir.

  6. A diplodocid sauropod survivor from the early cretaceous of South America.

    Directory of Open Access Journals (Sweden)

    Pablo A Gallina

    Full Text Available Diplodocids are by far the most emblematic sauropod dinosaurs. They are part of Diplodocoidea, a vast clade whose other members are well-known from Jurassic and Cretaceous strata in Africa, Europe, North and South America. However, Diplodocids were never certainly recognized from the Cretaceous or in any other southern land mass besides Africa. Here we report a new sauropod, Leikupal laticauda gen. et sp. nov., from the early Lower Cretaceous (Bajada Colorada Formation of Neuquén Province, Patagonia, Argentina. This taxon differs from any other sauropod by the presence of anterior caudal transverse process extremely developed with lateroventral expansions reinforced by robust dorsal and ventral bars, very robust centroprezygapophyseal lamina in anterior caudal vertebra and paired pneumatic fossae on the postzygapophyses in anterior-most caudal vertebra. The phylogenetic analyses support its position not only within Diplodocidae but also as a member of Diplodocinae, clustering together with the African form Tornieria, pushing the origin of Diplodocoidea to the Middle Jurassic or even earlier. The new discovery represents the first record of a diplodocid for South America and the stratigraphically youngest record of this clade anywhere.

  7. The evolution of Early Cretaceous shallow-water carbonate platforms in times of frequent oceanic anoxia (United States)

    Föllmi, Karl; Morales, Chloé; Stein, Melody; Bonvallet, Lucie; Antoine, Pictet


    The Early Cretaceous greenhouse world witnessed different episodes of pronounced paleoenvironmental change, which were associated with substantial shifts in the global carbon and phosphorus cycles. They impacted the growth of carbonate platforms on the shelf, lead to the development of widespread anoxic zones in deeper water, and influenced evolutionary pattern in general. A first phase (the Weissert episode) occurred during the Valanginian, which is indicated by a positive shift in the carbon-isotope record, widespread platform drowning, and evolutionary change. The spreading of anoxic conditions was limited to marginal basins and the positive change in carbon isotopes is linked to the storage of vegetal carbon in coal deposits rather than to organic matter in marine sediments. A second phase (the Faraoni episode) of important environmental change is observed near the end of the Hauterivian, where short and repetitive episodes of anoxia occurred in the Tethyan realm. This phase goes along with a decline in platform growth, but is barely documented in the carbon-isotope record. A third and most important episode (the Selli episode) took place in the early Aptian, and resulted in the widespread deposition of organic-rich sediments, a positive carbon-isotope excursion and the disappearance of Urgonian-type carbonate platforms. Often considered to represent short and singular events, these Early Cretaceous phases are in fact preceded by periods of warming, increased continental weathering, and increased nutrient throughput. These preludes in environmental change are important in that they put these three Early Cretaceous episodes into a longer-term, historic perspective, which allow us to better understand the mechanisms leading to these periods of pronounced global change.

  8. Early Cretaceous paleomagnetic results from Marie Byrd Land, West Antarctica: Implications for the Weddellia collage of crustal blocks (United States)

    Divenere, Vic; Kent, Dennis V.; Dalziel, Ian W. D.


    A new approximately 117 Ma paleomagnetic pole has been defined from the study of volcanic and plutonic rocks from the eastern portion Marie Byrd Land (MBL). The new pole (185.6 deg E/56.8 deg S, A(sub 95) = 8.7 deg) implies that the eastern portion of MBL was an integral part of Weddellia, which included the ancestral Antarctic Peninsula, Thurston Island, and Ellsworth-Whitmore Mountains blocks of West Antarctica. This pole is generally similar to a approximately 125 Ma pole from Thurston Island. Both poles call for major clockwise rotation and poleward motion of eastern MBL and Thurston Island between the Early Cretaceous (125-117 Ma) and the mid-Cretaceous (110-100 Ma). We propose that in the Early Cretaceous, eastern MBL and the Eastern Province of New Zealand were part of a continuous active Pacific margin of Gondwana, connecting with the Antarctic Peninsula, and distinct from western MBL, the Western Province of New Zealand, and North Victoria Land. These western terranes are thought to have accreted to Gondwana in the Devonian. Eastern MBL and the Eastern Province of New Zealand amalgamated with western MBL and the Western Province of New Zealand by the mid-Cretaceous. Major Early Cretaceous motions of the Weddellia blocks postdate the estimated initiation of seafloor spreading in the Weddell Sea and therefore may be the result of plate reorganization during the Cretaceous Quiet Zone.

  9. Geomagnetic storms

    International Nuclear Information System (INIS)

    McNamara, A.G.


    Disturbances due to geomagnetic storms can affect the functioning of communications satellites and of power lines and other long conductors. Two general classes of geomagnetic activity can be distinguished: ionospheric current flow (the auroral electrojet), and magnetospheric compression. Super magnetic storms, such as the one of August 1972, can occur at any time and average about 17 occurrences per century. Electrical transmission systems can be made more tolerant of such events at a price, but the most effective way to minimize damage is by better operator training coupled with effective early warning systems. (LL)

  10. Early Cretaceous ribbed aptychi - a proposal for a new systematic classification

    Czech Academy of Sciences Publication Activity Database

    Měchová, L.; Vašíček, Zdeněk; Houša, Václav


    Roč. 85, č. 2 (2010), s. 219-274 ISSN 1214-1119 Institutional research plan: CEZ:AV0Z30860518; CEZ:AV0Z30130516 Keywords : Late Jurassic * J/K boundary * Early Cretaceous * aptychi Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.202, year: 2010

  11. Early cretaceous zircon SHRIMP U-Pb age of the trachyte and its significances of the Gan-Hang belt

    International Nuclear Information System (INIS)

    Liu Feiyu; Wu Jianhua; Liu Shuai


    The Shixi basin was located at Gan-Hang tectonic volcanic uranium deposit of rock-magma belt which belong to a part of the Mesozoic volcanic rocks in the northeastern of China. The appearance of the trachyte in Shixi basin have the majoy elements characteristic of the shoshonite series volcanic rocks. To determine the geological age of trachyte have very important significance on the geodynamics research and the study on the cause of uranium mineralization. The zircons of the trachyte have clear ring and high Th/U ratio which belong to the typical magmatic zircons. The zircon SHRIMP U-Pb dating resules show that 14points' age range is very smaller is 132-144 Ma and the weighted average age is (137.00±0.94)Ma which represents the diagenetic age of volcanic rocks. Accronding to the latest International Stratigraphic Chart the boundary of Jurassic and Cretaceous is (145.4±4.0)Ma. So the trachyte of Shixi Group belong to early Cretaceous. The large-scale acidic volcanic activity occurred in the Early Cretaceous in Southeastern China, and the Volcanic uranium deposit of Gan-Hang tectonic belt relate to Alkali metasomatism Uranium mineralization also occurred in the Early Cretaceous (120-130 Ma). The determined of trachyte in Shixi Group in the Early Cretaceous show that the acidic volcanic activity have connection with magma activity and the early Uranium mineralization consistent with the Alkali magma activity. (authors)

  12. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana. (United States)

    Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R


    Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana. Copyright © 2015, American Association for the Advancement of Science.

  13. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis. (United States)

    Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E; O'Connor, Jingmai K; Wang, Min; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R; Zhou, Zhonghe; Schweitzer, Mary H


    Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody-antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils.

  14. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America. (United States)

    Jacobs, L L; Winkler, D A; Murry, P A


    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials.

  15. A gravid lizard from the Cretaceous of China and the early history of squamate viviparity (United States)

    Wang, Yuan; Evans, Susan E.


    Although viviparity is most often associated with mammals, roughly one fifth of extant squamate reptiles give birth to live young. Phylogenetic analyses indicate that the trait evolved more than 100 times within Squamata, a frequency greater than that of all other vertebrate clades combined. However, there is debate as to the antiquity of the trait and, until now, the only direct fossil evidence of squamate viviparity was in Late Cretaceous mosasauroids, specialised marine lizards without modern equivalents. Here, we document viviparity in a specimen of a more generalised lizard, Yabeinosaurus, from the Early Cretaceous of China. The gravid female contains more than 15 young at a level of skeletal development corresponding to that of late embryos of living viviparous lizards. This specimen documents the first occurrence of viviparity in a fossil reptile that was largely terrestrial in life, and extends the temporal distribution of the trait in squamates by at least 30 Ma. As Yabeinosaurus occupies a relatively basal position within crown-group squamates, it suggests that the anatomical and physiological preconditions for viviparity arose early within Squamata.

  16. Phylogenetic diversification of Early Cretaceous seed plants: The compound seed cone of Doylea tetrahedrasperma. (United States)

    Rothwell, Gar W; Stockey, Ruth A


    Discovery of cupulate ovules of Doylea tetrahedrasperma within a compact, compound seed cone highlights the rich diversity of fructification morphologies, pollination biologies, postpollination enclosure of seeds, and systematic diversity of Early Cretaceous gymnosperms. Specimens were studied using the cellulose acetate peel technique, three-dimensional reconstructions (in AVIZO), and morphological phylogenetic analyses (in TNT). Doylea tetrahedrasperma has bract/fertile short shoot complexes helically arranged within a compact, compound seed cone. Complexes diverge from the axis as a single unit and separate distally into a free bract tip and two sporophylls. Each sporophyll bears a single, abaxial seed, recurved toward the cone axis, that is enveloped after pollinaton by sporophyll tissue, forming a closed cupule. Ovules are pollinated by bisaccate grains captured by micropylar pollination horns. The unique combination of characters shown by D. tetrahedrasperma includes the presence of cupulate seeds borne in conifer-like compound seed cones, an ovuliferous scale analogue structurally equivalent to the ovulate stalk of Ginkgo biloba, gymnospermous pollination, and nearly complete enclosure of mature seeds. These features characterize the Doyleales ord. nov., clearly distinguish it from the seed fern order Corystospermales, and allow for recognition of another recently described Early Cretaceous seed plant as a second species in genus Doylea. A morphological phylogenetic analysis highlights systematic relationships of the Doyleales ord. nov. and emphasizes the explosive phylogenetic diversification of gymnosperms that was underway at the time when flowering plants may have originated and/or first began to radiate. © 2016 Botanical Society of America.

  17. Exploring Early Angiosperm Fire Feedbacks using Coupled Experiments and Modelling Approaches to Estimate Cretaceous Palaeofire Behaviour (United States)

    Belcher, Claire; Hudpsith, Victoria


    Using the fossil record we are typically limited to exploring linkages between palaeoecological changes and palaeofire activity by assessing the abundance of charcoals preserved in sediments. However, it is the behaviour of fires that primarily governs their ecological effects. Therefore, the ability to estimate variations in aspects of palaeofire behaviour such as palaeofire intensity and rate of spread would be of key benefit toward understanding the coupled evolutionary history of ecosystems and fire. The Cretaceous Period saw major diversification in land plants. Previously, conifers (gymnosperms) and ferns (pteridophytes) dominated Earth's ecosystems until flowering plants (angiosperms) appear in the fossil record of the Early Cretaceous (~135Ma). We have created surface fire behaviour estimates for a variety of angiosperm invasion scenarios and explored the influence of Cretaceous superambient atmospheric oxygen levels on the fire behaviour occurring in these new Cretaceous ecosystems. These estimates are then used to explore the hypothesis that the early spread of the angiosperms was promoted by the novel fire regimes that they created. In order to achieve this we tested the flammability of Mesozoic analogue fuel types in controlled laboratory experiments using an iCone calorimeter, which measured the ignitability as well as the effective heat of combustion of the fuels. We then used the BehavePlus fire behaviour modelling system to scale up our laboratory results to the ecosystem scale. Our results suggest that fire-angiosperm feedbacks may have occurred in two phases: The first phase being a result of weedy angiosperms providing an additional easily ignitable fuel that enhanced both the seasonality and frequency of surface fires. In the second phase, the addition of shrubby understory fuels likely expanded the number of ecosystems experiencing more intense surface fires, resulting in enhanced mortality and suppressed post-fire recruitment of gymnosperms

  18. Insight on the anatomy, systematic relationships, and age of the Early Cretaceous ankylopollexian dinosaur Dakotadon lakotaensis

    Directory of Open Access Journals (Sweden)

    Clint A. Boyd


    Full Text Available Knowledge regarding the early evolution within the dinosaurian clade Ankylopollexia drastically increased over the past two decades, in part because of an increase in described taxa from the Early Cretaceous of North America. These advances motivated the recent completion of extensive preparation and conservation work on the holotype and only known specimen of Dakotadon lakotaensis, a basal ankylopollexian from the Lakota Formation of South Dakota. That specimen (SDSM 8656 preserves a partial skull, lower jaws, a single dorsal vertebra, and two caudal vertebrae. That new preparation work exposed several bones not included in the original description and revealed that other bones were previously misidentified. The presence of extensive deformation in areas of the skull is also noted that influenced inaccuracies in prior descriptions and reconstructions of this taxon. In addition to providing an extensive re-description of D. lakotaensis, this study reviews previously proposed diagnoses for this taxon, identifies two autapomorphies, and provides an extensive differential diagnosis. Dakotadon lakotaensis is distinct from the only other ankylopollexian taxon known from the Lakota Formation, Osmakasaurus depressus, in the presence of two prominent, anteroposteriorly oriented ridges on the ventral surfaces of the caudal vertebrae, the only overlapping material preserved between these taxa. The systematic relationships of D. lakotaensis are evaluated using both the parsimony and posterior probability optimality criteria, with both sets of analyses recovering D. lakotaensis as a non-hadrosauriform ankylopollexian that is more closely related to taxa from the Early Cretaceous (e.g., Iguanacolossus, Hippodraco, and Theiophytalia than to more basally situated taxa from the Jurassic (e.g., Camptosaurus, Uteodon. This taxonomic work is supplemented by field work that relocated the type locality, confirming its provenance from unit L2 (lower Fuson Member

  19. The earliest evidence for a supraorbital salt gland in dinosaurs in new Early Cretaceous ornithurines. (United States)

    Wang, Xia; Huang, Jiandong; Hu, Yuanchao; Liu, Xiaoyu; Peteya, Jennifer; Clarke, Julia A


    Supraorbital fossae occur when salt glands are well developed, a condition most pronounced in marine and desert-dwelling taxa in which salt regulation is key. Here, we report the first specimens from lacustrine environments of the Jehol Biota that preserve a distinct fossa above the orbit, where the salt gland fossa is positioned in living birds. The Early Cretaceous ornithurine bird specimens reported here are about 40 million years older than previously reported Late Cretaceous marine birds and represent the earliest described occurrence of the fossa. We find no evidence of avian salt gland fossae in phylogenetically earlier stem birds or non-avialan dinosaurs, even in those argued to be predominantly marine or desert dwelling. The apparent absence of this feature in more basal dinosaurs may indicate that it is only after miniaturization close to the origin of flight that excretory mechanisms were favored over exclusively renal mechanisms of salt regulation resulting in an increase in gland size leaving a bony trace. The ecology of ornithurine birds is more diverse than in other stem birds and may have included seasonal shifts in foraging range, or, the environments of some of the Jehol lakes may have included more pronounced periods of high salinity.

  20. Early and late cretaceous magmatism from Sao Sebastiao island (SE-Brazil): geochemistry and petrology

    International Nuclear Information System (INIS)

    Bellieni, G.; Cavazzini, G.; Montes-Lauar, C.R.; Melfi, A.J.; Pacca, I.G.; De Min, A.; Piccirillo, E.M.


    The Sao Sebastiao island (236 km 2 ), located along the coast of the Sao Paulo State (Southern Brazil), is characterized by precambrian granitic affected by the Brasiliano tectonic-metamorphic cycle. This crystalline basement is intruded by Early Cretaceous (EC) sub alkaline basic and acid dykes, as well as by Late Cretaceous (LC) alkaline stocks (syenites) and dykes (basanite to phonolite). Geochemical, Sr-isotopic and mineral chemistry data point out that: EC-dykes reveal a basic-acid bimodal character, similar to that of the 'coeval' Parana basin flood volcanics; the acid dykes correspond, in composition, to the acid volcanics of the northern Parana basin: the EC-dykes can represent the eastern extension of the inland Santos-Rio de Janeiro dyke swarm, and LC alkaline stocks and dykes constitute distinct groups, characterized by different Sr-isotope initial ratios (syenites: av. 0.7052 and basanites + tephrites = av. 0.7045), which indicate that they are related to different time-integrated mantle source materials. (author)

  1. Basement control in the development of the early cretaceous West and Central African rift system (United States)

    Maurin, Jean-Christophe; Guiraud, René


    The structural framework of the Precambrian basement of the West and Central African Rift System (WCARS) is described in order to examine the role of ancient structures in the development of this Early Cretaceous rift system. Basement structures are represented in the region by large Pan-African mobile belts (built at ca. 600 Ma) surrounding the > 2 Ga West African, Congo and Sao Francisco cratons. Except for the small Gao trough (eastern Mali) located near the contact nappe of the Pan-African Iforas suture zone along the edge of the West African craton, the entire WCARS is located within the internal domains of the Pan-African mobile belts. Within these domains, two main structural features occur as the main basement control of the WCARS: (1) an extensive network of near vertical shear zones which trend north-south through the Congo, Brazil, Nigeria, Niger and Algeria, and roughly east-west through northeastern Brazil and Central Africa. The shear zones correspond to intra-continental strike-slip faults which accompanied the oblique collision between the West African, Congo, and Sao Francisco cratons during the Late Proterozoic; (2) a steep metamorphic NW-SE-trending belt which corresponds to a pre-Pan-African (ca. 730 Ma) ophiolitic suture zone along the eastern edge of the Trans-Saharian mobile belt. The post-Pan-African magmatic and tectonic evolution of the basement is also described in order to examine the state of the lithosphere prior to the break-up which occurred in the earliest Cretaceous. After the Pan-African thermo-tectonic event, the basement of the WCARS experienced a long period of intra-plate magmatic activity. This widespread magmatism in part relates to the activity of intra-plate hotspots which have controlled relative uplift, subsidence and occasionally block faulting. During the Paleozoic and the early Mesozoic, this tectonic activity was restricted to west of the Hoggar, west of Aïr and northern Cameroon. During the Late Jurassic-Early

  2. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview (United States)

    Cavin, L.; Tong, H.; Boudad, L.; Meister, C.; Piuz, A.; Tabouelle, J.; Aarab, M.; Amiot, R.; Buffetaut, E.; Dyke, G.; Hua, S.; Le Loeuff, J.


    Fossils of vertebrates have been found in great abundance in the continental and marine early Late Cretaceous sediments of Southeastern Morocco for more than 50 years. About 80 vertebrate taxa have so far been recorded from this region, many of which were recognised and diagnosed for the first time based on specimens recovered from these sediments. In this paper, we use published data together with new field data to present an updated overview of Moroccan early Late Cretaceous vertebrate assemblages. The Cretaceous series we have studied encompasses three Formations, the Ifezouane and Aoufous Formations, which are continental and deltaic in origin and are often grouped under the name "Kem Kem beds", and the Akrabou Formation which is marine in origin. New field observations allow us to place four recognised vertebrate clusters, corresponding to one compound assemblage and three assemblages, within a general temporal framework. In particular, two ammonite bioevents characterise the lower part of the Upper Cenomanian ( Calycoceras guerangeri Zone) at the base of the Akrabou Formation and the upper part of the Lower Turonian ( Mammites nodosoides Zone), that may extend into the Middle Turonian within the Akrabou Formation, and allow for more accurate dating of the marine sequence in the study area. We are not yet able to distinguish a specific assemblage that characterises the Ifezouane Formation when compared to the similar Aoufous Formation, and as a result we regard the oldest of the four vertebrate "assemblages" in this region to be the compound assemblage of the "Kem Kem beds". This well-known vertebrate assemblage comprises a mixture of terrestrial (and aerial), freshwater and brackish vertebrates. The archosaur component of this fauna appears to show an intriguingly high proportion of large-bodied carnivorous taxa, which may indicate a peculiar trophic chain, although collecting biases alter this palaeontological signal. A small and restricted assemblage, the


    Directory of Open Access Journals (Sweden)



    Full Text Available The Cretaceous coral genus Aulastraeopora is being revised, mainly on the basis of sample material. This genus of solitary growth form is characterised by medium-sized to large specimens, compact septa in a regular hexameral or tetrameral symmetry and lonsdaleoid septa. Related genera are Preverastraea and Apoplacophyllia, which only differ by their cerioid-astreoid and phaceloid growth forms. There are four species of Aulastraeopora. The genus, which occurred world-wide, is restricted to the period from the Late Barremian to the Late Cenomanian, being most common in the Aptian to Early Albian. Forty-one samples are either known from the literature or have been to hand. This makes Aulastraeopora a rare genus. 

  4. Middle cretaceous geomagnetic field anomalies in the eastern Indian Ocean and their implication to the tectonic evolution of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, M.; Ramana, M.V.

    anomalies Q1 (92 Ma) and Q2 (108 Ma) have been identified globally and proposed as internal time markers useful to trace the evolution of the world oceans. While the evolutionary history of the Indian Ocean from Late Cretaceous to present is well...

  5. Palaeomagnetic time and space constraints of the Early Cretaceous Rhenodanubian Flysch zone (Eastern Alps) (United States)

    Dallanave, Edoardo; Kirscher, Uwe; Hauck, Jürgen; Hesse, Reinhard; Bachtadse, Valerian; Wortmann, Ulrich Georg


    The Rhenodanubian Flysch zone (RDF) is a Lower Cretaceous-lower Palaeocene turbidite succession extending for ˜500 km from the Danube at Vienna to the Rhine Valley (Eastern Alps). It consists of calcareous and siliciclastic turbidite systems deposited in a trench abyssal plain. The age of deposition has been estimated through micropalaeontologic dating. However, palaeomagnetic studies constraining the age and the palaeolatitude of deposition of the RDF are still missing. Here, we present palaeomagnetic data from the Early Cretaceous Tristel and Rehbreingraben Formations of the RDF from two localities in the Bavarian Alps (Rehbrein Creek and Lainbach Valley, southern Germany), and from the stratigraphic equivalent of the Falknis Nappe (Liechtenstein). The quality of the palaeomagnetic signal has been assessed by either fold test (FT) or reversal test (RT). Sediments from the Falknis Nappe are characterized by a pervasive syntectonic magnetic overprint as tested by negative FT, and are thus excluded from the study. The sediments of the Rehbreingraben Formation at Rehbrein Creek, with positive RT, straddle magnetic polarity Chron M0r and the younger M΄-1r΄ reverse event, with an age of ˜127-123 Ma (late Barremian-early Aptian). At Lainbach Valley, no polarity reversals have been observed, but a positive FT gives confidence on the reliability of the data. The primary palaeomagnetic directions, after correction for inclination shallowing, allow to precisely constrain the depositional palaeolatitude of the Tristel and Rehbreingraben Formations around ˜28°N. In a palaeogeographic reconstruction of the Alpine Tethys at the Barremian/Aptian boundary, the RDF is located on the western margin of the Briançonnais terrain, which was separated from the European continent by the narrow Valais Ocean.

  6. Growth ring analysis of fossil coniferous woods from early cretaceous of Araripe Basin (Brazil

    Directory of Open Access Journals (Sweden)

    Etiene F. Pires


    Full Text Available Growth ring analysis on silicified coniferous woods from the Missão Velha Formation (Araripe Basin - Brazil has yielded important information about periodicity of wood production during the Early Cretaceous in the equatorial belt. Despite warm temperatures, dendrological data indicate that the climate was characterized by cyclical alternation of dry and rainy periods influenced by cyclical precipitations, typical of tropical wet and dry or savanna climate. The abundance of false growth rings can be attributed to both occasional droughts and arthropod damage. The present climate data agree with palaeoclimatic models that inferred summer-wet biomes for the Late Jurassic/Early Cretaceous boundary in the southern equatorial belt.A partir de análise de anéis de crescimento em lenhos de coníferas silicificadas provenientes da Formação Missão Velha(Bacia do Araripe - Brasil, obteve-se importantes informações a respeito da periodicidade de produção lenhosa duranteo início do Cretáceo, na região do equador. Apesar das estimativas de temperatura apresentarem-se elevadas, os dados dendrológicos indicam que o clima foi caracterizado pela alternância cíclica de períodos secos e chuvosos, influenciado por precipitações periódicas, típico das condições atuais de climatropical úmido e seco ou savana. A abundância de falsosanéis de crescimento pode ser atribuída tanto a secas ocasionais quanto a danos causados por artrópodes. Os dados paleoclimáticos aqui obtidos corroboram com modelos paleoclimáticos que inferem a ocorrência de um bioma de verões úmidos para o limite Neojurássico/Eocretáceo ao sul do equador.

  7. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. (United States)

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix


    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  8. A large parasitengonid mite (Acari, Erythraeoidea from the Early Cretaceous Crato Formation of Brazil

    Directory of Open Access Journals (Sweden)

    J. A. Dunlop


    Full Text Available A new large, fossil mite (Arachnida: Acari, Pararainbowia martilli n. gen. n. sp., is described from the Early Cretaceous (Aptian Crato Formation from Ceará State, Brazil. It is assigned to the Cohort Parasitengona and the superfamily Erythraeoidea, some extant members of which can reach up to seven millimetres in body length. Given that doubts have been raised about the identity of putative Crato feather mite eggs, this new fossil represents the first unequivocal record of Acari from the Crato Formation, the first non-amber record of an erythraeoid mite and the oldest named example of this superfamily. Fossil erythraeoids from Mesozoic and Tertiary ambers are briefly reviewed – including a widely overlooked Late Cretaceous species – with comments on Mesozoic mites in general. Thirteen Baltic amber erythraeoids have been formally described, but much unstudied material from various amber sources remains. Ein neues großes Milbenfossil (Arachnida: Acari, Pararainbowia martilli n. gen. n. sp., wird aus der Crato Formation (Unterkreide, Aptium des Ceará Gebietes in Brasilien beschrieben. Es wird der Kohorte Parasitengona und der Überfamilie Erythraeoidea zugeordnet; die modernen Vertreter erreichen eine Körperlänge bis zu sieben mm. Weil die Identität von Federmilbeneiern aus der Crato Formation in Frage gestellt wurde, ist dieser Neufund der erste klare Hinweis von Acari aus der Crato Formation. Es ist die erste erythraeoide Milbe, die nicht aus dem Bernstein stammt sowie das älteste genannte Beispiel dieser Überfamilie. Fossile erythraeoide Milben aus dem Bernstein des Mesozoikum und des Tertiärs werden kurz zusammengefasst – u. a. eine weitgehend übersehene Art aus der Oberkreide – mit allgemeinen Anmerkungen zu den mesozoischen Milben. Dreizehn erythraeoide Milbenarten sind aus dem baltischen Bernstein genannt und beschrieben worden, aber weiteres unbearbeitetes Material von verschiedenen Bernstein-Fundpunkten liegt noch vor

  9. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China (United States)

    Wang, Tiantian; Ramezani, Jahandar; Wang, Chengshan; Wu, Huaichun; He, Huaiyu; Bowring, Samuel A.


    The Cretaceous continental sedimentary records are essential to our understanding of how the terrestrial geologic and ecologic systems responded to past climate fluctuations under greenhouse conditions and our ability to forecast climate change in the future. The Songliao Basin of Northeast China preserves a near-complete, predominantly lacustrine, Cretaceous succession, with sedimentary cyclicity that has been tied to Milankocitch forcing of the climate. Over 900 meters of drill-core recovered from the Upper Cretaceous (Turonian to Campanian) of the Songliao Basin has provided a unique opportunity for detailed analyses of its depositional and paleoenvironmental records through integrated and high-resolution cyclostratigraphic, magnetostratigraphic and geochronologic investigations. Here we report high-precision U-Pb zircon dates (CA-ID-TIMS method) from four interbedded bentonites from the drill-core that offer substantial improvements in accuracy, and a ten-fold enhancement in precision, compared to the previous U-Pb SIMS geochronology, and allow a critical evaluation of the Songliao astrochronological time scale. The results indicate appreciable deviations of the astrochronologic model from the absolute radioisotope geochronology, which more likely reflect cyclostratigraphic tuning inaccuracies and omitted cycles due to depositional hiatuses, rather than suspected limitations of astronomical models applied to distant geologic time. Age interpolation based on our new high-resolution geochronologic framework and the calibrated cyclostratigraphy places the end of the Cretaceous Normal Superchon (C34n-C33r chron boundary) in the Songliao Basin at 83.07 ± 0.15 Ma. This date also serves as a new and improved estimate for the global Santonian-Campanian stage boundary.

  10. The Jurassic-early Cretaceous Ilo batholith of southern coastal Peru: geology, geochronology and geochemistry (United States)

    Boekhout, Flora; Sempere, Thierry; Spikings, Richard; Schaltegger, Urs


    The Ilo batholith (17°00 - 18°30 S) crops out in an area of about 20 by 100 km, along the coast of southern Peru. This batholith is emplaced into the ‘Chocolate‘ Formation of late Permian to middle Jurassic age, which consists of more than 1000 m of basaltic and andesitic lavas, with interbedded volcanic agglomerates and breccias. The Ilo Batholith is considered to be a rarely exposed fragment of the Jurassic arc in Peru. Our aim is to reconstruct the magmatic evolution of this batholith, and place it within the context of long-lasting magma genesis along the active Andean margin since the Paleozoic. Sampling for dating and geochemical analyses was carried out along several cross sections through the batholith that were exposed by post-intrusion eastward tilting of 20-30°. Sparse previous work postulates early to middle Jurassic and partially early Cretaceous emplacement, on the basis of conventional K/Ar and 40Ar/39Ar dating methods in the Ilo area. Twenty new U-Pb zircon ages (LA-ICP-MS and CA-ID-TIMS) accompanied by geochemical data suggests the Ilo batholith formed via the amalgamation of middle Jurassic and early Cretaceous, subduction-related plutons. Preliminary Hf isotope studies reveal a primitive mantle source for middle Jurassic intrusions. Additional Sr, Nd and Hf isotope analyses are planned to further resolve the source regions of different pulses of plutonic activity. We strongly suggest that batholith emplacement was at least partly coeval with the emplacement of the late Permian to middle Jurassic Chocolate Formation, which was deposited in an extensional tectonic regime. Our age results and geochemical signature fit into the scheme of episodic emplacement of huge amounts of subduction related magmatism that is observed throughout the whole Andean event, particularly during the middle Jurassic onset of the first Andean cycle (southern Peru, northern Chile and southern Argentina). Although the exact geodynamic setting remains to be precisely

  11. A new crested pterosaur from the Early Cretaceous of Spain: the first European tapejarid (Pterodactyloidea: Azhdarchoidea.

    Directory of Open Access Journals (Sweden)

    Romain Vullo

    Full Text Available BACKGROUND: The Tapejaridae is a group of unusual toothless pterosaurs characterized by bizarre cranial crests. From a paleoecological point of view, frugivorous feeding habits have often been suggested for one of its included clades, the Tapejarinae. So far, the presence of these intriguing flying reptiles has been unambiguously documented from Early Cretaceous sites in China and Brazil, where pterosaur fossils are less rare and fragmentary than in similarly-aged European strata. METHODOLOGY/PRINCIPAL FINDINGS: Europejara olcadesorum gen. et sp. nov. is diagnosed by a unique combination of characters including an unusual caudally recurved dentary crest. It represents the oldest known member of Tapejaridae and the oldest known toothless pterosaur. The new taxon documents the earliest stage of the acquisition of this anatomical feature during the evolutionary history of the Pterodactyloidea. This innovation may have been linked to the development of new feeding strategies. CONCLUSION/SIGNIFICANCE: The discovery of Europejara in the Barremian of the Iberian Peninsula reveals an earlier and broader global distribution of tapejarids, suggesting a Eurasian origin of this group. It adds to the poorly known pterosaur fauna of the Las Hoyas locality and contributes to a better understanding of the paleoecology of this Konservat-Lagerstätte. Finally, the significance of a probable contribution of tapejarine tapejarids to the early angiosperm dispersal is discussed.

  12. Laser Fluorescence Illuminates the Soft Tissue and Life Habits of the Early Cretaceous Bird Confuciusornis.

    Directory of Open Access Journals (Sweden)

    Amanda R Falk

    Full Text Available In this paper we report the discovery of non-plumage soft tissues in Confuciusornis, a basal beaked bird from the Early Cretaceous Jehol Biota in northeastern China. Various soft tissues are visualized and interpreted through the use of laser-stimulated fluorescence, providing much novel anatomical information about this early bird, specifically reticulate scales covering the feet, and the well-developed and robust pro- and postpatagium. We also include a direct comparison between the forelimb soft tissues of Confuciusornis and modern avian patagia. Furthermore, apparently large, fleshy phalangeal pads are preserved on the feet. The reticulate scales, robust phalangeal pads as well as the highly recurved pedal claws strongly support Confuciusornis as an arboreal bird. Reticulate scales are more rounded than scutate scales and do not overlap, thus allowing for more flexibility in the toe. The extent of the pro- and postpatagium and the robust primary feather rachises are evidence that Confuciusornis was capable of powered flight, contrary to previous reports suggesting otherwise. A unique avian wing shape is also reconstructed based on plumage preserved. These soft tissues combined indicate an arboreal bird with the capacity for short-term (non-migratory flight, and suggest that, although primitive, Confuciusornis already possessed many relatively advanced avian anatomical characteristics.

  13. Post-early cretaceous landform evolution along the western margin of the banca~nnia trough, western nsw (United States)

    Gibson, D.L.


    Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.

  14. Early Cretaceous marine sediments of the Lower Saxony Basin. The Gildehaus Sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Dellepiane, S.; Weiel, D. [Wintershall Holding GmbH, Barnstorf (Germany); Gerwert, D.; Mutterlose, J. [Bochum Univ. (Germany). Inst. fuer Geologie, Mineralogie und Geophysik


    During the Early Cretaceous (Berriasian - Aptian) the Lower Saxony Basin (LSB) formed the southernmost extension of the North Sea Basin. Sedimentation patterns of the LSB were controlled by divergent dextral shear movement causing differential subsidence related to early rifting in the North Sea. Up to 2000m of fine grained mudstones accumulated in the basin centre, while marginal marine, coarser grained siliciclastics were deposited along the western and southern margins of the LSB. The western marginal facies, outcropping along the Dutch-German border, is characterised by shallow marine sandstones of Valanginian - Hauterivian age. These units, which are separated by clay rich intervals, include the Bentheim Sdst., the Dichotomites Sdst., the Grenz Sdst., the Noricum Sdst. and the Gildehaus Sdst. These sandstones form a series of overall backstepping units, controlled by a main transgressive trend. Economically important are the Bentheim Sdst. and the Gildehaus Sdst., with a long oil producing history. The Bentheim Sdst. (early Valanginian) has been interpreted as an overall retrograding unit related to an incised valley infill with material mainly coming from the South. Tidal processes dominated the deposition of the Bentheim Sdst. The origin and genesis of the Gildehaus Sdst. (mid Hauterivian) is, however, less well understood. Here we present data from two wells drilled to the Gildehaus Sdst. (Emlichheim oil field) which provide evidence for a two fold subdivision of the unit. A well sorted massive quartz sandstone is followed by an interval composed of reworked coarse clastics of massflow origin. Micropalaeontological evidence suggests a fully marine, hemi-pelagic origin of the mud dominated matrix throughout the Gildehaus Sdst. These findings indicate a depositional environment quite different from that of the Bentheim Sdst. Short termed pulses of substantial input of clastic material from two different sources in the West to Southwest punctuated the overall

  15. Early cretaceous Obernirchen and Bentheim sandstones from Germany used as dimension stone in the Netherlands: geology physical properties, architectural use and comparative weathering

    NARCIS (Netherlands)

    Dubelaar, C.W.; Nijland, T.G.


    The Netherlands, with only scarce occurrences of outcropping or shallow buried natural stone, has over centuries imported huge quantities of Early Cretaceous Bentheim Sandstone and Obernkirchen Sandstone from Germany. The present paper provides an overview of their distribution and properties

  16. Previously Unrecognized Ornithuromorph Bird Diversity in the Early Cretaceous Changma Basin, Gansu Province, Northwestern China (United States)

    Wang, Ya-Ming; O'Connor, Jingmai K.; Li, Da-Qing; You, Hai-Lu


    Here we report on three new species of ornithuromorph birds from the Lower Cretaceous Xiagou Formation in the Changma Basin of Gansu Province, northwestern China: Yumenornis huangi gen. et sp. nov., Changmaornis houi gen. et sp. nov., and Jiuquanornis niui gen. et sp. nov.. The last of these is based on a previously published but unnamed specimen: GSGM-05-CM-021. Although incomplete, the specimens can be clearly distinguished from each other and from Gansus yumenensis Hou and Liu, 1984. Phylogenetic analysis resolves the three new taxa as basal ornithuromorphs. This study reveals previously unrecognized ornithuromorph diversity in the Changma avifauna, which is largely dominated by Gansus but with at least three other ornithuromorphs. Body mass estimates demonstrate that enantiornithines were much smaller than ornithuromorphs in the Changma avifauna. In addition, Changma enantiornithines preserve long and recurved pedal unguals, suggesting an arboreal lifestyle; in contrast, Changma ornithuromorphs tend to show terrestrial or even aquatic adaptions. Similar differences in body mass and ecology are also observed in the Jehol avifauna in northeastern China, suggesting niche partitioning between these two clades developed early in their evolutionary history. PMID:24147058

  17. Trap architecture of the Early Cretaceous Sarir Sandstone in the eastern Sirt Basin, Libya

    Energy Technology Data Exchange (ETDEWEB)

    Gras, R. [Schlumberger GeoQuest, Cedex (France); Thusu, B. [Arabian Gulf Oil Company, Benghazi (Libyan Arab Jamahiriya)


    The Sarir Sandstone is the principal reservoir for oil accumulations in the eastern Sirt Basin in Libya. The main phase of the rifting in this area took place in the Late Jurassic-Early Cretaceous, during which time the Sarir Sandstone was deposited as a non-marine, intra-continental clastic syn-rift sequence. Although successfully explored from 1959 onwards, the prolific eastern Sirt Basin is in a relatively immature stage of exploration regarding wildcat drilling and 3D seismic data acquisition. The most recent phase of exploration, utilizing 3D seismic techniques, revealed a complex structural development. The trap geometries are often related to E-W trending, basement-controlled fault systems, oblique to the NNW-SSE Sirt Basin trend. The fault systems were active during the Sarir Sandstone deposition, giving rise to structural as well as combined structural-traps. An increased understanding of trap architecture has led to both re-evaluation of older fields and new discoveries. (author)

  18. Late Jurassic–Early Cretaceous oysters from Siberia: A systematic review

    Directory of Open Access Journals (Sweden)

    Igor N. Kosenko


    Full Text Available The present study reviews the taxonomy of Late Jurassic–Early Cretaceous oysters from the Northern and the Subpolar Urals (Western Siberia and northern East Siberia. Previous studies have documented 10 species from the genus Liostrea (L. delta, L. cucurbita, L. praeanabarensis, L. anabarensis, L. plastica, L. gibberosa, L. planoconvexa, L. siberica, L. uralensis, L. lyapinensis, and 3 species from the genus Gryphaea (G. borealis and 2 species in open nomenclature. Liostrea gibberosa, L. planoconvexa, L. uralensis, and L. cucurbita are transferred in this study to the genus Pernostrea. Furthermore, two new species of Pernostrea are described: P. mesezhnikovi sp. nov. and P.? robusta sp. nov. Liostrea siberica is transferred to the genus Praeexogyra. Liostrea praeanabarensis and L. anabarensis are attributed to the subgenus Boreiodeltoideum (genus Deltoideum as well as L. delta sensu Zakharov (1966 which is described here as new species Deltoideum (Boreiodeltoideum borealis sp. nov. The similar shell morphology of the genera Deltoideum and Pernostrea provides a basis to establish the new tribe Pernostreini trib. nov. in the subfamily Gryphaeinae. Three species are recorded for the first time from Siberia: Nanogyra? cf. thurmanni, “Ostrea” cf. moreana and Gryphaea (Gryphaea curva.

  19. Petrogenesis of early cretaceous silicic volcanism in SE Uruguay. The role of mantle and crustal sources

    International Nuclear Information System (INIS)

    Lustrino, Michele; Morbidelli, Lucio; Marrazzo, Marianna; Melluso, Leone; Brotzu, Pietro; Tassinari, Colombo C.G.; Gomes, Celso B.; Ruberti, Excelso


    Early Cretaceous (∼129 Ma) silicic rocks crop out in SE Uruguay between the Laguna Merin and Santa Lucia basins in the Lascano, Sierra Sao Miguel, Salamanca and Minas areas. They are mostly rhyolites with minor quartz-trachytes and are nearly contemporaneous with the Parana-Etendeka igneous province and with the first stages of South Atlantic Ocean opening. A strong geochemical variability (particularly evident from Rb/Nb, Nb/Y trace element ratios) and a wide range of Sr-Nd isotopic ratios ( 143 Nd/ 144 Nd (129) =0.51178-0.51209; 87 Sr/ 86 Sr (129) =0.70840-0.72417) characterize these rocks. Geochemistry allows to distinguish two compositional groups, corresponding to the north-eastern (Lascano and Sierra Sao Miguel, emplaced on the Neo-Proterozoic southern sector of the Dom Feliciano mobile belt) and south-eastern localities (Salamanca, Minas, emplaced on the much older (Archean) Nico Perez terrane or on the boundary between the Dom Feliciano and Nico Perez terranes). These compositional differences between the two groups are explained by variable mantle source and crust contributions. The origin of the silicic magmas is best explained by complex processes involving assimilation and fractional crystallization and mixing of a basaltic magma with upper crustal lithologies, for Lascano and Sierra Sao Miguel rhyolites. In the Salamanca and Minas rocks genesis, a stronger contribution from lower crust is indicated. (author)

  20. Glendonites as a paleoenvironmental tool: Implications for early Cretaceous high latitudinal climates in Australia (United States)

    De Lurio, Jennifer L.; Frakes, L. A.


    Glendonites, calcite pseudomorphs after the metastable mineral ikaite (CaCO 3 · 6H 2O), occur in the Late Aptian interval of the Bulldog Shale in the Eromanga Basin, Australia and in other Early Cretaceous basins at high paleolatitudes. Ikaite precipitation in the marine environment requires near-freezing temperatures (not higher than 4°C), high alkalinity, increased levels of orthophosphate, and high P CO2. The rapid and complete transformation of ikaite to calcite at temperatures between 5 and 8°C provides an upper limit on the oxygen isotopic composition of the pore waters: -2.6 ikaite precipitation. Data previously reported as 11 to 16°C (assuming δ w = 0.0‰SMOW) yield paleotemperatures ranging from -1 to 5°C, squarely in the range of ikaite stability. The low δ w indicates hyposaline conditions, most likely caused by mixing high latitude meteoric waters with seawater. The 18O depleted, low temperature waters suggest that the region was at least seasonally colder than previously accepted.

  1. Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran

    Directory of Open Access Journals (Sweden)

    M. Nasrabady


    Full Text Available The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry, and the pressure-temperature path of the Early Cretaceous mafic granulites that occur within the Tertiary Sabzevar ophiolitic suture zone of NE Iran. Whole rock geochemistry indicates that the Sabzevar granulites are likely derived from a MORB-type precursor. They are thus considered as remnants of a dismembered dynamo-thermal sole formed during subduction of a back-arc basin (proto-Sabzevar Ocean formed in the upper-plate of the Neotethyan slab. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop compatible with burial in a hot subduction zone, followed by cooling during exhumation. Transition from a nascent to a mature stage of oceanic subduction is the geodynamic scenario proposed to accomplish for the reconstructed thermobaric evolution. When framed with the regional scenario, results of this study point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing disparity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected to emerge with further investigations.

  2. Pinaceae-like reproductive morphology in Schizolepidopsis canicularis sp. nov. from the Early Cretaceous (Aptian-Albian) of Mongolia. (United States)

    Leslie, Andrew B; Glasspool, Ian; Herendeen, Patrick S; Ichinnorov, Niiden; Knopf, Patrick; Takahashi, Masamichi; Crane, Peter R


    Seed cone scales assigned to the genus Schizolepidopsis are widespread in Late Triassic to Cretaceous Eurasian deposits. They have been linked to the conifer family Pinaceae based on associated vegetative remains, but their exact affinities are uncertain. Recently discovered material from the Early Cretaceous of Mongolia reveals important new information concerning Schizolepidopsis cone scales and seeds, and provides support for a relationship between the genus and extant Pinaceae. Specimens were collected from Early Cretaceous (probable Aptian-Albian) lignite deposits in central Mongolia. Lignite samples were disaggregated, cleaned in hydrofluoric acid, and washed in water. Specimens were selected for further study using light and electron microscopy. Schizolepidopsis canicularis seed cones consist of loosely arranged, bilobed ovulate scales subtended by a small bract. A single inverted seed with an elongate micropyle is borne on each lobe of the ovulate scale. Each seed has a wing formed by the separation of the adaxial surface of the ovulate scale. Schizolepidopsis canicularis produced winged seeds that formed in a manner that is unique to Pinaceae among extant conifers. We do not definitively place this species in Pinaceae pending more complete information concerning its pollen cones and vegetative remains. Nevertheless, this material suggests that Schizolepidopsis may be important for understanding the early evolution of Pinaceae, and may potentially help reconcile the appearance of the family in the fossil record with results based on phylogenetic analyses of molecular data.

  3. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution (United States)

    Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong


    The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by

  4. Evolution of the Mongol-Okhotsk suture as constrained by new Early Cretaceous palaeomagnetic data from the North China and southern Mongolia (United States)

    Ren, Q.; Zhang, S.; Zhao, H.; Ding, J.; Turbold, S.; Gao, Y.; Xu, B.; Wu, Y.; Fu, H.


    The closure time of the Mongol-Okhotsk ocean and subsequent collision between the Siberia and Amuria-North China block (AMU-NCB) during the final episode of the amalgamation of Northeast Asia have been hotly debating for decades. In order to better puzzle out the controversy, we carried out new paleomagnetic investigations from the Early Cretaceous geological units on the northern margin of the NCB and southern AMU. These geological units have been well-dated. Within the Yanshan Belt of the northern margin of the NCB, we collected the 209 paleomagnetic samples from the sandstone of the middle-upper member of the Tuchengzi Formation ( 140 Ma) and the volcanic rocks of the bottom of the Yixian Formation ( 130 Ma). We drilled 225 samples from the lava flows of two sections of the Tsagantsav Formation ( 130 Ma) in the southern Mongolia of the AMU. All samples were subjected to stepwise thermal demagnetization. After removal of a recent geomagnetic field viscous component, the stable high temperature component can pass a reversal test and a fold test at 95% and 99% confidence level. They are thus interpreted as primary. The virtual geomagnetic poles observed from the 130 Ma volcanic rocks of the Yixian Formation and the Tsagantsav Formation respectively averaged out the paleosecular variation and they overlapped each other, indicating that NCB and AMU was a single unit (NCB-AMU) at that time. The paleopole from the Tuchengzi Formation ( 140 Ma) of the NCB is different from the coeval pole of the Siberia, indicating that there was a significant latitudinal convergence between the Siberia and the NCB. Compared the 130 Ma paleopoles of the NCB-AMU and Siberia, there was no significant latitudinal difference, but the relative tectonic rotation was existing. It has been suggested that the plate convergence or Mongol-Okhotsk collisional orogeny was stopped between Siberia and NCB-AMU during the 140-130 Ma. After Mongol-Okhotsk orogeny, the widely extensional rift basins were

  5. Early Cretaceous Ductile Deformation of Marbles from the Western Hills of Beijing, North China Craton (United States)

    Feng, H.; Liu, J.


    During the Early Cretaceous tectonic lithosphere extension, the pre-mesozoic rocks from the Western Hills in the central part of the North China Craton suffered from weak metamorphism but intense shear deformation. The prominent features of the deformation structures are the coexisting layer-parallel shear zones and intrafolia folds, and the along-strike thickness variations of the marble layers from the highly sheared Mesoproterozoic Jing'eryu Formation. Platy marbles are well-developed in the thinner layers, while intrafolia folds are often observed in the thicker layers. Most folds are tight recumbent folds and their axial planes are parallel to the foliations and layerings of the marbles. The folds are A-type folds with hinges being always paralleling to the stretching lineations consistently oriented at 130°-310° directions throughout the entire area. SPO and microstructural analyses of the sheared marbles suggest that the thicker layers suffered from deformations homogeneously, while strain localization can be distinguished in the thinner layers. Calcite twin morphology and CPO analysis indicate that the deformation of marbles from both thinner and thicker layers happened at temperatures of 300 to 500°C. The above analysis suggests that marbles in the thicker layers experienced a progressive sequence of thermodynamic events: 1) regional metamorphism, 2) early ductile deformation dominated by relatively higher temperature conditions, during which all the mineral particles elongated and oriented limitedly and the calcite grains are deformed mainly by mechanical twinning, and 3) late superimposition of relatively lower temperature deformation and recrystallization, which superposed the early deformation, and made the calcites finely granulated, elongated and oriented by dynamical recrystallization along with other grains. Marbles from the thinner layers, however, experienced a similar, but different sequence of thermo-dynamic events, i.e. regional

  6. Geomagnetism 4

    CERN Document Server

    Jacobs, John A


    Geomagnetism, Volume 4 focuses on the processes, methodologies, technologies, and approaches involved in geomagnetism, including electric fields, solar wind plasma, pulsations, and gravity waves.The selection first offers information on solar wind, magnetosphere, and the magnetopause of the Earth. Discussions focus on magnetopause structure and transfer processes, magnetosphere electric fields, geomagnetically trapped radiation, microstructure of the solar wind plasma, and hydro magnetic fluctuations and discontinuities. The text then examines geomagnetic tail, neutral upper atmosphere, and ge

  7. New Patagonian Cretaceous theropod sheds light about the early radiation of Coelurosauria

    Directory of Open Access Journals (Sweden)

    Fernando E Novas


    Full Text Available Here we describe a new theropod, Bicentenaria argentina nov. gen. et nov. sp., from the early Late Cretaceous of Patagonia. It is represented by more than a hundred bones belonging to different sized individuals, which were buried together in disarticulation after little transportation. The available association of skeletal elements suggests a gregarious behaviour for Bicentenaria, an ethological trait also recorded among other theropod clades. Increasing documentation of monospecific assemblages of different groups of theropods suggests that a gregarious behaviour may have constituted the ancestral condition for Theropoda, at least. Bicentenaria characterizes for the surangular bone with a high dorsal margin and a prominent lateral shelf, a retroarticular process that is low, wide and spoon-shaped, and quadrate bone with its lateral condyle larger than the medial one. Phylogenetic analysis found the Chinese Tugulusaurus and the Patagonian Bicentenaria as successive sister taxa of all other coelurosaurs, thus revealing the importance of the new taxon in the understanding of the early diversification of Coelurosauria. In particular, Bicentenaria amplifies the array of basal coelurosaurs that inhabited Gondwana during the Cretaceous, also including compsognathids, Aniksosaurus and Santanaraptor. Although still restricted to a handful of forms, available information indicates that Gondwana was a cradle for the evolution of different lineages of basal coelurosaurs, different from those documented in Upper Cretaceous beds in the northern landmasses. Analysis of body size distribution in averostran theropods results in the identification of two main episodes of drastic size reduction in the evolutionary history of Coelurosauria: one occurred at the initial radiation of the group (as represented by Bicentenaria, Zuolong, Tugulusaurus, compsognathids, and Aniksosaurus, and a second episode occurred at the early diverification of Paraves or avialans

  8. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. (United States)

    Prasad, V; Strömberg, C A E; Leaché, A D; Samant, B; Patnaik, R; Tang, L; Mohabey, D M; Ge, S; Sahni, A


    Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67-65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern subclades PACMAD (Panicoideae-Aristidoideae-Chloridoideae-Micrairoideae-Arundinoideae-Danthonioideae) and BEP (Bambusoideae-Ehrhartoideae-Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography.

  9. Redescription of Tijubina pontei, an Early Cretaceous lizard (Reptilia; Squamata from the Crato Formation of Brazil

    Directory of Open Access Journals (Sweden)

    Tiago R. Simões


    Full Text Available The record of Gondwanan Mesozoic lizards is very poor. Among the few species described for this region there is Tijubina pontei, an Early Cretaceous lizard from the Crato Formation (late Aptian of northeast Brazil. Its description is very brief and lacks most of its diagnostic characters and clear delimitation from other lizard species. Here, a full redescription of the holotype is provided. T. pontei is demonstrated to be a valid species and a new diagnosis is provided with reference to Olindalacerta brasiliensis, a contemporary species of the Crato Formation. It lacks the posteroventral and posterodorsal processes of the dentary; the tibial/fibular length equals the femoral length and its posterior dentary teeth are robust, cylindrically based, unsculptured and bear no cuspids. The systematic position of T. pontei still needs further clarification, but preliminary analyses indicate that it lies in a rather basal position among the Squamata, similarly to O. brasiliensis.O registro de lagartos do Mesozóico de Gondwana é extremamente limitado. Dentre as poucas espécies descritas para esta região está Tijubina pontei, um lagarto do Cretáceo Inferior da Formação Crato (Aptiano superior do nordeste do Brasil. A sua descrição é muito breve e não contém a maioria dos seus caracteres diagnósticos ou uma clara delimitação das outras espécies de lagartos. Neste trabalho, uma redescrição completa do holótipo, é provida. É demonstrado que T. pontei é espécie válida, e uma nova diagnose é provida com referência à Olindalacerta brasiliensis, uma espécie contemporânea da Formação Crato. Ele não possui os processos posteroventral e posterodorsal do dentário; o comprimento tibilar/fibular é relativamente igual ao comprimento do fêmur e os seus dentes posteriores no dentário são robustos, de base cilindrica, sem ornamentações e sem cúspides. Embora a posição sistemática de T. pontei ainda necessite de maiores

  10. Under Cover at Pre-Angiosperm Times: A Cloaked Phasmatodean Insect from the Early Cretaceous Jehol Biota (United States)

    Wang, Maomin; Béthoux, Olivier; Bradler, Sven; Jacques, Frédéric M. B.; Cui, Yingying; Ren, Dong


    Background Fossil species that can be conclusively identified as stem-relatives of stick- and leaf-insects (Phasmatodea) are extremely rare, especially for the Mesozoic era. This dearth in the paleontological record makes assessments on the origin and age of the group problematic and impedes investigations of evolutionary key aspects, such as wing development, sexual size dimorphism and plant mimicry. Methodology/Principal Findings A new fossil insect species, Cretophasmomima melanogramma Wang, Béthoux and Ren sp. nov., is described on the basis of one female and two male specimens recovered from the Yixian Formation (Early Cretaceous, ca. 126±4 mya; Inner Mongolia, NE China; known as ‘Jehol biota’). The occurrence of a female abdominal operculum and of a characteristic ‘shoulder pad’ in the forewing allows for the interpretation of a true stem-Phasmatodea. In contrast to the situation in extant forms, sexual size dimorphism is only weakly female-biased in this species. The peculiar wing coloration, viz. dark longitudinal veins, suggests that the leaf-shaped plant organ from the contemporaneous ‘gymnosperm’ Membranifolia admirabilis was used as model for crypsis. Conclusions/Significance As early as in the Early Cretaceous, some stem-Phasmatodea achieved effective leaf mimicry, although additional refinements characteristic of recent forms, such as curved fore femora, were still lacking. The diversification of small-sized arboreal insectivore birds and mammals might have triggered the acquisition of such primary defenses. PMID:24646906

  11. Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania

    Directory of Open Access Journals (Sweden)

    M. Aberhan


    Full Text Available The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German-Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinvertebrates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs. In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1 Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2 Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere. Presumably, tidal flats and coastal plains were visited by dinosaurs primarily during periods of drought. (3 Vegetated hinterland. Vegetation of this environment can only be inferred indirectly from plant material transported into the other depositional environments. Vegetation was dominated by a diverse conifer flora, which apparently formed part of the food source of large herbivorous sauropods. Evidence from various sources suggests a subtropical to tropical palaeoclimate, characterised by seasonal rainfall alternating with

  12. Inversion of the Erlian Basin (NE China) in the early Late Cretaceous: Implications for the collision of the Okhotomorsk Block with East Asia (United States)

    Guo, Zhi-Xin; Shi, Yuan-Peng; Yang, Yong-Tai; Jiang, Shuan-Qi; Li, Lin-Bo; Zhao, Zhi-Gang


    A significant transition in tectonic regime from extension to compression occurred throughout East Asia during the mid-Cretaceous and has stimulated much attention. However, the timing and driving mechanisms of the transition remain disputed. The Erlian Basin, a giant late Mesozoic intracontinental petroliferous basin located in the Inner Mongolia, Northeast China, contains important sedimentary and structural records related to the mid-Cretaceous compressional event. The stratigraphical, sedimentological and structural analyses reveal that a NW-SE compressional inversion occurred in the Erlian Basin between the depositions of the Lower Cretaceous Saihan and Upper Cretaceous Erlian formations, causing intense folding of the Saihan Formation and underlying strata, and the northwestward migration of the depocenters of the Erlian Formation. Based on the newly obtained detrital zircon U-Pb data and previously published paleomagnetism- and fossil-based ages, the Saihan and Erlian formations are suggested as latest Aptian-Albian and post-early Cenomanian in age, respectively, implying that the inversion in the Erlian Basin occurred in the early Late Cretaceous (Cenomanian time). Apatite fission-track thermochronological data record an early Late Cretaceous cooling/exhuming event in the basin, corresponding well with the aforementioned sedimentary, structural and chronological analyses. Combining with the tectono-sedimentary evolutions of the neighboring basins of the Erlian Basin, we suggest that the early Late Cretaceous inversional event in the Erlian Basin and the large scale tectonic transition in East Asia shared the common driving mechanism, probably resulting from the Okhotomorsk Block-East Asia collisional event at about 100-89 Ma.

  13. Late Cenomanian - Early Turonian Hardgrounds and nearshore Depositional Environments (Bohemian Cretaceous Basin)

    Czech Academy of Sciences Publication Activity Database

    Žítt, Jiří; Bosák, Pavel; Hradecká, L.; Svobodová, Marcela

    Colloque sur le Cénomanien/Colloquium on the Cenomanian Stage, - (2001), s. 105-107 ISSN 0766-5946. [Colloque sur le Cénomanien/Colloquium on the Cenomanian Stage. Rouen, 20.10.2001-21.10.2001] R&D Projects: GA ČR GA205/99/1315 Institutional research plan: CEZ:AV0Z3013912 Keywords : Upper Cretaceous * Hardgrounds Subject RIV: DB - Geology ; Mineralogy

  14. The conchostracan subgenus Orthestheria (Migransia) from the Tacuarembó Formation (Late Jurassic-?Early Cretaceous, Uruguay) with notes on its geological age (United States)

    Yanbin, Shen; Gallego, Oscar F.; Martínez, Sergio


    Conchostracans from the Tacuarembó Formation s.s. of Uruguay are reassigned to the subgenus Orthestheria (Migransia) Chen and Shen. They show more similarities to genera of Late Jurassic age in the Congo Basin and China than to those of Early Cretaceous age. On the basis of the character of the conchostracans, we suggest that the Tacuarembó Formation is unlikely to be older than Late Jurassic. It is probably Kimmeridgian, but an Early Cretaceous age cannot be excluded. This finding is consistent with isotopic dating of the overlying basalts, as well as the age range of recently described fossil freshwater sharks.

  15. A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds

    Directory of Open Access Journals (Sweden)

    Jiandong Huang


    Full Text Available Despite the increasing number of exceptional feathered fossils discovered in the Late Jurassic and Cretaceous of northeastern China, representatives of Ornithurae, a clade that includes comparatively-close relatives of crown clade Aves (extant birds and that clade, are still comparatively rare. Here, we report a new ornithurine species Changzuiornis ahgmi from the Early Cretaceous Jiufotang Formation. The new species shows an extremely elongate rostrum so far unknown in basal ornithurines and changes our understanding of the evolution of aspects of extant avian ecology and cranial evolution. Most of this elongate rostrum in Changzuiornis ahgmi is made up of maxilla, a characteristic not present in the avian crown clade in which most of the rostrum and nearly the entire facial margin is made up by premaxilla. The only other avialans known to exhibit an elongate rostrum with the facial margin comprised primarily of maxilla are derived ornithurines previously placed phylogenetically as among the closest outgroups to the avian crown clade as well as one derived enantiornithine clade. We find that, consistent with a proposed developmental shift in cranial ontogeny late in avialan evolution, this elongate rostrum is achieved through elongation of the maxilla while the premaxilla remains only a small part of rostral length. Thus, only in Late Cretaceous ornithurine taxa does the premaxilla begin to play a larger role. The rostral and postcranial proportions of Changzuiornis suggest an ecology not previously reported in Ornithurae; the only other species with an elongate rostrum are two marine Late Cretacous taxa interpreted as showing a derived picivorous diet.

  16. Identification of a New Hesperornithiform from the Cretaceous Niobrara Chalk and Implications for Ecologic Diversity among Early Diving Birds.

    Directory of Open Access Journals (Sweden)

    Alyssa Bell

    Full Text Available The Smoky Hill Member of the Niobrara Chalk in Kansas (USA has yielded the remains of numerous members of the Hesperornithiformes, toothed diving birds from the late Early to Late Cretaceous. This study presents a new taxon of hesperornithiform from the Smoky Hill Member, Fumicollis hoffmani, the holotype of which is among the more complete hesperornithiform skeletons. Fumicollis has a unique combination of primitive (e.g. proximal and distal ends of femur not expanded, elongate pre-acetabular ilium, small and pyramidal patella and derived (e.g. dorsal ridge on metatarsal IV, plantarly-projected curve in the distal shaft of phalanx III:1 hesperornithiform characters, suggesting it was more specialized than small hesperornithiforms like Baptornis advenus but not as highly derived as the larger Hesperornis regalis. The identification of Fumicollis highlights once again the significant diversity of hesperornithiforms that existed in the Late Cretaceous Western Interior Seaway. This diversity points to the existence of a complex ecosystem, perhaps with a high degree of niche partitioning, as indicated by the varying degrees of diving specializations among these birds.

  17. Angolan ichnosite in a diamond mine shows the presence of a large terrestrial mammaliamorph, a crocodylomorph, and sauropod dinosaurs in the Early Cretaceous of Africa

    NARCIS (Netherlands)

    Mateus, Octávio; Marzola, Marco; Schulp, Anne S.; Jacobs, Louis L.; Polcyn, Michael J.; Pervov, Vladimir; Gonçalves, António Olímpio; Morais, Maria Luisa


    We report here new and the first mammaliamorph tracks from the Early Cretaceous of Africa. The tracksite, that also bears crocodylomorph and sauropod dinosaurian tracks, is in the Catoca diamond mine, Lunda Sul Province, Angola. The mammaliamorph tracks have a unique morphology, attributed to

  18. Middle Jurassic-Early Cretaceous foraminiferal biozonation of the Amran Group, eastern Sana'a Basin, Yemen (United States)

    Al-Wosabi, Mohammed; El-Anbaawy, Mohammed; Al-Thour, Khalid


    Two sections of strata assigned to the Amran Group at Jabal Salab and Jabal Yam in the eastern Sana'a governorate were sampled and correlated. These sections are part of a carbonate platform that extends from the city of Marib in the east to Naqil Ibn Ghailan, 20 km east of the city of Sana'a to the west. Palaeontological analysis of samples recovered has resulted in identification of 123 foraminiferal species, which are used to subdivide the sequence of the Amran Group into five biostratigraphic zones, aged between Bathonian (Middle Jurassic) and Berriasian (Early Cretaceous). The proposed biozones are those of Riyadhella rotundata, Kurnubia jurassica, Ammomarginulina sinaica, Alveosepta jaccardi and Pseudocyclammina sulaiyana/Furitilla caspianseis. These biozones were constructed and correlated with the equivalent zones reported from several localities.

  19. Middle Jurassic–Early Cretaceous foraminiferal biozonation of the Amran Group, eastern Sana’a Basin, Yemen

    Directory of Open Access Journals (Sweden)

    Al-Wosabi Mohammed


    Full Text Available Two sections of strata assigned to the Amran Group at Jabal Salab and Jabal Yam in the eastern Sana’a governorate were sampled and correlated. These sections are part of a carbonate platform that extends from the city of Marib in the east to Naqil Ibn Ghailan, 20 km east of the city of Sana’a to the west. Palaeontological analysis of samples recovered has resulted in identification of 123 foraminiferal species, which are used to subdivide the sequence of the Amran Group into five biostratigraphic zones, aged between Bathonian (Middle Jurassic and Berriasian (Early Cretaceous. The proposed biozones are those of Riyadhella rotundata, Kurnubia jurassica, Ammomarginulina sinaica, Alveosepta jaccardi and Pseudocyclammina sulaiyana/Furitilla caspianseis. These biozones were constructed and correlated with the equivalent zones reported from several localities.

  20. New toothed flying reptile from Asia: close similarities between early Cretaceous pterosaur faunas from China and Brazil. (United States)

    Wang, Xiaolin; Kellner, Alexander W A; Jiang, Shunxing; Cheng, Xin


    Despite the great increase in pterosaur diversity in the last decades, particularly due to discoveries made in western Liaoning (China), very little is known regarding pterosaur biogeography. Here, we present the description of a new pterosaur from the Jiufotang Formation that adds significantly to our knowledge of pterosaur distribution and enhances the diversity of cranial anatomy found in those volant creatures. Guidraco venator gen. et sp. nov. has an unusual upward-directed frontal crest and large rostral teeth, some of which surpass the margins of the skull and lower jaw when occluded. The new species is closely related to a rare taxon from the Brazilian Crato Formation, posing an interesting paleobiogeographic problem and supporting the hypothesis that at least some early Cretaceous pterosaur clades, such as the Tapejaridae and the Anhangueridae, might have originated in Asia. The association of the new specimen with coprolites and the cranial morphology suggest that G. venator preyed on fish.

  1. Evolution of volcanically-induced palaeoenvironmental changes leading to the onset of OAE1a (early Aptian, Cretaceous) (United States)

    Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut


    During the Cretaceous, several major volcanic events occurred that initiated climate warming, altered marine circulation and increased marine productivity, which in turn often resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Therefore the negative C-isotope excursion covers the interval between the time, when volcanic activity became important enough to be recorded in the C-isotope composition of the oceans to the onset of widespread anoxic conditions (OAE1a). We chose this interval at the locality of Pusiano (N-Italy) to study the effect of a volcanically-induced increase in pCO2 on the marine palaeoenvironment and to observe the evolving palaeoenvironmental conditions that finally led to OAE1a. The Pusiano section (Maiolica Formation) was deposited at the southern continental margin of the alpine Tethys Ocean and has been bio- and magnetostratigraphically dated by Channell et al. (1995). We selected 18 samples from 12 black shale horizons for palynofacies analyses. Palynofacies assemblages consist of several types of particulate organic matter, providing information on the origin of the organic matter (terrestrial/marine) and conditions during deposition (oxic/anoxic). We then linked the palynofacies results to high-resolution inorganic and organic C-isotope values and total organic carbon content measurements. The pelagic Pusiano section consists of repeated limestone-black shale couplets, which are interpreted to be the result of changes in oxygenation of bottom waters. Towards the end of the negative C-isotope excursion we observe enhanced preservation of the fragile amorphous organic matter resulting in increased

  2. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models (United States)

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.


    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  3. Petroleum system elements within the Late Cretaceous and Early Paleogene sediments of Nigeria's inland basins: An integrated sequence stratigraphic approach (United States)

    Dim, Chidozie Izuchukwu Princeton; Onuoha, K. Mosto; Okeugo, Chukwudike Gabriel; Ozumba, Bertram Maduka


    Sequence stratigraphic studies have been carried out using subsurface well and 2D seismic data in the Late Cretaceous and Early Paleogene sediments of Anambra and proximal onshore section of Niger Delta Basin in the Southeastern Nigeria. The aim was to establish the stratigraphic framework for better understanding of the reservoir, source and seal rock presence and distribution in the basin. Thirteen stratigraphic bounding surfaces (consisting of six maximum flooding surfaces - MFSs and seven sequence boundaries - SBs) were recognized and calibrated using a newly modified chronostratigraphic chart. Stratigraphic surfaces were matched with corresponding foraminiferal and palynological biozones, aiding correlation across wells in this study. Well log sequence stratigraphic correlation reveals that stratal packages within the basin are segmented into six depositional sequences occurring from Late Cretaceous to Early Paleogene age. Generated gross depositional environment maps at various MFSs show that sediment packages deposited within shelfal to deep marine settings, reflect continuous rise and fall of sea levels within a regressive cycle. Each of these sequences consist of three system tracts (lowstand system tract - LST, transgressive system tract - TST and highstand system tract - HST) that are associated with mainly progradational and retrogradational sediment stacking patterns. Well correlation reveals that the sand and shale units of the LSTs, HSTs and TSTs, that constitute the reservoir and source/seal packages respectively are laterally continuous and thicken basinwards, due to structural influences. Result from interpretation of seismic section reveals the presence of hanging wall, footwall, horst block and collapsed crest structures. These structural features generally aid migration and offer entrapment mechanism for hydrocarbon accumulation. The combination of these reservoirs, sources, seals and trap elements form a good petroleum system that is viable

  4. A stem acrodontan lizard in the Cretaceous of Brazil revises early lizard evolution in Gondwana. (United States)

    Simões, Tiago R; Wilner, Everton; Caldwell, Michael W; Weinschütz, Luiz C; Kellner, Alexander W A


    Iguanians are one of the most diverse groups of extant lizards (>1,700 species) with acrodontan iguanians dominating in the Old World, and non-acrodontans in the New World. A new lizard species presented herein is the first acrodontan from South America, indicating acrodontans radiated throughout Gondwana much earlier than previously thought, and that some of the first South American lizards were more closely related to their counterparts in Africa and Asia than to the modern fauna of South America. This suggests both groups of iguanians achieved a worldwide distribution before the final breakup of Pangaea. At some point, non-acrodontans replaced acrodontans and became the only iguanians in the Americas, contrary to what happened on most of the Old World. This discovery also expands the diversity of Cretaceous lizards in South America, which with recent findings, suggests sphenodontians were not the dominant lepidosaurs in that continent as previously hypothesized.

  5. Geomagnetic polarity reversals as a mechanism for the punctuated equilibrium model of biological evolution

    International Nuclear Information System (INIS)

    Welsh, J.S.; Welsh, A.L.; Welsh, W.F.


    In contrast to what is predicted by classical Darwinian theory (phyletic gradualism), the fossil record typically displays a pattern of relatively sudden, dramatic changes as detailed by Eldregde and Gould's model of punctuated equilibrium. Evolutionary biologists have been at a loss to explain the ultimate source of the new mutations that drive evolution. One hypothesis holds that the abrupt speciation seen in the punctuated equilibrium model is secondary to an increased mutation rate resulting from periodically increased levels of ionizing radiation on the Earth's surface. Sporadic geomagnetic pole reversals, occurring every few million years on the average, are accompanied by alterations in the strength of the Earth's magnetic field and magnetosphere. This diminution may allow charged cosmic radiation to bombard Earth with less attenuation, thereby resulting in increased mutation rates. This episodic fluctuation in the magnetosphere is an attractive mechanism for the observed fossil record. Selected periods and epochs of geologic history for which data was available were reviewed for both geomagnetic pole reversal history and fossil record. Anomalies in either were scrutinized in greater depth and correlations were made. A 35 million year span (118-83 Ma) was identified during the Early/Middle Cretaceous period that was devoid of geomagnetic polarity reversals(the Cretaceous normal superchron). Examination of the fossil record (including several invertebrate and vertebrate taxons) during the Cretaceous normal superchron does not reveal any significant gap or slowing of speciation. Although increased terrestrial radiation exposure due to a diminution of the Earth's magnetosphere caused by a reversal of geomagnetic polarity is an attractive explanation for the mechanism of punctuated equilibrium, our investigation suggests that such polarity reversals cannot fully provide the driving force behind biological evolution. Further research is required to determine if

  6. Stable Isotopes Reveal Rapid Enamel Elongation (Amelogenesis) Rates for the Early Cretaceous Iguanodontian Dinosaur Lanzhousaurus magnidens. (United States)

    Suarez, Celina A; You, Hai-Lu; Suarez, Marina B; Li, Da-Qing; Trieschmann, J B


    Lanzhousaurus magnidens, a large non-hadrosauriform iguanodontian dinosaur from the Lower Cretaceous Hekou Group of Gansu Province, China has the largest known herbivorous dinosaur teeth. Unlike its hadrosauriform relatives possessing tooth batteries of many small teeth, Lanzhousaurus utilized a small number (14) of very large teeth (~10 cm long) to create a large, continuous surface for mastication. Here we investigate the significance of Lanzhousaurus in the evolutionary history of iguanodontian-hadrosauriform transition by using a combination of stable isotope analysis and CT imagery. We infer that Lanzhousaurus had a rapid rate of tooth enamel elongation or amelogenesis at 0.24 mm/day with dental tissues common to other Iguanodontian dinosaurs. Among ornithopods, high rates of amelogenesis have been previously observed in hadrosaurids, where they have been associated with a sophisticated masticatory apparatus. These data suggest rapid amelogenesis evolved among non-hadrosauriform iguanodontians such as Lanzhousaurus, representing a crucial step that was exapted for the evolution of the hadrosaurian feeding mechanism.

  7. An early cretaceous phase of accelerated erosion on the south-western margin of Africa: evidence from apatite fission track analysis and the offshore sedimentary record

    International Nuclear Information System (INIS)

    Brown, R.W.; Gleadow, A.J.W.; Rust, D.J.; Summerfield, M.A.; De Wit, M.C.J.


    Apatite fission track ages and confined track length distributions have been determined for rock samples from the south-western continental margin of Africa. The apatite ages fall into two groups, one having early Cretaceous ages and mean confined track lengths of ∼ 14 μm with very few short tracks, and the other having older ages with confined track length distributions containing a significant proportion of strongly annealed tracks (<10 μm). In any particular area the older apatite ages only occur above a critical threshold elevation, forming a regional pattern in the data and indicating cooling of the upper few kilometres of the crust during the early cretaceous. This episode of cooling is shown to have been the consequence of an accelerated phase of erosion associated with the early stages of rifting and break-up of Gondwana, and correlates with sedimentation patterns derived from borehole data for the adjacent offshore basin. (author)

  8. An early cretaceous phase of accelerated erosion on the south-western margin of Africa: evidence from apatite fission track analysis and the offshore sedimentary record

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.W.; Gleadow, A.J.W. (La Trobe Univ., Bundoora (Australia)); Rust, D.J.; Summerfield, M.A. (Edinburgh Univ. (UK)); De Wit, M.C.J. (De Beers Consolidated Mines Ltd., Kimberley (South Africa))


    Apatite fission track ages and confined track length distributions have been determined for rock samples from the south-western continental margin of Africa. The apatite ages fall into two groups, one having early Cretaceous ages and mean confined track lengths of {approx} 14 {mu}m with very few short tracks, and the other having older ages with confined track length distributions containing a significant proportion of strongly annealed tracks (<10 {mu}m). In any particular area the older apatite ages only occur above a critical threshold elevation, forming a regional pattern in the data and indicating cooling of the upper few kilometres of the crust during the early cretaceous. This episode of cooling is shown to have been the consequence of an accelerated phase of erosion associated with the early stages of rifting and break-up of Gondwana, and correlates with sedimentation patterns derived from borehole data for the adjacent offshore basin. (author).

  9. A new Early Cretaceous relative of Gnetales: Siphonospermum simplex gen. et sp. nov. from the Yixian Formation of Northeast China

    Directory of Open Access Journals (Sweden)

    Friis Else


    Full Text Available Abstract Background Knowledge on fossil and evolutionary history of the Gnetales has expanded rapidly; Ephedra and ephedroids as well as the Gnetum-Welwitschia clade are now well documented in the Early Cretaceous. However, hypotheses on evolutionary relationships among living and fossil species are hampered by restricted knowledge of morphological variation in living groups and recent studies indicate that gnetalean diversity and character evolution may be more complex than previously assumed and involve additional extinct groups (Bennettitales, Erdtmanithecales and unassigned fossil taxa. Results Here we describe a new fossil related to Gnetales, Siphonospermum simplex from the Early Cretaceous Yixian Formation, an impression/compression of a reproductive shoot. The slender main axis bears one pair of opposite and linear leaves with primary parallel venation. The reproductive units are ovoid, without supporting bracts and borne on one median and two lateral branches. The most conspicuous feature of the fossil is the long, thread-like micropylar tube formed by the integument. Each ovule is surrounded by two different layers representing one or two seed envelopes; an inner sclerenchymatous layer and an outer probably parenchymatous layer. Conclusions The vegetative and reproductive features of Siphonospermum simplex exclude a relationship to any other group than the Gnetales. A combination of opposite phyllotaxis, linear leaves and ovules surrounded by seed envelope(s and with a long exposed micropylar tube are known only for extant and extinct Gnetales. Siphonospermum simplex constitutes a new lineage within the Gnetales. Its morphology cannot be directly linked to any previously known plant, but the organization of the reproductive units indicates that it belongs to the Gnetum-Welwitschia clade. Based on the absence of cone bracts and the inferred histology of the seed envelope(s it could be related to Gnetum, however, there are also

  10. Tectonic Mechanism for the Mid-Cretaceous - Early Paleogene Intraplate Magmatism from the Gulf of Mexico to Northwestern Canada (United States)

    Liu, Y.; Murphy, M. A.; Snow, J. E.; van Wijk, J.; Cannon, J. M.; Parsons, C.


    Tectonic mechanisms have remained controversial for a number of intraplate igneous suites of mid-Cretaceous - early Paleogene age across North America. They span the northern Gulf of Mexico (GoM), through Arkansas and Kansas in the US, to Saskatchewan and Northwestern Territories in Canada, resembling a belt that is located 1000+ km inboard from, and aligned sub-parallel to, the western margin of North America. The northern GoM magmatism is characterized by lamproites, carbonatites, nephelinites, with other alkaline rocks, whereas the rest igneous provinces are dominated by kimberlites. Their geochemical signatures, in general, point to a sub-lithospheric mantle origin. Hypotheses that explain the tectonic origin of these magmatic rocks include: (1) hotspots and mantle plumes, (2) edge-driven convection, (3) lithospheric reactivation, and (4) low-angle subduction. Evaluation based on our integration of published geological and geophysical data shows that contradictions exist in each model between observations and predictions. To explain this plate-scale phenomenon, we propose that the Farallon slab may have stagnated within or around the mantle transition zone during the Early Cretaceous, with its leading edge reaching ca. 1600 km inland beneath the North American plate. Dehydration and decarbonation of the slab produces sporadic, dense, low-degree partial melts at the mantle transition zone depths. As the slab descends into the lower mantle, Rayleigh-Taylor instabilities are induced at slab edges, causing passive upwelling that brings alkali-rich carbonate silicate melts to the base of the overriding plate. Subsequently, the North American lithosphere with varying thicknesses, discontinuities, and compositions interacts with the rising partial melts, generating a spectrum of igneous rocks. Fragments of the once-stagnated slab may still be detectable in the lower mantle beneath eastern US in seismic tomography models. This study highlights a profound plate

  11. Early Cretaceous dextral transpressional deformation within the Median Batholith, Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.


    The character, timing, and significance of deformation within the Median Batholith has been debated since at least 1967, with allochthonous and autochthonous models proposed to account for internal variations in the character of the batholith. Stewart Island provides excellent exposures of intrabatholithic structures, allowing many aspects of the deformation history within the batholith to be analysed, far removed from the effects of later deformation related to the current plate boundary. Median Batholith rocks in northern and central Stewart Island are deformed by three major structures: the Freshwater Fault System, Escarpment Fault, and Gutter Shear Zone. Lineation orientations, Al in hornblende geobarometry, and Ar-Ar thermochronology indicate up to c. 7 km of NNE-directed uplift of the hanging wall of the Escarpment Fault between c. 110 and 105 Ma. Unlike the Escarpment Fault, a wide range of mineral elongation lineation orientations, including many oblique to the strike and dip of related foliations, characterise both the Gutter Shear Zone and Freshwater Fault System. Lineation and limited sense of shear data indicate dextral-reverse movement on both structures during development of their dominant ductile fabrics. Crosscutting and intrusive relationships indicate movement on the Freshwater Fault System after c. 130 Ma and on the Gutter Shear Zone between 120 and 112 Ma. The amount of movement on the Freshwater Fault System and Gutter Shear Zone remains largely unconstrained. However, the 342 ± 24 Ma age of a granite clast in a Paterson Group lithic tuff horizon at Abrahams Bay overlaps that of Carboniferous plutons in the block immediately south of the Freshwater Fault System, implying that the Paterson Group is little displaced from the basement rocks through which it was erupted. The three structures mapped on Stewart Island form part of a narrow transpressional mobile belt active within the Jurassic-Cretaceous arc on the outboard margin of the Western

  12. Biotic and environmental dynamics through the Late Jurassic-Early Cretaceous transition: evidence for protracted faunal and ecological turnover. (United States)

    Tennant, Jonathan P; Mannion, Philip D; Upchurch, Paul; Sutton, Mark D; Price, Gregory D


    The Late Jurassic to Early Cretaceous interval represents a time of environmental upheaval and cataclysmic events, combined with disruptions to terrestrial and marine ecosystems. Historically, the Jurassic/Cretaceous (J/K) boundary was classified as one of eight mass extinctions. However, more recent research has largely overturned this view, revealing a much more complex pattern of biotic and abiotic dynamics than has previously been appreciated. Here, we present a synthesis of our current knowledge of Late Jurassic-Early Cretaceous events, focusing particularly on events closest to the J/K boundary. We find evidence for a combination of short-term catastrophic events, large-scale tectonic processes and environmental perturbations, and major clade interactions that led to a seemingly dramatic faunal and ecological turnover in both the marine and terrestrial realms. This is coupled with a great reduction in global biodiversity which might in part be explained by poor sampling. Very few groups appear to have been entirely resilient to this J/K boundary 'event', which hints at a 'cascade model' of ecosystem changes driving faunal dynamics. Within terrestrial ecosystems, larger, more-specialised organisms, such as saurischian dinosaurs, appear to have suffered the most. Medium-sized tetanuran theropods declined, and were replaced by larger-bodied groups, and basal eusauropods were replaced by neosauropod faunas. The ascent of paravian theropods is emphasised by escalated competition with contemporary pterosaur groups, culminating in the explosive radiation of birds, although the timing of this is obfuscated by biases in sampling. Smaller, more ecologically diverse terrestrial non-archosaurs, such as lissamphibians and mammaliaforms, were comparatively resilient to extinctions, instead documenting the origination of many extant groups around the J/K boundary. In the marine realm, extinctions were focused on low-latitude, shallow marine shelf-dwelling faunas

  13. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. (United States)

    Dunne, Jennifer A; Labandeira, Conrad C; Williams, Richard J


    Generalities of food web structure have been identified for extant ecosystems. However, the trophic organization of ancient ecosystems is unresolved, as prior studies of fossil webs have been limited by low-resolution, high-uncertainty data. We compiled highly resolved, well-documented feeding interaction data for 700 taxa from the 48 million-year-old latest early Eocene Messel Shale, which contains a species assemblage that developed after an interval of protracted environmental and biotal change during and following the end-Cretaceous extinction. We compared the network structure of Messel lake and forest food webs to extant webs using analyses that account for scale dependence of structure with diversity and complexity. The Messel lake web, with 94 taxa, displays unambiguous similarities in structure to extant webs. While the Messel forest web, with 630 taxa, displays differences compared to extant webs, they appear to result from high diversity and resolution of insect-plant interactions, rather than substantive differences in structure. The evidence presented here suggests that modern trophic organization developed along with the modern Messel biota during an 18 Myr interval of dramatic post-extinction change. Our study also has methodological implications, as the Messel forest web analysis highlights limitations of current food web data and models.

  14. Structure of an inverted basin from subsurface and field data: the Late Jurassic-Early Cretaceous Maestrat Basin (Iberian Chain)

    Energy Technology Data Exchange (ETDEWEB)

    Nebot, M.; Guimera, J.


    The Maestrat Basin experienced two main rifting events: Late Permian-Late Triassic and Late Jurassic-Early Cretaceous, and was inverted during the Cenozoic Alpine orogeny. During the inversion, an E-W-trending, N-verging fold-and-thrust belt developed along its northern margin, detached in the Triassic evaporites, while southwards it also involved the Variscan basement. A structural study of the transition between these two areas is presented, using 2D seismic profiles, exploration wells and field data, to characterize its evolution during the Mesozoic extension and the Cenozoic contraction. The S-dipping Maestrat basement thrust traverses the Maestrat Basin from E to W; it is the result of the Cenozoic inversion of the lower segment–within the acoustic basement–of the Mesozoic extensional fault system that generated the Salzedella sub-basin. The syn-rift Lower Cretaceous rocks filling the Salzedella sub-basin thicken progressively northwards, from 350m to 1100m. During the inversion, a wide uplifted area –40km wide in the N-S direction– developed in the hanging wall of the Maestrat basement thrust. This uplifted area is limited to the North by the E-W-trending Calders monocline, whose limb is about 13km wide in its central part, dips about 5ºN, and generates a vertical tectonic step of 800-1200m. We interpreted the Calders monocline as a fault-bend fold; therefore, a flat-ramp-flat geometry is assumed in depth for the Maestrat basement thrust. The northern synformal hinge of the Calders monocline coincides with the transition from thick-skinned to thin-skinned areas. The vast uplifted area and the low-dip of the monocline suggest a very low-dip for the basement ramp, rooted in the upper crust. The Calders monocline narrows and disappears laterally, in coincidence with the outcrop of the Maestrat basement thrust. The evaporitic Middle Muschelkalk detachment conditioned the structural style. Salt structures are also related to it; they developed during the

  15. Taxonomic diversity dynamics of early cretaceous brachiopods and gastropods in the Azerbaijanian domains of the Lesser Caucasus (Neo-Tethys Ocean

    Directory of Open Access Journals (Sweden)

    Ruban Dmitry A.


    Full Text Available Palaeontological data available from the Azerbaijanian domains (Somkhit-Agdam, Sevan-Karabakh, and Miskhan-Kafan tectonic zones of the Lesser Caucasus permit reconstruction of the regional taxonomic diversity dynamics of two groups of Early Cretaceous marine benthic invertebrates. Stratigraphical ranges of 31 species and 14 genera of brachiopods and 40 species and 31 genera of gastropods are considered. The total number of species and genera of brachiopods was low in the Berriasian-Valanginian and then rose to peak in the Barremian. Then, the diversity declined in the Aptian, and brachiopods are not known regionally from the Albian. Gastropods appeared in the Hauterivian and experienced a strong radiation in the Barremian. The diversity of species and genera declined in the Aptian (with a minor radiation in the Middle Aptian, and no gastropods are reported from the Albian. Globally, the number of brachiopod genera remained stable through the Early Cretaceous, and the number of gastropod genera increased stepwise with the maximum in the Albian. The regional and global patterns of the diversity dynamics differed for the both groups of marine benthic invertebrates. The Barremian maximum of the taxonomic diversity coincided with the regional flourishing of reefal ecosystems. The taxonomic diversity dynamics of brachiopods in the Azerbaijanian domains of the Lesser Caucasus is very similar to those of the Northern Caucasus, which is an evidence of proximity of these regions during the Early Cretaceous.

  16. Early Cretaceous I-type granites in the Tengchong terrane: New constraints on the late Mesozoic tectonic evolution of southwestern China

    Directory of Open Access Journals (Sweden)

    Yi Fang


    Full Text Available The Early Cretaceous granitoids that are widespread in the Tengchong terrane of Southwest China play a critical role in understanding the tectonic framework associated with the Tethyan oceans. In this study, we present a detailed description of zircon U–Pb ages, whole-rock geochemistry and Hf isotopes for the Laoxiangkeng pluton in the eastern Tengchong terrane and elucidate their petrogenesis and geodynamic implications. Zircon U–Pb dating of the Laoxiangkeng pluton yields ages of 114 ± 1 Ma and 115 ± 1 Ma, which imply an Early Cretaceous magmatic event. The Laoxiangkeng pluton enriched in Si and Na, is calc-alkaline and metaluminous, and has the characteristics of highly fractionated I-type granites. Zircons from the pluton have calculated εHf(t values of −12.7 to −3.7 and two-stage model ages of 1327–1974 Ma, respectively, indicating a mixed source of partial melting of Paleo-Neoproterozoic crust-derived compositions with some inputs of mantle-derived magmas. By integrating all available data for the regional tectonic evolution of the eastern Tethys tectonic domain, we conclude that the Early Cretaceous magmatism in the Tengchong terrane was produced by the northeastward subduction of the Meso-Tethyan Bangong–Nujiang Ocean.

  17. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean (United States)

    Fan, Jian-Jun; Li, Cai; Sun, Zhen-Ming; Xu, Wei; Wang, Ming; Xie, Chao-Ming


    New zircon U-Pb ages, major- and trace-element data, and Hf isotopic compositions are presented for bimodal volcanic rocks of the Zhaga Formation (ZF) in the western-middle segment of the Bangong-Nujiang suture zone (BNSZ), northern Tibet. The genesis of these rocks is described, and implications for late-stage evolution of the Bangong-Nujiang Tethyan Ocean (BNTO) are considered. Detailed studies show that the ZF bimodal rocks, which occur as layers within a typical bathyal to abyssal flysch deposit, comprise MORB-type basalt that formed at a mid-ocean ridge, and low-K calc-alkaline A-type rhyolite derived from juvenile crust. The combination of MORB-type basalt, calc-alkaline A-type rhyolite, and bathyal to abyssal flysch deposits in the ZF leads us to propose that they formed as a result of ridge subduction. The A-type ZF rhyolites yield LA-ICP-MS zircon U-Pb ages of 118-112 Ma, indicating formation during the Early Cretaceous. Data from the present study, combined with regional geological data, indicate that the BNTO underwent conversion from ocean opening to ocean closure during the Late Jurassic-Early Cretaceous. The eastern segment of the BNTO closed during this period, while the western and western-middle segments were still at least partially open and active during the Early Cretaceous, accompanied by ridge subduction within the Bangong-Nujiang Tethyan Ocean.

  18. Mantle superplumes induce geomagnetic superchrons

    Directory of Open Access Journals (Sweden)

    Peter eOlson


    Full Text Available We use polarity reversal systematics from numerical dynamos to quantify the hypothesis that the modulation of geomagnetic reversal frequency, including geomagnetic superchrons, results from changes in core heat flux related to growth and collapse of lower mantle superplumes. We parameterize the reversal frequency sensitivity from numerical dynamos in terms of average core heat flux normalized by the difference between the present-day core heat flux and the core heat flux at geomagnetic superchron onset. A low-order polynomial fit to the 0-300 Ma Geomagnetic Polarity Time Scale (GPTS reveals that a decrease in core heat flux relative to present-day of approximately 30% can account for the Cretaceous Normal Polarity and Kiaman Reverse Polarity Superchrons, whereas the hyper-reversing periods in the Jurassic require a core heat flux equal to or higher than present-day. Possible links between GPTS transitions, large igneous provinces (LIPs, and the two lower mantle superplumes are explored. Lower mantle superplume growth and collapse induce GPTS transitions by increasing and decreasing core heat flux, respectively. Age clusters of major LIPs postdate transitions from hyper-reversing to superchron geodynamo states by 30-60 Myr, suggesting that superchron onset may be contemporaneous with LIP-forming instabilities produced during collapses of lower mantle superplumes.

  19. Refining the Early and Middle Eocene Geomagnetic Polarity Time Scale: new results from ODP Leg 208 (Walvis Ridge) (United States)

    Westerhold, T.; Roehl, U.; Frederichs, T.; Bohaty, S. M.; Florindo, F.; Zachos, J. C.; Raffi, I.; Agnini, C.


    Astronomical calibration of the Geomagnetic Polarity Time Scale (GPTS) for the Eocene (34-56 Ma) has advanced tremendously in recent years. Combining a cyclostratigraphic approach based on the recognition of the stable 405-kyr eccentricity cycle of Earth's orbit with high-resolution bio- and magnetostratigraphy from deep-sea sedimentary records (ODP Legs 171B, 189 and 207; IODP Exp. 320/321) resulted in a new calibration of the middle-to-late Eocene GPTS spanning Chrons C12r to C19n (30.9-41.3 Ma). A fully astronomically calibrated GPTS for the Eocene was established recently by integrating cyclo-bio-magnetostratigraphy from ODP Sites 702 and 1263 records spanning the middle Eocene with Site 1258 records covering the early Eocene. Comparison of this deep sea-derived GPTS with GTS2012 and GPTS calibration points from terrestrial successions show overall consistent results, but there are still major offsets for the duration of Chrons C20r, C22r and C23n.2n. Because of the relatively large uncertainty of the calibration point, a radioisotopic dated ash layer in DSDP 516F, at C21n.75 (46.24±0.5 Ma) the duration of C20r in GPTS2012 (2.292 myr) is uncertain. Offsets in durations of C22r and C23n.2n between GPTS2012 and the new astronomical GPTS (~400-kyr longer C22r; ~400-kyr shorter C23n.2n) could be due to uncertainties in the interpretation of Site 1258 magnetostratigraphic data. Here we present new results toward establishing a more accurate and complete bio-, magneto- and chemostratigraphy for South Atlantic Leg 208 sites encompassing magnetochrons C13 to C24 (33 to 56 Ma). Our study aims to integrate paleomagnetic records from multiple drilled sites with physical property data, stable isotope data and XRF core scanning data to construct an astronomically calibrated framework for refining GPTS age estimates. This effort will complete the Early-to-Middle Eocene GPTS and allow evaluation of the relative position of calcareous nannofossil events to magnetostratigraphy.

  20. Definition, age, and correlation of the Clarence Series stages in New Zealand (late Early to early Late Cretaceous)

    International Nuclear Information System (INIS)

    Crampton, J.S.; Tulloch, A.J.; Wilson, G.J.; Ramezani, J.; Speden, I.G.


    The New Zealand local Clarence Series spans the Lower/Upper Cretaceous boundary and includes three stages, in ascending order, the Urutawan, Motuan, and Ngaterian. All three were defined originally from a type section at Motu Falls, Raukumara Peninsula. To address problems with their original definitions and to improve correlations between the New Zealand time-scale and Global Chronostratigraphic Scale, four key sections have been re-studied: the Motu Falls and adjacent Te Waka sections, and the Coverham and Seymour sections in the Clarence valley, Marlborough. The sections contain locally abundant macrofossils and have been sampled at a reconnaissance level for dinoflagellates. In addition, a middle Motuan tuff bed in the Motu Falls section has yielded a zircon U-Pb age of 101.6 ± 0.2 Ma, and an upper Ngaterian basalt flow in the Seymour section has yielded a plagioclase Ar/Ar age of 96.1 ± 0.6 Ma. The older of these dates allows, for the first time, direct age correlation of Clarence Series stages that are based on marine strata in eastern New Zealand, with non-marine rocks in the west. Thus, the Stitts Tuff, at the base of the Pororari Group in the western South Island, is shown to be middle Motuan. Based on the new data, we emend the definitions of the Clarence Series stages. The base of the Urutawan is defined using the lowest occurrence of the inoceramid bivalve Mytiloides ipuanus in the Motu Falls section. The base of the Motuan is defined using the lowest occurrence of the bivalve Aucellina euglypha in the same section. The base of the Ngaterian is defined using the lowest occurrence of the inoceramid 'I.' tawhanus in the Te Waka section. In all three cases, the placements of the lowest occurrence datums are subject to uncertainties that can only be resolved by further biostratigraphic and/or taxonomic study. Based on biostratigraphic data and the new radiometric dates, the following international correlations are proposed: Urutawan Stage = lower

  1. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: Insights into the Neotethyan paleogeography and the India–Asia collision (United States)

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan


    To better understand the Neotethyan paleogeography, a paleomagnetic and geochronological study has been performed on the Early Cretaceous Sangxiu Formation lava flows, which were dated from ~135.1 Ma to ~124.4 Ma, in the Tethyan Himalaya. The tilt-corrected site-mean characteristic remanent magnetization (ChRM) direction for 26 sites is Ds = 296.1°, Is = −65.7°, ks = 51.7, α95 = 4.0°, corresponding to a paleopole at 5.9°S, 308.0°E with A95 = 6.1°. Positive fold and reversal tests prove that the ChRM directions are prefolding primary magnetizations. These results, together with reliable Cretaceous-Paleocene paleomagnetic data observed from the Tethyan Himalaya and the Lhasa terrane, as well as the paleolatitude evolution indicated by the apparent polar wander paths (APWPs) of India, reveal that the Tethyan Himalaya was a part of Greater India during the Early Cretaceous (135.1–124.4 Ma) when the Neotethyan Ocean was up to ~6900 km, it rifted from India sometime after ~130 Ma, and that the India-Asia collision should be a dual-collision process including the first Tethyan Himalaya-Lhasa terrane collision at ~54.9 Ma and the final India-Tethyan Himalaya collision at ~36.7 Ma. PMID:26883692

  2. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: Insights into the Neotethyan paleogeography and the India-Asia collision. (United States)

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan


    To better understand the Neotethyan paleogeography, a paleomagnetic and geochronological study has been performed on the Early Cretaceous Sangxiu Formation lava flows, which were dated from ~135.1 Ma to ~124.4 Ma, in the Tethyan Himalaya. The tilt-corrected site-mean characteristic remanent magnetization (ChRM) direction for 26 sites is Ds = 296.1°, Is = -65.7°, ks = 51.7, α95 = 4.0°, corresponding to a paleopole at 5.9°S, 308.0°E with A95 = 6.1°. Positive fold and reversal tests prove that the ChRM directions are prefolding primary magnetizations. These results, together with reliable Cretaceous-Paleocene paleomagnetic data observed from the Tethyan Himalaya and the Lhasa terrane, as well as the paleolatitude evolution indicated by the apparent polar wander paths (APWPs) of India, reveal that the Tethyan Himalaya was a part of Greater India during the Early Cretaceous (135.1-124.4 Ma) when the Neotethyan Ocean was up to ~6900 km, it rifted from India sometime after ~130 Ma, and that the India-Asia collision should be a dual-collision process including the first Tethyan Himalaya-Lhasa terrane collision at ~54.9 Ma and the final India-Tethyan Himalaya collision at ~36.7 Ma.

  3. Geochronology and geochemistry constraints of the Early Cretaceous Taibudai porphyry Cu deposit, northeast China, and its tectonic significance (United States)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Wu, Xin-Li; Ouyang, Hen-Gen


    The southern Great Xing'an Range (SGXR), located in the southeastern part of Inner Mongolia, China, shows intense Mesozoic tectono-magmatic activity and hosts economically important polymetallic (Cu-Pb-Zn-Sn-Fe-Ag-Au-Mo) mineralization. Here, we present new zircon U-Pb ages, whole-rock geochemical data, Nd-Sr-Hf isotopic data and Re-Os ages for the Taibudai deposit in the SGXR. The Taibudai granitoids show high SiO2 (70.62-72.13 wt.%) and alkali (Na2O + K2O = 7.04-8.60 wt.%) concentrations, low MgO (0.89-1.37 wt.%) and Al2O3 (∼14 wt.%), ASI ratios molybdenite from the deposit yield an ore-forming age of 137.1 ± 1.4 Ma. Re contents range from 4.37 to 41.77 ppm, implying ore material components have a mixed crust-mantle origin. SHRIMP analysis of zircons show that the monzogranitic porphyry and biotite granite in the Taibudai deposit were formed at 137.0 ± 0.9 Ma and 138.3 ± 0.9 Ma, respectively, indicating a temporal link between granitic magmatism and Cu mineralization. This result, combined with the regional geology, tectonic evolution, and age data from the literature, suggests that the Early Cretaceous (∼140 Ma) was the peak metallogenic epoch for the Great Xing'an Range, and the mineralization in this period generally takes the form of porphyry, skarn, or hydrothermal polymetallic ore deposits in an active extensional continental margin environment. The Taibudai porphyry and associated mineralization provides a typical example of magmatism and metallogeny associated with a Paleo-Pacific plate subduction, continental margin, back-arc extensional setting.

  4. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet (United States)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; McInnes, Brent I. A.; Li, JinXiang; Zhao, JunXing


    Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10-4 emu g-1 oe-1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10-4 emu g-1 oe-1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ˜NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon ɛHf(t), TDM C ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative ɛHf(t) (-16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices ( fO2 and ɛHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an

  5. Magnetic fabrics of arc plutons reveal a significant Late Jurassic to Early Cretaceous change in the relative plate motions of the Pacific Ocean basin and North America

    Czech Academy of Sciences Publication Activity Database

    Žák, J.; Verner, K.; Tomek, Filip; Johnson, K.; Schwartz, J. J.


    Roč. 13, č. 1 (2017), s. 11-21 ISSN 1553-040X Grant - others:AV ČR(CZ) MSM100131601 Program:Program na podporu mezinárodní spolupráce začínajících výzkumných pracovníků Institutional support: RVO:67985831 Keywords : PB geochronology * Late Jurassic/Early Cretaceous * Blue Mountains province Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.304, year: 2016

  6. Petrological and zircon evidence for the Early Cretaceous granulite-facies metamorphism in the Dabie orogen, China (United States)

    Gao, Xiao-Ying; Zhang, Qiang-Qiang; Zheng, Yong-Fei; Chen, Yi-Xiang


    . The spatial and temporal distribution of Early Cretaceous granulite-facies metamorphic rocks in this region is associated with the bimodal magmatism within a short period of 120-130 Ma in the postcollisional stage. This provides a direct link in petrogenesis between the granulitic, migmatic and magmatic rocks in the collisional orogen to active continental rifting, whereby high heat flow was transferred from the asthenospheric mantle into the thinned orogenic lithosphere for partial melting.

  7. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia


    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  8. High resolution chronology of late Cretaceous-early Tertiary events determined from 21,000 yr orbital-climatic cycles in marine sediments (United States)

    Herbert, Timothy D.; Dhondt, Steven


    A number of South Atlantic sites cored by the Deep Sea Drilling Project (DSDP) recovered late Cretaceous and early Tertiary sediments with alternating light-dark, high-low carbonate content. The sedimentary oscillations were turned into time series by digitizing color photographs of core segments at a resolution of about 5 points/cm. Spectral analysis of these records indicates prominent periodicity at 25 to 35 cm in the Cretaceous intervals, and about 15 cm in the early Tertiary sediments. The absolute period of the cycles that is determined from paleomagnetic calibration at two sites is 20,000 to 25,000 yr, and almost certainly corresponds to the period of the earth's precessional cycle. These sequences therefore contain an internal chronometer to measure events across the K/T extinction boundary at this scale of resolution. The orbital metronome was used to address several related questions: the position of the K/T boundary within magnetic chron 29R, the fluxes of biogenic and detrital material to the deep sea immediately before and after the K/T event, the duration of the Sr anomaly, and the level of background climatic variability in the latest Cretaceous time. The carbonate/color cycles that were analyzed contain primary records of ocean carbonate productivity and chemistry, as evidenced by bioturbational mixing of adjacent beds and the weak lithification of the rhythmic sequences. It was concluded that sedimentary sequences that contain orbital cyclicity are capable of providing resolution of dramatic events in earth history with much greater precision than obtainable through radiometric methods. The data show no evidence for a gradual climatic deterioration prior to the K/T extinction event, and argue for a geologically rapid revolution at this horizon.

  9. Teeth of embryonic or hatchling sauropods from the Berriasian (Early Cretaceous of Cherves-de-Cognac, France

    Directory of Open Access Journals (Sweden)

    Paul M. Barrett


    Full Text Available The Cherves-de-Cognac site (Charente, France has yielded a diverse continental microvertebrate fauna of Berriasian (earliest Cretaceous age. Dinosaur remains are rare, but include three teeth that are referrable to an indeterminate sauropod, which might represent either a titanosauriform, a non-titanosauriform macronarian or a non-neosauropod. The small size of these teeth (with a maximum length of 3 mm, as preserved and the almost complete absence of emanel wrinkling suggests that they pertained to embryonic or hatchling individuals. The Cherves-de-Cognac sauropod represents a rare occurrence of sauropod embryos/hatchlings, a new sauropod record from the poorly-known terrestrial Berriasian and another possible instance of the persistence of non-diplodocoid, non-titanosauriform sauropods into the Cretaceous.

  10. Geological and technological characterization of the Late Jurassic-Early Cretaceous clay deposits (Jebel Ammar, northeastern Tunisia) for ceramic industry (United States)

    Ben M'barek-Jemaï, Moufida; Sdiri, Ali; Ben Salah, Imed; Ben Aissa, Lassaad; Bouaziz, Samir; Duplay, Joelle


    Late Jurassic-Lower Cretaceous clays of the Jebel Ammar study site were used as raw materials for potential applications in ceramic industry. Physico-chemical characterization of the collected samples was performed using atomic absorption spectroscopy, X-ray diffraction, thermogravimetry and dilatometry (Bugot's curve). Geotechnical study was also undertaken by the assessment of plasticity and liquidity limits. It was found that high concentrations of silica, alumina with SiO2/Al2O3 ratio characterized the studied clays; its high amounts of CaO and Fe2O3 in the Late Jurassic clays indicated their calcareous nature. In addition, technological tests indicated moderate to low plasticity values for the Late Jurassic and Lower Cretaceous clays, respectively. Clay fraction (<2 μm) reached 50% of the natural clay in some cases. Mineralogical analysis showed that Jurassic clays were dominated by smectite, illite and kaolinite, as clay mineral species; calcite was the main associated mineral. Lower Cretaceous clays were mainly composed of abundant illite accompanied by well-crystallized smectite and kaolinite. Kaolinite gradually increased upwards, reaching 70% of the total clay fraction (i.e. <2 μm). Quartz, calcite and feldspar were the main non-clay minerals. Based on these analyses, the clays meet technological requirements that would allow their use in the ceramic industry and for the manufacturing of ceramic tiles.

  11. A long-lived Late Cretaceous-early Eocene extensional province in Anatolia? Structural evidence from the Ivriz Detachment, southern central Turkey (United States)

    Gürer, Derya; Plunder, Alexis; Kirst, Frederik; Corfu, Fernando; Schmid, Stefan M.; van Hinsbergen, Douwe J. J.


    Central Anatolia exposes previously buried and metamorphosed, continent-derived rocks - the Kırşehir and Afyon zones - now covering an area of ∼300 × 400 km. So far, the exhumation history of these rocks has been poorly constrained. We show for the first time that the major, >120 km long, top-NE 'Ivriz' Detachment controlled the exhumation of the HP/LT metamorphic Afyon Zone in southern Central Anatolia. We date its activity at between the latest Cretaceous and early Eocene times. Combined with previously documented isolated extensional detachments found in the Kırşehir Block, our results suggest that a major province governed by extensional exhumation was active throughout Central Anatolia between ∼80 and ∼48 Ma. Although similar in dimension to the Aegean extensional province to the east, the Central Anatolian extensional province is considerably older and was controlled by a different extension direction. From this, we infer that the African slab(s) that subducted below Anatolia must have rolled back relative to the Aegean slab since at least the latest Cretaceous, suggesting that these regions were underlain by a segmented slab. Whether or not these early segments already corresponded to the modern Aegean, Antalya, and Cyprus slab segments remains open for debate, but slab segmentation must have occurred much earlier than previously thought.

  12. Reappraisal of Europe’s most complete Early Cretaceous plesiosaurian: Brancasaurus brancai Wegner, 1914 from the “Wealden facies” of Germany

    Directory of Open Access Journals (Sweden)

    Sven Sachs


    Full Text Available The holotype of Brancasaurus brancai is one of the most historically famous and anatomically complete Early Cretaceous plesiosaurian fossils. It derived from the Gerdemann & Co. brickworks clay pit near Gronau (Westfalen in North Rhine-Westphalia, northwestern Germany. Stratigraphically this locality formed part of the classic European “Wealden facies,” but is now more formally attributed to the upper-most strata of the Bückeberg Group (upper Berriasian. Since its initial description in 1914, the type skeleton of B. brancai has suffered damage both during, and after WWII. Sadly, these mishaps have resulted in the loss of substantial information, in particular many structures of the cranium and limb girdles, which are today only evidenced from published text and/or illustrations. This non-confirmable data has, however, proven crucial for determining the relationships of B. brancai within Plesiosauria: either as an early long-necked elasmosaurid, or a member of the controversial Early Cretaceous leptocleidid radiation. To evaluate these competing hypotheses and compile an updated osteological compendium, we undertook a comprehensive examination of the holotype as it is now preserved, and also assessed other Bückeberg Group plesiosaurian fossils to establish a morphological hypodigm. Phylogenetic simulations using the most species-rich datasets of Early Cretaceous plesiosaurians incorporating revised scores for B. brancai, together with a second recently named Bückeberg Group plesiosaurian Gronausaurus wegneri (Hampe, 2013, demonstrated that referral of these taxa to Leptocleididae was not unanimous, and that the topological stability of this clade is tenuous. In addition, the trait combinations manifested by B. brancai and G. wegneri were virtually identical. We therefore conclude that these monotypic individuals are ontogenetic morphs and G. wegneri is a junior synonym of B. brancai. Finally, anomalies detected in the diagnostic features

  13. Toward establishing a definitive Late-Mid Jurassic (M-series) Geomagnetic Polarity Reversal Time Scale through unraveling the nature of Jurassic Quiet Zone. (United States)

    Tominaga, M.; Tivey, M.; Sager, W.


    Two major difficulties have hindered improving the accuracy of the Late-Mid Jurassic geomagnetic polarity time scale: a dearth of reliable high-resolution radiometric dates and the lack of a continuous Jurassic geomagnetic polarity time scale (GPTS) record. We present the latest effort towards establishing a definitive Mid Jurassic to Early Cretaceous (M-series) GPTS model using three high-resolution, multi-level (sea surface [0 km], mid-water [3 km], and near-source [5.2 km]) marine magnetic profiles from a seamount-free corridor adjacent to the Waghenaer Fracture Zone in the western Pacific Jurassic Quiet Zone (JQZ). The profiles show a global coherency in magnetic anomaly correlations between two mid ocean ridge systems (i.e., Japanese and Hawaiian lineations). Their unprecedented high data resolution documents a detailed anomaly character (i.e., amplitudes and wavelengths). We confirm that this magnetic anomaly record shows a coherent anomaly sequence from M29 back in time to M42 with previously suggested from the Japanese lineation in the Pigafetta Basin. Especially noticeable is the M39-M41 Low Amplitude Zone defined in the Pigafetta Bsin, which potentially defines the bounds of JQZ seafloor. We assessed the anomaly source with regard to the crustal architecture, including the effects of Cretaceous volcanism on crustal magnetization and conclude that the anomaly character faithfully represents changes in geomagnetic field intensity and polarity over time and is mostly free of any overprint of the original Jurassic magnetic remanence by later Cretaceous volcanism. We have constructed polarity block models (RMS Japanese M-series sequence. The anomalously high reversal rates during a period of apparent low field intensity suggests a unique period of geomagnetic field behavior in Earth's history.

  14. Extending the fossil record of Polytrichaceae: Early Cretaceous Meantoinea alophosioides gen. et sp. nov., permineralized gametophytes with gemma cups from Vancouver Island. (United States)

    Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F


    Diverse in modern ecosystems, mosses are dramatically underrepresented in the fossil record. Furthermore, most pre-Cenozoic mosses are known only from compression fossils, lacking detailed anatomical information. When preserved, anatomy vastly improves resolution in the systematic placement of fossils. Lower Cretaceous deposits at Apple Bay (Vancouver Island, British Columbia, Canada) contain a diverse anatomically preserved flora that includes numerous bryophytes, many of which have yet to be characterized. Among them is a polytrichaceous moss that is described here. Fossil moss gametophytes preserved in four carbonate concretions were studied in serial sections prepared using the cellulose acetate peel technique. We describe Meantoinea alophosioides gen. et sp. nov., a polytrichaceous moss with terminal gemma cups containing stalked, lenticular gemmae. Leaves with characteristic costal anatomy, differentiated into sheathing base and free lamina and bearing photosynthetic lamellae, along with a conducting strand in the stem, place Meantoinea in family Polytrichaceae. The bistratose leaf lamina with an adaxial layer of mamillose cells, short photosynthetic lamellae restricted to the costa, and presence of gemma cups indicate affinities with basal members of the Polytrichaceae, such as Lyellia , Bartramiopsis , and Alophosia . Meantoinea alophosioides enriches the documented moss diversity of an already-diverse Early Cretaceous plant fossil assemblage. This is the third moss described from the Apple Bay plant fossil assemblage and represents the first occurrence of gemma cups in a fossil moss. It is also the oldest unequivocal record of Polytrichaceae, providing a hard minimum age for the group of 136 million years. © 2017 Botanical Society of America.

  15. Geomagnetic Principal Magnetic Storms (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The abbreviations used for observatory names are as follows: GEOMAGNETIC OBSERVATORIES Code Station Geomagnetic Latitude ABG Alibag AMS Martin de Vivie. These data...

  16. 118-115 Ma magmatism in the Tethyan Himalaya igneous province: Constraints on Early Cretaceous rifting of the northern margin of Greater India (United States)

    Chen, Sheng-Sheng; Fan, Wei-Ming; Shi, Ren-Deng; Liu, Xiao-Han; Zhou, Xue-Jun


    Understanding the dynamics of Large Igneous Provinces (LIPs) is critical to deciphering processes associated with rupturing continental lithosphere. Microcontinental calving, the rifting of microcontinents from mature continental rifted margins, is particularly poorly understood. Here we present new insights into these processes from geochronological and geochemical analyses of igneous rocks from the Tethyan Himalaya. Early Cretaceous mafic dikes are widely exposed in the eastern and western Tethyan Himalaya, but no such rocks have been reported from the central Tethyan Himalaya. Here we present an analysis of petrological, geochronological, geochemical, and Sr-Nd-Hf-Os isotopic data for bimodal magmatic rocks from the center-east Tethyan Himalaya. Zircon U-Pb dating yields six weighted-mean concordant 206Pb/238U ages of 118 ± 1.2 to 115 ± 1.3 Ma. Mafic rocks display MORB-like compositions with flat to depleted LREE trends, and positive εNd(t) (+2.76 to +5.39) and εHf(t) (+8.0 to +11.9) values. The negative Nb anomalies and relatively high 187Os/188Os ratios (0.15-0.19) of these rocks are related to variable degrees (up to 10%) of crustal contamination. Geochemical characteristics indicate that mafic rocks were generated by variable degrees (2-20%) of partial melting of spinel lherzolites in shallow depleted mantle. Felsic rocks are enriched in Th and LREE, with negative Nb anomalies and decoupling of Nd (εNd(t) = -13.39 to -12.78) and Hf (εHf(t) = -4.8 to -2.0), suggesting that they were derived mainly from garnet-bearing lower continental crust. The geochemical characteristics of the bimodal magmatic associations are comparable to those of associations that form in a continental rift setting. Results indicate that Early Cretaceous magmatism occurred across the whole Tethyan Himalaya, named here as the "Tethyan Himalaya igneous province". Separation of the Tethyan Himalaya from the Indian craton may have occurred during ongoing Early Cretaceous extension

  17. Petrogenesis of the late Early Cretaceous granodiorite - Quartz diorite from eastern Guangdong, SE China: Implications for tectono-magmatic evolution and porphyry Cu-Au-Mo mineralization (United States)

    Jia, Lihui; Mao, Jingwen; Liu, Peng; Li, Yang


    Comprehensive petrological, zircon U-Pb dating, Hf-O isotopes, whole rock geochemistry and Sr-Nd isotopes data are presented for the Xinwei and Sanrao intrusions in the eastern Guangdong Province, Southeast (SE) China, with an aim to constrain the petrogenesis, tectono-magmatic evolution and evaluate the implication for porphyry Cu-Au-Mo mineralization. The Xinwei intrusion is composed of granodiorite and quartz diorite, whilst the Sanrao intrusion consists of granodiorite. Zircon U-Pb ages show that both intrusions were emplaced at ca. 106-102 Ma. All rocks are metaluminous to weakly peraluminous, high-K calc-alkaline in composition, and they are characterized by LREEs enrichment, depletion in Nb, Ta, P, and Ti, and strongly fractionated LREEs to HREEs. The initial 87Sr/86Sr ratios range from 0.7055 to 0.7059, and εNd(t) values range from -3.9 to -3.0. Together with the relatively high εHf(t) values (-3.2 to 3.3) and low δ18O values (4.9‰ to 6.6‰), these data suggest that the Xinwei and Sanrao intrusions were derived from a mixed source: including the mantle-derived mafic magmas and lower continental crustal magmas. Fractional crystallization played an important role in the magmatic evolution of the Xinwei and Sanrao intrusions. The elemental and isotopic compositions of the Xinwei and Sanrao intrusions, as well as the high water content and oxidation state of their parental magmas, are similar to those of the ore-bearing granodiorites of the Luoboling porphyry Cu-Mo deposit in the Fujian Province, neighbouring east to the Guangdong Province, indicating that the late Early Cretaceous granodioritic intrusions in the eastern Guangdong Province may also have Cu-Au-Mo mineralization potential. The late Early Cretaceous magmatic event is firstly reported in eastern Guangdong, and represents a positive response of large-scale lithosphere extension and thinning, triggered by the changing subduction direction of the Paleo-Pacific plate from oblique subduction to

  18. New information on the anatomy of the Chinese Early Cretaceous Bohaiornithidae (Aves: Enantiornithes from a subadult specimen of Zhouornis hani

    Directory of Open Access Journals (Sweden)

    Yuguang Zhang


    Full Text Available Enantiornithines are the most diverse avian clade in the Cretaceous. However, morphological specializations indicative of specific ecological roles are not well known for this clade. Here we report on an exquisitely well-preserved specimen from the Lower Cretaceous Jehol Group of northeastern China, which pedal morphology is suggestive of a unique ecological specialization within Enantiornithes. The morphology of the new specimen is largely indistinguishable from that of the holotype of the bohaiornithid enantiornithine Zhouornis hani, albeit the latter is somewhat larger. The new specimen provides important and previously unknown details of the skull of Zhouornis hani, which add to the limited knowledge about the cranial anatomy and evolution of enantiornithines. The information offered by the new specimen also augments our understanding of the postcranial morphology of bohaiornithid enantiornithines, a clade that has been only recently recognized. With the description of this specimen, Zhouornis hani becomes one of the most anatomically complete known enantiornithine species, which will facilitate future morphological studies.

  19. A new basal hadrosauroid dinosaur from the Late Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs (United States)

    Sues, Hans-Dieter; Averianov, Alexander


    Levnesovia transoxiana gen. et sp. nov., from the Late Cretaceous (Middle–Late Turonian) of Uzbekistan, is the oldest well-documented taxon referable to Hadrosauroidea sensu Godefroit et al. It differs from a somewhat younger and closely related Bactrosaurus from Inner Mongolia (China) by a tall sagittal crest on the parietals and the absence of club-shaped dorsal neural spines in adult specimens. Levnesovia, Bactrosaurus and possibly Gilmoreosaurus represent the earliest radiation of Hadrosauroidea, which took place during the Cenomanian–Turonian and possibly in North America. The second, Santonian-age radiation of Hadrosauroidea included Aralosaurus, Hadrosauridae and lineages leading to Tanius (Campanian) and Telmatosaurus (Maastrichtian). Hadrosauridae appears to be monophyletic, but Hadrosaurinae and Lambeosaurinae originated in North America and Asia, respectively. PMID:19386651

  20. A new basal hadrosauroid dinosaur from the Late Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs. (United States)

    Sues, Hans-Dieter; Averianov, Alexander


    Levnesovia transoxiana gen. et sp. nov., from the Late Cretaceous (Middle-Late Turonian) of Uzbekistan, is the oldest well-documented taxon referable to Hadrosauroidea sensu Godefroit et al. It differs from a somewhat younger and closely related Bactrosaurus from Inner Mongolia (China) by a tall sagittal crest on the parietals and the absence of club-shaped dorsal neural spines in adult specimens. Levnesovia, Bactrosaurus and possibly Gilmoreosaurus represent the earliest radiation of Hadrosauroidea, which took place during the Cenomanian-Turonian and possibly in North America. The second, Santonian-age radiation of Hadrosauroidea included Aralosaurus, Hadrosauridae and lineages leading to Tanius (Campanian) and Telmatosaurus (Maastrichtian). Hadrosauridae appears to be monophyletic, but Hadrosaurinae and Lambeosaurinae originated in North America and Asia, respectively.

  1. Taxonomic composition and trophic structure of the continental bony fish assemblage from the early late cretaceous of Southeastern Morocco. (United States)

    Cavin, Lionel; Boudad, Larbi; Tong, Haiyan; Läng, Emilie; Tabouelle, Jérôme; Vullo, Romain


    The mid-Cretaceous vertebrate assemblage from south-eastern Morocco is one of the most diversified continental vertebrate assemblages of this time worldwide. The bony fish component (coelacanths, lungfishes and ray-finned fishes) is represented by relatively complete specimens and, mostly, by fragmentary elements scattered along 250 kilometres of outcrops. Here we revisit the bony fish assemblage by studying both isolated remains collected during several fieldtrips and more complete material kept in public collections. The assemblage comprises several lungfish taxa, with the first mention of the occurrence of Arganodus tiguidiensis, and possibly two mawsoniid coelacanths. A large bichir cf. Bawitius, is recorded and corresponds to cranial elements initially referred to 'Stromerichthys' from coeval deposits in Egypt. The ginglymodians were diversified with a large 'Lepidotes' plus two obaichthyids and a gar. We confirm here that this gar belongs to a genus distinctive from Recent gars, contrary to what was suggested recently. Teleosteans comprise a poorly known ichthyodectiform, a notopterid, a probable osteoglossomorph and a large tselfatiiform, whose cranial anatomy is detailed. The body size and trophic level for each taxon are estimated on the basis of comparison with extant closely related taxa. We plotted the average body size versus average trophic level for the Kem Kem assemblage, together with extant marine and freshwater assemblages. The Kem Kem assemblage is characterized by taxa of proportionally large body size, and by a higher average trophic level than the trophic level of the extant compared freshwater ecosystems, but lower than for the extant marine ecosystems. These results should be regarded with caution because they rest on a reconstructed assemblage known mostly by fragmentary remains. They reinforce, however, the ecological oddities already noticed for this mid-Cretaceous vertebrate ecosystem in North Africa.

  2. Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: A case study from the Jura Mountains (NW Switzerland, E France) (United States)

    Rameil, Niels


    Early diagenetic dolomitization is a common feature in cyclic shallow-water carbonates throughout the geologic record. After their generation, dolomites may be subject to dedolomitization (re-calcification of dolomites), e.g. by contact with meteoric water during emersion. These patterns of dolomitization and subsequent dedolomitization frequently play a key role in unravelling the development and history of a carbonate platform. On the basis of excellent outcrops, detailed logging and sampling and integrating sedimentological work, high-resolution sequence stratigraphic interpretations, and isotope analyses (O, C), conceptual models on early diagenetic dolomitization and dedolomitization and their underlying mechanisms were developed for the Upper Jurassic / Lower Cretaceous Jura platform in north-western Switzerland and eastern France. Three different types of early diagenetic dolomites and two types of dedolomites were observed. Each is defined by a distinct petrographic/isotopic signature and a distinct spatial distribution pattern. Different types of dolomites are interpreted to have been formed by different mechanisms, such as shallow seepage reflux, evaporation on tidal flats, and microbially mediated selective dolomitization of burrows. Depending on the type of dolomite, sea water with normal marine to slightly enhanced salinities is proposed as dolomitizing fluid. Based on the data obtained, the main volume of dolomite was precipitated by a reflux mechanism that was switched on and off by high-frequency sea-level changes. It appears, however, that more than one dolomitization mechanism was active (pene)contemporaneously or several processes alternated in time. During early diagenesis, percolating meteoric waters obviously played an important role in the dedolomitization of carbonate rocks that underlie exposure surfaces. Cyclostratigraphic interpretation of the sedimentary succession allows for estimates on the timing of early diagenetic (de

  3. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China (United States)

    Zhang, Yu-Xiu; Li, Zhi-Wu; Yang, Wen-Guang; Zhu, Li-Dong; Jin, Xin; Zhou, Xiao-Yao; Tao, Gang; Zhang, Kai-Jun


    The Bangong Meso-Tethys plays a critical role in the development of the Tethyan realm and the initial elevation of the Tibetan Plateau. However, its precise subduction polarity, and history still remain unclear. In this study, we synthesize a report for the Late Jurassic-Early Cretaceous two-phase magmatic rocks in the Gaize region at the southern margin of the Qiangtang block located in central Tibet. These rocks formed during the Late Jurassic-earliest Cretaceous (161-142 Ma) and Early Cretaceous (128-106 Ma), peaking at 146 Ma and 118 Ma, respectively. The presence of inherited zircons indicates that an Archean component exists in sediments in the shallow Qiangtang crust, and has a complex tectonomagmatic history. Geochemical and Sr-Nd isotopic data show that the two-phase magmatic rocks exhibit characteristics of arc magmatism, which are rich in large-ion incompatible elements (LIIEs), but are strongly depleted in high field strength elements (HFSEs). The Late Jurassic-earliest Cretaceous magmatic rocks mixed and mingled among mantle-derived mafic magmas, subduction-related sediments, or crustally-derived felsic melts and fluids, formed by a northward and steep subduction of the Bangong Meso-Tethys ocean crust. The magmatic gap at 142-128 Ma marks a flat subduction of the Meso-Tethys. The Early Cretaceous magmatism experienced a magma MASH (melting, assimilation, storage, and homogenization) process among mantle-derived mafic magmas, or crustally-derived felsic melts and fluids, as a result of the Meso-Tethys oceanic slab roll-back, which triggered simultaneous back-arc rifting along the southern Qiangtang block margin.

  4. Non-marine carbonate facies, facies models and palaeogeographies of the Purbeck Formation (Late Jurassic to Early Cretaceous) of Dorset (Southern England). (United States)

    Gallois, Arnaud; Bosence, Dan; Burgess, Peter


    Non-marine carbonates are relatively poorly understood compared with their more abundant marine counterparts. Sedimentary facies and basin architecture are controlled by a range of environmental parameters such as climate, hydrology and tectonic setting but facies models are few and limited in their predictive value. Following the discovery of extensive Early Cretaceous, non-marine carbonate hydrocarbon reservoirs in the South Atlantic, the interest of understanding such complex deposits has increased during recent years. This study is developing a new depositional model for non-marine carbonates in a semi-arid climate setting in an extensional basin; the Purbeck Formation (Upper Jurassic - Lower Cretaceous) in Dorset (Southern England). Outcrop study coupled with subsurface data analysis and petrographic study (sedimentology and early diagenesis) aims to constrain and improve published models of depositional settings. Facies models for brackish water and hypersaline water conditions of these lacustrine to palustrine carbonates deposited in the syn-rift phase of the Wessex Basin will be presented. Particular attention focusses on the factors that control the accumulation of in-situ microbialite mounds that occur within bedded inter-mound packstones-grainstones in the lower Purbeck. The microbialite mounds are located in three units (locally known as the Skull Cap, the Hard Cap and the Soft Cap) separated by three fossil soils (locally known as the Basal, the Lower and the Great Dirt Beds) respectively within three shallowing upward lacustrine sequences. These complex microbialite mounds (up to 4m high), are composed of tabular small-scale mounds (flat and long, up to 50cm high) divided into four subfacies. Many of these small-scale mounds developed around trees and branches which are preserved as moulds (or silicified wood) which are surrounded by a burrowed mudstone-wackestone collar. Subsequently a thrombolite framework developed on the upper part only within

  5. Paleointensity Behavior and Intervals Between Geomagnetic Reversals in the Last 167 Ma (United States)

    Kurazhkovskii, A. Yu.; Kurazhkovskaya, N. A.; Klain, B. I.


    The results of comparative analysis of the behavior of paleointensity and polarity (intervals between reversals) of the geomagnetic field for the last 167 Ma are presented. Similarities and differences in the behavior of these characteristics of the geomagnetic field are discussed. It is shown that bursts of paleointensity and long intervals between reversals occurred at high mean values of paleointensity in the Cretaceous and Paleogene. However, there are differences between the paleointensity behavior and the reversal regime: (1) the characteristic times of paleointensity variations are less than the characteristic times of the frequency of geomagnetic reversals, (2) the achievement of maximum values of paleointensity at the Cretaceous-Paleogene boundary and the termination of paleointensity bursts after the boundary of 45-40 Ma are not marked by explicit features in the geomagnetic polarity behavior.

  6. A New Species of Pengornithidae (Aves: Enantiornithes) from the Lower Cretaceous of China Suggests a Specialized Scansorial Habitat Previously Unknown in Early Birds (United States)

    Hu, Han; O’Connor, Jingmai K.; Zhou, Zhonghe


    We describe a new enantiornithine bird, Parapengornis eurycaudatus gen. et sp. nov. from the Lower Cretaceous Jiufotang Formation of Liaoning, China. Although morphologically similar to previously described pengornithids Pengornis houi, Pengornis IVPP V18632, and Eopengornis martini, morphological differences indicate it represents a new taxon of the Pengornithidae. Based on new information from this specimen we reassign IVPP V18632 to Parapengornis sp. The well preserved pygostyle of the new specimen elucidates the morphology of this element for the clade, which is unique in pengornithids among Mesozoic birds. Similarities with modern scansores such as woodpeckers may indicate a specialized vertical climbing and clinging behavior that has not previously been inferred for early birds. The new specimen preserves a pair of fully pennaceous rachis-dominated feathers like those in the holotype of Eopengornis martini; together with the unique morphology of the pygostyle, this discovery lends evidence to early hypotheses that rachis-dominated feathers may have had a functional significance. This discovery adds to the diversity of ecological niches occupied by enantiornithines and if correct reveals are remarkable amount of locomotive differentiation among Enantiornithes. PMID:26039693

  7. A new species of pengornithidae (aves: enantiornithes from the lower cretaceous of China suggests a specialized scansorial habitat previously unknown in early birds.

    Directory of Open Access Journals (Sweden)

    Han Hu

    Full Text Available We describe a new enantiornithine bird, Parapengornis eurycaudatus gen. et sp. nov. from the Lower Cretaceous Jiufotang Formation of Liaoning, China. Although morphologically similar to previously described pengornithids Pengornis houi, Pengornis IVPP V18632, and Eopengornis martini, morphological differences indicate it represents a new taxon of the Pengornithidae. Based on new information from this specimen we reassign IVPP V18632 to Parapengornis sp. The well preserved pygostyle of the new specimen elucidates the morphology of this element for the clade, which is unique in pengornithids among Mesozoic birds. Similarities with modern scansores such as woodpeckers may indicate a specialized vertical climbing and clinging behavior that has not previously been inferred for early birds. The new specimen preserves a pair of fully pennaceous rachis-dominated feathers like those in the holotype of Eopengornis martini; together with the unique morphology of the pygostyle, this discovery lends evidence to early hypotheses that rachis-dominated feathers may have had a functional significance. This discovery adds to the diversity of ecological niches occupied by enantiornithines and if correct reveals are remarkable amount of locomotive differentiation among Enantiornithes.

  8. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja


    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  9. Internal structure of the Supragetic Unit basement in the Serbian Carpathians and its significance for the late Early Cretaceous nappe-stacking

    Directory of Open Access Journals (Sweden)

    Krstekanić Nemanja


    Full Text Available Fault-related folds and hanging-wall structures reflect the geometry of the main thrusts in foldthrust belts. The results of the structural analysis of the Supragetic Unit metamorphic basement in eastern Serbia at map-, outcrop- and thin-section scale, and its importance for the late Early Cretaceous nappe-stacking are presented in this paper. The Supragetic Unit metamorphic basement includes various volcano-sedimentary rocks of Ordovician-Silurian protolith age. They were metamorphosed to the low greenschist facies with temperatures reaching 300-350°C and pressure reaching 0.3-0.5 GPa. The microscale studies show that quartz and albite demonstrate dominantly bulging and locally subgrain rotation recrystallisation, while chlorite, sericite and muscovite define spaced to continuous foliation recognised both at the outcrop- and the thin-section-scale. The statistical analysis based on the available map data shows low- to high-angle west-dipping foliation which is interpreted as an indicator of flat-ramp geometry of the Supragetic thrust, rather than east-vergent tight to isoclinal folding. At the thin-section scale ductile to semi-ductile C’-S structures indicate top to ESE thrusting. Subsequent kinking, recognised both at the outcrop- and the thin-section-scale, deform the older foliation. Those kink bands are the result of WNW-ESE to NW-SE compression and could represent the later stage of a continuous deformation event during which C’-S structures were formed. The youngest, brittle deformation is represented by subvertical joints with no offset recognised in thin-sections. The structural characteristics of the Supragetic Unit low-grade metamorphic basement in the studied areas, combined with tectonothermal events recognised elsewhere in Dacia mega-unit, could imply a possible initiation of the late Early Cretaceous nappe-stacking in the ductile to semi-ductile/semi-brittle domain. [Project of the Serbian Ministry of Education, Science and

  10. Sedimentology and Reservoir Characteristics of Early Cretaceous Fluvio-Deltaic and Lacustrine Deposits, Upper Abu Gabra Formation, Sufyan Sub-basin, Muglad Rift Basin, Sudan (United States)

    Yassin, Mohamed; Abdullatif, Osman; Hariri, Mustafa


    Sufyan Sub-basin is an East-West trending Sub-basin located in the northwestern part of the Muglad Basin (Sudan), in the eastern extension of the West and Central Africa Rift System (WCARS). The Early Cretaceous Abu Gabra Formation considered as the main source rock in the Muglad Basin. In Sufyan Sub-basin the Early Cretaceous Upper Abu Gabra Formation is the main oil-producing reservoir. It is dominated by sandstone and shales deposited in fluvio-deltaic and lacustrine environment during the first rift cycle in the basin. Depositional and post-depositional processes highly influenced the reservoir quality and architecture. This study investigates different scales of reservoir heterogeneities from macro to micro scale. Subsurface facies analysis was analyzed based on the description of six conventional cores from two wells. Approaches include well log analysis, thin sections and scanning electron microscope (SEM) investigations, grain-size, and X-ray diffraction (XRD) analysis of the Abu Gabra sandstone. The cores and well logs analyses revealed six lithofacies representing fluvio-deltaic and lacustrine depositional environment. The sandstone is medium to coarse-grained, poorly to moderately sorted and sub-angular to subrounded, Sub-feldspathic arenite to quartz arenite. On macro-scale, reservoir quality varies within Abu Gabra reservoir where it shows progressive coarsening upward tendencies with different degrees of connectivity. The upper part of the reservoir showed well connected and amalgamated sandstone bodies, the middle to lower parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenesis.The XRD and SEM analyses show that kaolinite and chlorite clay are the common clay minerals in the studied samples. Clay matrix and quartz overgrowth have significantly reduced the reservoir porosity and permeability, while the dissolution of feldspars

  11. The Contribution of a Geophysical Data Service: The International Service of Geomagnetic Indices

    Directory of Open Access Journals (Sweden)

    M Menvielle


    Full Text Available Geomagnetic indices are basic data in Solar-Terrestrial physics and in operational Space Weather activities. The International Service of Geomagnetic Indices (ISGI is in charge of the derivation and dissemination of the geomagnetic indices that are acknowledged by the International Association of Geomagnetism and Aeronomy (IAGA, an IUGG association. Institutes that are not part of ISGI started early in the Internet age to circulate on-line preliminary values of geomagnetic indices. In the absence of quality stamping, this resulted in a very confusing situation. The ISGI label was found to be the simplest and the safest way to insure quality stamping of circulated geomagnetic indices.

  12. Paleomagnetism of Jurassic and Cretaceous rocks in central Patagonia: a key to constrain the timing of rotations during the breakup of southwestern Gondwana? (United States)

    Geuna, Silvana E.; Somoza, Rubén; Vizán, Haroldo; Figari, Eduardo G.; Rinaldi, Carlos A.


    A paleomagnetic study in Jurassic and Cretaceous rocks from the Cañadón Asfalto basin, central Patagonia, indicates the occurrence of about 25-30° clockwise rotation in Upper Jurassic-lowermost Cretaceous rocks, whereas the overlying mid-Cretaceous rocks do not show evidence of rotation. This constrains the tectonic rotation to be related to a major regional unconformity in Patagonia, which in turn seems to be close in time with the early opening of the South Atlantic Ocean. The sense and probably the timing of this rotation are similar to those of other paleomagnetically detected rotations in different areas of southwestern Gondwana, suggesting a possible relationship between these and major tectonic processes related with fragmentation of the supercontinent. On the other hand, the mid-Cretaceous rocks in the region yield a paleopole located at Lat. 87° South, Long. 159° East, A95=3.8°. This pole position is consistent with coeval high-quality paleopoles of other plates when transferred to South American coordinates, implying it is an accurate determination of the Aptian (circa 116 Ma) geomagnetic field in South America.

  13. On the systematic relationships of Cearadactylus atrox, an enigmatic Early Cretaceous pterosaur from the Santana Formation of Brazil

    Directory of Open Access Journals (Sweden)

    D. M. Unwin


    Full Text Available Cearadactylus atrox, a large pterodactyloid pterosaur represented by an incomplete skull and lower jaw from the Lower Cretaceous Santana Formation of Brazil, is a valid species. Diagnostic characters include a mandibular symphysis with a transversely expanded "spatulate" anterior end that is considerably wider than the rostral spatula, and a third rostral tooth that has a basal diameter more than three times that of the fifth tooth. Additional diagnostic characters, contingent upon assignment of Cearadactylus atrox to the Ctenochasmatidae, include: anterior ends of jaws divaricate and containing 7 pairs of rostral teeth and 6 pairs of mandibular teeth; marked dimorphodonty, with an abrupt change in tooth morphology; and a "high check". "Cearadactylus? ligabuei" Dalla Vecchia, 1993, based on an incomplete skull, also from the Santana Formation, is not related to Cearadactylus atrox, exhibits several ornithocheirid synapomorphies and is referred, tentatively, to Anhanguera. Cearadactylus atrox exhibits various synapomorphies of the Ctenochasmatidae (rostrum anterior to nasoantorbital fenestra greater than half total skull length, teeth in anterior part of dentition relatively elongate and pencil-shaped, premaxilla has at least 7 pairs of teeth, the defining synapomorphy of the Gnathosaurinae (rostrum with dorsoventrally compressed laterally expanded spatulate anterior expansion, and shares two synapomorphies with the Chinese gnathosaurine Huanhepterus quingyangensis (anterior tips of jaws divaricate, teeth restricted to anterior half of mandible. Two elongate cervical vertebrae, also from the Santana Formation and previously assigned to "Santanadactylus brasilensis", are tentatively referred to Cearadactylus. Reconstruction of the temporal history of the Ctenochasmatidae suggests that while ctenochasmatines became increasingly specialised for filter feeding, gnathosaurines changed from sieve feeding to piscivory, acquiring several cranial

  14. Properties of Pliocene sedimentary geomagnetic reversal records from the Mediterranean

    NARCIS (Netherlands)

    Linssen, J.H.


    In the history of the Earth the dipolar geomagnetic field has frequently reversed polarity. Though this property was already known early this century (Brunhes, 1906), nowadays the characteristics and the origin of polarity transitions are still largely unknown. The geomagnetic field and its

  15. 3-D reconstructions of the early-November 2004 CDAW geomagnetic storms: analysis of Ooty IPS speed and density data

    Directory of Open Access Journals (Sweden)

    M. M. Bisi


    Full Text Available Interplanetary scintillation (IPS remote-sensing observations provide a view of the solar wind covering a wide range of heliographic latitudes and heliocentric distances from the Sun between ~0.1 AU and 3.0 AU. Such observations are used to study the development of solar coronal transients and the solar wind while propagating out through interplanetary space. They can also be used to measure the inner-heliospheric response to the passage of coronal mass ejections (CMEs and co-rotating heliospheric structures. IPS observations can, in general, provide a speed estimate of the heliospheric material crossing the observing line of site; some radio antennas/arrays can also provide a radio scintillation level. We use a three-dimensional (3-D reconstruction technique which obtains perspective views from outward-flowing solar wind and co-rotating structure as observed from Earth by iteratively fitting a kinematic solar wind model to these data. Using this 3-D modelling technique, we are able to reconstruct the velocity and density of CMEs as they travel through interplanetary space. For the time-dependent model used here with IPS data taken from the Ootacamund (Ooty Radio Telescope (ORT in India, the digital resolution of the tomography is 10° by 10° in both latitude and longitude with a half-day time cadence. Typically however, the resolutions range from 10° to 20° in latitude and longitude, with a half- to one-day time cadence for IPS data dependant upon how much data are used as input to the tomography. We compare reconstructed structures during early-November 2004 with in-situ measurements from the Wind spacecraft orbiting the Sun-Earth L1-Point to validate the 3-D tomographic reconstruction results and comment on how these improve upon prior reconstructions.

  16. A new specimen of the Early Cretaceous bird Hongshanornis longicresta: insights into the aerodynamics and diet of a basal ornithuromorph

    Directory of Open Access Journals (Sweden)

    Luis M. Chiappe


    Full Text Available The discovery of Hongshanornis longicresta, a small ornithuromorph bird with unusually long hindlimb proportions, was followed by the discovery of two closely related species, Longicrusavis houi and Parahongshanornis chaoyangensis. Together forming the Hongshanornithidae, these species reveal important information about the early diversity and morphological specialization of ornithuromorphs, the clade that contains all living birds. Here we report on a new specimen (DNHM D2945/6 referable to Hongshanornis longicresta that contributes significant information to better understand the morphology, trophic ecology, and aerodynamics of this species, as well as the taxonomy of the Hongshanornithidae. Most notable are the well-preserved wings and feathered tail of DNHM D2945/6, which afford an accurate reconstruction of aerodynamic parameters indicating that as early as 125 million years ago, basal ornithuromorphs had evolved aerodynamic surfaces comparable in size and design to those of many modern birds, and flight modes alike to those of some small living birds.

  17. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction


    Dunne, Jennifer A.; Labandeira, Conrad C.; Williams, Richard J.


    Generalities of food web structure have been identified for extant ecosystems. However, the trophic organization of ancient ecosystems is unresolved, as prior studies of fossil webs have been limited by low-resolution, high-uncertainty data. We compiled highly resolved, well-documented feeding interaction data for 700 taxa from the 48 million-year-old latest early Eocene Messel Shale, which contains a species assemblage that developed after an interval of protracted environmental and biotal c...

  18. Geomagnetic field, global pattern


    Macmillan, Susan


    The geomagnetic field is generated in the fluid outer core region of the Earth by electrical currents flowing in the slowly moving molten iron. In addition to sources in the Earth’s core, the geomagnetic field observable on the Earth’s surface has sources in the crust and in the ionosphere and magnetosphere. The signal from the core dominates, accounting for over 95% of the field at the Earth’s surface. The geomagnetic field varies on a range of scales, both temporal and spatial; the...

  19. Using Clumped Isotopes to Understand Early Diagenetic Processes in Carbonate Microbialites of Mid-Cretaceous Codó Formation, NE Brazil (United States)

    Bahniuk, A. M.; Vasconcelos, C.; McKenzie, J. A.; Franca, A. B.; Matsuda, N.; Eiler, J.


    , the δ18O values of the bulk carbonate (-5.8 to -1.5 ‰ PDB) imply precipitation from water with calculated δ18O values ranging between approximately -2.5 and 1.5 ‰ SMOW, possibly reflecting precipitation from a variably modified Cretaceous sea water with a strong meteoric influence. The δ13C values of the bulk carbonate (-9.5 to -7.2 ‰ PDB) indicate a significant input of carbon derived from aerobic or anaerobic respiration of organic matter, suggesting precipitation in a semi-enclosed or isolated water body. These preliminary results demonstrate that a combination of clumped isotope and stable isotope methods can provide new insights to study ancient environmental conditions and early diagenetic processes.

  20. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei


    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  1. Strongly foliated garnetiferous amphibolite clasts in ophiolitic melanges, Yarlung Zangbo Suture Zone, Tibet; Early Cretaceous disruption of a back-arc basin? (United States)

    Guilmette, C.; Hebert, R.; Wang, C.; Indares, A. D.; Ullrich, T. D.; Dostal, J.; Bedard, E.


    Metre to decameter-size clasts of amphibolite are found embedded in ophiolitic melanges underlying the Yarlung Zangbo Suture Zone Ophiolites, South Tibet, China. These ophiolites and melanges occur at the limit between Indian and Tibetan-derived rocks and represent remnants of an Early Cretaceous intraoceanic supra-subduction zone domain, the Neo-Tethys. In the Saga-Dazuka segment (500 km along-strike), we discovered new occurrences of strongly foliated amphibolites found as clasts in the ophiolitic melange. In garnet-free samples, hornblende is green-blue magnesio-hornblende and cpx is low-Al diopside. In garnet- bearing samples, garnet is almandine with a strong pyrope component (up to 30 mol%) whereas coexisting hornblende is brown Ti-rich tschermakite and clinopyroxene is Al-diopside. Plagioclase composition was ubiquitously shifted to albite during a late metasomatic event. Geochemistry of these rocks indicates that their igneous protoliths crystallized from a slightly differentiated tholeiitic basaltic liquid that did not undergo major fractionation. Trace element patterns reveal geochemical characteristics identical to those of the overlying ophiolitic crust. These are 1) trace element abundances similar to that of N-MORBs or BABBs, 2) a slight depletion of LREE and 3) a moderate to strong Ta-Nb negative anomaly and a slight Ti anomaly. Such characteristics suggest genesis over a spreading center close to a subduction zone, possibly a back-arc basin. Step-heating Ar/Ar plateau ages were obtained from hornblende separates. All ages fall in the range of 123-128 Ma, overlapping the crystallization ages from the overlying ophiolite (126-131 Ma). Pseudosections were built with the THERMOCALC software in the system NCFMASH. Results indicate that the observed assemblage Hb+Pl+Gt+Cpx is stable over a wide range of P-T conditions, between 10-18 kbars and at more than 800°C. Measured mineral modes and solid solution compositions were successfully modeled, indicating

  2. Recycling of Amazonian detrital zircons in the Mixteco terrane, southern Mexico: Paleogeographic implications during Jurassic-Early Cretaceous and Paleogene times (United States)

    Silva-Romo, Gilberto; Mendoza-Rosales, Claudia Cristina; Campos-Madrigal, Emiliano; Morales-Yáñez, Axél; de la Torre-González, Alam Israel; Nápoles-Valenzuela, Juan Ivan


    In the northeastern Mixteco terrane of southern Mexico, in the Ixcaquixtla-Atzumba region, the recycling of Amazonian detrital zircons records the paleogeography during the Mesozoic period in the context of the breakup of Pangea, a phenomenon that disarticulated the Sanozama-La Mora paleo-river. The clastic units of southern Mexico in the Ayuquila, Otlaltepec and Zapotitlán Mesozoic basins, as well as in the Atzumba Cenozoic basin, are characterized by detrital zircon contents with ages specific to the Amazonian craton, ranging between 3040 and 1278 Ma. The presence of zircons of Amazonian affinity suggests a provenance by recycling from carrier units such as the La Mora Formation or the Ayú Complex. In the area, the Ayú and Acatlán complexes form the Cosoltepec block, a paleogeographic element that during Early Cretaceous time acted as the divide between the slopes of the paleo-Gulf of Mexico and the paleo-Pacific Ocean. The sedimentological characteristics of the Jurassic-Cenozoic clastic successions in the Ixcaquixtla-Atzumba region denote relatively short transport in braided fluvial systems and alluvial fans. In this way, several basins are recognized around the Cosoltepec block. At the southeastern edge of the Cosoltepec block, the Ayuquila and Tecomazúchil formations accumulated in the Ayuquila continental basin on the paleo-Pacific Ocean slope. On the other hand, within the paleo-Gulf of Mexico slope, in the Otlaltepec continental basin, the Piedra Hueca and the Otlaltepec formations accumulated. The upper member of the Santa Lucía Formation accumulated in a transitional environment on the southwestern shoulder of the Zapotitlán basin, as well as on the paleo-Gulf of Mexico slope. In the Ayuquila basin, a marine transgression is recognized that advanced from south to north during the Late Jurassic. At the northeastern edge of the Cosoltepec block, we propose that the Santa Lucía formation attests to a transgression from the paleo-Gulf of Mexico

  3. Geomagnetic Storm Sudden Commencements (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Sudden Commencements (ssc) 1868 to present: STORM1 and STORM2 Lists: (Some text here is taken from the International Association of Geomagnetism and Aeronomy...

  4. Geomagnetic Indices Bulletin (GIB) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geomagnetic Indices Bulletin is a one page sheet containing the magnetic indices Kp, Ap, Cp, An, As, Am and the provisional aa indices. The bulletin is published...

  5. Geomagnetic aa Indices (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The geomagnetic aa indices are the continuation of the series beginning in the year 1868. A full description of these indices is given in the International...

  6. Paleomagnetism of Late Jurassic to Early Cretaceous red beds from the Cardamom Mountains, southwestern Cambodia: Tectonic deformation of the Indochina Peninsula (United States)

    Tsuchiyama, Yukiho; Zaman, Haider; Sotham, Sieng; Samuth, Yos; Sato, Eiichi; Ahn, Hyeon-Seon; Uno, Koji; Tsumura, Kosuke; Miki, Masako; Otofuji, Yo-ichiro


    Late Jurassic to Early Cretaceous red beds of the Phuquoc Formation were sampled at 33 sites from the Sihanoukville and Koah Kong areas of the Phuquoc-Kampot Som Basin, southwestern Cambodia. Two high-temperature remanent components with unblocking temperature ranging 650°-670 °C and 670-690 °C were identified. The magnetization direction for the former component (D = 5.2 °, I = 18.5 ° with α95 = 3.1 ° in situ) reveals a negative fold test that indicates a post-folding secondary nature. However, the latter component, carried by specular hematite, is recognized as a primary remanent magnetization. A tilt-corrected mean direction of D = 43.4 °, I = 31.9 ° (α95 = 3.6 °) was calculated for the primary component at 11 sites, corresponding to a paleopole of 47.7°N, 178.9°E (A95 = 3.6 °). When compared with the 130 Ma East Asian pole, a southward displacement of 6.0 ° ± 3.5 ° and a clockwise rotation of 33.1 ° ± 4.0 ° of the Phuquoc-Kampot Som Basin (as a part of the Indochina Block) with respect to East Asia were estimated. This estimate of the clockwise rotation is ∼15° larger than that of the Khorat Basin, which we attribute to dextral motion along the Wang Chao Fault since the mid-Oligocene. The comparison of the herein estimated clockwise rotation with the counter-clockwise rotation reported from the Da Lat area in Vietnam suggests the occurrence of a differential tectonic rotation in the southern tip of the Indochina Block. During the southward displacement of the Indochina Block, the non-rigid lithosphere under its southern tip moved heterogeneously, while the rigid lithosphere under the Khorat Basin moved homogeneously.

  7. The transgressive-regressive cycle of the Romualdo Formation (Araripe Basin): Sedimentary archive of the Early Cretaceous marine ingression in the interior of Northeast Brazil (United States)

    Custódio, Michele Andriolli; Quaglio, Fernanda; Warren, Lucas Veríssimo; Simões, Marcello Guimarães; Fürsich, Franz Theodor; Perinotto, José Alexandre J.; Assine, Mario Luis


    Geologic events related to the opening of the South Atlantic Ocean deeply influenced the sedimentary record of the Araripe Basin. As consequence, upper stratigraphic units of the basin record a marine ingression in northeastern Brazil during the late Aptian. The timing and stratigraphic architecture of these units are crucial to understand the paleogeography of Gondwana and how the proto-Atlantic Ocean reached interior NE Brazil during the early Cretaceous. This marine ingression is recorded in the Araripe Basin as the Romualdo Formation, characterized by a transgressive-regressive cycle bounded by two regional unconformities. In the eastern part of the basin, the Romualdo depositional sequence comprises coastal alluvial and tide-dominated deposits followed by marine transgressive facies characterized by two fossil-rich intervals: a lower interval of black shales with fossil-rich carbonate concretions (Konservat-Lagerstätten) and an upper level with mollusk-dominated shell beds and shelly limestones. Following the marine ingression, an incomplete regressive succession of marginal-marine facies records the return of continental environments to the basin. The stratigraphic framework based on the correlation of several sections defines a transgressive-regressive cycle with depositional dip towards southeast, decreasing in thickness towards northwest, and with source areas located at the northern side of the basin. The facies-cycle wedge-geometry, together with paleocurrent data, indicates a coastal onlap towards NNW. Therefore, contrary to several paleogeographic scenarios previously proposed, the marine ingression would have reached the western parts of the Araripe Basin from the SSE.

  8. Geochemistry, geochronology, and tectonic setting of Early Cretaceous volcanic rocks in the northern segment of the Tan-Lu Fault region, northeast China (United States)

    Ling, Yi-Yun; Zhang, Jin-Jiang; Liu, Kai; Ge, Mao-Hui; Wang, Meng; Wang, Jia-Min


    We present new geochemical and geochronological data for volcanic and related rocks in the regions of the Jia-Yi and Dun-Mi faults, in order to constrain the late Mesozoic tectonic evolution of the northern segment of the Tan-Lu Fault. Zircon U-Pb dating shows that rhyolite and intermediate-mafic rocks along the southern part of the Jia-Yi Fault formed at 124 and 113 Ma, respectively, whereas the volcanic rocks along the northern parts of the Jia-Yi and Dun-Mi faults formed at 100 Ma. The rhyolite has an A-type granitoid affinity, with high alkalis, low MgO, Ti, and P contents, high rare earth element (REE) contents and Ga/Al ratios, enrichments in large-ion lithophile (LILEs; e.g., Rb, Th, and U) and high-field-strength element (HFSEs; e.g., Nb, Ta, Zr, and Y), and marked negative Eu anomalies. These features indicate that the rhyolites were derived from partial melting of crustal material in an extensional environment. The basaltic rocks are enriched in light REEs and LILEs (e.g., Rb, K, Th, and U), and depleted in heavy REEs, HFSEs (e.g., Nb, Ta, Ti, and P), and Sr. These geochemical characteristics indicate that these rocks are calc-alkaline basalts that formed in an intraplate extensional tectonic setting. The dacite is a medium- to high-K, calc-alkaline, I-type granite that was derived from a mixed source involving both crustal and mantle components in a magmatic arc. Therefore, the volcanic rocks along the Jia-Yi and Dun-Mi faults were formed in an extensional regime at 124-100 Ma (Early Cretaceous), and these faults were extensional strike-slip faults at this time.

  9. Fossils in Late Cretaceous to early Palaeocene flint nodules embedded in pleistocene glaciofluvial sediments near Fukov (Děčín District, Northern Bohemia)

    Czech Academy of Sciences Publication Activity Database

    Pokorný, R.; Kaše, J.; Kvaček, J.; Zágoršek, K.; Kočí, T.; Žítt, Jiří


    Roč. 68, 3/4 (2012), s. 119-131 ISSN 0036-5343 Institutional support: RVO:67985831 Keywords : Erratic boulders * Flint * Glaciofluvial sediments * Late Cretaceous * Northern Bohemia * Palaeocene * Pleistocene glaciation * Taphocoenosis Subject RIV: DB - Geology ; Mineralogy

  10. Tracing climatic conditions during the deposition of late Cretaceous-early Eocene phosphate beds in Morocco by geochemical compositions of biogenic apatite fossils (United States)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Yans, J.; Ulianov, A.; Amaghzaz, M.


    Morocco's Western Atlantic coast was covered by shallow seas during the late Cretaceous-early Eocene when large amount of phosphate rich sediments were deposited. This time interval envelops a major part of the last greenhouse period and gives the opportunity to study the event's characteristics in shallow water settings. These phosphate deposits are extremely rich in vertebrate fossils, while other types of fossils are rare or often poorly preserved. Hence the local stratigraphy is based on the most abundant marine vertebrate fossils, on the selachian fauna (sharks and rays). Our geochemical investigations were also carried out on these remains, though in some cases frequently found coprolites were involved as well. The main goal of our study was to test whether stable isotope compositions (δ18OPO4, δ13C) of these fossils reflect any of the hyperthermal events and/or the related perturbations in the carbon cycle during the early Paleogene (Lourens et al. 2005) and whether these geochemical signals can be used to refine the local stratigraphy. Additionally, the samples were analyzed for trace element composition in order to better assess local taphonomy and burial conditions. The samples came from two major phosphate regions, the Ouled Abdoun and the Ganntour Basins and they were collected either directly on the field during excavations (Sidi Chennane) or were obtained from museum collections with known stratigraphical position (Sidi Daoui, Ben Guerrir). The phosphate oxygen isotopic compositions of shark teeth display large range across the entire series (18.5-22.4 ) which can partly be related to the habitat of sharks. For instance the genus Striatolamnia often yielded the highest δ18O values indicating possible deep water habitat. Despite the large variation in δ18O values, a general isotope trend is apparent. In the Maastrichtian after a small negative shift, the δ18O values increase till the Danian from where the trend decrease till the Ypresian. The

  11. Geochemical and isotopic characteristics and magma sources of the early Cretaceous trachybasalts of the Goby-Altai rift zone: an example of grabens in the Arts-Bogdo range

    International Nuclear Information System (INIS)

    Samojlov, V.S.; Yarmolyuk, V.V.; Kovalenko, V.I.; Ivanov, V.G.; Pakhol'chenko, Yu.A.


    Geochemical and isotopic-geochemical characteristics of the basalts of Early Cretaceous (Hoby-Altai rift zone; Arts-Bogdo region, Mongolia). Atomic absorption spectroscopy, X-ray fluorescence spectroscopy, photometry, mass spectroscopy and other methods were used. Mantle nature of the basalt geochemical specificity is shown as well as their initial melts. Data on the rubidium-strontium isotopic composition of Neocomian basalts are the following ones: 87 Sr/ 86 Sr 87 Sr/ 86 Sr > 0.707 and Rb/Sr > 0.06 [ru

  12. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Santosh, M.; Qin, Jiang-Feng; Zhao, Shao-Wei


    that mantle-derived magmas played an important role in the genesis of Early Cretaceous intrusions from Tengchong to Lhasa Blocks, although crustal melting is the dominant contributor.

  13. Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex, Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Gregory A. Davis


    Full Text Available The Early Cretaceous Hohhot metamorphic core complex (mcc of the Daqing Shan (Mtns. of central Inner Mongolia is among the best exposed and most spectacular of the spatially isolated mcc’s that developed within the northern edge of the North China “craton”. All of these mcc’s were formed within the basement of a Late Paleozoic Andean-style arc and across older Mesozoic fold-and-thrust belts of variable age and tectonic vergence. The master Hohhot detachment fault roots southwards within the southern margin of the Daqing Shan for an along-strike distance of at least 120 km. Its geometry in the range to the north is complicated by interference patterns between (1 primary, large-scale NW-SE-trending convex and concave fault corrugations and (2 secondary ENE-WSW-trending antiforms and synforms that folded the detachment in its late kinematic history. As in the Whipple Mtns. of California, the Hohhot master detachment is not of the Wernicke (1981 simple rooted type; instead, it was spawned from a mid-crustal shear zone, the top of which is preserved as a mylonitic front within Carboniferous metasedimentary rocks in its exhumed lower plate. 40Ar–39Ar dating of siliceous volcanic rocks in basal sections of now isolated supradetachment basins suggest that crustal extension began at ca. 127 Ma, although lower-plate mylonitic rocks were not exposed to erosion until after ca. 119 Ma. Essentially synchronous cooling of hornblende, biotite, and muscovite in footwall mylonitic gneisses indicates very rapid exhumation and at ca. 122–120 Ma. Contrary to several recent reports, the master detachment clearly cuts across and dismembers older, north-directed thrust sheets of the Daqing Shan foreland fold-and-thrust belt. Folded and thrust-faulted basalts within its foredeep strata are as young as 132.6 ± 2.4 Ma, thus defining within 5–6 Ma the regional tectonic transition between crustal contraction and profound crustal extension.

  14. Late Early-Cretaceous quartz diorite-granodiorite-monzogranite association from the Gaoligong belt, southeastern Tibet Plateau: Chemical variations and geodynamic implications (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Qin, Jiang-Feng; Zhao, Shao-Wei; Wang, Jiang-Bo


    Geochemical variations in granitic rocks may be controlled by their source rocks, melting reactions and subsequent magmatic processes, which resulted from various geodynamic processes related to subduction, collision, or slab break-off. Here we report new LA-ICP-MS zircon U-Pb ages and Hf isotopes, whole-rock chemistry and Sr-Nd isotopes for the late Early Cretaceous quartz diorite, granodiorite and monzogranite in the Gaoligong belt, southeastern Tibet Plateau. The zircon U-Pb dating yield ages of 113.9 ± 1.6, 111.7 ± 0.8, and 112.8 ± 1.7 Ma for the quartz diorite, granodiorite, and monzogranite, respectively, which are coeval with bimodal magmatism in the central and northern Lhasa sub-terrane. There are the distinct sources regions for the quartz diorite and granodiorite-monzogranite association. The quartz diorites are sodic, calc-alkaline and have high Mg# (52-54) values. They also have elevated initial 87Sr/86Sr (0.707019 to 0.709176) and low εNd(t) (- 5.16 to - 7.63), with variable zircon εHf(t) values (+ 5.65 to - 9.02). Zircon chemical data indicate a typical crustal-derived character with high Th (142-1260 ppm) and U (106-1082 ppm) and moderate U/Yb ratios (0.30 to 2.32) and Y content (705-1888 ppm). Those data suggest that the quartz diorites were derived from partial melting of ancient basaltic lower crust by a mantle-derived magma in source region. The granodiorite-monzogranite association has high-K calc-alkaline, weakly peraluminous characters. They show lower Nb/Ta (5.57 to 13.8), CaO/Na2O (0.62 to 1.21), higher Al2O3/TiO2 (24.4 to 44.4) ratios, more evolved whole-rock Sr-Nd and zircon Hf isotopic signatures, all of which suggest derivation from mixed basaltic and metasedimentary source rocks in a deep crustal zone. We propose that the granitic magmatisms at ca. 113-110 Ma in the Gaologong belt was triggered by the slab break-off of Bangong-Nujiang Tethyan oceanic lithosphere. Supplementary Dataset Table 2. Single-grain zircon Hf isotopic data

  15. Early Cretaceous wedge extrusion in the Indo-Burma Range accretionary complex: implications for the Mesozoic subduction of Neotethys in SE Asia (United States)

    Zhang, Ji'en; Xiao, Wenjiao; Windley, Brian F.; Cai, Fulong; Sein, Kyaing; Naing, Soe


    ± 3 Ma and 115 Ma, which are close to the zircon ages of nearby calc-alkaline granite and diorite, which belong to an active continental margin arc that extends along the western side of the Shan-Thai block. The IBR accretionary complex and the active continental margin arc were generated during Early Cretaceous (115-128 Ma) subduction of the Neotethys Ocean.

  16. Petrogenesis of Early Cretaceous dioritic dikes in the Shanyang-Zhashui area, South Qinling, central China: Evidence for partial melting of thickened lower continental crust (United States)

    Chen, Lei; Yan, Zhen; Wang, Zongqi; Wang, Kunming


    environments in the Early Cretaceous. This process resulted in the upwelling of the asthenospheric or lithospheric mantle, causing partial melting of the mafic lower crust and forming the adakitic dioritic melts.

  17. A record of long- and short-term environmental and climatic change during OAE3: La Luna Formation, Late Cretaceous (Santonian-early Campanian), Venezuela (United States)

    Rey, O.; Simo (Toni), J. A.; Lorente, M. A.


    The La Luna Formation was deposited under anoxic/dysoxic conditions in a tropical epicontinental sea on the northwest South America margin. Sedimentological, micropaleontological and geochemical evidence provides insights into factors that influenced the sedimentation and controlled the accumulation of organic-rich deposits at decimeter and meter scales during the youngest of the Cretaceous oceanic anoxic events (OAE). The La Luna Formation consists of an alternation of black marlstones interbedded with black limestones and black marly limestones. The benthic foraminifera assemblages indicate sedimentation in the upper neritic to upper bathyal environment. These rocks contain large amounts of organic matter. It is interpreted that a combination of warm global and rainy climate and the presence of bathymetric barriers caused poor circulation and low rates of water column ventilation during a high sea level in the early Santonian leading to the preservation of carbon-rich deposits in this region. During the late Santonian, a cooling-trend in global climate increased wind strength and upwelling; this change probably reduced runoff causing a weakening of the pycnocline and destabilized the stratification in the water column providing a progressive increase in oxygen in the water column and on the sea floor and a decrease in total organic carbon preservation in a shallower basin. These changes and the establishment of full mid- and deep-water exchange in response to the deepening and widening of the Equatorial Atlantic Gateway could have been important mechanisms for ending the epeiric sea anoxia. Changes through time in the vanadium-nickel fraction, planktonic and benthic foraminifera assemblages, productivity proxy elements, and lithological characteristics support this model. Superimposed on the general trend, variations in calcium carbonate and total organic carbon percentages at the scale of tens of centimeters reveal high frequency cyclic variations, which

  18. International Geomagnetic Reference Field

    DEFF Research Database (Denmark)

    Finlay, Chris; Maus, S.; Beggan, C. D.


    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2009 by the International Association of Geomagnetism and Aeronomy Working Group V‐MOD. It updates the previous IGRF generation with a definitive main field model for epoch 2005.0, a main field...... model for epoch 2010.0, and a linear predictive secular variation model for 2010.0–2015.0. In this note the equations defining the IGRF model are provided along with the spherical harmonic coefficients for the eleventh generation. Maps of the magnetic declination, inclination and total intensity...

  19. Properties of Pliocene sedimentary geomagnetic reversal records from the Mediterranean


    Linssen, J.H.


    In the history of the Earth the dipolar geomagnetic field has frequently reversed polarity. Though this property was already known early this century (Brunhes, 1906), nowadays the characteristics and the origin of polarity transitions are still largely unknown. The geomagnetic field and its variations are recorded in rocks as a natural remanent magnetization (NRM) during the formation of these rocks. The study of the NRM in sedimentary reversal records is the subject of this dissertation.

  20. Calibrating the Cretaceous normal superchron with high-precision U-Pb zircon geochronology from Songliao Basin, NE China (United States)

    Wang, T.; Ramezani, J.; Wang, C.


    The Cretaceous Normal Superchron (CNS) or C34n is defined as the prolonged period of normal geomagnetic polarity, which lasted for approximately 38 Myr from the Aptian to the beginning of the Campanian. Along with the Kiaman Reverse Superchron (Carboniferous-Permian), they constitute the two longest periods of stability in the Earth's magnetic field. Polarity reversals are geologically abrupt events of global extent that form the basis of the Geomagnetic Polarity Timescale. In addition, a causal relationship between the end of a superchron and global environmental change has been hypothesized by some workers. Thus, the precise timing of the onset and termination of CNS has important implications for the correlation of global tectonic, paleoclimatic and paleobiotic events, and may help us better understand the causes and consequences of superchrons. At present, the exact age and duration of CNS are poorly understood, in part due to the relative scarcity of relevant paleomagnetic and radioisotopic data. The end of CNS or the C34n/C33r chron boundary is also considered a suitable proxy for the Santonian-Campanian stage boundary in the absence of diagnostic fossils of global distribution for the latter. The early Campanian ( 84 Ma to 76 Ma) is characterized by a steady cooling of the (greenhouse) climate, preceded by an abrupt (possibly 5-6°C) drop in the global temperatures at the Santonain-Campanian boundary, based on the oxygen isotope record of benthic foraminifera. The peak of dinosaur diversity throughout vast swaths of the continents was reached during the Campanian, as well. Here we present a new age constraint for the termination of CNS based on ash bed geochronology from a near-continuous, subsurface, Cretaceous lacustrine record recovered from the Songliao Basin in Northeast China. This extraordinary record allows integration of high-precision U-Pb geochronology, magnetostratigraphy and cyclostratigraphy that enables a multi-chronometer approach to the

  1. Ontong Java volcanism initiated long-term climate warming that caused substantial changes in terrestrial vegetation several tens of thousand years before the onset of OAE1a (Early Aptian, Cretaceous) (United States)

    Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut


    During Cretaceous times, several intense volcanic episodes are proposed as trigger for episodic climate warming, for changes in marine circulation patterns and for elevated marine productivity, which resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Volcanic outgassing results in an increased pCO2 and should lead to a rise in global temperatures. We therefore investigated if the volcanically-induced increase in pCO2 at the onset of OAE1a in the early Aptian led to a temperature rise that was sufficient to affect terrestrial vegetation assemblages. In order to analyse changes in terrestrial palynomorph assemblages, we examined 15 samples from 12 black shale horizons throughout the early Aptian negative C-isotope spike interval of the Pusiano section (Maiolica Formation; N-Italy). These sediments were deposited at the southern continental margin of the alpine Tethys Ocean and have been bio- and magnetostratigraphically dated by Channell et al. (1995). In order to obtain a continuous palynological record of the negative C-isotope spike interval and the base of OAE1a, we combined this pre-OAE1a interval of Pusiano with the OAE1a interval of the nearby Cismon section (Hochuli et al., 1999). The sporomorph assemblages at the base of this composite succession feature abundant bisaccate pollen, which reflects a warm-temperate climate. Rather arid conditions are inferred from low trilete spore percentages. Several tens of thousand years before the onset of OAE1a, C-isotope values started to decrease. Some thousand years later, bisaccate pollen began to decrease, whereas an increase of Classopollis spp. and Araucariacites spp

  2. Aberrant rostral teeth of the sawfish Onchopristis numidus from the Kem Kem beds (?early Late Cretaceous) of Morocco and a reappraisal of Onchopristis in New Zealand (United States)

    Martill, David M.; Ibrahim, Nizar


    A single crown of sawfish rostral 'tooth' with at least two barbs along its posterior margin is comparable with Onchopristis dunklei from the Woodbine Formation of Texas and Atlanticopristisequatorialis from the Alcântara Formation of Brazil. However, it is regarded here as an aberrant Onchopristisnumidus, the typical form from North Africa. An aberrant morph of O. numidus is considered pathological. The taxonomic utility of barb number in pristid rostral 'teeth' is discussed. The genus and species Australopristis wiffeni gen. et sp. nov is erected to accommodate some multi-cusped rostral teeth from the Late Cretaceous of New Zealand.

  3. The Cretaceous superchron geodynamo: Observations near the tangent cylinder (United States)

    Tarduno, John A.; Cottrell, Rory D.; Smirnov, Alexei V.


    If relationships exist between the frequency of geomagnetic reversals and the morphology, secular variation, and intensity of Earth's magnetic field, they should be best expressed during superchrons, intervals tens of millions of years long lacking reversals. Here we report paleomagnetic and paleointensity data from lavas of the Cretaceous Normal Polarity Superchron that formed at high latitudes near the tangent cylinder that surrounds the solid inner core. The time-averaged field recorded by these lavas is remarkably strong and stable. When combined with global results available from lower latitudes, these data define a time-averaged field that is overwhelmingly dominated by the axial dipole (octupole components are insignificant). These observations suggest that the basic features of the geomagnetic field are intrinsically related. Superchrons may reflect times when the nature of core–mantle boundary heat flux allows the geodynamo to operate at peak efficiency. PMID:12388778

  4. Geomagnetic radioflash unfold (GRUF)

    International Nuclear Information System (INIS)

    Malik, J.S.


    A method of inverting the geomagnetic component of the radioflash signal from a nuclear explosion to obtain the gamma-ray time history was proposed by E. D. Dracott of the Atomic Weapons Research Establishment. A simplified development of an elaboration by B. R. Suydam has been programmed for small calculators in a form suitable for interim field analysis of such data. The development of the program is contained in the report

  5. Geomagnetic Field During a Reversal (United States)

    Heirtzler, J. R.


    It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.

  6. The national geomagnetic initiative (United States)


    The Earth's magnetic field, through its variability over a spectrum of spatial and temporal scales, contains fundamental information on the solid Earth and geospace environment (the latter comprising the atmosphere, ionosphere, and magnetosphere). Integrated studies of the geomagnetic field have the potential to address a wide range of important processes in the deep mantle and core, asthenosphere, lithosphere, oceans, and the solar-terrestrial environment. These studies have direct applications to important societal problems, including resource assessment and exploration, natural hazard mitigation, safe navigation, and the maintenance and survivability of communications and power systems on the ground and in space. Studies of the Earth's magnetic field are supported by a variety of federal and state agencies as well as by private industry. Both basic and applied research is presently supported by several federal agencies, including the National Science Foundation (NSF), U.S. Geological Survey (USGS), U.S. Department of Energy (DOE), National Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration (NASA), and U.S. Department of Defense (DOD) (through the Navy, Air Force, and Defense Mapping Agency). Although each agency has a unique, well-defined mission in geomagnetic studies, many areas of interest overlap. For example, NASA, the Navy, and USGS collaborate closely in the development of main field reference models. NASA, NSF, and the Air Force collaborate in space physics. These interagency linkages need to be strengthened. Over the past decade, new opportunities for fundamental advances in geomagnetic research have emerged as a result of three factors: well-posed, first-order scientific questions; increased interrelation of research activities dealing with geomagnetic phenomena; and recent developments in technology. These new opportunities can be exploited through a national geomagnetic initiative to define objectives and

  7. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography (United States)

    Poropat, Stephen F.; Mannion, Philip D.; Upchurch, Paul; Hocknull, Scott A.; Kear, Benjamin P.; Kundrát, Martin; Tischler, Travis R.; Sloan, Trish; Sinapius, George H. K.; Elliott, Judy A.; Elliott, David A.


    Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian–Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America. PMID:27763598

  8. Cretacic tectonics in Uruguay

    International Nuclear Information System (INIS)

    Gomez Rifas, C.


    This work is about Cretacic tectonics in Uruguay, this formation is characterized by high level cortex because the basament is cratonized since Middle Devonian. There were formed two main grabens such as Santa Lucia and Mirim-Pelotas which are filled with basalt and sediments.

  9. Geomagnetic reversal rates following Palaeozoic superchrons have a fast restart mechanism. (United States)

    Hounslow, Mark W


    Long intervals of single geomagnetic polarity (superchrons) reflect geodynamo processes, driven by core-mantle boundary interactions; however, it is not clear what initiates the start and end of superchrons, other than superchrons probably reflect lower heat flow across the core-mantle boundary compared with adjacent intervals. Here geomagnetic polarity timescales, with confidence intervals, are constructed before and following the reverse polarity Kiaman (Carboniferous-Permian) and Moyero (Ordovician) superchrons, providing a window into the geodynamo processes. Similar to the Cretaceous, asymmetry in reversal rates is seen in the Palaeozoic superchrons, but the higher reversal rates imply higher heatflow thresholds for entering the superchron state. Similar to the Cretaceous superchron, unusually long-duration chrons characterize the ∼10 Myr interval adjacent to the superchrons, indicating a transitional reversing state to the superchrons. This may relate to a weak pattern in the clustering of chron durations superimposed on the dominant random arrangement of chron durations.

  10. Recurrent Early Cretaceous, Indo-Madagascar (89-86 Ma) and Deccan (66 Ma) alkaline magmatism in the Sarnu-Dandali complex, Rajasthan: 40Ar/39Ar age evidence and geodynamic significance (United States)

    Sheth, Hetu; Pande, Kanchan; Vijayan, Anjali; Sharma, Kamal Kant; Cucciniello, Ciro


    The Sarnu-Dandali alkaline complex in Rajasthan, northwestern India, is considered to represent early, pre-flood basalt magmatism in the Deccan Traps province, based on a single 40Ar/39Ar age of 68.57 Ma. Rhyolites found in the complex are considered to be 750 Ma Malani basement. Our new 40Ar/39Ar ages of 88.9-86.8 Ma (for syenites, nephelinite, phonolite and rhyolite) and 66.3 ± 0.4 Ma (2σ, melanephelinite) provide clear evidence that whereas the complex has Deccan-age (66 Ma) components, it is dominantly an older (by 20 million years) alkaline complex, with rhyolites included. Basalt is also known to underlie the Early Cretaceous Sarnu Sandstone. Sarnu-Dandali is thus a periodically rejuvenated alkaline igneous centre, active twice in the Late Cretaceous and also earlier. Many such centres with recurrent continental alkaline magmatism (sometimes over hundreds of millions of years) are known worldwide. The 88.9-86.8 Ma 40Ar/39Ar ages for Sarnu-Dandali rocks fully overlap with those for the Indo-Madagascar flood basalt province formed during continental breakup between India (plus Seychelles) and Madagascar. Recent 40Ar/39Ar work on the Mundwara alkaline complex in Rajasthan, 120 km southeast of Sarnu-Dandali, has also shown polychronous emplacement (over ≥ 45 million years), and 84-80 Ma ages obtained from Mundwara also arguably represent post-breakup stages of the Indo-Madagascar flood basalt volcanism. Remnants of the Indo-Madagascar province are known from several localities in southern India but hitherto unknown from northwestern India 2000 km away. Additional equivalents buried under the vast Deccan Traps are highly likely.

  11. An advanced, new long-legged bird from the Early Cretaceous of the Jehol Group (northeastern China): insights into the temporal divergence of modern birds. (United States)

    Liu, Di; Chiappe, Luis M; Zhang, Yuguang; Bell, Alyssa; Meng, Qingjin; Ji, Qiang; Wang, Xuri


    We describe a new ornithuromorph bird species, Gansus zheni from the Lower Cretaceous lacustrine deposits of the Jiufotang Formation (Jehol Group), Liaoning Province, China. A cladistic analysis resolves Gansus zheni as the sister taxon of the roughly contemporaneous Gansus yumenensis (Xiagou Formation, Gansu Province), and together as the most immediate outgroup to Ornithurae. Gansus zheni is the most advanced bird known today for the Jehol Biota. Its discovery provides the best-documented case of inter-basinal correlations (Jehol and Changma basins of Liaoning and Gansu provinces, respectively) using low-taxonomic clades of fossil birds. The existence of close relatives of Ornithurae in deposits formed at about 120 million years ago helps to mitigate the long-standing controversy between molecular and paleontological evidence for the temporal divergence of modern birds (Neornithes).

  12. New aero-gravity results from the Arctic: Linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean

    DEFF Research Database (Denmark)

    Døssing, Arne; Hopper, J.R.; Olesen, Arne Vestergaard


    The tectonic history of the Arctic Ocean remains poorly resolved and highly controversial. Details regarding break up of the Lomonosov Ridge from the Barents-Kara shelf margins and the establishment of seafloor spreading in the Cenozoic Eurasia Basin are unresolved. Significantly, the plate...... tectonic evolution of the Mesozoic Amerasia Basin is essentially unknown. The Arctic Ocean north of Greenland is at a critical juncture that formed at the locus of a Mesozoic three-plate setting between the Lomonosov Ridge, Greenland, and North America. In addition, the area is close to the European plate...... plateau against an important fault zone north of Greenland. Our results provide new constraints for Cretaceous-Cenozoic plate reconstructions of the Arctic. Key Points Presentation of the largest aero-gravity survey acquired over the Arctic Ocean Plate tectonic link between Atlantic and Arctic spreading...

  13. Geomagnetic Reversals during the Phanerozoic. (United States)

    McElhinny, M W


    An antalysis of worldwide paleomagnetic measurements suggests a periodicity of 350 x 10(6) years in the polarity of the geomagnetic field. During the Mesozoic it is predominantly normal, whereas during the Upper Paleozoic it is predominantly reversed. Although geomagnetic reversals occur at different rates throughout the Phanerozoic, there appeaars to be no clear correlation between biological evolutionary rates and reversal frequency.

  14. Cretaceous paleogeography and depositional cycles of western South America (United States)

    Macellari, C. E.

    The western margin of South America was encroached upon by a series of marine advances that increased in extent from the Early Cretaceous to a maximum in the early Late Cretaceous for northern South America (Venezuela to Peru). In southern South America, however, the area covered by the marine advances decreased from a maximum in the Early Cretaceous to a minimum during mid-Cretaceous time, followed by a widespread advance at the end of the period. A series of unconformity-bounded depositional cycles was recognized in these sequences: five cycles in northern South America, and six (but not exactly equivalent) cycles in the Cretaceous back-arc basins of southern South America (Neuquén and Austral, or Magallanes, Basins). Both widespread anoxic facies and maximum flooding of the continent in northern South America coincide in general terms with recognized global trends, but this is not the case in southern South America. Here, anoxic facies are restricted to the Lower Cretaceous and seem to be controlled by local aspects of the basin evolution and configuration. The contrasts observed between northern and southern South America can be explained by differences in tectonic setting and evolution. To the north, sediments were deposited around the tectonically stable Guayana-Brazilian Massifs, and thus registered global "signals" such as anoxic events and major eustatic changes. The southern portion of the continent, on the contrary, developed in an active tectonic setting. Here, the mid-Cretaceous Peruvian Orogeny overprinted, to a large extent, world-wide trends and only the earliest and latest Cretaceous conform to global depositional patterns.

  15. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight (United States)

    Navalón, Guillermo; Marugán-Lobón, Jesús; Chiappe, Luis M.; Luis Sanz, José; Buscalioni, Ángela D.


    Despite a wealth of fossils of Mesozoic birds revealing evidence of plumage and other soft-tissue structures, the epidermal and dermal anatomy of their wing’s patagia remain largely unknown. We describe a distal forelimb of an enantiornithine bird from the Lower Cretaceous limestones of Las Hoyas, Spain, which reveals the overall morphology of the integument of the wing and other connective structures associated with the insertion of flight feathers. The integumentary anatomy, and myological and arthrological organization of the new fossil is remarkably similar to that of modern birds, in which a system of small muscles, tendons and ligaments attaches to the follicles of the remigial feathers and maintains the functional integrity of the wing during flight. The new fossil documents the oldest known occurrence of connective tissues in association with the flight feathers of birds. Furthermore, the presence of an essentially modern connective arrangement in the wing of enantiornithines supports the interpretation of these primitive birds as competent fliers. PMID:26440221

  16. Hints of the Early Jehol Biota: Important Dinosaur Footprint Assemblages from the Jurassic-Cretaceous Boundary Tuchengzi Formation in Beijing, China (United States)

    Xing, Lida; Zhang, Jianping; Lockley, Martin G.; McCrea, Richard T.; Klein, Hendrik; Alcalá, Luis; Buckley, Lisa G.; Burns, Michael E.; Kümmell, Susanna B.; He, Qing


    New reports of dinosaur tracksites in the Tuchengzi Formation in the newly established Yanqing Global Geopark, Beijing, China, support previous inferences that the track assemblages from this formation are saurischian-dominated. More specifically, the assemblages appear theropod-dominated, with the majority of well-preserved tracks conforming to the Grallator type (sensus lato), thus representing relatively small trackmakers. Such ichnofaunas supplement the skeletal record from this unit that lacks theropods thus far, proving a larger diversity of dinosaur faunas in that region. Sauropods are represented by medium to large sized and narrow and wide-gauge groups, respectively. The latter correspond with earlier discoveries of titanosauriform skeletons in the same unit. Previous records of ornithischian tracks cannot be positively confirmed. Purported occurrences are re-evaluated here, the trackways and imprints, except of a single possible specimen, re-assigned to theropods. Palecologically the Tuchengzi ichnofauna is characteristic of semi-arid fluvio-lacustrine inland basins with Upper Jurassic-Lower Cretaceous deposits in northern China that all show assemblages with abundant theropod and sauropod tracks and minor components of ornithopod, pterosaur and bird tracks. PMID:25901363

  17. Early Cretaceous ( 140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: Products of crust-mantle interaction during lithospheric extension (United States)

    Ma, Lin; Kerr, Andrew C.; Wang, Qiang; Jiang, Zi-Qi; Hu, Wan-Long


    A-type granites have been the focus of considerable research due to their distinctive major- and trace-element signatures and tectonic significance. However, their petrogenesis, magmatic source and tectonic setting remain controversial, particularly for aluminous A-type granites. The earliest Cretaceous (ca. 140 Ma) Comei granite in the eastern Tethyan Himalaya is associated with coeval oceanic island basalt (OIB)-type mafic lava, and has A-type granite geochemical characteristics including high 10,000 × Ga/Al (up to 6), FeOtotal/MgO (4.6-6.1) and (Na2O + K2O)/Al2O3 (0.50-0.61) ratios but low CaO (0.6-1.6 wt%) and Na2O (1.8-2.6 wt%) contents. The Comei granite also has variable peraluminous compositions (A/CNK = 1.00-1.36) along with zircon δ18O, εNd(t) and initial 87Sr/86Sr values of 8.2‰ to 9.3‰, - 13.0 to - 12.4 and 0.7238 to 0.7295, respectively. This range of compositions can be interpreted as the interaction between high-temperature upwelling OIB type basaltic magmas and a shallow crustal (The Comei granite and coeval OIB type basaltic rock could represent the earliest stage (145-140 Ma) of a large igneous event in eastern Tethyan Himalaya, which may well have been triggered by pre-breakup lithospheric extension prior to the arrival of the Kerguelen plume head.

  18. Geomagnetic Observatory Database February 2004 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) maintains an active database of worldwide geomagnetic observatory...

  19. On polar daily geomagnetic variation

    Directory of Open Access Journals (Sweden)

    Paola De Michelis


    Full Text Available The aim of this work is to investigate the nature of the daily magnetic field perturbations produced by ionospheric and magnetospheric currents at high latitudes. We analyse the hourly means of the X and Y geomagnetic field components recorded by a meridian chain of permanent geomagnetic observatories in the polar region of the Northern Hemisphere during a period of four years (1995-1998 around the solar minimum. We apply a mathematical method, known as natural orthogonal component (NOC, which is capable of characterizing the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs. Using the first two modes we reconstruct a two-dimensional equivalent current representation of the ionospheric electric currents, which contribute substantially to the geomagnetic daily variations. The obtained current structures resemble the equivalent current patterns of DP2 and DP1. We characterize these currents by studying their evolution with the geomagnetic activity level and by analysing their dependence on the interplanetary magnetic field. The obtained results support the idea of a coexistence of two main processes during all analysed period although one of them, the directly driven process, represents the dominant component of the geomagnetic daily variation.

  20. Final results on the Jurassic-Cretaceous boundary in the Gresten Klippenbelt (Austria): Macro-, micro-, nannofossils, isotopes, geochemistry, susceptibility, gamma-log and palaeomagnetic data as environmental proxies of the early Penninic Ocean history (United States)

    Lukeneder, A.; Halásová, E.; Kroh, A.; Mayrhofer, S.; Pruner, P.; Reháková, D.; Schnabl, P.; Sprovieri, M.


    Jurassic to Lower Cretaceous pelagic sediments are well known to form a major element of the northernmost tectonic units of the Gresten Klippenbelt (Lower Austria). The Penninic Ocean was a side tract of the Central Atlantic Oceanic System intercalated between the European and the Austroalpine plates. Its opening started during the Mid Jurrasic, as rifting of the of the oceanic crust between the European and the Austroalpine plates. The turnover of the deposition on the European shelf (Helvetic Zone) from deep-water siliciclastics into pelagic carbonates is correlated with the deepening of this newly arising ocean. Within the Gresten Klippenbelt Unit, this transition is reflected by the lithostratigraphic boundary between the Tithonian marl-limestone succession and the Berriasian limestones of the Blassenstein Formation. This boundary is well exposed in a newly discovered site at Nutzhof, in the heart of Lower Austria (Kroh and Lukeneder 2009, Lukeneder 2009, Pruner, Schnabl, and Lukeneder 2009, Reháková, Halásová and Lukeneder 2009). Biostratigraphy. According to microfossil (calcareous dinoflagellates, calpionellids) and palaeomagnetic data, the association indicates that the cephalopod-bearing beds of the Nutzhof section belong to the Carpistomiosphaera tithonica-Zone of the Early Tithonian up to the Calpionella Zone of the Middle Berriasian. This interval corresponds to the ammonoid zones from the Early Tithonian Hybonoticeras hybonotum-Zone up to the Middle Berriasian Subthurmannia occitanica-Zone. Ammonoids. Late Jurassic to Early Cretaceous ammonoids were collected at the Nutzhof locality in the eastern part of the Gresten Klippenbelt in Lower Austria. The cephalopod fauna from the Blassenstein Formation, correlated with micro- and nannofossil data from the marly unit and the limestone unit, indicates Early Tithonian to Middle Berriasian age (Hybonoticeras hybonotum Zone up to the Subthurmannia occitanica Zone). According to the correlation of the fossil

  1. Evidence for a new geomagnetic jerk in 2014

    DEFF Research Database (Denmark)

    Torta, J. Miquel; Pavón-Carrasco, Francisco Javier; Marsal, Santiago


    The production of quasi-definitive data at Ebre observatory has enabled us to detect a new geomagnetic jerk in early 2014. This has been confirmed by analyzing data at several observatories in the European-African and Western Pacific-Australian sectors in the classical fashion of looking for the ...

  2. Molecular fossils in Cretaceous condensate from western India (United States)

    Bhattacharya, Sharmila; Dutta, Suryendu; Dutta, Ratul


    The present study reports the biomarker distribution of condensate belonging to the early Cretaceous time frame using gas chromatography-mass spectrometry (GC-MS). The early Cretaceous palaeoenvironment was inscribed into these molecular fossils which reflected the source and conditions of deposition of the condensate. The saturate fraction of the condensate is characterized by normal alkanes ranging from n-C9 to n-C29 (CPI-1.13), cycloalkanes and C14 and C15 sesquiterpanes. The aromatic fraction comprises of naphthalene, phenanthrene, their methylated derivatives and cyclohexylbenzenes. Isohexylalkylnaphthalenes, a product of rearrangement process of terpenoids, is detected in the condensate. Several aromatic sesquiterpenoids and diterpenoids have been recorded. Dihydro- ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during the Cretaceous time.

  3. Effect of geomagnetic storms on VHF scintillations observed at low latitude (United States)

    Singh, S. B.; Patel, Kalpana; Singh, A. K.


    A geomagnetic storm affects the dynamics and composition of the ionosphere and also offers an excellent opportunity to study the plasma dynamics. In the present study, we have used the VHF scintillations data recorded at low latitude Indian station Varanasi (Geomag. latitude = 14^{°}55^' }N, long. = 154^{°}E) which is radiated at 250 MHz from geostationary satellite UFO-02 during the period 2011-2012 to investigate the effects of geomagnetic storms on VHF scintillation. Various geomagnetic and solar indices such as Dst index, Kp index, IMF Bz and solar wind velocity (Vx) are used to describe the geomagnetic field variation observed during geomagnetic storm periods. These indices are very helpful to find out the proper investigation and possible interrelation between geomagnetic storms and observed VHF scintillation. The pre-midnight scintillation is sometimes observed when the main phase of geomagnetic storm corresponds to the pre-midnight period. It is observed that for geomagnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time and extends to early morning hours.

  4. Cretaceous Crocodyliforms from the Sahara

    Directory of Open Access Journals (Sweden)

    Paul Sereno


    Full Text Available Diverse crocodyliforms have been discovered in recent years in Cretaceous rocks on southern landmasses formerly composing Gondwana.  We report here on six species from the Sahara with an array of trophic adaptations that significantly deepen our current understanding of African crocodyliform diversity during the Cretaceous period.  We describe two of these species (Anatosuchus minor, Araripesuchus wegeneri from nearly complete skulls and partial articulated skeletons from the Lower Cretaceous Elrhaz Formation (Aptian-Albian of Niger. The remaining four species (Araripesuchus rattoides sp. n., Kaprosuchus saharicus gen. n. sp. n., Laganosuchus thaumastos gen. n. sp. n., Laganosuchus maghrebensis gen. n. sp. n. come from contemporaneous Upper Cretaceous formations (Cenomanian in Niger and Morocco.

  5. Late Jurassic – early Cretaceous inversion of rift structures, and linkage of petroleum system elements across post-rift unconformity, U.S. Chukchi Shelf, arctic Alaska (United States)

    Houseknecht, David W.; Connors, Christopher D.


    Basin evolution of the U.S. Chukchi shelf involved multiple phases, including Late Devonian–Permian rifting, Permian–Early Jurassic sagging, Late Jurassic–Neocomian inversion, and Cretaceous–Cenozoic foreland-basin development. The focus of ongoing exploration is a petroleum system that includes sag-phase source rocks; inversion-phase reservoir rocks; structure spanning the rift, sag, and inversion phases; and hydrocarbon generation during the foreland-basin phase.

  6. Biological effects of geomagnetic storms

    International Nuclear Information System (INIS)

    Chibisov, S.M.; Breus, T.K.; Levitin, A.E.; Drogova, G.M.; AN SSSR, Moscow; AN SSSR, Moscow


    Six physiological parameters of cardio-vascular system of rabbits and ultrastructure of cardiomyocytes were investigated during two planetary geomagnetic storms. At the initial and main phase of the storm the normal circadian structure in each cardiovascular parameter was lost. The disynchronozis was growing together with the storm and abrupt drop of cardia activity was observed during the main phase of storm. The main phase of storm followed by the destruction and degradation of cardiomyocytes. Parameters of cardia activity became substantially synchronized and characterized by circadian rhythm structure while the amplitude of deviations was still significant at the recovery stage of geomagnetic storm. 3 refs.; 7 figs

  7. Geomagnetic control of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    J. Bremer


    Full Text Available Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E from 1994 until 1997 polar mesosphere summer echoes (PMSE have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E. During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.Keywords: Ionosphere (auroral ionosphere - Magnetospheric physics (energetic particles, precipitating - Radio science (remote sensing

  8. Petrogenesis of an Early Cretaceous lamprophyre dike from Kyoto Prefecture, Japan: Implications for the generation of high-Nb basalt magmas in subduction zones (United States)

    Imaoka, Teruyoshi; Kawabata, Hiroshi; Nagashima, Mariko; Nakashima, Kazuo; Kamei, Atsushi; Yagi, Koshi; Itaya, Tetsumaru; Kiji, Michio


    We studied a 107 Ma vogesite (a kind of lamprophyre with alkali-feldspar > plagioclase, and hornblende ± clinopyroxene ± biotite) dike in the Kinki district of the Tamba Belt, Kyoto Prefecture, SW Japan, using petrography, mineralogy, K-Ar ages, and geochemistry to evaluate its petrogenesis and tectonic implications. The dike has the very specific geochemical characteristics of a primitive high-Mg basalt, with 48-50 wt.% SiO2 (anhydrous basis), high values of Mg# (67.3-72.4), and high Cr ( 431 ppm), Ni ( 371 ppm), and Co ( 52 ppm) contents. The vogesite is alkaline and ne-normative with high concentrations of large ion lithophile elements (LILEs: Sr = 1270-2200 ppm, Ba = 3910-26,900 ppm), light rare earth elements (LREEs) [(La/Yb)n = 58-62), and high field strength elements (HFSEs: TiO2 = 1.5-1.8 wt.%, Nb = 24-33 ppm, Zr = 171-251 ppm), and the vogesite can be classified as a high-Nb basalt (HNB). The vogesite was formed by the lowest degree of melting of metasomatized mantle in the garnet stability field, and it may also have been formed at higher melting pressures than other Kyoto lamprophyres. The low degree of melting is the primary reason for the high-Nb content of the vogesite, not mantle metasomatism, and a higher degree of melting would have changed the primary magma composition from a HNB to a Nb-enriched basalt (NEB). The vogesite magma was contaminated at an early stage of its development by melts derived from sediments drawn down a subduction zone, as indicated by some geochemical indices and the initial Nd isotope ratios. The vogesite exhibits positive correlations between εSr(107 Ma) values (5.4-50.9) and its high Ba and Sr concentrations, and it has a limited range of εNd(107 Ma) values (+ 0.97 to + 2.4). The fact that the vogesite contains centimeter-sized xenoliths of chert, which are composed of polycrystalline quartz, calcite, barite, pyrite, and magnetite, indicates that the barium contamination took place during the ascent of the

  9. Ice ages and geomagnetic reversals (United States)

    Wu, Patrick


    There have been speculations on the relationship between climatic cooling and polarity reversals of the earth's magnetic field during the Pleistocene. Two of the common criticisms on this relationship have been the reality of these short duration geomagnetic events and the accuracy of their dates. Champion et al. (1988) have reviewed recent progress in this area. They identified a total of 10 short-duration polarity events in the last 1 Ma and 6 of these events have been found in volcanic rocks, which also have K-Ar dates. Supposing that the speculated relationship between climatic cooling and geomagnetic reversals actually exist, two mechanisms that assume climatic cooling causes short period magnetic reversals will be investigated. These two methods are core-mantle boundary topography and transfer of the rotational energy to the core.

  10. Geomagnetic effects caused by rocket exhaust jets

    Directory of Open Access Journals (Sweden)

    Lipko Yu.V.


    Full Text Available In the space experiment Radar–Progress, we have made 33 series of measurements of geomagnetic variations during ignitions of engines of Progress cargo spacecraft in low Earth orbit. We used magneto-measuring complexes, installed at observatories of the Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences, and magnetotelluric equipment of a mobile complex. We assumed that engine running can cause geomagnetic disturbances in field tubes crossed by the spacecraft. When analyzing experimental data, we took into account the following space weather factors: solar wind parameters, total daily mid-latitude geomagnetic activity index Kр, geomagnetic auroral electrojet index AE, global geomagnetic activity. The empirical data we obtained indicate that 18 of the 33 series showed geomagnetic variations with various periods.

  11. Geomagnetic Observations for Main Field Studies

    DEFF Research Database (Denmark)

    Matzka, Jürgen; Chulliat, A.; Mandea, M.


    Direct measurements of the geomagnetic field have been made for more than 400 years, beginning with individual determinations of the angle between geographic and magnetic North. This was followed by the start of continuous time series of full vector measurements at geomagnetic observatories...... and the beginning of geomagnetic repeat stations surveys in the 19th century. In the second half of the 20th century, true global coverage with geomagnetic field measurements was accomplished by magnetometer payloads on low-Earth-orbiting satellites. This article describes the procedures and instruments...... for magnetic field measurements on ground and in space and covers geomagnetic observatories, repeat stations, automatic observatories, satellites and historic observations. Special emphasis is laid on the global network of geomagnetic observatories....

  12. The Geomagnetic Field During a Reversal (United States)

    Heirtzler, James R.


    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  13. Geomagnetic storms in the Antarctic F-region

    International Nuclear Information System (INIS)

    Wrenn, G.L.; Rodger, A.S.; Rishbeth, H.


    New analysis procedures are used to show that the main phase mid-latitude storm effects conform to consistent patterns in local time when suitable selection rules are applied, with averaging over several years. Changes in the maximum plasma frequency, foF2, with respect to estimated quiet-time values, are analysed in terms of asub(p)(t), a new geomagnetic index derived to take account of integrated disturbance. Reduction of foF2 is greatest during the early morning hours, in summer, at higher geomagnetic latitudes, near solar minimum and through the more active periods. The various dependencies are quantitatively determined for the first time by creating an average 'steady state' disturbance, rather than following specific storm events. This approach permits tests of competing theories using available modelling programs. (author)

  14. Shallow magnetic inclinations in the Cretaceous Valle Group, Baja California: remagnetization, compaction, or terrane translation? (United States)

    Smith, Douglas P.; Busby, Cathy J.


    Paleomagnetic data from Albian to Turonian sedimentary rocks on Cedros Island, Mexico (28.2° N, 115.2° W) support the interpretation that Cretaceous rocks of western Baja California have moved farther northward than the 3° of latitude assignable to Neogene oblique rifting in the Gulf of California. Averaged Cretaceous paleomagnetic results from Cedros Island support 20 ± 10° of northward displacement and 14 ± 7° of clockwise rotation with respect to cratonic North America. Positive field stability tests from the Vizcaino terrane substantiate a mid-Cretaceous age for the high-temperature characteristic remanent magnetization in mid-Cretaceous strata. Therefore coincidence of characteristic magnetization directions and the expected Quaternary axial dipole direction is not due to post mid-Cretaceous remagnetization. A slump test performed on internally coherent, intrabasinal slump blocks within a paleontologically dated olistostrome demonstrates a mid-Cretaceous age of magnetization in the Valle Group. The in situ high-temperature natural remanent magnetization directions markedly diverge from the expected Quaternary axial dipole, indicating that the characteristic, high-temperature magnetization was acquired prior to intrabasinal slumping. Early acquisition of the characteristic magnetization is also supported by a regional attitude test involving three localities in coherent mid-Cretaceous Valle Group strata. Paleomagnetic inclinations in mudstone are not different from those in sandstone, indicating that burial compaction did not bias the results toward shallow inclinations in the Vizcaino terrane.

  15. VLF Wave Properties During Geomagnetic Storms (United States)

    Blancarte, J.; Artemyev, A.; Mozer, F.; Agapitov, O. V.


    Whistler-mode chorus is important for the global dynamics of the inner magnetosphere electron population due to its ability to scatter and accelerate electrons of a wide energy range in the outer radiation belt. The parameters of these VLF emissions change dynamically during geomagnetic storms. Presented is an analysis of four years of Van Allen probe data, utilizing electric and magnetic field in the VLF range focused on the dynamics of chorus wave properties during the enhancement of geomagnetic activity. It is found that VLF emissions respond to geomagnetic storms in more complicated ways than just by affecting the waves' amplitude growth or depletion. Oblique wave amplitudes grow together with parallel waves during periods of intermediate geomagnetic activity, while the occurrence rate of oblique waves decreases during larger geomagnetic storms.

  16. Daily variation characteristics at polar geomagnetic observatories (United States)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.


    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  17. Lower Cretaceous Puez key-section in the Dolomites - towards the mid-Cretaceous super-greenhouse (United States)

    Lukeneder, A.; Halásová, E.; Rehákova, D.; Józsa, Š.; Soták, J.; Kroh, A.; Jovane, L.; Florindo, F.; Sprovieri, M.; Giorgioni, M.; Lukeneder, S.


    Investigations on different fossil groups in addition to isotopic, paleomagnetic and geochemical analysis are combined to extract the Early Cretaceous history of environmental changes, as displayed by the sea level and climate changes. Results on biostratigraphy are integrated with other dating methods as magnetostraigraphy, correlation and cyclostratigraphy. The main investigation topics of the submitted project within the above-described framework are the biostratigraphic (Lukeneder and Aspmair, 2006, 2012), palaeoecological (Lukeneder, 2008, 2012), palaeobiogeographic, lithostratigraphic (Lukeneder, 2010, 2011), cyclostratigraphic and magnetostratigraphic development of the Early Cretaceous in the Puez area. The main sections occur in expanded outcrops located on the southern margin of the Puez Plateau, within the area of the Puez-Geisler Natural Park, in the northern part of the Dolomites (South Tyrol, North Italy). The cephalopod, microfossil and nannofossil faunas and floras from the marly limestones to marls here indicates Hauterivian to Albian/Cenomanian age. Oxygen isotope values from the Lower Cretaceous Puez Formation show a decreasing trend throughout the log, from -1.5‰ in the Hauterivian to -4.5‰ in the Albian/Cenomanian. The decreasing values mirror an increasing trend in palaeotemperatures from ~ 15-18°C in the Hauterivian up to ~25-30 °C in the Albian/Cenomanian. The trend probably indicates the positive shift in temperature induced by the well known Mid Cretaceous Ocean warming (e.g., Super-Greenhouse). The cooperative project (FWF project P20018-N10; 22 international scientists): An integrative high resolution project. Macro- and microfossils, isotopes, litho-, cyclo-, magneto-and biostratigraphy as tools for investigating the Lower Cretaceous within the Dolomites (Southern Alps, Northern Italy) -The Puez area as a new key region of the Tethyan Realm), is on the way since 2008 by the Natural History Museum in Vienna and the 'Naturmuseum S

  18. Highly specialized mammalian skulls from the Late Cretaceous of South America. (United States)

    Rougier, Guillermo W; Apesteguía, Sebastián; Gaetano, Leandro C


    Dryolestoids are an extinct mammalian group belonging to the lineage leading to modern marsupials and placentals. Dryolestoids are known by teeth and jaws from the Jurassic period of North America and Europe, but they thrived in South America up to the end of the Mesozoic era and survived to the beginnings of the Cenozoic. Isolated teeth and jaws from the latest Cretaceous of South America provide mounting evidence that, at least in western Gondwana, dryolestoids developed into strongly endemic groups by the Late Cretaceous. However, the lack of pre-Late Cretaceous dryolestoid remains made study of their origin and early diversification intractable. Here we describe the first mammalian remains from the early Late Cretaceous of South America, including two partial skulls and jaws of a derived dryolestoid showing dental and cranial features unknown among any other group of Mesozoic mammals, such as single-rooted molars preceded by double-rooted premolars, combined with a very long muzzle, exceedingly long canines and evidence of highly specialized masticatory musculature. On one hand, the new mammal shares derived features of dryolestoids with forms from the Jurassic of Laurasia, whereas on the other hand, it is very specialized and highlights the endemic, diverse dryolestoid fauna from the Cretaceous of South America. Our specimens include only the second mammalian skull known for the Cretaceous of Gondwana, bridging a previous 60-million-year gap in the fossil record, and document the whole cranial morphology of a dryolestoid, revealing an unsuspected morphological and ecological diversity for non-tribosphenic mammals.

  19. Time variations in geomagnetic intensity (United States)

    Valet, Jean-Pierre


    After many years spent by paleomagnetists studying the directional behavior of the Earth's magnetic field at all possible timescales, detailed measurements of field intensity are now needed to document the variations of the entire vector and to analyze the time evolution of the field components. A significant step has been achieved by combining intensity records derived from archeological materials and from lava flows in order to extract the global field changes over the past 12 kyr. A second significant step was due to the emergence of coherent records of relative paleointensity using the remanent magnetization of sediments to retrace the evolution of the dipole field. A third step was the juxtaposition of these signals with those derived from cosmogenic isotopes. Contemporaneous with the acquisition of records, new techniques have been developed to constrain the geomagnetic origin of the signals. Much activity has also been devoted to improving the quality of determinations of absolute paleointensity from volcanic rocks with new materials, proper selection of samples, and investigations of complex changes in magnetization during laboratory experiments. Altogether these developments brought us from a situation where the field changes were restricted to the past 40 kyr to the emergence of a coherent picture of the changes in the geomagnetic dipole moment for at least the past 1 Myr. On longer timescales the field variability and its average behavior is relatively well documented for the past 400 Myr. Section 3 gives a summary of most methods and techniques that are presently used to track the field intensity changes in the past. In each case, current limits and potential promises are discussed. The section 4 describes the field variations measured so far over various timescales covered by the archeomagnetic and the paleomagnetic records. Preference has always been given to composite records and databases in order to extract and discuss major and global geomagnetic

  20. Kinematic reversal schemes for the geomagnetic dipole. (United States)

    Levy, E. H.


    Fluctuations in the distribution of cyclonic convective cells, in the earth's core, can reverse the sign of the geomagnetic field. Two kinematic reversal schemes are discussed. In the first scheme, a field maintained by cyclones concentrated at low latitude is reversed by a burst of cyclones at high latitude. Conversely, in the second scheme, a field maintained predominantly by cyclones in high latitudes is reversed by a fluctuation consisting of a burst of cyclonic convection at low latitude. The precise fluid motions which produce the geomagnetic field are not known. However, it appears that, whatever the details are, a fluctuation in the distribution of cyclonic cells over latitude can cause a geomagnetic reversal.

  1. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils


    We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...

  2. Solar wind and geomagnetism: toward a standard classification of geomagnetic activity from 1868 to 2009

    Directory of Open Access Journals (Sweden)

    J. L. Zerbo


    Full Text Available We examined solar activity with a large series of geomagnetic data from 1868 to 2009. We have revisited the geomagnetic activity classification scheme of Legrand and Simon (1989 and improve their scheme by lowering the minimum Aa index value for shock and recurrent activity from 40 to 20 nT. This improved scheme allows us to clearly classify about 80% of the geomagnetic activity in this time period instead of only 60% for the previous Legrand and Simon classification.

  3. A basal thunnosaurian from Iraq reveals disparate phylogenetic origins for Cretaceous ichthyosaurs (United States)

    Fischer, Valentin; Appleby, Robert M.; Naish, Darren; Liston, Jeff; Riding, James B.; Brindley, Stephen; Godefroit, Pascal


    Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed. PMID:23676653

  4. Integrated geophysical and geological study and petroleum appraisal of Cretaceous plays in the Western Gulf of Gabes, Tunisia (United States)

    Dkhaili, Noomen; Bey, Saloua; El Abed, Mahmoud; Gasmi, Mohamed; Inoubli, Mohamed Hedi


    An integrated study of available seismic and calibrated wells has been conducted in order to ascertain the structural development and petroleum potential of the Cretaceous Formations of the Western Gulf of Gabes. This study has resulted in an understanding of the controls of deep seated Tethyan tectonic lineaments by analysis of the Cretaceous deposits distribution. Three main unconformities have been identified in this area, unconformity U1 between the Jurassic and Cretaceous series, unconformity U2 separating Early from Late Cretaceous and known as the Austrian unconformity and the major unconformity U3 separating Cretaceous from Tertiary series. The seismic analysis and interpretation have confirmed the existence of several features dominated by an NE-SW extensive tectonic regime evidenced by deep listric faults, asymmetric horst and graben and tilted blocks structures. Indeed, the structural mapping of these unconformities, displays the presence of dominant NW-SE fault system (N140 to N160) bounding a large number of moderate sized basins. A strong inversion event related to the unconformity U3 can be demonstrated by the mapping of the unconformities consequence of the succession of several tectonic manifestations during the Cretaceous and post-Cretaceous periods. These tectonic events have resulted in the development of structural and stratigraphic traps further to the porosity and permeability enhancement of Cretaceous reservoirs.

  5. Geomagnetism solid Earth and upper atmosphere perspectives

    CERN Document Server

    Basavaiah, Nathani


    This volume elaborates several important aspects of solid Earth geomagnetism. It covers all the basics of the subject, including biomagnetism and instrumentation, and offers a number of practical applications with carefully selected examples and illustrations.

  6. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Frankel, R.B.; Blakemore, R.P.; Araujo, F.F.T. de; Esquivel, D.M.S.; Danon, J.


    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author) [pt

  7. Toward a possible next geomagnetic transition?


    A. De Santis; E. Qamili; L. Wu


    The geomagnetic field is subject to possible reversals or excursions of polarity during its temporal evolution. Considering that: (a) the typical average time between one reversal and the next (the so-called chron) is around 300 000 yr, (b) the last reversal occurred around 780 000 yr ago, (c) more excursions (rapid changes of polarity) can occur within the same chron and (d) the geomagnetic field dipole is currently decreasing, a possible imminent geomagne...

  8. How the geomagnetic field vector reverses polarity (United States)

    Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.


    A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.

  9. Paleoenvironments of the Jurassic and Cretaceous Oceans: Selected Highlights (United States)

    Ogg, J. G.


    There are many themes contributing to the sedimentation history of the Mesozoic oceans. This overview briefly examines the roles of the carbonate compensation depth (CCD) and the associated levels of atmospheric carbon dioxide, of the evolution of marine calcareous microplankton, of major transgressive and regressive trends, and of super-plume eruptions. Initiation of Atlantic seafloor spreading in the Middle Jurassic coincided with an elevated carbonate compensation depth (CCD) in the Pacific-Tethys mega-ocean. Organic-rich sediments that would become the oil wealth of regions from Saudi Arabia to the North Sea were deposited during a continued rise in CCD during the Oxfordian-early Kimmeridgian, which suggests a possible increase in carbon dioxide release by oceanic volcanic activity. Deep-sea deposits in near-equatorial settings are dominated by siliceous shales or cherts, which reflect the productivity of siliceous microfossils in the tropical surface waters. The end-Jurassic explosion in productivity by calcareous microplankton contributed to the lowering of the CCD and onset of the chalk ("creta") deposits that characterize the Tithonian and lower Cretaceous in all ocean basins. During the mid-Cretaceous, the eruption of enormous Pacific igneous provinces (Ontong Java Plateau and coeval edifices) increased carbon dioxide levels. The resulting rise in CCD terminated chalk deposition in the deep sea. The excess carbon was progressively removed in widespread black-shale deposits in the Atlantic basins and other regions - another major episode of oil source rock. A major long-term transgression during middle and late Cretaceous was accompanied by extensive chalk deposition on continental shelves and seaways while the oceanic CCD remained elevated. Pacific guyots document major oscillations (sequences) of global sea level superimposed on this broad highstand. The Cretaceous closed with a progressive sea-level regression and lowering of the CCD that again enabled

  10. Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition. (United States)

    Benson, Roger B J; Druckenmiller, Patrick S


    Marine and terrestrial animals show a mosaic of lineage extinctions and diversifications during the Jurassic-Cretaceous transition. However, despite its potential importance in shaping animal evolution, few palaeontological studies have focussed on this interval and the possible climate and biotic drivers of its faunal turnover. In consequence evolutionary patterns in most groups are poorly understood. We use a new, large morphological dataset to examine patterns of lineage diversity and disparity (variety of form) in the marine tetrapod clade Plesiosauria, and compare these patterns with those of other organisms. Although seven plesiosaurian lineages have been hypothesised as crossing the Jurassic-Cretaceous boundary, our most parsimonious topology suggests the number was only three. The robust recovery of a novel group including most Cretaceous plesiosauroids (Xenopsaria, new clade) is instrumental in this result. Substantial plesiosaurian turnover occurred during the Jurassic-Cretaceous boundary interval, including the loss of substantial pliosaurid, and cryptoclidid diversity and disparity, followed by the radiation of Xenopsaria during the Early Cretaceous. Possible physical drivers of this turnover include climatic fluctuations that influenced oceanic productivity and diversity: Late Jurassic climates were characterised by widespread global monsoonal conditions and increased nutrient flux into the opening Atlantic-Tethys, resulting in eutrophication and a highly productive, but taxonomically depauperate, plankton. Latest Jurassic and Early Cretaceous climates were more arid, resulting in oligotrophic ocean conditions and high taxonomic diversity of radiolarians, calcareous nannoplankton and possibly ammonoids. However, the observation of discordant extinction patterns in other marine tetrapod groups such as ichthyosaurs and marine crocodylomorphs suggests that clade-specific factors may have been more important than overarching extrinsic drivers of faunal

  11. Extended Late-Cretaceous Magnetostratigraphy of the James Ross Basin Island, Antarctica (United States)

    Chaffee, T. M.; Mitchell, R.; Slotznick, S. P.; Buz, J.; Biasi, J.; O'Rourke, J.; Sousa, F.; Flannery, D.; Fu, R. R.; Kirschvink, J. L.


    Sediments in the James Ross Island Basin (JRB) in the West Antarctic Peninsula contain one of the world's highest-resolution records of the late Cretaceous period, including the end-Cretaceous (K-Pg) mass extinction event. However, the geological record of this region has been poorly studied, limited in the past only to the relative dating of local fossils. Recent studies of this region have provided only low-resolution data, with gaps of greater than 0.5 million years between samples where no data was collected. A high-resolution magnetostratigraphic sampling and analysis is necessary in order to accurately determine the age of the JRB sediments and connect them to the global time record. During the 2016 field season in Antarctica, our team collected nearly 1,300 sample cores from JRB sediments using a diamond-tipped, gasoline powered coring drill. Drill sites were densely clustered across bedding in order to obtain a high-resolution record of magnetostratigraphy, permitting the recognition of distinct, high-resolution units of time (group of over 300 of these samples from the Brandy Bay area which constrain the end of the Cretaceous Superchron (C34N) and the C34N/C34R reversal and allow us to investigate the presence of geomagnetic excursions before the end of superchron. These samples span in age from the top of C34N to the mid-Maastrichtian. We also test the Late Cretaceous True Polar Wander (TPW) hypothesis. Current theories on the global extent of TPW are not substantiated by any data sets that confirm the presence and similarity of the effect across multiple continents. Evidence of a rapid TPW oscillation in Antarctica can be correlated with other samples from the North American continent currently under study to provide evidence for the theory of global, short-timescale TPW.

  12. Statistical analysis of geomagnetic field variations during solar eclipses (United States)

    Kim, Jung-Hee; Chang, Heon-Young


    We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.

  13. From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania) (United States)

    Reiser, Martin Kaspar; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard


    New Ar-Ar muscovite and Rb-Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on the timing and kinematics of deformation during the Cretaceous. Time-temperature paths from the structurally highest basement nappe of the Apuseni Mountains in combination with sedimentary data indicate exhumation and a position close to the surface after the Late Jurassic emplacement of the South Apuseni Ophiolites. Early Cretaceous Ar-Ar muscovite ages from structurally lower parts in the Biharia Nappe System (Dacia Mega-Unit) show cooling from medium-grade conditions. NE-SW-trending stretching lineation and associated kinematic indicators of this deformation phase (D1) are overprinted by top-NW-directed thrusting during D2. An Albian to Turonian age (110-90 Ma) is proposed for the main deformation (D2) that formed the present-day geometry of the nappe stack and led to a pervasive retrograde greenschist-facies overprint. Thermochronological and structural data from the Bihor Unit (Tisza Mega-Unit) allowed to establish E-directed differential exhumation during Early-Late Cretaceous times (D3.1). Brittle detachment faulting (D3.2) and the deposition of syn-extensional sediments indicate general uplift and partial surface exposure during the Late Cretaceous. Brittle conditions persist during the latest Cretaceous compressional overprint (D4).

  14. Geometric effects of ICMEs on geomagnetic storms (United States)

    Cho, KyungSuk; Lee, Jae-Ok


    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  15. Cretaceous rocks of the Western Interior basin

    International Nuclear Information System (INIS)

    Molenaar, C.M.; Rice, D.D.


    The Cretaceous rocks of the conterminous United States are discussed in this chapter. Depositional facies and lithology are reviewed along with economic resources. The economic resources include coal, hydrocarbons, and uranium

  16. Coronal mass ejections and large geomagnetic storms

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.


    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, the authors find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978-Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense

  17. Recent Activities Of The World Data Centre For Geomagnetism (Edinburgh)


    Reay, Sarah; Humphries, Tom; Macmillan, Susan; Flower, Simon; Stevenson, Peter; Clarke, Ellen


    For almost 50 years the World Data Centre for Geomagnetism (Edinburgh) has been a custodian of geomagnetic data. In particular, over recent years the scope of the data holdings has been increased, quality control measures introduced and better interfaces to make the data more accessible to users are being developed. The WDC hold geomagnetic time-series data from around 280 observatories worldwide at a number of time resolutions along with various magnetic survey, model, and geomagnetic ac...

  18. Dinosaurs and the Cretaceous Terrestrial Revolution (United States)

    Lloyd, Graeme T; Davis, Katie E; Pisani, Davide; Tarver, James E; Ruta, Marcello; Sakamoto, Manabu; Hone, David W.E; Jennings, Rachel; Benton, Michael J


    The observed diversity of dinosaurs reached its highest peak during the mid- and Late Cretaceous, the 50 Myr that preceded their extinction, and yet this explosion of dinosaur diversity may be explained largely by sampling bias. It has long been debated whether dinosaurs were part of the Cretaceous Terrestrial Revolution (KTR), from 125–80 Myr ago, when flowering plants, herbivorous and social insects, squamates, birds and mammals all underwent a rapid expansion. Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts occurred largely in the first one-third of the group's history. Despite the appearance of new clades of medium to large herbivores and carnivores later in dinosaur history, these new originations do not correspond to significant diversification shifts. Instead, the overall geometry of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the KTR. PMID:18647715

  19. New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae) (United States)

    Perrichot, Vincent; Nel, André; Néraudeau, Didier; Lacau, Sébastien; Guyot, Thierry


    Recent studies on the ant phylogeny are mainly based on the molecular analyses of extant subfamilies and do not include the extinct, only Cretaceous subfamily Sphecomyrminae. However, the latter is of major importance for ant relationships, as it is considered the most basal subfamily. Therefore, each new discovery of a Mesozoic ant is of high interest for improving our understanding of their early history and basal relationships. In this paper, a new sphecomyrmine ant, allied to the Burmese amber genus Haidomyrmex, is described from mid-Cretaceous amber of France as Haidomyrmodes mammuthus gen. and sp. n. The diagnosis of the tribe Haidomyrmecini is emended based on the new type material, which includes a gyne (alate female) and two incomplete workers. The genus Sphecomyrmodes, hitherto known by a single species from Burmese amber, is also reported and a new species described as S. occidentalis sp. n. after two workers remarkably preserved in a single piece of Early Cenomanian French amber. The new fossils provide additional information on early ant diversity and relationships and demonstrate that the monophyly of the Sphecomyrminae, as currently defined, is still weakly supported.

  20. Improvements in geomagnetic observatory data quality

    DEFF Research Database (Denmark)

    Reda, Jan; Fouassier, Danielle; Isac, Anca


    between observatories and the establishment of observatory networks has harmonized standards and practices across the world; improving the quality of the data product available to the user. Nonetheless, operating a highquality geomagnetic observatory is non-trivial. This article gives a record...... of the current state of observatory instrumentation and methods, citing some of the general problems in the complex operation of geomagnetic observatories. It further gives an overview of recent improvements of observatory data quality based on presentation during 11th IAGA Assembly at Sopron and INTERMAGNET...

  1. A simple statistical model for geomagnetic reversals (United States)

    Constable, Catherine


    The diversity of paleomagnetic records of geomagnetic reversals now available indicate that the field configuration during transitions cannot be adequately described by simple zonal or standing field models. A new model described here is based on statistical properties inferred from the present field and is capable of simulating field transitions like those observed. Some insight is obtained into what one can hope to learn from paleomagnetic records. In particular, it is crucial that the effects of smoothing in the remanence acquisition process be separated from true geomagnetic field behavior. This might enable us to determine the time constants associated with the dominant field configuration during a reversal.

  2. Geomagnetic Storm Impact On GPS Code Positioning (United States)

    Uray, Fırat; Varlık, Abdullah; Kalaycı, İbrahim; Öǧütcü, Sermet


    This paper deals with the geomagnetic storm impact on GPS code processing with using GIPSY/OASIS research software. 12 IGS stations in mid-latitude were chosen to conduct the experiment. These IGS stations were classified as non-cross correlation receiver reporting P1 and P2 (NONCC-P1P2), non-cross correlation receiver reporting C1 and P2 (NONCC-C1P2) and cross-correlation (CC-C1P2) receiver. In order to keep the code processing consistency between the classified receivers, only P2 code observations from the GPS satellites were processed. Four extreme geomagnetic storms October 2003, day of the year (DOY), 29, 30 Halloween Storm, November 2003, DOY 20, November 2004, DOY 08 and four geomagnetic quiet days in 2005 (DOY 92, 98, 99, 100) were chosen for this study. 24-hour rinex data of the IGS stations were processed epoch-by-epoch basis. In this way, receiver clock and Earth Centered Earth Fixed (ECEF) Cartesian Coordinates were solved for a per-epoch basis for each day. IGS combined broadcast ephemeris file (brdc) were used to partly compensate the ionospheric effect on the P2 code observations. There is no tropospheric model was used for the processing. Jet Propulsion Laboratory Application Technology Satellites (JPL ATS) computed coordinates of the stations were taken as true coordinates. The differences of the computed ECEF coordinates and assumed true coordinates were resolved to topocentric coordinates (north, east, up). Root mean square (RMS) errors for each component were calculated for each day. The results show that two-dimensional and vertical accuracy decreases significantly during the geomagnetic storm days comparing with the geomagnetic quiet days. It is observed that vertical accuracy is much more affected than the horizontal accuracy by geomagnetic storm. Up to 50 meters error in vertical component has been observed in geomagnetic storm day. It is also observed that performance of Klobuchar ionospheric correction parameters during geomagnetic storm

  3. Resolving the Timing of Events Around the Cretaceous-Paleogene Boundary (United States)

    Sprain, Courtney Jean

    Despite decades of study, the exact cause of the Cretaceous-Paleogene boundary (KPB) mass extinction remains contentious. Hypothesized scenarios center around two main environmental perturbations: voluminous (>10 6 km3) volcanic eruptions from the Deccan Traps in modern-day India, and the large impact recorded by the Chicxulub crater. The impact hypothesis has gained broad support, bolstered by the discoveries of iridium anomalies, shocked quartz, and spherules at the KPB worldwide, which are contemporaneous with the Chicxulub impact structure. However, evidence for protracted extinctions, particularly in non-marine settings, and paleoenvironmental change associated with climatic swings before the KPB, challenge the notion that the impact was the sole cause of the KPB mass extinction. Despite forty years of study, the relative importance of each of these events is unclear, and one key inhibitor is insufficient resolution of existing geochronology. In this dissertation, I present work developing a high-precision global chronologic framework for the KPB that outlines the temporal sequence of biotic changes (both within the terrestrial and marine realms), climatic changes, and proposed perturbations (i.e. impact, volcanic eruptions) using 40Ar/39Ar geochronology and paleomagnetism. This work is focused on two major areas of study: 1) refining the timing and tempo of terrestrial ecosystem change around the KPB, and 2) calibrating the geomagnetic polarity timescale, and particularly the timing and duration of magnetic polarity chron C29r (the KPB falls about halfway into C29r). First I develop a high-precision chronostratigraphic framework for fluvial sediments within the Hell Creek region, in NE Montana, which is one of the best-studied terrestrial KPB sections worldwide. For this work I dated 15 tephra deposits with +/- 30 ka precision using 40Ar/ 39Ar geochronology, ranging in time from 300 ka before the KPB to 1 Ma after. By tying these results to paleontological

  4. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Directory of Open Access Journals (Sweden)

    Michael P Donovan

    Full Text Available Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  5. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA. (United States)

    Donovan, Michael P; Wilf, Peter; Labandeira, Conrad C; Johnson, Kirk R; Peppe, Daniel J


    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  6. Evidence of reworked Cretaceous fossils and their bearing on the existence of Tertiary dinosaurs

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, J.G. (Museum of Northern Arizona, Flagstaff (USA)); Kirkland, J.I. (Univ. of Nebraska, Lincoln (USA)); Doi, K. (Univ. of Colorado, Boulder (USA))


    The Paleocene Shotgun fauna of Wyoming includes marine sharks as well as mammals. It has been suggested that the sharks were introduced from the Cannonball Sea. It is more likely that these sharks were reworked from a Cretaceous rock sequence that included both marine and terrestrial deposits as there is a mixture of marine and freshwater taxa. These taxa have not been recorded elsewhere after the Cretaceous and are not known from the Cannonball Formation. Early Eocene localities at Raven Ridge, Utah, similarly contain teeth of Cretaceous marine and freshwater fish, dinosaurs, and Eocene mammals. The Cretaceous teeth are well preserved, variably abraded, and serve to cast doubts on criteria recently used to claim that dinosaur teeth recovered from the Paleocene of Montana are not reworked. Another Eocene locality in the San Juan Basin has produced an Eocene mammalian fauna with diverse Cretaceous marine sharks. Neither the nature of preservation nor the degree of abrasion could be used to distinguish reworked from contemporaneous material. The mixed environments represented by the fish taxa and recognition of the extensive pre-Tertiary extinction of both marine and freshwater fish were employed to recognize reworked specimens.

  7. A new dinosaur ichnotaxon from the Lower Cretaceous Patuxent Formation of Maryland and Virginia (United States)

    Stanford, Ray; Weems, Robert E.; Lockley, Martin G.


    In recent years, numerous dinosaur footprints have been discovered on bedding surfaces within the Lower Cretaceous Patuxent Formation of Maryland and Virginia. Among these, distinctive small tracks that display a combination of small manus with five digit impressions and a relatively much larger pes with four toe impressions evidently were made by animals belonging to the ornithischian family Hypsilophodontidae. These tracks differ from any ornithischian ichnotaxon previously described. We here name them Hypsiloichnus marylandicus and provide a description of their diagnostic characteristics. Although hypsilophodontid skeletal remains have not been found in the Patuxent, their skeletal remains are known from Lower Cretaceous strata of similar age in both western North America and Europe. Therefore, it is not surprising to find that an Early Cretaceous representative of this family also existed in eastern North America.

  8. Geomagnetic activity and the North Atlantic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav


    Roč. 58, č. 3 (2014), s. 461-472 ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : geomagnetic activity * solar wind * polar vortex intensification * downward winds Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  9. Geomagnetic secular variation at the African observatories

    International Nuclear Information System (INIS)

    Haile, T.


    Geomagnetic data from ten observatories in the African continent with time series data length of more than three decades have been analysed. All-day annual mean values of the D, H and Z components were used to study secular variations in the African region. The residuals in D, H and Z components obtained after removing polynomial fits have been examined in relation to the sunspot cycle. The occurrence of the 1969-1970 worldwide geomagnetic impulse in each observatory is studied. It is found that the secular variation in the field can be represented for most of the observatories with polynomials of second or third degree. Departures from these trends are observed over the Southern African region where strong local magnetic anomalies have been observed. The residuals in the geomagnetic field components have been shown to exhibit parallelism with the periods corresponding to double solar cycle for some of the stations. A clear latitudinal distribution in the geomagnetic component that exhibits the 1969-70 jerk is shown. The jerk appears in the plots of the first differences in H for the southern most observatories of Hermanus, Hartebeesthoek, and Tsuemb, while the Z plots show the jerk for near equatorial and equatorial stations of Antananarivo, Luanda Belas, Bangui and Addis Ababa. There is some indication for this jerk in the first difference plots of D for the northern stations of M'Bour and Tamanrasset. The plots of D rather strongly suggest the presence of a jerk around 1980 at most of the stations. (author)

  10. Geomagnetic activity and the global temperature

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav


    Roč. 53, č. 4 (2009), s. 571-573 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : global warming * Southern Oscillation * geomagnetic storms Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.000, year: 2009

  11. Some aspects of geomagnetically conjugate phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, M.J.


    Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.

  12. Sedimentary basin analysis and petroleum potential of the Cretaceous and Tertiary strata in Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jin-Dam; Kwak, Young-Hoon; Bong, Pil-Yoon [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)


    Since 1992 sedimentary basin analysis to assess petroleum potential of the Cretaceous and Tertiary strata in the Korean onshore and continental shelf have been carried out. The Cretaceous non-marine strata mainly occupy the Gyeongsang Basin in southeastern part of the Korean Peninsula and small basins such as Haenam and Gyeokpo depressions in western coastal areas. The Tertiary strata are mostly distributed in Domi, Cheju, Socotra subbasins, and Okinawa Trough in the South Continental Shelf, and Kunsan and Heuksan basins in the West. The basin evolution and petroleum potential for each basins are characterized as follow. The Cretaceous Gyeongsang sediments were deposited in three subbasins including Milyang, Euisung and Yongyang subbasins. The black shales in Nakdong and Jinju formations are interpreted to contain abundant organic matter during the deposition, thermal maturity reaching up to the zone of dry gas formation. Because porosity and permeability are too low, the sandstones can act as a tight gas reservoir rather than conventional oil and gas reservoir. The latest Cretaceous strata of Haenam and Kyeokpo depressions in western coastal area are correlated into the Yuchon Volcanic Group of the Gyeongsang Basin. Petroleum potential of the Early Cretaceous basin in the West Continental Shelf could be relatively high in terms of sedimentary basin filled with thick lacustrine sediments. The Kunsan basin in the West Continental Shelf originated in the Early Cretaceous time expanded during the Paleocene time followed by regional erosion at the end of Paleocene on which Neogene sediment have been accumulated. The Paleocene-Eocene sublacustrine shales may play an major role as a source and cap rocks. South Continental Shelf Basin is subdivided by Cheju subbasin in the center, Socotra Subbasin to the west, Domi Subbasin to the northeast and Okinawa Trough to the East. The potential hydrocarbon traps associated with anticline, titled fault blocks, fault, unconformity

  13. Debris-carrying camouflage among diverse lineages of Cretaceous insects. (United States)

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes


    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  14. What do we mean by accuracy in geomagnetic measurements? (United States)

    Green, A.W.


    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  15. Geomagnetic field evolution during the Laschamp excursion (United States)

    Leonhardt, Roman; Fabian, Karl; Winklhofer, Michael; Ferk, Annika; Laj, Carlo; Kissel, Catherine


    Since the last geomagnetic reversal, 780,000 years ago, the Earth's magnetic field repeatedly dropped dramatically in intensity. This has often been associated with large variations in local field direction, but without a persistent global polarity flip. The structure and dynamics of geomagnetic excursions, and especially the difference between excursions and polarity reversals, have remained elusive so far. For the best documented excursion, the Laschamp event at 41,000 years BP, we have reconstructed the evolution of the global field morphology by using a Bayesian inversion of several high-resolution palaeomagnetic records. We have obtained an excursion scenario in which inverse magnetic flux patches at the core-mantle boundary emerge near the equator and then move poleward. Contrary to the situation during the last reversal (Leonhardt, R., Fabian, K., 2007. Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett. 253, 172-195), these flux patches do not cross the hydrodynamic boundary of the inner-core tangent cylinder. While the last geomagnetic reversal began with a substantial increase in the strength of the non-dipolar field components, prior to the Laschamp excursion, both dipolar and non-dipolar field decay at the same rate. This result suggests that the nature of an upcoming geomagnetic field instability can be predicted several hundred years in advance. Even though during the Laschamp excursion the dipolar field at the Earth's surface was dominant, the reconstructed dynamic non-dipolar components lead to considerable deviations among predicted records at different locations. The inverse model also explains why at some locations no directional change during the Laschamp excursion is observed.

  16. Structural extremes in a cretaceous dinosaur.

    Directory of Open Access Journals (Sweden)

    Paul C Sereno

    Full Text Available Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic.

  17. Preliminary magnetostratigraphy and environmental magnetism of the Lower Cretaceous from the Italian Dolomites (United States)

    Savian, J. F.; Jovane, L.; Florindo, F.; Lukeneder, A.


    The Lower Cretaceous (~146 to 100 Ma) represents an enigmatic time interval for paleoclimatic, paleogeography and paleomagnetic evolution of the Earth's history. The climatic changes include global oceanic anoxic events (OAEs), biotic changes, global excursions of carbon and strontium isotopes, rises in eustatic sea level and paleotemperature. Paleoceanography was marked by a rapid rate of ocean spreading in the Atlantic. The opening of the Atlantic Ocean was wide enough to allow significant circulation of masses of waters across the equator. This period is furthermore important for the oceanographic events occurring at the base of the Aptian (Selli Level). This period also present one of the most intriguing geomagnetic events: the long normal Cretaceous superchron, lasted for almost 40 million years. We study here the lower Cretaceous deposits of the Puez section in the Dolomites (northern Italy) which represents a continuous section during this period. The samples collected represent marine sedimentary materials of the Biancone and Puez formations. The Puez section consists essentially of green-grey to red limestones and calcareous marls. We present preliminary results of integrated magnetostratigraphic analysis, including a detailed lithostratigraphy and environmental magnetism. We recognize magnetic behavior that are relative to normal polarity (the normal Cretaceous superchron), with a short reverse interval that might represent the M-1r event. We also recognize a series of normal and reverse polarities (below the normal Cretaceous superchron) which can be referred to the magnetozones M1/M5. The environmental magnetic data consists of magnetic susceptibility (χ), natural remanent magnetization (NRM), anhysteretic remanent magnetization (ARM), isothermal remanent magnetization (IRM) at 900 mT and backfield isothermal remanent magnetization (BIRM) at 100 mT and 300 mT. Derived parameters, such as S-ratio (S300=BIRM300/IRM900) and hard isothermal remanent

  18. Chemostratigraphy of Late Cretaceous deltaic and marine sedimentary rocks from high northern palaeolatitudes in the Nuussuaq Basin, West Greenland

    DEFF Research Database (Denmark)

    Lenniger, Marc; Pedersen, Gunver Krarup; Bjerrum, Christian J.

    The Nuussuaq Basin in the Baffin Bay area in West Greenland formed as a result of the opening of the Labrador Sea in Late Mesozoic to Early Cenozoic times. The first rifting and the development of the Nuussuaq Basin took place during the Early Cretaceous and was followed by a second rifting phase...

  19. Dynamic Responses of the Earth's Outer Core to Assimilation of Observed Geomagnetic Secular Variation (United States)

    Kuang, Weijia; Tangborn, Andrew


    Assimilation of surface geomagnetic observations and geodynamo models has advanced very quickly in recent years. However, compared to advanced data assimilation systems in meteorology, geomagnetic data assimilation (GDAS) is still in an early stage. Among many challenges ranging from data to models is the disparity between the short observation records and the long time scales of the core dynamics. To better utilize available observational information, we have made an effort in this study to directly assimilate the Gauss coefficients of both the core field and its secular variation (SV) obtained via global geomagnetic field modeling, aiming at understanding the dynamical responses of the core fluid to these additional observational constraints. Our studies show that the SV assimilation helps significantly to shorten the dynamo model spin-up process. The flow beneath the core-mantle boundary (CMB) responds significantly to the observed field and its SV. The strongest responses occur in the relatively small scale flow (of the degrees L is approx. 30 in spherical harmonic expansions). This part of the flow includes the axisymmetric toroidal flow (of order m = 0) and non-axisymmetric poloidal flow with m (is) greater than 5. These responses can be used to better understand the core flow and, in particular, to improve accuracies of predicting geomagnetic variability in future.

  20. Late Cretaceous vicariance in Gondwanan amphibians.

    Directory of Open Access Journals (Sweden)

    Ines Van Bocxlaer

    Full Text Available Overseas dispersals are often invoked when Southern Hemisphere terrestrial and freshwater organism phylogenies do not fit the sequence or timing of Gondwana fragmentation. We used dispersal-vicariance analyses and molecular timetrees to show that two species-rich frog groups, Microhylidae and Natatanura, display congruent patterns of spatial and temporal diversification among Gondwanan plates in the Late Cretaceous, long after the presumed major tectonic break-up events. Because amphibians are notoriously salt-intolerant, these analogies are best explained by simultaneous vicariance, rather than by oceanic dispersal. Hence our results imply Late Cretaceous connections between most adjacent Gondwanan landmasses, an essential concept for biogeographic and palaeomap reconstructions.

  1. New ophthalmosaurid ichthyosaurs from the European Lower Cretaceous demonstrate extensive ichthyosaur survival across the Jurassic-Cretaceous boundary.

    Directory of Open Access Journals (Sweden)

    Valentin Fischer

    Full Text Available BACKGROUND: Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic-Cretaceous boundary (JCB, and one (resulting in total extinction at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian-Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian-Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian-Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian-Barremian interval and the JCB records one of the highest survival rates of the interval. CONCLUSIONS/SIGNIFICANCE: There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle

  2. New Ophthalmosaurid Ichthyosaurs from the European Lower Cretaceous Demonstrate Extensive Ichthyosaur Survival across the Jurassic–Cretaceous Boundary (United States)

    Fischer, Valentin; Maisch, Michael W.; Naish, Darren; Kosma, Ralf; Liston, Jeff; Joger, Ulrich; Krüger, Fritz J.; Pérez, Judith Pardo; Tainsh, Jessica


    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to

  3. Evaluation of a new paleosecular variation activity index as a diagnostic tool for geomagnetic field variations (United States)

    Panovska, Sanja; Constable, Catherine


    Geomagnetic indices like Dst, K and A, have been used since the early twentieth century to characterize activity in the external part of the modern geomagnetic field and as a diagnostic for space weather. These indices reflect regional and global activity and serve as a proxy for associated physical processes. However, no such tools are yet available for the internal geomagnetic field driven by the geodynamo in Earth's liquid outer core. To some extent this reflects limited spatial and temporal sampling for longer timescales associated with paleomagnetic secular variation, but recent efforts in both paleomagnetic data gathering and modeling activity suggest that longer term characterization of the internal geomagnetic weather/climate and its variability would be useful. Specifically, we propose an index for activity in paleosecular variation, useful as both a local and global measure of field stability during so-called normal secular variation and as a means of identifying more extreme behavior associated with geomagnetic excursions and reversals. To date, geomagnetic excursions have been identified by virtual geomagnetic poles (VGPs) deviating more than some conventional limit from the geographic pole (often 45 degrees), and/or by periods of significant intensity drops below some critical value, for example 50% of the present-day field. We seek to establish a quantitative definition of excursions in paleomagnetic records by searching for synchronous directional deviations and lows in relative paleointensity. We combine paleointensity variations with deviations from the expected geocentric axial dipole (GAD) inclination in a single parameter, which we call the paleosecular variation (PSV) activity index. This new diagnostic can be used on any geomagnetic time series (individual data records, model predictions, spherical harmonic coefficients, etc.) to characterize the level of paleosecular variation activity, find excursions, or even study incipient reversals

  4. Evidence of cretaceous to recent West African intertropical vegetation from continental sediment spore-pollen analysis (United States)

    Salard-Cheboldaeff, M.; Dejax, J.

    The succession of spore-pollen assemblages during the Cretaceous and Tertiary, as defined in each of the basin from Senegal to Angola, gives the possibility to consider the intertropical African flora evolution for the past 120 M.a. During the Early Cretaceous, xeric-adapted gymnosperms and various ferns were predominant the flora which nevertheless comprises previously unknown early angiosperm pollen. During the Middle Cretaceous, gymnospers were gradually replaced by angiosperms; these became more and more abundant, along with the diversification of new genera and species. During the Paleocene, the radiation of the monocotyledons (mainly that of the palm-trees) as well as a greater diversification among the dicotyledons and ferms are noteworthy. Since gymnosperms had almost disappeared by the Eocene, the diversification of the dicotyledons went on until the neogene, when all extinct pollen types are already present. These important modifications of the vegetation reflect evolutionary trends as well as climatic changes during the Cretaceous: the climate, firstly hot, dry and perhaps arid, did probably induced salt deposition, and later became gradually more humid under oceanic influences which arose in connection with the Gondwana break-up.

  5. Exhumation History Of Brasilian Highlands After Late Cretaceous Alcaline Magmatism (United States)

    Doranti Tiritan, Carolina; Hackspacher, Peter Christian; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton; Françoso de Godoy, Daniel


    The southeast Brazilian margin recorded a long history of tectonic and magmatic events after the Gondwana continent break up. The drifting of the South American Platform over a thermal anomaly generated a series of alkaline intrusions that are distributed from the interior to the coast from west to east. Several exhumation events are recorded on the region and we are providing insights on the landscape evolution of the region since Late Cretaceous, comparing low temperature thermochronology results from two alkaline intrusions regions. Poços de Caldas Alkaline Massif (PCAM), is lied in the interior, 300km from the coastline, covering over 800km2 intruding the Precambrian basement around 83Ma, nepheline syenites, phonolites and tinguaites intruded in a continuous and rapid sequence lasting between 1 to 2 Ma. São Sebastião Island (SSI) on the other hand is located at the coast, 200 km southeast of São Paulo. It is characterized by an intrusion in Precambrian/Brazilian orogen and intruded by Early Cretaceous sub-alkaline basic and acid dykes, as well as by Late Cretaceous alkaline stocks (syenites) and dykes (basanite to phonolite). Will be presenting the apatite fission track (AFT) and (U-Th)/He results that shows the main difference between the areas is that PCAM region register older history then the coastal area of SSI, where thermal history starts register cooling event after the South Atlantic rifting process, while in the PCAM area register a previous history, since Carboniferous. The results are giving support to studies that indicate the development of the relief in Brazil being strongly influenced by the local and regional tectonic movements and the lithological and structural settings. The landscape at the Late Cretaceous was witness of heating process between 90 and 60Ma due the intense uplift of South American Platform. The elevation of the isotherms is associated with the mantellic plumes and the crustal thickness that caused thermal anomalies due

  6. The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions

    International Nuclear Information System (INIS)

    Chu, W.; Univ. of Chinese Academy of Sciences, Beijing; Qin, G.


    Studying the access of the cosmic rays (CRs) into the magnetosphere is important to understand the coupling between the magnetosphere and the solar wind. In this paper we numerically studied CRs' magnetospheric access with vertical geomagnetic cutoff rigidities using the method proposed by Smart and Shea (1999). By the study of CRs' vertical geomagnetic cutoff rigidities at high latitudes we obtain the CRs' window (CRW) whose boundary is determined when the vertical geomagnetic cutoff rigidities drop to a value lower than a threshold value. Furthermore, we studied the area of CRWs and found out they are sensitive to different parameters, such as the z component of interplanetary magnetic field (IMF), the solar wind dynamic pressure, AE index, and Dst index. It was found that both the AE index and Dst index have a strong correlation with the area of CRWs during strong geomagnetic storms. However, during the medium storms, only AE index has a strong correlation with the area of CRWs, while Dst index has a much weaker correlation with the area of CRWs. This result on the CRW can be used for forecasting the variation of the cosmic rays during the geomagnetic storms.

  7. Geographical localisation of the geomagnetic secular variation

    DEFF Research Database (Denmark)

    Aubert, Julien; Finlay, Chris; Olsen, Nils


    the model and geomagnetic data previously processed in the same way. Our results suggest that conservation of angular momentum and heterogeneous thermochemical boundary control in the coupled inner core / outer core / mantle system are central to understanding how Earth’s magnetic field currently evolves......., westward moving, magnetic flux patches at the core surface. Despite its successes in explaining the main morphological properties of Earth’s magnetic field, self-consistent numerical modelling of the geodynamo has so far failed to reproduce this field variation pattern. Furthermore its magnetohydrodynamic...... control from either, or both, the inner-core boundary and the core-mantle boundary. In addition to presenting an Earth-like magnetic field morphology, these new numerical models also reproduce the morphology and localization of geomagnetic secular variation. In our models, the conservation of the angular...

  8. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils


    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  9. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils


    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers....... The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  10. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.


    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  11. Diverse dinosaur-dominated ichnofaunas from the Potomac Group (Lower Cretaceous) Maryland (United States)

    Stanford, Ray; Lockley, Martin G.; Weems, Robert E.


    Until recently fossil footprints were virtually unknown from the Cretaceous of the eastern United States. The discovery of about 300 footprints in iron-rich siliciclastic facies of the Patuxent Formation (Potomac Group) of Aptian age is undoubtedly one of the most significant Early Cretaceous track discoveries since the Paluxy track discoveries in Texas in the 1930s. The Patuxent tracks include theropod, sauropod, ankylosaur and ornithopod dinosaur footprints, pterosaur tracks, and miscellaneous mammal and other vertebrate ichnites that collectively suggest a diversity of about 14 morphotypes. This is about twice the previous maximum estimate for any known Early Cretaceous vertebrate ichnofauna. Among the more distinctive forms are excellent examples of hypsilophodontid tracks and a surprisingly large mammal footprint. A remarkable feature of the Patuxent track assemblage is the high proportion of small tracks indicative of hatchlings, independently verified by the discovery of a hatchling-sized dinosaur. Such evidence suggests the proximity of nest sites. The preservation of such small tracks is very rare in the Cretaceous track record, and indeed throughout most of the Mesozoic.This unusual preservation not only provides us with a window into a diverse Early Cretaceous ecosystem, but it also suggests the potential of such facies to provide ichnological bonanzas. A remarkable feature of the assemblage is that it consists largely of reworked nodules and clasts that may have previously been reworked within the Patuxent Formation. Such unusual contexts of preservation should provide intriguing research opportunities for sedimentologists interested in the diagenesis and taphonomy of a unique track-bearing facies.

  12. Geomagnetic oriented electromagnetic radiation in the ionosphere

    International Nuclear Information System (INIS)

    Benton, C.U.; Fowles, H.M.; Goen, P.K.


    Strong bursts of electromagnetic radiation were observed in the ionosphere during the Waso rocket Electromagnetic Pulse (EMP) experiment. The pulses have a frequency content from below 20 MHz to above 70 MHz. They vary in duration between 5 μs and 2 ms and in peak-amplitudes of 2 mV/m to greater than 200 mV/m. These pulses show a high degree of geomagnetic correlation and are of unknown origin

  13. Geomagnetic fluctuations during a polarity transition (United States)

    Audunsson, Haraldur; Levi, Shaul


    The extensive Roza Member of the Columbia River Basalt Group (Washington State) has intermediate paleomagnetic directions, bracketed by underlying normal and overlying reverse polarity flows. A consistent paleomagnetic direction was measured at 11 widely distributed outcrops; the average direction has a declination of 189° and an inclination of -5°, with greater variation in the inclination [Rietman, 1966]. In this study the Roza Member was sampled in two Pasco Basin drillcores, where it is a single cooling unit and its thickness exceeds 50 m. Excellent core recovery allowed uniform and dense sampling of the drillcores. During its protracted cooling, the Roza flow in the drillcores recorded part of a 15.5 Ma geomagnetic polarity transition. The inclination has symmetric, quasicyclic intraflow variation, while the declination is nearly constant, consistent with the results from the outcrops. Thermal models of the cooling flow provide the timing for remanence acquisition. The inclination is inferred to have progressed from 0° to -15° and back to -3°over a period of 15 to 60 years, at rates of 1.6° to 0.5°/yr. Because the geomagnetic intensity was probably weak during the transition, these apparently high rates of change are not significantly different from present-day secular variation. These results agree with the hypothesis that normal secular variation persists through geomagnetic transitions. The Iow-amplitude quasicyclical fluctuations of the field over tens of years, recorded by Roza, suggest that the geomagnetic field reverses in discrete steps, and that more than 15-60 years were required to complete this reversal.

  14. Uncertainty Quantification in Geomagnetic Field Modeling (United States)

    Chulliat, A.; Nair, M. C.; Alken, P.; Meyer, B.; Saltus, R.; Woods, A.


    Geomagnetic field models are mathematical descriptions of the various sources of the Earth's magnetic field, and are generally obtained by solving an inverse problem. They are widely used in research to separate and characterize field sources, but also in many practical applications such as aircraft and ship navigation, smartphone orientation, satellite attitude control, and directional drilling. In recent years, more sophisticated models have been developed, thanks to the continuous availability of high quality satellite data and to progress in modeling techniques. Uncertainty quantification has become an integral part of model development, both to assess the progress made and to address specific users' needs. Here we report on recent advances made by our group in quantifying the uncertainty of geomagnetic field models. We first focus on NOAA's World Magnetic Model (WMM) and the International Geomagnetic Reference Field (IGRF), two reference models of the main (core) magnetic field produced every five years. We describe the methods used in quantifying the model commission error as well as the omission error attributed to various un-modeled sources such as magnetized rocks in the crust and electric current systems in the atmosphere and near-Earth environment. A simple error model was derived from this analysis, to facilitate usage in practical applications. We next report on improvements brought by combining a main field model with a high resolution crustal field model and a time-varying, real-time external field model, like in NOAA's High Definition Geomagnetic Model (HDGM). The obtained uncertainties are used by the directional drilling industry to mitigate health, safety and environment risks.

  15. Modeling the ocean effect of geomagnetic storms

    DEFF Research Database (Denmark)

    Olsen, Nils; Kuvshinov, A.


    At coastal sites, geomagnetic variations for periods shorter than a few days are strongly distorted by the conductivity of the nearby sea-water. This phenomena, known as the ocean (or coast) effect, is strongest in the magnetic vertical component. We demonstrate the ability to predict the ocean...... if the oceans are considered. Our analysis also indicates a significant local time asymmetry (i.e., contributions from spherical harmonics other than P-I(0)), especially during the main phase of the storm....

  16. Zonal wind observations during a geomagnetic storm (United States)

    Miller, N. J.; Spencer, N. W.


    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  17. Elliptical magnetic clouds and geomagnetic storms

    Czech Academy of Sciences Publication Activity Database

    Antoniadou, I.; Geranios, A.; Vandas, Marek; Panagopoulou, M.; Zacharopoulou, O.; Malandraki, O.


    Roč. 56, 3-4 (2008), s. 492-500 ISSN 0032-0633 R&D Projects: GA AV ČR 1QS300120506; GA ČR GA205/06/0875 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetic clouds * geomagnetic storms * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.506, year: 2008

  18. New and revised maimetshid wasps from Cretaceous ambers (Hymenoptera, Maimetshidae

    Directory of Open Access Journals (Sweden)

    Vincent Perrichot


    Full Text Available New material of the wasp family Maimetshidae (Apocrita is presented from four Cretaceous amber deposits – the Neocomian of Lebanon, the Early Albian of Spain, the latest Albian/earliest Cenomanian of France, and the Campanian of Canada. The new record from Canadian Cretaceous amber extends the temporal and paleogeographical range of the family. New material from France is assignable to Guyotemaimetsha enigmatica Perrichot et al. including the first females for the species, while a series of males and females from Spain are described and figured as Iberomaimetsha Ortega-Blanco, Perrichot, and Engel gen. n., with the two new species Iberomaimetsha rasnitsyni Ortega-Blanco, Perrichot, and Engel sp. n. and I. nihtmara Ortega-Blanco, Delclòs, and Engel sp. n.; a single female from Lebanon is described and figured as Ahiromaimetsha najlae Perrichot, Azar, Nel, and Engel gen. et sp. n., and a single male from Canada is described and figured as Ahstemiam cellula McKellar and Engel gen. et sp. n. The taxa are compared with other maimetshids, a key to genera and species is given, and brief comments made on the family.

  19. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. (United States)

    Heikkilä, Maria; Kaila, Lauri; Mutanen, Marko; Peña, Carlos; Wahlberg, Niklas


    Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous-Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis, a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae.

  20. Domino model for geomagnetic field reversals. (United States)

    Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M


    We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.

  1. AI techniques in geomagnetic storm forecasting (United States)

    Lundstedt, Henrik

    This review deals with how geomagnetic storms can be predicted with the use of Artificial Intelligence (AI) techniques. Today many different Al techniques have been developed, such as symbolic systems (expert and fuzzy systems) and connectionism systems (neural networks). Even integrations of AI techniques exist, so called Intelligent Hybrid Systems (IHS). These systems are capable of learning the mathematical functions underlying the operation of non-linear dynamic systems and also to explain the knowledge they have learned. Very few such powerful systems exist at present. Two such examples are the Magnetospheric Specification Forecast Model of Rice University and the Lund Space Weather Model of Lund University. Various attempts to predict geomagnetic storms on long to short-term are reviewed in this article. Predictions of a month to days ahead most often use solar data as input. The first SOHO data are now available. Due to the high temporal and spatial resolution new solar physics have been revealed. These SOHO data might lead to a breakthrough in these predictions. Predictions hours ahead and shorter rely on real-time solar wind data. WIND gives us real-time data for only part of the day. However, with the launch of the ACE spacecraft in 1997, real-time data during 24 hours will be available. That might lead to the second breakthrough for predictions of geomagnetic storms.

  2. Geomagnetic storm under laboratory conditions: randomized experiment (United States)

    Gurfinkel, Yu I.; Vasin, A. L.; Pishchalnikov, R. Yu; Sarimov, R. M.; Sasonko, M. L.; Matveeva, T. A.


    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  3. Geomagnetic storm under laboratory conditions: randomized experiment. (United States)

    Gurfinkel, Yu I; Vasin, A L; Pishchalnikov, R Yu; Sarimov, R M; Sasonko, M L; Matveeva, T A


    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  4. An impending geomagnetic transition? Hints from the past


    Laj, Carlo; Kissel, Catherine


    The rapid decrease of the geomagnetic field intensity in the last centuries has led to speculations that an attempt to a reversal or an excursion might be under way. Here we investigate this hypothesis by examining past records of geomagnetic field intensity obtained from sedimentary cores and from the study of cosmogenic nuclides. The selected records describe geomagnetic changes with an unprecedented temporal resolution between 20 and 75 kyr B.P. We find that some aspects of the present-day...

  5. The Egyptian geomagnetic reference field to the Epoch, 2010.0

    Directory of Open Access Journals (Sweden)

    H.A. Deebes


    The geomagnetic anomaly maps, the normal geomagnetic field maps with their corresponding secular variation maps, the normal geomagnetic field equations of the geomagnetic elements (EGRF and their corresponding secular variations equations, are outlined. The anomalous sites, as discovered from the anomaly maps are, only, mentioned. In addition, a correlation between the International Geomagnetic Reference Field (IGRF 2010.0 and the Egyptian Geomagnetic Reference Field (EGRF 2010 is indicated.

  6. Late Cretaceous extension and exhumation of the Stong Complex and Taku Schist, NE Peninsular Malaysia (United States)

    François, Thomas; Afiq Md, Muhammad; Matenco, Liviu; Willingshofer, Ernst; Fatt Ng, Tham; Iskandar Taib, N.; Kamal Shuib, Mustaffa


    Dismembering large continental areas by post-orogenic extension requires favourable geodynamic conditions and frequently occurs along pre-existing suture zones or nappe contacts as exemplified by the Stong Complex and Taku Schist of northern Peninsular Malaysia. For this particular case we have employed a field and microstructural kinematic study combined with low temperature thermo-chronology to analyse the tectonic and exhumation history. The results show that the late Palaeozoic - Triassic Indosinian orogeny created successive phases of burial related metamorphism, shearing and contractional deformation. This orogenic structure was then dismembered during a Cretaceous thermal event that culminated in the formation of a large scale late Santonian - early Maastrichtian extensional detachment, genetically associated with crustal melting, the emplacement of syn-kinematic plutons and widespread migmatisation. The emplacement of these magmatic rocks led to an array of simultaneously formed structures that document deformation conditions over a wide temperature range, represented by amphibolite-facies mylonites and more brittle structures, such as cataclastic zones and normal faults that formed during exhumation in the footwall of the detachment. The formation of this detachment and a first phase of Late Cretaceous cooling was followed by renewed Eocene - Oligocene exhumation evidenced from our apatite fission track ages. We infer that an initial Cretaceous thermal anomaly was responsible for the formation of an extensional gneiss dome associated with simple shear and normal fault rotation. These Cretaceous processes played a critical role in the establishment of the presently observed crustal structure of Peninsular Malaysia.

  7. parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. (United States)

    Peñalver, Enrique; Arillo, Antonio; Delclòs, Xavier; Peris, David; Grimaldi, David A; Anderson, Scott R; Nascimbene, Paul C; Pérez-de la Fuente, Ricardo


    Ticks are currently among the most prevalent blood-feeding ectoparasites, but their feeding habits and hosts in deep time have long remained speculative. Here, we report direct and indirect evidence in 99 million-year-old Cretaceous amber showing that hard ticks and ticks of the extinct new family Deinocrotonidae fed on blood from feathered dinosaurs, non-avialan or avialan excluding crown-group birds. A †Cornupalpatum burmanicum hard tick is entangled in a pennaceous feather. Two deinocrotonids described as †Deinocroton draculi gen. et sp. nov. have specialised setae from dermestid beetle larvae (hastisetae) attached to their bodies, likely indicating cohabitation in a feathered dinosaur nest. A third conspecific specimen is blood-engorged, its anatomical features suggesting that deinocrotonids fed rapidly to engorgement and had multiple gonotrophic cycles. These findings provide insight into early tick evolution and ecology, and shed light on poorly known arthropod-vertebrate interactions and potential disease transmission during the Mesozoic.

  8. New paleomagnetic data from Siberia: Non-uniformitarian geomagnetic field around the Proterozoic-Phanerozoic boundary? (United States)

    Pavlov, V.; Shatsillo, A.; Kouznetsov, N.; Gazieva, E.


    There is a range of evidence, mainly from sedimentary and volcanic rocks of the Laurentia and Baltica cratons, that argue for the anomalous character of the Ediacaran-Early Cambrian paleomagnetic record. This feature could be linked either to some peculiarities of the paleomagnetic record itself or to some unusual geophysical event that would have taken place around the Proterozoic-Phanerozoic boundary (e.g., true polar wander or nonuniformitarian geomagnetic field behavior). In the latter case, the traces of this event should be observed in Ediacaran-Early Cambrian rocks anywhere there is a possibility to observe a primary paleomagnetic signal. In previous work, we reported results that suggested an anomalous paleomagnetic record in Siberian Ediacaran-Lower Cambrian rocks. Here we present new Siberian data that indicate a very high geomagnetic reversal frequency during this period and the coexistence of two very different paleomagnetic directions. We speculate that these features could be due either to a near-equatorial geomagnetic dipole during the polarity transitions or to alternation between axial and near equatorial dipoles not directly linked with polarity reversals.

  9. On the scaling features of high-latitude geomagnetic field fluctuations during a large geomagnetic storm (United States)

    De Michelis, Paola; Federica Marcucci, Maria; Consolini, Giuseppe


    Recently we have investigated the spatial distribution of the scaling features of short-time scale magnetic field fluctuations using measurements from several ground-based geomagnetic observatories distributed in the northern hemisphere. We have found that the scaling features of fluctuations of the horizontal magnetic field component at time scales below 100 minutes are correlated with the geomagnetic activity level and with changes in the currents flowing in the ionosphere. Here, we present a detailed analysis of the dynamical changes of the magnetic field scaling features as a function of the geomagnetic activity level during the well-known large geomagnetic storm occurred on July, 15, 2000 (the Bastille event). The observed dynamical changes are discussed in relationship with the changes of the overall ionospheric polar convection and potential structure as reconstructed using SuperDARN data. This work is supported by the Italian National Program for Antarctic Research (PNRA) - Research Project 2013/AC3.08 and by the European Community's Seventh Framework Programme ([FP7/2007-2013]) under Grant no. 313038/STORM and

  10. The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution. (United States)

    Caldwell, Michael W; Nydam, Randall L; Palci, Alessandro; Apesteguía, Sebastián


    The previous oldest known fossil snakes date from ~100 million year old sediments (Upper Cretaceous) and are both morphologically and phylogenetically diverse, indicating that snakes underwent a much earlier origin and adaptive radiation. We report here on snake fossils that extend the record backwards in time by an additional ~70 million years (Middle Jurassic-Lower Cretaceous). These ancient snakes share features with fossil and modern snakes (for example, recurved teeth with labial and lingual carinae, long toothed suborbital ramus of maxillae) and with lizards (for example, pronounced subdental shelf/gutter). The paleobiogeography of these early snakes is diverse and complex, suggesting that snakes had undergone habitat differentiation and geographic radiation by the mid-Jurassic. Phylogenetic analysis of squamates recovers these early snakes in a basal polytomy with other fossil and modern snakes, where Najash rionegrina is sister to this clade. Ingroup analysis finds them in a basal position to all other snakes including Najash.

  11. Ten cycles of solar and geomagnetic activity

    International Nuclear Information System (INIS)

    Legrand, J.P.


    Series of 110 years of sunspot numbers and indices of geomagnetic activity are used with 17 years of solar wind data in order to study through solar cycles both stream and shock event solar activity. According to their patterns on Bartels diagrams of geomagnetic indices, stable wind streams and transient solar activities are separated from each other. Two classes of stable streams are identified: equatorial streams occurring sporadically, for several months, during the main phase of sunspot cycles and both polar streams established, for several years, at each cycle, before sunspot minimum. Polar streams are the first activity of solar cycles. For study of the relationship between transient geomagnetic phenomena and sunspot activity, we raise the importance of the contribution, at high spot number, of severe storms and, at low spot number, of short lived and unstable streams. Solar wind data are used to check and complete the above results. As a conclusion, we suggest a unified scheme of solar activity evolution with a starting point every eleventh year, a total duration of 17 years and an overlapping of 6 years between the first and the last phase of both successive series of phenomena: first, from polar field reversal to sunspot minimum, a phase of polar wind activity of the beginning cycle is superimposed on the weak contribution of shock events of the ending cycle; secondly, an equatorial phase mostly of shock events is superimposed on a variable contribution of short lived and sporadic stable equatorial stream activities; and thirdly a phase of low latitude shock events is superimposed on the polar stream interval of the following cycle. (orig.)

  12. International Geomagnetic Reference Field: the 12th generation

    DEFF Research Database (Denmark)

    Thébault, Erwan; Finlay, Chris; Beggan, Ciarán D.


    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch ...

  13. Geomagnetic observations on Tristan da Cunha, South Atlantic Ocean

    DEFF Research Database (Denmark)

    Matzka, J.; Olsen, Nils; Maule, C. F.


    Few geomagnetic ground observations exist of the Earth's strongest core field anomaly, the South Atlantic Anomaly (SAA). The geomagnetic repeat station on the island Tristan da Cunha, located half-way between South Africa and South America at 37 degrees 05' S, 12 degrees 18' W, is therefore of cr...

  14. Computation of geomagnetic elements for Nigeria for the year 2000 ...

    African Journals Online (AJOL)

    The Earth's magnetic field may be considered to be the sum of two parts, the main geomagnetic field which originates from the earth's fluid core, and the anomaly field that has its sources in the earth crust. The analysis of the geomagnetic field residual or anomaly, obtained from the difference between these two sources are ...

  15. Geomagnetic Field Variation during Winter Storm at Localized ...

    Indian Academy of Sciences (India)

    that transports plasma and magnetic flux which create the geomagnetic field variation. Key words. Dst—vertical component of interplanetary magnetic field and geomagnetic field components. 1. Introduction. The magnetic field is one of the important properties of the earth. The main magnetic field originates from ...

  16. Astronomical calibration of the Maastrichtian (Late Cretaceous)

    DEFF Research Database (Denmark)

    Husson, Dorothée; Galbrun, Bruno; Laskar, Jacques


    /Pg boundary, considering the uncertainty of the long-term variation of the 405 ka eccentricity cycle. The first proposal provides a Cretaceous/Paleogene boundary age of 65.59 ± 0.07 Ma and the second an age of 66 ± 0.07 Ma, which is coherent with the most recent radio-isotopic datings. Magnetochron boundaries...... and the Campanian/Maastrichtian boundary are dated relative to these numerical ages of the K/Pg boundary....

  17. The clasts of Cretaceous marls in the conglomerates of the Konradsheim Formation (Pöchlau quarry, Gresten Klippen Zone, Austria) (United States)

    Ślączka, Andrzej; Gasiñski, M. Adam; Bąk, Marta; Wessely, Godfrid


    Investigations were carried out on foraminiferids and radiolaria from redeposited clasts within the conglomerates of the Konradsheim Formation (Gresten Klippen Zone) in the area of the Pöchlau hill, east of Maria Neustift. These shales and marls are of Middle to Late Jurassic and Early Cretaceous age. In the latter clasts, foraminiferal assemblages with Tritaxia ex gr. gaultina as well as radiolaria species Angulobracchia portmanni Baumgartner, Dictyomitra communis (Squinabol), Hiscocapsa asseni (Tan), Pseudodictyomitra lodogaensis Pessagno, Pseudoeucyrtis hanni (Tan), Rhopalosyringium fossile (Squinabol) were found. In one block from the uppermost part of the sequence there is an assemblage with Caudammina (H) gigantea, Rotalipora appenninica and Globotruncana bulloides. However, the brecciated character of this block and occurrence near a fault suggest that it was probably wedged into the conglomerates of the Konradsheim Formation during tectonic movements. In pelitic siliceous limestones below the Konradsheim Limestone radiolarian assemblages of Middle Callovian to Early Tithonian age were found. They enable correlation with the Scheibbsbach Formation. In a marly sequence, above the conglomeratic limestone, the foraminiferal assemblages contain taxa from mid-Cretaceous up to Paleocene. The present biostratigraphic investigation confirmed the previous stratigraphic assignments and imply clearly that the sedimentation of deposits similar to the Konradsheim Formation also occurred at the end of the Early Cretaceous and deposition of conglomeratic limestones within the Gresten Klippen Zone, and especially within the Konradsheim Formation, was repeated several times during the Late Jurassic and Early Cretaceous.

  18. New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia (United States)

    Hocknull, Scott A.; White, Matt A.; Tischler, Travis R.; Cook, Alex G.; Calleja, Naomi D.; Sloan, Trish; Elliott, David A.


    Background Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. Methodology/Principal Findings We describe three new dinosaurs from the late Early Cretaceous (latest Albian) Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. Conclusion/Significance The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator) and more derived forms (e.g. Diamantinasaurus). PMID:19584929

  19. Depositional environments and oil potential of Jurassic/Cretaceous source rocks within the Seychelles microcontinent

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, P.S.; Joseph, P.R.; Samson, P.J. [Seychelles National Oil Co., Mahe (Seychelles)


    The Seychelles microcontinent became isolated between the Somali, Mascarene and Arabian basins of the Indian Ocean as a result of the Mesozoic fragmentation of Gondwana. Major rifting events occurred during the Triassic-Middle Jurassic and Late Cretaceous (Cenomanian-Santonian and Maastrichtian) during which shaly source rock facies accumulated in principally marginal marine/deltaic environments. Between these times, post-rift passive margin deposition within restricted to open marine environments produced shaly source rocks during late Middle Jurasic-Early Cretaceous, Campanian-Maastrichtian and Paleocene times. Recent geochemical analysis of cuttings from the Seagull Shoals-1 well has identified an oil-prone liptinitic (Type II) coaly shale within early Middle Jurassic abandoned deltaic deposits. This coaly source rock is regionally developed, having also been identified in the Majunja and Morondava basins of Madagascar. Oil-prone Type II organic matter has also been identified in the Owen Bank A-1 well within restricted marine shales of late Middle Jurassic age. These shales are part of a thick post-rift source rock sequence that extends into the Early Cretaceous and is in part correlative with the proven Late Jurassic Uarandab Shale of Somalia. Analysis of Campanian marine shales from Reith Bank-1 well identified significant dilution of total organic carbon content in composite, compared to picked, well cuttings samples. This finding supports a published inference that these post-rift shales have source rock potential. (author)

  20. New Mid-Cretaceous (latest Albian dinosaurs fromWinton, Queensland, Australia.

    Directory of Open Access Journals (Sweden)

    Scott A Hocknull

    Full Text Available BACKGROUND: Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. METHODOLOGY/PRINCIPAL FINDINGS: We describe three new dinosaurs from the late Early Cretaceous (latest Albian Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. CONCLUSION/SIGNIFICANCE: The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator and more derived forms (e.g. Diamantinasaurus.

  1. Study about geomagnetic variations from data recorded at Surlari Geomagnetic Observatory (United States)

    Asimopolos, Laurentiu; Asimopolos, Natalia-Silvia; Sandulescu, Agata Monica; Niculici, Eugen


    This paper presents statistical and spectral analysis of data from Surlari Geomagnetic Observatory that contributing to study of geomagnetic variations. Thus were highlighted, for long series of records over several solar cycles, periodicities of 22 years and 11 years. Following the same procedures for medium recording series (multi-annual) have highlighted annual, seasonal and monthly periodicities. For shorter data series, we highlighted diurnal, semidiurnal, 8 hours and even lower periodicities. For very short series with a high sample rate and for few magnetotellurics records, we highlight different types of pulsations (Pc2 - Pc5 and Pi 2). Geomagnetic signals are the convolution product of the atomic stationary signals mono-frequential of different amplitudes associated to phenomena with a very broad band of periodicities and nondeterministic signals associated with geomagnetic disturbances and non-periodic phenomena. Among analysis processes used for discrete series of geomagnetic data with different lengths and sampling rates, can conclude the following: Moving average works as a low pass filter in frequency or high pass in time. By eliminating high frequency components (depending on mobile window size used) can be studied preferential periodicities greater than a given value. Signal linearization (using least squares) provides information on linear trend of the entire series analyzed. Thus, for the very long data series (several decades) we extracted the secular variation slope for each geomagnetic component, separately. The numeric derivative of signal versus time proved to be a very reliable indicator for geomagnetic disturbed periods. Thus, the derivative value may be increased by several orders of magnitude during periods of agitation in comparisons to calm periods. The correlation factor shows significant increases when between two time series a causal relationship exists. Variation of the correlation factor, calculated for a mobile window containing k

  2. Optimal Transmission Line Switching under Geomagnetic Disturbances

    International Nuclear Information System (INIS)

    Lu, Mowen; Nagarajan, Harsha; Yamangil, Emre; Bent, Russell; Backhaus, Scott


    Recently, there have been increasing concerns about how geomagnetic disturbances (GMDs) impact electrical power systems. Geomagnetically-induced currents (GICs) can saturate transformers, induce hot spot heating and increase reactive power losses. These effects can potentially cause catastrophic damage to transformers and severely impact the ability of a power system to deliver power. To address this problem, we develop a model of GIC impacts to power systems that includes 1) GIC thermal capacity of transformers as a function of normal Alternating Current (AC) and 2) reactive power losses as a function of GIC. We also use this model to derive an optimization problem that protects power systems from GIC impacts through line switching, generator dispatch, and load shedding. We then employ state-of-the-art convex relaxations of AC power flow equations to lower bound the objective. We demonstrate the approach on a modified RTS96 system and UIUC 150-bus system and show that line switching is an effective means to mitigate GIC impacts. We also provide a sensitivity analysis of decisions with respect to GMD direction.

  3. Resolving issues concerning Eskdalemuir geomagnetic hourly values

    Directory of Open Access Journals (Sweden)

    S. Macmillan


    Full Text Available The hourly values of the geomagnetic field from 1911 to 1931 derived from measurements made at Eskdalemuir observatory in the UK, and available online from the World Data Centre for Geomagnetism at, have now been corrected. Previously they were 2-point averaged and transformed from the original north, east and vertical down values in the tables in the observatory yearbooks. This paper documents the course of events from discovering the post-processing done to the data to the final resolution of the problem. As it was through the development of a new index, the Inter-Hour Variability index, that this post-processing came to light, we provide a revised series of this index for Eskdalemuir and compare it with that from another European observatory. Conclusions of studies concerning long-term magnetic field variability and inferred solar variability, whilst not necessarily consistent with one another, are not obviously invalidated by the incorrect hourly values from Eskdalemuir. This series of events illustrates the challenges that lie ahead in removing any remaining errors and inconsistencies in the data holdings of different World Data Centres.

  4. Atmospheric helium and geomagnetic field reversals. (United States)

    Sheldon, W. R.; Kern, J. W.


    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  5. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao


    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  6. Plasmaspheric noise radiation during geomagnetic storms

    International Nuclear Information System (INIS)

    Larkina, V.I.; Likhter, Ya.I.


    Variations of plasmospheric background radiations during geomagnetic storms of different intensity are investigated. Used are results of ELF and VLF radiation measurements as well as electron fluxes of energies Esub(e)>40 keV carried out by Intercosmos 3 and Intercosmos 5 satellites. Dependences of radiation amplitude variations at 1.6 and 25 kHz frequencies on L shell for various geomagnetic activity in the day-time as well as data on variations of quasicaptured electron fluxes at Esub(e)>40 keV, are given. It is shown that experimental data agree with the existing theories of plasmospheric noise excitation. It is concluded that the plasmospheric noise excitation area Lsub(max) is always in the region of gap between radiation belts and inner slope of external radiation belt during magnetic storms. During magnetic storms Lsub(max) area moves simultaneously with the area, where particle flux of the external radiation belt is the most intensive [ru

  7. Solar Wind Charge Exchange During Geomagnetic Storms (United States)

    Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.


    On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.

  8. Geomagnetically trapped carbon, nitrogen, and oxygen nuclei. (United States)

    Mogro-Campero, A.


    Results of measurements carried out with the University of Chicago nuclear composition telescope on the Ogo 5 satellite, establishing the presence of 13- to 33-MeV/nucleon geomagnetically trapped C and O nuclei, with some evidence for N nuclei. These trapped nuclei were found at L less than or equal to 5 and near the geomagnetic equator. The data cover the period from Mar. 3, 1968, to Dec. 31, 1969. The distribution of CNO flux as a function of L is given. No change in the intensity of the average trapped CNO flux was detected by comparing data for 1968 and 1969. The results reported set a new value for the observed high energy limit of trapping as described by the critical adiabaticity parameter. The penetration of solar flare CNO up to L = 4 was observed twice in 1968, in disagreement with Stormer theory predictions. The effects of these results on some models for the origin of the trapped radiation are discussed.

  9. Palaeomagnetism of lower cretaceous tuffs from Yukon-Kuskokwim delta region, western Alaska (United States)

    Globerman, B.R.; Coe, R.S.; Hoare, J.M.; Decker, J.


    During the past decade, the prescient arguments1-3 for the allochthoneity of large portions of southern Alaska have been corroborated by detailed geological and palaeomagnetic studies in south-central Alaska 4-9 the Alaska Peninsula10, Kodiak Island11,12 and the Prince William Sound area13 (Fig. 1). These investigations have demonstrated sizeable northward displacements for rocks of late Palaeozoic, Mesozoic, and early Tertiary age in those regions, with northward motion at times culminating in collision of the allochthonous terranes against the backstop of 'nuclear' Alaska14,15. A fundamental question is which parts of Alaska underwent significantly less latitudinal translation relative to the 'stable' North American continent, thereby serving as the 'accretionary nucleus' into which the displaced 'microplates'16 were eventually incorporated17,18? Here we present new palaeomagnetic results from tuffs and associated volcaniclastic rocks of early Cretaceous age from the Yukon-Kuskokwin delta region in western Alaska. These rocks were probably overprinted during the Cretaceous long normal polarity interval, although a remagnetization event as recent as Palaeocene cannot be ruled out. This overprint direction is not appreciably discordant from the expected late Cretaceous direction for cratonal North America. The implied absence of appreciable northward displacement for this region is consistent with the general late Mesozoic-early Tertiary tectonic pattern for Alaska, based on more definitive studies: little to no poleward displacement for central Alaska, though substantially more northward drift for the 'southern Alaska terranes' (comprising Alaska Peninsula, Kodiak Island, Prince William Sound area, and Matunuska Valley) since late Cretaceous to Palaeocene time. ?? 1983 Nature Publishing Group.

  10. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. (United States)

    Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Benton, Michael J; Zhou, Zhonghe; Johnson, Diane; Xu, Xing; Wang, Xiaolin


    Spectacular fossils from the Early Cretaceous Jehol Group of northeastern China have greatly expanded our knowledge of the diversity and palaeobiology of dinosaurs and early birds, and contributed to our understanding of the origin of birds, of flight, and of feathers. Pennaceous (vaned) feathers and integumentary filaments are preserved in birds and non-avian theropod dinosaurs, but little is known of their microstructure. Here we report that melanosomes (colour-bearing organelles) are not only preserved in the pennaceous feathers of early birds, but also in an identical manner in integumentary filaments of non-avian dinosaurs, thus refuting recent claims that the filaments are partially decayed dermal collagen fibres. Examples of both eumelanosomes and phaeomelanosomes have been identified, and they are often preserved in life position within the structure of partially degraded feathers and filaments. Furthermore, the data here provide empirical evidence for reconstructing the colours and colour patterning of these extinct birds and theropod dinosaurs: for example, the dark-coloured stripes on the tail of the theropod dinosaur Sinosauropteryx can reasonably be inferred to have exhibited chestnut to reddish-brown tones.

  11. From Early Exploration to Space Weather Forecasts: Canada's Geomagnetic Odyssey (United States)

    Lam, Hing-Lan


    Canada is a region ideally suited for the study of space weather: The north magnetic pole is encompassed within its territory, and the auroral oval traverses its vast landmass from east to west. Magnetic field lines link the country directly to the outer magnetosphere. In light of this geographic suitability, it has been a Canadian tradition to install ground monitors to remotely sense the space above Canadian territory. The beginning of this tradition dates back to 1840, when Edward Sabine, a key figure in the “magnetic crusade” to establish magnetic observatories throughout the British Empire in the nineteenth century, founded the first Canadian magnetic observatory on what is now the campus of the University of Toronto, 27 years before the birth of Canada. This observatory, which later became the Toronto Magnetic and Meteorological Observatory, marked the beginning of the Canadian heritage of installing magnetic stations and other ground instruments in the years to come. This extensive network of ground-based measurement devices, coupled with space-based measurements in more modern times, has enabled Canadian researchers to contribute significantly to studies related to space weather.

  12. A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm

    International Nuclear Information System (INIS)

    Burns, A.G.; Killeen, T.L.; Roble, R.G.


    The compositional response of the neutral thermosphere to an impulsive geomagnetic storm has been investigated using a numerical simulation made with the National Center for Atmospheric Research thermospheric general circulation model (NCAR-TGCM). Calculated time-dependent changes in neutral thermospheric composition have been studied, together with detailed neutral parcel trajectories and other diagnostic information from the model, to gain a greater understanding of the physical mechanisms responsible for composition variability during geomagnetic storms and, in particular, to investigate the causes of the positive and negative ionospheric storm effects. The following principal results were obtained from this study. (1) Calculated perturbations in thermospheric composition following the onset of an impulsive geomagnetic storm were found to be in good qualitative agreement with the previous experimental statistical study of storm time thermospheric morphology by Proelss. (2) During the initial (onset) phase of the simulated storm, upward vertical winds occurred in the auroral zone and downward winds occurred in the central magnetic polar cap. (3) The largest perturbations in mass mixing ratio of nitrogen at F region altitudes were found to be associated with parcels of neutral gas that travelled through the cusp region and with parcels that were trapped within the auroral zone for a long time. (4) Storm time enhancements in Ψ N 2 were found to occur in the midnight and early morning sectors both within and equatorward of the auroral zone, and these were determined to be associated with the advective effects of the large antisunward polar cap neutral winds

  13. Geomagnetic response to solar and interplanetary disturbances

    Directory of Open Access Journals (Sweden)

    Maris Georgeta


    Full Text Available The space weather discipline involves different physical scenarios, which are characterised by very different physical conditions, ranging from the Sun to the terrestrial magnetosphere and ionosphere. Thanks to the great modelling effort made during the last years, a few Sun-to-ionosphere/thermosphere physics-based numerical codes have been developed. However, the success of the prediction is still far from achieving the desirable results and much more progress is needed. Some aspects involved in this progress concern both the technical progress (developing and validating tools to forecast, selecting the optimal parameters as inputs for the tools, improving accuracy in prediction with short lead time, etc. and the scientific development, i.e., deeper understanding of the energy transfer process from the solar wind to the coupled magnetosphere-ionosphere-thermosphere system. The purpose of this paper is to collect the most relevant results related to these topics obtained during the COST Action ES0803. In an end-to-end forecasting scheme that uses an artificial neural network, we show that the forecasting results improve when gathering certain parameters, such as X-ray solar flares, Type II and/or Type IV radio emission and solar energetic particles enhancements as inputs for the algorithm. Regarding the solar wind-magnetosphere-ionosphere interaction topic, the geomagnetic responses at high and low latitudes are considered separately. At low latitudes, we present new insights into temporal evolution of the ring current, as seen by Burton’s equation, in both main and recovery phases of the storm. At high latitudes, the PCC index appears as an achievement in modelling the coupling between the upper atmosphere and the solar wind, with a great potential for forecasting purposes. We also address the important role of small-scale field-aligned currents in Joule heating of the ionosphere even under non-disturbed conditions. Our scientific results in

  14. Stratigraphy, provenance, and diagenesis of the Cretaceous Horse Range Formation, east Otago, New Zealand

    International Nuclear Information System (INIS)

    Mitchell, M.; Craw, D.; Landis, C.A.; Frew, R.


    The Horse Range Formation is a structurally controlled late Early Cretaceous to early Late Cretaceous nonmarine unit in east Otago, South Island, New Zealand, containing immature lithic debris. Clasts are generally rounded, with only minor subangular material. The formation contains clasts derived from two principal basement sources: schist and greywacke. Schist debris is most abundant at the base of the described section, and this material is dominated (>60%) by quartz from the greenschist facies core of the Otago Schist belt. Conglomerates with >70% greywacke clasts constitute most of the upper part of the Horse Range Formation. These greywacke conglomerates have a matrix of sand derived mainly from schist. A 60 m thick wedge of quartz-rich, locally carbonaceous sand occurs interlayered with greywacke conglomerates. The Horse Range Formation rests on sub-greenschist facies semischist, which forms only a small proportion ( 18 O SMOW near +24 permil and δ 13 C PDB near -2 permil, and was partly dissolved and redeposited from the immature basement debris (metamorphic calcite) and partly introduced from overlying Late Cretaceous and Teriary marine sediments by groundwater. (author). 43 refs., 11 figs., 1 tab.

  15. Cretaceous plutonic rocks in the Donner Lake-Cisco Grove area, northern Sierra Nevada, California (United States)

    Kulow, Matthew J.; Hanson, Richard E.; Girty, Gary H.; Girty, Melissa S.; Harwood, David S.


    The northernmost occurrences of extensive, glaciated exposures of the Sierra Nevada batholith occur in the Donner Lake-Cisco Grove area of the northern Sierra Nevada. The plutonic rocks in this area, which are termed here the Castle Valley plutonic assemblage, crop out over an area of 225 km2 and for the most part are shown as a single undifferentiated mass on previously published geological maps. In the present work, the plutonic assemblage is divided into eight separate intrusive units or lithodemes, two of which each consist of two separate plutons. Compositions are dominantly granodiorite and tonalite, but diorite and granite form small plutons in places. Spectacular examples of comb layering and orbicular texture occur in the diorites. U-Pb zircon ages have been obtained for all but one of the main units and range from ~120 to 114 Ma, indicating that the entire assemblage was emplaced in a narrow time frame in the Early Cretaceous. This is consistent with abundant field evidence that many of the individual phases were intruded penecontemporaneously. The timing of emplacement correlates with onset of major Cretaceous plutonism in the main part of the Sierra Nevada batholith farther south. The emplacement ages also are similar to isotopic ages for gold-quartz mineralization in the Sierran foothills west of the study area, suggesting a direct genetic relationship between the voluminous Early Cretaceous plutonism and hydrothermal gold mineralization.

  16. Global Ultra-Low-Frequency Geomagnetic Pulsations Associated with the March 24, 1991 Geomagnetic Storm

    Directory of Open Access Journals (Sweden)

    Nan-Wei Chen Jann-Yenq Liu


    Full Text Available On 24 March 1991, global ultra-low-frequency (ULF pulsations (1.1 - 3.3 mHz observed in the magnetosphere as well as on the ground were studied via analyzing magnetic field data obtained from a global network, comprising ground-based observatories and geosynchronous satellites. In the magnetosphere, the compressional and transverse components of the magnetic fields recorded at two satellites, GOES 6 and GOES 7, showed dominant fluctuations when they were in the vicinity of the noon sector, whereas the transverse fluctuations became dominant when they were at the dawn side. Similarly, on the ground, the H and D components had major fluctuations along with an increase in amplitude from low to high geomagnetic latitudes. In addition, the amplitude of the ULF pulsation was enhanced at the dawn and dusk sides. The geomagnetic pulsations propagated anti-sunward and were of counterclockwise and clockwise elliptical polarizations at the dawn and dusk sides respectively. The counterclockwise elliptical polarization reversed to a clockwise elliptical polarization at geomagnetic local noon and linear polarization was observed during the reversal. It appears that the analysis of the global network data not only provided us with a study of the characteristics of the waves in the magnetosphere and on the ground but also provided us with correlations between the geosynchronous and ground observations, which should be essential to the determination of possible mechanisms of this storm-related wave event.

  17. Statistical Study of False Alarms of Geomagnetic Storms

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Vennerstrøm, Susanne; Veronig, A.

    . A subset of these halo CMEs did not cause a geomagnetic storm the following four days and have therefore been considered as false alarms. The properties of these events are investigated and discussed here. Their statistics are compared to the geo-effective CMEs. The ability to identify potential false......Coronal Mass Ejections (CMEs) are known to cause geomagnetic storms on Earth. However, not all CMEs will trigger geomagnetic storms, even if they are heading towards the Earth. In this study, front side halo CMEs with speed larger than 500 km/s have been identified from the SOHO LASCO catalogue...


    Directory of Open Access Journals (Sweden)

    G. Ya. Khachikyan


    Full Text Available An earthquake is an element of the global electric circuit (GEC –  this new idea suggested in the space age is tested in our study. In the frame of the GEC concept, one may expect that tectonic structures of the northern and southern hemispheres may be magnetically conjugated. It is found that the midocean ridges of the southern hemisphere, located along the boundary of the Antarctic lithosphere plate, are magnetically conjugated with the areas of the junction of continental orogens and platforms in the northern hemisphere. The closest geomagnetic conjugacy exists between the southern boundary of Nazca lithospheric plate and the northern boundaries of Cocos and Caribbean lithospheric plates.

  19. Extreme Geomagnetic Storms – 1868–2010

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Lefèvre, L.; Dumbović, M.


    presents our investigation of the corresponding solar eventsand their characteristics. The storms were selected based on their intensity in the aa index,which constitutes the longest existing continuous series of geomagnetic activity. They areanalyzed statistically in the context of more well...... occurring in May 1921 and the Quebec storm from March 1989. We identifykey characteristics of the storms by combining several different available data sources, listsof storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks,solar wind in-situ measurements, neutron monitor data...... %), Forbushdecreases (100 %), and energetic solar proton events (70 %). A quantitative comparison ofthese associations relative to less intense storms is also presented. Most notably, we findthat most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar...

  20. Geomagnetism and paleomagnetism 1979-1983 (United States)

    Fuller, M.

    My function, in writing these notes, is to bring you up to date in Geomagnetism and Paleomagnetism, in as painless a manner as possible—without tears, as the French language texts for tourists used to promise. In writing this account of progress in the past quadrennium, I must first acknowledge that it is a personal and subjective viewpoint;; another reporter would surely emphasize other developments. Yet, there is some virture in writing of things, about which one knows something, so I leave to future reporters the task of redresssing the balance in matters covered.At the outset, one very sad event must be recorded. On April 3, 1981, Sir Edward Bullard died. His published work alone marks him as one of the leaders of geomagnetism in our times. Yet his contribution was much greater; many an American geophysicist, as well as a whole generation of British colleagues, have felt the benefit of his perceptive advice on their research. To those who saw him in the last few months of his life, his courage in the face of his illness was a remarkable example of fortitude. It is by now well known that the definitive paper, which he wrote with Malin, on secular variation at London, was only completed immediately before his death. The transmittal letter had been typed, but death prevented him from signing it. Bullard returned in this final paper to a topic to which he had contributed much. In it, he notes the role of Halley, who first described the phenomenon of westward drift, to which Bullard gave a new numerical precision, two and a half centuries later. I seem to remember Bullard saying in a lecture years ago that, while the Newtons of this world seem other than mortal, Halley was a scientist whose life and acheivements could encourage one's own efforts. Bullard, like Halley, inspires and encourages us.

  1. Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch

    Directory of Open Access Journals (Sweden)

    Mario Brkić


    Full Text Available After more than half a century, scientific book Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch describes the recent geomagnetic field on Croatian territory. A review of research in the past decade as well as the original solutions makes the book a document of contribution to geodesy and geomagnetism in Croatia.The book’s introduction gives an overview of two centuries of history and the strategic, security, economic and scientific significance of knowing the geomagnetic field on the Croatian territory. All the activities related to the updating of the geomagnetic information, which took place in the last decade, signified a big step toward the countries where geomagnetic survey is a mature scientific and technical discipline, and a scientific contribution to understanding of the nature of the Earth's magnetism.The declination, inclination and total intensity maps (along with the normal annual changes for the epoch 2009.5 are given in the Appendix. The book Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch (ISBN 978-953-293-521-9 is published by the State Geodetic Administration of the Republic of Croatia. Beside editor in chief, M. Brkić, the authors are: E. Vujić, D. Šugar, E. Jungwirth, D. Markovinović, M. Rezo, M. Pavasović, O. Bjelotomić, M. Šljivarić, M. Varga and V. Poslončec-Petrić. The book contains 48 pages and 3 maps, and is published in 200 copies. CIP record is available in digital catalogue of the National and University Library in Zagreb under number 861937.


    Directory of Open Access Journals (Sweden)



    Full Text Available Fragmentary cranial bones of dinosaur origin have been recently recovered from the Kem Kem beds (Upper Cretaceous, Cenomanian of Morocco. They include two incompletely preserved maxillary bones evidencing diagnostic features of abelisaurid theropods. These new finds provide further evidence of Abelisauridae in the Late Cretaceous of Morocco. 

  3. Cretaceous choristoderan reptiles gave birth to live young (United States)

    Ji, Qiang; Wu, Xiao-Chun; Cheng, Yen-Nien


    Viviparity (giving birth to live young) in fossil reptiles has been known only in a few marine groups: ichthyosaurs, pachypleurosaurs, and mosasaurs. Here, we report a pregnant specimen of the Early Cretaceous Hyphalosaurus baitaigouensis, a species of Choristodera, a diapsid group known from unequivocal fossil remains from the Middle Jurassic to the early Miocene (about 165 to 20 million years ago). This specimen provides the first evidence of viviparity in choristoderan reptiles and is also the sole record of viviparity in fossil reptiles which lived in freshwater ecosystems. This exquisitely preserved specimen contains up to 18 embryos arranged in pairs. Size comparison with small free-living individuals and the straight posture of the posterior-most pair suggest that those embryos were at term and had probably reached parturition. The posterior-most embryo on the left side has the head positioned toward the rear, contrary to normal position, suggesting a complication that may have contributed to the mother’s death. Viviparity would certainly have freed species of Hyphalosaurus from the need to return to land to deposit eggs; taking this advantage, they would have avoided intense competition with contemporaneous terrestrial carnivores such as dinosaurs.

  4. Early Cretaceous arthropods from plattenkalk facies in Mexico

    NARCIS (Netherlands)

    Vega, Francisco J.; Garcia-Barrera, P.; Coutiño, M.; Nyborg, T.; Cifuentes-Ruiz, P.; González-Rodríguez, K.; Martens, A.; Delgado, C.R.; Carbot, G.


    Several well-preserved arthropod faunas have been studied in Mexico during the past few years. The purpose of the present note is to outline advances in the study of these arthropods and of their paleoenvironmental implications, from four localities. The age for these localities ranges from the

  5. Geochemistry and petrogenesis of early Cretaceous sub-alkaline ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    East Garo Hills, Shillong plateau, northeast India. Rajesh K Srivastava ... exposed around western part of the plateau. This ... logical and geochemical work is available on these basic dykes. ..... Similar crystallization behaviour is also observed.

  6. Effects of geomagnetic storm on low latitude ionospheric total ...

    Indian Academy of Sciences (India)

    1Department of Physics, Tripura University, Suryamaninagar, Tripura 799 022, India. ... the fact that the electro-dynamic effect of geomagnetic storms around EIA region is more effective than ... causes range of error in GPS communication.

  7. Research on Stealthy Headphone Detector Based on Geomagnetic Sensor

    Directory of Open Access Journals (Sweden)

    Liu Ya


    Full Text Available A kind of stealth headphone detector based on geomagnetic sensor has been developed to deal with the stealth headphones which are small, extremely stealthy and hard to detect. The U.S. PNI geomagnetic sensor is chosen to obtain magnetic field considering the strong magnetic performance of stealth headphones. The earth’s magnetic field at the geomagnetic sensor is eliminated by difference between two geomagnetic sensors, and then weak variations of magnetic field is detected. STM8S103K2 is chosen as the central controlling chip, which is connected to LED, buzzer and LCD 1602. As shown by the experimental results, the probe is not liable to damage by the magnetic field and the developed device has high sensitivity, low False Positive Rate (FAR and satisfactory reliability.

  8. A comprehensive analysis of the geomagnetic storms occurred dur

    Directory of Open Access Journals (Sweden)

    Essam Ghamry


    Full Text Available The Geomagnetic storms are considered as one of the major natural hazards. Egyptian geomagnetic observatories observed multiple geomagnetic storms during 18 February to 2 March 2014. During this period, four interplanetary shocks successively hit the Earth’s magnetosphere, leading to four geomagnetic storms. The storm onsets occurred on 18, 20, 23 and 27 February. A non-substorm Pi2 pulsation was observed on 26 February. This Pi2 pulsation was detected in Egyptian observatories (Misallat and Abu Simbel, Kakioka station in Japan and Carson City station in US with nearly identical waveforms. Van Allen Probe missions observed non-compressional Pc4 pulsations on the recovery phase of the third storm. This Pc4 event is may be likely attributed to the decay of the ring current in the recovery phase.

  9. A Probabilistic Assessment of the Next Geomagnetic Reversal (United States)

    Buffett, Bruce; Davis, William


    Deterministic forecasts for the next geomagnetic reversal are not feasible due to large uncertainties in the present-day state of the Earth's core. A more practical approach relies on probabilistic assessments using paleomagnetic observations to characterize the amplitude of fluctuations in the geomagnetic dipole. We use paleomagnetic observations for the past 2 Myr to construct a stochastic model for the axial dipole field and apply well-established methods to evaluate the probability of the next geomagnetic reversal as a function of time. For a present-day axial dipole moment of 7.6 × 1022 A m2, the probability of the dipole entering a reversed state is less than 2% after 20 kyr. This probability rises to 11% after 50 kyr. An imminent geomagnetic reversal is not supported by paleomagnetic observations. The current rate of decline in the dipole moment is unusual but within the natural variability predicted by the stochastic model.

  10. An Impending geomagnetic transition? Hints from the past.

    Directory of Open Access Journals (Sweden)

    Carlo eLAJ


    Full Text Available The rapid decrease of the geomagnetic field intensity in the last centuries has led to speculations that an attempt to a reversal or an excursion might be under way. Here we investigate this hypothesis by examining past records of geomagnetic field intensity obtained from sedimentary cores and from the study of cosmogenic nuclides. The selected records describe geomagnetic changes with an unprecedented temporal resolution between 20 and 75 kyr B.P. We find that some aspects of the present-day geomagnetic field have some similarities with those documented for the Laschamp excursion 41 kyr ago. Under the assumption that the dynamo processes for an eventual future reversal or excursion would be similar to those of the Laschamp excursion, we tentatively suggest that, whilst irreversible processes that will drive the geodynamo into a polarity change may have already started, a reversal or an excursion should not be expected before 500 to 1000 years.

  11. Characteristic features of the geomagnetic field of the Earth

    International Nuclear Information System (INIS)

    Petrova, G.N.


    The laws of the earth magnetism permitting to make a model of the earth magnetic field are popularly investigated. The modern methods of investigations used in the development of geomagnetism and determining the quantity and direction of the earth magnetic field from the moment of rock formation are described. Considered are the characteristic peculiarities of geomagnetic field: the inclination of the magnetic axis to the rotational axis of the Earth, the western drift of the geomagnetic field, the magnetic field asymmetry, its pole exchange and secular variations. The sources of the continuous magnetic field are investigated. The theory of hydromagnatic dinamo operating in the earth core is described. According to the invariance of the geomagnetic field characteristics it is possible to assume that the core has not significantly evolved for milliard years

  12. Geomagnetic field models for satellite angular motion studies (United States)

    Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.


    Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.

  13. A Probabilistic Assessment of the Next Geomagnetic Reversal


    Buffett, B; Davis, W


    ©2018. American Geophysical Union. All Rights Reserved. Deterministic forecasts for the next geomagnetic reversal are not feasible due to large uncertainties in the present-day state of the Earth's core. A more practical approach relies on probabilistic assessments using paleomagnetic observations to characterize the amplitude of fluctuations in the geomagnetic dipole. We use paleomagnetic observations for the past 2 Myr to construct a stochastic model for the axial dipole field and apply wel...

  14. Chemical Remagnetization of Jurassic Carbonates and a Primary Paleolatitude of Lower Cretaceous Volcaniclastic Rocks of the Tibetan Himalaya (United States)

    Huang, W.; Van Hinsbergen, D. J. J.; Dekkers, M. J.; Garzanti, E.; Dupont Nivet, G.; Lippert, P. C.; Li, X.; Maffione, M.; Langereis, C. G.; Hu, X.; Guo, Z.; Kapp, P. A.


    Paleolatitudes for the Tibetan Himalaya Zone based on paleomagnetic inclinations provide kinematic constraints of the passive northern Indian margin and the extent of 'Greater India' before the India-Asia collision. Here, we present a paleomagnetic investigation of the Jurassic (carbonates) to Lower Cretaceous (volcaniclastic rocks) Wölong section of the Tibetan Himalaya in the Everest region. The carbonates yield positive fold tests, suggesting that the remanent magnetizations have a pre-folding origin. However, detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic studies reveal that the magnetic carrier of the Jurassic carbonates is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic rocks is detrital magnetite. We conclude that the Jurassic carbonates were remagnetized, whereas the Lower Cretaceous volcaniclastics retain a primary remanence. We hypothesize that remagnetization of the Jurassic carbonates was probably caused by the oxidation of early diagenetic pyrite to magnetite within the time interval at ~86-84 Ma during the latest Cretaceous Normal Superchron and earliest deposition of Cretaceous oceanic red beds in the Tibetan Himalaya. The remagnetization of the limestones prevents determining the size of 'Greater India' during Jurassic time. Instead, a paleolatitude of the Tibetan Himalaya of 23.8±2.1° S at ~86-84 Ma is suggested. This value is lower than the expected paleolatitude of India from apparent polar wander path (APWP). The volcaniclastic rocks with the primary remanence, however, yielded a Lower Cretaceous paleolatitude of Tibetan Himalaya of 55.5±3° S, fitting well with the APWP of India.

  15. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults. (United States)

    Azcárate, T; Mendoza, B


    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  16. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  17. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny


    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  18. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults (United States)

    Azcárate, T.; Mendoza, B.


    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  19. Automated detection of geomagnetic storms with heightened risk of GIC (United States)

    Bailey, Rachel L.; Leonhardt, Roman


    Automated detection of geomagnetic storms is of growing importance to operators of technical infrastructure (e.g., power grids, satellites), which is susceptible to damage caused by the consequences of geomagnetic storms. In this study, we compare three methods for automated geomagnetic storm detection: a method analyzing the first derivative of the geomagnetic variations, another looking at the Akaike information criterion, and a third using multi-resolution analysis of the maximal overlap discrete wavelet transform of the variations. These detection methods are used in combination with an algorithm for the detection of coronal mass ejection shock fronts in ACE solar wind data prior to the storm arrival on Earth as an additional constraint for possible storm detection. The maximal overlap discrete wavelet transform is found to be the most accurate of the detection methods. The final storm detection software, implementing analysis of both satellite solar wind and geomagnetic ground data, detects 14 of 15 more powerful geomagnetic storms over a period of 2 years.

  20. A Quaternary Geomagnetic Instability Time Scale (United States)

    Singer, B. S.


    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought

  1. Preliminary results of a study of four successive sedimentary geomagnetic reversal records from the Mediterranean (Upper Thvera, Lower and Upper Sidufjall, and Lower Nunivak)


    Linssen, J.H.


    The results of a study of four successive Early Pliocene geomagnetic reversal records are presented. The polarity transitions have been recorded in the Trubi formation of Calabria (S. Italy). The lower Sidufjall and Lower Nunivak records are nearly identical and have a zonal harmonic content similar to records reported for the Matuyama—Brunhes polarity transition.

  2. Preliminary results of a study of four successive sedimentary geomagnetic reversal records from the Mediterranean (Upper Thvera, Lower and Upper Sidufjall, and Lower Nunivak)

    NARCIS (Netherlands)

    Linssen, J.H.


    The results of a study of four successive Early Pliocene geomagnetic reversal records are presented. The polarity transitions have been recorded in the Trubi formation of Calabria (S. Italy). The lower Sidufjall and Lower Nunivak records are nearly identical and have a zonal harmonic content

  3. Highly derived eutherian mammals from the earliest Cretaceous of southern Britain

    Directory of Open Access Journals (Sweden)

    Steven C. Sweetman


    Full Text Available Eutherian mammals (Placentalia and all mammals phylogenetically closer to placentals than to marsupials comprise the vast majority of extant Mammalia. Among these there is a phenomenal range of forms and sizes, but the origins of crown group placentals are obscure. They lie within the generally tiny mammals of the Mesozoic, represented for the most part by isolated teeth and jaws, and there is strongly conflicting evidence from phenomic and molecular data as to the date of origin of both Eutheria and Placentalia. The oldest purported eutherians are Juramaia from the Upper Jurassic of China, and Eomaia and Acristatherium from the Lower Cretaceous, also of China. Based on dental characters and analyses of other morphological and molecular data, doubt has recently been cast on the eutherian affinities of the Chinese taxa and consequently on the date of emergence of Eutheria. Until now, the only tribosphenic mammal recorded from the earliest Cretaceous (Berriasian Purbeck Group of Britain was the stem tribosphenidan Tribactonodon. Here we document two new tribosphenic mammals from the Purbeck Group, Durlstotherium gen. nov. and Durlstodon gen. nov., showing highly derived eutherian molar characters that support the early emergence of this clade, prior to the Cretaceous.

  4. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. (United States)

    Mitchell, Jonathan S; Roopnarine, Peter D; Angielczyk, Kenneth D


    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.

  5. Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia (United States)

    Li, Gaojie; Wu, Chihua; Rodríguez-López, Juan Pedro; Yi, Haisheng; Xia, Guoqing; Wagreich, Michael


    The mid-Cretaceous constitutes a period of worldwide atmospheric and oceanic change associated with slower thermohaline circulation and ocean anoxic events, possible polar glaciations and by a changing climate pattern becoming controlled by a zonal planetary wind system and an equatorial humid belt. During the mid-Cretaceous, the subtropical high-pressure arid climate belt of the planetary wind system controlled the palaeolatitude distribution of humid belts in Asia as well as the spatial distribution of rain belts over the massive continental blocks at mid-low latitudes in the southern and northern hemispheres. Additionally, the orographic effect of the Andean-type active continental margin in East Asia hindered the transportation of ocean moisture to inland regions. With rising temperatures and palaeoatmospheric conditions dominated by high pressure systems, desert climate environments expanded at the inland areas of East Asia including those accumulated in the mid-Cretaceous of the Simao Basin, the Sichuan Basin, and the Thailand's Khorat Basin, and leading the Late Cretaceous erg systems in the Xinjiang Basin and Jianghan Basin. This manuscript presents evidences that allow to reinterpret previously considered water-laid sediments to be accumulated as windblown deposits forming part of extensive erg (sandy desert) systems. Using a multidisciplinary approach including petrological, sedimentological and architectural observations, the mid-Cretaceous (Albian-Turonian) Nanxin Formation from the Yunlong region of Lanping Basin, formerly considered to aqueous deposits is here interpreted as representing aeolian deposits, showing local aeolian-fluvial interaction deposits. The palaeowind directions obtained from the analysis of aeolian dune cross-beddings indicates that inland deserts were compatible with a high-pressure cell (HPC) existing in the mid-low latitudes of East Asia during the mid-Cretaceous. Compared with the Early Cretaceous, the mid-Cretaceous had

  6. Average configuration of the geomagnetic tail

    International Nuclear Information System (INIS)

    Fairfield, D.H.


    Over 3000 hours of Imp 6 magnetic field data obtained between 20 and 33 R/sub E/ in the geomagnetic tail have been used in a statistical study of the tail configuration. A distribution of 2.5-min averages of B/sub z/ as a function of position across the tail reveals that more flux crosses the equatorial plane near the dawn and dusk flanks (B-bar/sub z/=3.γ) than near midnight (B-bar/sub z/=1.8γ). The tail field projected in the solar magnetospheric equatorial plane deviates from the x axis due to flaring and solar wind aberration by an angle α=-0.9 Y/sub SM/-2.7, where Y/sub SM/ is in earth radii and α is in degrees. After removing these effects, the B/sub y/ component of the tail field is found to depend on interplanetary sector structure. During an 'away' sector the B/sub y/ component of the tail field is on average 0.5γ greater than that during a 'toward' sector, a result that is true in both tail lobes and is independent of location across the tail. This effect means the average field reversal between northern and southern lobes of the tail is more often 178 0 rather than the 180 0 that is generally supposed

  7. Geomagnetism during solar cycle 23: Characteristics

    Directory of Open Access Journals (Sweden)

    Jean-Louis Zerbo


    Full Text Available On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT and yearly averaged solar wind speed (364 km/s are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s, associated to the highest value of the yearly averaged aa index (37 nT. We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum.

  8. The Complexity of Solar and Geomagnetic Indices (United States)

    Pesnell, W. Dean


    How far in advance can the sunspot number be predicted with any degree of confidence? Solar cycle predictions are needed to plan long-term space missions. Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Statistical and timeseries analyses of the sunspot number are often used to predict solar activity. These methods have not been completely successful as the solar dynamo changes over time and one cycle's sunspots are not a faithful predictor of the next cycle's activity. In some ways, using these techniques is similar to asking whether the stock market can be predicted. It has been shown that the Dow Jones Industrial Average (DJIA) can be more accurately predicted during periods when it obeys certain statistical properties than at other times. The Hurst exponent is one such way to partition the data. Another measure of the complexity of a timeseries is the fractal dimension. We can use these measures of complexity to compare the sunspot number with other solar and geomagnetic indices. Our concentration is on how trends are removed by the various techniques, either internally or externally. Comparisons of the statistical properties of the various solar indices may guide us in understanding how the dynamo manifests in the various indices and the Sun.

  9. Physical behaviour of Cretaceous calcareous nannofossil ooze

    DEFF Research Database (Denmark)

    Buls, Toms; Anderskouv, Kresten; Friend, Patrick L.


    Geomorphic features such as drifts, sediment waves and channels have been documented in the Upper Cretaceous of north-west Europe. These features are interpreted to result from bottom currents and have been used to refine chalk depositional models and quantify palaeocirculation patterns. Chalk...... was first deposited as calcareous nannofossil ooze and geomorphic features are the result of sediment reworking after deposition. There is limited knowledge on the processes that govern nannofossil ooze mobility, thus forcing uncertainty onto numerical models based on sedimentological observations...... of deposition thresholds (τcd) from ca 0·04 to 0·13 Pa reflects the influence of variable suspended sediment concentration and τ0 on settling particle size due to the identified potential for chalk ooze aggregation and flocculation. Additionally, deposition thresholds seem to be affected by the size of eroded...

  10. Cretaceous to present paleothermal gradients, central Negev, Israel: constraints from fission track dating

    International Nuclear Information System (INIS)

    Kohn, B.P.; Feinstein, S.; Eyal, M.


    Apatite and zircon fission track ages (FTA), vitrinite reflectance (VR) data and burial history curves were integrated for reconstruction of Early Cretaceous to present maximum thermal gradients in four deep boreholes in the central Negev, Isreal. The most complete data set is available from the Ramon 1 borehole. Supplementary data were obtained from Hameishar 1, Makhtesh Qatan 2, and Kurnub 1 boreholes. Between ca. 122-90 Ma the constraints on thermal gradient obtained from apatite FTA overlap with those derived from zircon FT and VR data, restricting them to 0 C km -l . Apatite FTA between 90 and 80 Ma in Ramon 1 and Hameishar 1 suggest rapid cooling at the time recorded or earlier. Constraints on thermal gradient history derived from these ages are considerably strengthened over a short time span. From 80 Ma to the present, FTA data indicate that gradients had probably decayed to present-day regional levels (ca. 20 0 C km -1 ) by Early Tertiary time. Thermal constraints derived from apatite FTA and VR data in Makhtesh Qatan 2 and Kurnub 1 boreholes are consistent with those obtained post-56 Ma for Ramon 1. For pre-56 Ma, only VR data are available and these indicate considerably lower maximum gradients than those obtained for the same time period from Ramon 1. This dichotomy reflects different Early Cretaceous-Early Tertiary thermal regimes between the northern and southern parts of the study area. (author)

  11. Post Cretaceous cooling trend documented in the gastropods (Turritella Sp.) from the Cenozoic startigraphic successions of India (United States)

    Banerjee, Y.; Ghosh, P.; Halder, K.; Malarkodi, N.; Pathak, P.


    The aftermath of the Himalyan orogeny and subsequent cooling is documented in the deep sea sedimentary record from the Oceanic realm (1). Here we attempt to reconstruct the temperature pattern based on marine gastropods i.e. Turritella sp. which became abundant during the post Cretaceous period and have successfully been used for the reconstruction of climate by measuring the stable isotopic composition (2,3,4). Well preserved specimens of Cretaceous Turritella from the Rajamundry Infratrappean beds and those from the Miocene, Holocene succession of Kutch, western India were analysed along with specimen from the modern time scale (also from Kutch). The Cretaceous, early to mid Miocene, early Holocene and modern shells recorded δ13C variability from 0.36 to 4.94‰, -1.83 to -4.83‰, -3.26 to 0.40‰, -1.47 to -4.70‰ respectively suggesting drop in the productivity during mid Miocene and subsequent period of rapid growth. The Variability in terms of δ18O ranges from -2.28 to -4.99‰, -2.66 to -7.06‰, -2.86 to 0.96‰, -1.05 to -3.23‰ for the Cretaceous, early to mid Miocene, early Holocene and modern shells respectively. Corbula sp. collected from the same strata with that of the early to mid Holocene Turritella showed a similar δ13C and δ18O values denoting similar environmental condition during deposition. Absence of any significant correlation between δ13C vs δ18O support equilibrium precipitation of shell growth bands. We used Epstein oxygen isotope thermometry to derive temperature from the oxygen isotope of carbonate and adopted water isotopic composition (1‰ for the Cretaceous and -0.7‰ for the Miocene) from the literature. Our observation captured an overall cooling trend from the Cretaceous to the Holocene time period (especially in between mid Miocene to Holocene) and a subsequent warming trend in modern time. Validation with other thermometry method will be displayed at the time of presentation. References: [1] Zachos et al., 2001

  12. Cretaceous Vertebrate Tracksites - Korean Cretaceous Dinosaur Coast World Heritage Nomination Site (United States)

    Huh, M.; Woo, K. S.; Lim, J. D.; Paik, I. S.


    South Korea is one of the best known regions in the world for Cretaceous fossil footprints, which are also world-renowned. Korea has produced more scientifically named bird tracks (ichnotaxa) than any other region in the world. It has also produced the world's largest pterosaur tracks. Dinosaur tracksites also have the highest frequency of vertebrate track-bearing levels currently known in any stratigraphic sequence. Among the areas that have the best track records, and the greatest scientific significance with best documentation, Korea ranks very highly. Objective analysis of important individual tracksites and tracksite regions must be based on multiple criteria including: size of site, number of tracks, trackways and track bearing levels, number of valid named ichnotaxa including types, number of scientific publications, quality of preservation. The unique and distinctive dinosaur tracksites are known as one of the world's most important dinosaur track localities. In particular, the dinosaur track sites in southern coastal area of Korea are very unique. In the sites, we have excavated over 10,000 dinosaur tracks. The Hwasun sites show diverse gaits with unusual walking patterns and postures in some tracks. The pterosaur tracks are the most immense in the world. The longest pterosaur trackway yet known from any track sites suggests that pterosaurs were competent terrestrial locomotors. This ichnofauna contains the first pterosaur tracks reported from Asia. The Haenam Uhangri pterosaur assigns to a new genus Haenamichnus which accomodates the new ichnospecies, Haenamichnus uhangriensis. At least 12 track types have been reported from the Haman and Jindong Formations (probably late Lower Cretaceous). These include the types of bird tracks assigned to Koreanornis, Jindongornipes, Ignotornis and Goseongornipes. In addition the bird tracks Hwangsanipes, Uhangrichnus, the pterosaur track Haenamichnus and the dinosaur tracks, Brontopodus, Caririchnium, Minisauripus and

  13. Transitional geomagnetic impulse hypothesis: Geomagnetic fact or rock-magnetic artifact? (United States)

    Camps, Pierre; Coe, Robert S.; PréVot, Michel


    A striking feature of the Steens Mountain (Oregon) geomagnetic polarity reversal is the two (maybe three) extremely rapid field directional changes (6 degrees per day) proposed to account for unusual behavior in direction of remanent magnetization in a single lava flow. Each of these very fast field changes, or impulses, is associated with a large directional gap (some 90°) in the record. In order to check the spatial reproducibility of the paleomagnetic signal over distances up to several kilometers, we have carried out a paleomagnetic investigation of two new sections (B and F) in the Steens summit region which cover the second and the third directional gap. The main result is the description of two new directions, which are located between the pre second and post second impulse directions. These findings weigh against the hypothesis that the geomagnetic field cause the unusual intraflow fluctuations, which now appears to be more ad hoc as an explanation of the paleomagnetic data. However, the alternative baking hypothesis remains also ad hoc since we have to assume variable rock magnetic properties that we have not yet been able to detect within the flows at the original section Steens A and D 1.5 km to the north. In addition, new results for 22 transitional and normal lava flows in section B are presented that correlate well with earlier results from section A.

  14. A study of geomagnetic field variations along the 80° S geomagnetic parallel

    Directory of Open Access Journals (Sweden)

    S. Lepidi


    Full Text Available The availability of measurements of the geomagnetic field variations in Antarctica at three sites along the 80° S geomagnetic parallel, separated by approximately 1 h in magnetic local time, allows us to study the longitudinal dependence of the observed variations. In particular, using 1 min data from Mario Zucchelli Station, Scott Base and Talos Dome, a temporary installation during 2007–2008 Antarctic campaign, we investigated the diurnal variation and the low-frequency fluctuations (approximately in the Pc5 range, ∼ 1–7 mHz. We found that the daily variation is clearly ordered by local time, suggesting a predominant effect of the polar extension of midlatitude ionospheric currents. On the other hand, the pulsation power is dependent on magnetic local time maximizing around magnetic local noon, when the stations are closer to the polar cusp, while the highest coherence between pairs of stations is observed in the magnetic local nighttime sector. The wave propagation direction observed during selected events, one around local magnetic noon and the other around local magnetic midnight, is consistent with a solar-wind-driven source in the daytime and with substorm-associated processes in the nighttime.

  15. Geologic models and evaluation of undiscovered conventional and continuous oil and gas resources: Upper Cretaceous Austin Chalk (United States)

    Pearson, Krystal


    The Upper Cretaceous Austin Chalk forms a low-permeability, onshore Gulf of Mexico reservoir that produces oil and gas from major fractures oriented parallel to the underlying Lower Cretaceous shelf edge. Horizontal drilling links these fracture systems to create an interconnected network that drains the reservoir. Field and well locations along the production trend are controlled by fracture networks. Highly fractured chalk is present along both regional and local fault zones. Fractures are also genetically linked to movement of the underlying Jurassic Louann Salt with tensile fractures forming downdip of salt-related structures creating the most effective reservoirs. Undiscovered accumulations should also be associated with structure-controlled fracture systems because much of the Austin that overlies the Lower Cretaceous shelf edge remains unexplored. The Upper Cretaceous Eagle Ford Shale is the primary source rock for Austin Chalk hydrocarbons. This transgressive marine shale varies in thickness and lithology across the study area and contains both oil- and gas-prone kerogen. The Eagle Ford began generating oil and gas in the early Miocene, and vertical migration through fractures was sufficient to charge the Austin reservoirs.

  16. Sedimentary Provenance Constraints on the Middle Jurassic to Late Cretaceous Paleogeography of the Sichuan Basin, SW China (United States)

    Li, Y.; He, D.; Li, D.; Lu, R.


    Sedimentary provenance of the Middle Jurassic to Late Cretaceous sediments in the Sichuan Basin is constrained by sandstone petrology and detrital zircon U-Pb geochronology, which provides critical insights into mid-late Mesozoic paleogeographic evolution of the Sichuan Basin. Petrographic analyses of 22 sandstone samples indicate moderate to high mature sediments and are primarily derived from cratonic or recycled sources. U-Pb age data for the Middle Jurassic to Late Cretaceous detrital zircons generally show populations at 130-200, 200-330, 400-490, 680-890, 1730-1960, and 2360-2600 Ma, with up-section variations. The Middle Jurassic sediments contain a relatively high density of 1.85 and 2.5 Ga zircons and a low density of the 800 Ma zircons, which are consistent with derivation mainly from the Songpan-Ganzi terrane and the South Qinling belt, and secondarily from the Western Jiangnan Orogen. The Late Jurassic and Early Cretaceous sedimentation with a scattered age distribution shared common multiple-source to sink systems that were predominantly draining towards the south and southeast, but increasingly drained southward, and were later disrupted by a synchronous northeastward drainage capture. Late Cretaceous sediments have a distinct reduction in Block.

  17. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry (United States)

    Rau, G.H.; Arthur, M.A.; Dean, W.E.


    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  18. Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A

    International Nuclear Information System (INIS)

    Norman, M.D.; Leeman, W.P.


    Magmatism in the western United States spanned a change in tectonic setting from Mesozoic and early Tertiary plate convergence to middle and late Tertiary crustal extension. This paper presents new major element, trace element, and isotopic (Sr, Nd, Pb) data on a diverse suite of Cretaceous to Neogene igneous rocks from the Owyhee area of southwestern Idaho to evaluate possible relationships between the evolving tectonic regime and temporal changes in igneous activity. The oldest studied rocks are Cretaceous granitic intrusives that probably formed by large-scale mixing of Precambrian crust with subduction-related magmas. Silicic Eocene tuffs are also rich in crustal components, but have isotopic compositions unlike the Cretaceous intrusives. These data require at least two crustal sources that may correspond to domains of significantly different age (Archean vs. Proterozoic). The oldest mafic lavas in the study area are Oligocene andesites and basalts compositionally similar to subduction-related magmas derived from asthenospheric mantle and erupted through thick continental crust. Direct crustal involvement during oligocene time was limited to minor interaction with the mafic magmas. Miocene activity produced bimodal basalt-rhyolite suites and minor volumes of hybrid lavas. Compositions of Miocene basalts demonstrate the decline of subduction-related processes, and increased involvement of subcontinental lithospheric mantle as a magma source. Crustally-derived Miocene rhyolites have isotopic compositions similar to those of the Cretaceous granitic rocks but trace element abundances more typical of within-plate magmas. (orig./WB)

  19. Late Cretaceous extension and exhumation of the Stong and Taku magmatic and metamorphic complexes, NE Peninsular Malaysia (United States)

    François, T.; Md Ali, M. A.; Matenco, L.; Willingshofer, E.; Ng, T. F.; Taib, N. I.; Shuib, M. K.


    Fragmentation of large continental areas by post-orogenic extension requires favourable geodynamic conditions and frequently occurs along pre-existing suture zones or nappe contacts, as exemplified by the Stong and Taku magmatic and metamorphic complexes of northern Peninsular Malaysia. For this case, we have employed a field and microstructural kinematic study combined with low temperature thermo-chronology to analyse the tectonic and exhumation history. The results show that the Late Palaeozoic - Triassic Indosinian orogeny created successive phases of burial related metamorphism, shearing and contractional deformation. This orogenic structure was subsequently dismembered during a Cretaceous thermal event that culminated in the formation of a large scale Late Santonian - Early Maastrichtian extensional detachment, genetically associated with crustal melting, the emplacement of syn-kinematic plutons and widespread migmatisation. The emplacement of these magmatic rocks led to an array of simultaneously formed structures that document deformation conditions over a wide temperature range, represented by amphibolite- and greenschist- facies mylonites and as well as brittle structures, such as cataclastic zones and normal faults that formed during exhumation in the footwall of the detachment. The formation of this detachment and a first phase of Late Cretaceous cooling was followed by renewed Eocene - Oligocene exhumation, as evidenced from our fission track ages. We infer that an initial Cretaceous thermal anomaly was responsible for the formation of an extensional gneiss dome associated with simple shear and rotation of normal faults. These Cretaceous processes played a critical role in the establishment of the presently observed crustal structure of Peninsular Malaysia.

  20. Intermittency and multifractional Brownian character of geomagnetic time series

    Directory of Open Access Journals (Sweden)

    G. Consolini


    Full Text Available The Earth's magnetosphere exhibits a complex behavior in response to the solar wind conditions. This behavior, which is described in terms of mutifractional Brownian motions, could be the consequence of the occurrence of dynamical phase transitions. On the other hand, it has been shown that the dynamics of the geomagnetic signals is also characterized by intermittency at the smallest temporal scales. Here, we focus on the existence of a possible relationship in the geomagnetic time series between the multifractional Brownian motion character and the occurrence of intermittency. In detail, we investigate the multifractional nature of two long time series of the horizontal intensity of the Earth's magnetic field as measured at L'Aquila Geomagnetic Observatory during two years (2001 and 2008, which correspond to different conditions of solar activity. We propose a possible double origin of the intermittent character of the small-scale magnetic field fluctuations, which is related to both the multifractional nature of the geomagnetic field and the intermittent character of the disturbance level. Our results suggest a more complex nature of the geomagnetic response to solar wind changes than previously thought.

  1. Improving geomagnetic observatory data in the South Atlantic Anomaly (United States)

    Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia


    The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.

  2. The Geomagnetic Control Concept of The Ionospheric Long- Term Trends (United States)

    Mikhailov, A. V.

    The geomagnetic control concept has been developed to explain long-term trends of the electron concentration in the F2 and E ionospheric regions. Periods with negative and positive foF2, hmF2 and foE trends correspond to the periods of increasing or decreasing geomagnetic activity with the turning points around the end of 1950s, 1960s, and 1980s where trends change their signs. Strong latitudinal and diurnal variations revealed for the foF2 and hmF2 trends can be explained by neutral composition, temperature and thermospheric wind changes. Particle precipitation is important in the auroral zone. The newly proposed concept proceeds from a natural origin of the F2-layer trends rather than an artificial one related to the greenhouse effect. Using the proposed method a very long-term foF2 and foE trends related with general increase of geomagnetic activity in the 20th century has been revealed for the first time. The firstly revealed relationship of the foE trends with geomagnetic activity is due to nitric oxide variations at the E-region heights. This "natural" relationship of the foE trends with geomagnetic activity breaks down around 1970 on many stations presumably due to chemical polution of the upper atmosphere. The increasing rate of rocket and satellite launchings in the late 1960s is considered as a reason.

  3. Green corona, geomagnetic activity and radar meteor rates

    International Nuclear Information System (INIS)

    Prikryl, P.


    The short-term dependence of radar meteor rates on geomagnetic activity and/or central meridian passage (CMP) of bright or faint green corona regions is studied. A superimposed-epoch analysis was applied to radar meteor observations from the Ottawa patrol radar (Springhill, Ont.) and Ksub(p)-indices of geomagnetic activity for the period 1963 to 1967. During the minimum of solar activity (1963 to 1965) the CMP of bright coronal regions was followed by the maximum in the daily rates of persistent meteor echoes (>=4s), and the minimum in the daily sums of Ksub(p)-indices whereas the minimum or the maximum, respectively, occurs after the CMP of faint coronal regions. The time delay between the CMP of coronal structures and the corresponding maxima or minima is found to be 3 to 4 days. However, for the period immediately after the minimum of solar activity (1966 to 1967) the above correlation with the green corona is void both for the geomagnetic activity and radar meteor rates. An inverse correlation was found between the radar meteor rates and the geomagnetic activity irrespective of the solar activity. The observed effect can be ascribed to the solar-wind-induced ''geomagnetic'' heating of the upper atmosphere and to the subsequent change in the density gradient in the meteor zone. (author)

  4. Rib fracture in Prognathodon saturator (Mosasauridae, Late Cretaceous)

    NARCIS (Netherlands)

    Schulp, Anne S.; Walenkamp, G. H I M; Hofman, P.A.M.; Rothschild, B. M.; Jagt, J. W M


    Two unusual bumps occur on the internal surface of a rib of the marine reptile Prognathodon saturator from the Upper Cretaceous (Maastrichtian) of Maastricht, The Netherlands. These bumps are interpreted as stress fractures, possibly related to agonistic behaviour.

  5. Dinosaur morphological diversity and the end-Cretaceous extinction. (United States)

    Brusatte, Stephen L; Butler, Richard J; Prieto-Márquez, Albert; Norell, Mark A


    The extinction of non-avian dinosaurs 65 million years ago is a perpetual topic of fascination, and lasting debate has focused on whether dinosaur biodiversity was in decline before end-Cretaceous volcanism and bolide impact. Here we calculate the morphological disparity (anatomical variability) exhibited by seven major dinosaur subgroups during the latest Cretaceous, at both global and regional scales. Our results demonstrate both geographic and clade-specific heterogeneity. Large-bodied bulk-feeding herbivores (ceratopsids and hadrosauroids) and some North American taxa declined in disparity during the final two stages of the Cretaceous, whereas carnivorous dinosaurs, mid-sized herbivores, and some Asian taxa did not. Late Cretaceous dinosaur evolution, therefore, was complex: there was no universal biodiversity trend and the intensively studied North American record may reveal primarily local patterns. At least some dinosaur groups, however, did endure long-term declines in morphological variability before their extinction.

  6. Dynamical similarity of geomagnetic field reversals. (United States)

    Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio


    No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.

  7. A superposed epoch analysis of geomagnetic storms

    Directory of Open Access Journals (Sweden)

    J. R. Taylor


    Full Text Available A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index. Storms have also been classified here as either storm sudden commencements (SSCs or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement. The prevailing solar wind conditions defined by the parameters solar wind speed (vsw, density (ρsw and pressure (Psw and the total field and the components of the interplanetary magnetic field (IMF during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst ≤ -50 nT for ≥ 4 h, but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst ≤ -100 nT for ≥ 4 h the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t = +1 h is the dominant sign of the Bz for ~24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.

  8. Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago


    Csiki Sava,Zoltan; Buffetaut,Eric; Ősi,Attila; Pereda-Suberbiola,Xabier; Brusatte,Stephen


    Abstract The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We revi...

  9. Observations of unusual pre-dawn response of the equatorial F-region during geomagnetic disturbances (United States)

    Lima, W.; Becker-Guedes, F.; Fagundes, P.; Sahai, Y.; Abalde, J.; Pillat, V.

    It is known that the disturbed solar wind-magnetosphere interactions have important effects on equatorial and low-latitude ionospheric electrodynamics. The response of equatorial ionosphere during storm-time is an important aspect of space weather studies. It has been observed that during geomagnetic disturbances both suppression as well as generation of equatorial spread-F (ESF) or plasma irregularities takes place. However, the mechanism(s) associated with the generation of ESF still needs further investigations. This work reports some unusual events of pre-dawn occurrence of ionospheric F-region satellite traces followed by spread-F and cusp-like spread-F from ionospheric sounding observations carried out by a Canadian Advanced Digital Ionosonde (CADI) localized at Palmas (10.2°, 48.2°W, dip latitude 5.7°S), Brazil during 2002, every 5 minutes. For the present work we have scaled and analyzed the ionospheric sounding data for three events (April 20, September 04 and 08, 2002), which are associated with geomagnetic disturbances. In the events studied, the ionograms show the occurrence of satellite trace followed by cusp-like spread. The cusp like features move up in frequency and height and finally attain the F-layer peak value (foF2) and then disappear. They had duration of about 30 min and always occurred in the early morning hours. Our studies involved seven geomagnetic disturbances as well as quiet days during the year 2002, but only on these three occasions we observed these features. We present and discuss these observations in this paper and suggest possible mechanisms for the occurrence of these unusual features.

  10. Fluxgate Magnetometer Array for Geomagnetic Abnormal Phenomena Tracking

    Directory of Open Access Journals (Sweden)

    Xiaomei Wang


    Full Text Available The objective of this project is to develop a flexible observation mode for a geomagnetic abnormal phenomena tracking system. The instrument, based on ring core fluxgate magnetometer technology, improves the field environment performance. Using wireless technology provides on-the-spot mobile networking for the observational data, with efficient access to the earthquake precursor observation network. It provides a powerful detection method for earthquake short-term prediction through installation of a low-noise fluxgate magnetometer array, intensely observing the phenomenon of geomagnetic disturbances and abnormal low-frequency electromagnetic signals in different latitudes, then carrying out observational data processing and exploring the relationship between earthquake activity and geomagnetic field changes.

  11. F layer positive response to a geomagnetic storm - June 1972

    International Nuclear Information System (INIS)

    Miller, N.J.; Grebowsky, J.M.; Mayr, H.G.; Harris, I.; Tulunay, Y.K.


    A circulation model of neutral thermosphere-ionosphere coupling is used to interpret in situ spacecraft measurements taken during a topside mid-latitude ionospheric storm. The data are measurements of electron density taken along the circular polar orbit of Ariel 4 at 550 km during the geomagnetically disturbed period June 17--18, 1972. We infer that collisional momentum transfer from the disturbed neutral thermosphere to the ionosphere was the dominant midday process generating the positive F layer storm phase in the summer hemisphere. In the winter hemisphere the positive storm phase drifted poleward in apparent response to magnetospheric E x B drifts. A summer F layer positive phase developed at the sudden commencement and again during the geomagnetic main phase; a winter F layer positive phase developed only during the geomagnetic main phase. The observed seasonal differences in both the onsets and the magnitudes of the positive phases are attributed to the interhemispheric asymmetry in thermospheric dynamics

  12. Operations of the World Data Centre for Geomagnetism, Edinburgh

    Directory of Open Access Journals (Sweden)

    S J Reay


    Full Text Available The British Geological Survey has operated a World Data Centre for Geomagnetism since 1966. Geomagnetic time-series data from around 280 observatories worldwide at a number of time resolutions are held along with various magnetic survey, model, and activity index data. The operation of this data centre provides a valuable resource for the geomagnetic research community. The operation of the WDC and details of the range of data held are presented. The quality control procedures that are applied to incoming data are described as is the work to collaborate with other data centres to distribute and improve the overall consistency of data held worldwide. The development of standards for metadata associated with datasets is demonstrated, and current efforts to digitally preserve the BGS analogue holdings of magnetograms and observatory yearbooks are described.

  13. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal. (United States)

    Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi


    The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR-cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama-Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to 40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux.

  14. Anomalous changes of vertical geomagnetic field in Kamchatka

    Directory of Open Access Journals (Sweden)

    Moroz Yuriy


    Full Text Available Secular variations of the vertical geomagnetic field at Paratunka (Kamchatka, Kakioka (Honshu, Mamambetsu (Hokkaido and Patrony (Irkutsk are considered from 1968 to 2014. Comparative analysis of secular variations showed that from 1968 to 2001, similar variations with the intensity of first hundreds on nT are obvious at four observatories. For the following period from 2001 to 2014, the secular variation at Paratunka observatory differs from other observatories. This disagreement of the secular geomagnetic variation at Paratunka observatory is timed to the increase of seismicity at the depth of 400-700 km in South Kamchatka region. It is suggested that in the result of increase of the seismicity in the region of transition from the upper to lower mantle, physical and chemical processes became more active. That caused formation of a large geo-electrical inhomogeneity which affected the behavior of the vertical component of geomagnetic field.

  15. Gateways and Water Mass Mixing in the Late Cretaceous North Atlantic (United States)

    Asgharian Rostami, M.; Martin, E. E.; MacLeod, K. G.; Poulsen, C. J.; Vande Guchte, A.; Haynes, S.


    Regions of intermediate/deep water formation and water-mass mixing in the North Atlantic are poorly defined for the Late Cretaceous, a time of gateway evolution and cooler conditions following the Mid Cretaceous greenhouse. Improved proxy data combined with modeling efforts are required to effectively evaluate the relationship between CO2, paleogeography, and circulation during this cooler interval. We analyzed and compiled latest Cretaceous (79 - 66 Ma) ɛNd and δ13C records from seven bathyal (paleodepths 0.2 - 2 km) and eight abyssal (paleodepths > 2 km) sites in the North Atlantic. Data suggest local downwelling of Northern Component Water (NCW; ɛNd -9.5 and δ13C 1.7 ‰) is the primary source of intermediate/deep water masses in the basin. As this water flows southward and ages, δ13C values decrease and ɛNd values increase; however, additional chemical changes at several sites require mixing with contributions from several additional water masses. Lower ɛNd ( -10) and higher δ13C ( 1.9 ‰) values in the deep NW part of the basin indicate proximal contributions from a region draining old continental crust, potentially representing deep convection following opening of the Labrador Sea. In the deep NE Iberian Basin, higher ɛNd ( -7) and lower δ13C ( 0.8 ‰) during the Campanian suggest mixing with a Tethyan source (ɛNd -7 and δ13C 0.1 ‰) whose importance decreased with restriction of that gateway in the Maastrichtian. Data from bathyal sites suggest additional mixing. In the SE Cape Verde region, observed ɛNd variations from -10 in the Campanian to -13 and -12 in the early and late Maastrichtian, respectively, may record variations in output rates of Tethyan and/or NCW sources and Demerara Bottom Water (ɛNd -16), a proposed warm saline intermediate water mass formed in shallow, equatorial seas. Pacific inflow through the Caribbean gateway impacts intermediate sites at Blake Nose (ɛNd values -8), particularly the shallowest site during the late

  16. Turbulent Diffusion of the Geomagnetic Field and Dynamo Theories


    Filippi, Enrico


    The thesis deals with the Dynamo Theories of the Earth’s Magnetic Field and mainly deepens the turbulence phenomena in the fluid Earth’s core. Indeed, we think that these phenomena are very important to understand the recent decay of the geomagnetic field. The thesis concerns also the dynamics of the outer core and some very rapid changes of the geomagnetic field observed in the Earth’s surface and some aspects regarding the (likely) isotropic turbulence in the Magnetohydrodynamics. These top...

  17. Evaluation of candidate geomagnetic field models for IGRF-12

    DEFF Research Database (Denmark)

    Thébault, Erwan; Finlay, Chris; Alken, Patrick


    Background: The 12th revision of the International Geomagnetic Reference Field (IGRF) was issued in December 2014 by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD ( This revision comprises new spherical...... by the British Geological Survey (UK), DTU Space (Denmark), ISTerre (France), IZMIRAN (Russia), NOAA/NGDC (USA), GFZ Potsdam (Germany), NASA/GSFC (USA), IPGP (France), LPG Nantes (France), and ETH Zurich (Switzerland). Each candidate model was carefully evaluated and compared to all other models and a mean model...

  18. IMF sector behavior estimated from geomagnetic data at South Pole

    International Nuclear Information System (INIS)

    Matsushita, S.; Xu, W.h.


    IMF sector behavior which has previously been estimated from the geomagnetic data at Godhavn is confirmed by study of the data at South Pole for 1959--1970 with the same estimation technique, taking the difference between northern and southern hemispheres into consideration. A method to improve (about 18%) the agreement between assigned and actual sector structures by study of the data at the two stations is suggested. Geomagnetic disturbance effects on sector estimation are discussed, and reversed sector effects in winter are given special emphasis

  19. Evaluation of candidate geomagnetic field models for IGRF-12


    Erwan Thébault; Christopher C. Finlay; Patrick Alken; Ciaran D. Beggan; Elisabeth Canet; Arnaud Chulliat; Benoit Langlais; V. Lesur; Frank J. Lowes; Chandrasekharan Manoj; Martin Rother; Reyko Schachtschneider


    Background: The 12th revision of the International Geomagnetic Reference Field (IGRF) was issued in December 2014 by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD ( This revision comprises new spherical harmonic main field models for epochs 2010.0 (DGRF-2010) and 2015.0 (IGRF-2015) and predictive linear secular variation for the interval 2015.0-2020.0 (SV-2010-2015). Findings: The models were deri...

  20. International Geomagnetic Reference Field: the 12th generation


    Thébault , Erwan; Finlay , Christopher ,; Beggan , Ciarán ,; Alken , Patrick; Aubert , Julien ,; Barrois , Olivier; Bertrand , François; Bondar , Tatiana; Boness , Axel; Brocco , Laura; Canet , Elisabeth ,; Chambodut , Aude; Chulliat , Arnaud ,; Coïsson , Pierdavide ,; Civet , François


    International audience; The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, p...

  1. Westward ionospheric currents over the dip equator during geomagnetic disturbances

    International Nuclear Information System (INIS)

    Rastogi, R.G.


    During geomagnetic disturbed periods, the q type of sporadic E layer near the dip equator is shown to disappear with maximum error of five minutes during the period when the difference of the geomagnetic H field between the equatorial and non-equatorial station decreases below the night level. These periods are identified with the reversal to westward direction of the electrojet currents at the base of the E region around 100 km level irrespective of the changes in the S/subq/ current system which might be produced by the disturbance


    Directory of Open Access Journals (Sweden)



    Full Text Available A Jurassic- Cretaceous carbonate succession crops out along the Zyghosti Rema, Kozani (Northern Greece. The substratum consists of the ophiolitic succession of the Vourinos Massif (Pelagonian Domain: serpentinites tectonically overlain by basalts, with thin lenses of radiolarian cherts of middle Bathonian age. The contact with the overlying Jurassic limestones is tectonic. Eight informal units have been distinguished within the Mesozoic limestones, from the base upwards. (A bioclastic, intraclastic and oolitic packstone (Callovian- Oxfordian. (B bioclastic packstone and coral boundstone (Oxfordian . (C bioclastic and oncoidal wackestone with Clypeina jurassica (Oxfordian- Upper Kimmeridgian. (D (Upper Kimmeridgian- Portlandian: oncoidal packstone and rudstone (facies D1; intraclastic and bioclastic grainstone and packstone (facies D2; neptunian dykes with intraclastic and bioclastic wackestone and packstone filling (facies D3; neptunian dykes with Fe-Mn rich laterite filling and with pink silty filling of early Late Cretaceous age. An unconformity surface, due to emersion and erosion of the platform during the latest Jurassic- Early Cretaceous, is overlain by (E intraclastic, bioclastic packstone and grainstone (Cenomanian. (F massive body of debrites with coral, echinoderm, algae and rudist large clasts (facies F1 (Cenomanian; turbiditic beds of bioclastic, intraclastic and lithoclastic rudstone and grainstone (facies F2. (G thin bedded bioclastic mudstone and wackestone with planktonic foraminifers and radiolarians, alternating with turbiditic beds of bioclastic, intraclastic packstone and rudstone and with conglomeratic levels and slumped beds of the previous turbidites (upper Santonian- lower Campanian. (H: bioclastic packstone with planktonic foraminifers (facies H1 (lower Campanian - ?Maastrichtian; amalgamated turbiditic beds of bioclastic wackestone and packstone with planktonic foraminifers (facies H2; turbiditic beds of bioclastic

  3. Dental Disparity and Ecological Stability in Bird-like Dinosaurs prior to the End-Cretaceous Mass Extinction. (United States)

    Larson, Derek W; Brown, Caleb M; Evans, David C


    The causes, rate, and selectivity of the end-Cretaceous mass extinction continue to be highly debated [1-5]. Extinction patterns in small, feathered maniraptoran dinosaurs (including birds) are important for understanding extant biodiversity and present an enigma considering the survival of crown group birds (Neornithes) and the extinction of their close kin across the end-Cretaceous boundary [6]. Because of the patchy Cretaceous fossil record of small maniraptorans [7-12], this important transition has not been closely examined in this group. Here, we test the hypothesis that morphological disparity in bird-like dinosaurs was decreasing leading up to the end-Cretaceous mass extinction, as has been hypothesized in some dinosaurs [13, 14]. To test this, we examined tooth morphology, an ecological indicator in fossil reptiles [15-19], from over 3,100 maniraptoran teeth from four groups (Troodontidae, Dromaeosauridae, Richardoestesia, and cf. Aves) across the last 18 million years of the Cretaceous. We demonstrate that tooth disparity, a proxy for variation in feeding ecology, shows no significant decline leading up to the extinction event within any of the groups. Tooth morphospace occupation also remains static over this time interval except for increased size during the early Maastrichtian. Our data provide strong support that extinction within this group occurred suddenly after a prolonged period of ecological stability. To explain this sudden extinction of toothed maniraptorans and the survival of Neornithes, we propose that diet may have been an extinction filter and suggest that granivory associated with an edentulous beak was a key ecological trait in the survival of some lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. High diversity in cretaceous ichthyosaurs from Europe prior to their extinction.

    Directory of Open Access Journals (Sweden)

    Valentin Fischer

    Full Text Available BACKGROUND: Ichthyosaurs are reptiles that inhabited the marine realm during most of the Mesozoic. Their Cretaceous representatives have traditionally been considered as the last survivors of a group declining since the Jurassic. Recently, however, an unexpected diversity has been described in Upper Jurassic-Lower Cretaceous deposits, but is widely spread across time and space, giving small clues on the adaptive potential and ecosystem control of the last ichthyosaurs. The famous but little studied English Gault Formation and 'greensands' deposits (the Upper Greensand Formation and the Cambridge Greensand Member of the Lower Chalk Formation offer an unprecedented opportunity to investigate this topic, containing thousands of ichthyosaur remains spanning the Early-Late Cretaceous boundary. METHODOLOGY/PRINCIPAL FINDINGS: To assess the diversity of the ichthyosaur assemblage from these sedimentary bodies, we recognized morphotypes within each type of bones. We grouped these morphotypes together, when possible, by using articulated specimens from the same formations and from new localities in the Vocontian Basin (France; a revised taxonomic scheme is proposed. We recognize the following taxa in the 'greensands': the platypterygiines 'Platypterygius' sp. and Sisteronia seeleyi gen. et sp. nov., indeterminate ophthalmosaurines and the rare incertae sedis Cetarthrosaurus walkeri. The taxonomic diversity of late Albian ichthyosaurs now matches that of older, well-known intervals such as the Toarcian or the Tithonian. Contrasting tooth shapes and wear patterns suggest that these ichthyosaurs colonized three distinct feeding guilds, despite the presence of numerous plesiosaur taxa. CONCLUSION/SIGNIFICANCE: Western Europe was a diversity hot-spot for ichthyosaurs a few million years prior to their final extinction. By contrast, the low diversity in Australia and U.S.A. suggests strong geographical disparities in the diversity pattern of Albian-early

  5. Are glendonites reliable indicators of cold conditions? Evidence from the Lower Cretaceous of Spitsbergen (United States)

    Vickers, Madeleine; Price, Gregory; Watkinson, Matthew; Jerrett, Rhodri


    Glendonites are pseudomorphs after the mineral ikaite, and have been found in marine sediments throughout geological time. Ikaite is a metastable, hydrated form of calcium carbonate, which is only stable under specific conditions: between -2 and +5 °C, and with high alkalinity and phosphate concentrations. Glendonites are often associated with cold climates due to the strong temperature control on ikaite growth, and the coincidence in the geological record with episodes of global cooling. Glendonites are found in the Lower Cretaceous succession in Spitsbergen. During the Early Cretaceous, Spitsbergen was at a palaeolatitude of 60°N, and was part of a shallow epicontinental sea that formed during the Mesozoic as Atlantic rifting propagated northwards. Though the Early Cretaceous was generally characterised by greenhouse climate conditions, episodic cold snaps occurred during the Valanginian (the "Weissert Event") and during Aptian-Albian. Using high resolution carbon-isotope stratigraphy, we show that the first occurrences of glendonites are in the upper Lower Hauterivian and in the very upper Upper Hauterivian, stratigraphically higher than the Valanginian cooling event. Glendonites are also found in horizons in the Upper Aptian, coincident with the Aptian-Albian cold snap. Petrological analysis of the glendonite structure reveals differences between the Hauterivian and Aptian glendonites, with evidence for multiple diagenetic phases of growth in the Hauterivian glendonites, suggesting oscillating chemical conditions. This evidence suggests that local environmental conditions may have a stronger control on glendonite formation and preservation than global climate. We present a new model for ikaite growth and slow transformation to glendonite in marine sediments, which points to a more complex suite of diagenetic transformations than previously modelled. Furthermore, we critically assess whether such pseudomorphs after marine sedimentary ikaite may be indicators


    Directory of Open Access Journals (Sweden)

    Ali SARI


    Full Text Available - Late Jurassic-Early Cretaceous Akkuyu formation was deposited in a marine carbonate platform in Central Tarurids. The organic material of the unit is composed of Type III kerogen which is woody material transported from the land. Late Jurassic- Early Cretaceous is an important period which great anoxic events in deep sea bottom occurred due to the primary organic productivity in global sea surface. Use of several trace elements values (Ni, V, U, Cr, Co, Th revealed that Late Jurassic-Early Cretaceous Akkuyu formation shows oxic, disoxic and anoxic paleoredox conditions. In this period the primary productivity was considerably high. Examination of specimen derived from Akkuyu formation revealed that there exists a very good positive relationship between the major oxides of Al2O3, SiO2, Fe2O3, TiO2, and K2O. These combinations of major oxides indicate a detrital origin of source rock. Chemical weathering evaluations of Central Taurids in the Jurassic-Cretaceous period indicated moderate and strong weathering of source rock. K2O/Na2O versus SiO2; SiO2/Al2O3 versus K2O/Na2O; Al2O3/ SiO2 versus Fe2O3 + MgO ve TiO2 versus Fe2O3 + MgO diagrams indicated that Akkuyu formation was deposited along active and/or passive continental margin and derived from basalt and basalt+granite mixed rocks.

  7. Surface electric fields and geomagnetically induced currents in the Scottish Power grid during the 30 October 2003 geomagnetic storm


    Thomson, Alan W.P.; McKay, Allan J.; Clarke, Ellen; Reay, Sarah J.


    A surface electric field model is used to estimate the UK surface E field during the 30 October 2003 severe geomagnetic storm. This model is coupled with a power grid model to determine the flow of geomagnetically induced currents (GIC) through the Scottish part of the UK grid. Model data are compared with GIC measurements at four sites in the power network. During this storm, measured and modeled GIC levels exceeded 40 A, and the surface electric field reached 5 V/km at sites in ...

  8. Multi-Sensor Geomagnetic Prospection: A Case Study from Neolithic Thessaly, Greece

    Directory of Open Access Journals (Sweden)

    Tuna Kalaycı


    Full Text Available Multi-sensor prospecting is a fast-emerging paradigm in archaeological geophysics. Given suitable ground conditions for navigation, sensor arrays drastically increase efficiency in data collection. In particular, geomagnetic prospecting benefits from this development. Despite these advancements, data processing still lacks a best-practice approach. Conventional processing methods developed for gridded data has been challenged by sensor arrays “roaming” in the landscape. In realization of the issue, the Innovative Geophysical Approaches for the Study of Early Agricultural Villages of Neolithic Thessaly (IGEAN Project explored various innovative techniques for the betterment of the multi-sensor geomagnetic data processing. As a result, a modular pipeline is produced with minimal user intervention. In addition to standard steps, such as data clipping, various other algorithms have been introduced. This pipeline is tested over 20 Neolithic settlements in Thessaly, Greece, three of which are presented here in detail. The proposed workflow provides drastic improvements over raw data. As a result of these improvements, the IGEAN project revealed astonishing details on architectural elements, settlement enclosures, and paleolandscapes, changing completely the existing perspective of the Neolithic habitation in Thessaly.

  9. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    International Nuclear Information System (INIS)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.


    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field 'F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  10. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism (United States)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.


    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field `F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  11. Global characteristics of geomagnetic excursions as seen in global empirical models and a numerical geodynamo simulation (United States)

    Korte, M. C.; Wardinski, I.; Brown, M. C.


    Paleomagnetic results from sediments and lava flows provide observational evidence of numerous geomagnetic excursions throughout Earth's history. Two new spherical harmonic geomagnetic field models covering 50-30 ka, including the Laschamp ( 41ka) and Mono Lake ( 32-35 ka) excursions allow us to characterize the global behaviour of these events, both at Earth's surface and the core-mantle boundary. We investigate the evolution of dipole and large-scale non-dipole power throughout the duration of the model and the morphology of the large-scale radial field at the core-mantle boundary. The models suggest clear differences in both the decrease in axial dipole strength and dipole tilt between the two excursions and unlike the previously published model by Leonhardt et al. (2009), they suggest some increase of non-dipole power during the early and late stages of the Laschamp excursion. Global characteristics from the models can be directly compared with results from numerical simulations. We do so for several excursions generated by a numerical simulation driven by purely compositional convection, which appears Earth-like in terms of excursion and reversal occurrence frequency. Excursions from this simulation show differing characteristics, including differences in spectral power evolution. Some cases show similarities to the Laschamp and Mono Lake excursions in the spherical harmonic models. In particular they all indicate that excursions are mainly governed by the axial dipole term and equatorial dipole terms play a minor role.

  12. All-sky-imaging capabilities for ionospheric space weather research using geomagnetic conjugate point observing sites (United States)

    Martinis, C.; Baumgardner, J.; Wroten, J.; Mendillo, M.


    Optical signatures of ionospheric disturbances exist at all latitudes on Earth-the most well known case being visible aurora at high latitudes. Sub-visual emissions occur equatorward of the auroral zones that also indicate periods and locations of severe Space Weather effects. These fall into three magnetic latitude domains in each hemisphere: (1) sub-auroral latitudes ∼40-60°, (2) mid-latitudes (20-40°) and (3) equatorial-to-low latitudes (0-20°). Boston University has established a network of all-sky-imagers (ASIs) with sites at opposite ends of the same geomagnetic field lines in each hemisphere-called geomagnetic conjugate points. Our ASIs are autonomous instruments that operate in mini-observatories situated at four conjugate pairs in North and South America, plus one pair linking Europe and South Africa. In this paper, we describe instrument design, data-taking protocols, data transfer and archiving issues, image processing, science objectives and early results for each latitude domain. This unique capability addresses how a single source of disturbance is transformed into similar or different effects based on the unique "receptor" conditions (seasonal effects) found in each hemisphere. Applying optical conjugate point observations to Space Weather problems offers a new diagnostic approach for understanding the global system response functions operating in the Earth's upper atmosphere.

  13. In-Flight Self-Alignment Method Aided by Geomagnetism for Moving Basement of Guided Munitions

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang


    Full Text Available Due to power-after-launch mode of guided munitions of high rolling speed, initial attitude of munitions cannot be determined accurately, and this makes it difficult for navigation and control system to work effectively and validly. An in-flight self-alignment method aided by geomagnetism that includes a fast in-flight coarse alignment method and an in-flight alignment model based on Kalman theory is proposed in this paper. Firstly a fast in-flight coarse alignment method is developed by using gyros, magnetic sensors, and trajectory angles. Then, an in-flight alignment model is derived by investigation of the measurement errors and attitude errors, which regards attitude errors as state variables and geomagnetic components in navigation frame as observed variables. Finally, fight data of a spinning projectile is used to verify the performance of the in-flight self-alignment method. The satisfying results show that (1 the precision of coarse alignment can attain below 5°; (2 the attitude errors by in-flight alignment model converge to 24′ at early of the latter half of the flight; (3 the in-flight alignment model based on Kalman theory has better adaptability, and show satisfying performance.

  14. Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle. (United States)

    Chang, Mee-mann; Wu, Feixiang; Miao, Desui; Zhang, Jiangyong


    Lampreys are one of the two surviving jawless vertebrate groups and one of a few vertebrate groups with the best exemplified metamorphosis during their life cycle, which consists of a long-lasting larval stage, a peculiar metamorphosis, and a relatively short adulthood with a markedly different anatomy. Although the fossil records have revealed that many general features of extant lamprey adults were already formed by the Late Devonian (ca. 360 Ma), little is known about the life cycle of the fossil lampreys because of the lack of fossilized lamprey larvae or transformers. Here we report the first to our knowledge discovery of exceptionally preserved premetamorphic and metamorphosing larvae of the fossil lamprey Mesomyzon mengae from the Lower Cretaceous of Inner Mongolia, China. These fossil ammocoetes look surprisingly modern in having an eel-like body with tiny eyes, oral hood and lower lip, anteriorly positioned branchial region, and a continuous dorsal skin fin fold and in sharing a similar feeding habit, as judged from the detritus left in the gut. In contrast, the larger metamorphosing individuals have slightly enlarged eyes relative to large otic capsules, thickened oral hood or pointed snout, and discernable radials but still anteriorly extended branchial area and lack a suctorial oral disk, which characterize the early stages of the metamorphosis of extant lampreys. Our discovery not only documents the larval conditions of fossil lampreys but also indicates the three-phased life cycle in lampreys emerged essentially in their present mode no later than the Early Cretaceous.

  15. Protection of power transformers against geomagnetically induced currents

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir


    Full Text Available The article examines the problem of saturation and failure of power transformers under geomagnetically induced currents and currents of the E3 component of high-altitude nuclear explosions. It also describes a special protective relay reacting on DC component in the transformer neutral current.

  16. Geomagnetic matching navigation algorithm based on robust estimation (United States)

    Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan


    The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.

  17. Recent investigation at INPE in magnetospheric physics and geomagnetism

    International Nuclear Information System (INIS)

    Gonzales, W.D.; Trivedi, N.B.


    During recent years the following research activities related to the earth's magnetosphere have been intensified: a) studies on electric field and energy transfer from the solar wind to the magnetosphere; b) studies on high latitude magnetospheric electric fields and on their penetration into the plasmasphere; c) measurements of atmospheric-large scale-electric fields, related to the low latitude magnetospheric-ionospheric coupling and to the local atmospheric electrodynamics, using detectors on board stratospheric balloons; and d) measurements of atmospheric X-rays, related to the process of energetic particle precipitation at the South Atlantic Magnetic Anomaly, using detectors also on board stratospheric balloons. Similarly, the following research activities related to geomagnetism are being pursued: a) studies on the variability of the geomagnetic field and on the dynamics of the equatorial electrojet from local geomagnetic field measurements; b) studies on terrestrial electromagnetic induction through local measurements of the geo-electromagnetic field; and c) studies on the influence of geomagnetic activity on particle precipitation at the South Atlantic Magnetic Anomaly. (Author) [pt

  18. Methodology for simulation of geomagnetically induced currents in power systems

    Directory of Open Access Journals (Sweden)

    Boteler David


    Full Text Available To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.

  19. Long-term trends in geomagnetic and climatic variability

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav


    Roč. 27, 6/7 (2002), s. 427-731 ISSN 1474-7065 R&D Projects: GA AV ČR IAA3012806 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic forcing * climatic variability * global warming Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  20. Surface electric fields for North America during historical geomagnetic storms (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.


    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  1. Geomagnetic core field models in the satellite era

    DEFF Research Database (Denmark)

    Lesur, Vincent; Olsen, Nils; Thomson, Alan W. P.


    After a brief review of the theoretical basis and difficulties that modelers are facing, we present three recent models of the geomagnetic field originating in the Earth’s core. All three modeling approaches are using recent observatory and near-Earth orbiting survey satellite data. In each case...

  2. New insights on geomagnetic storms from observations and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory


    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzgeomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We show examples of ring current simulations during two geomagnetic storms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  3. The Ranges Of Subauroral Geomagnetic Field Elements | Rabiu ...

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics ... An anomaly in seasonal response of range at high solar activity is observed on disturbed condition. ... apart from the anomaly - maintain the order e>j>d of seasonal variation which is in agreement with the popular equinoctial maximum observed in geomagnetic activity.

  4. Eruptive prominences and long-delay geomagnetic storms

    International Nuclear Information System (INIS)

    Wright, C.S.


    The relationship between disappearing solar fragments and geomagnetic disturbances was investigated. It is shown that long-delay storms are associated with filaments well removed from the disc centre, and particularly in the case of large filaments and prominences, the proportion of events that produce long-delay storms increases with angular distance from the centre

  5. Effects of geomagnetic storms on the bottomside ionospheric F region

    Czech Academy of Sciences Publication Activity Database

    Burešová, Dalia


    Roč. 35, - (2005), s. 429-439 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA3042102 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * Geomagnetic storm * Bottomside F region electron density Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.706, year: 2005

  6. Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim


    Full Text Available We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME and Co-rotating Interaction Region (CIR. Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME (˜62% than for storms driven by CIR (˜30%. In addition, sawtooth oscillations occurred mainly (˜82% in the main phase of storms for CME-driven storms while they occurred mostly (˜78% during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to --15 to 0 nT and the solar wind speed was in the range of 400˜700 km/s. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

  7. Transport from chaotic orbits in the geomagnetic tail

    International Nuclear Information System (INIS)

    Horton, W.; Tajima, T.


    The rapid change in direction and magnitude of the magnetic field vector in crossing the quasineutral sheet in the geomagnetic tail leads to deterministic Hamiltonian chaos. The finite correlation times in the single particle orbits due to the continuum of orbital frequencies leads to well-defined collisionless transport coefficients. The transport coefficients are derived for plasma trapped in the quasineutral sheet

  8. Linkage between the Biosphere and Geomagnetic field: Knowns and Unknowns (United States)

    Pan, Y.; Zhu, R.


    The geomagnetic field extends from Earth's interior into space, and protects our planets habitability by shielding the planet from solar winds and cosmic rays. Recently, single zircon paleomagnetic study provides evidence of the field to ages as old as 4.2 Ga. Many great questions remain, including whether the emergence of life on Earth was a consequence of the field's protection, how organisms utilize the field, and if field variations (polarity reversal, excursion and secular variation) impact the evolution of the biosphere. In the past decade, great efforts have been made to probe these very complex and great challenging questions through the inter-disciplinary subject of biogeomagnetism. Numerous birds, fish, sea turtles, bats and many other organisms utilize the geomagnetic field during orientation and long-distance navigation. We recently found that bats, the second most abundant order of mammals, can use the direction of magnetic field with a weak strength comparable to polarity transitions/excursions, which is indicative of advanced magnetoreception developed in bats co-evolving with the geomagnetic field since the Eocene. Magnetotactic bacteria swim along the geomagnetic field lines by synthesizing intracellular nano-sized and chain-arranged magnetic minerals (magnetosomes). Recent field surveys in China, Europe, America and Australia have shown that these microbes are ubiquitous in aqueous habitats. Both their biogeography distribution and magnetotactic swimming speed are field intensity dependent. On the other hand, it is increasingly accepted that the geomagnetic field influences life through several indirect pathways. For example, it has been discovered that solar wind erosion enhanced the atmospheric oxygen escape during periods of weak magnetic field and global mean ionospheric electron density profiles can be affected by geomagnetic field strength variation. In addition, depletion of the ozone layer during a weak magnetic field could result in

  9. Secondarily flightless birds or Cretaceous non-avian theropods? (United States)

    Kavanau, J Lee


    Recent studies by Varricchio et al. reveal that males cared for the eggs of troodontids and oviraptorids, so-called "non-avian theropods" of the Cretaceous, just as do those of most Paleognathic birds (ratites and tinamous) today. Further, the clutches of both groups have large relative volumes, and consist of many eggs of relatively large size. By comparison, clutch care by most extant birds is biparental and the clutches are of small relative volume, and consist of but few small eggs. Varricchio et al. propose that troodontids and oviraptorids were pre-avian and that paternal egg care preceded the origin of birds. On the contrary, unmentioned by them is that abundant paleontological evidence has led several workers to conclude that troodontids and oviraptorids were secondary flightless birds. This evidence ranges from bird-like bodies and bone designs, adapted for climbing, perching, gliding, and ultimately flight, to relatively large, highly developed brains, poor sense of smell, and their feeding habits. Because ratites also are secondarily flightless and tinamous are reluctant, clumsy fliers, the new evidence strengthens the view that troodontids and oviraptorids were secondarily flightless. Although secondary flightlessness apparently favors paternal care of clutches of large, abundant eggs, such care is not likely to have been primitive. There are a suite of previously unknown independent findings that point to the evolution of, first, maternal, followed by biparental egg care in earliest ancestors of birds. This follows from the discovery of remarkable relict avian reproductive behaviors preserved by virtue of the highly conservative nature of vertebrate brain evolution. These behaviors can be elicited readily by exposing breeding birds to appropriate conditions, both environmental and with respect to their eggs and chicks. They give significant new clues for a coherent theory of avian origin and early evolution.

  10. Foraminiferal biostratigraphy of Upper Cretaceous (Campanian - Maastrichtian) sequences in the Peri-Tethys basin; Moghan area, NW Iran (United States)

    Omidvar, Mahboobeh; Safari, Amrollah; Vaziri-Moghaddam, Hossain; Ghalavand, Hormoz


    The Upper Cretaceous sediments in the Moghan area, NW Iran, contain diverse planktonic and benthic foraminifera, with a total of 33 genera and 53 species (17 genera and 38 species of planktonic foraminifera and 16 genera and 15 species from benthic foraminifera), which led to the identification of six biozones spanning the middle Campanian to late Maastrichtian. A detailed paleontological study and biostratigraphic zonation of these sequences has been carried out in four surface sections. This study shows that there are two different facies in the Moghan area, based on the faunal content. A deep open marine condition exists in the Molok, Selenchai and Nasirkandi sections. In these sections, Upper Cretaceous sequences have diverse planktonic foraminiferal species including the Globotruncana ventricosa (middle to late Campanian), Globotruncanella havanensis (late Campanian), Globotruncana aegyptiaca (latest Campanian), Gansserina gansseri (latest Campanian to early Maastrichtian), Contusotruncana contusa- Racemiguembelina fructicosa (early to late Maastrichtian) and Abathomphalus mayaroensis (late Maastrichtian) zones. This deep open marine setting grades laterally into shallower marine condition dominated by large benthic foraminifera such as Orbitoides media, Orbitoides gruenbachensis, Orbitoides cf. apiculata, Lepidorbitoides minor, Pseudosiderolites sp., Siderolites praecalcitrapoides, Siderolites aff. calcitrapoides and Siderolites calcitrapoides. This facies is mainly recorded in the Hovay section. A detailed biostratigraphic zonation scheme is presented for the studied sections and correlated with the results of other studies in the Tethyan realm. This is the first biozonation scheme for Upper Cretaceous sequences of the Moghan area that can be used as a basis for ongoing studies in this area and other parts of Tethys basin.

  11. Lower Cretaceous fossils from China shed light on the ancestral body plan of crown softshell turtles (Trionychidae, Cryptodira). (United States)

    Brinkman, Donald; Rabi, Márton; Zhao, Lijun


    Pan-trionychids or softshell turtles are a highly specialized and widespread extant group of aquatic taxa with an evolutionary history that goes back to the Early Cretaceous. The earliest pan-trionychids had already fully developed the "classic" softshell turtle morphology and it has been impossible to resolve whether they are stem members of the family or are within the crown. This has hindered our understanding of the evolution of the two basic body plans of crown-trionychids. Thus it remains unclear whether the more heavily ossified shell of the cyclanorbines or the highly reduced trionychine morphotype is the ancestral condition for softshell turtles. A new pan-trionychid from the Early Cretaceous of Zhejiang, China, Perochelys hengshanensis sp. nov., allows a revision of softshell-turtle phylogeny. Equal character weighting resulted in a topology that is fundamentally inconsistent with molecular divergence date estimates of deeply nested extant species. In contrast, implied weighting retrieved Lower Cretaceous Perochelys spp. and Petrochelys kyrgyzensis as stem trionychids, which is fully consistent with their basal stratigraphic occurrence and an Aptian-Santonian molecular age estimate for crown-trionychids. These results indicate that the primitive morphology for soft-shell turtles is a poorly ossified shell like that of crown-trionychines and that shell re-ossification in cyclanorbines (including re-acquisition of peripheral elements) is secondary.

  12. Statistical Properties of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim


    Full Text Available As the prediction of geomagnetic storms is becoming an important and practical problem, conditions in the Earth’s magnetosphere have been studied rigorously in terms of those in the interplanetary space. Another approach to space weather forecast is to deal with it as a probabilistic geomagnetic storm forecasting problem. In this study, we carry out detailed statistical analysis of solar wind parameters and geomagnetic indices examining the dependence of the distribution on the solar cycle and annual variations. Our main findings are as follows: (1 The distribution of parameters obtained via the superimposed epoch method follows the Gaussian distribution. (2 When solar activity is at its maximum the mean value of the distribution is shifted to the direction indicating the intense environment. Furthermore, the width of the distribution becomes wider at its maximum than at its minimum so that more extreme case can be expected. (3 The distribution of some certain heliospheric parameters is less sensitive to the phase of the solar cycle and annual variations. (4 The distribution of the eastward component of the interplanetary electric field BV and the solar wind driving function BV2, however, appears to be all dependent on the solar maximum/minimum, the descending/ascending phases of the solar cycle and the equinoxes/solstices. (5 The distribution of the AE index and the Dst index shares statistical features closely with BV and BV2 compared with other heliospheric parameters. In this sense, BV and BV2 are more robust proxies of the geomagnetic storm. We conclude by pointing out that our results allow us to step forward in providing the occurrence probability of geomagnetic storms for space weather and physical modeling.

  13. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility (United States)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J. J.; Lodolo, Emanuele


    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known as the Patagonian Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an upper amphibolite facies metamorphic complex currently exposed in Cordillera Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego (Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the original magnetic fabric, which was likely acquired upon layer-parallel shortening soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have formed during compressive tectonic phases associated to a continuous N-S contraction. Our data, combined with the existing AMS database from adjacent areas, show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes yielded continuous contraction, variable from E-W in the Patagonian Andes to N-S in the Fuegian Andes, which defined a radial strain field. A direct implication is that the exhumation of the Cordillera Darwin metamorphic complex occurred under compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. If we agree with recent works considering the curved Magallanes fold-and-thrust belt as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its formation), then other mechanisms different from oroclinal bending should be invoked to explain the documented radial strain field. We tentatively propose a kinematic model in which reactivation of variably oriented Jurassic faults at the South American continental margin controlled

  14. Astronomically Forced Hydrology of the Late Cretaceous Sub-tropical Potosí Basin, Bolivia (United States)

    Tasistro-Hart, A.; Maloof, A. C.; Schoene, B.; Eddy, M. P.


    Orbital forcings paced the ice ages of the Pleistocene, demonstrating that periodic variations in the latitudinal distribution of insolation amplified by ice-albedo feedbacks can guide global climate. How these forcings operate in the hot-houses that span most of the planet's history, however, is unknown. The lacustrine El Molino formation of the late Cretaceous-early Paleogene Potosí Basin in present-day Bolivia contains carbonate-mud parasequences that record fluctuating hydrological conditions from 73 to 63 Ma. This study presents the first cyclostratigraphic analysis using high-resolution drone-derived imagery and 3D elevation models, combined with conventional stratigraphic measurements and magnetic susceptibility data. The drone-derived data are integrated over the entire outcrop at two field areas using a novel application of stratigraphic potential field modeling that increases signal-to-noise ratios prior to spectral analysis. We demonstrate that these parasequences exhibit significant periodicities consistent with eccentricity (400 and 100 kyr), obliquity (50 kyr, 40 kyr, and 29 kyr), precession (17-23 kyr), and semi-precession (9-11 kyr). New U-Pb ID-TIMS zircon ages from intercalacted ash beds corroborate the interpreted sedimentation rates at two sites, indicating that the Potosí Basin contains evidence for hot-house astronomical forcing of sub-tropical lacustrine hydrology. Global climate simulations of late Cretaceous orbital end-member configurations demonstrate precessional-eccentricity and obliquity driven modulation of basin hydrology. In model simulations, the forcings drive long-term shifts in the location of the intertropical convergence zone, changing precipitation along the northern extent of the Potosí Basin's catchment area. This study is the first to demonstrate orbital forcing of a lacustrine system during the Maastrichtian and could ultimately contribute to a precise age for the Cretaceous-Paleogene boundary.

  15. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo (United States)

    Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; Forster, Margaret A.; BouDagher-Fadel, Marcelle K.


    Metamorphic rocks in West Sarawak are poorly exposed and studied. They were previously assumed to be pre-Carboniferous basement but had never been dated. New 40Ar/39Ar ages from white mica in quartz-mica schists reveal metamorphism between c. 216 to 220 Ma. The metamorphic rocks are associated with Triassic acid and basic igneous rocks, which indicate widespread magmatism. New U-Pb dating of zircons from the Jagoi Granodiorite indicates Triassic magmatism at c. 208 Ma and c. 240 Ma. U-Pb dating of zircons from volcaniclastic sediments of the Sadong and Kuching Formations confirms contemporaneous volcanism. The magmatic activity is interpreted to represent a Triassic subduction margin in westernmost West Sarawak with sediments deposited in a forearc basin derived from the magmatic arc at the Sundaland-Pacific margin. West Sarawak and NW Kalimantan are underlain by continental crust that was already part of Sundaland or accreted to Sundaland in the Triassic. One metabasite sample, also previously assumed to be pre-Carboniferous basement, yielded Early Cretaceous 40Ar/39Ar ages. They are interpreted to indicate resumption of subduction which led to deposition of volcaniclastic sediments and widespread magmatism. U-Pb ages from detrital zircons in the Cretaceous Pedawan Formation are similar to those from the Schwaner granites of NW Kalimantan, and the Pedawan Formation is interpreted as part of a Cretaceous forearc basin containing material eroded from a magmatic arc that extended from Vietnam to west Borneo. The youngest U-Pb ages from zircons in a tuff layer from the uppermost part of the Pedawan Formation indicate that volcanic activity continued until c. 86 to 88 Ma when subduction terminated.

  16. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks (United States)

    Huang, Wentao; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Garzanti, Eduardo; Dupont-Nivet, Guillaume; Lippert, Peter C.; Li, Xiaochun; Maffione, Marco; Langereis, Cor G.; Hu, Xiumian; Guo, Zhaojie; Kapp, Paul


    The Tibetan Himalaya represents the northernmost continental unit of the Indian plate that collided with Asia in the Cenozoic. Paleomagnetic studies on the Tibetan Himalaya can help constrain the dimension and paleogeography of "Greater India," the Indian plate lithosphere that subducted and underthrusted below Asia after initial collision. Here we present a paleomagnetic investigation of a Jurassic (limestones) and Lower Cretaceous (volcaniclastic sandstones) section of the Tibetan Himalaya. The limestones yielded positive fold test, showing a prefolding origin of the isolated remanent magnetizations. Detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic investigation reveal that the magnetic carrier of the Jurassic limestones is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic sandstones is detrital magnetite. Our observations lead us to conclude that the Jurassic limestones record a prefolding remagnetization, whereas the Lower Cretaceous volcaniclastic sandstones retain a primary remanence. The volcaniclastic sandstones yield an Early Cretaceous paleolatitude of 55.5°S [52.5°S, 58.6°S] for the Tibetan Himalaya, suggesting it was part of the Indian continent at that time. The size of "Greater India" during Jurassic time cannot be estimated from these limestones. Instead, a paleolatitude of the Tibetan Himalaya of 23.8°S [21.8°S, 26.1°S] during the remagnetization process is suggested. It is likely that the remagnetization, caused by the oxidation of early diagenetic pyrite to magnetite, was induced during 103-83 or 77-67 Ma. The inferred paleolatitudes at these two time intervals imply very different tectonic consequences for the Tibetan Himalaya.

  17. Investigations of a Cretaceous limestone with spectral induced polarization and scanning electron microscopy

    DEFF Research Database (Denmark)

    Johansson, Sara; Sparrembom, Charlotte; Fiandaca, Gianluca


    limestone was carried out in the Kristianstad basin, Sweden. The time domain IP data was processed with a recently developed method in order to suppress noise from the challenging urban setting in the survey area. The processing also enabled extraction of early decay times resulting in broader spectra...... in early time ranges for bedrock characterization. The inverted sections showed variations within the limestone that could be caused by variations in texture and composition. Samples from a deep drilling in the Kristianstad basin were investigated with scanning electron microscopy and energy dispersive X......Characterization of varying bedrock properties is a common need in various contexts, ranging from large infrastructure pre-investigations to environmental protection. A direct current resistivity and time domain induced polarization (IP) survey aiming to characterize properties of a Cretaceous...

  18. Marine reptiles from the Late Cretaceous of northern Patagonia (United States)

    Gasparini, Z.; Casadio, S.; Fernández, M.; Salgado, L.


    During the Campanian-Maastrichtian, Patagonia was flooded by the Atlantic and reduced to an archipelago. Several localities of northern Patagonia have yielded marine reptiles. Analysis of several assemblages suggests that the diversity and abundance of pelagic marine reptiles in northern Patagonia was higher by the end of the Cretaceous than previously thought. Several plesiosaurids, including Aristonectes parvidens and the polycotylid Sulcusuchus, and the first remains of mosasaurinae have been found. The Cretaceous marine reptile record from South America is scanty. Nevertheless, materials described here suggest that Tethyan and Weddelian forms converged in northern Patagonia, as seen with invertebrates.

  19. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. (United States)

    Graham, Alan


    Eight ecosystems that were present in the Cretaceous about 100 Ma (million years ago) in the New World eventually developed into the 12 recognized for the modern Earth. Among the forcing mechanisms that drove biotic change during this interval was a decline in global temperatures toward the end of the Cretaceous, augmented by the asteroid impact at 65 Ma and drainage of seas from continental margins and interiors; separation of South America from Africa beginning in the south at ca. 120 Ma and progressing northward until completed 90-100 Ma; the possible emission of 1500 gigatons of methane and CO(2) attributed to explosive vents in the Norwegian Sea at ca. 55 Ma, resulting in a temperature rise of 5°-6°C in an already warm world; disruption of the North Atlantic land bridge at ca. 45 Ma at a time when temperatures were falling; rise of the Andes Mountains beginning at ca. 40 Ma; opening of the Drake Passage between South America and Antarctica at ca. 32 Ma with formation of the cold Humboldt at ca. 30 Ma; union of North and South America at ca. 3.5 Ma; and all within the overlay of evolutionary processes. These processes generated a sequence of elements (e.g., species growing in moist habitats within an overall dry environment; gallery forests), early versions (e.g., mangrove communities without Rhizophora until the middle Eocene), and essentially modern versions of present-day New World ecosystems. As a first approximation, the fossil record suggests that early versions of aquatic communities (in the sense of including a prominent angiosperm component) appeared early in the Middle to Late Cretaceous, the lowland neotropical rainforest at 64 Ma (well developed by 58-55 Ma), shrubland/chaparral-woodland-savanna and grasslands around the middle Miocene climatic optimum at ca. 15-13 Ma, deserts in the middle Miocene/early Pliocene at ca. 10 Ma, significant tundra at ca. 7-5 Ma, and alpine tundra (páramo) shortly thereafter when cooling temperatures were augmented

  20. The Rise of Flowering Plants and Land Surface Physics: The Cretaceous and Eocene Were Different (United States)

    Upchurch, G. R.; Feild, T.


    The Cretaceous and Eocene have served as the poster children of past greenhouse climates. One difference between the two time periods is that angiosperms (flowering plants) underwent a major diversification and rise to dominance during the mid-Cretaceous to Paleocene. Flowering plants differ from all other living and fossil plants in having significantly higher rates of transpiration and photosynthesis, which in modern leaves correlate with the density of venation (Dv), a feature that can be measured directly from fossils. This increase in Dv, coupled with an increase in the abundance of angiosperms, is thought to have had major impact on the climate system. This is, in part, because transpiration plays an important role in determining the ratio of sensible to latent heat flux from the land surface and in determining precipitation rate in regions such as the equatorial rainforest. Analysis of Dv in fossil leaves indicates two phases of increase in transpiration rate for angiosperms during the Cretaceous-Paleocene. The oldest known angiosperms (Aptian-early Albian) have a low Dv characteristic of extant and fossil ferns and gymnosperms. At this time angiosperms are low-stature plants of minor importance in terms of relative abundance and diversity (ferns, and maximum Dv reaches levels characteristic of many trees from the temperate zone. This first phase coincides with the first local dominance of angiosperms, the first occurrence of moderate to large angiosperm trees (up to 1 m in diameter) , and the first common occurrence of angiosperms in the Arctic. The second phase of Dv increase occurs during the Maastrichtian to Paleocene, where average Dv reaches levels characteristic of modern tropical forests and maximum Dv reaches the level found in highly productive modern vegetation. This second phase coincides with the rise to dominance of angiosperms in regional vegetation, a corresponding decline of conifers and ferns, and the modernization of hydraulic architecture

  1. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion. (United States)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.


    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or

  2. Further studies on the problems of geomagnetic field intensity determination from archaeological baked clay materials (United States)

    Kostadinova-Avramova, M.; Kovacheva, M.


    Archaeological baked clay remains provide valuable information about the geomagnetic field in historical past, but determination of the geomagnetic field characteristics, especially intensity, is often a difficult task. This study was undertaken to elucidate the reasons for unsuccessful intensity determination experiments obtained from two different Bulgarian archaeological sites (Nessebar - Early Byzantine period and Malenovo - Early Iron Age). With this aim, artificial clay samples were formed in the laboratory and investigated. The clay used for the artificial samples preparation differs according to its initial state. Nessebar clay was baked in the antiquity, but Malenovo clay was raw, taken from the clay deposit near the site. The obtained artificial samples were repeatedly heated eight times in known magnetic field to 700 °C. X-ray diffraction analyses and rock-magnetic experiments were performed to obtain information about the mineralogical content and magnetic properties of the initial and laboratory heated clays. Two different protocols were applied for the intensity determination-Coe version of Thellier and Thellier method and multispecimen parallel differential pTRM protocol. Various combinations of laboratory fields and mutual positions of the directions of laboratory field and carried thermoremanence were used in the performed Coe experiment. The obtained results indicate that the failure of this experiment is probably related to unfavourable grain sizes of the prevailing magnetic carriers combined with the chosen experimental conditions. The multispecimen parallel differential pTRM protocol in its original form gives excellent results for the artificial samples, but failed for the real samples (samples coming from previously studied kilns of Nessebar and Malenovo sites). Obviously the strong dependence of this method on the homogeneity of the used subsamples hinders its implementation in its original form for archaeomaterials. The latter are often

  3. Isotopic evaluation of ocean circulation in the Late Cretaceous North American seaway (United States)

    Coulson, Alan B.; Kohn, Matthew J.; Barrick, Reese E.


    During the mid- and Late Cretaceous period, North America was split by the north-south oriented Western Interior Seaway. Its role in creating and maintaining Late Cretaceous global greenhouse conditions remains unclear. Different palaeoceanographic reconstructions portray diverse circulation patterns. The southward extent of relatively cool, low-salinity, low-δ18O surface waters critically distinguishes among these models, but past studies of invertebrates could not independently assess water temperature and isotopic compositions. Here we present oxygen isotopes in biophosphate from coeval marine turtle and fish fossils from western Kansas, representing the east central seaway, and from the Mississippi embayment, representing the marginal Tethys Ocean. Our analyses yield precise seawater isotopic values and geographic temperature differences during the main transition from the Coniacian to the early Campanian age (87-82 Myr), and indicate that the seaway oxygen isotope value and salinity were 2‰ and 3‰ lower, respectively, than in the marginal Tethys Ocean. We infer that the influence of northern freshwater probably reached as far south as Kansas. Our revised values imply relatively large temperature differences between the Mississippi embayment and central seaway, explain the documented regional latitudinal palaeobiogeographic zonation and support models with relatively little inflow of surface waters from the Tethys Ocean to the Western Interior Seaway.

  4. The Lower Cretaceous Way Group of northern Chile: An alluvial fan-fan delta complex (United States)

    Flint, S.; Clemmey, H.; Turner, P.


    Alluvial fan sediments of the Lower Cretaceous Coloso Basin in northern Chile were deposited in a half-graben and derived from andesitic volcanics of a former island arc. Transport directions were towards the east, away from the present-day Peru-Chile trench. Grain flow, density modified grain flow and sheetflow processes were responsible for most of the sediment deposition with cohesive debris flows playing only a minor part. An early phase of conglomerate deposition (Coloso Formation) into a restricted basin records the transition from proximal fan facies with abundant grain flows and remobilized screes to mid-fan facies dominated by sheetflows. Stratiform copper mineralization near the top of the lower conglomerates is related to the unroofing of the Jurassic island arc. This mineralization comprises copper sulphide-cemented sands and gravels and formed by the reaction of mineralized detritus with diagenetic and hydrothermal solutions. A later phase of deposition (Lombriz Formation) includes sandstones, siltstones and conglomerates with a source area different from the Coloso Formation. This change in source may be related to strike-slip tectonics as the basin extended. The Lombriz conglomerates pass distally (eastwards) into red sandstones and purple siltstones with thin limestones deposited under marine conditions. This sequence is interpreted as a major fan delta complex. It passes conformably into marine carbonates of the Tableado Formation signifying the complete drowning of the basin in lower Cretaceous times.

  5. Uranium distribution and sandstone depositional environments: oligocene and upper Cretaceous sediments, Cheyenne basin, Colorado

    International Nuclear Information System (INIS)

    Nibbelink, K.A.; Ethridge, F.G.


    Wyoming-type roll-front uranium deposits occur in the Upper Cretaceous Laramie and Fox Hills sandstones in the Cheyenne basin of northeastern Colorado. The location, geometry, and trend of specific depositional environments of the Oligocene White River and the Upper Cretaceous Laramie and Fox Hills formations are important factors that control the distribution of uranium in these sandstones. The Fox Hills Sandstone consists of up to 450 ft (140 m) of nearshore marine wave-dominated delta and barrier island-tidal channel sandstones which overlie offshore deposits of the Pierre Shale and which are overlain by delta-plain and fluvial deposits of the Laramie Formation. Uranium, which probably originated from volcanic ash in the White River Formation, was transported by groundwater through the fluvial-channel deposits of the White River into the sandstones of the Laramie and Fox Hills formations where it was precipitated. Two favorable depositional settings for uranium mineralization in the Fox Hills Sandstone are: (1) the landward side of barrier-island deposits where barrier sandstones thin and interfinger with back-barrier organic mudstones, and (2) the intersection of barrier-island and tidal channel sandstones. In both settings, sandstones were probably reduced during early burial by diagenesis of contained and adjacent organic matter. The change in permeability trends between the depositional strike-oriented barrier sandstones and the dip-oriented tidal-channel sandstones provided sites for dispersed groundwater flow and, as demonstrated in similar settings in other depositional systems, sites for uranium mineralization

  6. The bivalve Anopaea (Inoceramidae) from the Upper Jurassic-lowermost Cretaceous of Mexico (United States)

    Zell, Patrick; Crame, J. Alistair; Stinnesbeck, Wolfgang; Beckmann, Seija


    In Mexico, the Upper Jurassic to lowermost Cretaceous La Casita and coeval La Caja and La Pimienta formations are well-known for their abundant and well-preserved marine vertebrates and invertebrates. The latter include conspicuous inoceramid bivalves of the genus Anopaea not formally described previously from Mexico. Anopaea bassei (Lecolle de Cantú, 1967), Anopaea cf. stoliczkai (Holdhaus, 1913), Anopaea cf. callistoensis Crame and Kelly, 1995 and Anopaea sp. are rare constituents in distinctive Tithonian-lower Berriasian levels of the La Caja Formation and one Tithonian horizon of the La Pimienta Formation. Anopaea bassei was previously documented from the Tithonian of central Mexico and Cuba, while most other members of Anopaea described here are only known from southern high latitudes. The Mexican assemblage also includes taxa which closely resemble Anopaea stoliczkai from the Tithonian of India, Indonesia and the Antarctic Peninsula, and Anopaea callistoensis from the late Tithonian to ?early Berriasian of the Antarctic Peninsula. Our new data expand the palaeogeographical distribution of the high latitude Anopaea to the Gulf of Mexico region and substantiate faunal exchange, in the Late Jurassic-earliest Cretaceous, between Mexico and the Antarctic Realm.

  7. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. (United States)

    Zhang, Shu-Dong; Jin, Jian-Jun; Chen, Si-Yun; Chase, Mark W; Soltis, Douglas E; Li, Hong-Tao; Yang, Jun-Bo; Li, De-Zhu; Yi, Ting-Shuang


    Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. A new pterosaur (Pterodactyloidea: Azhdarchidae from the Upper Cretaceous of Morocco.

    Directory of Open Access Journals (Sweden)

    Nizar Ibrahim

    Full Text Available The Kem Kem beds in South Eastern Morocco contain a rich early Upper (or possibly late Lower Cretaceous vertebrate assemblage. Fragmentary remains, predominantly teeth and jaw tips, represent several kinds of pterosaur although only one species, the ornithocheirid Coloborhynchus moroccensis, has been named. Here, we describe a new azhdarchid pterosaur, Alanqa saharica nov. gen. nov. sp., based on an almost complete well preserved mandibular symphysis from Aferdou N'Chaft. We assign additional fragmentary jaw remains, some of which have been tentatively identified as azhdarchid and pteranodontid, to this new taxon which is distinguished from other azhdarchids by a remarkably straight, elongate, lance-shaped mandibular symphysis that bears a pronounced dorsal eminence near the posterior end of its dorsal (occlusal surface. Most remains, including the holotype, represent individuals of approximately three to four meters in wingspan, but a fragment of a large cervical vertebra, that probably also belongs to A. saharica, suggests that wingspans of six meters were achieved in this species. The Kem Kem beds have yielded the most diverse pterosaur assemblage yet reported from Africa and provide the first clear evidence for the presence of azhdarchids in Gondwana at the start of the Late Cretaceous. This, the relatively large size achieved by Alanqa, and the additional evidence of variable jaw morphology in azhdarchids provided by this taxon, indicates a longer and more complex history for this clade than previously suspected.

  9. Low-altitude trapped protons at the geomagnetic equator (United States)

    Guzik, T. G.; Miah, M. A.; Mitchell, J. M.; Wefel, J. P.


    Geomagnetically trapped protons in the 0.6- to 9-MeV energy range were measured at latitudes near the geomagnetic equator by the Phoenix 1 experiment on board the S81-1 mission from May to November 1982. The protons show a distribution in latitude along the line of minimum magnetic field strength with a full width at half maximum of about 10 deg but with no appreciable longitudinal variation. Between 170 and 290 Km the peak proton flux shows a fifth-power altitude dependence, in contrast to previous measurements at higher altitudes, possibly demonstrating source attenuation. The efficiency of the telescope is calculated as a function of particle pitch angle and used to investigate the time dependence (1969-1982) of the intensity.

  10. Low-altitude trapped protons at the geomagnetic equator

    International Nuclear Information System (INIS)

    Guzik, T.G.; Miah, M.A.; Mitchell, J.W.; Wefel, J.P.


    Geomagnetically trapped protons in the 0.6- to 9-MeV energy range were measured at latitudes near the geomagnetic equator by the Phoenix 1 experiment on board the S81-1 mission from May to November 1982. The protons show a distribution in latitude along the line of minimum magnetic field strength with a full width at half maximum of ∼10 0 but with no appreciable longitudinal variation. Between 170 and 290 km the peak proton flux shows a fifth-power altitude dependence, in contrast to previous measurements at higher altitudes, possibly demonstrating source attenuation. The efficiency of the telescope is calculated as a function of particle pitch angle and used to investigate the time dependence (1969--1982) of the intensity. copyright American Geophysical Union 1989

  11. Letter to the Editor: Geomagnetic storm effects at low latitudes

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available The geomagnetic horizontal (H field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.Key words. Ionosphere (electric fields and currents · Magnetospheric physics (electric fields; storms and substorms

  12. Letter to the Editor: Geomagnetic storm effects at low latitudes

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi


    Full Text Available The geomagnetic horizontal (H field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.Key words. Ionosphere (electric fields and currents · Magnetospheric physics (electric fields; storms and substorms

  13. The International Geomagnetic Reference Field: the twelfth generation (United States)

    Thebault, Erwan; Finlay, Christopher; The IGRF Working Group


    The IGRF is an internationally-agreed reference model of the Earth's magnetic field produced under the auspices of the International Association of Geomagnetism and Aeronomy. The IGRF-12 is the latest update of this well-known model which is used each year by many thousands of users for both industrial and scientific purposes. In October 2014, ten institutions worldwide have made contributions to the IGRF. These models were evaluated and the twelfth generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014. In this presentation, we will report on the IGRF activities, briefly describe the candidate models, summarize the evaluation of models performed by different independent teams, show how the IGRF-12 models were calculated and finally discuss some of the main magnetic features of this new model.

  14. Forecasting intense geomagnetic activity using interplanetary magnetic field data (United States)

    Saiz, E.; Cid, C.; Cerrato, Y.


    Southward interplanetary magnetic fields are considered traces of geoeffectiveness since they are a main agent of magnetic reconnection of solar wind and magnetosphere. The first part of this work revises the ability to forecast intense geomagnetic activity using different procedures available in the literature. The study shows that current methods do not succeed in making confident predictions. This fact led us to develop a new forecasting procedure, which provides trustworthy results in predicting large variations of Dst index over a sample of 10 years of observations and is based on the value Bz only. The proposed forecasting method appears as a worthy tool for space weather purposes because it is not affected by the lack of solar wind plasma data, which usually occurs during severe geomagnetic activity. Moreover, the results obtained guide us to provide a new interpretation of the physical mechanisms involved in the interaction between the solar wind and the magnetosphere using Faraday's law.

  15. A new regard about Surlari National Geomagnetic Observatory (United States)

    Asimopolos, Laurentiu; Asimopolos, Natalia-Silvia; Pestina, Agata-Monica


    Geomagnetic field study in Romanian stations has started with irregular measurements in late XIXth century. In 1943, the foundation of Surlari National Geomagnetic Observatory (SNGO) marks the beginning of a new era in the systematic study of geomagnetic field by a continuous registration of its variations and by carrying out standard absolute measurements in a fundamental station. The location of the observatory meets the highest exigencies, being situated in physical-geological conditions of a uniform local field, at a reasonably long distance from human activities. Its laboratories observe strict conditions of non-magnetism, ensuring the possibility of absolute standard measurements (national magnetic standards) for all the units in the country, civil or military, which are endowed with equipment based on geomagnetic metrology. These basic conditions have allowed the observatory to become by developing its initial preoccupations a centre of complex geomagnetic research, constantly involved in national and international issues, promoting new themes in our country and bringing significant contributions. During the last two decades, infrastructure and equipment used in monitoring geomagnetic field at European and planetary level have experienced a remarkable development. New registering techniques have allowed a complete to automate of data acquisition, and sampling step and their precision increased by two classes of size. Systems of transmitting these data in real time to world collecting centres have resulted in the possibility of approaching globalize studies, suitable for following some phenomena at planetary scale. At the same time, a significant development in the procedures of processing primary data has been registered, based on standardized programmes. The new stage of this fundamental research, largely applicable in various fields, is also marked by the simultaneous observation of space-time distribution of terrestrial electromagnetic field by means of

  16. Acceleration and loss of relativistic electrons during small geomagnetic storms. (United States)

    Anderson, B R; Millan, R M; Reeves, G D; Friedel, R H W


    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms ( D s t  > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  17. Modeling Geomagnetic Variations using a Machine Learning Framework (United States)

    Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.


    We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.

  18. No alignment of cattle along geomagnetic field lines found


    Hert, J.; Jelinek, L.; Pekarek, L.; Pavlicek, A.


    This paper presents a study of the body orientation of domestic cattle on free pastures in several European states, based on Google satellite photographs. In sum, 232 herds with 3412 individuals were evaluated. Two independent groups participated in our study and came to the same conclusion that, in contradiction to the recent findings of other researchers, no alignment of the animals and of their herds along geomagnetic field lines could be found. Several possible reasons for this discrepanc...

  19. Space Weather Monitoring for ISS Geomagnetic Storm Studies (United States)

    Minow, Joseph I.; Parker, Linda Neergaard


    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  20. Geomagnetic Observatory Data for Real-Time Applications (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.


    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  1. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin


    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  2. Double streams of protons in the distant geomagnetic tail (United States)

    Villante, U.; Lazarus, A. J.


    Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region.

  3. The Holocene Geomagnetic Field: Spikes, Low Field Anomalies, and Asymmetries (United States)

    Constable, C.


    Our understanding of the Holocene magnetic field is constrained by individual paleomagnetic records of variable quality and resolution, composite regional secular variation curves, and low resolution global time-varying geomagnetic field models. Although spatial and temporal data coverages have greatly improved in recent years, typical views of millennial-scale secular variation and the underlying physical processes continue to be heavily influenced by more detailed field structure and short term variability inferred from the historical record and modern observations. Recent models of gyre driven decay of the geomagnetic dipole on centennial time scales, and studies of the evolution of the South Atlantic Anomaly provide one prominent example. Since 1840 dipole decay has largely been driven by meridional flux advection, with generally smaller fairly steady contributions from magnetic diffusion. The decay is dominantly associated with geomagnetic activity in the Southern Hemisphere. In contrast to the present decay, dipole strength generally grew between 1500 and 1000 BC, sustaining high but fluctuating values around 90-100 ZAm2 until after 1500 AD. Thus high dipole moments appear to have been present shortly after 1000 AD at the time of the Levantine spikes, which represent extreme variations in regional geomagnetic field strength. It has been speculated that the growth in dipole moment originated from a strong flux patch near the equatorial region at the core-mantle boundary that migrated north and west to augment the dipole strength, suggesting the presence of a large-scale anticyclonic gyre in the northern hemisphere, not totally unlike the southern hemisphere flow that dominates present day dipole decay. The later brief episodes of high field strength in the Levant may have contributed to prolonged values of high dipole strength until the onset of dipole decay in the late second millennium AD. This could support the concept of a large-scale stable flow

  4. Geomagnetic secular variation at Addis Ababa over the last four ...

    African Journals Online (AJOL)

    Addis Ababa Observatory (aae) geomagnetic data analysed over the time-span 1958—1998 show that the annual mean values of the intensity have decreased since 1965 from 36186 nT to 35950 nT at a non-linear regression rate of 8—9 nT per year. Directional changes in the Earth's magnetic field that could be ...

  5. Modeling geomagnetic induced currents in Australian power networks (United States)

    Marshall, R. A.; Kelly, A.; Van Der Walt, T.; Honecker, A.; Ong, C.; Mikkelsen, D.; Spierings, A.; Ivanovich, G.; Yoshikawa, A.


    Geomagnetic induced currents (GICs) have been considered an issue for high-latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a "geoelectric field" determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29-31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29-31 October 2003 exceed 40 A with the larger GICs occurring in the south-east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east-west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania.

  6. Double streams of protons in the distant geomagnetic tail

    International Nuclear Information System (INIS)

    Villante, U.; Lazarus, A.J.


    Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region

  7. Geomagnetic storms and electric fields in the equatorial ionosphere

    International Nuclear Information System (INIS)

    Rastogi, R.G.


    Using direct measurements of equatorial electric field during a geomagnetic storm it is shown that the large decrease in the field observed near the dip equator is due to the reversal of the equatorial electrojet current. This is caused by the imposition of an additional westward electric field on the equatorial ionosphere which was originated by the interaction of solar wind with the interplanetary magnetic field. (author)

  8. Mathematical models of some geomagnetic storms with SC

    International Nuclear Information System (INIS)

    Ivanova, P.K.


    Regressive equations for H horizontal component of three geomagnetic storms with Sc:, 24.01.74 and 23.03.69 -are calculated using step-by-step regression analysis. These equations relate H with parameters of solar wind and interplanetary magnetic field. Nonlinear, square, logarithmic and trigonometric dependences are considered, as well. Most essential parameters, which contribute mostly into Sc, are determined from multiplicity (46 factors) of independent parameters

  9. Geophysical fluids, geomagnetic jerks, and their impact on Earth orientation

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jan; Ron, Cyril


    Roč. 96, č. 1 (2017), s. 51-60 ISSN 0373-3742. [National Conference of Astronomers of Serbia /17./. Belgrade, 23.09.2014-27.09.2014] R&D Projects: GA ČR GA13-15943S Institutional support: RVO:67985815 Keywords : Earth orientation * geophysical fluids * geomagnetic jerks Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  10. Late Cretaceous neosuchian crocodiles from the Sultanate of Oman

    NARCIS (Netherlands)

    Buscalioni, Angela D.; Schulp, Anne S.; Jagt, John W M; Hanna, Samir S.; Hartman, Axel Frans

    Two apparently new crocodilian taxa from the Late Cretaceous (Late Campanian-Maastrichtian) Al-Khod Conglomerate of the Sultanate of Oman are described. The fragmentary state of preservation precludes formal naming, yet enables comparisons to be made with other taxa. One is a short-snouted

  11. Noble metals in cretaceous/tertiary sediments from El Kef

    International Nuclear Information System (INIS)

    Kuslys, M.; Kraehenbuehl, U.


    Sediments from El Kef, Tunisia, were analysed by RNAA for Au, Ir and Os. All three elements show a 10-20 fold enrichment at the Cretaceous/Tertiary boundary. This enrichment must be the result of the addition of material with a high concentration of noble metals. It is plausible that this exotic material has an extra-terrestrial origin. (orig.)

  12. Noble metals in Cretaceous/Tertiary sediments from El Kef

    International Nuclear Information System (INIS)

    Kuslys, M.; Kraehenbuehl, U.


    Sediments from El Kef, Tunisia, were analysed by RNAA for Au, Ir and Os. All three elements show a 10-20 fold enrichment at the Cretaceous/Tertiary boundary. This enrichment must be the result of the addition of material with a high concentration of noble metals. It is plausible that this exotic material has an extraterrestrial origin. (orig.)

  13. Cretaceous magmatism in North-Eastern India and Gondwanaland ...

    Indian Academy of Sciences (India)


    Cretaceous magmatism of NEI: Major Objectives. • Age and duration of Sylhet Traps and its connection to Kerguelene hotspot and Gondwanaland breakup? • Age of carbonatite magmatism associated with the traps? • Relationship of basaltic-carbonatite magmatism with. Aptian (~116 Ma) Mass Extinction event? • Nature of ...

  14. Stratigraphy of Guichon Formation (lower cretaceous) in litoral basin, Uruguay

    International Nuclear Information System (INIS)

    Goso, C.; Perea, D.; Perinotto, J.


    This report is about the stratigraphic al analysis of the Guichon Formation (lower cretaceous, litoral basin in Uruguay). The facies association is represented by conglomerates mainly fine sandstones and mud stones wi ch is interpreted as an alluvial system. A regional palaeogeography and a new geochronological alternative are established for this formation. (author).

  15. Patterns of larval development in Cretaceous pipid frogs

    Czech Academy of Sciences Publication Activity Database

    Roček, Zbyněk; van Dijk, E.


    Roč. 51, č. 1 (2006), s. 111-126 ISSN 0567-7920 R&D Projects: GA AV ČR IAA3013206 Institutional research plan: CEZ:AV0Z30130516 Keywords : Anura * Pipidae * Cretaceous Subject RIV: EG - Zoology Impact factor: 1.076, year: 2006

  16. Origin of Cretaceous phosphorites from the onshore of Tamil Nadu ...

    Indian Academy of Sciences (India)

    Cretaceous phosphorites occur as light brown to yellow- ish brown or white nodules in Karai Shale of the Uttatur Group in the onshore Cauvery basin. Nodules exhibit phosphatic nucleus encrusted by a chalky shell of carbonate. The nucleus of the nodules consists of light and dark coloured laminae, phosphate ...

  17. A sequence of events across the Cretaceous-Tertiary boundary

    NARCIS (Netherlands)

    Smit, J.; Romein, A.J.T.


    The lithological and biological sequence of events across the Cretaceous-Tertiary (K/T), as developed in thick and complete landbased sections and termed the standard K/T event sequence, is also found in many DSDP cores from all over the globe. Microtektite-like spherules have been found in

  18. The end-Cretaceous in the southwestern Tethys (Elles, Tunisia)

    DEFF Research Database (Denmark)

    Thibault, Nicolas Rudolph; Galbrun, Bruno; Gardin, Silvia


    An integrated study of magnetic mass susceptibility (MS), bulk stable isotopes and calcareous nannofossil paleoecological changes is undertaken on the late Maastrichtian of the Elles section, Tunisia, spanning the last ca. 1 Myr of the Cretaceous. A cyclostratigraphic analysis reveals the presenc...

  19. Soil development on loess overlying Cretaceous sediments and Devonian limestones

    Czech Academy of Sciences Publication Activity Database

    Žigová, Anna; Šťastný, Martin


    Roč. 12, č. 3 (2015), s. 267-278 ISSN 1214-9705 Institutional support: RVO:67985831 Keywords : loess * Cretaceous and Devonian rocks * mineral composition * soil development * Luvic Chernozem * Albic Luvisol Subject RIV: DF - Soil Science Impact factor: 0.561, year: 2015

  20. Late Cretaceous seasonal ocean variability from the Arctic. (United States)

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer


    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  1. Advances in Residential Design Related to the Influence of Geomagnetism

    Directory of Open Access Journals (Sweden)

    Francisco Glaria


    Full Text Available Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing.

  2. Archaeomagnetic Dating in Europe Using a Global Geomagnetic Field Model (United States)

    Lodge, A.; Suttie, N.; Holme, R.; Shaw, J.; Hill, M. J.; Linford, P.


    Using up-to-date archaeomagnetic data from Europe and CALS7K.2 as an apriori model, we produce a global geomagnetic field model to be used for archaeomagnetic dating in Europe. More details on the modelling process will be presented elsewhere (in session GP12, abstract: Geophysical insights from archaeomagnetic dating). Here we apply the global geomagnetic field model to a series of test cases from both recently published data and unpublished data to demonstrate its application to archaeomagnetic dating. We compare the results produced using our model with those from the spherical cap harmonic model, SCHA.DIF.3K (Pavón-Carrasco et al., 2009), the global geomagnetic field model, ARCH3K.1 (Korte et al., 2009) and those produced using the palaeosecular variation curves generated using Bayesian statistics (Lanos, 2004). We include examples which emphasise the importance of using three component data (declination, inclination and intensity) to produce an improved archaeomagnetic date. In addition to the careful selection of an appropriate model for archaeomagnetic dating, the choice of errors on the model curves is vital for providing archaeologists with an age range of possible dates. We discuss how best to constrain the errors on the model curves and alternative ways to the mathematical method of Lanos (2004) for producing an archaeomagnetic date for archaeologists.

  3. Advances in Residential Design Related to the Influence of Geomagnetism (United States)

    Arnedo, Israel; Sánchez-Ostiz, Ana


    Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing. PMID:29473902

  4. A global geomagnetic model based on historical and paleomagnetic data (United States)

    Arneitz, P.; Leonhardt, R.; Fabian, K.


    Two main types of data are available to reconstruct the temporal and spatial geomagnetic field evolution. Historical instrumental measurements (direct data) extend from present day to the late Middle Age, and, prior the 19th century, consist mainly of declination values. Further back in the past, field reconstructions rely exclusively on the magnetization acquired by archaeological artefacts and rocks or sediments (indirect data). The major challenges for a reliable inversion approach are the inhomogeneous data distribution, the highly variable data quality, and inconsistent quality parameters. Available historical, archeomagnetic and volcanic records have been integrated into a single database together with corresponding metadata. This combination of compilations enables a joint evaluation of geomagnetic field records from different origins. In particular, data reliability and quality of indirect records are investigated using a detailed comparison with their direct counterparts. The collection forms the basis for combined inverse modeling of the geomagnetic field evolution. The iterative Bayesian inversion approach targets the implementation of reliable error treatments, which allow to combine data from different sources. Furthermore, a verification method scrutinizing the limitations of the applied inversion scheme and the used datasets is developed. Here, we will present strategies for the integration of different data types into the modeling procedure. The obtained modeling results and their validity will be discussed.

  5. Up-to-date Geomagnetic Coordinate Transforms with AACGM (United States)

    Stephens, G. K.; Morrison, D.; Barnes, R. J.; Potter, M.; Schaefer, R. K.


    Geomagnetic plasmas organize along magnetic field lines, thus, it is often appropriate to use magnetic field line conjunctions for comparisons between spacecraft observations. Due to the expense of tracing magnetic field lines, the Altitude-Adjusted Corrected GeoMagnetic (AACGM) coordinate system is used. The (AACGM) coordinates are defined by the best fit dipole of the Earth's magnetic field and have been a standard tool used by the SPA community for a long time. However, standard 5 year updated coefficients for this transform are no longer available after the 2010 set. A new version of AACGM (V2 - Shepard, 2014) has been defined. AACGM V2 is fit to a spherical harmonic expansion. A pitfall with this V2 coordinate system is that it is undefined near the magnetic equator, which is problematic for determining conjunctions for spacecraft that with ground stations that pass through these regions. We have derived a new set of coefficients valid for the current epoch that allow us to continue to use the original version of AACGM. We also explore the errors that are introduced by ignoring the magnetic field caused by magnetospheric electric currents. The derived coefficients are made available to the public along with Java software that can be used to evaluate the AACGM coordinates. Shepard, S., 2014, Altitude-Adjusted Corrected Geomagnetic Coordinates: Definition and Functional Approximations, Jour. Geophys. Res., 119, 020264, DOI:10.1002/2014JA020264

  6. Long-term biases in geomagnetic K and aa indices (United States)

    Love, J.J.


    Analysis is made of the geomagnetic-activity aa index and its source K-index data from groups of ground-based observatories in Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. The K data show persistent biases, especially for high (low) K-activity levels at British (Australian) observatories. From examination of multiple subsets of the K data we infer that the biases are not predominantly the result of changes in observatory location, localized induced magnetotelluric currents, changes in magnetometer technology, or the modernization of K-value estimation methods. Instead, the biases appear to be artifacts of the latitude-dependent scaling used to assign K values to particular local levels of geomagnetic activity. The biases are not effectively removed by weighting factors used to estimate aa. We show that long-term averages of the aa index, such as annual averages, are dominated by medium-level geomagnetic activity levels having K values of 3 and 4. ?? 2011 Author(s).

  7. Remagnetization of lava flows spanning the last geomagnetic reversal (United States)

    Vella, Jérôme; Carlut, Julie; Valet, Jean-Pierre; Goff, Maxime Le; Soler, Vicente; Lopes, Fernando


    Large directional changes of remanent magnetization within lava flows that cooled during geomagnetic reversals have been reported in several studies. A geomagnetic scenario implies extremely rapid geomagnetic changes of several degrees per day, thus difficult to reconcile with the rate of the earth's core liquid motions. So far, no complete rock magnetic model provides a clear explanation. We revisited lava flows sandwiched between an underlying reverse and an overlying normal polarity flow marking the last reversal in three distinct volcanic sequences of the La Palma Island (Canary archipelago, Spain) that are characterized by a gradual evolution of the direction of their remanent magnetization from bottom to top. Cleaning efficiency of thermal demagnetization was not improved by very rapid heating and cooling rates as well as by continuous demagnetization using a Triaxe magnetometer. We did not observe partial self-reversals and minor changes in magnetic grain sizes are not related to the within-flow directional changes. Microscopic observations indicate poor exsolution, which suggests post-cooling thermochemical remagnetization processes. This scenario is strongly reinforced by laboratory experiments that show large resistance to thermal demagnetization when thermoremanence was acquired over a long time period. We speculate that in the present situation exsolution was reactivated during in field reheating and yielded formation of new magnetite, yet magnetic domain state rearrangements could also play a role. Initial reheating when the overlying flow took place, albeit moderate (less than 200-300 °C), was enough to produce overlying components with significantly higher unblocking temperatures.

  8. Long-term biases in geomagnetic K and aa indices

    Directory of Open Access Journals (Sweden)

    J. J. Love


    Full Text Available Analysis is made of the geomagnetic-activity aa index and its source K-index data from groups of ground-based observatories in Britain, and Australia, 1868.0–2009.0, solar cycles 11–23. The K data show persistent biases, especially for high (low K-activity levels at British (Australian observatories. From examination of multiple subsets of the K data we infer that the biases are not predominantly the result of changes in observatory location, localized induced magnetotelluric currents, changes in magnetometer technology, or the modernization of K-value estimation methods. Instead, the biases appear to be artifacts of the latitude-dependent scaling used to assign K values to particular local levels of geomagnetic activity. The biases are not effectively removed by weighting factors used to estimate aa. We show that long-term averages of the aa index, such as annual averages, are dominated by medium-level geomagnetic activity levels having K values of 3 and 4.

  9. A first generation numerical geomagnetic storm prediction scheme

    International Nuclear Information System (INIS)

    Akasofu, S.-I.; Fry, C.F.


    Because geomagnetic and auroral disturbances cause significant interference on many electrical systems, it is essential to develop a reliable geomagnetic and auroral storm prediction scheme. A first generation numerical prediction scheme has been developed. The scheme consists of two major computer codes which in turn consist of a large number of subroutine codes and of empirical relationships. First of all, when a solar flare occurs, six flare parameters are determined as the input data set for the first code which is devised to show the simulated propagation of solar wind disturbances in the heliosphere to a distance of 2 a.u. Thus, one can determine the relative location of the propagating disturbances with the Earth's position. The solar wind speed and the three interplanetary magnetic field (IMF) components are then computed as a function of time at the Earth's location or any other desired (space probe) locations. These quantities in turn become the input parameters for the second major code which computes first the power of the solar wind-magnetosphere dynamo as a function of time. The power thus obtained and the three IMF components can be used to compute or infer: the predicted geometry of the auroral oval; the cross-polar cap potential; the two geomagnetic indices AE and Dst; the total energy injection rate into the polar ionosphere; and the atmospheric temperature, etc. (author)

  10. Geomagnetic storm forecasting service StormFocus: 5 years online (United States)

    Podladchikova, Tatiana; Petrukovich, Anatoly; Yermolaev, Yuri


    Forecasting geomagnetic storms is highly important for many space weather applications. In this study, we review performance of the geomagnetic storm forecasting service StormFocus during 2011-2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by Dst index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.

  11. Estimating Latest Cretaceous and Tertiary Atmospheric PCO2 from Stomatal Indices (United States)

    Royer, D. L.; Wing, S. L.; Beerling, D. J.


    Most modern C3 seed plants show an inverse relationship between PCO2 and stomatal index (SI), where SI is the proportion of epidermal cells that are stomatal packages. This plant-atmosphere response therefore provides a reliable approach for estimating paleo-CO2 levels. Since stomatal responses to CO2 are generally species-specific, one is limited in paleo-reconstructions to species that exist both in the fossil record and living today. Fossils morphologically similar to living Ginkgo biloba and Metasequoia glyptostroboides extend back to the early and late Cretaceous, respectively, indicating that the fossil and living forms are very closely related. Measurements of SI made on fossil Ginkgo and Metasequoia were calibrated with historical collections of G. biloba and M. glyptostroboides leaves from sites that developed during the anthropogenically-driven CO2 increases of the past 145 years (288-369 ppmv) and with saplings of G. biloba and M. glyptostroboides grown in CO2 controlled growth chambers (350-800 ppmv). Both nonlinear regressions are highly significant (Ginkgo: n = 40, r2 = 0.91; Metasequoia: n = 18; r2 = 0.85). Results from a sequence of 23 latest Cretaceous to early Eocene-aged Ginkgo-bearing sites indicate that CO2 remained between 300 and 450 ppmv with the exception of one high estimate ( ~800 ppmv) near the Paleocene/Eocene boundary, and results from 4 middle Miocene-aged Ginkgo- and Metasequoia-bearing sites indicate that CO2 was between 320 and 400 ppmv. If correct, the CO2 values estimated here are too low to explain via the CO2 greenhouse effect alone the higher global mean temperatures (e.g., 3-4 ° C for the early Eocene) inferred from models and geological data for these two intervals.

  12. Causes and consequences of short-term sea-level changes in the Cretaceous green- and "hothouse": Topics and context of IGCP Project 609 (United States)

    Sames, Benjamin; Wagreich, Michael


    In contrast to the well-understood process of glacial eustasy, controlled mainly by waxing and waning of continental ice sheets, significant short-term, i.e. 10s kyr to a few myr (3rd to 4th order cycles) sea-level changes during the Cretaceous major greenhouse episode remain enigmatic. Such cyclic changes are often explained by the presence of ephemeral ice sheets even during the hottest greenhouse phases ("hothouse periods"), such as the mid-Cretaceous. Though Cretaceous global eustasy involves processes like brief glacial episodes (glacio-eustasy) for which evidence was given - at least for the Early Cretaceous and the late Late Cretaceous - other mechanisms have to be taken into consideration for the "hothouse periods" during which continental ice shields are highly improbable, like the storage and release of groundwater (termed "limno-eustasy" or "aquifer-eustasy"), the possible effect and magnitude of which might have been highly underestimated. Investigation of the timing, the causes, and the consequences of significant short-term (i.e. mainly kyr to 100s of kyr) sea-level changes during the last major greenhouse episode of Earth history, the Cretaceous, is the ultimate goal of the UNESCO IGCP (International Geoscience Programme) project number 609 "Climate-environmental deteriorations during greenhouse phases: Causes and consequences of short-term Cretaceous sea-level changes" (2013-2017; This also comprises the global versus regional correlation and extent of the sequences, their cyclicities, as well as the processes and triggering mechanisms for these, and marine to non-marine correlations. Recent refinements of the geological time scale have made major advances for the Cretaceous to yield a resolution comparable to that of younger Earth history. It is now for the first time possible to correlate and date short-term Cretaceous sea-level records with a resolution appropriate for their detailed analysis. Recognized

  13. First complete sauropod dinosaur skull from the Cretaceous of the Americas and the evolution of sauropod dentition. (United States)

    Chure, Daniel; Britt, Brooks B; Whitlock, John A; Wilson, Jeffrey A


    Sauropod dinosaur bones are common in Mesozoic terrestrial sediments, but sauropod skulls are exceedingly rare--cranial materials are known for less than one third of sauropod genera and even fewer are known from complete skulls. Here we describe the first complete sauropod skull from the Cretaceous of the Americas, Abydosaurus mcintoshi, n. gen., n. sp., known from 104.46 +/- 0.95 Ma (megannum) sediments from Dinosaur National Monument, USA. Abydosaurus shares close ancestry with Brachiosaurus, which appeared in the fossil record ca. 45 million years earlier and had substantially broader teeth. A survey of tooth shape in sauropodomorphs demonstrates that sauropods evolved broad crowns during the Early Jurassic but did not evolve narrow crowns until the Late Jurassic, when they occupied their greatest range of crown breadths. During the Cretaceous, brachiosaurids and other lineages independently underwent a marked diminution in tooth breadth, and before the latest Cretaceous broad-crowned sauropods were extinct on all continental landmasses. Differential survival and diversification of narrow-crowned sauropods in the Late Cretaceous appears to be a directed trend that was not correlated with changes in plant diversity or abundance, but may signal a shift towards elevated tooth replacement rates and high-wear dentition. Sauropods lacked many of the complex herbivorous adaptations present within contemporaneous ornithischian herbivores, such as beaks, cheeks, kinesis, and heterodonty. The spartan design of sauropod skulls may be related to their remarkably small size--sauropod skulls account for only 1/200th of total body volume compared to 1/30th body volume in ornithopod dinosaurs.

  14. Tectonic evolution of the Sicilian Maghrebian Chain inferred from stratigraphic and petrographic evidences of Lower Cretaceous and Oligocene flysch

    Directory of Open Access Journals (Sweden)

    Puglisi Diego


    Full Text Available The occurrence of a Lower Cretaceous flysch group, cropping out from the Gibraltar Arc to the Balkans with a very similar structural setting and sedimentary provenance always linked to the dismantling of internal areas, suggests the existence of only one sedimentary basin (Alpine Tethys s.s., subdivided into many other minor oceanic areas. The Maghrebian Basin, mainly developed on thinned continental crust, was probably located in the westernmost sector of the Alpine Tethys. Cretaceous re-organization of the plates triggered one (or more tectonic phases, well recorded in almost all the sectors of the Alpine Tethys. However, the Maghrebian Basin seems to have been deformed by Late- or post-Cretaceous tectonics, connected with a “meso-Alpine” phase (pre-Oligocene, already hypothesized since the beginning of the nineties. Field geological evidence and recent biostratigraphic data also support this important meso- Alpine tectonic phase in the Sicilian segment of the Maghrebian Chain, indicated by the deformations of a Lower Cretaceous flysch sealed by Lower Oligocene turbidite deposits. This tectonic development is emphasized here because it was probably connected with the onset of rifting in the southern paleomargin of the European plate, the detaching of the so-called AlKaPeCa block (Auct.; i.e. Alboran + Kabylian + Calabria and Peloritani terranes and its fragmentation into several microplates. The subsequent early Oligocene drifting of these microplates led to the progressive closure of the Maghrebian Basin and the opening of new back-arc oceanic basins, strongly controlled by extensional processes, in the western Mediterranean (i.e. Gulf of Lion, Valencia Trough, Provençal Basin and Alboran Sea.

  15. Diversity patterns amongst herbivorous dinosaurs and plants during the Cretaceous: implications for hypotheses of dinosaur/angiosperm co-evolution. (United States)

    Butler, R J; Barrett, P M; Kenrick, P; Penn, M G


    poor sampling in the Turonian-Santonian interval. Stegosauria shows a significant negative correlation with flowering plants and a significant positive correlation with the nonflowering cycadophytes (cycads, Bennettitales). This interesting pattern is worthy of further investigation, and it reflects the decline of both stegosaurs and cycadophytes during the Early Cretaceous.

  16. The Development of Models for Assessment of the Geomagnetically Induced Currents Impact on Electric Power Grids during Geomagnetic Storms

    Directory of Open Access Journals (Sweden)



    Full Text Available A model and an algorithm for the calculation of the functioning of an electric power grid of arbitrary configuration and complexity during geomagnetic storms were developed. The calculations were performed in the MATLAB mathematical package and the Simulink environment. The binding of objects to geographical coordinates is realized in the model, which enables to determine the matrix of potentials of geoelectric fields in nodal points. In order to define the instantaneous magnetizing currents, the power transformers are designed on the basis of the T-shaped equivalent circuit with a nonlinear mutual inductance of magnetization branch. Calculation of RMS values of active, reactive and total power values in all the elements is done with regard to the impact of harmonic components of the current and voltage. The results of modeling of the impact of geomagnetic storms of various intensity with the west-east direction of the geoelectric field vector for Samara region electric power grid are given.

  17. The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas (United States)

    Mather, J. W.; Ahluwalia, H. S.


    The complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device is described. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results. The results indicate that the device should be aligned along the direction of the local geomagnetic field or enclosed in a mu-metal shield.

  18. Shannon information of the geomagnetic field for the past 7000 years


    De Santis, A.; Qamili, E.


    The present behaviour of the geomagnetic field as expressed by the International Geomagnetic Reference Field (IGRF) deserves special attention when compared with that shown over the past few thousands of years by two paleomagnetic/archeomagnetic models, CALS3K and CALS7K. The application of the Information theory in terms of Shannon Information and K-entropy to these models shows characteristics of an instable geomagnetic field. Although the result is mitigated when we correct the CALS7K mode...

  19. Long-term rise in geomagnetic activity - A close connection between quiet days and storms

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne


    Geomagnetic quiet days and magnetic storms are naturally believed to be due to very different solar wind conditions. In this study we however demonstrate that the long-term variation of geomagnetic quiet and disturbed days are surprisingly similar. By the use of daily averages of the geomagnetic.......7. The results indicate that the longterm,increase is due to an increase in the background solar wind parameters, rather than in the number of solar wind disturbances....

  20. The Mono Lake geomagnetic excursion recorded in loess: Its application as time marker and implications for its geomagnetic nature (United States)

    Hambach, U.; Hark, M.; Zeeden, C.; Reddersen, B.; Zöller, L.; Fuchs, M.


    One of the youngest and worldwide documented geomagnetic excursions in the Brunhes Chron is the Mono Lake excursion (MLE). It has been detected in marine and terrestrial sedimentary archives as well as in lavas. Recent age determinations and age estimates for the MLE centre around an age interval of approximately 31 - 34 ka. Likewise the Laschamp excursion the MLE goes along with a distinct peak in cosmogenic radionuclides in ice cores and sedimentary archives. It provides therefore an additional geomagnetic time marker for various geoarchives to synchronise different climate archives. Here we report on a detailed record of the MLE from a loess site at Krems, Lower Austria. The site is situated on the southern slope of the Wachtberg hill in the vicinity of the old city centre of Krems. The archive comprises Middle to Upper Würmian (Late Pleistocene) loess in which an Upper Palaeolithic (Early Gravettian) cultural layer is embedded. The most spectacular finds are a double infant burial found in 2005 and a single burial discovered in 2006 (Einwögerer et al., 2006). Generally, archaeological findings show an extraordinarily good preservation due to embedding in rapidly sedimented loess (Händel et al., 2008). The about 10 m thick loess pile consists of calcareous sandy, coarse silt which is rich in mica indicating local sources. It is well stratified with brownish horizons representing embryonic soils pointing to incipient pedogenesis. Some of the pedo-horizons show occasionally indications of minor erosion and bedding-parallel sediment transport, but no linear erosional features. Pale greyish horizons are the result of partial gleying under permafrost conditions. No strong pedogenesis including decalcification and clay formation is present. The cultural layer is still covered by more than 5 m of loess, and dated by radiocarbon to ~27 ka 14C BP (Einwögerer et al., 2006). Below this layer up to 2.5 m of loess resting on Lower Pleistocene fluvial gravels are

  1. Re-Evaluation of Geomagnetic Field Observation Data at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    K Takahashi


    Full Text Available The Japanese Antarctic Research Expedition has conducted geomagnetic observations at Syowa Station, Antarctica, since 1966. Geomagnetic variation data measured with a fluxgate magnetometer are not absolute but are relative to a baseline and show drift. To enhance the importance of the geomagnetic data at Syowa Station, therefore, it is necessary to correct the continuous variation data by using absolute baseline values acquired by a magnetic theodolite and proton magnetometer. However, the database of baseline values contains outliers. We detected outliers in the database and then converted the geomagnetic variation data to absolute values by using the reliable baseline values.

  2. Analysis of Geomagnetic Field Variations during Total Solar Eclipses Using INTERMAGNET Data (United States)

    KIM, J. H.; Chang, H. Y.


    We investigate variations of the geomagnetic field observed by INTERMAGNET geomagnetic observatories over which the totality path passed during a solar eclipse. We compare results acquired by 6 geomagnetic observatories during the 4 total solar eclipses (11 August 1999, 1 August 2008, 11 July 2010, and 20 March 2015) in terms of geomagnetic and solar ecliptic parameters. These total solar eclipses are the only total solar eclipse during which the umbra of the moon swept an INTERMAGNET geomagnetic observatory and simultaneously variations of the geomagnetic field are recorded. We have confirmed previous studies that increase BY and decreases of BX, BZ and F are conspicuous. Interestingly, we have noted that variations of geomagnetic field components observed during the total solar eclipse at Isla de Pascua Mataveri (Easter Island) in Chile (IPM) in the southern hemisphere show distinct decrease of BY and increases of BX and BZ on the contrary. We have found, however, that variations of BX, BY, BZ and F observed at Hornsund in Norway (HRN) seem to be dominated by other geomagnetic occurrence. In addition, we have attempted to obtain any signatures of influence on the temporal behavior of the variation in the geomagnetic field signal during the solar eclipse by employing the wavelet analysis technique. Finally, we conclude by pointing out that despite apparent success a more sophisticate and reliable algorithm is required before implementing to make quantitative comparisons.

  3. Worldwide Magnetograms with Geomagnetic Components D, H, Z, or X, Y, and Z (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) receives magnetograms from over 200 geomagnetic observatories....

  4. Volcanic records of the Laschamp geomagnetic excursion from Mt Ruapehu, New Zealand (United States)

    Ingham, E.; Turner, G. M.; Conway, C. E.; Heslop, D.; Roberts, A. P.; Leonard, G.; Townsend, D.; Calvert, A.


    We present palaeodirectional records of the Laschamp geomagnetic excursion from lavas on Mt Ruapehu, New Zealand. Fourteen lava flows on the northwestern and southern flanks of Mt Ruapehu, with 40Ar/39Ar weighted mean plateau ages that range from 46.3 ± 2.0 to 39.9 ± 1.4 ka, were studied. The youngest and older flows carry a normal polarity magnetization; however, six flows, dated between 46.3 ± 2.0 and 42.7 ± 1.8 ka, record excursional directions. Three of these flows record southerly palaeomagnetic declinations and negative inclinations that agree well with a published Laschamp record from the Auckland Volcanic Field (AVF). Together, the AVF and Mt Ruapehu lavas currently represent the only volcanic records of the Laschamp excursion outside the Chaîne des Puys region, France. Thus, they make an important contribution to the global set of Laschamp excursion records. Virtual geomagnetic pole (VGP) groups for the New Zealand and French records early in the excursion are compatible with a dipole-dominated field that rotated to an equatorial orientation while simultaneously decaying in strength. In contrast, younger excursional flows from France and New Zealand yield separate VGP groups, which suggest either that the field had a nondipolar morphology in this later phase, or that the VGP groups were not synchronous. 40Ar/39Ar ages for the Mt Ruapehu record are on average slightly older than published northern hemisphere ages and from the relative palaeointensity minimum in the GLOPIS sedimentary stack. Although few individual ages differ significantly at the 2σ level, the spread suggests an overall excursion duration that is longer than the currently accepted 1500 years. This age spread may result from excess Ar in magmas at the time of the eruption biasing the results to slightly older ages, or from non-synchronous excursional field behaviour at near-antipodal locations, or, possibly, a precursory phase prior to the main excursion.


    Directory of Open Access Journals (Sweden)



    Full Text Available The Cretaceous coral genus Preverastraea is being revised, mainly on the basis of sample material. This cerioid, occasionally astreoid or phaceloid, genus is characterised by round or polygonal calices, compact septa in a regular hexameral symmetry and lonsdaleoid septa. The wall is of the same structure as the septa. The genera Bogdanovicoenia, Paraacanthogyra, and Saxuligyra are considered synonyms of Preverastraea. Related genera are Aulastraeopora and Apoplacophyllia, which only differ by their solitary or dendroid growth forms. There are altogether 13 species of Preverastraea. The genus, which occurred worldwide, is restricted to the period from the Late Barremian to the Late Cenomanian, being most common in the Aptian to Early Albian. Eighty-three samples are either known from the literature or have been to hand. This makes Preverastraea a rather rare genus. 

  6. Evidence of Egg Diversity in Squamate Evolution from Cretaceous Anguimorph Embryos.

    Directory of Open Access Journals (Sweden)

    Vincent Fernandez

    Full Text Available Lizards are remarkable amongst amniotes, for they display a unique mosaic of reproduction modes ranging from egg-laying to live-bearing. Within this patchwork, geckoes are believed to represent the only group to ever have produced fully calcified rigid-shelled eggs, contrasting with the ubiquitous parchment shelled-eggs observed in other lineages. However, this hypothesis relies only on observations of modern taxa and fossilised gecko-like eggshells which have never been found in association with any embryonic or parental remains. We report here the first attested fossil eggs of lizards from the Early Cretaceous of Thailand, combining hard eggshells with exquisitely preserved embryos of anguimoph (e.g. Komodo dragons, mosasaurs. These fossils shed light on an apparently rare reproduction strategy of squamates, demonstrate that the evolution of rigid-shelled eggs are not an exclusive specialization of geckoes, and suggest a high plasticity in the reproductive organs mineralizing eggshells.

  7. Dinosaur tracks from the Cedar Mountain Formation (Lower Cretaceous), Arches National Park, Utah (United States)

    Lockley, Martin G.; White, Diane K.; Kirkland, James I.; Santucci, Vincent L.


    The seventh and largest known dinosaur tracksite from the Cedar Mountain Formation is reported from two important stratigraphic levels in the Ruby Ranch Member within the boundaries of Arches National Park. Previous reports of sites with a few isolated tracks are of limited utility in indicating the fauna represented by track makers. The Arches site reveals evidence of several theropod morphotypes, including a possible match for the coelurosaur Nedcolbertia and an apparently didactyl Utahraptor-like dromeosaurid. Sauropod tracks indicate a wide-gauge morphotype (cf. Brontopodus). Ornithischian tracks suggest the presence of an iguandontid-like ornithopod and a large ankylosaur. Dinosaur track diversity is high in comparison with other early Cretaceous vertebrate ichnofaunas, and it correlates well with faunal lists derived from skeletal remains, thus providing a convincing census of the known fauna.

  8. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin (United States)

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.


    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  9. Reinvestigating an enigmatic Late Cretaceous monocot: morphology, taxonomy, and biogeography of Viracarpon

    Directory of Open Access Journals (Sweden)

    Kelly K.S. Matsunaga


    Full Text Available Angiosperm-dominated floras of the Late Cretaceous are essential for understanding the evolutionary, ecological, and geographic radiation of flowering plants. The Late Cretaceous–early Paleogene Deccan Intertrappean Beds of India contain angiosperm-dominated plant fossil assemblages known from multiple localities in central India. Numerous monocots have been documented from these assemblages, providing a window into an important but poorly understood time in their diversification. One component of the Deccan monocot diversity is the genus Viracarpon, known from anatomically preserved infructescences. Viracarpon was first collected over a century ago and has been the subject of numerous studies. However, resolution of its three-dimensional (3D morphology and anatomy, as well as its taxonomic affinities, has remained elusive. In this study we investigated the morphology and taxonomy of genus Viracarpon, combining traditional paleobotanical techniques and X-ray micro-computed tomography (μCT. Re-examination of type and figured specimens, 3D reconstructions of fruits, and characterization of structures in multiple planes of section using μCT data allowed us to resolve conflicting interpretations of fruit morphology and identify additional characters useful in refining potential taxonomic affinities. Among the four Viracarpon species previously recognized, we consider two to be valid (Viracarpon hexaspermum and Viracarpon elongatum, and the other two to be synonyms of these. Furthermore, we found that permineralized infructescences of Coahuilocarpon phytolaccoides from the late Campanian of Mexico correspond closely in morphology to V. hexaspermum. We argue that Viracarpon and Coahuilocarpon are congeneric and provide the new combination, Viracarpon phytolaccoides (Cevallos-Ferriz, Estrada-Ruiz & Perez-Hernandez Matsunaga, S.Y. Smith, & Manchester comb. nov. The significant geographic disjunction between these two occurrences indicates that the

  10. A transitional snake from the Late Cretaceous period of North America. (United States)

    Longrich, Nicholas R; Bhullar, Bhart-Anjan S; Gauthier, Jacques A


    Snakes are the most diverse group of lizards, but their origins and early evolution remain poorly understood owing to a lack of transitional forms. Several major issues remain outstanding, such as whether snakes originated in a marine or terrestrial environment and how their unique feeding mechanism evolved. The Cretaceous Coniophis precedens was among the first Mesozoic snakes discovered, but until now only an isolated vertebra has been described and it has therefore been overlooked in discussions of snake evolution. Here we report on previously undescribed material from this ancient snake, including the maxilla, dentary and additional vertebrae. Coniophis is not an anilioid as previously thought a revised phylogenetic analysis of Ophidia shows that it instead represents the most primitive known snake. Accordingly, its morphology and ecology are critical to understanding snake evolution. Coniophis occurs in a continental floodplain environment, consistent with a terrestrial rather than a marine origin; furthermore, its small size and reduced neural spines indicate fossorial habits, suggesting that snakes evolved from burrowing lizards. The skull is intermediate between that of lizards and snakes. Hooked teeth and an intramandibular joint indicate that Coniophis fed on relatively large, soft-bodied prey. However, the maxilla is firmly united with the skull, indicating an akinetic rostrum. Coniophis therefore represents a transitional snake, combining a snake-like body and a lizard-like head. Subsequent to the evolution of a serpentine body and carnivory, snakes evolved a highly specialized, kinetic skull, which was followed by a major adaptive radiation in the Early Cretaceous period. This pattern suggests that the kinetic skull was a key innovation that permitted the diversification of snakes.

  11. Pre-Cretaceous Agaricomycetes yet to be discovered: Reinvestigation of a putative Triassic bracket fungus from southern Germany

    Directory of Open Access Journals (Sweden)

    A. P. Kiecksee


    Full Text Available Agaricomycetes are major components of extant terrestrial ecosystems; however, their fruiting bodies are exceedingly rare as fossils. Reinvestigation of a peculiar fossil from Late Triassic sediments of southern Germany interpreted as a bracket fungus revealed that this fossil in fact represents a wood abnormality, resulting from injury to the cambium and subsequent callus growth in a Baieroxylon -like ginkgoalean wood. As a result, the fossil record of the Agaricomycetes does not yet pre-date the Early Cretaceous, suggesting a late diversification of basidiomycetes possessing large fruiting bodies. doi:10.1002/mmng.201200006

  12. The Egyptian geomagnetic reference field to the Epoch, 2010.0 (United States)

    Deebes, H. A.; Abd Elaal, E. M.; Arafa, T.; Lethy, A.; El Emam, A.; Ghamry, E.; Odah, H.


    The present work is a compilation of two tasks within the frame of the project ;Geomagnetic Survey & Detailed Geomagnetic Measurements within the Egyptian Territory; funded by the ;Science and Technology Development Fund agency (STDF);. The National Research Institute of Astronomy and Geophysics (NRIAG), has conducted a new extensive land geomagnetic survey that covers the whole Egyptian territory. The field measurements have been done at 3212 points along all the asphalted roads, defined tracks, and ill-defined tracks in Egypt; with total length of 11,586 km. In the present work, the measurements cover for the first time new areas as: the southern eastern borders of Egypt including Halayeb and Shlatin, the Quattara depresion in the western desert, and the new roads between Farafra and Baharia oasis. Also marine geomagnetic survey have been applied for the first time in Naser lake. Misallat and Abu-Simble geomagnetic observatories have been used to reduce the field data to the Epoch 2010. During the field measurements, whenever possible, the old stations occupied by the previous observers have been re-occupied to determine the secular variations at these points. The geomagnetic anomaly maps, the normal geomagnetic field maps with their corresponding secular variation maps, the normal geomagnetic field equations of the geomagnetic elements (EGRF) and their corresponding secular variations equations, are outlined. The anomalous sites, as discovered from the anomaly maps are, only, mentioned. In addition, a correlation between the International Geomagnetic Reference Field (IGRF) 2010.0 and the Egyptian Geomagnetic Reference Field (EGRF) 2010 is indicated.

  13. Coronal mass ejections and disturbances in solar wind plasma parameters in relation with geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Singh, Puspraj; Singh, Preetam


    Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.

  14. Long-term north-south asymmetry in solar wind speed inferred from geomagnetic activity: A new type of century-scale solar oscillation?

    DEFF Research Database (Denmark)

    Mursula, K.; Zieger, B.


    A significant and very similar annual variation in solar wind speed and in geomagnetic activity was recently found around all the four solar cycle minima covered by direct SW observations since mid-1960's. We have shown that the phase of this annual variation reverses with the Sun's polarity...... reversal, depicting a new form of 22-year periodicity. The annual variation results from a small north-south asymmetry in SW speed distribution where the minimum speed region is shifted toward the northern magnetic hemisphere. Here we study the very long-term evolution of the annual variation using early...... registrations of geomagnetic activity. We find a significant annual variation during the high-activity solar cycles in mid-19th century and since 1930's. Most interestingly, the SW speed asymmetry in mid-19th century was opposite to the present asymmetry, i.e., the minimum speed region was then shifted toward...

  15. Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous Lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico Basin Onshore and State Waters (United States)

    Dennen, Kristin O.; Hackley, Paul C.


    An assessment unit (AU) for undiscovered continuous “shale” gas in Lower Cretaceous (Aptian and Albian) and basal Upper Cretaceous (lower Cenomanian) rocks in the USA onshore Gulf of Mexico coastal plain recently was defined by the U.S. Geological Survey (USGS). The AU is part of the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico Basin. Definition of the AU was conducted as part of the 2010 USGS assessment of undiscovered hydrocarbon resources in Gulf Coast Mesozoic stratigraphic intervals. The purpose of defining the Greater Gulf Basin Lower Cretaceous Shale Gas AU was to propose a hypothetical AU in the Cretaceous part of the Gulf Coast TPS in which there might be continuous “shale” gas, but the AU was not quantitatively assessed by the USGS in 2010.

  16. Arctic black shale formation during Cretaceous Oceanic Anoxic Event 2

    DEFF Research Database (Denmark)

    Lenniger, Marc; Nøhr-Hansen, Henrik; Hills, Len V.


    The Late Cretaceous Oceanic Anoxic Event 2 (OAE2) represents a major perturbation of the global carbon cycle caused by the widespread deposition of organic-rich black shales. Although the paleoceanographic response and the spatial extent of bottom-water anoxia in low and mid-paleolatitudes are re......The Late Cretaceous Oceanic Anoxic Event 2 (OAE2) represents a major perturbation of the global carbon cycle caused by the widespread deposition of organic-rich black shales. Although the paleoceanographic response and the spatial extent of bottom-water anoxia in low and mid...... caused massive organic-carbon burial on the Arctic shelf in general, with important implications for hydrocarbon source-rock distribution in the Arctic region....

  17. Geomagnetic response to sudden expansions of the magnetosphere

    International Nuclear Information System (INIS)

    Araki, Tohru; Nagano, Hiroshi


    The geomagnetic response to five successive sudden expansions of the magnetosphere was examined by the use of magnetic data observed on the ground and by satellites. At the geosynchronous orbit between 0800 and 1100 LT the magnetic field component parallel to Earth's rotation axis decreased successively. The amplitude and the fall time of each decrease were 20-30 nT and 2.5-3.5 min, respectively. The decrease was propagated about 10 min later to the distance of about 31 R E from Earth in the antisunward direction, indicating propagation speed of about 300 km/s. The H component of ground magnetograms from low-latitude stations showed decreases with waveform similar to that at the geosynchronous orbit, but each decrease at the dayside equator was greatly enhanced and preceded by a short small positive impulse. Each of the corresponding geomagnetic variations at high latitude stations consisted of two successive sharp pulses of opposite sense with 2-3 min duration. The dominant component and the sense of these high-latitude pulses were highly dependent upon local time and latitude. The distribution of equivalent ionospheric current arrows for each high-latitude pulse showed clear twin vortices centered at 70-76 degree geomagnetic latitude in the dayside and was approximately symmetric with respect to the noon meridian. The current direction of the vortices was reversed from the first pulse to the second. it suggests successive appearance of a dawn-to-dusk and then a dusk-to-dawn electric field, both of which were transmitted from the magnetosphere to the polar ionosphere. The effect of ionospheric currents due to these polar electric fields was superposed on the simple magnetic decrease produced by an expansion of the whole magnetosphere and produced the complex waveform distribution on the ground

  18. Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim


    Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.

  19. K-type geomagnetic index nowcast with data quality control

    Directory of Open Access Journals (Sweden)

    René Warnant


    Full Text Available

    A nowcast system for operational estimation of a proxy K-type geomagnetic index is presented. The system is based on a fully automated computer procedure for real-time digital magnetogram data acquisition that includes screening of the dataset and removal of the outliers, estimation of the solar regular variation (SR of the geomagnetic field, calculation of the index, and issuing of an alert if storm-level activity is indicated. This is a time-controlled (rather than event-driven system that delivers the regular output of: the index value, the estimated quality flag, and eventually, an alert. The novel features provided are first, the strict control of the data input and processing, and second, the increased frequency of production of the index (every 1 h. Such quality control and increased time resolution have been found to be of crucial importance for various applications, e.g. ionospheric monitoring, that are of particular interest to us and to users of our service. The nowcast system operability, accuracy and precision have been tested with instantaneous measurements from recent years. A statistical comparison between the nowcast and the definitive index values shows that the average root-mean-square error is smaller than 1 KU. The system is now operational at the site of the Geophysical Centre of the Royal Meteorological Institute in Dourbes (50.1ºN, 4.6ºE, and it is being used for alerting users when geomagnetic storms take place.

  20. The use of various interplanetary scintillation indices within geomagnetic forecasts

    Directory of Open Access Journals (Sweden)

    E. A. Lucek

    Full Text Available Interplanetary scintillation (IPS, the twinkling of small angular diameter radio sources, is caused by the interaction of the signal with small-scale plasma irregularities in the solar wind. The technique may be used to sense remotely the near-Earth heliosphere and observations of a sufficiently large number of sources may be used to track large-scale disturbances as they propagate from close to the Sun to the Earth. Therefore, such observations have potential for use within geomagnetic forecasts. We use daily data from the Mullard Radio Astronomy Observatory, made available through the World Data Centre, to test the success of geomagnetic forecasts based on IPS observations. The approach discussed here was based on the reduction of the information in a map to a single number or series of numbers. The advantages of an index of this nature are that it may be produced routinely and that it could ideally forecast both the occurrence and intensity of geomagnetic activity. We start from an index that has already been described in the literature, INDEX35. On the basis of visual examination of the data in a full skymap format modifications were made to the way in which the index was calculated. It was hoped that these would lead to an improvement in its forecasting ability. Here we assess the forecasting potential of the index using the value of the correlation coefficient between daily Ap and the IPS index, with IPS leading by 1 day. We also compare the forecast based on the IPS index with forecasts of Ap currently released by the Space Environment Services Center (SESC. Although we find that the maximum improvement achieved is small, and does not represent a significant advance in forecasting ability, the IPS forecasts at this phase of the solar cycle are of a similar quality to those made by SESC.

  1. Relative outflow enhancements during major geomagnetic storms – Cluster observations

    Directory of Open Access Journals (Sweden)

    A. Schillings


    Full Text Available The rate of ion outflow from the polar ionosphere is known to vary by orders of magnitude, depending on the geomagnetic activity. However, the upper limit of the outflow rate during the largest geomagnetic storms is not well constrained due to poor spatial coverage during storm events. In this paper, we analyse six major geomagnetic storms between 2001 and 2004 using Cluster data. The six major storms fulfil the criteria of Dst  < −100 nT or Kp  > 7+. Since the shape of the magnetospheric regions (plasma mantle, lobe and inner magnetosphere are distorted during large magnetic storms, we use both plasma beta (β and ion characteristics to define a spatial box where the upward O+ flux scaled to an ionospheric reference altitude for the extreme event is observed. The relative enhancement of the scaled outflow in the spatial boxes as compared to the data from the full year when the storm occurred is estimated. Only O+ data were used because H+ may have a solar wind origin. The storm time data for most cases showed up as a clearly distinguishable separate peak in the distribution toward the largest fluxes observed. The relative enhancement in the outflow region during storm time is 1 to 2 orders of magnitude higher compared to less disturbed time. The largest relative scaled outflow enhancement is 83 (7 November 2004 and the highest scaled O+ outflow observed is 2  ×  1014 m−2 s−1 (29 October 2003.

  2. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr - Part 1: A new geomagnetic data composite (United States)

    Lockwood, M.; Barnard, L.; Nevanlinna, H.; Owens, M. J.; Harrison, R. G.; Rouillard, A. P.; Davis, C. J.


    We present a new composite of geomagnetic activity which is designed to be as homogeneous in its construction as possible. This is done by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF (interplanetary magnetic field) variations. This will enable us (in Part 2, Lockwood et al., 2013a) to use the new index to reconstruct the interplanetary magnetic field, B, back to 1846 with a full analysis of errors. Allowance is made for the effects of secular change in the geomagnetic field. The composite uses interdiurnal variation data from Helsinki for 1845-1890 (inclusive) and 1893-1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891-1892 and 1897-1907) and the nearby Seddin observatories (1908-1910) and intercalibration achieved using the Potsdam-Seddin sequence. The new index is termed IDV(1d) because it employs many of the principles of the IDV index derived by Svalgaard and Cliver (2010), inspired by the u index of Bartels (1932); however, we revert to using one-day (1d) means, as employed by Bartels, because the use of near-midnight values in IDV introduces contamination by the substorm current wedge auroral electrojet, giving noise and a dependence on solar wind speed that varies with latitude. The composite is compared with independent, early data from European-sector stations, Greenwich, St Petersburg, Parc St Maur, and Ekaterinburg, as well as the composite u index, compiled from 2-6 stations by Bartels, and the IDV index of Svalgaard and Cliver. Agreement is found to be extremely good in all cases, except two. Firstly, the Greenwich data are shown to have gradually degraded in quality until new instrumentation was installed in 1915. Secondly, we infer that the Bartels u index is increasingly unreliable before about 1886 and overestimates the solar cycle amplitude between 1872 and 1883 and this is amplified in the proxy data used

  3. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 1: A new geomagnetic data composite

    Directory of Open Access Journals (Sweden)

    M. Lockwood


    Full Text Available We present a new composite of geomagnetic activity which is designed to be as homogeneous in its construction as possible. This is done by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF (interplanetary magnetic field variations. This will enable us (in Part 2, Lockwood et al., 2013a to use the new index to reconstruct the interplanetary magnetic field, B, back to 1846 with a full analysis of errors. Allowance is made for the effects of secular change in the geomagnetic field. The composite uses interdiurnal variation data from Helsinki for 1845–1890 (inclusive and 1893–1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891–1892 and 1897–1907 and the nearby Seddin observatories (1908–1910 and intercalibration achieved using the Potsdam–Seddin sequence. The new index is termed IDV(1d because it employs many of the principles of the IDV index derived by Svalgaard and Cliver (2010, inspired by the u index of Bartels (1932; however, we revert to using one-day (1d means, as employed by Bartels, because the use of near-midnight values in IDV introduces contamination by the substorm current wedge auroral electrojet, giving noise and a dependence on solar wind speed that varies with latitude. The composite is compared with independent, early data from European-sector stations, Greenwich, St Petersburg, Parc St Maur, and Ekaterinburg, as well as the composite u index, compiled from 2–6 stations by Bartels, and the IDV index of Svalgaard and Cliver. Agreement is found to be extremely good in all cases, except two. Firstly, the Greenwich data are shown to have gradually degraded in quality until new instrumentation was installed in 1915. Secondly, we infer that the Bartels u index is increasingly unreliable before about 1886 and overestimates the solar cycle amplitude between 1872 and 1883 and this is

  4. Cretaceous sedimentology of the Barmer Basin, Rajasthan, India


    Beaumont, Hazel


    The Barmer Basin, western India, is a well-known and prospected petroleum system. However, the Lower Cretaceous Ghaggar-Hakra Formation has not been recognised as basin fill and not documented prior to this study. The formation outcrops in rotational fault blocks at the Sarnoo Hills and surrounding areas, on the eastern Barmer Basin margin. The thesis here describes and analyses the nature and evolution of the formation at both outcrop and within the subsurface, producing facies and depositio...

  5. IAGA Geomagnetic Data Analysis format - Analysis_IAGA (United States)

    -Emilian Toader, Victorin; Marmureanu, Alexandru


    Geomagnetic research involves a continuous Earth's magnetic field monitoring and software for processing large amounts of data. The Analysis_IAGA program reads and analyses files in IAGA2002 format used within the INTERMAGNET observer network. The data is made available by INTERMAGNET ( and NOAA - National Geophysical Data Center ( cost free for scientific use. The users of this software are those who study geomagnetism or use this data along with other atmospheric or seismic factors. Analysis_IAGA allows the visualization of files for the same station, with the feature of merging data for analyzing longer time intervals. Each file contains data collected within a 24 hour time interval with a sampling rate of 60 seconds or 1 second. Adding a large number of files may be done by dividing the sampling frequency. Also, the program has the feature of combining data files gathered from multiple stations as long as the sampling rate and time intervals are the same. Different channels may be selected, visualized and filtered individually. Channel properties can be saved and edited in a file. Data can be processed (spectral power, P / F, estimated frequency, Bz/Bx, Bz/By, convolutions and correlations on pairs of axis, discrete differentiation) and visualized along with the original signals on the same panel. With the help of cursors/magnifiers time differences can be calculated. Each channel can be analyzed separately. Signals can be filtered using bandpass, lowpass, highpass (Butterworth, Chebyshev, Inver Chebyshev, Eliptic, Bessel, Median, ZeroPath). Separate graphics visualize the spectral power, frequency spectrum histogram, the evolution of the estimated frequency, P/H, the spectral power. Adaptive JTFA spectrograms can be selected: CSD (Cone-Shaped Distribution), CWD (Choi-Williams Distribution), Gabor, STFT (short-time Fourier transform), WVD (Wigner

  6. Exploration of geomagnetic field anomaly with balloon for geophysical research (United States)

    Jia, Wen-Kui

    The use of a balloon to explore the geomagnetic field anomaly in the area east of Beijing is demonstrated. The present results are compared with those of aerial surveys. Descriptions are given of the fluxgate magnetometer, the sensor's attitude control and measurement, and data transmission and processing. At an altitude of about 30 km, a positive anomaly of the vertical component of about 100 nanoteslas was measured. The results suggest that, for this particular area, the shallow layer of a small-scale geological structure differs from the deep layer of a large-scale geological structure.

  7. Ionospheric parameters as the precursors of disturbed geomagnetic conditions (United States)

    Blagoveshchensky, D. V.; Sergeeva, M. A.; Kozlovsky, A.


    Geomagnetic storms and substorms are the principal elements of the disturbed Space Weather conditions. The aim of the study was to reveal the ionospheric precursors that can be used to forecast geomagnetic disturbance beginning. To study the ionospheric processes before, during and after magnetic storms and substorms data from Sodankylä Geophysical Observatory was used (geomagnetic coordinates: 64.1oN, 119.2oE). In earlier works the Main Effect (ME) was revealed for substorms. It consists of the following steps: (a) the increase of critical frequency foF2 from its quiet median before and during the substorm growth phase, four-five hours before To moment that is the moment of the expansion phase onset, (b) the foF2 decrease to the level lower than its median just after To and until Te that is the moment of the end of the expansion phase, (c) the issue ;a; repeated during the recovery phase (d) two bell-shape spikes in the cutoff frequency values foEs: first spike occurs three hours before To, second spike - during the expansion phase within the interval between To and Te. In the present work it is shown that ME manifestations can be used as precursors of magnetic substorms at high-latitudes (geomagnetic latitudes 50oN-65oN). In particular, the foF2 growth some hours before To can be used as a precursor of substorm development. The first foEs bell-shaped spike also can be used for short-term forecasting, two-three hours in advance of a substorm. Furthermore, the storms between 2008 and 2012 were studied. It was revealed that the similar ME also takes place in the case of magnetic storms but within the different time scale. More specifically, the first ME maximum in foF2 values occurs one-two days before the storm beginning and can be used as its precursor. In addition, the foEs spike takes place approximately ten hours before a storm and also can be used for the prediction of the storm beginning.

  8. The Study of Westward Drift in the Main Geomagnetic Field


    Bayanjargal, G.


    We have obtained a solution for the velocity of westward drift from the induction equation in which an approach for main geomagnetic field was built. Distribution functions B(r, t) entered into the induction equation have been built by the observatories' data in North America and the Europe from 1991 to 2006. The longitudinal −0.123 degree/year and latitudinal 0.068 degree/year drifts were defined in North America. And the longitudinal −0.257 degree/year drift was defined in Europe from 1991...

  9. The Study of Westward Drift in the Main Geomagnetic Field

    Directory of Open Access Journals (Sweden)

    G. Bayanjargal


    Full Text Available We have obtained a solution for the velocity of westward drift from the induction equation in which an approach for main geomagnetic field was built. Distribution functions B(r, t entered into the induction equation have been built by the observatories' data in North America and the Europe from 1991 to 2006. The longitudinal −0.123 degree/year and latitudinal 0.068 degree/year drifts were defined in North America. And the longitudinal −0.257 degree/year drift was defined in Europe from 1991 to 2006. These drifts are similar to results of other studies.

  10. Spatial power spectrum of the geomagnetic field since 1945

    International Nuclear Information System (INIS)

    Senanayake, W.E.


    The Geomagnetic field for the period 1945-1990 has been analyzed in terms of Spatial Power Spectra of the Main Field and its Secular Variation. It is observed that for the above interval, the magnetic energy density at the core-mantle boundary is almost conserved. This supports the idea that an exchange of energy between different spherical harmonic constituents could occur. The distinctive behaviour of the first two terms (Dipole and Quadrupole), as seen from the spectra of the main field and secular variation, probably indicates somewhat different feature associated with the field origin. (author). 28 refs, 3 figs, 1 tab

  11. Regional corrections and checking the reliability of geomagnetic forecasts

    International Nuclear Information System (INIS)

    Afanas'eva, V.I.; Shevnin, A.D.


    Regional corrections of the K index mark estimate with respect to the Moskva observatory are reviewed in order to improve the short-range forecast of the geomagnetic activity and to promote it within the aqua area. The forecasts of the storms of all categories and weak perturbations have been verified for the predominant days in the catalogue of the magnetic storms family. It is shown that the adopted methods of forecasts yield considerably good results for weak perturbations as well as for weak and moderate magnetic storms. Strong and very strong storms are less predictable

  12. Source rock potential of middle cretaceous rocks in Southwestern Montana (United States)

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.


    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  13. Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices

    DEFF Research Database (Denmark)

    Tomita, S; Nose´, M; Iyemori, T


    activity in the auroral zone. In the present study, we examine magnetic local time (MLT) dependence of geomagnetic field variations contributing to the AU and AL indices. We use 1-min geomagnetic field data obtained in 2003. It is found that both AU and AL indices have two ranges of MLT (AU: 15:00-22:00MLT...

  14. Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field?

    Directory of Open Access Journals (Sweden)

    Weronika Erdmann

    Full Text Available Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth's organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada, which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field.

  15. Relation of geomagnetic pulsations to parmeters of mid-latitude lower ionosphere

    International Nuclear Information System (INIS)

    Dorokhov, V.L.; Kostrov, L.S.; Martynenko, S.I.; Piven', L.A.; Pushin, V.F.; Shemet, A.S.


    Results of experimental investigation of the effect of geomagnetic pulsations on parameters of medium-latitude lower ionosphere with the use of methods of partial reflections and Doppler probing at short waves are presented. The relation between changes in geomagnetic field and intensity of partially reflected radiosignals is detected

  16. Advancements in Chinese Geomagnetism and Aeronomy during the Last Thirty Years, (United States)


    movements of charged particles in geomagnetic fields and neutral line magnetic fields and they vigorously initiated simulated tests. References (120-121... telluric prospecting and related probems; (6) Magnetic prospecting and interpretation of data; (7) Some research on geomagnetic instruments; (8

  17. The geomagnetic observatory on Tristan da Cunha: Setup, operation and experiences

    DEFF Research Database (Denmark)

    Matzka, Jürgen; Husøy, Bjørn-Ove; Berarducci, Alan


    The island Tristan da Cunha is located in the South Atlantic Anomaly, and until recently the area has been one of the largest gaps in the global geomagnetic observatory network. As part of the Danish project SAADAN we set up a geomagnetic observatory on the island. Here we report on how we establ...

  18. Climatic influence in NRM and 10 Be-derived geomagnetic paleointensity data

    NARCIS (Netherlands)


    One can determine geomagnetic paleointensities from natural remanent magnetizations (NRM) and by inverting production rates of cosmogenic isotopes such as 10 Be and 14 C. Recently, two independently derived 200-kyr stacks [Y. Guyodo, J.-P. Valet, Relative variations in geomagnetic intensity from

  19. The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas

    International Nuclear Information System (INIS)

    Mather, J.W.; Ahluwalia, H.S.


    The authors describe the complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results

  20. Manifestation of interplanetary medium parameters in development of a geomagnetic storm initial phase

    International Nuclear Information System (INIS)

    Chkhetiya, A.M.


    The role of solar wind plasma parameters in formation of a geomagnetic storm initial phase is refined. On the basis of statistical analysis an empirical formula relating the interplanetary medium parameters (components of interplanetary magnetic field, proton velocity and concentration) and D st -index during the geomagnetic storm initial phase is proposed